WorldWideScience

Sample records for enriched gas production

  1. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  2. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  3. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ianakiev, Kiril D.; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-01-01

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF 6 containing low enriched (approximately 4% 235 U) and highly enriched (above 20% 235 U) uranium. This instrument used the 22-keV line from a 109 Cd source as a transmission source to achieve a high sensitivity to the UF 6 gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF 6 product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  4. On-Line Enrichment Monitor for UF{sub 6} Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K. D.; Boyer, B.; Favalli, A.; Goda, J. M.; Hill, T.; Keller, C.; Lombardi, M.; Paffett, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Parker, R.; Smith, M. K.; Swinhoe, M. T. [Los Alamos National Laboratory, Los Alamos (United States)

    2012-06-15

    This paper is a continuation of the Advanced Enrichment Monitoring Technology for UF{sub 6} Gas Centrifuge Enrichment Plant (GCEP) work, presented in the 2010 IAEA Safeguards Symposium. Here we will present the system architecture for a planned side-by-side field trial test of passive (186-keV line spectroscopy and pressure-based correction for UF{sub 6} gas density) and active (186-keV line spectroscopy and transmission measurement based correction for UF{sub 6} gas density) enrichment monitoring systems in URENCO's enrichment plant in Capenhurst. Because the pressure and transmission measurements of UF{sub 6} are complementary, additional information on the importance of the presence of light gases and the UF{sub 6} gas temperature can be obtained by cross-correlation between simultaneous measurements of transmission, pressure and 186-keV intensity. We will discuss the calibration issues and performance in the context of accurate, on-line enrichment measurement. It is hoped that a simple and accurate on-line enrichment monitor can be built using the UF{sub 6} gas pressure provided by the Operator, based on online mass spectrometer calibration, assuming a negligible (a small fraction of percent) contribution of wall deposits. Unaccounted-for wall deposits present at the initial calibration will lead to unwanted sensitivity to changes in theUF{sub 6} gas pressure and thus to error in the enrichment results. Because the accumulated deposits in the cascade header pipe have been identified as an issue for Go/No Go measurements with the Cascade Header Enrichment Monitor (CHEM) and Continuous Enrichment Monitor (CEMO), it is important to explore their effect. Therefore we present the expected uncertainty on enrichment measurements obtained by propagating the errors introduced by deposits, gas density, etc. and will discuss the options for a deposit correction during initial calibration of an On-Line Enrichment Monitor (OLEM).

  5. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  6. Enrichment technology. Dependable vendor of gas centrifuges; Enrichment Technology. Zuverlaessiger Lieferant von Gaszentrifugen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-10-15

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  7. Gas-phase UF6 enrichment monitor for enrichment plant safeguards

    International Nuclear Information System (INIS)

    Strittmatter, R.B.; Tape, J.W.

    1980-03-01

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF 6 feed stream of an enrichment plant. The nondestructive gamma-ray assay method can be used to determine the enrichment of natural UF 6 with a relative precision of better than 1% for a wide range of pressures

  8. Hydrogen enriched gas production in a multi-stage downdraft gasification process

    International Nuclear Information System (INIS)

    Dutta, A.; Jarungthammachote, S.

    2009-01-01

    To achieve hydrogen enriched and low-tar producer gas, multi-stage air-blown and air-steam gasification were studied in this research. Results showed that the tar content from multi-stage air-blown and air-steam gasification was lower compared to the average value of that from downdraft gasification. It was also seen that an air-steam gasification process could potentially increase the hydrogen concentration in the producer gas in the expense of carbon monoxide; however, the summation of hydrogen and carbon monoxide in the producer gas was increased. (author)

  9. Synthesis of fertilizers nitrogen and 15N-enriched. Pt. I. Production of enriched 15N-anhydrous ammonia

    International Nuclear Information System (INIS)

    Bendassolli, J.A.; Mortatti, J.; Trivelin, P.C.O.; Victoria, R.L.

    1988-01-01

    The results of 15 N-anhydrous ammonia production through reaction between 15 N-enriched ammonium sulphate and sodium hidroxide are reported. Influence of the reaction temperature, carrier gas flow, reaction time and mass of ammonium sulphate on the production of anhydrous ammonia were studied. Analyses for the cost of production of 5% atoms in 15 N-enriched anhydrous ammonia were made. (M.A.C.) [pt

  10. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  11. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  12. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  13. On-line liquid chromatography-gas chromatography: A novel approach for the analysis of phytosterol oxidation products in enriched foods.

    Science.gov (United States)

    Scholz, Birgit; Wocheslander, Stefan; Lander, Vera; Engel, Karl-Heinz

    2015-05-29

    A novel methodology for the automated qualitative and quantitative determination of phytosterol oxidation products in enriched foods via on-line liquid chromatography-gas chromatography (LC-GC) was established. The approach is based on the LC pre-separation of acetylated phytosterols and their corresponding oxides using silica as stationary phase and a mixture of n-hexane/methyl tert-butyl ether/isopropanol as eluent. Two LC-fractions containing (i) 5,6-epoxy- and 7-hydroxyphytosterols, and (ii) 7-ketophytosterols are transferred on-line to the GC for the analysis of their individual compositions on a medium polar trifluoropropylmethyl polysiloxane capillary column. Thus, conventionally employed laborious off-line purification and enrichment steps can be avoided. Validation data, including recovery, repeatability, and reproducibility of the method, were elaborated using an enriched margarine as example. The margarine was subjected to a heating procedure in order to exemplarily monitor the formation of phytosterol oxidation products. Quantification was performed using on-line LC-GC-FID, identification of the analytes was based on on-line LC-GC-MS. The developed approach offers a new possibility for the reliable and fast analysis of phytosterol oxidation products in enriched foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Gas Enrichment at Liquid-Wall Interfaces

    NARCIS (Netherlands)

    Dammer, S.M.; Lohse, Detlef

    2006-01-01

    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls, which for hydrophobic walls can exceed more than 2 orders of magnitude when compared to the gas density in the bulk liquid,

  15. Gas centrifuge uranium enrichment programme in the United States of America

    International Nuclear Information System (INIS)

    Gestson, D.K.

    1983-01-01

    The technology of uranium enrichment using the gas centrifuge is fully proven as a result of over twenty years of research. The high performance of the centrifuge has been confirmed, and its reliability established, through detailed evaluation of a series of centrifuge designs. The baseline centrifuge for the Gas Centrifuge Enrichment Plant (GCEP) is now in commercial production by three qualified manufacturers. It will be ready for installation in GCEP on schedule. The GCEP construction is also on schedule, with two process buildings expected to start operation in 1988 and 1989. Development and demonstration of the Set IV advanced gas centrifuge is under way and it is expected to be ready for installation in Process Building 3 in early 1989. (author)

  16. Fault features and enrichment laws of narrow-channel distal tight sandstone gas reservoirs: A case study of the Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zhongping Li

    2016-11-01

    Full Text Available The Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin, is the main base of Sinopec Southwest Oil & Gas Company for gas reserves and production increase during the 12th Five-Year Plan. However, its natural gas exploration and development process was restricted severely, since the exploration wells cannot be deployed effectively in this area based on the previous gas accumulation and enrichment pattern of “hydrocarbon source fault + channel sand body + local structure”. In this paper, the regional fault features and the gas accumulation and enrichment laws were discussed by analyzing the factors like fault evolution, fault elements, fault-sand body configuration (the configuration relationship between hydrocarbon source faults and channel sand bodies, trap types, and reservoir anatomy. It is concluded that the accumulation and enrichment of the Shaximiao Fm gas reservoir in this area is controlled by three factors, i.e., hydrocarbon source, sedimentary facies and structural position. It follows the accumulation laws of source controlling region, facies controlling zone and position controlling reservoir, which means deep source and shallow accumulation, fault-sand body conductivity, multiphase channel, differential accumulation, adjusted enrichment and gas enrichment at sweet spots. A good configuration relationship between hydrocarbon source faults and channel sand bodies is the basic condition for the formation of gas reservoirs. Natural gas accumulated preferentially in the structures or positions with good fault-sand body configuration. Gas reservoirs can also be formed in the monoclinal structures which were formed after the late structural adjustment. In the zones supported by multiple faults or near the crush zones, no gas accumulation occurs, but water is dominantly produced. The gas-bearing potential is low in the area with undeveloped faults or being 30 km away from the hydrocarbon source faults. So

  17. Experience with environmental sampling at gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ekenstam, G. af; Bush, W.; Janov, J.; Kuhn, E.; Ryjinski, M.

    2001-01-01

    Environmental sampling has been used routinely by the IAEA since 1996 after the IAEA Board of Governors approved it in March 1995 as a new technique to strengthen safeguards and improve efficiency. In enrichment plants it is used to confirm that there has been no production of highly enriched uranium (HEU), or production of uranium at above the declared enrichment. The use of environmental sampling is based on the assumption that every process, no matter how leak tight, will release small amounts of process material to the environment. Even though these releases of nuclear material are extremely small in gas centrifuge enrichment plants, and well below levels of concern from a health physics and safety standpoint, they are detectable and their analysis provides an indication of the enrichment of the material that has been processed in the plant. The environmental samples at enrichment plants are collected by swiping selected areas of the plant with squares of cotton cloth (10x10 cm) from sampling kits prepared in ultra clean condition. The squares of cotton cloth sealed in plastic bags are sent for analysis to the Network Analytical Laboratories. The analysis includes the measurement of the uranium isotopic composition in uranium-containing particles by Thermal lonization Mass Spectroscopy (TIMS) or Secondary ION Mass Spectroscopy (SIMS). Since the implementation of environmental sampling, swipes have been collected from 240 sampling points at three gas centrifuge plants of URENCO, which have a total throughput of more than 8,000 tonnes of uranium per year. The particle analysis results generally reflected the known operational history of the plants and confirmed that they had only been operated to produce uranium with enrichment less than 5% 235 U. The information about the content of the minor isotopes 234 U and 236 U also indicates that depleted and recycled uranium were sometimes used as feed materials in some plants. An example is given of the TIMS particle

  18. Centar's gas centrifuge enrichment project

    International Nuclear Information System (INIS)

    Abajian, V.V.; Fishman, A.M.

    1976-01-01

    Plans for the building and operating of Centar Associates gas centrifuge uranium enrichment plant are described. Operating costs and machine manufacture are considered. Commitments with the utilities are summarised. (U.K.)

  19. International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.

    1980-01-01

    This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. 13 refs

  20. NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-12-01

    Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de

  1. Measurement of the enrichment of uranium-hexafluoride gas in product pipes in the centrifuge enrichment plant at Almelo

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Aaldijk, J.K.; Harry, R.J.S.

    1987-09-01

    One of the objectives of safeguarding centrifuge enrichment plants is to apply non-destructive measurements inside the cascade area to confirm that the enrichment level is in the low enriched uranium range. Research in the UK and USA has developed a NDA instrument which can confirm the presence of low enriched uranium on a rapid go/no go basis in cascade header pipework of their centrifuge enrichment plants. The instrument is based on a gamma spectroscopic measurement coupled with an X-ray fluorescence analysis. This report gives the results of measurements carried out at Almelo by the UKAEA Harwell, ECN Petten and KFA Juelich to determine if these techniques could be employed at Almelo and Gronau. The energy dispersive X-ray fluorescence analysis has been applied to determine the total mass of uranium in the gas phase, and the deposit correction technique and the two geometry technique have been applied at Almelo to correct the measured gamma intensities for those emitted by the deposit. After an executive summary the report discusses the principles of the two correction methods. A short description of the equipment precedes the presentation of the results of the measurements and the discussion. After the conclusions the report contains two appendices which contain the derivation of the formulae for the deposit correction technique and a discussion of the systematic errors of this technique. 8 figs.; 11 refs.; 6 tables

  2. Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G. [European Commission, Joint Research Centre, Institute for Transuranium Elements Via Fermi, 2749-TP181,20127 Ispra (Italy)

    2012-09-26

    The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

  3. From the Lab to the real world : sources of error in UF6 gas enrichment monitoring

    International Nuclear Information System (INIS)

    Lombardi, Marcie L.

    2012-01-01

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today's gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF 6 ) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the 235 U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a 'notch' filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF 6 temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF 6 gas enrichment

  4. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    International Nuclear Information System (INIS)

    Freeman, Corey R.; Geist, William H.

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF 6 spins at high velocities in centrifuges to separate the molecules containing 238 U from those containing the lighter 235 U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF 6 gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  5. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  6. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  7. From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Marcie L.

    2012-03-01

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today’s gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a “notch” filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF

  8. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    International Nuclear Information System (INIS)

    Boyer, Brian David; Erpenbeck, Heather H.; Miller, Karen A.; Ianakiev, Kiril D.; Reimold, Benjamin A.; Ward, Steven L.; Howell, John

    2010-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235 U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  9. Effect of oxygen enrichment in air on acid gas combustion under Claus conditions

    KAUST Repository

    Ibrahim, Salisu

    2013-09-01

    Results are presented to examine the combustion of acid gas (H2S and CO2) in hydrogen-fueled flames using a mixture of oxygen and nitrogen under Claus conditions (Φ = 3). Specifically the effect of oxygen enrichment in the above flames is examined. The compositions of acid gas examined are100% H2S and 50% H2S/50% CO2 with different percentages of oxygen enrichment (0%, 19.3% and 69.3%) in the oxygen/nitrogen mixtures. The results revealed that combustion of acid gas formed SO2 wherein the mole fraction of SO2 increased to an asymptotic value at all the oxygen concentrations examined. In addition, increase in oxygen enrichment of the air resulted in increased amounts of SO2 rather than the formation of more desirable elemental sulfur. In case of 50% H2S/50% CO2 acid gas, carbon monoxide mole fraction increased with oxygen enrichment which is an indicator to the availability of additional amounts of oxygen into the reaction pool. This gas mixture resulted in the formation of other sulfurous–carbonaceous compounds (COS and CS2) due to the presence of carbon monoxide. The results showed that the rate of COS formation increased with oxygen enrichment due to the availability of higher amounts of CO while that of CS2 reduced. The global reactions responsible for this observed phenomenon are presented.

  10. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  11. Systems approach used in the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT

  12. Systems approach used in the Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  13. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.

    2017-01-01

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235 U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such a passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.

  14. Multi-detector system approach for unattended uranium enrichment monitoring at gas centrifuge enrichment plants

    Science.gov (United States)

    Favalli, A.; Lombardi, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Paffett, M. T.; Ianakiev, K. D.

    2018-01-01

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. We describe our research to develop such a passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. We present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.

  15. Safeguards considerations for uranium enrichment facilities, as applied to gas centrifuge and gaseous diffusion facilities

    International Nuclear Information System (INIS)

    1979-03-01

    The goals and objectives of IAEA safeguards as they are understood by the authors based on published documents are reviewed. These goals are then used to derive safeguards concerns, diversion strategies, and potential safeguards measures for four base cases, the production of highly enriched uranium (HEU) at a diffusion plant, the diversion of low enriched uranium (LEU) at a diffusion plant, the diversion of HEU at a gas centrifuge plant, and the diversion of LEU at a gas centrifuge plant. Tables of estimated capabilities are given for each case, under the assumption that the inspector would have access: to the cascade perimeter at or after the start of operations, to the cascade perimeter throughout construction and operation, to the cascade perimeter during operation plus a one-time access to the cascade itself, to the cascade during construction but only its perimeter during operation, or to the cascade itself during construction and operation

  16. Review of Membrane Oxygen Enrichment for Efficient Combustion

    Science.gov (United States)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  17. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    International Nuclear Information System (INIS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H 2 . We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H 2 , He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions

  18. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  19. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  20. Process for the preparation of deuterium enriched water in the production of hydrogen

    International Nuclear Information System (INIS)

    Mandrin, Ch.

    1986-01-01

    A synthesis gas facility is operated for n consecutive periods. During the first period excess feed water is added to the facility. The effluent from the resulting mixture is fed to a storage container. During the following n-1 operating periods the stored effluent water is used as feed for the synthesis gas facility. The effluent from each operating period is stored in layers with corresponding deuterium concentration in the storage container. The effluent from the last operating period involving the highest deuterium concentration is fed to a second container and from there to a heavy water production unit. In order to recuperate the deuterium contained in the gas mixture leaving the condensor (consisting of hydrogen, vapour and residual compounds), the mixture is fed to an exchange stage. There the mixture is isotopically exchanged with additional water in a cross flow whereby this water gets enriched in deuterium and is fed to the synthesis gas facility. The process leads to an improved yield of heavy water in the heavy water production facility

  1. Enriching Production: Perspectives on Volvo's Uddevalla plant as an alternative to lean production

    OpenAIRE

    Sandberg, Åke

    1995-01-01

    Enriching Production was first published by Avebury in 1995. The book was quickly sold out and is now made available again. Enriching Production was edited by professor Åke Sandberg, Arbetslivsinstitutet/ National Institute for Working Life and KTH The Royal Institute of Technology, Stockholm. Enriching Production was followed up by a symposium on the general theme of ‘Good work and productivity’. The papers were collected in a special issue of Economic and Industrial Democracy, Vol. 19, ...

  2. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  3. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  4. Japan-IAEA sefeguards demonstration programme in the gas centrifuge uranium enrichment facility

    International Nuclear Information System (INIS)

    Akiba, Mitsunori; Iwamoto, Tomonori; Omae, Masayoshi

    1985-01-01

    The Hexa-partite Safequard Project was started for the purpose of examining the effective techniques of safeguards for gas centrifuge uranium enrichment facilities. By the proposal of respective participating countries, it was decided to carry out the verifying test of various safeguard techniques at the actual plants. Japan carried out the verifying test of safeguard techniques at the Ningyotoge uranium enrichment pilot plant in June, 1982, and from November, 1983, to August, 1984. The contents of this test is reported. In Japan, this verifying test was positioned as a part of JASPAS (Japanese project of supporting IAEA safeguards). The verifying test of realtime and in-operation inventories, the verifying test of IAEA load cell type weighing machines for UF 6 cylinders, the verifying test of the measurement of the degree of enrichment in UF 6 cylinders by nondestructive test, the verifying test of confinement/watch system, and the verifying test of IAEA gas phase uranium enrichment monitors were carried out. The results were presented as the data for examination in the HSP, and evaluated as useful, informative and well compiled. It is necessary to pursue more cost-effective approaches. (Kako, I.)

  5. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  6. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Gas Centrifuge Enrichment Plant... 110—Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The...

  7. Uranium enrichment in Europe by the gas centrifuge process

    International Nuclear Information System (INIS)

    Severin, D.J.E.

    1975-01-01

    To begin with, this lesson gives an outline of the expected energy demand of the Western World and the concentration of the European companies participating in uranium enrichment by the gas centrifuge method. Next, a) the principles of the gas centrifuge method are outlined, b) its advantages over other industrial processes are stressed, and c) the characteristic data of complete plants are given. The existing German, Dutch, and British pilot plants are mentioned as examples for the perfected state of the process. The Capenhurst (UK) and Almedo (NL) demonstration plants, each with a capacity of 200 t SW/a, will have been extended to 2 x 1.000 t SW/a by 1982. Finally, economic data of the gas centrifuge process are given. The term 'separative work' is explained in an annex. (GG) [de

  8. Theory of uranium enrichment by the gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D R [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; California Univ., Berkeley (USA). Dept. of Nuclear Engineering)

    1981-01-01

    Onsager's analysis of the hydrodynamics of fluid circulation in the boundary layer on the rotor wall of a gas centrifuge is reviewed. The description of the flow in the boundary layers on the top and bottom end caps due to Carrier and Maslen is summarized. The method developed by Wood and Morton of coupling the flow models in the rotor wall and end cap boundary layers to complete the hydrodynamic analysis of the centrifuge is presented. Mechanical and thermal methods of driving the internal gas circulation are described. The isotope enrichment which results from the superposition of the elementary separation effect due to the centrifugal field in the gas and its internal circulation is analyzed by the Onsager-Cohen theory. The performance function representing the optimized separative power of a centrifuge as a function of throughput and cut is calculated for several simplified internal flow models. The use of asymmetric ideal cascades to exploit the distinctive features of centrifuge performance functions is illustrated.

  9. Conceptual design for the field test and evaluation of the gas-phase UF6 enrichment meter

    International Nuclear Information System (INIS)

    Strittmatter, R.B.; Leavitt, J.N.; Slice, R.W.

    1980-12-01

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF 6 feed stream of an enrichment plant. Data from proof-of-principle measurements using a laboratory prototype system are presented. A conceptual design for an enrichment monitor to be field tested and evaluated at the Oak Ridge Gaseous Diffusion Plant is reported

  10. ENRICHMENT OF POULTRY PRODUCTS WITH FUNCTIONAL INGREDIENTS

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2012-06-01

    Full Text Available Primary role of food is to provide nutritive stuffs in sufficient amounts to meet nutritive requirements. However, recent scientific findings confirm assumptions that particular food or its ingredients had positive physiological and psychological effects on health. Functional food is referred to food rich in ingredients, having beneficial effects on one or more functions in an organism. By consuming functional food consumers can expect some health benefits. Production of poultry products as functional food is getting more important on foreign markets while portion of such products on domestic food market is insignificant. The aim of this paper is to present possibilities for enrichment of poultry products, such as broiler and turkey meat and chicken eggs, as they can be characterized as functional food. Functional ingredients in poultry products are polyunsaturated fatty acids (LNA, EPA and DHA and antioxidants. Enrichment of poultry products with the stated ingredients that are beneficial for human health is subject of many researches, and only recently have researches been directed towards assessment of market sustainability of such products.

  11. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography.

    Science.gov (United States)

    Aldridge, Jared T; Catlett, Jennie L; Smith, Megan L; Buan, Nicole R

    2016-04-05

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO 2 . Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al. , 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al. , 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al. , 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  12. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  13. CENTAR gas centrifuge enrichment project: economics and engineering considerations

    International Nuclear Information System (INIS)

    Fishman, A.M.

    1977-01-01

    Description of some economic and engineering considerations of the CENTAR Associates' 3000000 SWU/yr gas centrifuge uranium enrichment plant project. The need for uranium enrichment facilities is discussed, and the advantages of using the centrifuge process rather than the presently used gaseous diffusion process are reviewed. A description of the CENTAR plant is given, highlighting the major features of the facility. Since the centiruges to be used in the plant account for approximately 50% of the capital cost of the project, the philosophy of their manufacture and procurement is discussed. Various design considerations which bear upon process economics are presented to give the reader an appreciation of the subtleties of the technology and the flexibility possible in plant design. Special attention is given to meeting the needs of the utility customer at the lowest possible cost

  14. Development and industrial application of gas centrifuges to uranium enrichment in the USSR

    International Nuclear Information System (INIS)

    Abbakumov, E.I.; Bazhenov, V.A.; Verbin, Yu.V.

    1989-01-01

    Review of state and studies in the field of gaseous diffusion technology and centrifugal method of uranium enrichment in the USSR is given. Domestic industrial gas centrifuges, forming to-day the main part of separation capacities in the USSR, are noted for low specific energy consumption and high reliability. Centrifugal technology in the USSR is applied both to uranium enrichment (including one for export) and to separation of isotopes of other chemical elements

  15. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  16. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    International Nuclear Information System (INIS)

    Gunning, John E.; Laughter, Mark D.; March-Leuba, Jose A.

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  17. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Krämer, Lisa; Jäger, Christian; Trezzi, Jean-Pierre; Jacobs, Doris M; Hiller, Karsten

    2018-02-14

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13 C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13 C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13 C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13 C-labeled bread and quantified 13 C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  18. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Krämer, Lisa; Jäger, Christian; Jacobs, Doris M.; Hiller, Karsten

    2018-01-01

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated. PMID:29443915

  19. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lisa Krämer

    2018-02-01

    Full Text Available Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS. The limit of quantification was increased by optimizing (1 the metabolite extraction from plasma, (2 the GC-MS measurement, and (3 most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine. Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  20. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Efficiency of application of the enriched bakery products in children nutrition].

    Science.gov (United States)

    Koryachkina, S Ya; Ladnova, O L; Lublinsky, S L; Kholodova, E N

    2015-01-01

    The results of the research devoted to an assessment of efficiency of application of the enriched bakery products in nutrition of school students have been presented. Composition and technology of the enriched bakery products have been developed. The influence of enrichers on the basis of proteins of whey, plasma of blood, hemoglobin, calcium and iodinated components and food fibers on the nutritive and energy value of bakery products has been defined. The consumption of 100 g of the enriched bakery products provides a significant amount of protein--12.5-23% of the recommended daily intake (RDI), to satisfy daily need of school students in calcium up to 13.4%, in iron--up to 20%, iodine--12.5% and food fibers--17.3%. When comparing blood hemoglobin content in school students after inclusion in a diet of the enriched bakery products, the lack of significant changes of this indicator in children with normal hemoglo- bin content has been determined that is the confirmation of safety of use of the products enriched with hem iron. At the same time, normalization of hemoglobin level in children (9.7%) with the initial threshold and lowered hemoglobin indicators is noted. The reliable increase in the content of hemoglobin in this group of children from 112 ± 3 to 131 ± 6 g/l was established (p ≤ 0.05). Positive dynamics of the content of iodine in urine at school students with initial deficiency of iodine under administration of the bread enriched with iodine has been defined. Ioduria indicators authentically increased from 88 ± 10 to 116 ± 9 mkg/l (p ≤ 0.05). Before diet correction in 53 from 59 children surveyed in the Stavropol region, a mild lack of iodine has been revealed (iodine levels less than 100 mkg/l urine), while after bread intake--only in 7 (11.9%) students.

  2. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  3. Increase of Bio-Gas Power Potential

    OpenAIRE

    V. A. Sednin; О. F. Kraetskaya; I. N. Prokoрenia

    2012-01-01

    The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  4. Economic feasibility of hydrogen enrichment for reducing NOx emissions from landfill gas power generation alternatives: A comparison of the levelized cost of electricity with present strategies

    International Nuclear Information System (INIS)

    Kornbluth, Kurt; Greenwood, Jason; Jordan, Eddie; McCaffrey, Zach; Erickson, Paul A.

    2012-01-01

    Based on recent research showing that hydrogen enrichment can lower NO x emissions from landfill gas combustion below future NO x emission control standards imposed by both federal and California state regulations, an investigation was performed to compare the levelized cost of electricity of this technology with other options. In this cost study, a lean-burn reciprocating engine with no after-treatment was the baseline case to compare six other landfill gas-to-energy projects. These cases include a lean burn engine with selective catalytic reduction after treatment, a lean-burn microturbine, and four variations on an ultra-lean-burn engine utilizing hydrogen enrichment with each case using a different method of hydrogen production. Only hydrogen enrichment with an in-stream autothermal fuel reformer was shown to be potentially cost-competitive with current strategies for reaching the NO x reduction target in IC engines. - Highlights: ► Levelized cost of electricity for hydrogen enriched combustion was compared. ► Various ultra-lean-burn engines and microturbines with hydrogen were analyzed. ► Combustion with an autothermal fuel reformer was potentially cost-competitive.

  5. Laser photochemical studies on di-isopropyl ether for oxygen-18 enrichment

    International Nuclear Information System (INIS)

    Mathi, P.; Kumar, Awadhesh; Ghosh, Ayan; Nayak, A.K.; Parthasarathy, V.; Nataraju, V.; Jadhav, K.A.; Babu, K.Rajendra; Sarkar, S.K.

    2013-05-01

    Oxygen-18 is needed for the production of Fluorine-18 in medical cyclotron for use in positron emission tomography. This report deals with our work on Oxygen-18 selective photo dissociation of natural di-isopropyl ether under various conditions leading to various oxygen bearing products having different levels of 18 O enrichment. Apart from obtaining 18 O enrichment in products 2-propanol and acetaldehyde, we have observed unusually high enrichment (about 39%) in another photoproduct, acetone, as measured by mass spectrometry. This new finding is attributed to 18 O selective secondary reaction channels which is supported by molecular orbital calculations. The investigation required characterization and quantitative estimation of various chemical species, viz., di-isopropyl ether, acetaldehyde, acetone and isopropanol by various instrumental methods of analysis. These methods include gas chromatography, Fourier transform infrared spectrometry and quadrupole mass spectrometry. Detailed Gas Chromatographic (GC) studies summarize the interference problems encountered for quantitatively identifying different photo-products and establish the right experimental conditions for optimum separation. This exercise is extremely useful for an isotope enrichment scheme as it generates a valuable database to understand the processes involved for both selectivity enhancement and degradation. (author)

  6. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    1981-05-01

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  7. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    A method of separating deuterium, i.e., heavy hydrogen, from certain naturally occurring sources using tuned infrared lasers to selectively decompose specified classes of organic molecules (i.e., RX) into enriched molecular products containing deuterium atoms is described. The deuterium containing molecules are easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. The undecomposed molecules and the other reaction products which are depleted of their deuterium containing species can be catalytically treated, preferably using normal water, to restore the natural abundance of deuterium and such restored molecules can then be recycled

  8. Uranium enrichment using gas centrifugation. An analysis focusing export control; Urananrikning med gascentrifugering. En analys med fokus paa exportkontroll

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defense Research Inst., Stockholm (Sweden)

    2005-08-01

    The Swedish Defence Research Agency, FOI, has performed a study on uranium enrichment by gas centrifugation. The theory and principles of gas centrifugation is described in this report and relevant equipment used in the process has been identified. Different aspects of operating a gas centrifuge facility - and its indicators - are also presented. The separation efficiency and the flow of material through a centrifuge are very small, and therefore, a large number of centrifuges in cascades is needed to produce a larger amount of enriched uranium within a reasonable time. Countries with nuclear weapons ambitions often show an interest in gas centrifuges to produce weapons grade uranium - if they have managed to acquire the technology - because of the efficiency of the process and since it is relatively easy to conceal. Most equipment used in gas centrifuge facilities is under export control to prevent clandestine uranium enrichment. The Nuclear Suppliers' Group has compiled lists of nuclear related equipment and components that are of importance to export control. The control lists have also been included in the EU legislation.

  9. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    This study was undertaken to test the effects of enrichment products. Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of ...

  10. Designing and analysis study of uranium enrichment with gas centrifuge

    International Nuclear Information System (INIS)

    Tsunetoshi Kai

    2006-01-01

    This note concerns a designing and analysis study of uranium enrichment with a gas centrifuge. At first, one dimensional model is presented and a conventional analytical method is applied to grasp the general idea of a centrifuge performance. Secondly, two-dimensional numerical method is adopted to describe the diffusion phenomena with assumption of simple flow patterns. Parametric surveys are made on the dimension of a centrifuge rotor, the gas feed, withdrawal and circulation system, and operation variables such as feed flow rate, cut and so on. Thirdly, full numerical solutions are obtained for the flow and diffusion equations in static state, using a modified version of the Newton method without neglect of any non-linear term. The numerical results are compared with the experimental data made by Beams et al. and Zippe, and found to be in good agreement. Further, the theoretical pressure and separative power are compared respectively with experimental ones on a comparatively recent centrifuge. The results reveal that the characteristics of separation performance of a centrifuge can be fully described by the present method. Some of inevitable problems are tackled regarding UF 6 gas isotope separation by centrifugation. To examine the influence of the extraneous light gas, the diffusion equations for ternary mixture are solved and also the flow field of binary mixture with large mass difference is obtained to simultaneously solve the Navier-Stokes equations and the diffusion equation.for binary case. Since the gas in the interior region of the rotor is so rarefied that the Navier-Stokes equations cease to be valid, the Burnett equations are solved.for gas flow in a rotating cylinder. Considering that the uranium recovered at a reprocessing plant includes 236 U besides 235 U and 238 U, the concentration distributions of the ternary gas isotopes are determined and a value function is defined for the evaluation of separative work for the multi-component mixture

  11. Increase of Bio-Gas Power Potential

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2012-01-01

    Full Text Available The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  12. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  13. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins.

    Science.gov (United States)

    Karakaya, Sibel; Simsek, Sebnem; Eker, Alper Tolga; Pineda-Vadillo, Carlos; Dupont, Didier; Perez, Beatriz; Viadel, Blanca; Sanz-Buenhombre, Marisa; Rodriguez, Alberto Guadarrama; Kertész, Zsófia; Hegyi, Adrienn; Bordoni, Alessandra; El, Sedef Nehir

    2016-08-10

    Anthocyanins, water soluble polyphenols, have been associated with several beneficial health effects. The aim of this study was to determine how the baking process and food matrix affect anthocyanin stability and bioaccessibility in bakery products in order to develop functional foods. Three well known regularly consumed bakery products (buns, breadsticks and biscuits) were enriched with anthocyanin (AC) isolated from grape skin alone or in combination with docosahexaenoic acid (AC + DHA) to reveal knowledge on AC as active ingredients in real food systems rather than pure compounds. Anthocyanin amounts added to the formulations of buns, breadsticks and biscuits were 34 mg per 100 g, 40 mg per 100 g and 37 mg per 100 g, respectively. The effect of processing, storage and the food matrix on AC stability and bioaccessibility was investigated. In addition, the sensory properties of bakery products were evaluated. Breadsticks enriched with AC and AC + DHA received the lowest scores in the pre-screening sensory test. Therefore breadsticks were excluded from further analysis. AC retentions, which were monitored by determination of malvidin 3-O-glucoside, in the bun and biscuit after baking were 95.9% (13.6 mg per 100 g) and 98.6% (15.2 mg per 100 g), respectively. Biscuits and buns enriched only with AC showed significantly higher anthocyanin bioaccessibilities (57.26% and 57.30%, respectively) than the same ones enriched with AC + DHA. AC stability in enriched products stored for 21 days was significantly lower than in products stored for 7 days (p products.

  14. Industrial plants for production of highly enriched nitrogen-15

    International Nuclear Information System (INIS)

    Krell, E.; Jonas, C.

    1977-01-01

    A discussion is presented of the present stage of development of large-scale enrichment of 15 N. The most important processes utilized to separate nitrogen isotopes, namely chemical exchange in the NO/NO 2 /HNO 3 system and low-temperature distillation of NO at -151 0 C, are compared, especially with respect to their economics and use of energy. As examples, chemical exchange plants in the GDR are discussed, and the research activities necessary to optimize the process, especially to solve aerodynamic, hydrodynamic, interface and processing problems, are reviewed. Good results were obtained by the choice of an optimum location and the design of a plant for pre-enrichment to 10 at.% 15 N and an automatically operating two-section cascade for the high enrichment of 15 N to more than 99 at.%. The chemical industry has taken over operation of the plant with the consequence that the raw materials are all available without additional transport. All by-products (nitrous gases and sulphuric acid) are returned for use elsewhere within the industry. The technology of the plant has been chosen so that the quantity of highly enriched product can be varied within a wide range. The final product is used to synthesize more than 250 different 15 N-labelled compounds which are also produced on an industrial scale. (author)

  15. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  16. Socioeconomic effects of the DOE Gas Centrifuge Enrichment Plant. Volume 1: methodology and analysis

    International Nuclear Information System (INIS)

    1979-01-01

    The socioeconomic effects of the Gas Centrifuge Enrichment Plant being built in Portsmouth, Ohio were studied. Chapters are devoted to labor force, housing, population changes, economic impact, method for analysis of services, analysis of service impacts, schools, and local government finance

  17. Projected uranium measurement uncertainties for the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Younkin, J.M.

    1979-02-01

    An analysis was made of the uncertainties associated with the measurements of the declared uranium streams in the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The total uncertainty for the GCEP is projected to be from 54 to 108 kg 235 U/year out of a measured total of 200,000 kg 235 U/year. The systematic component of uncertainty of the UF 6 streams is the largest and the dominant contributor to the total uncertainty. A possible scheme for reducing the total uncertainty is given

  18. CBM sealing system and its relationship with CBM enrichment

    Directory of Open Access Journals (Sweden)

    Yonglin Ouyang

    2017-01-01

    Full Text Available It is of great significance to study the controlling effect of sealing systems on CBM enrichment in coalbed methane (CBM exploration and development. In this paper, the relationships between CBM enrichment and geological elements were analyzed. The geological elements include sealing layers (e.g. regional cap rock, regional floor, and immediate roof and floor, later structural adjustment and strata production status. It is shown that CBM tends to enrich in the areas where regional mudstone cap rocks and floors are distributed stably, structures are uplifted and inversed slightly after the hydrocarbon accumulation period and the strata is gentle in a balanced state. Then, the concept of sealing system was put forward based on the worldwide CBM exploration and development practices over the years. A sealing system refers to a geological unit composed of a lateral stable zone and cap rock which prevents gas from migrating upward and downward. In a sealing system, CBM can get enriched and coal-measure gas can also be accumulated. Finally, three gas reservoir types (i.e., sandwich-type CBM reservoir, associated CBM-sandstone gas reservoir and coal-derived sandstone gas reservoir were identified based on the configuration relationships between elements of the CBM (or coal-measure gas sealing system. It is recommended to change the exploration ideas from simple CBM exploration to 3D CBM and coal-measure gas exploration. In addition, an evaluation index system of CBM (or coal-measure gas geological selection was established. It is pointed out that good application effects may be realized if the stereoscopic CBM and coal-measure gas exploration is applied in the Junggar Basin and the eastern margin of the Ordos Basin.

  19. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  20. Uranium enrichment in the United States

    International Nuclear Information System (INIS)

    Hill, J.H.; Parks, J.W.

    1975-01-01

    History, improvement programs, status of electrical power availability, demands for uranium enrichment, operating plan for the U. S. enriching facilities, working inventory of enriched uranium, possible factors affecting deviations in the operating plan, status of gaseous diffusion technology, status of U. S. gas centrifuge advances, transfer of enrichment technology, gaseous diffusion--gas centrifuge comparison, new enrichment capacity, U. S. separative work pricing, and investment in nuclear energy are discussed. (LK)

  1. Use of Olive Oil Industrial By-Product for Pasta Enrichment.

    Science.gov (United States)

    Padalino, Lucia; D'Antuono, Isabella; Durante, Miriana; Conte, Amalia; Cardinali, Angela; Linsalata, Vito; Mita, Giovanni; Logrieco, Antonio F; Del Nobile, Matteo Alessandro

    2018-04-16

    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% ( w / w ). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products.

  2. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  3. Marine Lipids (Omega-3 Oil) - Stability of Oil and Enriched Products During Production and Storage

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall

    2015-01-01

    The awareness of health benefits of marine lipids with a high content of omega-3 poly unsaturated fatty acids from fish and algae oil has led to an increased intake as oil and in products. However, these lipids are highly susceptible to lipid oxidation, which results in the formation of undesirable...... off-flavours and gives rise to unhealthy compounds such as free radicals and reactive aldehydes. Necessary prerequisites for successful development of omega-3 enriched products are that the oil used for enrichment is of a high quality and low in oxidation products and that oxidation of the lipids...

  4. Experimental study of xenon isotopes production by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou Mingsheng; Liang Xiongwen; Zhang Yonggang; Dong Jinping

    2006-01-01

    The gas centrifuge technology is studied for the separation of Xe isotopes. The nature Xe is chosen as processing gas. A four-state cascade is designed to separate 124 Xe to a concentration of being greater than 65% in three separation runs. 124 Xe can be enriched to a concentration 99% in more separation runs using a cascade of more gas centrifuges. (authors)

  5. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    Science.gov (United States)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  6. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  7. Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan; Jiao, Qi; Huang, Zuohua; Jiang, Deming [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-01-15

    The laminar flame characteristics of natural gas-hydrogen-air-diluent gas (nitrogen/CO{sub 2}) mixtures were studied in a constant volume combustion bomb at various diluent ratios, hydrogen fractions and equivalence ratios. Both unstretched laminar burning velocity and Markstein length were obtained. The results showed that hydrogen fraction, diluent ratio and equivalence ratio have combined influence on laminar burning velocity and flame instability. The unstretched laminar burning velocity is reduced at a rate that is increased with the increase of the diluent ratio. The reduction effect of CO{sub 2} diluent gas is stronger than that of nitrogen diluent gas. Hydrogen-enriched natural gas with high hydrogen fraction can tolerate more diluent gas than that with low hydrogen fraction. Markstein length can either increase or decrease with the increase of the diluent ratio, depending on the hydrogen fraction of the fuel. (author)

  8. Collection and application of by-product formed in e-b flue gas treatment process

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Zakrzewska-Trznadel, G.; Tokunaga, O.; Machi, S.

    1998-01-01

    In the e-b process SO 2 and NO x are converted into ammonium sulphate and ammonium nitrate, which condenses from gas phase in the form of submicrone particles. These salts are a valuable fertilizer and should be removed from cleaned gas. Bag filter, ESP and wet gravel bed filter were applied for collecting of salt particles in pilot plant facilities. Up to now ESP is considered to be the best filtration method of aerosols formed after irradiation of flue gas. Collected salts after granulation may be used as a fertilizer enriching soil in nitrogen and sulphur or as a component of mixed fertilizer. Analysis of by-products from different e-b pilot plants confirms that it does not contain any harmful substances like heavy metals and fulfill all standards for commercial fertilizers. Also field experiments show that the by-products have the same properties as a commercial fertilizer

  9. The extent of chemically enriched gas around star-forming dwarf galaxies

    Science.gov (United States)

    Johnson, Sean

    2018-01-01

    Supernovae driven winds are often invoked to remove chemically enriched gas from galaxies to match the low metallicities of dwarf galaxies. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circum-galactic medium or CGM) and pollute the intergalactic medium (IGM). I will present a survey of the CGM and IGM around 18 star-forming field dwarf galaxies with stellar masses of log M*/M⊙ ≈ 8 ‑ 9 at z ≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than the host virial radius, Rh. Ten are probed at d/Rh = 1 ‑ 3 to study the surrounding IGM. The absorption measurements include neutral hydrogen (H I), the dominant silicon ions for diffuse cool gas (T ∼ 104 K; Si II, Si III, and Si IV), more highly ionized carbon (C IV), and highly ionized oxygen (O VI). The metal absorption from the CGM of the dwarf galaxies is less common and ≈ 4× weaker compared to massive star-forming galaxies though O VI absorption is still common. None of the dwarfs probed at d/Rh = 1 ‑ 3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM accounts for only 2 ‑ 6% of the expected silicon budget. CGM absorption from O VI can account for ≈ 8% of the expected oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of 0.2, this highly ionized phase of the CGM may represent a significant metal reservoir even for dwarf galaxies not expected to maintain gravitationally shock heated hot halos.

  10. Nondestructive determination of uranium-235 enrichment in gas ultracentrifugation enrichment plants

    International Nuclear Information System (INIS)

    Lauppe, W.D.; Richter, B.; Stein, G.

    1990-02-01

    Based on similar studies in the USA and the UK, two γ spectroscopic techniques were propagated by the IAEA, after they had been sucesssfully tried at Capenhurst (GB) centrifuge plant. It was assumed by the IAEA that these methods would be transferable to the Almelo and Gronau plants, even without knowledge of the specific plant parameters there. The scope of this research project covered the study and further development of the proposed γ-spectroscopic measuring methods for applicability in the GUC plant in Gronau. The research came within the terms of reference of Task C.14.7 of the IAEA and BMFT (German Federal Ministry of Research and Technology)'s joint research and development programme. When the funded project first started, the Gronau plant was not yet on stream. The initial measurements were therefore, taken in Almelo, where conditions were similar to those in Gronau. The report describes the underlying problems which occur in relation to the non-destructive measuring of 235 U enrichment under the specific boundary conditions in Almelo and Gronau. The results illustrate the limitations of application of the measuring techniques, even after adjustment to actual conditions in Almelo and Gronau. It is not always possible to obtain a reliable yes/no answer in favour of slightly enriched uranium, particularly in product lines with extreme boundary conditions, irrespective of the technique applied. (orig.) [de

  11. Elements and gas enrichment laws of sweet spots in shale gas reservoir: A case study of the Longmaxi Fm in Changning block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Renfang Pan

    2016-05-01

    Full Text Available Identification of sweet spot is of great significance in confirming shale gas prospects to realize large-scale economic shale gas development. In this paper, geological characteristics of shale gas reservoirs were compared and analyzed based on abundant data of domestic and foreign shale gas reservoirs. Key elements of sweet spots were illustrated, including net thickness of gas shale, total organic carbon (TOC content, types and maturity (Ro of organic matters, rock matrix and its physical properties (porosity and permeability, and development characteristics of natural fractures. After the data in Changning and Weiyuan blocks, the Sichuan Basin, were analyzed, the geologic laws of shale gas enrichment were summarized based on the economic exploitation characteristics of shale gas and the correlation between the elements. The elements of favorable “sweet spots” of marine shale gas reservoirs in the Changning block and their distribution characteristics were confirmed. Firstly, the quality of gas source rocks is ensured with the continuous thickness of effective gas shale larger than 30 m, TOC > 2.0% and Ro = 2.4–3.5%. Secondly, the quality of reservoir is ensured with the brittle minerals content being 30–69%, the clay mineral content lower than 30% and a single lamination thickness being 0.1–1.0 m. And thirdly, the porosity is higher than 2.0%, the permeability is larger than 50 nD, gas content is higher than 1.45 m3/t, and formation is under normal pressure–overpressure system, which ensures the production modes and capacities. Finally, the primary and secondary elements that control the “sweet spots” of shale gas reservoirs were further analyzed and their restrictive relationships with each other were also discussed.

  12. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    International Nuclear Information System (INIS)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  13. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  14. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  15. Radioactive Waste Issues related to Production of Fission-based Mo-99 by using Low Enriched Uranium (LEU)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhmood ul; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In order to produce fission-based Mo-99 from research reactors, two types of targets are being used and they are highly enriched uranium (HEU) targets with {sup 235}U enrichment more than 90wt% of {sup 235}U and low enriched uranium (LEU) targets with {sup 235}U enrichment less than 20wt% of {sup 235}U. It is worth noting that medium enriched uranium i.e. 36wt% of {sup 235}U as being used in South Africa is also regarded as non-LEU from a nuclear security point of view. In order to cope with the proliferation issues, international nuclear security policy is promoting the use of LEU targets in order to minimize the civilian use of HEU. It is noteworthy that Mo-99 yield of the LEU target is less than 20% of the HEU target, which requires approximately five times more LEU targets to be irradiated and consequently results in increased volume of waste. The waste generated from fission Mo-99 production can be mainly due to: target fabrication, assembling of target, irradiation in reactor and processing of irradiated targets. During the fission of U-235 in a reactor, a large number of radionuclides with different chemical and physical properties are formed. The waste produced from these practices may be a combination of low level waste (LLW) and intermediate level waste (ILW) comprised of all three types, i.e., solid, liquid and gas. Handling and treatment of the generated waste are dependent on its form and activity. In case of the large production facility, waste storage facility should be constructed in order to limit the radiation exposures of the workers and the environment. In this study, we discuss and compare mainly the radioactive waste generated by alkaline digestion of both HEU and LEU targets to assist in planning and deciding the choice of the technology with better arrangements for proper handling and disposal of generated waste. With the use of the LEU targets in Mo-99 production facility, significant increase in liquid and solid waste has been expected.

  16. Enriching step-based product information models to support product life-cycle activities

    Science.gov (United States)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  17. Process for the production of protein enriched fractions from vegetable materials

    NARCIS (Netherlands)

    Dijkink, B.H.; Willemsen, J.H.A.

    2006-01-01

    The present invention provides a method for the production of a protein enriched fraction and a fibre enriched fraction from a vegetable material, wherein the vegetable material comprises a total fat content of 0.1 to 22.0 % by dry weight of the total vegetable material and a total starch content of

  18. The Advanced Gas Centrifuge program

    International Nuclear Information System (INIS)

    Riepe, R.

    1984-01-01

    Although the gas centrifuge process for uranium enrichment is often referred to as a ''new technology,'' it has been under development for approximately 25 years to bring it to its current state of deployment. Centrifuges are now being installed in a new gas centrifuge enrichment plant (GCEP) at Portsmouth, Ohio. The objective of this new plant was to provide additional U.S. uranium enrichment capacity at a production cost comparable to the U.S. diffusion process but requiring much less power per separative work unit (SWU) produced. The current, commercial scale centrifuge technology being installed meets that objective. The objective for new U.S. enrichment capacity has changed. The objective is not to provide more SWUs but to provide cheaper SWUs. The objective is to make the U.S. uranium enrichment enterprise competitive on the international market. Where the U.S. at one time supplied virtually all of the free world SWU demand, the U.S. market share has now dropped to approximately 35% of the foreign free world market. The Advanced Gas Centrifuge (AGC) program provides an avenue for making the U.S. the economically attractive, reliable enrichment supplier

  19. Scenarios for remote gas production

    International Nuclear Information System (INIS)

    Tangen, Grethe; Molnvik, Mona J.

    2009-01-01

    The amount of natural gas resources accessible via proven production technology and existing infrastructure is declining. Therefore, smaller and less accessible gas fields are considered for commercial exploitation. The research project Enabling production of remote gas builds knowledge and technology aiming at developing competitive remote gas production based on floating LNG and chemical gas conversion. In this project, scenarios are used as basis for directing research related to topics that affect the overall design and operation of such plants. Selected research areas are safety, environment, power supply, operability and control. The paper summarises the scenario building process as a common effort among research institutes and industry. Further, it documents four scenarios for production of remote gas and outlines how the scenarios are applied to establish research strategies and adequate plans in a multidisciplinary project. To ensure relevance of the scenarios, it is important to adapt the building process to the current problem and the scenarios should be developed with extensive participation of key personnel.

  20. Enrichment of fission products in ionic salt bath by countercurrent electromigration

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Takagi, Ryuzo; Okada, Isao; Fujita, Reiko.

    1997-01-01

    We have proposed to apply a countercurrent electromigration method to enrichment of fission products in ionic melts. In the test runs, for this purpose, we have enriched Cs, Sr and Gd from their dilute melts. All of Cs, Sr and Gd were much concentrated at the area near the anode in the migration tubes. Gd and Sr were more concentrated than Cs. It was found that the electromigration method can be applied to the salt bath refleshing process after an electrorefining process, which removes fission products of multivalent cations. (author)

  1. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  2. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  3. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    Science.gov (United States)

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product".

  4. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...... the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed...

  5. Development of uranium enrichment technology by gas centrifugation

    International Nuclear Information System (INIS)

    Sibata, Tomofumi; Kai, Tsunetoshi

    1996-01-01

    The development of a gas-centrifuge for uranium enrichment has been conducted by Power Reactor and Nuclear Fuel Development Corporation in Japan after the first several years' fruitless works, the R and D works came to the point and continuing rapid improvements of centrifuges have started, Cascade tests were given with C-1 and C-2 cascade experimental facilities. Life, reliability and feasibility tests were given with the pilot plant and the demonstration plant. As a result of these works, the private commercial plant has started the operation. Although the main efforts were devoted to the development of metal rotor centrifuges in the course mentioned above, composite material rotor centrifuges have also been developed in parallel to achieve higher performance. Promising results have been being obtained with cascade test facilities on the pilot plant scale. Furthermore, R and D works are being proceeded on more excellent and advanced centrifuges. (author)

  6. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    Hartmann, F.X.; Hahn, R.L.

    1991-01-01

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  7. 76 FR 34103 - In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of...

    Science.gov (United States)

    2011-06-10

    .... 10-899-02-ML-BD01] In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility...'' portion of this proceeding regarding the December 2008 application by AREVA Enrichment Services, LLC (AES... gas centrifuge uranium enrichment facility--denoted as the Eagle Rock Enrichment Facility (EREF)--in...

  8. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water.

    Science.gov (United States)

    Marella, Thomas Kiran; Parine, Narasimha Reddy; Tiwari, Archana

    2018-05-01

    Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG) emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L -1  day -1 and lipid productivity of 37 mg L -1  day -1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW) depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO 2 sequestration, biodiesel production, and wastewater phycoremediation.

  9. Monocyte enrichment from leukapheresis products by using the Elutra cell separator.

    Science.gov (United States)

    Kim, Sinyoung; Kim, Hyun Ok; Baek, Eun-Jung; Choi, Youjeong; Kim, Han-Soo; Lee, Min-Geul

    2007-12-01

    Dendritic cells (DCs), used in clinical trials for cancer immunotherapy, require processing on an expanded scale to conform to current good manufacturing practice guidelines. This study evaluated a large-scale monocyte enrichment procedure with a commercially available cell separator (Elutra, Gambro BCT) and analyzed the capacity of enriched monocytes to differentiate into DCs. Mononuclear cells were collected in two patients with malignant melanoma and seven healthy donors by leukapheresis. Continuous-counterflow elutriation with the Elutra was performed to enrich and purify monocytes from leukapheresis products. Purity and recovery of enriched monocytes were analyzed by flow cytometry. DCs were generated from the elutriated monocytes and characterized by phenotypic surface marker and stimulatory capacity in an allogeneic mixed lymphocyte reaction. In the leukapheresis products, the total MNC count was 7.3 x 10(9) +/- 0.7 x 10(9) and the mean percentage of CD14+ monocytes was 16.5 +/- 3.8 percent, which increased to 68.9 +/- 7.4 percent after elutriation with the Elutra. The mean monocyte recovery was 94.3 percent. Elutriated monocytes were successfully cultured into phenotypically and functionally mature DCs. These results indicate that the Elutra cell separator allows for fast and easy enrichment of monocytes within a closed system. Furthermore, these monocytes can be differentiated into functionally mature DCs. Compared to plastic adherence and immunomagnetic selection methods, the elutriation procedure is inexpensive, efficient, and very effective.

  10. Fish burger enriched by olive oil industrial by-product.

    Science.gov (United States)

    Cedola, Annamaria; Cardinali, Angela; Del Nobile, Matteo Alessandro; Conte, Amalia

    2017-07-01

    Oil industry produces large volume of waste, which represents a disposal and a potential environmental pollution problem. Nevertheless, they are also promising sources of compounds that can be recovered and used as valuable substances. The aim of this work is to exploit solid olive by-products, in particular dry olive paste flour (DOPF) coming from Coratina cultivar, to enrich fish burger and enhance the quality characteristics. In particular, the addition of olive by-products leads to an increase of the phenolic content and the antioxidant activity; however, it also provokes a deterioration of sensory quality. Therefore, to balance quality and sensory characteristics of fish burgers, three subsequent phases have been carried out: first, the quality of DOPF in terms of phenolic compounds content and antioxidant activity has been assessed; afterward, DOPF has been properly added to fish burgers and, finally, the formulation of the enriched fish burgers has been optimized in order to improve the sensory quality. Results suggested that the enriched burgers with 10% DOPF showed considerable amounts of polyphenols and antioxidant activity, even though they are not very acceptable from the sensory point of view. Pre-treating DOPF by hydration/extraction with milk, significantly improved the burger sensory quality by reducing the concentration of bitter components.

  11. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  12. Dynamic behavior and control of product enrichment in a centrifuge cascade

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Nishimura, Hideo.

    1989-05-01

    It was agreed as a conclusion of the HEXAPARTITE project that a limited frequency unannounced access (LFUA) inspection should be carried out in a centrifuge type enrichment plant as a basic safeguards approach. It might be adopted at a large scale, future commercial enrichment plant, too. Application of the LFUA approach to such a plant, however, should be fully investigated because the plant will have not only a larger capability of enriching uranium 235 but also a more sensitive information to be protected from the commercial and non-proliferation viewpoint. As a part of a design study on the safeguards approach for a model commercial plant, a study of process simulation of the plant has been carried out. This report describes a result of the study. When a commercial uranium enrichment plant is constructed, a nuisance problem arises; What kind of products should be produced from the plant in order to match a wide range of nuclear fuel enrichment requirements for light-water power reactors. In this report, a reasonable solution to such a problem is investigated. At first, a transient analysis of start-up for a model centrifuge cascade is made by using the dynamic equations, which were so developed as to be able to accurately compute interstage flow rates and enrichment in a transient state. Then it is investigated how wide in its acceptable range the product enrichment can be controlled by regulating cascade characteristic parameters such as cascade cut, recycle flow rate and cascade feed flow rate, and as a result an information about the optimal regulating mode is brought out. As a result of this study, it has become clear that the specific requirements of a customer are almost fulfilled with only one type of unit cascade system if 10 % loss of cascade efficiency is allowed in the plant operation. (author)

  13. Dynamic behavior and control of product enrichment in a centrifuge cascade

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Nishimura, Hideo.

    1988-02-01

    It was agreed as a conclusion of the HEXAPARTITE project that a limited frequency unannounced access (LFUA) inspection should be carried out in a centrifuge type enrichment plant as a basic safeguards approach. It might be adopted at a large scale, future commercial enrichment plant, too. Application of the LFUA approach to such a plant, however, should be fully investigated because the plant will have not only a larger capability of enriching uranium 235 but also a more sensitive information to be protected from the commercial and nonproliferation viewpoint. As a part of a design study on the safeguards approach for a model commercial plant, a study of process simulation of the plant has been carried out. This report describes a result of the study. When a commercial uranium enrichment plant is constructed, a nuisance problem arises; What kind of products should be produced from the plant in order to match a wide range of nuclear fuel enrichment requirements for light-water power reactors. In this report, a reasonable solution to such a problem is investigated. At first, a transient analysis of start-up for a model centrifuge cascade is made by using the dynamic equations, which were so developed as to be able to accurately compute interstage flow rates and enrichment in a transient state. Then it is investigated how wide in its acceptable range the product enrichment can be controlled by regulating cascade characteristic parameters such as cascade cut, recycle flow rate and cascade feed flow rate, and as a result an information about the optimal regulating mode is brought out. As a result of this study, it has become clear that the specific requirements of a customer are almost fulfilled with only one type of unit cascade system if 10 % loss of cascade efficiency is allowed in the plant operation. (author)

  14. Gas reserves, discoveries and production

    International Nuclear Information System (INIS)

    Saniere, A.

    2006-01-01

    Between 2000 and 2004, new discoveries, located mostly in the Asia/Pacific region, permitted a 71% produced reserve replacement rate. The Middle East and the offshore sector represent a growing proportion of world gas production Non-conventional gas resources are substantial but are not exploited to any significant extent, except in the United States, where they account for 30% of U.S. gas production. (author)

  15. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  16. Union Gas and Ontario gas production

    International Nuclear Information System (INIS)

    Cameron, C.

    2001-01-01

    A step-by-step review of the tie-in process of new production wells into the Union Gas System is described. Requirements of the producer and those of Union Gas are explained. Also described are the choices available to the producer to sell his gas. He can sell either to Union Gas directly at an agreed upon price, or the producer has the option to have what is called an M13 contract which allows him to sell his gas at Dawn, where it can be stored within parameters of the contract, and sold to any buyer at Dawn at a negotiated rate. This arrangement, while entailing a much greater administrative load than direct sale to Union Gas, nevertheless, allows the producer to take advantage of market fluctuations. A third option provided by Union Gas is to make available to the producer storage space greater than the provisions of the M13 contract at current market rate, thereby opening up the opportunity to the producer to capture additional value in later winter months (when gas is in greater demand)

  17. Enhancing Biodiesel Production Using Green Glycerol-Enriched Calcium Oxide Catalyst : An Optimization Study

    NARCIS (Netherlands)

    Avhad, Mangesh R.; Gangurde, L.S.; Sánchez, Marcos; Bouaid, Abderrahim; Aracil, José; Martínez, Mercedes; Marchetti, Jorge M.

    2018-01-01

    The present article demonstrates a superior catalytic performance of glycerol-enriched calcium oxide for biodiesel production than other calcium-based counterparts. The proficiency of glycerol-enriched calcium oxide in catalyzing the methanolysis of crude Jatropha curcas oil containing high free

  18. Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion.

    Science.gov (United States)

    Dos Santos, Edilene T; Pereira, Mara Lúcia A; da Silva, Camilla Flávia P G; Souza-Neta, Lourdes C; Geris, Regina; Martins, Dirceu; Santana, Antônio Euzébio G; Barbosa, Luiz Cláudio A; Silva, Herymá Giovane O; Freitas, Giovana C; Figueiredo, Mauro P; de Oliveira, Fernando F; Batista, Ronan

    2013-04-17

    The purpose of this study was to assess the in vitro antimicrobial activity of alkaloid-enriched extracts from Prosopis juliflora (Fabaceae) pods in order to evaluate them as feed additives for ruminants. As only the basic chloroformic extract (BCE), whose main constituents were juliprosopine (juliflorine), prosoflorine and juliprosine, showed Gram-positive antibacterial activity against Micrococcus luteus (MIC = 25 μg/mL), Staphylococcus aureus (MIC = 50 μg/mL) and Streptococcus mutans (MIC = 50 μg/mL), its influence on ruminal digestion was evaluated using a semi-automated in vitro gas production technique, with monensin as the positive control. Results showed that BCE has decreased gas production as efficiently as monensin after 36 h of fermentation, revealing its positive influence on gas production during ruminal digestion. Since P. juliflora is a very affordable plant, this study points out this alkaloid enriched extract from the pods of Prosopis juliflora as a potential feed additive to decrease gas production during ruminal digestion.

  19. Method of producing deuterium-oxide-enriched water

    International Nuclear Information System (INIS)

    Mandel, H.

    1976-01-01

    A method and apparatus for producing deuterium-oxide-enriched water (e.g., as a source of deuterium-rich gas mixtures) are disclosed wherein the multiplicity of individual cooling cycles of a power plant are connected in replenishment cascade so that fresh feed water with a naturally occurring level of deuterium oxide is supplied to replace the vaporization losses, sludge losses and withdrawn portion of water in a first cooling cycle, the withdrawn water being fed as the feed water to the subsequent cooling cycle or stage and serving as the sole feed-water input to the latter. At the end of the replenishment-cascade system, the withdrawn water has a high concentration of deuterium oxide and may serve as a source of water for the production of heavy water or deuterium-enriched gas by conventional methods of removing deuterium oxide or deuterium from the deuterium-oxide-enriched water. Each cooling cycle may form part of a thermal or nuclear power plant in which a turbine is driven by part of the energy and air-cooling of the water takes place in the atmosphere, e.g., in a cooling tower

  20. Selective adsorption-desorption method for the enrichment of krypton

    International Nuclear Information System (INIS)

    Yuasa, Y.; Ohta, M.; Watanabe, A.; Tani, A.; Takashima, N.

    1975-01-01

    Selective adsorption-desorption method has been developed as an effective means of enriching krypton and xenon gases. A seriesof laboratory-scale tests were performed to provide some basic data of the method when applied to off-gas streams of nuclear power plants. For the first step of the enrichment process of the experiments, krypton was adsorbed on solid adsorbents from dilute mixtures with air at temperatures ranging from -50 0 C to -170 0 C. After the complete breakthrough was obtained, the adsorption bed was evacuated at low temperature by a vacuum pump. By combining these two steps krypton was highly enriched on the adsorbents, and the enrichment factor for krypton was calculated as the product of individual enrichment factors of each step. Two types of adsorbents, coconut charcoal and molecular sieves 5A, were used. Experimental results showed that the present method gave the greater enrichment factor than the conventional method which used selective adsorption step only. (U.S.)

  1. Gas generation during waste treatment of acidic solutions from the dissolution of irradiated LEU targets for 99Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States); Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    The goal of the Reduced Enrichment for Research and Test Reactors Program is to limit the use of high-enriched uranium (HEU) in research and test reactors by substituting low-enriched uranium (LEU) wherever possible. The work reported here documents our work to develop the calcining technologies and processes that will be needed for 99Mo production using LEU foil targets and the Modified Cintichem Process. The primary concern with the conversion to LEU from HEU targets is that it would result in a five- to six-fold increase in the total uranium. This increase results in more liquid waste from the process. We have been working to minimize the increase in liquid waste and to minimize the impact of any change in liquid waste. Direct calcination of uranium-rich nitric acid solutions generates NO2 gas and UO3 solid. We have proposed two processes for treating the liquid waste from a Modified Cintichem Process with a LEU foil. One is an optimized direct calcination process that is similar to the process currently in use. The other is a uranyl oxalate precipitation process. The specific goal of the work reported here was to characterize and compare the chemical reactions that occur during these two processes. In particular, the amounts and compositions of the gaseous and solid products were of interest. A series of experiments was carried out to show the effects of temperature and the redox potential of the reaction atmosphere. The primary products of the direct calcination process were mixtures of U3O8 and UO3 solids and NO2 gas. The primary products of the oxalate precipitation process were mixtures of U3O8 and UO2 solid and CO2 gas. Higher temperature and a reducing atmosphere tended to favor quadrivalent over hexavalent uranium in the solid product. These data will help producers to decide between the two processes. In addition, the data can be used

  2. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  3. EU REPRO: The Production of fish feed enriched with poly-unsaturated fatty acid

    CSIR Research Space (South Africa)

    Erasmus, C

    2007-01-01

    Full Text Available .2 The Production of Fish Feed enriched with poly-unsaturated fatty acids Corinda Erasmus Annali Jacobs Gerda Lombard Petrus van Zyl Judy Reddy Ntombikayise Nkomo Elizabeth Timme Partner 11 Slide 2 © CSIR 2006 www... www.csir.co.za FLOW DIAGRAM OF THE PRODUCTION OF EPA- ENRICHED FISH FEED BSG (SPENT GRAIN) Eicosapentaenoic Acid (EPA) Protein-rich BSG FISH FEED PELLETS MODIFICATION OF BSG (ENZYME/CHEMICAL/MECHANICAL) FERMENTATION (RECOVERY OF EPA...

  4. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem

    Science.gov (United States)

    W.F. Cross; J.B. Wallace; A.D. Rosemond; S.L. Eggert

    2006-01-01

    Although the effects of nutrient enrichment on consumer-resource dynamics are relatively well studied in ecosystems based on living plants, little is known about the manner in which enrichment influences the dynamics and productivity of consumers and resources in detritus-based ecosystems. Because nutrients can stimulate loss of carbon at the base of detrital food webs...

  5. Safety of uranium enrichment plant

    International Nuclear Information System (INIS)

    Yonekawa, Shigeru; Morikami, Yoshio; Morita, Minoru; Takahashi, Tsukasa; Tokuyasu, Takashi.

    1991-01-01

    With respect to safety evaluation of the gas centrifuge enrichment facility, several characteristic problems are described as follows. Criticality safety in the cascade equipments can be obtained to maintain the enrichment of UF 6 below 5 %. External radiation dose equivalent rate of the 30B cylinder is low enough, the shield is not necessary. Penetration ratio of the two-stage HEPA filters for UF 6 aerosol is estimated at 10 -9 . From the experimental investigation, vacuum tightness is not damaged by destruction of gas centrifuge rotor. Carbon steel can be used for uranium enrichment equipments under the condition below 100degC. (author)

  6. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  7. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water

    Directory of Open Access Journals (Sweden)

    Thomas Kiran Marella

    2018-05-01

    Full Text Available Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L−1 day−1 and lipid productivity of 37 mg L−1 day−1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodiesel production, and wastewater phycoremediation. Keywords: Micro algae, Diatom, Biodiesel, Nualgi, Nutrient removal, Wastewater

  8. Desulfurized gas production from vertical kiln pyrolysis

    Science.gov (United States)

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  9. Practical enrichment technique for 33S (34S)

    International Nuclear Information System (INIS)

    McInteer, B.B.; Lyman, J.L.; Nilsson, A.C.; Quigley, G.P.

    1982-01-01

    The successful preparation of a macroscopic sample of enriched 33 S by laser-induced molecular dissociation is reported. Approach was to induce isotopically selective dissociation of SF 6 with CO 2 -laser pulses and to separate the remaining SF 6 from the sulfur-containing reaction products by cryogenic distillation. A 200 Hz, 0.75 J/pulse laser was used for photolysis of low-pressure (less than 1 torr) gas mixtures. The mixture of SF 6 and scavenger recirculated continuously throughout the irradiation chamber where the laser pulses selectively dissociated 32 SF 6 to give the final products: SF 4 or SOF 2 . The unreacted SF 6 was enriched in the heavier isotopes: 33 S, 34 S, and 36 S. A 1.3-g sample of SF 6 was collected with a 33 S enrichment factor of 1.96 and a 34 S enrichment factor of 2.25. A similar size sample of depleted ( 32 S) sulfur compounds was also collected. A scavenger was necessary to ensure high yield, and moist hydrogen was found to be best for our conditions. Removal of hydrogen fluoride was also necessary to prevent severe corrosion and to maintain high isotopic selectivity. 6 figures

  10. Safeguards approaches for conversion and gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  11. Filling and Recycling Apparatus of a Cyclotron Target with Enriched Krypton for Production of Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    M. Vognar

    2001-01-01

    Full Text Available An apparatus for multiple filling of a cyclotron target with enriched Kr gas is described. The system is based on recycling pressurized gas by cryogenic pumping between the target tube and storage containers. The design and construction makes use of previous experience in the construction and operation of two analogue apparatuses for Xe124 high pressure gas targets, but major modifications have been incorporated, evoked by the different physical properties of Kr, by the character of the nuclear reaction, and by the demand for automation from the side of the end user.

  12. Phytotoxicity and Plant Productivity Analysis of Tar-Enriched Biochars

    Science.gov (United States)

    Keller, M. L.; Masiello, C. A.; Dugan, B.; Rudgers, J. A.; Capareda, S. C.

    2008-12-01

    Biochar is one of the three by-products obtained by the pyrolysis of organic material, the other two being syngas and bio-oil. The pyrolysis of biomass has generated a great amount of interest in recent years as all three by-products can be put toward beneficial uses. As part of a larger project designed to evaluate the hydrologic impact of biochar soil amendment, we generated a biochar through fast pyrolysis (less than 2 minutes) of sorghum stock at 600°C. In the initial biochar production run, the char bin was not purged with nitrogen. This inadvertent change in pyrolysis conditions produced a fast-pyrolysis biochar enriched with tars. We chose not to discard this batch, however, and instead used it to test the impact of tar-enriched biochars on plants. A suite of phytotoxicity tests were run to assess the effects of tar-rich biochar on plant germination and plant productivity. We designed the experiment to test for negative effects, using an organic carbon and nutrient-rich, greenhouse- optimized potting medium instead of soil. We used Black Seeded Simpson lettuce (Lactuca sativa) as the test organism. We found that even when tars are present within biochar, biochar amendment up to 10% by weight caused increased lettuce germination rates and increased biomass productivity. In this presentation, we will report the statistical significance of our germination and biomass data, as well as present preliminary data on how biochar amendment affects soil hydrologic properties.

  13. Method and apparatus for enrichment or upgrading heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for upgrading and final enrichment of heavy water are described, comprising means for contacting partially enriched heavy water feed in a catalyst column with hydrogen gas (essentially D 2 ) originating in an electrolysis cell so as to enrich the feed water with deuterium extracted from the electrolytic hydrogen gas and means for passing the deuterium enriched water to the electrolysis cell. (author)

  14. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Science.gov (United States)

    2011-01-04

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...

  15. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  16. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  17. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  19. Criticality analysis in uranium enrichment plant

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Kiyose, Ryohei

    1977-01-01

    In a large scale uranium enrichment plant, uranium inventory in cascade rooms is not very large in quantity, but the facilities dealing with the largest quantity of uranium in that process are the UF 6 gas supply system and the blending system for controlling the product concentration. When UF 6 spills out of these systems, the enriched uranium is accumulated, and the danger of criticality accident is feared. If a NaF trap is placed at the forestage of waste gas treatment system, plenty of UF 6 and HF are adsorbed together in the NaF trap. Thus, here is the necessity of checking the safety against criticality. Various assumptions were made to perform the computation surveying the criticality of the system composed of UF 6 and HF adsorbed on NaF traps with WIMS code (transport analysis). The minimum critical radius resulted in about 53 cm in case of 3.5% enriched fuel for light water reactors. The optimum volume ratio of fissile material in the double salt UF 6 .2NaF and NaF.HF is about 40 vol. %. While, criticality survey computation was also made for the annular NaF trap having the central cooling tube, and it was found that the effect of cooling tube radius did not decrease the multiplication factor up to the cooling tube radius of about 5 cm. (Wakatsuki, Y.)

  20. Quality and nutritional properties of pasta products enriched with immature wheat grain.

    Science.gov (United States)

    Casiraghi, Maria Cristina; Pagani, Maria Ambrogina; Erba, Daniela; Marti, Alessandra; Cecchini, Cristina; D'Egidio, Maria Grazia

    2013-08-01

    In this study, nutritional and sensory properties of pasta enriched with 30% immature wheat grain (IWG), a natural source of fructo-oligosaccharides (FOS), are evaluated. Colour and cooking quality, nutritional value and glycaemic index (GI) of pasta were assessed in comparison with commercially enriched inulin and 100% wholewheat pastas. IWG integration induced deep changes in colour, without negatively affecting the cooking quality of pasta, and promoted nutritional quality by increasing the fibre content; IWG pasta presented a remarkable leaching of FOS in cooking water, thus providing only 1 g of FOS per serving. IWG pastas showed a GI of 67 (dried) and 79 (fresh), not significantly different from commercial pasta products. IWG can be considered an interesting ingredient to obtain functional products 'naturally enriched' in FOS and fibre. Results about FOS leaching suggest that, in dealing with functional effects, the actual prebiotic content should be carefully considered on food 'as eaten'.

  1. Oil and gas exploration and production

    International Nuclear Information System (INIS)

    Babusiaux, D.; Favennec, J.P.; Bauquis, P.R.; Bret-Rouzaut, N.; Guirauden, D.

    2004-01-01

    The steps that lead to the production of oil and gas are diverse, complex and costly. They are diverse, because the detection of oil and gas involves input from many specialties, ranging from geology to reservoir engineering. They are complex, as shown by the development of the job of the petroleum architect, who coordinates all the operations. They are costly, as the investments for exploration and production represent more than half of all investments in the oil and gas sector. Moreover, exploration is a risky activity, both from the technical and financial viewpoint: only one well in five produces marketable oil. Meanwhile, the areas for exploration and production are spread throughout the world. This book provides a complete overview of the stakes and challenges involved in oil and gas exploration and production. Following a historical review and a survey of the markets, the technical phases are covered, as are the evaluation of reserves, the estimation of investments and costs, the decision-making and control processes, and the accounting, legal and contractual environment for these activities. The book concludes with a discussion of the role of safety, and of environmental and ethical issues. This work, which is designed for readers concerned with the various aspects of the oil and gas upstream sector, is accessible to all. Contents: 1. Petroleum: a strategic product. 2. Oil and gas exploration and production. 3. Hydrocarbon reserves. 4. Investments and costs. 5. Legal, fiscal and contractual framework. 6. Decision-making on exploration and production. 7. Information, accounting and competition analysis. 8. Health, safety, the environment, ethics. Bibliography. Glossary. Index

  2. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  3. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  4. Enriched Water-H2 18O Purification to be Used in Routine 18FDG Production

    International Nuclear Information System (INIS)

    Al Rayyes, A.H.

    2009-01-01

    Oxygen-18 enriched water has been recovered from IBA (Ion Beam Applications) recovery system followed by purification and then used in the production of 18 F-. The purification process has been carried out by irradiation with UV followed by a distillation under vacuum. After purification, 95% of water is recovered and organic compounds, radioisotopes, trace metals and gases are eliminated efficiently. Results show that there are no significant differences in (2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) production yield using purified water by the proposed method and new enriched water. Tritium was detected in the irradiated enriched water. Contamination precautions during purification should be considered. Tritium was not present in 18 FDG or Na- 18 F final products. (author)

  5. Response of potato gas exchange and productivity to phosphorus deficiency and CO2 enrichment

    Science.gov (United States)

    The degree to which crops respond to atmospheric carbon dioxide enrichment (CO2) may be influenced by their nutrition level. While the majority of CO2 and plant nutrition studies focus on nitrogen, phosphorus (P) is also required in relatively high amounts for important crops such as potato. To de...

  6. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  7. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  8. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  9. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  10. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  11. Gas-centrifuge unit

    International Nuclear Information System (INIS)

    Stark, T.M.

    1977-01-01

    An isotope-enrichment unit is described for separating a gaseous mixture feedstock including a compound of a light nuclear isotope at a predetermined concentration and a compound of a heavy nuclear isotope at a predetermined concentration into at least two unit-output fractions including a waste fraction depleted in the light isotope to a predetermined concentration and a product fraction enriched in the light isotope to a predetermined concentration. The unit comprises a first group of cascades of gas centrifuges, each cascade having an enriching stage, a stripping stage, an input, a light-fraction output, and a heavy-fraction output for separating the gaseous-mixture feed stock into light and heavy gaseous-mixture fractions; and an auxillary cascade

  12. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  13. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnǚsi Palaeohigh, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xu Chunchun

    2014-10-01

    Full Text Available As several major new gas discoveries have been made recently in the Lower Cambrian Longwangmiao Fm reservoirs in the Leshan-Longnǚsi Palaeohigh of the Sichuan Basin, a super-huge gas reservoir group with multiple gas pay zones vertically and cluster reservoirs laterally is unfolding in the east segment of the palaeohigh. Study shows that the large-scale enrichment and accumulation of natural gas benefits from the good reservoir-forming conditions, including: (1 multiple sets of source rocks vertically, among which, the high-quality Lower Paleozoic source rocks are widespread, and have a hydrocarbon kitchen at the structural high of the Palaeohigh, providing favorable conditions for gas accumulation near the source; (2 three sets of good-quality reservoirs, namely, the porous-vuggy dolomite reservoirs of mound-shoal facies in the 2nd and 4th members of the Sinian Dengying Fm as well as the porous dolomite reservoirs of arene-shoal facies in the Lower Cambrian Longwangmiao Fm, are thick and wide in distribution; (3 structural, lithological and compound traps developed in the setting of large nose-like uplift provide favorable space for hydrocarbon accumulation. It is concluded that the inheritance development of the Palaeohigh and its favorable timing configuration with source rock evolution are critical factors for the extensive enrichment of gas in the Lower Cambrian Longwangmiao Fm reservoirs. The structural high of the Palaeohigh is the favorable area for gas accumulation. The inherited structural, stratigraphic and lithological traps are the favorable sites for gas enrichment. The areas where present structures and ancient structures overlap are the sweet-spots of gas accumulation.

  14. Technology and products of gas companies; Gas gaisha no Technology and Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-10

    This paper presents the latest technology and products of gas companies. `Newly developed gas table for one-push automatic fish broiling` of Tokyo Gas Co. `Catalytic technology for decomposing dioxin generated by incinerator to make it harmless` of Osaka Gas Co. `Newly developed strong and kindly shower head` of Tokyo Gas Co. By laying fish on a sensor in a grill and appropriately setting upper and lower heating levers, user can skillfully broil fish only by pushing an ignition button. A temperature sensor attached to the center of a grill catches a change in surface temperature of fish, and automatically sets an appropriate broiling time according to the kind and volume of fish. A finish buzzer and automatic extinction mechanism are prepared. The technology decomposes dioxin in exhaust gas of incinerators to make it harmless. The catalyst is prepared by dispersing noble metal or oxide of several angstroms into activated carbon fibers. The shower head can switch hot water power by a control handle

  15. Novel Membranes and Processes for Oxygen Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions

  16. On the enrichment of low-abundant isotopes of light chemical elements by gas centrifuges

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Zaozerskiy, Yu.P.; Shmelev, G.M.; Shipilov, Yu.D.

    2000-01-01

    A brief review of the main areas for the application of the isotopes 15 N and 13 C is made. Separation of the nitrogen isotopes in a single gas centrifuge in the form of pure nitrogen, ammonia, and trifluoride of nitrogen as well as the carbon isotopes in the form of carbon dioxide has been studied by means of numerical simulation. The parameters of the centrifugal machine investigated were close to the parameters of the Iguassu machine. The dependence of the efficiency criterion versus the basic parameters of the separation process has been explored in the computational experiments. Comparisons of the calculated results with the experimental data have shown good agreement. The results obtained have demonstrated the possibility of using gas centrifuge technology to enrich successfully the low-abundant isotopes of light chemical elements

  17. Uranium enrichment: investment options for the long term

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables

  18. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  19. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen (Germany); Bakalyarov, A. M. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); and others

    2015-02-03

    The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  20. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  1. The effect of hydrogen enrichment towards the flammability limits of natural gas in conventional combustion

    International Nuclear Information System (INIS)

    Izirwan Izhab; Nur Syuhada Mohd Shokri; Nurul Saadah Sulaiman; Mohd Zulkifli Mohamad Noor; Siti Zubaidah Sulaiman; Rosmawati Naim; Norida Ridzuan, Mohd Masri Razak; Abdul Halim Abdul Razik; Zulkafli Hassan

    2010-01-01

    The use of hydrogenated fuels shows a considerable promise for the applications in gas turbines and internal combustion engines. The aims of this study are to determine the flammability limits of natural gas/ air mixtures and to investigate the effect of hydrogen enrichment on the flammability limits of natural gas/ air mixtures up to 60 vol % of hydrogen/fuel volume ratio at atmospheric pressure and ambient temperature. The experiments were performed in a 20 L closed explosion vessel where the mixtures were ignited by using a spark permanent wire that was placed at the centre of the vessel. The pressure-time variations during explosions of natural gas/ air mixtures in an explosion vessel were recorded. Moreover, the explosion pressure data is used to determine the flammability limits that flame propagation is considered to occur if explosion pressure is greater than 0.1 bar. Therefore, in this study, the results show that the range of flammability limits are from 6 vol % to 15 vol % and by the addition of hydrogen in natural gas proved to extend the initial lower flammability limit of 6 vol % to 2 vol % of methane. (author)

  2. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  3. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  4. Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada: Implications for the origin of gas hydrates under terrestrial permafrost conditions

    International Nuclear Information System (INIS)

    Tomaru, Hitoshi; Fehn, Udo; Lu, Zunli; Matsumoto, Ryo

    2007-01-01

    The authors report here halogen concentrations in pore waters and sediments collected from the Mallik 5L-38 gas hydrate production research well, a permafrost location in the Mackenzie Delta, Northwest Territories, Canada. Iodine and Br are commonly enriched in waters associated with CH 4 , reflecting the close association between these halogens and source organic materials. Pore waters collected from the Mallik well show I enrichment, by one order of magnitude above that of seawater, particularly in sandy layers below the gas hydrate stability zone (GHSZ). Although Cl and Br concentrations increase with depth similar to the I profile, they remain below seawater values. The increase in I concentrations observed below the GHSZ suggests that I-rich fluids responsible for the accumulation of CH 4 in gas hydrates are preferentially transported through the sandy permeable layers below the GHSZ. The Br and I concentrations and I/Br ratios in Mallik are considerably lower than those in marine gas hydrate locations, demonstrating a terrestrial nature for the organic materials responsible for the CH 4 at the Mallik site. Halogen systematics in Mallik suggest that they are the result of mixing between seawater, freshwater and an I-rich source fluid. The comparison between I/Br ratios in pore waters and sediments speaks against the origin of the source fluids within the host formations of gas hydrates, a finding compatible with the results from a limited set of 129 I/I ratios determined in pore waters, which gives a minimum age of 29 Ma for the source material, i.e. at the lower end of the age range of the host formations. The likely scenario for the gas hydrate formation in Mallik is the derivation of CH 4 together with I from the terrestrial source materials in formations other than the host layers through sandy permeable layers into the present gas hydrate zones

  5. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  6. Enrichment of extruded snack products with whey protein

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-08-01

    Full Text Available Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is “snack” food. Snack food is made with twin corotating screw extruders, in which raw materials are submitted to high temperatures and short time, with intensive expansion and rapid pressure drop. For the production of this category of food products, basic ingredients like corn, wheat, rye and rice, with the maximum of 9 % of proteins, are used. With the development of extrusion technology, special attention is focused on the enrichment of extruded products with different types of proteins, including proteins. In this paper, review of the newest research and achievements in embedding various types of whey concentrates in snack food will be represented. This category of food products for direct consummation is constantly increasing, and addition of whey protein concentrate adds better nutritional value and increased functionality.

  7. The modular high-temperature gas-cooled reactor - a new production reactor

    International Nuclear Information System (INIS)

    Nulton, J.D.

    1990-01-01

    One of the reactor concepts being considered for application as a new production reactor (NPR) is a 350-MW(thermal) modular high-temperature gas-cooled reactor (MHTGR). The proposed MHTGR-NPR is based on the design of the commercial MHTGR and is being developed by a team that includes General Atomics and Combustion Engineering. The proposed design includes four modules combined into a production block that includes a shared containment, a spent-fuel storage facility, and other support facilities. The MHTGR has a helium-cooled, graphite-moderated, graphite-reflected annular core formed from prismatic graphite fuel blocks. The MHTGR fuel consists of highly enriched uranium oxycarbide (UCO) microsphere fuel particles that are coated with successive layers of pyrolytic carbon (PyC) and silicon carbide (SiC). Tritium-producing targets consist of enriched 6 Li aluminate microsphere target particles that are coated with successive layers of PyC and SiC similar to the fuel microspheres. Normal reactivity control is implemented by articulated control rods that can be inserted into channels in the inner and outer reflector blocks. Shutdown heat removal is accomplished by a single shutdown heat exchanger and electric motor-driven circulator located in the bottom of the reactor vessel. Current plans are to stack spent fuel elements in dry, helium-filled, water-cooled wells and store them for ∼1 yr before reprocessing. All phases of MHTGR fuel reprocessing have been demonstrated

  8. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  9. The commercial role for centrifuge enrichment

    International Nuclear Information System (INIS)

    Readle, P.H.; Wilcox, P.

    1987-01-01

    The enrichment market is extremely competitive and capacity greatly exceeds demand. BNFL [British Nuclear Fuels Ltd.] is in a unique position in having commercial experience of the two enrichment technologies currently used industrially: diffusion, and centrifuge enrichment through its associate company Urenco. In addition, BNFL is developing laser enrichment techniques as part of a UK development programme. The paper describes the enrichment market, briefly discusses the relative merits of the various methods of uranium enrichment and concludes that the gas centrifuge will be best able to respond to market needs for at least the remainder of the century. (author)

  10. Profile of World Uranium Enrichment Programs - 2007

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2007-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  11. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  12. Price impact on Russian gas production and export

    International Nuclear Information System (INIS)

    Kononov, Y.D.

    2003-01-01

    The paper examines the prospects for Russian gas output and export under different price development. Growth of gas production and transportation costs, following an increase of gas export and production, is estimated. An attempt is made to determine the relation of efficient (from the point of view of gas companies) gas export volumes to prices on external energy markets. The paper presents a quantitative estimate of the possible impact of domestic gas price policy on gas output in Western Siberia. (author)

  13. Numeric Simulation of Oxygen Enriched Combustion in a Frit Melting Kiln

    Directory of Open Access Journals (Sweden)

    Bernardo A. Herrera-Múnera

    2013-11-01

    Full Text Available In this paper, a numerical study of air enriched combustion on a natural gas rotary furnace for frita melting is presented. This study was done with the aim of determining an oxygen concentration to ensure economic feasibility of the process without affecting quality requirements. The simulations were conducted using the commercial software ANSYS FLUENT as a design tool to predict the behavior of the thermal system and to establish operations conditions with different oxygen enrichment levels. Finite Rate / Eddy Dissipation model was used for combustion simulation, while k - ε Realizable and Discrete Ordinates models were utilized for turbulence and radiation simulation, respectively. It was found that an enrichment level close to 31% of oxygen in the air allows for reaching temperatures for frita melting larger than 1700 K. In this way, current consumption of high purity oxygen can be diminished without affecting the production levels and the quality of the product.

  14. China's natural gas: Resources, production and its impacts

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Zhao, Lin; Snowden, Simon

    2013-01-01

    In order to achieve energy consumption targets, and subsequently reduce carbon emissions, China is working on energy strategies and policies aimed at actively increasing the consumption of natural gas—the lowest carbon energy of the fossil fuels, and to enhance the proportion of gas in total primary energy consumption. To do this, it is a necessary prerequisite that China must have access to adequate gas resources and production to meet demand. This paper shows that the availability of domestic gas resources are overestimated by China's authorities due to differences in classification and definitions of gas resources/reserves between China and those accepted internationally. Based on official gas resource figures, China's gas production remains low with respect to the projected demand, and will only be 164.6 bcm in 2020, far lower than the 375 bcm of forecast demand. The gap between gas production and demand will reach 210.4 bcm by 2020. Existing plans for the importation of gas and the development of unconventional gas will not close this gap in the next 10 years, and this situation will therefore present a severe challenge to China's gas security, achievement of targets in improving energy consumption structure and reducing carbon emissions. - Highlights: ► We show that available gas resources are overestimated by China's authorities. ► We forecast China's future gas production under different resource scenarios. ► This paper shows that China's gas production will not meet the soaring demand. ► The gap between supply and demand will continue to increase rapidly in future. ► China's gas security will meet a severe challenge because of this increasing gap

  15. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.; Slater, J.B.

    1986-05-01

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  16. European energy security: The future of Norwegian natural gas production

    International Nuclear Information System (INIS)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell

    2009-01-01

    The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has communicated that Norwegian gas production will increase by 25-40% from today's level of about 99 billion cubic meters (bcm)/year. This article shows that only a 20-25% growth of Norwegian gas production is possible due to production from currently existing recoverable reserves and contingent resources. A high and a low production forecast for Norwegian gas production is presented. Norwegian gas production exported by pipeline peaks between 2015 and 2016, with minimum peak production in 2015 at 118 bcm/year and maximum peak production at 127 bcm/year in 2016. By 2030 the pipeline export levels are 94-78 bcm. Total Norwegian gas production peaks between 2015 and 2020, with peak production at 124-135 bcm/year. By 2030 the production is 96-115 bcm/year. The results show that there is a limited potential for increased gas exports from Norway to the EU and that Norwegian gas production is declining by 2030 in all scenarios. Annual Norwegian pipeline gas exports to the EU, by 2030, may even be 20 bcm lower than today's level.

  17. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  18. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas

  19. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  20. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2007-01-01

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  1. Phenolipids as antioxidants in omega-3 enriched food products

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Aleman, M.; Durand, E.

    Foods containing omega-3 PUFA are highly susceptible to oxidation. This causes formation of undesirable flavors and loss of health-beneficial fatty acids. To protect these food products, antioxidant addition may be a solution. Lately, extensive work has been performed on phenolipids...... and their efficacy in model emulsion systems. Since the polar paradox hypothesis was a simplified statement of the antioxidant efficacy in emulsions, a new term, “cut-off effect”, was introduced. The cut-off effect describes the efficacy of phenolipids in simple emulsions. However, most food products consist...... acid and its esters, caffeates, in two different fish-oil-enriched food products: mayonnaise and milk. Lipid oxidation was evaluated from 3 parameters measured over storage time: peroxide value, volatiles and tocopherol concentrations. The results demonstrate the influence of the complex emulsions...

  2. Productivity improvements in gas distribution

    International Nuclear Information System (INIS)

    Young, M.R.

    1997-01-01

    In 1993, the Hilmer Report resulted in the introduction of the National Competition Policy which, in the case of the gas industry, aims to promote gas-on-gas competition where to date it has been excluded. In response, and to prepare for wide gas industry reform, Gas and Fuel formed three fundamentally different core businesses on 1 July 1996 - Energy Retail, Network, and Contestable Services. In one productivity improvement initiative which is believed to be unique, Gas and Fuel appointed three companies as strategic alliance partners for distribution system maintenance. Gas and Fuel can now concentrate on its core role as asset manager which owns and operates the distribution system while procuring all services from what will become non-regulated businesses. This Paper details this initiative and the benefits which have resulted from overall changes and improvements, and outlines the challenges facing Gas and Fuel in the future. (au)

  3. Oil and gas leasing/production program

    International Nuclear Information System (INIS)

    Heimberger, M.L.

    1992-01-01

    As the Congress declared in the Outer Continental Shelf Lands Act the natural gas and oil production from the Outer Continental Shelf constitutes an important part of the Nation's domestic energy supply. Federal offshore minerals are administered within the Department of the Interior by the Minerals Management Service (MMS), which provides access to potential new sources of natural gas and oil offshore by conducting lease sales. Each year, on or before March 31, the MMS presents to Congress a fiscal year annual report on the Federal offshore natural gas and oil leasing and production program. In FY 1991, this program was the third largest producer of non-tax revenue for the US Treasury, contributing more than $3 billion. This report presents Federal offshore leasing, sales, production, and exploration activities, and environmental monitoring activities

  4. Performance of free-range chickens reared in production modules enriched with shade net and perches

    Directory of Open Access Journals (Sweden)

    MJB Santos

    2014-03-01

    Full Text Available An experiment was carried out to evaluate the effect of environmental enrichment in a free-range chicken production system on live performance as a function of microclimate, physiological parameters, and performance parameters. Four production modules were divided into four pens with 10 birds each, totaling 60 birds. The following treatments were applied: access to a paddock (TEST, access to a paddock with perches (PER, access to a paddock with artificial shade (SHA, and access to the paddock with perches and artificial shade (PESH. The PESH production module presented the best globe temperature (Tbg,ºC and enthalpy (h, kJ/kg, and thereby, the best thermal environmental conditions, which ensured the longest permanence time of the birds in the paddock. The SHA and PESH modules promoted the lowest respiratory rate and shank and comb temperatures. Live performance was influenced by the presence of environmental enrichment (modules SHA and PESH, with the highest live weight (LW and weight gain (WG and the lowest feed conversion ratio (FCR and metabolizable energy intake (MEI. Parts yield, such as giblets, were not influenced by production modules, except for PESH, which promoted higher offal weight. In general, chickens reared in enriched production modules presented greatest performance and comfort results and were considered close to optimal rearing conditions.

  5. THE COMPLEXITY THAT THE FIRST STARS BROUGHT TO THE UNIVERSE: FRAGILITY OF METAL-ENRICHED GAS IN A RADIATION FIELD

    International Nuclear Information System (INIS)

    Aykutalp, A.; Spaans, M.

    2011-01-01

    The initial mass function (IMF) of the first (Population III) stars and Population II (Pop II) stars is poorly known due to a lack of observations of the period between recombination and reionization. In simulations of the formation of the first stars, it has been shown that, due to the limited ability of metal-free primordial gas to cool, the IMF of the first stars is a few orders of magnitude more massive than the current IMF. The transition from a high-mass IMF of the first stars to a lower-mass current IMF is thus important to understand. To study the underlying physics of this transition, we performed several simulations using the cosmological hydrodynamic adaptive mesh refinement code Enzo for metallicities of 10 -4 , 10 -3 , 10 -2 , and 10 -1 Z sun . In our simulations, we include a star formation prescription that is derived from a metallicity-dependent multi-phase interstellar medium (ISM) structure, an external UV radiation field, and a mechanical feedback algorithm. We also implement cosmic ray heating, photoelectric heating, and gas-dust heating/cooling, and follow the metal enrichment of the ISM. It is found that the interplay between metallicity and UV radiation leads to the coexistence of Pop III and Pop II star formation in non-zero-metallicity (Z/Z sun ≥ 10 -2 ) gas. A cold (T 10 -22 g cm -3 ) gas phase is fragile to ambient UV radiation. In a metal-poor (Z/Z sun ≤ 10 -3 ) gas, the cold and dense gas phase does not form in the presence of a radiation field of F 0 ∼ 10 -5 -10 -4 erg cm -2 s -1 . Therefore, metallicity by itself is not a good indicator of the Pop III-Pop II transition. Metal-rich (Z/Z sun ≥ 10 -2 ) gas dynamically evolves two to three orders of magnitude faster than metal-poor gas (Z/Z sun ≤ 10 -3 ). The simulations including supernova explosions show that pre-enrichment of the halo does not affect the mixing of metals.

  6. Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment

    Science.gov (United States)

    Gieles, Mark; Charbonnel, Corinne; Krause, Martin G. H.; Hénault-Brunet, Vincent; Agertz, Oscar; Lamers, Henny J. G. L. M.; Bastian, Nathan; Gualandris, Alessia; Zocchi, Alice; Petts, James A.

    2018-04-01

    We present a model for the concurrent formation of globular clusters (GCs) and supermassive stars (SMSs, ≳ 103 M⊙) to address the origin of the HeCNONaMgAl abundance anomalies in GCs. GCs form in converging gas flows and accumulate low-angular momentum gas, which accretes onto protostars. This leads to an adiabatic contraction of the cluster and an increase of the stellar collision rate. A SMS can form via runaway collisions if the cluster reaches sufficiently high density before two-body relaxation halts the contraction. This condition is met if the number of stars ≳ 106 and the gas accretion rate ≳ 105 M⊙/Myr, reminiscent of GC formation in high gas-density environments, such as - but not restricted to - the early Universe. The strong SMS wind mixes with the inflowing pristine gas, such that the protostars accrete diluted hot-hydrogen burning yields of the SMS. Because of continuous rejuvenation, the amount of processed material liberated by the SMS can be an order of magnitude higher than its maximum mass. This `conveyor-belt' production of hot-hydrogen burning products provides a solution to the mass budget problem that plagues other scenarios. Additionally, the liberated material is mildly enriched in helium and relatively rich in other hot-hydrogen burning products, in agreement with abundances of GCs today. Finally, we find a super-linear scaling between the amount of processed material and cluster mass, providing an explanation for the observed increase of the fraction of processed material with GC mass. We discuss open questions of this new GC enrichment scenario and propose observational tests.

  7. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  8. Stable isotope enrichment by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2003-01-01

    Thermal diffusion (TD) in both gaseous and liquid phase has been the subject of extensive experimental and theoretical investigations, especially after the invention by K. Clusius and G. Dickel of the thermal diffusion column, sixty years ago. This paper gives a brief overview of the most important applications and developments of this transport phenomenon for enrichment of 13 C and of some noble gases isotopes in our institute. The results of calculations of the transport coefficients H and K for a concentric tube type TD column, operated with methane as process gas, are presented. Static separation factor at equilibrium vs gas pressure has been calculated for various molecular models. The experimental separation factors for different gas pressure were found to be consistent with those calculated for the inverse power repulsion model and the Lennard-Jones model. The most important characteristics of a seven-stage cascade consisting of 19 TD columns of concentric tube type are given. This system has been constructed and successfully operated at a temperature of 673 K and produces an enrichment of methane of natural isotopic 13 C abundance, up to the concentration of 25% 13 CH 4 . Enrichment of the noble gases isotopes implies: - a . Enrichment of 20 Ne and 22 Ne in a eight-stage cascade consisting of 8 TD columns; - b. enrichment of 46 Ar in a seven-stage cascade consisting of TD columns and finally; - c. enrichment of 78 Kr and 86 Kr in a fifteen-stage cascade, consisting of 35 TD columns. For all these installations we have adopted TD columns of hot wire type (4 m in length), operated at a temperature of 1073 K. (author)

  9. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    Energy Technology Data Exchange (ETDEWEB)

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering

    2005-07-01

    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  10. Magnesium enriched lactic acid bacteria as a carrier for probiotic ice cream production.

    Science.gov (United States)

    Góral, Małgorzata; Kozłowicz, Katarzyna; Pankiewicz, Urszula; Góral, Dariusz

    2018-01-15

    The following strains of bacteria: Lactobacillus rhamnosus B 442, Lactobacillus rhamnosus 1937, and Lactococcus lactis JBB 500 were enriched with magnesium ions using Pulsed Electric Fields. The potentially probiotic strains were added to the mixture in the DVS process and applied for the production of ice cream which were then analyzed physicochemically and microbiologically. Results showed that addition of bacteria enriched with magnesium did not change chemical parameters of the ice cream and did not affect the freezing process, meltability, and hardness. No significant differences were noted in colour of the samples. The ice cream with addition of bacteria enriched with magnesium had higher adhesiveness. The results of viability determination showed that the total number of microorganisms in the ice cream was higher than in the starter cultures. Viability of the bacteria enriched with magnesium in the obtained ice cream was lower in comparison to the control samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36

    Science.gov (United States)

    Lebouteiller, V.; Kunth, D.; Thuan, T. X.; Désert, J. M.

    2009-02-01

    implies that most of the metals released by consecutive star-formation episodes mixes with the H i gas. The volume extent of the enrichment is so large that the metallicity of the neutral gas increases only slightly. The star-forming regions could be enriched only by a small fraction (~1%), but it would greatly enhance its metallicity. Our results are compared to those of other BCDs. We confirm the overall underabundance of metals in their neutral gas, with perhaps only the lowest metallicity BCDs showing no discontinuity.

  12. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  13. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  14. Computational fluid mechanics in R and D on uranium enrichment

    International Nuclear Information System (INIS)

    Soubbaramayer, O.

    1988-01-01

    Uranium enrichment represents an essential link in the cycle of nuclear fuels for power production. There are many processes of uranium enrichment, but three of them dominate the nuclear history as well in the past (Gaseous diffusion and centrifugation) as in the present (Laser process). The important role played by the Numerical Fluid Mechanics in the three processes is pointed out. The type of problem raised by Gaseous Diffusion is Channel Flow with wall suction, by Centrifugation, flow of a Compressible gas in a strongly rotating cylinder (Stewartson and Ekman layers) and by Laser process, Thermocapillary-buoyancy flow of a molten metal in an evaporation crucible. The methods and results in these problems are reviewed. 18 refs, 11 figs

  15. Accumulative effect of food residues on intestinal gas production.

    Science.gov (United States)

    Mego, M; Accarino, A; Malagelada, J-R; Guarner, F; Azpiroz, F

    2015-11-01

    As mean transit time in the colon is longer than the interval between meals, several consecutive meal loads accumulate, and contribute to colonic biomass. Our aim was to determine the summation effect of fermentable food residues on intestinal gas production. In eight healthy subjects, the volume of endogenous intestinal gas produced in the intestine over a 4-h period was measured by means of a wash-out technique, using an exogenous gas infusion into the jejunum (24 mL/min) and collection of the effluent via a rectal Foley catheter. The exogenous gas infused was labeled (5% SF6 ) to calculate the proportion of endogenous intestinal gas evacuated. In each subject, four experiments were performed ≥1 week apart combining a 1-day high- or low-flatulogenic diet with a test meal or fast. Basal conditions: on the low-flatulogenic diet, intestinal gas production during fasting over the 4-h study period was 609 ± 63 mL. Effect of diet: during fasting, intestinal gas production on the high-flatulogenic diet was 370 ± 146 mL greater than on the low-flatulogenic diet (p = 0.040). Effect of test meal: on the low-flatulogenic diet, intestinal gas production after the test meal was 681 ± 114 mL greater than during fasting (p = 0.001); a similar effect was observed on the high-flatulogenic diet (599 ± 174 mL more intestinal gas production after the test meal than during fasting; p = 0.021). Our data demonstrate temporal summation effects of food residues on intestinal gas production. Hence, intestinal gas production depends on pre-existing and on recent colonic loads of fermentable foodstuffs. © 2015 John Wiley & Sons Ltd.

  16. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    Science.gov (United States)

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Prediction of production of {sup 22}Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, M., E-mail: mohammad.eslami25@yahoo.com [Department of Physics, Faculty of Science, University of Zanjan, Zengan (Zanjan) (Iran, Islamic Republic of); Kakavand, T. [Department of Physics, Faculty of Science, University of Zanjan, Zengan (Zanjan) (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Mirzaii, M.; Rajabifar, S. [Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-01

    Highlights: • Angular distribution of the proton beam in a gaseous environment. • Particle energy distribution profile and proton flux within gas-cell target with MCNPX. • Detection of the residual nuclei during the nuclear reactions. • Estimation of production yield for {sup 22,nat}Ne(p,x){sup 22}Na reactions. - Abstract: The {sup 22}Ne(p,n){sup 22}Na is an optimal reaction for the cyclotron production of {sup 22}Na. This work tends to monitor the proton induced production of {sup 22}Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of {sup 22}Na in {sup 22}Ne(p,n){sup 22}Na and {sup nat}Ne(p,x){sup 22}Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  18. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  19. Gamma techniques for IAEA [International Atomic Energy Agency] safeguards at centrifuge enrichment cascades

    International Nuclear Information System (INIS)

    Aaldijk, J.K.; de Betue, P.A.C.; van der Meer, K.; Harry, R.J.S.

    1987-01-01

    On February 4, 1983, the Hexapartite Safeguards Project (HSP) concluded that the safeguards approach involving limited frequency unannounced access (LFUA) by International Atomic Energy Agency (IAEA) inspectors to cascades areas together with inspection activities outside the cascade areas meets the IAEA safeguards objectives in an effective and efficient way. In this way, the risks of revealing sensitive information were also minimized. The approach has been defined clearly and unambiguously, and it should be applied equally to all technology holders. One of the conclusions of the HSP was that a nondestructive assay go/no-go technique should be used during the LFUA inspections in the cascade areas of centrifuge enrichment plants. The purpose is to verify that the enrichment of the product UF 6 gas is in the range of low-enriched uranium (LEU), i.e., the enrichment is below 20%

  20. Problems of radiation safety of petroleum and gas production

    International Nuclear Information System (INIS)

    Garibov, A.A.

    2002-01-01

    Oil and gas production is the basis of economy of the Azerbaijan Republic and its cause in ecological and radioecology problems. One form this problem is the pollution by radionuclides of environment at the time of gas and petroleum production. At the time of petroleum and gas production the three-phase radionuclides are emitted in atmosphere: Emissions consisted from solid U-238, Ra-226, Th-232, K-40 discharged to atmosphere at the time of production, exploring and exploitation of petroleum and gas. They are presented in compounds of sand, clay, and petroleum residues; During the drilling and production the gross quantities of water flows out and collects. These water areas consist of radium, uranium, Th and K-40 dissolved in water salts; There are the radionuclides being in 902 condition emitted in atmosphere at the places of petroleum and gas production. The radon and its isotopes are emitted at this time; At the places of petroleum and gas production it is observed at local pollution areas polluted by solid emissions that at this territories the doze of exposition power variable 100 - 1000 micro/hour. The radioactivity at this system according to 2-1000 year/k consists from Ra, K-40, and U. At this areas the value of total background changes 5 - 1000 micro R/hour. The total radioactivity of water polls formed at the places of petroleum and gas production consisted 50 -150 Bq/L. In the case of gas the separated radionuclides are mainly consisted from Radon and its isotopes. In the compound of produced gas the concentration of radon varied 20 - 1700 Bq/m 3 . Thus, at the places of petroleum and gas production radioactive pollutants emitted to atmosphere, forms the polluted environment for working and living people at the same territory. This problem's status haven't been investigated thoroughly, the sources of pollution hasn't been uncovered concretely, the cleaning technology for polluted areas is unknown

  1. Characterizing tight-gas systems with production data: Wyoming, Utah, and Colorado

    Science.gov (United States)

    Nelson, Philip H.; Santus, Stephen L.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    The study of produced fluids allows comparisons among tight-gas systems. This paper examines gas, oil, and water production data from vertical wells in 23 fields in five Rocky Mountain basins of the United States, mostly from wells completed before the year 2000. Average daily rates of gas, oil, and water production are determined two years and seven years after production begins in order to represent the interval in which gas production declines exponentially. In addition to the daily rates, results are also presented in terms of oil-to-gas and water-to-gas ratios, and in terms of the five-year decline in gas production rates and water-to-gas ratios. No attempt has been made to estimate the ultimate productivity of wells or fields. The ratio of gas production rates after seven years to gas production rates at two years is about one-half, with median ratios falling within a range of 0.4 to 0.6 in 16 fields. Oil-gas ratios show substantial variation among fields, ranging from dry gas (no oil) to wet gas to retrograde conditions. Among wells within fields, the oil-gas ratios vary by a factor of three to thirty, with the exception of the Lance Formation in Jonah and Pinedale fields, where the oil-gas ratios vary by less than a factor of two. One field produces water-free gas and a large fraction of wells in two other fields produce water-free gas, but most fields have water-gas ratios greater than 1 bbl/mmcf—greater than can be attributed to water dissolved in gas in the reservoir— and as high as 100 bbl/mmcf. The median water-gas ratio for fields increases moderately with time, but in individual wells water influx relative to gas is erratic, increasing greatly with time in many wells while remaining constant or decreasing in others.

  2. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    Science.gov (United States)

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  3. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  4. Experimental determination of the thickness of aluminum cascade pipes in the presence of UF{sub 6} gas during enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, M.L., E-mail: lombardi@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545 (United States); Favalli, A.; Goda, J.M.; Ianakiev, K.D.; MacArthur, D.W.; Moss, C.E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545 (United States)

    2012-04-21

    We present a method of determining the wall thickness of a pipe in a Gas Centrifuge Enrichment Plant (GCEP) when an empty pipe measurement is not feasible. Our method uses an X-ray tube for transmission measurements and a lanthanum bromide (LaBr{sub 3}) scintillation detector on the opposite side of the pipe. Two filters, molybdenum (K-edge 20.0 keV) and palladium (K-edge 24.35 keV) are used to transform the bremsstrahlung spectra produced by the X-ray tube into more useful, sharply peaked, spectra. The maximum energies of the peaks are determined by the K-edges of the filters. The attenuation properties of the uranium hexafluoride (UF{sub 6}) gas allow us to determine wall thickness by looking at the ratio of selected regions of interest (ROIs) of the Mo and Pd transmitted spectra. While the attenuation factor at these two transmission energies in the UF{sub 6} gas is nearly equal, attenuation in the aluminum pipe wall at these two energies differs by a factor of about 60. This difference allows measurement of attenuation in the pipe independent of attenuation in the UF{sub 6} gas. Feasibility studies were performed using analytical calculations, and filter thicknesses were optimized. In order to experimentally validate our attenuation measurement method, a UF{sub 6} source with variable enrichment and pipe thickness was built. We describe the experimental procedure used to verify our previous calculations and present recent results.

  5. Enrichment of functional properties of ice cream with pomegranate by-products.

    Science.gov (United States)

    Çam, Mustafa; Erdoğan, Fatma; Aslan, Duygu; Dinç, Merve

    2013-10-01

    Pomegranate peel rich in phenolics, and pomegranate seed which contain a conjugated fatty acid namely punicic acid in lipid fraction remain as by-products after processing the fruit into juice. Ice cream is poor in polyunsaturated fatty acids and phenolics, therefore, this study was conducted to improve the functional properties of ice cream by incorporating pomegranate peel phenolics and pomegranate seed oil. Incorporation of the peel phenolics into ice cream at the levels of 0.1% and 0.4% (w/w) resulted in significant changes in the pH, total acidity, and color of the samples. The most prominent outcomes of phenolic incorporation were sharp improvements in antioxidant and antidiabetic activities as well as the phenolic content of ice creams. Replacement of pomegranate seed oil by milk fat at the levels of 2.0% and 4.0% (w/w) increased the conjugated fatty acid content. However, perception of oxidized flavor increased with the additional seed oil. When one considers the functional and nutritional improvements in the enrichment of the ice cream together with overall acceptability results of the sensory analysis, then it follows from this study that ice creams enriched with pomegranate peel phenolics up to 0.4% (w/w) and pomegranate seed oil up to 2.0% (w/w) could be introduced to markets as functional ice cream. Enrichment of ice creams with pomegranate by-products might provide consumers health benefits with striking functional properties of punicalagins in pomegranate peel, and punicic acid in pomegranate seed oil. © 2013 Institute of Food Technologists®

  6. Cryogenic separation of krypton and xenon from dissolver off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Heidendael, M.; Laser, M.; Mastera, S.; Merz, E.

    1976-03-15

    Although the release of fission product noble gas Kr-85 has not posed a health problem to date, a process is being developed for the removal and storage of fission product noble gases from dissolution process stream of fuel reprocessing. The separation process described for noble gas in air being proved in semi-technical scale includes cryogenic distillation and consists of the following steps: (1) removal of 129 +131iodine on silver-coated silica gel; (2) deposition of particulate materials by HEPA-filters; (3) elimination of O2 and NOx by catalytic conversion with H2/ to N2 and H2O; (4) drying of the gas stream with molecular sieve; (5) deposition of xenon in solid form at about 80 K, while the remaining gas components are liquified; (6) enrichment of Kr by low temperature distillation of liquid-gas mixture; (7) withdrawal of the highly enriched Kr-fraction at the bottom of the still to be bottled in pressurized steel cylinders for final disposal; and (8) purification of Kr-85 contaminated Xe for further industrial reuse by batch distillation.

  7. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rasmussen, B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO 2 F 2 deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO 2 F 2 deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO 2 F 2 source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO 2 F 2 deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25 demolition project. The combined

  8. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  9. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Directory of Open Access Journals (Sweden)

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  10. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    Science.gov (United States)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  11. Suppression of charmonium production in hadron gas

    International Nuclear Information System (INIS)

    Faustov, R.N.; Vasilevskaya, I.G.

    1991-01-01

    The problem of J/ψ charmonium production suppression under heavy ion collisions is investigated. The processes of charmonium disintegration in hadron gas are considered: π+J/ψ → π+c+c-bar and ρ+J/ψ → D+D. Based on the results obtained one can assume that charmonium disintegration contribution to J/ψ production suppression under collisions with gas hadrons and the contribution conditioned by the production of quark-gluon plasma, appear to be the effects of similar order of magnitude

  12. Profile of World Uranium Enrichment Programs-2009

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2009-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  13. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  14. Enriched Water-H{sub 2} {sup 18}O Purification to be Used in Routine {sup 18}FDG Production

    Energy Technology Data Exchange (ETDEWEB)

    Al Rayyes, A. H. [Atomic Energy Commission of Syria, Chemistry Department, Cyclotron Division, Damascus (Syrian Arab Republic)

    2009-07-01

    Oxygen-18 enriched water has been recovered from IBA (Ion Beam Applications) recovery system followed by purification and then used in the production of {sup 18}F-. The purification process has been carried out by irradiation with UV followed by a distillation under vacuum. After purification, 95% of water is recovered and organic compounds, radioisotopes, trace metals and gases are eliminated efficiently. Results show that there are no significant differences in (2-deoxy-2-[{sup 18}F]fluoro-D-glucose ([{sup 18}F]FDG) production yield using purified water by the proposed method and new enriched water. Tritium was detected in the irradiated enriched water. Contamination precautions during purification should be considered. Tritium was not present in {sup 18}FDG or Na-{sup 18}F final products. (author)

  15. Results from uranium deposition studies for development of a Limited Frequency-Unannounced Access (LFUA) inspection strategy for gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W.

    1985-06-01

    Uranium deposition studies were performed on a test loop system designed to simulate process gas flow through the header piping of a gas centrifuge enrichment plant. The objectives of these studies were to investigate the effectiveness of an in-line gaseous cleaning agent in removing uranium in pipe deposits and to analyze long-term deposition growth and isotopic exchange under simulated centrifuge plant operating conditions. The test loop studies are described, the results are reported, and the implications for analyzing actual plant data are discussed. Results indicate that: 93% of the uranium deposit is removed within 15 min when a pipe is pressurized with gaseous ClF 3 ; the isotopic abundance of a highly enriched uranium deposit remains unchanged when UF 6 of a lower assay is introduced into the pipe; and air inleakage will be the cause of the largest deposits in centrifuge plant process header pipes. 3 refs., 3 figs., 3 tabs

  16. On Line Enrichment Monitor (OLEM) UF6 Tests for 1.5" Sch40 SS Pipe, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, José A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garner, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Younkin, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Simmons, Darrell W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants while working within budgetary constraints. The “Model Safeguards Approach for Gas Centrifuge Enrichment Plants” (GCEPs) developed by the IAEA Division of Concepts and Planning in June 2006, defines the three primary Safeguards objectives to be the timely detection of: 1) diversion of significant quantities of natural (NU), depleted (DU) or low-enriched uranium (LEU) from declared plant flow, 2) facility misuse to produce undeclared LEU product from undeclared feed, and 3) facility misuse to produce enrichments higher than the declared maximum, in particular, highly enriched uranium (HEU). The ability to continuously and independently (i.e. with a minimum of information from the facility operator) monitor not only the uranium mass balance but also the 235U mass balance in the facility could help support all three verification objectives described above. Two key capabilities required to achieve an independent and accurate material balance are 1) continuous, unattended monitoring of in-process UF6 and 2) monitoring of cylinders entering and leaving the facility. The continuous monitoring of in-process UF6 would rely on a combination of load-cell monitoring of the cylinders at the feed and withdrawal stations, online monitoring of gas enrichment, and a high-accuracy net weight measurement of the cylinder contents. The Online Enrichment Monitor (OLEM) is the instrument that would continuously measure the time-dependent relative uranium enrichment, E(t), in weight percent 235U, of the gas filling or being withdrawn from the cylinders. The OLEM design concept combines gamma-ray spectrometry using a collimated NaI(Tl) detector with gas pressure and temperature data to calculate the enrichment of the UF6

  17. EFFECTS OF DIFFERENT SUPPLEMENTS INCLUSION OF THE ENRICHED DIET ON PRODUCTIVE PERFORMANCE AND EGG STRUCTURE

    Directory of Open Access Journals (Sweden)

    Natasha Trajan Gjorgovska

    2016-04-01

    Full Text Available Nutritional manipulation and genetic selection for egg size and production may lead to changes in egg components. This experiment was carried out to analyze the egg structure parameters of eggs produced by Hisex Brown laying hens fed with diet with different supplements inclusion. The intensity of egg production was significantly higher in the groups fed with enriched feed with iodine (90.00%, vitamin E (90.00% and selenium (91.98%, and significantly lower in the group fed with DHA inclusion feed (76.00% in respect to the control group (82.00%, confidence interval of 95%. Concerning diet supplemented with selenium and diet supplemented with vitamin E, the egg yolk weight was statistically different compared with the control group (confidence interval of 95%. The yolk weight averaged 1.80 g and 1.29 g more than yolk weight in the control eggs, respectively. The egg shell weight was statistically different in diet enriched with iodine compared with the control. The egg shell weight averaged 1.48 g less per egg for the eggs enriched with iodine with 17.45% less underweight than the control eggs. Enriched eggs offer consumer a variety of value-added options for their egg purchase. Although enriched eggs may provide consumers with a specific quality attribute or healthful ingredient, they do not appear to provide quality and value in a traditional sense as defined by the standards of quality and grade.

  18. Analysis of the production of U3O8 powder for low enrichment fuel plates

    International Nuclear Information System (INIS)

    Boero, N.L.; Celora, J.; Parodi, C.A.; Ponieman, G.; Kellner, M.; Marajofsky, A.

    1987-01-01

    Description is made of the processes used in the production of U 3 O 8 powder for low enrichment plates for fuel elements for Research Reactors. The analysis of the efficiency of each batch is foccused on the relationship between milling and sieving times and the morphology of the product in each production step. (Author)

  19. Operational experience in the production of 131Molybdenum and 99Iodine with high and low uranium enrichment

    International Nuclear Information System (INIS)

    Bravo, C.; Cristini, Pablo R..; Novello, A.; Bronca, M.; Cestau, Daniel; Centurion, R.; Bavaro, R.; Cestau, J.; Gualda, E.; Bronca, P.; Carranza, Eduardo C.

    2009-01-01

    In 1992, in an effort to curtail use of Highly Enriched Uranium (HEU), hoping to alleviate nuclear security concerns, United States passed the Schumer amendment to the Energy Policy Act. This legislation conditioned U.S. export of HEU to foreign companies, understanding that these companies would switch as soon as possible to Lowly Enriched Uranium (LEU). This paper describes 99 Mo production flow chart, characteristics of process cells, shielding, systems of manipulation at distance, cell ventilation system and the method for personal dose monitoring. Production evolution for the span of years 1998 to 2007 is given by indicators, keeping in mind enrichment proportion change. Evolution shown on the indicators is directly related to the application of Safety Culture concepts adopted by personnel. (author)

  20. Natural gas production verification tests

    International Nuclear Information System (INIS)

    1992-02-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO 2 )/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO 2 /sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced

  1. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    Science.gov (United States)

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  2. Measurement of the enrichment of uranium in the pipework of a gas centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Close, D.; Nixon, K.V.; Pratt, J.C.; Strittmatter, R.

    1985-01-01

    The US and UK have been separately working on the development of a NDA instrument to determine the enrichment of gaseous UF 6 at low pressures in cascade header pipework in line with the conclusions of the Hexapartite Safeguards Project viz. the instrument is capable of making a ''go/no go'' decision of whether the enrichment is less than/greater than 20%. Recently, there has been a series of very useful technical exchanges of ideas and information between the two countries. This has led to a technical formulation for such an instrumentation based on γ-ray spectrometry which, although plant-specific in certain features, nevertheless is based on the same physical principles. Experimental results from commercially operating enrichment plants are very encouraging and indicate that a complete measurement including set up time on the pipe should be attainable in about 30 minutes when measuring pipes of diameter around 110 mm. 5 refs., 4 figs

  3. In vitro cumulative gas production techniques: history, methodological considerations and challenges

    NARCIS (Netherlands)

    Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I.

    2005-01-01

    Methodology used to measure in vitro gas production is reviewed to determine impacts of sources of variation on resultant gas production profiles (GPP). Current methods include measurement of gas production at constant pressure (e.g., use of gas tight syringes), a system that is inexpensive, but may

  4. Natural gas productive capacity for the lower 48 states, 1982--1993

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity and project this capacity for 1992 and 1993, based upon historical production data through 1991. Productive capacity is the volume of gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions excluding restrictions imposed by pipeline capacity, contracts, or regulatory bodies. For decades, natural gas supplies and productive capacity have been adequate, although in the 1970's the capacity surplus was small because of market structure (both interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand together with increased drilling led to a large surplus of natural gas capacity. After 1986, this large surplus began to decline as demand for gas increased, gas prices dropped, and gas well completions dropped sharply. In late December 1989, this surplus decline, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. This study indicates that monthly productive capacity will drop sharply during the 1992-1993 period. In the low gas price, low drilling case, gas productive capacity and estimated production demand will be roughly equal in December 1993. In base and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1993 in the lower 48 States. Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations. Beyond 1993, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  5. Caspian Oil and Gas: Production and Prospects

    National Research Council Canada - National Science Library

    Gelb, Bernard A

    2005-01-01

    .... The Caspian Sea region historically has been an oil and natural gas producer, but many believe that the region contains large reserves of oil and gas capable of much greater production than at present...

  6. Planning of optimum production from a natural gas field

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J

    1968-03-01

    The design of an optimum development plan for a natural gas field always depends on the typical characteristics of the producing field, as well as those of the market to be served by this field. Therefore, a good knowledge of the field parameters, such as the total natural gas reserves, the well productivity, and the dependence of production rates on pipeline pressure and depletion of natural gas reserves, is required prior to designing the development scheme of the field, which in fact depends on the gas-sales contract to be concluded in order to commit the natural gas reserves to the market. In this paper these various technical parameters are discussed in some detail, and on this basis a theoretical/economical analysis of natural gas production is given. For this purpose a simplified economical/mathematical model for the field is proposed, from which optimum production rates at various future dates can be calculated. The results of these calculations are represented in a dimensionless diagram which may serve as an aid in designing optimum development plans for a natural gas field. The use of these graphs is illustrated in a few examples.

  7. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  8. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  9. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study.

    Science.gov (United States)

    Laakso, Päivi H

    2014-01-01

    This collaborative study with nine participating laboratories was conducted to determine the total plant sterol and/or plant stanol contents in phytosterol fortified foods with a gas chromatographic method. Four practice and 12 test samples representing mainly commercially available foodstuffs were analyzed as known replicates. Twelve samples were enriched with phytosterols, whereas four samples contained only natural contents of phytosterols. The analytical procedure consisted of two alternative approaches: hot saponification method, and acid hydrolysis treatment prior to hot saponification. As a result, sterol/stanol compositions and contents in the samples were measured. The amounts of total plant sterols and total plant stanols varying from 0.005 to 8.04 g/100 g product were statistically evaluated after outliers were eliminated. The repeatability RSD (RSDr) varied from 1.34 to 17.13%. The reproducibility RSD (RSDR) ranged from 3.03 to 17.70%, with HorRat values ranging from 0.8 to 2.1. When only phytosterol enriched food test samples are considered, the RSDr ranged from 1.48 to 6.13%, the RSD, ranged from 3.03 to 7.74%, and HorRat values ranged from 0.8 to 2.1. Based on the results of this collaborative study, the study coordinator concludes the method is fit for its purpose.

  10. Feasibility of nondestructive assay measurements in uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Walton, R.B.

    1978-04-01

    Applications of nondestructive assay methods to measurement problems in uranium enrichment facilities are reviewed. The results of a number of test and evaluation projects that were performed over the last decade at ORGDP and Portsmouth are presented. Measurements of the residual holdup in the top enrichment portion of the shut-down K-25 cascade were made with portable neutron and gamma-ray detectors, and inventory estimates based on these data were in good agreement with ORGDP estimates. In the operating cascade, the tests showed that portable NaI detectors are effective for monitoring NaF and alumina media for gaseous effluent traps and that gas phase enrichments and inventories, as well as large deposits of uranium, can be detected with portable neutron and gamma-ray instrumentation. A wide variety of scrap and waste materials, including barrier and compressor blades, incinerator ash and trapping media, and miscellaneous waste, were measured using passive gamma-ray and neutron methods and 14-MeV neutron interrogation. Methods developed for rapid verification of UF/sub 6/ in shipping containers with portable neutron and gamma-ray instruments are now used routinely by safeguards inspectors. Passive assay methods can also be used to measure continuously the enrichments of /sup 235/U and /sup 234/U in the UF/sub 6/ product and tails withdrawals of a gaseous diffusion plant. A system that was developed and installed in the extended-range product withdrawal station of the Portsmouth facility measures enrichment with a relative accuracy of 0.5%. A stand-alone neutron detector has also been successfully evaluated for the measurement of the isotopic abundance of /sup 234/U in UF/sub 6/ in sample cylinders, an application of potential importance to Minor Isotope Safeguards Technology. Recommendations are made on the role of NDA measurements for enrichment plant safeguards, including additional tests and evaluations that may be needed, particularly for advanced uranium

  11. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  12. Nitrogen oxides in the combustion products of gas cookers

    Energy Technology Data Exchange (ETDEWEB)

    Benes, M.; Zahourek, J.

    1981-07-01

    The combustion of town gas and natural gas in two types of gas ranges manufactured in Czechoslovakia resulted in measurable amounts of NO/sub x/ in both the combustion products and the surrounding air. In all the cases tested, the amounts of NO/sub x/ given off exceeded levels permitted by current Czech standards. These results indicate that before the widespread use of any new gas ranges, their combustion products should be tested for NO/sub x/.

  13. Approach to IAEA material-balance verification at the Portsmouth Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

    1983-01-01

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistic for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of: (1) attributes and variables sample sizes for the various strata, (2) standard deviations of the relevant test statistics, and (3) the detection sensitivity which the IAEA might achieve by this verification strategy at GCEP

  14. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Vincent Souday

    Full Text Available To test the hypothesis whether enriched air nitrox (EAN breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression.Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2 in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes. Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler.Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001. Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217. Weak correlations were observed between bubble scores and age or body mass index, respectively.EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing.ISRCTN 31681480.

  15. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  16. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  17. How is uranium supply affecting enrichment?

    International Nuclear Information System (INIS)

    Steve Kidd

    2007-01-01

    As a result of the enlivened uranium market, momentum has in turn picked up in the enrichment sector. What are the consequences of higher uranium prices? There is, of course, a link between uranium and enrichment supply to the extent that they are at least partial substitutes. On the enrichment supply side, the most obvious feature is the gradual replacement of the old gas diffusion facilities of Usec in the USA and EURODIF in France with more modern and economical centrifuge plants. Assuming Usec can overcome the financing and technical issues surrounding its plans, the last gas diffusion capacity should disappear around 2015 and the entire enrichment market should then be using centrifuges. On the commercial side, the key anticipated developments are mostly in Russia. Although there should still continue to be substantial quantities of surplus Russian HEU available for down blending in the period beyond 2013, it is now reasonable to expect that it will be mostly consumed by internal needs, to fuel Russian-origin reactors both at home and in export markets such as China and India. Finally, as a key sensitive area for the non-proliferation of nuclear weapons, the enrichment sector is likely to be a central point of the new international arrangements which must be developed to support a buoyant nuclear sector throughout this century.

  18. Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass.

    Science.gov (United States)

    Zimmerman, R. C.; Kohrs, D. G.; Steller, D. L.; Alberte, R. S.

    1997-10-01

    Seagrasses, although well adapted for submerged existence, are CO2-limited and photosynthetically inefficient in seawater. This leads to high light requirements for growth and survival and makes seagrasses vulnerable to light limitation. We explored the long-term impact of increased CO2 availability on light requirements, productivity, and C allocation in eelgrass (Zostera marina L.). Enrichment of seawater CO2 increased photosynthesis 3-fold, but had no long-term impact on respiration. By tripling the rate of light-saturated photosynthesis, CO2 enrichment reduced the daily period of irradiance-saturated photosynthesis (Hsat) that is required for the maintenance of positive whole-plant C balance from 7 to 2.7 h, allowing plants maintained under 4 h of Hsat to perform like plants growing in unenriched seawater with 12 h of Hsat. Eelgrass grown under 4 h of Hsat without added CO2 consumed internal C reserves as photosynthesis rates and chlorophyll levels dropped. Growth ceased after 30 d. Leaf photosynthesis, respiration, chlorophyll, and sucrose-phosphate synthase activity of CO2-enriched plants showed no acclimation to prolonged enrichment. Thus, the CO2-stimulated improvement in photosynthesis reduced light requirements in the long term, suggesting that globally increasing CO2 may enhance seagrass survival in eutrophic coastal waters, where populations have been devastated by algal proliferation and reduced water-column light transparency.

  19. A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation

    International Nuclear Information System (INIS)

    Bakonyi, Péter; Buitrón, Germán; Valdez-Vazquez, Idania; Nemestóthy, Nándor; Bélafi-Bakó, Katalin

    2017-01-01

    Highlights: • A Gas Separation Membrane Bioreactor was designed to improve H_2 production. • Headspace gas after enrichment by PDMS membranes was used for reactor sparging. • Stripping the bioreactor with a CO_2-enriched gas enhanced the H_2 fermentation. - Abstract: A Gas Separation Membrane Bioreactor (GSMBR) by integrating membrane technology with a continuous biohydrogen fermenter was designed. The feasibility of this novel configuration for the improvement of hydrogen production capacity was tested by stripping the fermentation liquor with CO_2- and H_2-enriched gases, obtained directly from the bioreactor headspace. The results indicated that sparging the bioreactor with the CO_2-concentrated fraction of the membrane separation unit (consisting of two PDMS modules) enhanced the steady-state H_2 productivity (8.9–9.2 L H_2/L-d) compared to the membrane-less control CSTR to be characterized with 6.96–7.35 L H_2/L-d values. On the other hand, purging with the H_2-rich gas strongly depressed the achievable productivity (2.7–3.03 L H_2/L-d). Microbial community structure and soluble metabolic products were monitored to assess the GSMBR behavior. The study demonstrated that stripping the bioH_2 fermenter with its own, self-generated atmosphere after adjusting its composition (to higher CO_2-content) can be a promising way to intensify dark fermentative H_2 evolution.

  20. Phytosterol oxidation products in enriched foods: Occurrence, exposure, and biological effects.

    Science.gov (United States)

    Scholz, Birgit; Guth, Sabine; Engel, Karl-Heinz; Steinberg, Pablo

    2015-07-01

    Hypercholesterolemia is an important risk factor for the development of cardiovascular diseases. Dietary intake of phytosterols/phytostanols and their fatty acid esters results in a reduction of the LDL and total plasma cholesterol levels. Therefore, these constituents are added to a broad spectrum of foods. As in the case of cholesterol, thermo-oxidative treatment of phytosterols may result in the formation of phytosterol oxidation products (POPs), i.e. keto-, hydroxy-, and epoxy-derivatives. This review summarizes and evaluates the current knowledge regarding POPs in the light of the potentially increasing dietary exposure to these constituents via the consumption of foods enriched with phytosterols/phytostanols and their esters. Data on the occurrence of POPs and approaches to assess the potential intake of POPs resulting from the consumption of enriched foods are described. The knowledge on the uptake of POPs and the presently available data on the impact of the consumption of enriched foods on the levels of POPs in humans are discussed. Biological effects of POPs, such as potential proatherogenic properties or the loss of the cholesterol-lowering effects compared to nonoxidized phytosterols, are discussed. Finally, knowledge gaps are outlined and recommendations for further research needed for a safety assessment of POPs are presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  2. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  3. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  4. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  5. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  6. Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments.

    Science.gov (United States)

    Myung, Jaewook; Wang, Zhiyue; Yuan, Tong; Zhang, Ping; Van Nostrand, Joy D; Zhou, Jizhong; Criddle, Craig S

    2015-09-15

    The coupled aerobic-anoxic nitrous decomposition operation is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-), (2) NO2(-) reduction to N2O, and (3) N2O conversion to N2 with energy production. Here, we demonstrate that type II methanotrophic enrichments can mediate step two by coupling oxidation of poly(3-hydroxybutyrate) (P3HB) to NO2(-) reduction. Enrichments grown with NH4(+) and NO2(-) were subject to alternating 48-h aerobic and anoxic periods, in which CH4 and NO2(-) were added together in a "coupled" mode of operation or separately in a "decoupled mode". Community structure was stable in both modes and dominated by Methylocystis. In the coupled mode, production of P3HB and N2O was low. In the decoupled mode, significant P3HB was produced, and oxidation of P3HB drove reduction of NO2(-) to N2O with ∼ 70% conversion for >30 cycles (120 d). In batch tests of wasted cells from the decoupled mode, N2O production rates increased at low O2 or high NO2(-) levels. The results are significant for the development of engineered processes that remove nitrogen from wastewater and for understanding of conditions that favor environmental production of N2O.

  7. Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

    KAUST Repository

    Urozayev, Dias

    2015-06-01

    In today’s energy sector, it has been observed a revolutionary increase in shale gas recovery induced by reservoir fracking. So-called unconventional reservoirs became profitable after introducing a well stimulation technique. Some of the analysts expect that shale gas is going to expand worldwide energy supply. However, there is still a lack of an efficient as well as accurate modeling techniques, which can provide a good recovery and production estimates. Gas transports in shale reservoir is a complex process, consisting of slippage effect, gas diffusion along the wall, viscous flow due to the pressure gradient. Conventional industrial simulators are unable to model the flow as the flow doesn’t follow Darcy’s formulation. It is significant to build a unified model considering all given mechanisms for shale reservoir production study and analyze the importance of each mechanism in varied conditions. In this work, a unified mathematical model is proposed for shale gas reservoirs. The proposed model was build based on the dual porosity continuum media model; mass conservation equations for both matrix and fracture systems were build using the dusty gas model. In the matrix, gas desorption, Knudsen diffusion and viscous flow were taken into account. The model was also developed by implementing thermodynamic calculations to correct for the gas compressibility, or to obtain accurate treatment of the multicomponent gas. Previously, the model was built on the idealization of the gas, considering every molecule identical without any interaction. Moreover, the compositional variety of shale gas requires to consider impurities in the gas due to very high variety. Peng-Robinson equation of state was used to com- pute and correct for the gas density to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down

  8. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  9. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  10. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  11. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  12. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2018-03-01

    Full Text Available Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption, which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1 the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit and the recycle fan; (2 there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3 as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.

  13. Explosively fracturing a productive oil and gas formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-06-23

    In this method of fracturing an oil- or gas-producing strata, a portion of the formation adjacent to, but separated from, the producing strata is fractured. Explosives are then introduced into the fracture in this portion of the formation and thereafter detonated to fracture the productive strata. Also claimed are a method of variably controlling the extent and force of the explosives used, and a method of increasing oil and gas production from a productive strata.

  14. Combined production og energy by vapor-gas unit on natural gas in Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1998-01-01

    The steam and gas turbine power plant for combine heat (for district heating of Skopje - the capital of Macedonia) and power (connected to the grid) production is analyzed and determined. Two variants of power plants are analyzed: power plant with gas turbine, heat recovery steam generator and a back pressure steam turbine; and power plant with two gas turbines, two heat recovery steam generators (HRSG) and one back pressure steam turbine. The power plant would operate on natural gas as the main fuel source. It will be burnt in the gas turbine as well in the HRSG as an auxiliary fuel.The backup fuel for the gas turbine would be light oil. In normal operation, the HRSG uses the waste heat of the exhaust gases from the gas turbine. During gas turbine shutdowns, the HRSG can continue to generate the maximum steam capacity. The heat for district heating would be produce in HRSG by flue gases from the gas turbine and in the heat exchanger by condensed steam from back pressure turbine. The main parameters of the combined power plant, as: overall energy efficiency, natural gas consumption, natural gas saving are analyzed and determined in comparison with separated production of heat (for district heating) and power (for electrical grid). (Author)

  15. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  16. Principles and techniques of uranium enrichment

    International Nuclear Information System (INIS)

    Frejacques, Claude; Mezin, Michel

    1975-01-01

    The main separation processes already used industrially or likely to be used before the end of century (gas diffusion, ultracentrifugation, laser, the nozzle process, a process developed in South Africa) are presented. Some data on the costs of the enrichment are clarified. The main characteristics of the enrichment market in which the Eurodif plant is called upon, on the expiration of five years, to take a foremost place are reported [fr

  17. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Talbot, L.; Willis, D.R.; Hurlbut, F.C.; Fiszdon, W.; Anderson, J.B.

    1978-03-01

    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  18. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  19. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  20. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    OpenAIRE

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid biomass because of their logistic advantages, better mineral balance, and better processability. Especially the ease of pressurization, which is required for large scale synthesis gas production, is...

  1. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction

    Science.gov (United States)

    Nixon, Sophie L.; Walker, Leanne; Streets, Matthew D. T.; Eden, Bob; Boothman, Christopher; Taylor, Kevin G.; Lloyd, Jonathan R.

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole

  2. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction.

    Science.gov (United States)

    Nixon, Sophie L; Walker, Leanne; Streets, Matthew D T; Eden, Bob; Boothman, Christopher; Taylor, Kevin G; Lloyd, Jonathan R

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria ( Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole

  3. Neutron methods for measuring 235U content in UF6 gas

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Pappas, R.A.; Sunberg, D.S.

    1996-10-01

    In the United States and Russia, UF 6 gas streams of highly enriched uranium and lower enrichment uranium am being blended to reduce the stockpile of the highly enriched material. The resultant uranium is no longer useful for weapons, but is suitable as fuel for nuclear reactors. A method to verify the blending of high- and low-enrichment uranium was developed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Office of Research and Development (NN-20). In the United States, blending occurs at the U.S. Department of Energy's Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. In Russia, the blending takes place at Novouralsk. The United States is purchasing the blended product produced in Russia in a program to reduce the availability of enriched uranium that can be used for weapons production. Monitoring the 235 U mass flux of the input stream having the highly enriched uranium will provide confidence that high-enrichment uranium is being consumed in the blending process, and monitoring the output stream will provide an on-line measure of the 235 U in the mixed product. The Portsmouth plant is a potential test facility for non-destructive technology to monitor blending. In addition, monitoring the blending at Portsmouth can support International Atomic Energy Agency activities on controlling and reducing enriched uranium stockpiles

  4. Natural gas: reserves keep ahead of production

    Energy Technology Data Exchange (ETDEWEB)

    Hough, G V

    1983-08-01

    World production of natural gas in 1982 fell only 1.6% below 1981 levels, while proven recoverable reserves were up by 3.6% for a total of 3.279 quadrillion CF, which is 32.4% higher than had been estimated in 1978. Gas consumption, however, has experienced greater changes, with most of the industrialized countries (except for Japan) reporting declines in gas demand resulting from falling oil prices, reduced energy demand, and a slack world economy. Although gas seems to be holding its own in energy markets, further progress will not be easy to achieve.

  5. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  6. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment

    NARCIS (Netherlands)

    Pellikaan, W.F.; Hendriks, W.H.; Uwimanaa, G.; Bongers, L.J.G.M.; Becker, P.M.; Cone, J.W.

    2011-01-01

    An adaptation of fully automated gas production equipment was tested for its ability to simultaneously measure methane and total gas. The simultaneous measurement of gas production and gas composition was not possible using fully automated equipment, as the bottles should be kept closed during the

  7. Chemical Enrichment and Physical Conditions in IZw18*

    Science.gov (United States)

    Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D.

    2013-01-01

    Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H I region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H I region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Aims. Our primary objective is to study the enrichment of the H I region and the interplay between star-formation history and metallicity evolution. Our secondary obje ctive is to constrain the spatial- and time-scales over which the HI and H II regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H I region. Methods. We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H I, CIII, CIIi*, N I, OI,...) and are compared to the abundances in the H II region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the HIi region through physical diagnostics drawn from the fine-structure level of C+. Results. We find that H I region abundances are lower by a factor of approx 2 as compared to the H II region. There is no differential depletion on dust between the H I and H II region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z(solar) (vs. 1/31 Z(solar) in the H II region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H I envelope may contain pockets of pristine gas with a

  8. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  9. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  10. Cyclotron production of {sup 61}Cu using natural Zn and enriched {sup 64}Zn targets

    Energy Technology Data Exchange (ETDEWEB)

    Asad, A. H.; Smith, S. V.; Chan, S.; Jeffery, C. M.; Morandeau, L.; Price, R. I. [RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia, Imaging and Applied Physics, Curtin University, Perth, Australia, and Center of Excellence in Anti-matter Matter Studies, Australian National University, Can (Australia); Brookhaven National Laboratory, Upton, NY (United States) and Center of Excellence in Anti-matter Matter Studies, Australian National University, Canberra (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); Center of Excellence in Anti-matter Matter Studies, Australian National University, Canberra, Australia, and Chemistry, University of Western Australia, Pe (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth (Australia); RAPID PET Labs, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia and Physics, University of Western Australia, Perth (Australia)

    2012-12-19

    Copper-61 ({sup 61}Cu) shares with {sup 64}Cu certain advantages for PET diagnostic imaging, but has a shorter half-life (3.4hr vs. 12.7hr) and a greater probability of positron production per disintegration (61% vs. 17.9%). One important application is for in vivo imaging of hypoxic tissue. In this study {sup 61}Cu was produced using the {sup 64}Zn(p,{alpha}){sup 61}Cu reaction on natural Zn or enriched {sup 64}Zn targets. The enriched {sup 64}Zn (99.82%) was electroplated onto high purity gold or silver foils or onto thin Al discs. A typical target bombardment used 30{mu}A; at 11.7, 14.5 or 17.6MeV over 30-60min. The {sup 61}Cu (radiochemical purity of >95%) was separated using a combination of cation and anion exchange columns. The {sup 64}Zn target material was recovered after each run, for re-use. In a direct comparison with enriched {sup 64}Zn-target results, {sup 61}Cu production using the cheaper {sup nat}Zn target proved to be an effective alternative.

  11. On-Line Enrichment Monitor (OLEM) Phase II Final Report Techniques and Equipment for Safeguards at Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garner, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Over the last five years, OLEM has been a collaborative development effort involving the IAEA, LANL, ORNL, URENCO, and the NNSA. The collective team has completed the following: design and modelling, software development, hardware integration, testing with the ORNL UF6 Flow Loop, a field trial at the Urenco facility in Almelo, the Netherlands, and a Demonstration at the Urenco USA facility in Eunice, New Mexico. This combined effort culminated in the deployment of several OLEM collection nodes in Iran. These OLEM units are one unattended monitoring system component of the Joint Comprehensive Plan of Action allowing the International Atomic Energy Agency to verify Iran’s compliance with the enrichment production aspects of the agreement.

  12. Experimental study on enriching 12C by centrifuge method

    International Nuclear Information System (INIS)

    Xiao Huaxian

    1994-07-01

    The diamond made from the highly enriched 12 C, whose thermal conductivity and electric insulativity are much better than that of natural diamond, has widely uses in new and high technology. In many enriching 12 C methods, the gas centrifuge method is superior to others. After selecting the appropriate process gas and solving key problems, such as feed and extract, the separation experiments are performed by a single stage of centrifuge. To increase the separation capacity of single machine, various parameters in the centrifugal separation are optimized, and appropriate mechanical drive, thermal drive, hold-up and process parameters are selected. The optimal operating condition of single machine is also obtained in the cascade. Thus, highly enriched 12 C is produced in the centrifuge cascade

  13. Method of treating final products from flue gas desulfurization

    International Nuclear Information System (INIS)

    Bloss, W.; Mohn, U.

    1984-01-01

    A method of treating final products from a flue gas desulfurization. The flue gas desulfurization is carried out by the absorption of sulfur oxide in a spray dryer with a suspension which contains lime, or in a reactor with a dry, fine-grained, absorbent which contains lime. Prior to desulfurization, the fly ash carried along by the flue gas which is to be desulfurized is separated entirely, partially, or not at all from the flue gas, and the final products from the flue gas desulfurization, prior to any further treatment thereof, amount to 1-99% by weight, preferably 1-70% by weight, of fly ash, and 1-99% by weight, preferably 30-99% by weight, of the sum of the desulfurization products, preferably calcium sulfite hemihydrate, and/or calcium sulfite, and/or calcium sulfate dyhydrate, and/or calcium sulfate hemihydrate, and/or calcium sulfate, as well as residue of the absorbent. The reduction of the amount of calcium sulfite is implemented by a dry oxidation with air

  14. Forecasting natural gas supply in China: Production peak and import trends

    International Nuclear Information System (INIS)

    Lin Boqiang; Wang Ting

    2012-01-01

    China's natural gas consumption has increased rapidly in recent years making China a net gas importer. As a nonrenewable energy, the gas resource is exhaustible. Based on the forecast of this article, China's gas production peak is likely to approach in 2022. However, China is currently in the industrialization and urbanization stage, and its natural gas consumption will persistently increase. With China's gas production peak, China will have to face a massive expansion in gas imports. As the largest developing country, China's massive imports of gas will have an effect on the international gas market. In addition, as China's natural gas price is still controlled by the government and has remained at a low level, the massive imports of higher priced gas will exert great pressure on China's gas price reform. - Highlights: ► We figured out the natural gas production peak of China. ► We predict the import trends of natural gas of China. ► We study the international and national impacts of China's increasing import of gas. ► It is important for China to accelerate price reformation of natural gas.

  15. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  16. Device and method to enrich and process heavy water

    International Nuclear Information System (INIS)

    Hammerli, M.M.; Butler, J.P.

    1979-01-01

    A device to process and enrich heavy water is proposed which is based on a combined electrolysis catalyst exchange system in which a D 2 O enrichment of more than 99.8% is achieved in the end stage. Water partly enriched with D 2 -containing hydrogen gas from an electrolysis cell is brought into contact in a catalyst column. The water is further enriched here with deuterium. It is then fed to the electrolysis cell. Details of the apparatus are closely described. (UWI) [de

  17. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    Science.gov (United States)

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  18. Ownership of solution and and evolved gas: Technical and legal perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, M. R. [Applied Reservoir Engineering and Evaluation (Canada); Friesen, J. G. [McCarthy Tetrault (Canada)

    1995-05-01

    A recent judgement of the Alberta Court of Appeal in `Prism Petroleum Ltd. et al vs. Omega Hydrocarbons Ltd.` affirmed earlier decisions, but failed to to resolve engineering issues such as terminology, PVT behaviour, producing mechanisms, the significance of an initial GOR, gas evolution in reservoirs, classification of oil and gas wells, concurrent production, enhanced recovery requirements, solution gas conservation and the effects of offset production. Some uncertainty also remained regarding the interpretation of the wording of the lease, responsibilities for costs of drilling, completion, surface facilities, operations where there has been a trespass, unjust enrichment, estoppel and limitation periods. The uncertainties regarding these legal and engineering concerns were addressed.

  19. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    Moran, B.W.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235 U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235 U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  20. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  1. Potential of Ruminant Feed with Appearance of In Vitro Gas Production

    Directory of Open Access Journals (Sweden)

    Firsoni

    2017-10-01

    Full Text Available Indonesia has many kinds of feedstuff with different qualities that can be used as ruminants feed. One way to evaluate it is analyzing the performance of the feed gas production value in vitro. Feed ingredients tested in this study were the flour of coffee hull, peanut hull, field grass, turn leaves, rice straw and fermented rice straw. Samples weighed 200 ± 5 mg, put into a 100 ml syringe glass, added 30 ml buffalo rumen liquor with bicarbonate buffer medium, then incubated in the water bath at 39 ° C for 48 hours. Neway software and random block design with 4 blocks are used to calculate the value of fitted gas and to analyze the variance. The variables measured were gas production 2, 4, 6, 8, 10, 12, 24, 48, 72 and 96 hours, organic material degradable, gas production potential (a+b, gas production rate (k. The highest gas production 24, 48 and 72 hours from the field grass treatment (C was 36.33, 51.12 and 56.29 ml/200 mg DM but 96 hours of rice straw ie 59.60 ml/200 mg DM, while the lowest (24, 48, 72 and 96 hours of coffee skin (6.08, 7.77, 7.61, and 7.68 ml/200 mg DM respectively. The highest gas production potential of rice straw is 69.13 ml/200 mg DM and the lowest of coffee skin is 7.72 ml/200 mg BK. The highest percentage of gas production after 24 hours was obtained Turi leaves (D: 91.46% and the lowest rice straw (E: 41.22%. Rice straw can be suggested to be field grass substitution by processed again to reduce its crude fiber content, while the coffee and peanut hulls need further study, due to low gas production potential of 7.72 and 11.45 ml / 200 mg DM.

  2. Gas production in the Barnett Shale obeys a simple scaling theory

    OpenAIRE

    Patzek, Tad W.; Male, Frank; Marder, Michael

    2013-01-01

    Ten years ago, US natural gas cost 50% more than that from Russia. Now, it is threefold less. US gas prices plummeted because of the shale gas revolution. However, a key question remains: At what rate will the new hydrofractured horizontal wells in shales continue to produce gas? We analyze the simplest model of gas production consistent with basic physics of the extraction process. Its exact solution produces a nearly universal scaling law for gas wells in each shale play, where production f...

  3. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  4. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  5. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  6. Britain's North Sea oil and gas production: a critical review

    International Nuclear Information System (INIS)

    Odell, P.R.

    1996-01-01

    The size and longevity of Britain's offshore hydrocarbons resources have been underestimated. Gas reserves were seriously under-exploited for almost 20 years from the late 1960s, given a belief that gas should be used only as a premium fuel and in the context of an uncompetitive market. Oil reserves' development and production has suffered from time to time from inappropriate politico-economic conditions. Nevertheless, offshore oil and gas has come to dominate the UK's energy production over the past 20 years and currently accounts for 85% of the country's total energy output. Fears for resources' exhaustion remain unjustified, as the industry continues to replace oil and gas reserves used each year. The North Sea is still not comprehensively explored: the continuation of the process will enable oil production to remain at high levels and that of gas to expand further. Supplementary output from the new west of Shetland province will become progressively more important after 2000. But continued intensive production overall depends on the maintenance of attractive politico-economic conditions and on present oil prices. It also requires the European gas market to remain firm but, ironically, the planned flow of UK gas to the mainland constitutes a threat to this condition. (Author)

  7. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  8. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  9. Enrichment plant management and safeguards

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1978-01-01

    The next increment of enrichment at Portsmouth will be gas centrifuge. The safeguards program at Portsmouth is discussed, including the DYMCAS system, the computerization, and the detectors. Control of the material access areas is discussed. The licensee material surveillance and verification program is also described

  10. The changing face of enrichment

    International Nuclear Information System (INIS)

    Dunckel, E.

    1981-01-01

    The AIS techniques considered are atomic vapour laser isotope separation, molecular laser isotope separation and plasma separation. The future of the AIS technique and their advantages over the gas centrifuge method are discussed in terms of economics, power consideration, and possible enrichment contracts. (U.K.)

  11. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    Science.gov (United States)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite

  12. Report of the Subcommittee on Domestic Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Subcommittee on Domestic Uranium Enrichment to the Atomic Energy Commission is described; which covers the procedure of the domestic uranium enrichment by centrifugal process up to the commercial production, reviewing the current situation in this field. Domestic uranium enrichment is important in the aspects of securing stable enrichment service, establishing sound fuel cycle, and others. As the future target, the production around the year 2000 is set at 3,000 tons SWU per year at least. The business of uranium enrichment, which is now developed in the Power Reactor and Nuclear Fuel Development Corporation, is to be carried out by private enterprise. The contents are as follows: demand and supply balance of uranium enrichment service, significance of domestic uranium enrichment, evaluation of centrifugal uranium enrichment technology, the target of domestic uranium enrichment, the policy of domestic uranium enrichment promotion. (J.P.N.)

  13. Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

    KAUST Repository

    Urozayev, Dias

    2015-01-01

    to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down the production decline curve

  14. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Z. R. Barkley

    2017-11-01

    Full Text Available Natural gas infrastructure releases methane (CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem, and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are

  15. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Science.gov (United States)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  16. A new era in U.S. uranium enrichment

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1984-01-01

    Complex market conditions, including lower than anticipated electrical growth rates, creation of a large spot market of enriched uranium, fluctuations in currency exchange rates, and certain political considerations, have created an unstable market for all primary producers, including the United States. In response to these conditions, the Department of Energy made significant changes to the U.S. program including the issuance of the Utility Services contract on January 18, 1984. Other major changes include redirecting research and development efforts on the advanced gas centrifuge and atomic vapor laser isotope separation processes, rescoping of the Gas Centrifuge Enrichment Plant project, and reevaluation of the operational mode of the three gaseous diffusion plants. Taken together, we believe these actions will retain the U.S. position of leadership in uranium enrichment. In summary, we plan to compete--through introduction of the world's most advanced, lowest cost technology and through responsiveness to our customers' needs

  17. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...... the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA...... the sedges, but correlations between leaf N, gas exchange parameters (Amaxa, Amaxm, Rd and gs) and RGR were all highly significant in G. maxima, whereas they were weak or absent in the sedges. Allocation of biomass (root:shoot ratio, leaf mass ratio, root mass ratio), plant N and P content, and allocation...

  18. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  19. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  20. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  1. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  2. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    Science.gov (United States)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  3. Monitoring the enrichment of the UF6 in the pipework of a gas centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.; Close, D.A.; Pratt, J.C.

    1987-01-01

    Research in the UK and the US has resulted in the development of a nondestructive assay instrument which can confirm the presence of low enriched uranium, on a rapid Go, No-Go basis, in cascade header pipework in the centrifuge enrichment plant at Capenhurst. The instrument is based on gamma-ray spectrometry and x-ray fluorescence analysis. It allows pipes, 120mm outer diameter, to be inspected in a total measurement time of approximately 30 minutes. This paper describes the techniques developed and includes the results obtained during a demonstration to, and preliminary in-plant measurements by, members of the IAEA and EURATOM Inspectorates at Capenhurst

  4. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology.

    Science.gov (United States)

    Kim, Daehee; Chang, In Seop

    2009-10-01

    A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.

  5. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  6. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  7. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  8. High potential recovery -- Gas repressurization

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  9. Continuous monitoring of variations in the 235U enrichment of uranium in the header pipework of a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.

    1991-01-01

    Non-destructive assay equipment, based on gamma-ray spectrometry and x-ray fluorescence analysis has previously been developed for confirming the presence of low enriched uranium in the header pipework of UF 6 gas centrifuge enrichment plants. However inspections can only be carried out occasionally on a limited number of pipes. With the development of centrifuge enrichment technology it has been suggested that more frequent, or ideally, continuous measurements should be made in order to improve safeguards assurance between inspections. For this purpose we have developed non-destructive assay equipment based on continuous gamma-ray spectrometry and x-ray transmission measurements. This equipment is suitable for detecting significant changes in the 235 U enrichment of uranium in the header pipework of new centrifuge enrichment plants. Results are given in this paper of continuous measurements made in the laboratory and also on header pipework of a centrifuge enrichment plant at Capenhurst

  10. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  11. Irradiation behavior of low-enriched U/sub 6/Fe-Al dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, G.L.; Domagala, R.F.; Copeland, G.L.

    1987-10-01

    An irradiation test of miniature fuel plates containing low-enriched (20% /sup 235/U)U/sub 6/Fe dispersed and clad in Al was performed. The postirradiation examination shows U/sub 6/Fe to form extensive fission gas bubbles at burnups of only approx. = 20% of the original 20% fuel enrichment. Plate failure by fission gas-driven pillowing occurred at approx. = 40% burnup. This places U/sub 6/FE at the lowest burnup capability among low enriched dispersion fuels that have been tested for use in research and test reactors

  12. Natural Gas Reserves, Development and Production in Qatar

    International Nuclear Information System (INIS)

    Naji, Abi-Aad.

    1998-01-01

    Qatar entered the club of natural gas exporters in early 1997 when the first shipment of liquefied natural gas left the state for Japan. Qatar was helped by the discovery in 1971 of supergiant North Field gas field, the country's suitable location between the established gas consuming markets in Europe and Southeast Asia, and its proximity to developing markets in the Indian subcontinent and in neighbouring countries. All that have combined to make gas export projects from Qatar economically viable and commercially attractive. In addition to export-oriented development, increased gas production from the North Field is planned for meeting a growing domestic demand for gas as fuel and feedstock for power generation and desalination plants, as well as value-added petrochemical and fertilizer industries

  13. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...... to highest VFA concentration was pure CO (100%) regardless of microbial composition of the inoculum and media composition. The addition of acetate had a negative impact on the VFA formation which was depending on the initial gas composition in head space....

  14. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific

    International Nuclear Information System (INIS)

    Coale, K.H.

    1991-01-01

    Natural plankton populations from subarctic Pacific surface waters were incubated in 7-d experiments with added concentrations of Fe, Mn, Cu, and Zn. Small additions of metals were used to simulate natural perturbations in metal concentrations potentially experienced by marine plankton. Trace metal concentrations, phytoplankton productivity, Chl a, and the species composition of phytoplankton and microzooplankton were measured over the course of the experiment. Although the controls indicated little growth, increases in phytoplankton productivity, Chl a, and cell densities were dramatic after the addition of 0.89 nM Fe, indicating that it may limit the rates of algal production in these waters. Similar increases were observed in experiments with 3.9 nM Cu added. The Cu effect is attributed to a decrease in the grazing activities of the microzooplankton and increases in the rates of production. Mn enrichment had its greatest effect on diatom biomass, whereas Zn enrichment had its greatest effect on other autofluorescent organisms. The extent of trace metal adsorption onto carboy walls was also evaluated. These results imply that natural systems may be affected as follows: natural levels of Fe and Cu may influence phytoplankton productivity and trophic structure in open-ocean, high-nutrient, low-biomass systems; rates of net production are not limited by one micronutrient alone

  15. Analysis of gob gas venthole production performances for strata gas control in longwall mining.

    Science.gov (United States)

    Karacan, C Özgen

    2015-10-01

    Longwall mining of coal seams affects a large area of overburden by deforming it and creating stress-relief fractures, as well as bedding plane separations, as the mining face progresses. Stress-relief fractures and bedding plane separations are recognized as major pathways for gas migration from gas-bearing strata into sealed and active areas of the mines. In order for strata gas not to enter and inundate the ventilation system of a mine, gob gas ventholes (GGVs) can be used as a methane control measure. The aim of this paper is to analyze production performances of GGVs drilled over a longwall panel. These boreholes were drilled to control methane emissions from the Pratt group of coals due to stress-relief fracturing and bedding plane separations into a longwall mine operating in the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama. During the course of the study, Pratt coal's reservoir properties were integrated with production data of the GGVs. These data were analyzed by using material balance techniques to estimate radius of influence of GGVs, gas-in-place and coal pressures, as well as their variations during mining. The results show that the GGVs drilled to extract gas from the stress-relief zone of the Pratt coal interval is highly effective in removing gas from the Upper Pottsville Formation. The radii of influence of the GGVs were in the order of 330-380 m, exceeding the widths of the panels, due to bedding plane separations and stress relieved by fracturing. Material balance analyses indicated that the initial pressure of the Pratt coals, which was around 648 KPa when longwall mining started, decreased to approximately 150 KPa as the result of strata fracturing and production of released gas. Approximately 70% of the initial gas-in-place within the area of influence of the GGVs was captured during a period of one year.

  16. Description of the CNEA U308 powder production plant for low enrichment fuel plates

    International Nuclear Information System (INIS)

    Boero, N.L.; Celora, J.; Parodi, C.A.; Pertossi, F.R.; Marajofsky, A.

    1987-01-01

    The design of the 20% enriched U 3 O 8 powder production plant was based on laboratory level experiments. The UF 6 hydrolysis, ADU precipitation, U 3 O 8 conversion processes were used. The equipment, controls and confinement were set not only by the processes but also by safety requirements according to the kind and physical form of the uranium compounds in each stage and criticality considerations. This paper describes the installation, set up and operation of the plant during production. (Author)

  17. Exploring the production of natural gas through the lenses of the ACEGES model

    International Nuclear Information System (INIS)

    Voudouris, Vlasios; Matsumoto, Ken'ichi; Sedgwick, John; Rigby, Robert; Stasinopoulos, Dimitrios; Jefferson, Michael

    2014-01-01

    Due to the increasing importance of natural gas for modern economic activity, and gas's non-renewable nature, it is extremely important to try to estimate possible trajectories of future natural gas production while considering uncertainties in resource estimates, demand growth, production growth and other factors that might limit production. In this study, we develop future scenarios for natural gas supply using the ACEGES computational laboratory. Conditionally on the currently estimated ultimate recoverable resources, the ‘Collective View’ and ‘Golden Age’ Scenarios suggest that the supply of natural gas is likely to meet the increasing demand for natural gas until at least 2035. The ‘Golden Age’ Scenario suggests significant ‘jumps’ of natural gas production – important for testing the resilience of long-term strategies. - Highlights: • We present the ‘Collective View’ and ‘Golden Age’ Scenarios for natural gas production. • We do not observe any significant supply demand pressure of natural gas until 2035. • We do observe ‘jumps’ in natural gas supply until 2035. • The ACEGES-based scenarios can assess the resilience of longterm strategies

  18. Enriched uranium recovery flowsheet improvements

    International Nuclear Information System (INIS)

    Holt, D.L.

    1986-01-01

    Savannah River uses 7.5% TBP to recover and purify enriched uranium. Adequate decontamination from fission products is necessary to reduce personnel exposure and to ensure that the enriched uranium product meets specifications. Initial decontamination of the enriched uranium from the fission products is carried out in the 1A bank, 16 stages of mixer-settlers. Separation of the enriched uranium from the fission product, 95 Zr, has been adequate, but excessive solvent degradation caused by the long phase contact times in the mixer-settlers has limited the 95 Zr decontamination factor (DF). An experimental program is investigating the replacement of the current 1A bank with either centrifugal contactors or a combination of centrifugal contactors and mixer-settlers. Experimental work completed has compared laboratory-scale centrifugal contactors and mixer-settlers for 95 Zr removal efficiencies. Feed solutions spiked with actual plant solutions were used. The 95 Zr DF was significantly better in the mixer-settlers than in the centrifugal contactors. As a result of this experimental study, a hybrid equipment flowsheet has been proposed for plant use. The hybrid equipment flowsheet combines the advantages of both types of solvent extraction equipment. Centrifugal contactors would be utilized in the extraction and initial scrub sections, followed by additional scrub stages of mixer-settlers

  19. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Wada, M.; Katayama, I.; Kojima, T. M.; Reponen, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsubota, T. [Tokyo KOATSU Co., Ltd., 1-9-8 Shibuya, Shibuyaku, Tokyo 150-0002 (Japan)

    2016-06-15

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  20. [Evaluation of antioxidant properties of enriched bakery products in experiment on laboratory animals].

    Science.gov (United States)

    Nilova, L P; Pilipenko, T V

    2016-01-01

    The purpose was to study the effect of enriched bakery products in the diet of rats on indicators of prooxidant-antioxidant system of blood serum. Experiment was carried out on male Wistar rats with initial weight 140-180 g. After a quarantine during the preparatory period rats for 14 days were accustomed to the partial (50%) replacement of the standard diet by bakery products with standard compound­ing. Then, 7 groups of rats were formed: the 1st group of rats (control group, n=10) continued to receive bakery products of a standard composition; groups with the 2nd on 7th (experimental, n=8 in everyone) received enriched bakery products: the 2nd group - with blueberry powder; the 3rd group - with mountain ash powder; the 4th group - with sea-buckthorn powder; the 5th group - with flour of a pine nut; the 6th group - with rice bran oil; the 7th group - with pumpkin oil. The intensity of free radical oxidation and antioxidant activity (by chemiluminescence method), activity of superoxide dismutase and level of secondary oxidation products reacted with thiobarbituric acid (by spectrophotometry) were monitored in rat blood serum. It has been shown that the use of bakery products with different compounding in the animal diet had different effects on indicators of prooxidant-antioxidant system of blood serum. Bakery products containing sea buckthorn pomace powder, flour of pine nut and rice bran oil reduced intensity of free radical oxidation in rat blood serum by 36.0, 24.6 and 18.8%, respectively. It is suggested that bakery products containing flour of pine nut products brake a free radical oxidation in rat blood serum in case of simultaneous content of natural antioxidants and melanoidins. The anthocyanins of powder from blueberry berries can render antioxidant effect and slow down formation of by-products of oxidation. No statistically significant change on indicators of prooxidant-antioxidant system of blood serum of rats treated with bakery products with rowan

  1. Safeguarding uranium enrichment facilities. Review and analysis of the status of safeguards technology for uranium enrichment facilities

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this paper is to examine critically the diversion potential at uranium enrichment facilities and to outline a basic safeguards strategy which counters all identified hazards as completely as possible yet with a minimum of non-essential redundancy. Where existing technology does not appear to be adequate for effective safeguards, the limitations are examined, and suggestions for further R and D effort are made. Parts of this report are generally applicable to all currently known enrichment processes, while other parts are specifically directed toward facilities based on the gas centrifuge process. It is hoped that additional sections discussing a safeguards strategy for gas diffusion facilities can be added later. It should be emphasized that this is a technical report, and does not reflect any legal positions. The safeguards strategy and subsequent inspection procedures are intended as guidelines, not as negotiating positions

  2. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970's the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system's performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  3. Development of an On-Line Uranium Enrichment Monitor

    International Nuclear Information System (INIS)

    Xuesheng, L.; Guorong, L.; Yonggang, Z.; Xueyuan, H. X.-Y.

    2015-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF6 flowing through the processing pipes in centrifuge uranium enrichment plant. A NaI(Tl) detector was used to measure the count rates of the 186 keV gamma ray emitted from 235U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. There are two working models for the monitor. The monitor works normally in the continuous model, When the gas's pressure in the pipe fluctuates greatly, it can work in the intermittent model, and the measurement result is very well. The background of the monitor can be measured automatically periodically. It can control automatically electromagnetic valves open and close, so as to change the gas's quantity in the chamber. It is a kind of unattended and remote monitor, all of data can be transfer to central control room. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant by using the monitor to monitor Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade continuously. (author)

  4. Review of environmental enrichment for broiler chickens.

    Science.gov (United States)

    Riber, A B; van de Weerd, H A; de Jong, I C; Steenfeldt, S

    2018-02-01

    Welfare problems are commonly found in both conventional and organic production of broiler chickens. In order to reduce the extent of welfare problems, it has been suggested to provide stimulating, enriched environments. The aim of the present paper is to provide a review of the effect on behavior and welfare of the different kinds of environmental enrichments in the production of broilers that have been described in the scientific literature. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements of the biological function. This definition has been broadened to include practical and economic aspects, as any enrichment strategy that adversely affects the health of animals or that has too many economic or practical constraints will never be implemented on commercial farms and thus never benefit animals. Environmental enrichment for broilers often has the purpose of satisfying behavioral needs and/or stimulating the broilers to an increased level of activity, which among others will reduce the occurrence of leg problems. Potentially successful environmental enrichments for broiler chickens are elevated resting-places, panels, barriers, and bales of straw ("point-source enrichment"), as well as covered verandas and outdoor ranges ("complex enriched environments"). Many of the ideas for environmental enrichment for broilers need to be further developed and studied, preferably in commercial trials, with respect to the use, the effect on behavior and on other welfare aspects such as leg health, and the interaction with genotype, production system, stocking density, light, and flock size. In addition, information on the practical application and the economics of the production system is often lacking, although it is important for application in practice. © 2017 Poultry Science Association Inc.

  5. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  6. The American Gas Centrifuge Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  7. Effects of gas chamber geometry and gas flow on the neutron production in a fast plasma focus neutron source

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Soto, Leopoldo

    2014-01-01

    This work reports that gas chamber geometry and gas flow management substantially affect the neutron production of a repetitive fast plasma focus. The gas flow rate is the most sensitive parameter. An appropriate design of the gas chamber combined with a suitable flow-rate management can lead to improvements in the neutron production of one order of magnitude working in a fast repetitive mode. (paper)

  8. How to discover drivers of gas construction productivity

    International Nuclear Information System (INIS)

    Mansfield, D.; O'Neill, D.

    1991-01-01

    In their continuous pursuit of productivity improvements, gas utilities and pipe line companies have tried to use some of the best data available: comparisons of productivity for different districts or territories. The data are readily available, familiar to operating personnel, and potentially a great source of insight into what drives productivity. This paper reports that the fact is that all these variables do make a difference, but it is hard to know how much of a difference, each one makes and which is most important. Therein lies the problem--and the opportunity. Public Service Electric and Gas Co. (PSE ampersand G) used some simple statistical tools to find out the main determinants of district productivity. The gas business unit of PSE ampersand G serves over 11/2 million customers from northeastern New Jersey to the eastern suburbs of Philadelphia. Its 13 districts include a mix of stable towns and new growth areas. The southern edge of the Wisconsal moraine covers the northern districts, leaving them with stony soil and occasional outcroppings of rock. Paving, spoil removal and other job conditions vary widely by district

  9. Laboratory studies of 235U enrichment by chemical separation methods

    International Nuclear Information System (INIS)

    Daloisi, P.J.; Orlett, M.J.; Tracy, J.W.; Saraceno, A.J.

    1976-01-01

    Laboratory experiments on 235 U enrichment processes based on column redox ion exchange, electrodialysis, and gas exchange chromatography performed from August 1972 to September 1974 are summarized. Effluent from a 50 to 50 weight mixture of U +4 and U +6 (as UO 2 2+ ), at a total uranium concentration of 5 mg U per ml in 0.25N H 2 SO 4 -0.03N NaF solution, passing through a 100 cm length cation exchange column at 0.5 ml/min flow rates, was enriched in 235 U by 1.00090 +- .00012. The enriched fraction was mostly in the +6 valence form while the depleted fraction was U +4 retained on the resin. At flow rates of 2 ml/min, the enrichment factor decreases to 1.00033 +- .00003. In the electrodialysis experiments, the fraction of uranium diffusing through the membranes (mostly as +6 valence state) in 4.2 hours is enriched in 235 U by 1.00096 +- .00012. Gas exchange chromatography tests involved dynamic and static exposure of UF 6 over NaF. In dynamic tests, no significant change in isotopic abundance occurred in the initial one-half weight cut of UF 6 . The measured relative 235 U/ 238 U mole ratios were 1.00004 +- .00004 for these runs. In static runs, enrichment became evident. For the NaF(UF 6 )/sub x/-UF 6 system, there is 235 U depletion in the gas phase, with a single-stage factor of 1.00033 at 100 0 C and 1.00025 at 25 0 C after 10 days of equilibration. The single-stage or unit holdup time is impractically long for all three chemical processes

  10. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  11. Uranium enrichment: heading for the abyss

    International Nuclear Information System (INIS)

    Norman, C.

    1983-01-01

    This article discusses the federal government's $2.3 billion a year business enriching uranium for nuclear power plants which is heading toward a major crisis. Due to miscalculations by the Department of Energy, it is caught with billions of dollars of construction in progress just as projected demand for enriched uranium is decreasing. At the center of the controversy is the Gas Centrifuge Plant at Portsmouth, Ohio - estimated to cost $10 billion dollars. A review of how DOE got into this situation and how they plan to solve it is presented

  12. Characterization of shale gas enrichment in the Wufeng Formation–Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction–transformation evolution sequence

    Directory of Open Access Journals (Sweden)

    Zhiliang He

    2017-02-01

    Full Text Available Shale gas in Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation in the Sichuan Basin is one of the key strata being explored and developed in China, where shale gas reservoirs have been found in Fuling, Weiyuan, Changning and Zhaotong. Characteristics of shale gas enrichment in the formation shown by detailed profiling and analysis are summarized as “high, handsome and rich”. “High” mainly refers to the high quality of original materials for the formation of shale with excellent key parameters, including the good type and high abundance of organic matters, high content of brittle minerals and moderate thermal evolution. “Handsome” means late and weak deformation, favorable deformation mode and structure, and appropriate uplift and current burial depth. “Rich” includes high gas content, high formation pressure coefficient, good reservoir property, favorable reservoir scale transformation and high initial and final output, with relative ease of development and obvious economic benefit. For shale gas enrichment and high yield, it is important that the combination of shale was deposited and formed in excellent conditions (geological construction, and then underwent appropriate tectonic deformation, uplift, and erosion (geological transformation. Evaluation based on geological construction (evolution sequence from formation to the reservoir includes sequence stratigraphy and sediment, hydrocarbon generation and formation of reservoir pores. Based on geological transformation (evolution sequence from the reservoir to preservation, the strata should be evaluated for structural deformation, the formation of reservoir fracture and preservation of shale gas. The evaluation of the “construction - transformation” sequence is to cover the whole process of shale gas formation and preservation. This way, both positive and negative effects of the formation-transformation sequence on shale gas are assessed. The evaluation

  13. Blueprint for domestic uranium enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    The AEC advisory committee on domestic production of uranium enrichment has studied for more than a year how to achieve the domestic enrichment of uranium by the construction and operation of a commercial enriching plant using centrifugal separation method, and the report was submitted to the Atomic Energy Commission on August 18, 1980. Japan has depended wholly on overseas services for her uranium enrichment needs, but the development of domestic enrichment has been carried on in parallel. The AEC decided to construct a uranium enrichment pilot plant using centrifuges, and it has been forwarded as a national project. The plant is operated by the Power Reactor and Nuclear Fuel Development Corp. since 1979. The capacity of the plant will be raised to approximately 75 ton SWU a year. The centrifuges already operated have provided the first delivery of fuel of about 1 ton for the ATR ''Fugen''. The demand-supply balance of uranium enrichment service, the significance of the domestic enrichment of uranium, the evaluation of uranium enrichment technology, the target for domestic enrichment plan, the measures to promote domestic uranium enrichment, and the promotion of the construction of a demonstration plant are reported. (Kako, I.)

  14. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  15. Expansion of U.S. uranium enrichment capacity. Final environmental statement

    International Nuclear Information System (INIS)

    1976-04-01

    Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment

  16. Expansion of U. S. uranium enrichment capacity. Final environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment. (JGB)

  17. In vitro organic matter digestibility and gas production of fish-meal ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... In this study, an in vitro rumen gas production technique was utilized to evaluate fish-meal coated with ... Keywords: fish-meal; gas production; hydrogenated tallow; .... industrial city, Saveh, Iran). ..... commercial dairy rations.

  18. Productivity changes in the Gas and Fuel Corporation of Victoria

    International Nuclear Information System (INIS)

    Rushdi, A.

    1994-01-01

    The study reveals that the total factor productivity in the Gas and Fuel Corporation of Victoria (GFCV) continued to increase throughout the study period except for a brief period between 1983-84 and 1984-85 which was mainly the result of the decline in the industrial demand for gas and a decelerated growth rate in residential demand. The productivity gains were found to be highly sensitive to the rates of depreciation and discount rates assumed. The estimated terms of trade suggest that the increase in gas prices was lower that the increase in the aggregate input prices the GFCV paid, particularly to capital and labour. However, while the price index of reticulated gas increased to 2.17, the purchase price declined to 0.96 over the study period. The productivity gains by GFCV seem to have been shared with its customers. (Author)

  19. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chaohua Guo

    Full Text Available Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  20. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  1. Production of inert gas for substitution of a part of the cushion gas trapped in an aquifer underground storage reservoir

    International Nuclear Information System (INIS)

    Berger, L.; Arnoult, J.P.

    1990-01-01

    In a natural gas storage reservoir operating over the different seasons, a varying fraction of the injected gas, the cushion gas, remains permanently trapped. This cushion gas may represent more than half the total gas volume, and more than 50% of the initial investment costs for the storage facility. Studies conducted by Gaz de France, backed up by experience acquired over the years, have shown that at least 20% of the cushion gas could be replaced by a less expensive inert gas. Nitrogen, carbon dioxide, or a mixture of the two, satisfy the specifications required for this inert gas. Two main production methods exist: recovery of natural gas combustion products (mixture of 88% N 2 and 12% Co 2 ) and physical separation of air components (more or less pure N 2 , depending on industrial conditions). For the specific needs of Gaz de France, the means of production must be suited to its programme of partial cushion gas substitution. The equipment must satisfy requirements of autonomy, operating flexibility and mobility. Gaz de France has tested two units for recovery of natural gas combustion products. In the first unit, the inert gas is produced in a combustion chamber, treated in a catalytic reactor to reduce nitrogen oxide content and then compressed by gas engine driven compressors. In the second unit, the exhaust gases of the compressor gas engines are collected, treated to eliminate nitrogen oxides and then compressed. The energy balance is improved. A PSA method nitrogen production unit by selective absorption of nitrogen in the air, will be put into service in 1989. The specific features of these two methods and the reasons for choosing them will be reviewed. (author). 1 fig

  2. Tritium assay in hydrogen gas by proportional counter with magnetic tape recording

    International Nuclear Information System (INIS)

    Grabczak, J.

    1982-03-01

    Analytical procedure is discussed concerning routine tritium activity determination in water samples based on hydrogen production from the water sample and radioactivity measurement by gas proportional counting. The method was found to be fully comparable to the widely adopted technique of liquid scintillation counting with electrolytic enrichment

  3. Radioanalysis of RE enrichment of ion adsorption type RE ores

    CERN Document Server

    Zhao Shu Quan; Hu He Ping; Li Fu Sheng; Chen Ying Min; LiuShiMing

    2002-01-01

    Objective: To analyze the radioactivity in Rare Earth (RE) enrichment of ion adsorption type RE ores. Methods: Using HPGe-gamma spectrometer to analyze the activity ratio of gamma radionuclides in kind of samples, using FJ-2603 low background alpha, beta measurement apparatus to measure their total alpha and total beta activities, and using X-ray fluorescence spectrometer to analyze contents of La sub 2 O sub 3 and Y sub 2 O sub 3 , respectively. Results: HPGe gamma spectroscopy and X-ray fluorescence spectroscopy are simple, convenient and non-destructive methods of analyzing radionuclides and La sub 2 O sub 3 , Y sub 2 O sub 3 in RE enrichment of ion adsorption type RE ores, respectively. Conclusion: The basic data were provided for radiation protection and treatment of gas, liquid and solid waste in RE production of ion adsorption type RE ores; method and experience were provided for studying ion adsorption type RE ores

  4. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  5. Virginia oil and gas production, exploration and development

    International Nuclear Information System (INIS)

    Stern, M.

    1990-01-01

    This paper reports that although production and drilling declined in Virginia in 1989, there were interesting projects that should impact Virginal's future oil and gas potential. In Dickenson County, Equitable Resources (EREX) began development on two areas of coalbed methane and extended the limits of the Nora Coalbed Methane Field with an exploratory well. In Westmoreland County, Texaco drilled a deep test well in the Taylorsville Basin. While a depressed market caused a decline in natural gas production of four percent, there was significant new production from ten coalbed methane wells in Dickenson County. The coalbed methane wells produced 181,526 Mcf or over one percent of the total production in the state. The 1989 total of 17,935,376 Mcf produced from 752 wells was a four percent decline from the 1988 figure of 18,682,350 Mcf from 728 wells

  6. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  7. Uranium enrichment. Technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Saire, D.E.; Gestson, D.K.; Peske, S.E.; Vanstrum, P.R.

    1983-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R+D efforts on various processes. (author)

  8. Uranium enrichment: technology, economics, capacity

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Jr., W. R.; Vanstrum, P. R.; Saire, D. E.; Gestson, D. K.; Peske, S. E.

    1982-08-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes.

  9. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  10. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  11. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  12. Chemical Properties, Decomposition, and Methane Production of Tertiary Relict Plant Litters: Implications for Atmospheric Trace Gas Production in the Early Tertiary

    Science.gov (United States)

    Yavitt, J. B.; Bartella, T. M.; Williams, C. J.

    2006-12-01

    Throughout the early Tertiary (ca. 65-38 Ma) Taxodiaceae-dominated (redwood) wetland forests occupied the high latitudes and were circumpolar in their distribution. Many of these forests had high standing biomass with moderate primary productivity. The geographic extent and amount of Tertiary coals and fossil forests throughout Arctic Canada suggests large areas of wetland forests that may have cycled substantial quantities of carbon, particularly methane until they were replaced by cold tolerant Pinus, Picea, and Larix following climatic cooling associated with the Terminal Eocene Event. To test this hypothesis we compared physiochemical properties, decomposition, and trace gas production of litter from extant Metasequoia, Pinus, Picea, and Larix. Initial results from plantation-grown trees indicate Metasequoia litter is a better source of labile organic substrate than pinaceous litter. Metasequoia litter contained the least lignin and highest amounts of water-soluble compounds of the four litter types studied. Analysis of the lignin structure using cupric oxide oxidation indicates that Metasequoia lignin is enriched in 4'-hydroxyacetophenone and 4'- Hydroxy-3'-methoxyacetophenone relative to the pinaceous litter. In a 12-month decomposition study using litterbags, average litter mass loss was greater for Metasequoia litter (62%) compared to the pinaceous species (50%). Moreover, Metasequoia litter incubated under anoxic conditions produced nearly twice as much CO2 (ca. 4.2 umol/g.day) and CH4 (2.1 umol/g.day) as the pinaceous litter (2.4 umol/g.day for CO2; 1.2 umol/g.day for CH4). Our results support the idea of greater decomposability and palatability of Metasequoia litter as compared to Larix, Picea, or Pinus. Provided that the biochemical properties of Metasequoia have remained relatively stable through geologic time, it appears that early Tertiary Metasequoia-dominated wetland forests may have had higher microbial driven trace gas production than the

  13. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Djoa, S. H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-04-15

    This paper describes a process developed for the retainment and separation of volatile (3H, 129 +131I) and gaseous (85Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 deg K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 deg K and low subpressure; deposition of krypton in solid form at 80 deg K after compression to about 6 bar; decontamination of 85krypton-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, e.g., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1/3 of the full capacity and can treat about 1 m3 STP/h helium, corresponding to a quantity of about 10,000 MW(e) HTGR-fuel reprocessing plant.

  14. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    International Nuclear Information System (INIS)

    Bohnenstingl, J.; Djoa, S.H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-01-01

    This paper describes a process developed for the retainment and separation of volatile ( 3 H, 129+131 I) and gaseous ( 85 Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 0 K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 0 K and low subpressure; deposition of krypton in solid form at 80 0 K after compression to about 6 bar; decontamination of 85 Kr-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, i.e., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1 / 3 of the full capacity and can treat about 1 m 3 STP/h helium, corresponding to a quantity of about 10,000 MW/sub e/ HTGR-fuel reprocessing plant

  15. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  16. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included

  17. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    Science.gov (United States)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  18. Calculation of gas-flow in plasma reactor for carbon partial oxidation

    Science.gov (United States)

    Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya

    2018-03-01

    The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.

  19. EFFECTS OF DIFFERENT SUPPLEMENTS INCLUSION OF THE ENRICHED DIET ON PRODUCTIVE PERFORMANCE AND EGG STRUCTURE

    OpenAIRE

    Natasha Trajan Gjorgovska; Kiril Filev; Vesna Levkov; Rodne Nastova; Vasil Kostov; Srekjko Gjorgjievski; Svetlana Grigorova

    2016-01-01

    Nutritional manipulation and genetic selection for egg size and production may lead to changes in egg components. This experiment was carried out to analyze the egg structure parameters of eggs produced by Hisex Brown laying hens fed with diet with different supplements inclusion. The intensity of egg production was significantly higher in the groups fed with enriched feed with iodine (90.00%), vitamin E (90.00%) and selenium (91.98%), and significantly lower in the group fed with DHA inclusi...

  20. World natural gas supply and demand: Brief pause in production

    International Nuclear Information System (INIS)

    Coccia, G.

    1993-01-01

    With reference to the 1992 CEDIGAZ (Centre International sur le Gas Naturel et tous Hydrocarbures Gazeux) report on world natural gas supply and demand, this paper assesses current market and production trends in this industry. The slight drop in production in 1992, the first which has which has occurred after many consecutive years of steady increases, is ascribed to ownership disputes among the former-USSR republics and major changes in the organizational structure of the former-USSR's natural gas industry. Strong increases in demand are forecasted due to expected strong population growth and increased industrialization to take place in China and India. Price trends in natural gas should remain steady as a result of plentiful supplies of this fuel and coal, a major competitor. The use of relatively clean natural gas is suggested as a practical alternative to energy taxes now being proposed as a means for the reduction of greenhouse gas emissions

  1. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  2. Report of Sectional Committee on Industrialization of Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    In order to accelerate the development and utilization of atomic energy which is the core of the substitute energies for petroleum, it is indispensable requirement to establish independent fuel cycle as the base. In particular, the domestic production of enriched uranium is necessary to eliminate the obstacles to secure the energy supply in Japan. The construction and operation of the pilot plant for uranium enrichment by centrifugal separation method have progressed smoothly, and the technical base for the domestic production of enriched uranium is being consolidated. For the time being, the service of uranium enrichment is given by USA and France, but it is expected that the short supply will arise around 1990. The start of operation of the uranium enrichment plant in Japan is scheduled around 1990, and the scale of the plant will be expanded stepwise thereafter. The scale of production is assumed as 3000 t SWU/year in 2000. Prior to this commercial plant, the prototype plant of up to 250 t SWU/year capacity will be operated in 1986, starting the production of centrifugal separators in 1983. The production line for centrifugal separators will have the capacity of up to 125 t SWU/year. The organization for operating these plants, the home production of natural uranium conversion, the uranium enrichment by chemical method and others are described. (Kako, I.)

  3. Gas Fermentation using Thermophilic Moorella Species for production of Biochemicals

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna

    Gas fermentation is a promising technology which gained increasing attention over the last years. In this process, acetogenic bacteria convert gases rich in H2, CO2, and CO, into compounds of higher value. The gas can derive from industrial off-gas or from waste streams via gasification. In the gas...... fermentation processes that are nearly on commercial level, mesophilic acetogens are used to mainly produce ethanol and butanediol. However, thermophilic acetogens, such as Moorella thermoacetica would allow for easy downstream processing when producing volatile products such as acetone. This thesis starts...... with a review of the feedstock potential for gas fermentation and how thermophilic production strains as well as unconventional fermentation processes such as mixotrophy can help to exploit this potential. I analyzed a process with respect to thermodynamic and economic considerations, in which acetone...

  4. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    Science.gov (United States)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might

  5. Material control and accounting requirements for uranium enrichment facilities

    International Nuclear Information System (INIS)

    Ting, P.

    1991-01-01

    This paper reports that the U.S. Nuclear Regulatory Commission has defined material control and accounting (MC and A) requirement for low-enriched uranium enrichment plants licensed under 10 CFR parts 40 and 70. Following detailed assessment of potential safeguards issues relevant to these facilities, a new MC and A rule was developed. The primary safeguards considerations are detection of the loss of special nuclear material, detection of clandestine production of special nuclear material of low strategic significance for unauthorized use or distribution, and detection of unauthorized production of uranium enriched to ≥10 wt % U-235. The primary safeguards concerns identified were the large absolute limit of error associated with the material balance closing, the inability to shutdown some uranium enrichment technologies to perform a cleanout inventory of the process system, and the flexibility of some of these technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could circumvent the detection of the production and removal of 5 kilograms of U-235 as high-enriched uranium through conventional material control and accounting programs. Safeguards techniques, including the use of production and process control information, measurements, and technical surveillance, were identified to compensate for these concerns

  6. Analysis of an innovative process for landfill gas quality improvement

    International Nuclear Information System (INIS)

    Lombardi, L.; Carnevale, E.A.

    2016-01-01

    Low methane content landfill gas is not suitable for feeding engines and is generally flared. This type of landfill gas may be enriched by removing the inert carbon dioxide. An innovative process, based on the carbon dioxide captured by means of accelerated carbonation of bottom ash was proposed and studied for the above purpose. The process was investigated at a laboratory scale, simulating different landfill gas compositions. The enrichment process is able to decrease the carbon dioxide concentration from 70 to 80% in volume to 60% in volume, requiring about 36 kg of bottom ash per Nm"3 of landfill gas. Using this result it was estimated that an industrial scale plant, processing 100–1000 Nm"3/h of low methane content landfill gas requires about 28,760–2,87,600 t of bottom ash for a one year operation. The specific cost of the studied enrichment process was evaluated as well and ranges from 0.052 to 0.241 Euro per Nm"3 of entering landfill gas. The energy balance showed that about 4–6% of the energy entered with the landfill gas is required for carrying out the enrichment, while the use of the enriched landfill gas in the engine producing electricity allows for negative carbon dioxide emission. - Highlights: • The process uses a waste stream as material to capture CO_2. • The process uses a simple gas/solid fixed bed contact reactor at ambient conditions. • The process captures the CO_2 to enrich low-CH4 landfill gas. • The specific cost ranges from 0.052 to 0.241 Euro per Nm"3 of entering landfill gas. • The process consumes about 4–6% of the entering energy and acts as CO_2 sink.

  7. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  8. The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas

    Directory of Open Access Journals (Sweden)

    Joeri Van Mierlo

    2013-03-01

    Full Text Available Producing electricity from waste gas is an after treatment for waste gas while recovering the energy content. This paper addresses the methodology to calculate the effect that waste gas energy recovery has on lowering the impact of climate change. Greenhouse gases are emitted while burning the waste gas. However, a thorough study should include the production of the feedstock as well as the production of the infrastructure. A framework is developed to calculate the environmental impact of electricity production from waste gas with a life cycle approach. The present paper has a twofold purpose: to assess the climate change impact of generating electricity with blast furnace gas (BFG as a waste gas from the steel industry; and to establish a sensitivity assessment of the environmental implications of different allocation rules.

  9. European energy security: An analysis of future Russian natural gas production and exports

    Energy Technology Data Exchange (ETDEWEB)

    Soederbergh, Bengt, E-mail: bengt.soderbergh@fysast.uu.s [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden); Jakobsson, Kristofer; Aleklett, Kjell [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden)

    2010-12-15

    The widening gap between EU gas production and consumption may require an 87% increase of import volumes between 2006 and 2030, and there are great uncertainties regarding the amounts of gas that can be expected from new suppliers. The potential of increased production from Norway and Algeria is limited; hence, Russia is likely to play a crucial part of meeting the anticipated growing gas demand of the EU. A field-by-field study of 83 giant gas fields shows that the major producing Russian gas fields are in decline, and by 2013 much larger supplies from the Yamal Peninsula and the Shtokman field will be needed in order to avoid a decline in production. Gas from fields in Eastern Siberia and the Far East will mainly be directed to the Asian and Pacific Rim markets, thereby limiting its relevance to the European and CIS markets. As a result, the maximum export increase to the European and CIS markets amounts only to about 45% for the period 2015-2030. The discourse surrounding the EU's dependence on Russian gas should thus not only be concerned with geopolitics, but also with the issue of resource limitations. - Research highlights: {yields}Natural gas production in the Nadym Pur Taz region (Western Siberia) will start to decline within a few years. {yields}New production from the Yamal peninsula is critical to ensure gas exports to Europe. {yields}Additional production in East Siberia and the Far East will not be available for the European market. {yields}Rapid gas demand growth in China might also lead to competition for gas from Western Siberia.

  10. Investigation of Productivity of Brown’s (HHO Gas Generator

    Directory of Open Access Journals (Sweden)

    Andrius Brazdžiūnas

    2017-01-01

    Full Text Available There were made tests of productivity of Brown’s gas generator using different potassium hydroxide (KOH concentration changing voltage and amperage. It is described experimental stand that is used to do researches and methodology of experiments performance. Brown’s gas production in electrolyser (electrolyser – the device that is going electrolysis to use stainless steel (AISI 316 electrodes. It was determined after researches that increasing the potassium hydroxide (KOH concentration in the solution and using the same amperage and voltage of the all concentration results are similar. The highest productivity 1.429 l/min was obtained by using a 120 A amperage and 15 V voltage.

  11. Natural gas for power production in Western Europe

    International Nuclear Information System (INIS)

    1993-01-01

    The third and last part of the Sub-Committee's study on natural gas for power generation is reprinted in this issue. This part addresses gas consumption in electricity production until the year 2010. The first part of the study dealing with combined cycle power plants was published in September and the 2nd part on regulatory and environmental issues in October 1992

  12. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  13. Re-enrichment of O-18 isotopic water used for the production of F-18 in a cyclotron

    International Nuclear Information System (INIS)

    Kim, J.; Kim, T.S.; Choi, H.; Jang, D.S.; Jeong, D.Y.

    2004-01-01

    Full text: The demand for and applications of stable isotopes in medicine, industry, and science in the modern era has increased and expanded significantly. Especially, 18 O-enriched water (> 90%) is used as a target in a cyclotron for the production of the β -emitting radioisotope 18 F, which is essential for PET (Positron Emission Tomography) pharmaceutical [ 18 F]-labeled 2-deoxyglucose (FDG) synthesis. Currently, 18 O is produced by a cold distillation of NO (Nitric Oxide) or a fractional distillation of water. These processes, however, are technically complicated and costly so as to limit the production of 18 O. In this regard, it is essential to re-use the used target water as much as possible since the 18 O-enriched water is so expensive (∼ $150/g). In order to recycle the used target water, it is necessary to purify the organic and inorganic impurities contaminated during the 18 f-FDG production loop and to re-enrich the 18 O isotope in the target water diluted during the purification process. For the development of a compact target water 18 O re-enrichment system, the 18 O isotope separation characteristics of MD (Membrane Distillation) were investigated. The 18 O isotopic water permeation and separation characteristics of a hydrophobic PTFE membrane using Air Gap MD and Vacuum Enhanced MD were evaluated. Permeation fluxes were measured by weighing the collected membrane-permeated water vapor. 18 O/ 16 O of each water sample was analyzed by a Tunable Diode Laser Absorption Spectroscopy (TDLAS). We observed the effects of the air in the membrane pores and the temperature gradient applied to the membrane surfaces on the vapor permeation flux and the oxygen isotope separation for the first time. For both AGMD and VEMD, the permeation flux and the degree of 18 O separation increased as the membrane interfacial temperature gradient increased. Even though the oxygen isotope separation and the permeation flux for the VEMD is slightly higher than the AGMD, the

  14. Maximization of Egyptian Gas Oil Production Through the Optimal Use of the Operating Parameters

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Gas oil is the major fossil fuel consumed around the world. Global gas oil consumption is rising at a steadily fast pace because of its higher combustion efficiency (versus gasoline). The annual increase rate of gas oil consumption in Egypt is 7 % whereas, the world increase rates range from 1.5 % to 2 % . The main sources for producing gas oil in Egypt refiners is the direct production from the atmospheric distillation process units or it may be produced as a side product from vacuum distillation units . Gas oil is produced through hydrocracking process of vacuum distillation side streams and heavy cocked gas oil. Gas oil production yield can be increased through the existing operation process units. Modifications of the current atmospheric and vacuum tower operations will increase gas oil yield rates to 20 % more than the existing production rates. The modification of the operating conditions and adoption of the optimum catalyst of the existing hydrocracking and mild hydro cracking process units improve gas oil production yield. Operating delayed cocker at high temperatures, low pressure and low cycle ratio also support achieving the maximization of gas oil yield

  15. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  16. Capability of the electromagnetic isotope-enrichment facility at ORNL

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    The isotope separation program at Oak Ridge National Laboratory (ORNL) prepares and distributes electromagnetically enriched stable isotopes to the worldwide scientific community. Among the topics discussed in the present paper are the methods of enriching isotopes, the limitations that apply to the quantity and final assay of the separation products, and a generalized production flowsheet indicating the capability of the facility. A brief description of each of the production steps, from the selection and preparation of initial feedstock to the recovery and distribution of the isotopically enriched material, is presented. The future of the facility, the continued supply of enriched isotopes, and the response of the program to new and changing requirements are emphasized

  17. Los Alamos National Laboratory Support for Commercial U.S. Production of 99Mo without the Use of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    There is currently a serious shortage of 99Mo, from which to generate the medically significant isotope 99mTc. Most of the world's supply comes from the fission of highly enriched uranium targets--this is a proliferation concern. This document focuses on the technology involved in two alternative methods: electron accelerator production of 99Mo from the 100Mo(γ,n)99Mo reaction and production of 99Mo as a fission product in a subcritical, DT accelerator-driven low enriched uranium salt solution.

  18. Energy consumption of chemical uranium enrichment

    International Nuclear Information System (INIS)

    Miyake, T.; Takeda, K.; Obanawa, H.

    1987-01-01

    A quantitative study of chemical separation energy for enriching uranium-235 by the redox chromatography was conducted. Isotope exchange reactions between U 4+ -UO 2 2+ ions in the enrichment column are maintained by the redox reactions. The chemical separation energy is ultimately supplied by hydrogen and oxygen gas for regenerating redox agents. The redox energy for the isotope separation is theoretically predicted as a function of the dynamic enrichment factor observed in the chromatographic development of uranium adsorption band. Thermodynamic treatments of the equilibrium reactions implies and inverse redox reaction which can be enhanced by the chemical potential of the ion-exchange reaction of oxidant. Experimental results showed 30 to 90% recovery of the redox energy by the inverse reaction. These results will devise a simplified redox chromatography process where a number of columns in one module is reduced

  19. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  20. Comparison of cryopreservation bags for hematopoietic progenitor cells using a WBC-enriched product.

    Science.gov (United States)

    Dijkstra-Tiekstra, Margriet J; Hazelaar, Sandra; Gkoumassi, Effimia; Weggemans, Margienus; de Wildt-Eggen, Janny

    2015-04-01

    Hematopoietic progenitor cells (HPC) are stored in cryopreservation bags that are resistant to liquid nitrogen. Since Cryocyte bags of Baxter (B-bags) are no longer available, an alternative bag was sought. Also, the influence of freezing volume was studied. Miltenyi Biotec (MB)- and MacoPharma (MP)-bags passed the integrity tests without failure. Comparing MB- and MP-bags with B-bags, no difference in WBC recovery or viability was found when using a WBC-enriched product as a "dummy" HPC product. Further, a freezing volume of 30 mL resulted in better WBC recovery and viability than 60 mL. Additonal studies using real HPC might be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Perspectives for the uranium enrichment in Brazil

    International Nuclear Information System (INIS)

    Senna, J.G.S.M.

    1991-01-01

    Through an analysis of the electrical energy future in Brazil, the needs for enriched uranium are discussed, and therefore the importance of developing local capability for self-production. A description of the production processes that are well established is given first, then the analysis itself is performed and finally a visualization of the International Market for enriched uranium is shown. (author)

  2. Influence of biogenic gas production on coalbed methane recovery index

    Directory of Open Access Journals (Sweden)

    Hongyu Guo

    2017-05-01

    Full Text Available In investigating the effect of biogenic gas production on the recovery of coalbed methane (CBM, coal samples spanning different ranks were applied in the microbial-functioned simulation experiments for biogenic methane production. Based on the biogenic methane yield, testing of pore structures, and the isothermal adsorption data of coals used before and after the simulation experiments, several key parameters related to the recovery of CBM, including recovery rate, gas saturation and ratio of critical desorption pressure to reservoir pressure, etc., were calculated and the corresponding variations were further analyzed. The results show that one of the significant functions of microbial communities on coal is possibly to weaken its affinity for methane gas, especially with the advance of coal ranks; and that by enhancing the pore system of coal, which can be evidenced by the increase of porosity and permeability, the samples collected from Qianqiu (Yima in Henan and Shaqu (Liulin in Shanxi coal mines all see a notable increase in the critical desorption pressure, gas saturation and recovery rate, as compared to the moderate changes of that of Guandi (Xishan in Shanxi coal sample. It is concluded that the significance of enhanced biogenic gas is not only in the increase of CBM resources and the improvement of CBM recoverability, but in serving as an engineering reference for domestic coalbed biogenic gas production.

  3. Linear accelerator fuel enricher regenerator (LAFER) and fission product transmutor (APEX)

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.; Takahashi, H.; Grand, P.; Kouts, H.J.C.

    1979-01-01

    In addition to safety, two other major problems face the nuclear industry today; first is the long-term supply of fissle material and second is the disposal of long-lived fission product waste. The higher energy proton linear accelerator can assist in the solution of each of these problems. High energy protons from the linear accelerator interact with a molten lead target to produce spallation and evaporation neutrons. The neutrons are absorbed in a surrounding blanket of light water power reactor (LWR) fuel elements to produce fissile Pu-239 or U-233 fuel from natural fertile U-238 or Th-232 contained in the elements. The fissile enriched fuel element is used in the LWR power reactor until its reactivity is reduced after which the element is regenerated in the linear accelerator target/blanket assembly and then the element is once again burned (fissioned) in the power LWR. In this manner the natural uranium fuel resource can supply an expanding nuclear power reactor economy without the need for fuel reprocessing, thus satisfying the US policy of non-proliferation. In addition, the quantity of spent fuel elements for long-term disposal is reduced in proportion to the number of fuel regeneration cycles through the accelerator. The limiting factor for in-situ regeneration is the burnup damage to the fuel cladding material. A 300 ma-1.5 GeV (450 MW) proton linear accelerator can produce approximately one ton of fissile (Pu-239) material annually which is enough to supply fuel to three 1000 MW(e) LWR power reactors. With two cycles of enriching and regenerating, the nuclear fuel natural resource can be stretched by a factor of 3.6 compared to present fuel cycle practice without the need for reprocessing. Furthermore, the need for isotopic enrichment facilities is drastically reduced

  4. Short Term CO2 Enrichment Increases Carbon Sequestration of Air-Exposed Intertidal Communities of a Coastal Lagoon

    Directory of Open Access Journals (Sweden)

    Amrit K. Mishra

    2018-01-01

    Full Text Available In situ production responses of air-exposed intertidal communities under CO2 enrichment are reported here for the first time. We assessed the short-term effects of CO2 on the light responses of the net community production (NCP and community respiration (CR of intertidal Z. noltei and unvegetated sediment communities of Ria Formosa lagoon, when exposed to air. NCP and CR were measured in situ in summer and winter, under present and CO2 enriched conditions using benthic chambers. Within chamber CO2 evolution measurements were carried out by a series of short-term incubations (30 min using an infra-red gas analyser. Liner regression models fitted to the NCP-irradiance responses were used to estimate the seasonal budgets of air-exposed, intertidal production as determined by the daily and seasonal variation of incident photosynthetic active radiation. High CO2 resulted in higher CO2 sequestration by both communities in both summer and winter seasons. Lower respiration rates of both communities under high CO2 further contributed to a potential negative climate feedback, except in winter when the CR of sediment community was higher. The light compensation points (LCP (light intensity where production equals respiration of Z. noltei and sediment communities also decreased under CO2 enriched conditions in both seasons. The seasonal community production of Z. noltei was 115.54 ± 7.58 g C m−2 season−1 in summer and 29.45 ± 4.04 g C m−2 season−1 in winter and of unvegetated sediment was 91.28 ± 6.32 g C m−2 season−1 in summer and 25.83 ± 4.01 g C m−2 season−1 in winter under CO2 enriched conditions. Future CO2 conditions may increase air-exposed seagrass production by about 1.5-fold and unvegetated sediments by about 1.2-fold.

  5. In vitro organic matter digestibility and gas production of fish-meal ...

    African Journals Online (AJOL)

    In this study, an in vitro rumen gas production technique was utilized to evaluate fish-meal coated with different types and levels of fats for total gas production, Metabolizable energy (ME) and organic matter digestibility (OMD) contents. Approximately 200 mg of sample was weighed and inserted in glass syringes, then ...

  6. Multi-layered satisficing decision making in oil and gas production platforms

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Demazeau, Yves; Jørgensen, B. N.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we show how a multi-layered multi-agent system can be used to implem...

  7. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF 6 gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF 6 -handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D ampersand D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D ampersand D, as will the other UF 6 -handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF 6 . These reagents include ClF 3 , F 2 , and other compounds. The scope of D ampersand D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs

  8. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  9. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  10. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects.

    Science.gov (United States)

    Hobbs, Ditte A; Kaffa, Nedi; George, Trevor W; Methven, Lisa; Lovegrove, Julie A

    2012-12-14

    A number of vegetables have a high nitrate content which after ingestion can be reduced to nitrite by oral bacteria, and further to vasoprotective NO endogenously. In the present study, two separate randomly controlled, single-blind, cross-over, postprandial studies were performed in normotensive volunteers. Ambulatory blood pressure (BP) was measured over a 24 h period following consumption of either four doses of beetroot juice (BJ), 0, 100, 250 and 500 g (n 18), or three bread products, control bread (0 g beetroot), red beetroot- and white beetroot-enriched breads (n 14). Total urinary nitrate/nitrite (NO(x)) was measured at baseline, and at 2, 4 and 24 h post-ingestion. BJ consumption significantly, and in a near dose-dependent manner, lowered systolic BP (SBP, P bread products enriched with 100 g red or white beetroot lowered SBP and DBP over a period of 24 h (red beetroot-enriched bread, P varieties. Total urinary NO(x) significantly increased following the consumption of 100 g (P bread ingestion (P bread compared with the no-beetroot condition. These studies demonstrated significant hypotensive effects of a low dose (100 g) of beetroot which was unaffected by processing or the presence of betacyanins. These data strengthen the evidence for cardioprotective BP-lowering effects of dietary nitrate-rich vegetables.

  11. Increased productivity through waste reduction effort in oil and gas company

    Science.gov (United States)

    Hidayati, J.; Silviana, NA; Matondang, RA

    2018-02-01

    National companies engaged in oil and gas activities in the upstream sector. In general, the on going operations include drilling, exploration, and production activities with the result being crude oil channelled for shipment. Production activities produce waste gas (flare) of 0.58 MMSCFD derived from 17.05% of natural gas produced. Gas flares are residual gases that have been burning through flare stacks to avoid toxic gases such as H2S and CO that are harmful to human health and the environment. Therefore, appropriate environmental management is needed; one of them is by doing waste reduction business. Through this approach, it is expected that waste reduction efforts can affect the improvement of environmental conditions while increasing the productivity of the company. In this research begins by identifying the existence of problems on the company related to the amount of waste that is excessive and potentially to be reduced. Alternative improvements are then formulated and selected by their feasibility to be implemented through financial analysis, and the estimation of alternative contributions to the level of productivity. The result of this research is an alternative solution to solve the problem of the company by doing technological based engineering by reusing gas flare into fuel for incinerator machine. This alternative contributes to the increased productivity of material use by 23.32%, humans 83.8%, capital 10.13 %, and waste decreased by 0.11%.

  12. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  13. Greenhouse gas emissions in milk and dairy product chains

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon ...... throughout the value chain – from cow to consumer.......Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon...... footprint (CF) of milk and dairy products, namely; estimating CH4 and N2O emissions; accounting for land use change; co-product handling; and defining the functional unit. In addition, the CF is calculated for different types of dairy products, and suggestions on various mitigation measures are presented...

  14. Production performance, use of nest box, and external appearance of two strains of laying hens kept in conventional and enriched cages.

    Science.gov (United States)

    Onbaşılar, E E; Ünal, N; Erdem, E; Kocakaya, A; Yaranoğlu, B

    2015-04-01

    The aim of this study was to investigate the differences in production performance, use of nest box, and external appearance of 2 strains of laying hens kept in conventional and enriched cages. Lohmann Brown Classic (LB, n=532) and Lohmann LSL Classic (LW, n=532) hens were housed from 16 to 73 wk in either conventional cages or enriched cages. Enriched cages had a nesting area, scratch pad, perch, and nail shortener. Body weight (BW), hen-day egg production, egg weight, feed intake, feed conversion ratio (FCR), cracked and dirty eggs, use of nest box for lay, and external appearance were determined. Laying period influenced the hen-day egg production, egg weight, feed intake, and feed conversion ratio. Cage type affected the hen-day egg production and feed conversion ratio, while strain affected the egg weight, feed intake, and feed conversion ratio. Laying period×cage type and laying period×strain interactions affected egg production, egg weight, and feed conversion ratio. Both strains preferred to lay in the nest box. Percentages of cracked and dirty eggs of LW hens in enriched cages were higher than that in conventional cages. Most of the dirty eggs laid by both strains were found outside of the nest box. The LW hens laid more dirty eggs than the LB hens. Cage type and cage type×strain interaction were important for total feather score. Final claw length was affected by cage type, strain, and cage type×strain interaction. This study suggests that cage type, strain, and also cage type×strain and period×strain interactions should be considered when alternative housing systems are used. © 2015 Poultry Science Association Inc.

  15. South Australia, uranium enrichment

    International Nuclear Information System (INIS)

    1976-02-01

    The Report sets out the salient data relating to the establishment of a uranium processing centre at Redcliff in South Australia. It is conceived as a major development project for the Commonwealth, the South Australian Government and Australian Industry comprising the refining and enrichment of uranium produced from Australian mines. Using the data currently available in respect of markets, demand, technology and possible financial return from overseas sales, the project could be initiated immediately with hexafluoride production, followed rapidly in stages by enrichment production using the centrifuge process. A conceptual development plan is presented, involving a growth pattern that would be closely synchronised with the mining and production of yellowcake. The proposed development is presented in the form of an eight-and-half-year programme. Costs in this Report are based on 1975 values, unless otherwise stated. (Author)

  16. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  17. Gasket for uranium enrichment plant

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, S; Aiyoshi, H

    1977-02-08

    A gasket to be inserted between flange joints in the equipments and pipe lines of an uranium enrichment plant having neither permeability nor adsorptivity to water while maintaining mechanical, physical and chemical properties of an elastomer gasket is described. A gasket made of an elastomeric material such as a polymer is integratedly formed at its surface with anti-slip projections. The gasket is further surrounded at its upper and lower peripheral sides, as well as outer circumferential portion with a U-sectioned cover (enclosure) made of fluoro-plastics. In this arrangement, the gasket main body shows a gas-tightness for uranium hexafluoride gas and the cover exhibits a gas-tightness for other component gases such as moisture to thereby prevent degradation of the gasket due to absorption and permeation of the moisture.

  18. Consumption of selenium-enriched broccoli increases cytokine production in human peripheral blood mononuclear cells stimulated ex vivo, a preliminary human intervention study.

    Science.gov (United States)

    Bentley-Hewitt, Kerry L; Chen, Ronan K-Y; Lill, Ross E; Hedderley, Duncan I; Herath, Thanuja D; Matich, Adam J; McKenzie, Marian J

    2014-12-01

    Selenium (Se) is a micronutrient essential for human health, including immune function. Previous research indicates that Se supplementation may cause a shift from T helper (Th)1- to Th2-type immune responses. We aim to test the potential health promoting effects of Se-enriched broccoli. In a human trial, 18 participants consumed control broccoli daily for 3 days. After a 3-day wash-out period, the participants were provided with Se-enriched broccoli containing 200 μg of Se per serving for 3 days. Plasma and peripheral blood mononuclear cell (PBMC) samples were collected at the start and end of each broccoli feeding period for analysis of total Se and measurement of cytokine production from PBMC stimulated with antigens ex vivo. Plasma Se content remained consistent throughout the control broccoli feeding period and the baseline of the Se-enriched broccoli period (1.22 μmol/L) and then significantly increased following 3 days of Se-enriched broccoli feeding. Interleukin (IL-2, IL-4, IL-5, IL-13, and IL-22) production from PBMC significantly increased after 3 days of Se-enriched broccoli feeding compared with baseline. This study indicates that consumption of Se-enriched broccoli may increase immune responses toward a range of immune challenges. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 21 CFR 137.260 - Enriched corn meals.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched corn meals. 137.260 Section 137.260 Food... Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of which conforms to the definition and standard of identity prescribed for a kind of corn meal by §§ 137...

  20. Design, construction, and operation of a laboratory scale reactorfor the production of high-purity, isotopically enriched bulksilicon

    Energy Technology Data Exchange (ETDEWEB)

    Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.

    2004-12-20

    The design and operation of a recirculating flow reactor designed to convert isotopically enriched silane to polycrystalline Si with high efficiency and chemical purity is described. The starting material is SiF{sub 4}, which is enriched in the desired isotope by a centrifuge method and subsequently converted to silane. In the reactor, the silane is decomposed to silicon on the surface of a graphite starter rod (3 mm diameter) heated to 700-750 C. Flow and gas composition (0.3-0.5% silane in hydrogen) are chosen to minimize the generation of particles by homogeneous nucleation of silane and to attain uniform deposition along the length of the rod. Growth rates are 5 {micro}m/min, and the conversion efficiency is greater than 95%. A typical run produces 35 gm of polycrystalline Si deposited along a 150 mm length of the rod. After removal of the starter rod, dislocation-free single crystals are formed by the floating zone method. Crystals enriched in all 3 stable isotopes of Si have been made: {sup 28}Si (99.92%), {sup 29}Si (91.37%), and {sup 30}Si (88.25%). Concentrations of electrically active impurities (P and B) are as low as mid-10{sup 13} cm{sup -3}. Concentrations of C and O lie below 10{sup 16} and 10{sup 15} cm{sup -3}, respectively.

  1. Ten ways to design for disgust, sadness, and other enjoyments : A design approach to enrich product experiences with negative emotions

    NARCIS (Netherlands)

    Fokkinga, S.F.; Desmet, P.M.A.

    2013-01-01

    This paper demonstrates how designers can enrich user experiences by purposefully involving negative emotions in user-product interaction. This approach is derived from a framework of rich experience, which explains how and under what circumstances negative emotions make a product experience richer

  2. Analysis of Specific Features of the Ukrainian Market of Natural Gas Production and Consumption

    Directory of Open Access Journals (Sweden)

    Lelyuk Oleksiy V.

    2013-11-01

    Full Text Available The article provides results of the study of specific features of the Ukrainian market of natural gas production and consumption. It analyses dynamics of the specific weight of Ukraine in general volumes of natural gas consumption in the world, dynamics of natural gas consumption in Ukraine during 1990 – 2012 and dependence of natural gas consumption on GDP volumes by the purchasing power parity. It studies the structure of natural gas consumption by regions in 2012 and sectors of economy, resource base of natural gas in Ukraine and also dynamics of established resources of natural gas in Ukraine and dynamics of natural gas production. It analyses base rates of growth of natural gas resources and production in Ukraine. It considers dynamics of import of natural gas into Ukraine and its import prices and also the structure of natural gas import. It identifies the balance of the natural gas market in Ukraine. On the basis of the conducted analysis the article proves that Ukraine is a gas-deficit country of the world, which depends on natural gas import supplies.

  3. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  4. A synthesis of research on wood products and greenhouse gas impacts

    International Nuclear Information System (INIS)

    Sathre, R.; O'Connor, J.

    2008-11-01

    Existing scientific literature on the wood products industry was reviewed in an effort to summarize consensus findings, or range of findings, addressing the net life cycle greenhouse gas footprint of wood construction products. The report sought to clarify whether actively managing forests for wood production was better, worse or neutral for climate change than leaving the forest in its natural state. In addition, it sought to quantify the greenhouse gas emissions avoided per unit of wood substituted for non-wood materials. Forty-eight international studies were examined in terms of fossil energy used in wood manufacturing and compared alternatives, such as the avoidance of industrial process carbon emissions as with cement manufacturing; the storage of carbon in forests and forest products; the use of wood by-products as a biofuel replacement for fossil fuels; and carbon storage and emission due to forest products in landfills. The report presented a list of studies reviewed and individual summaries of study findings. A meta-analysis of displacement factors of wood product use was also presented. It was concluded from all of the studies reviewed, that the production of wood-based materials and products results in less greenhouse gas emission than the production of functionally comparable non-wood materials and products. 48 refs., 1 tab.

  5. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  6. Process and device for stage by stage enrichment of deuterium and/or tritium in a material suitable for isotope exchange of deuterium and tritium with hydrogen

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der.

    1983-01-01

    Water containing deuterium and/or tritium is first introduced into a carrier gas flow and reduced for the stage by stage enrichment of deuterium and/or tritium. A hydrogen partial pressure of a maximum of 100 millibar is set in the carrier gas flow. The carrier gas flow is taken along the primary side of an exchange wall suitable for the permeation of hydrogen, and a further carrier gas flow flows on its secondary side, which contains water or hydrogen. Reaction products formed after isotope exchange of deuterium and/or tritium with hydrogen are removed by the secondary carrier gas flow. (orig./HP) [de

  7. DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen; Russell T. Johns; Gary A. Pope

    2003-08-21

    The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

  8. Modeling and Analysis Methods for an On-line Enrichment Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Jarman, Kenneth D.; Wittman, Richard S.; Zalavadia, Mital A.; March-Leuba, Jose A.

    2016-05-30

    The International Atomic Energy Agency (IAEA) has developed an On-Line Enrichment Monitor (OLEM) as one possible component in a new generation of safeguards measures for uranium enrichment plants. The OLEM measures 235U emissions from the UF6 gas flowing through a unit header pipe using NaI(Tl) spectrometers, and corrects for gas density changes using pressure and temperature sensors in order to determine the enrichment of the gas as a function of time. In parallel with the OLEM instrument development, a Virtual OLEM (VOLEM) software tool has been developed that is capable of producing synthetic gamma-ray, pressure, and temperature data representative of a wide range of enrichment plant operating conditions. VOLEM complements instrument development activities and allows the study of OLEM for scenarios that will be difficult or impossible to evaluate empirically. Uses of VOLEM include: investigation of hardware design options; inter-comparison of candidate gamma-ray spectral analysis and enrichment estimation algorithms; uncertainty budget analysis and performance prediction for typical and atypical operational scenarios; and testing of the OLEM data acquisition, analysis and reporting software. This paper describes the technical foundations of VOLEM and illustrates how it can be used. An overview of the nominal instrument design and deployment scenario for OLEM is provided, with emphasis on the key online-assay measurement challenge: accurately determining the portion of the total 235U signal that comes from a background that includes solid uranium deposits on the piping walls. Monte Carlo modeling tools, data analysis algorithms and uncertainty quantification methods are described. VOLEM is then used to quantitatively explore the uncertainty budgets and predicted instrument performance for a plausible range of typical plant operating parameters, and one set of candidate analysis algorithms. Additionally, a series of VOLEM case studies illustrates how an online

  9. Interpreting Gas Production Decline Curves By Combining Geometry and Topology

    Science.gov (United States)

    Ewing, R. P.; Hu, Q.

    2014-12-01

    Shale gas production forms an increasing fraction of domestic US energy supplies, but individual gas production wells show steep production declines. Better understanding of this production decline would allow better economic forecasting; better understanding of the reasons behind the decline would allow better production management. Yet despite these incentives, production declines curves remain poorly understood, and current analyses range from Arps' purely empirical equation to new sophisticated approaches requiring multiple unavailable parameters. Models often fail to capture salient features: for example, in log-log space many wells decline with an exponent markedly different from the -0.5 expected from diffusion, and often show a transition from one decline mode to another. We propose a new approach based on the assumption that the rate-limiting step is gas movement from the matrix to the induced fracture network. The matrix is represented as an assemblage of equivalent spheres (geometry), with low matrix pore connectivity (topology) that results in a distance-dependent accessible porosity profile given by percolation theory. The basic theory has just 2 parameters: the sphere size distribution (geometry), and the crossover distance (topology) that characterizes the porosity distribution. The theory is readily extended to include e.g. alternative geometries and bi-modal size distributions. Comparisons with historical data are promising.

  10. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  11. Modern gas centrifuge and rarefied-gas dynamics

    International Nuclear Information System (INIS)

    Lowry, R.A.; Halle, E.V.; Wood, H.G. III.

    1981-01-01

    Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper

  12. Enrichment of meat products with selenium by its introduction to mixed feed compounds for birds

    Directory of Open Access Journals (Sweden)

    А. Sobolev

    2017-07-01

    Full Text Available Selenium is a biologically active microelement, contained in a number of hormones and enzymes. In a bird or animal organism selenium performs the following functions: strengthens the immune system, stimulates formation of antibodies, macrophages and interferons. Also, it is a powerful antioxidant agent. It stimulates processes of metabolism in the organism, protects the organism against toxic manifestations of cadmium, lead, thalium and silver; stimulates reproductive function, decreases acute development of inflammatory processes; stabilizes functioning of the nervous system; normalizes functioning of the endocrine system. Furthermore, it stimulates synthesis of hemoglobin, takes part in secretion of erythrocutes, neutralizes toxins, prevents and stops development of malignant tumors. It also has a positive effect on the cardiovascular system of an animal organism: prevents myocardosis and decreases the risk of development of cardiovascular diseases. Deficiency of selenium in the organism causes (depending upon the extent of deficiency either physiological changes within the regulatory norm, significant disorders of the metabolism, or specific diseases. Around 75 different diseases and symptoms of pain are related to selenium deficiency. In most countries, the level of selenium consumption remains low (20–40 µg/day. There are several ways of improving of the selenium consumption of a population: consumption of selenium as a medication or dietary supplement, producing selenium-enriched bread, growing greens and vegetables rich in selenium, producing selenium-enriched beverages, products of animal origin, which would be rich in selenium. In the scientific-agricultural sphere studies have been made on the influence of adding different doses (0.2–0.6 mg/kg of selenium in mixed feeds and peculiarities of its depositing and distribution in the muscle tissues of young growth of different species of poultry. It has been found that feeding broiler

  13. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  14. Production statistics of gas turbines and superchargers in Japan in 1992

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T [Toshiba Corp., Tokyo (Japan)

    1994-03-01

    Production of gas turbines and superchargers in Japan in 1992 was summarized giving various production statistics. In land and marine gas turbines, the total production decreased by 2% in unit, however, increased rapidly by 84% in total power output due to a remarkable increase in large unit over and including 30,000 PS, exceeding the total power output of 5,000 MW. The production of small units less than 1,000 PS decreased in both unit and power output, and all the units were for private use of which 96% were emergency power generation use. The production of medium units decreased in both unit and power output, including a remarkable decrease in unit by 26% and in power output by 38% for base load generation use. In aircraft gas turbines, the production in 1992 decreased by 0-10%, however, 89 fan modules of V2500 turbofan engine were produced, summing up into 273 units since 1988. Most of superchargers produced in 1992 were of class 1 below 100 mm in impeller diameter, reaching 1,720,000 units. 10 figs., 9 tabs.

  15. Trace analysis of halogenated hydrocarbons in gaseous samples by on-line enrichment in an adsorption trap, on-column cold-trapping and capillary gas chromatography. I.Method and instrumentation

    NARCIS (Netherlands)

    Noij, T.H.M.; Fabian, P.; Borchers, R.; Janssen, F.; Cramers, C.A.M.G.; Rijks, J.A.

    1987-01-01

    A method is described for the determination of halocarbons in gaseous samples down to the ppt level (1:1012, v/v), consisting of successive on-line sub-ambient enrichment on an adsorbent, on-column cryofocusing, capillary gas chromatography and electron-capture detection. The quantitative aspects of

  16. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  17. How does increased corn-ethanol production affect US natural gas prices?

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2010-01-01

    In recent years, there has been a push to increase biofuel production in the United States. The biofuel of choice, so far, has been ethanol produced from corn. The effects of increased corn-ethanol production on the consumer prices of food and energy continue to be studied and debated. This study examines, in particular, the effects of increased corn-ethanol production on US natural gas prices. A structural model of the natural gas market is developed and estimated using two stage least squares. A baseline projection for the period 2007-2018 is determined, and two scenarios are simulated. In the first scenario, current biofuel policies including EISA mandates, tariffs, and tax credits are removed. In the second scenario, we hold ethanol production to the level required only for largely obligatory additive use. The results indicate that the increased level of corn-ethanol production occurring as a result of the current US biofuel policies may lead to natural gas prices that are as much as 0.25% higher, on average, than if no biofuel policies were in place. A similar comparison between the baseline and second scenario indicates natural gas prices could be as much as 0.5% higher, on average, for the same period.

  18. Enrichment situation outside the United States

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Different enrichment technologies are briefly characterized which include gaseous diffusion, which is presently the production mainstay of the United States and France; the gaseous centrifuge which is the production plant for Urenco and the technology for future United States enrichment expansion; the aero-dynamic processes which include the jet nozzle (also known as the Becker process) and the fixed-wall centrifuge (also known as the Helikon process); chemical processes; laser isotope separation processes (also referred to in the literature as LIS); and plasma technology

  19. Environmental Enrichment for Broiler Breeders: An Undeveloped Field

    Directory of Open Access Journals (Sweden)

    Anja B. Riber

    2017-06-01

    Full Text Available Welfare problems, such as hunger, frustration, aggression, and abnormal sexual behavior, are commonly found in broiler breeder production. To prevent or reduce these welfare problems, it has been suggested to provide stimulating enriched environments. We review the effect of the different types of environmental enrichment for broiler breeders, which have been described in the scientific literature, on behavior and welfare. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements in biological function. This definition has been broadened to include practical and economic aspects as any enrichment strategy that adversely affects the health of animals (e.g., environmental hygiene, or that has too many economic or practical constraints will never be implemented on commercial farms and thus never benefit animals. Environmental enrichment for broiler breeders often has the purpose of satisfying the behavioral motivations for feeding and foraging, resting, and/or encouraging normal sexual behavior. Potentially successful enrichments for broiler breeders are elevated resting places, cover panels, and substrate (for broiler breeders housed in cage systems. However, most of the ideas for environmental enrichment for broiler breeders need to be further developed and studied with respect to the use, the effect on behavior and welfare, and the interaction with genotype and production system. In addition, information on practical use and the economics of the production system is often lacking although it is important for application in practice.

  20. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  1. International comparisons of productivity and its determinants in the natural gas industry

    International Nuclear Information System (INIS)

    Kim, Tai-Yoo; Lee, Jeong-Dong; Park, Yearn H.; Kim, Boyoung

    1999-01-01

    The objective of this paper was to evaluate the performance of the natural gas industry using an inter-country comparison of productivity level and its determinants. Three methodologies: multilateral Toernqvist productivity analysis; managerial index system analysis; and non-parametric efficiency analysis, are employed to make a methodological cross-checking and to perform diversified analysis. From the empirical results, we identified the level and growth rate of productivity of individual firms. The results also indicated that the Korean gas industry has shown a relatively low level of productivity. From the results of managerial performance index analysis, we found that during the recent years of regulatory changes, the final price of gas has decreased dramatically while the productivity growth has not been enough to offset the effect of decreased output price, which has resulted in decreased profit. We also examine the extent of the allocative, scale, and managerial efficiency as source components of the overall efficiency based on the performance of best-practiced. With the results of this study, an effective policy measure could be established to improve the productivity and the overall managerial performance in the natural gas industry

  2. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  3. Factors that predict consumer acceptance of enriched processed meats.

    Science.gov (United States)

    Shan, Liran C; Henchion, Maeve; De Brún, Aoife; Murrin, Celine; Wall, Patrick G; Monahan, Frank J

    2017-11-01

    The study aimed to understand predictors of consumers' purchase intention towards processed meat based functional foods (i.e. enriched processed meat). A cross-sectional survey was conducted with 486 processed meat consumers in spring 2016. Results showed that processed meats were perceived differently in healthiness, with sausage-type products perceived less healthy than cured meat products. Consumers were in general more uncertain than positive about enriched processed meat but differences existed in terms of the attitudes and purchase intention. Following regression analysis, consumers' purchase intention towards enriched processed meat was primarily driven by their attitudes towards the product concept. Perceived healthiness of existing products and eating frequency of processed meat were also positively associated with the purchase intention. Other factors such as general food choice motives, socio-demographic characteristics, consumer health and the consumption of functional foods and dietary supplements in general, were not significant predictors of the purchase intention for enriched processed meat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique

    Directory of Open Access Journals (Sweden)

    Paula Martins Olivo

    2017-07-01

    Full Text Available Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets.

  5. How did the US economy react to shale gas production revolution? An advanced time series approach

    International Nuclear Information System (INIS)

    Bilgili, Faik; Koçak, Emrah; Bulut, Ümit; Sualp, M. Nedim

    2016-01-01

    This paper aims at examining the impacts of shale gas revolution on industrial production in the US. To this end, this paper, first, throughout literature review, exposes the features of shale gas revolution in the US in terms of energy technology and energy markets. However, the potential influences of shale gas extraction on the US economy are not explicit in the existing literature. Thus, considering mainly the output of shale gas revolution on the US economy in this research, later, the paper conducts econometric models to reveal if there exists significant effect(s) of shale gas revolution on the US economy. Therefore, the paper employs unit root tests and cointegration tests by following relevant US monthly data from January 2008 to December 2013. Then, this paper observes long run impact of shale gas production on industrial production in the US through dynamic ordinary least squares estimation with dummy structural breaks and conducts Granger causality test based on vector error correction model. The dynamic ordinary least squares estimator explores that shale gas production has a positive effect on industrial production. Besides, the Granger causality test presents that shale gas production Granger causes industrial production in the long run. Based on the findings of the long run estimations, the paper yields that industrial production is positively related to shale gas production. Eventually, upon its findings, this paper asserts that (i) the shale gas revolution in the US has considerable positive effects on the US economy within the scope of the validity of the growth hypothesis, (ii) new technologies might be developed to mitigate the possible negative environmental effects of shale gas production, (iii) the countries having shale gas reserves, as in US, may follow energy policies to utilize their shale reserves more in the future to meet their energy demand and to increase their economic welfare. - Highlights: • Explores the US shale gas revolution

  6. Oil and Gas Production, Environmental Health and Livelihood ...

    African Journals Online (AJOL)

    Oil and Gas Production, Environmental Health and Livelihood Vulnerability in the West Coast of Ghana. ... African Journal of Sustainable Development ... Respondents' level of education significantly influences their level of knowledge about ...

  7. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  8. Gas production in the Barnett Shale obeys a simple scaling theory.

    Science.gov (United States)

    Patzek, Tad W; Male, Frank; Marder, Michael

    2013-12-03

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.

  9. Fresh pasta production enriched with Spirulina platensis biomass

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2012-10-01

    Full Text Available The aim of this work was to study the enrichment of Spirulina platensis in wheat flour to prepare fresh pasta to evaluate the green color and nutritional enrichment in addition to functional properties due to the presence of the bioactive compounds in the cyanobacterium. The pastas were evaluated for the centesimal composition, microbiological contamination, sensorial acceptance and technological characteristics such as cooking time, water absorption, volume displacement and loss of solids. The superior protein contents and the satisfactory technological and sensorial attributes compared with the control with no cyanobacterium showed the usefulness of incorporating S. platensis biomass in the fresh pastas. The microbiological quality was in compliance with the legislation in force. The sensorial quality was considered satisfactory (“liked very much” and purchase intention high (“probably would buy”.

  10. Synthesis of 15N-enriched fertilizers. Pt. II. Synthesis of 15N-enriched urea

    International Nuclear Information System (INIS)

    Bondassolli, J.A.; Trivelin, P.C.O.; Mortatti, J.; Victoria, R.L.

    1988-01-01

    The results of studies on the production of 15 N-urea through the reaction between 15 N-enriched anhidrous ammonia, carbon monoxide and sulfur, using hydrogen sulfite as a auto catalizers and methyl alcohol as a liquid reaction medium is presented. The influence of the quantities of reagents on final yield of synthesised urea were studied. Analysis of the cost of 5 Atoms % 15 N-enriched urea were made. (M.A.C.) [pt

  11. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  12. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  13. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  14. Demonstrating multi-layered MAS in control of offshore oil and gas production

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Næumann, J. R.; Demazeau, Y.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we demonstrate how a multi-layered multi-agent system can be used in...

  15. Liquefied natural gas production at Hammerfest: A transforming marine community

    NARCIS (Netherlands)

    Bets, van L.K.J.; Tatenhove, van J.P.M.; Mol, A.P.J.

    2016-01-01

    Global energy demand and scarce petroleum resources require communities to adapt to a rapidly changing Arctic environment, but as well to a transforming socio-economic environment instigated by oil and gas development. This is illustrated by liquefied natural gas production by Statoil at Hammerfest,

  16. The evolution of the enriched uranium markets

    International Nuclear Information System (INIS)

    Arnaiz, J.; Moleres, C.; Tarin, F.

    2004-01-01

    This paper deals with the evolution of the enriched uranium component markets (uranium concentrates, conversion and enrichment), starting with the situation of historically low prices that occurred during 2000. The situation that has been reached as on December 2003, when the concentrates and conversion markets were 44% and 70% (current US$) respectively, and the enrichment prices 30%, higher, is analysed. Finally, the negative impact of the 90's depressed prices, due to abundant alternative sources of uranium components, on the primary production of all three components and, as a conclusion, the impact of the new situation on the transport logistics, and the need of appropriate economic conditions to make the future primary production sustainable, is commented. (Author)

  17. Buckwheat-enriched wheat bread: National market placement possibilities

    Directory of Open Access Journals (Sweden)

    Sakač Marijana B.

    2015-01-01

    Full Text Available Quality parameters and the possibility of successful placement of buckwheat-enriched wheat bread on the national market are presented in this paper. Analysis of the market position of buckwheat-enriched wheat bread includes demands, offer and competition. Elements that affect the overall retail price of buckwheat-enriched wheat bread are given in details, along with SWOT analysis and marketing plan including target market, market supply and product marketing mix. According to all performed analyses it could be concluded that this product should be positioned on the national market, especially for people with special needs and requirements.

  18. PETROCHINA TO MAINTAIN TWO-DIGITAL GROWTH OF ITS GAS PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Based on the information made available from the recent conference on natural gas development held in Chengdu, the capital of the natural gasenriched Sichuan Province, PetroChina will maintain a 14 percent growth for its natural gas production during the 1 lth Five-Year Plan period (2006-2010), owing to acceleration of the market development and pipeline construction in the downstream sector and rapid progress in the natural gas exploration.

  19. Simplex Optimization of Headspace-Enrichment Conditions of Residual Petroleum Distillates Used by Arsonists

    Science.gov (United States)

    Warnke, Molly M.; Erickson, Angela E.; Smith, Eugene T.

    2005-01-01

    A forensic project is described that is suitable for an undergraduate instrumental methods lab. Accelerants commonly used by arsonists are analyzed by static headspace enrichment followed by gas chromatography. The conditions used for headspace enrichment (e.g., time and temperature) are known to influence the distribution of hydrocarbons…

  20. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  1. Enrichment: Dealing with overcapacity

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1989-01-01

    Today's surplus of enrichment capacity will continue until at least the end of this century. This will challenge the ingenuity of the separative work unit (SWU) suppliers as they attempt to keep market share and remain profitable in a very competitive marketplace. The utilities will be faced with attractive choices, but making the best choice will require careful analysis and increased attention to market factors. Current demand projections will probably prove too high to the extent that more reactors are canceled or delayed. The DOE has the vast majority of the unused capacity, so it will feel the most immediate impact of this large surplus in productive capacity. The DOE has responded to these market challenges by planning another reorganization of its enriching operations. Without a major agreement among the governments affected by the current surplus in enrichment capacity, the future will see lower prices, more competitive terms, and the gradual substitution of centrifuge or laser enrichment for the gaseous diffusion plants. The competition that is forcing the gaseous diffusion prices down to marginal cost will provide the long-term price basis for the enrichment industry

  2. Cascade heat recovery with coproduct gas production

    Science.gov (United States)

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  3. Investigation of oil production conditions and production operation by solution gas drive in low permeable heterogeneous limestones

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, W

    1966-04-01

    It was the purpose of this study to investigate the production of oil and gas from a low permeable heterogeneous limestone-reservoir by solution gas drive. The rock-samples were subjected to extensive petrolphysical analyses in order to characterize the pore structure of of the limestone material. Laboratory model flow tests were undertaken to outline in detail the production history during the pressure depletion process under reservoir conditions and by using original reservoir fluids. The experiments were carried out at different rates of pressure decline. It can be stated that the rate of pressure decline is the most important factor affecting the oil recovery and the development of the gas-oil-ratio in a model flow test. The present investigation leads to the following conclusion: It is posible to get reliable results which could be the base for a reservoir performance prediction only when the gas and oil phase are maintained at equilibrium conditions within the rock sample during the pressure decline. An additional calculation of the solution gas drive reservoir production history by the Tarner method shows a good agreement of the experimental and the calculated data. (40 refs.)

  4. Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities

    International Nuclear Information System (INIS)

    Moran, B.W.; Belew, W.L.; Hammond, G.A.; Brenner, L.M.

    1991-11-01

    A new section, 10 CFR 74.33, has been added to the material control and accounting (MC ampersand A) requirements of 10 CFR Part 74. This new section pertains to US Nuclear Regulatory Commission (NRC)-licensed uranium enrichment facilities that are authorized to produce and to possess more than one effective kilogram of special nuclear material (SNM) of low strategic significance. The new section is patterned after 10 CFR 74.31, which pertains to NRC licensees (other than production or utilization facilities licensed pursuant to 10 CFR Part 50 and 70 and waste disposal facilities) that are authorized to possess and use more than one effective kilogram of unencapsulated SNM of low strategic significance. Because enrichment facilities have the potential capability of producing SNM of moderate strategic significance and also strategic SNM, certain performance objectives and MC ampersand A system capabilities are required in 10 CFR 74.33 that are not contained in 10 CFR 74.31. This document recommends to the NRC information that the licensee or applicant should provide in the fundamental nuclear material control (FNMC) plan. This document also describes methods that should be acceptable for compliance with the general performance objectives. While this document is intended to cover various uranium enrichment technologies, the primary focus at this time is gas centrifuge and gaseous diffusion

  5. Response of methane production via propionate oxidation to carboxylated multiwalled carbon nanotubes in paddy soil enrichments

    Directory of Open Access Journals (Sweden)

    Jianchao Zhang

    2018-01-01

    Full Text Available Carboxylated multiwalled carbon nanotubes (MWCNTs-COOH have become a growing concern in terms of their fate and toxicity in aqueous environments. Methane (CH4 is a major product of organic matter degradation in waterlogged environments. In this study, we determined the effect of MWCNTs-COOH on the production of CH4 from propionate oxidation in paddy soil enrichments. The results showed that the methanogenesis from propionate degradation was accelerated in the presence of MWCNTs-COOH. In addition, the rates of CH4 production and propionate degradation increased with increasing concentrations of MWCNTs-COOH. Scanning electron microscopy (SEM observations showed that the cells were intact and maintained their structure in the presence of MWCNTs-COOH. In addition, SEM and fluorescence in situ hybridization (FISH images revealed that the cells were in direct contact with the MWCNTs and formed cell-MWCNTs aggregates that contained both bacteria and archaea. On the other hand, nontoxic magnetite nanoparticles (Fe3O4 had similar effects on the CH4 production and cell integrity as the MWCNTs-COOH. Compared with no nanomaterial addition, the relative abundances of Geobacter and Methanosarcina species increased in the presence of MWCNTs-COOH. This study suggests that MWCNTs-COOH exerted positive rather than cytotoxic effects on the syntrophic oxidation of propionate in paddy soil enrichments and affected the bacterial and archaeal community structure at the test concentrations. These findings provide novel insight into the consequences of nanomaterial release into anoxic natural environments.

  6. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  7. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  8. Enriching 28Si beyond 99.9998 % for semiconductor quantum computing

    Science.gov (United States)

    Dwyer, K. J.; Pomeroy, J. M.; Simons, D. S.; Steffens, K. L.; Lau, J. W.

    2014-08-01

    Using a laboratory-scale apparatus, we enrich 28Si and produce material with 40 times less residual 29Si than previously reported. Starting from natural abundance silane gas, we offer an alternative to industrial gas centrifuges for providing materials critical for long spin coherence times in quantum information devices. Using a mass spectrometry approach, silicon ions are produced from commercial silane gas and the isotopes are separated in a magnetic sector analyzer before deposition onto a Si(1 0 0) substrate. Isotope fractions for 29Si and 30Si of <1 × 10-6 are found in the deposited films using secondary ion mass spectrometry. Additional assessments of the deposited films are also presented as we work to develop substrates and source material to support the growing silicon quantum computing community. Finally, we demonstrate modulation of the 29Si concentration in a deposited film as a precursor to dual enrichment of heterostructures and compound materials such as 28Si74Ge.

  9. Calculated apparent yields of rare gas fission products

    International Nuclear Information System (INIS)

    Delucchi, A.A.

    1975-01-01

    The apparent fission yield of the rare gas fission products from four mass chains is calculated as a function of separation time for six different fissioning systems. A plot of the calculated fission yield along with a one standard deviation error band is given for each rare gas fission product and for each fissioning system. Those parameters in the calculation that were major contributors to the calculated standard deviation at each separation time were identified and the results presented on a separate plot. To extend the usefulness of these calculations as new and better values for the input parameters become available, a third plot was generated for each system which shows how sensitive the derived fission yield is to a change in any given parameter used in the calculation. (U.S.)

  10. 21 CFR 137.350 - Enriched rice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose and...

  11. The Effect of Tannins and Additional Peg on In Vitro Gas Production

    International Nuclear Information System (INIS)

    Irawan Sugoro

    2004-01-01

    Agro-wastes such as sugar cane straw are potential sources as feed. Sugar cane straw contains tannins, an anti-nutrient, which could effect feed quality. The effect of tannins by in vitro gas production was compared to maize straw which has low tannins. Tannin concentration was measured by using PEG which is labelled by 14 C. The result showed that the tannins concentration of sugar cane straw is 10.88 % dry matter. The others are digestibility of dry matter and organic matter, VFA, ammonia and pH. The gas production is 48.83 ml/500 mg after 24 h incubation. It is lower than the control i.e. 100.64 ml/500 mg. Additional PEG increase the gas production i.e. 30.5 %, because tannins is bounded by it. The concentration of ammonia, VFA, dry matter and organic matter digestibility on sugar cane straw with additional PEG is higher than without PEG, i.e 28.29 mg/100 ml, 15.56 nmol/100 ml, 52.18 % and 47.54 %. pH of sugar cane without PEG i.e. 6.62 is higher than additional PEG, i.e. 6.54. It could be concluded, tannins decrease of gas production, ammonia, VFA, dry matter, and organic matter digestibility and additional PEG increase gas production of sugar cane. (author)

  12. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  13. Environmental Compliance for Oil and Gas Exploration and Production

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  14. Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth

    International Nuclear Information System (INIS)

    Wang, Jianliang; Mohr, Steve; Feng, Lianyong; Liu, Huihui; Tverberg, Gail E.

    2016-01-01

    China is vigorously promoting the development of its unconventional gas resources because natural gas is viewed as a lower-carbon energy source and because China has relatively little conventional natural gas supply. In this paper, we first evaluate how much unconventional gas might be available based on an analysis of technically recoverable resources for three types of unconventional gas resources: shale gas, coalbed methane and tight gas. We then develop three alternative scenarios of how this extraction might proceed, using the Geologic Resources Supply Demand Model. Based on our analysis, the medium scenario, which we would consider to be our best estimate, shows a resource peak of 176.1 billion cubic meters (bcm) in 2068. Depending on economic conditions and advance in extraction techniques, production could vary greatly from this. If economic conditions are adverse, unconventional natural gas production could perhaps be as low as 70.1 bcm, peaking in 2021. Under the extremely optimistic assumption that all of the resources that appear to be technologically available can actually be recovered, unconventional production could amount to as much as 469.7 bcm, with peak production in 2069. Even if this high scenario is achieved, China’s total gas production will only be sufficient to meet China’s lowest demand forecast. If production instead matches our best estimate, significant amounts of natural gas imports are likely to be needed. - Highlights: • A comprehensive investigation on China’s unconventional gas resources is presented. • China’s unconventional gas production is forecast under different scenarios. • Unconventional gas production will increase rapidly in high scenario. • Achieving the projected production in high scenario faces many challenges. • The increase of China’s unconventional gas production cannot solve its gas shortage.

  15. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  16. A Greenhouse Gas Balance of Electricity Production from Co-firing Palm Oil Products from Malaysia

    International Nuclear Information System (INIS)

    Wicke, B.; Dornburg, V.; Faaij, A.; Junginger, M.

    2007-05-01

    The Netherlands imports significant quantities of biomass for energy production, among which palm oil has been used increasingly for co-firing in existing gas-fired power plants for renewable electricity production. Imported biomass, however, can not simply be considered a sustainable energy source. The production and removal of biomass in other places in the world result in ecological, land-use and socio-economic impacts and in GHG emissions (e.g. for transportation). As a result of the sustainability discussions, the Cramer Commission in the Netherlands has formulated (draft) criteria and indicators for sustainable biomass production. This study develops a detailed methodology for determining the GHG balance of co-firing palm oil products in the Netherlands based on the Cramer Commission methodology. The methodology is applied to a specific bio-electricity chain: the production of palm oil and a palm oil derivative, palm fatty acid distillate (PFAD), in Northeast Borneo in Malaysia, their transport to the Netherlands and co-firing with natural gas for electricity production at the Essent Claus power plant

  17. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds.

    NARCIS (Netherlands)

    Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A.

    1996-01-01

    Recently developed time-related gas production techniques to quantify the kinetics of ruminant feed fermentation have a high resolution. Consequently, fermentation processes with clearly contrasting gas production kinetics can be identified. Parameterization of the separate processes is possible

  18. In vitro gas production of wheat grain flour coated with different fat ...

    African Journals Online (AJOL)

    Gas production (GP) is a rapid method for feedstuffs assessment. A study was done to investigate wheat grain coated with hydrogenated tallow (HT) and hydrogenated palm oil (HP) of different fatty acids types and levels to study total gas production. Approximately, 200 mg (DM basis) of sample was weighed and inserted in ...

  19. Neutronic of heterogenous gas cooled reactors

    International Nuclear Information System (INIS)

    Maturana, Roberto Hernan

    2008-01-01

    At present, one of the main technical features of the advanced gas cooled reactor under development is its fuel element concept, which implies a neutronic homogeneous design, thus requiring higher enrichment compared with present commercial nuclear power plants.In this work a neutronic heterogeneous gas cooled reactor design is analyzed by studying the neutronic design of the Advanced Gas cooled Reactor (AGR), a low enrichment, gas cooled and graphite moderated nuclear power plant.A search of merit figures (some neutronic parameter, characteristic dimension, or a mixture of both) which are important and have been optimized during the reactor design stage is been done, to aim to comprise how a gas heterogeneous reactor is been design, given that semi-infinity arrangement criteria of rods in LWRs and clusters in HWRs can t be applied for a solid moderator and a gas refrigerator.The WIMS code for neutronic cell calculations is been utilized to model the AGR fuel cell and to calculate neutronic parameters such as the multiplication factor and the pick factor, as function of the fuel burnup.Also calculation is been done for various nucleus characteristic dimensions values (fuel pin radius, fuel channel pitch) and neutronic parameters (such as fuel enrichment), around the design established parameters values.A fuel cycle cost analysis is carried out according to the reactor in study, and the enrichment effect over it is been studied.Finally, a thermal stability analysis is been done, in subcritical condition and at power level, to study this reactor characteristic reactivity coefficients.Present results shows (considering the approximation used) a first set of neutronic design figures of merit consistent with the AGR design. [es

  20. Variability of oil and gas well productivities for continuous (unconventional) petroleum accumulations

    Science.gov (United States)

    Charpentier, Ronald R.; Cook, Troy A.

    2013-01-01

    Over the last decade, oil and gas well productivities were estimated using decline-curve analysis for thousands of wells as part of U.S. Geological Survey (USGS) studies of continuous (unconventional) oil and gas resources in the United States. The estimated ultimate recoveries (EURs) of these wells show great variability that was analyzed at three scales: within an assessment unit (AU), among AUs of similar reservoir type, and among groups of AUs with different reservoir types. Within a particular oil or gas AU (such as the Barnett Shale), EURs vary by about two orders of magnitude between the most productive wells and the least productive ones (excluding those that are dry and abandoned). The distributions of EURs are highly skewed, with most of the wells in the lower part of the range. Continuous AUs were divided into four categories based on reservoir type and major commodity (oil or gas): coalbed gas, shale gas, other low-permeability gas AUs (such as tight sands), and low-permeability oil AUs. Within each of these categories, there is great variability from AU to AU, as shown by plots of multiple EUR distributions. Comparing the means of each distribution within a category shows that the means themselves have a skewed distribution, with a range of approximately one to two orders of magnitude. A comparison of the three gas categories (coalbed gas, shale gas, and other low-permeability gas AUs) shows large overlap in the ranges of EUR distributions. Generally, coalbed gas AUs have lower EUR distributions, shale gas AUs have intermediate sizes, and the other low-permeability gas AUs have higher EUR distributions. The plot of EUR distributions for each category shows the range of variation among developed AUs in an appropriate context for viewing the historical development within a particular AU. The Barnett Shale is used as an example to demonstrate that dividing wells into groups by time allows one to see the changes in EUR distribution. Subdivision into groups

  1. Specific radiological monitoring (SRM) in oil and gas production platforms

    International Nuclear Information System (INIS)

    Hairul Nizam Idris, Syed Asraf Fahlawi Wafa S.M Ghazi and Fadzley Izwan Abd Manaf

    2007-01-01

    Technologically enhanced naturally occurring radioactive materials (TENORM) are present in components of both oil and natural gas production facilities. TENORM can be associated with the presence of crude oil, produced water and natural gas. The radiation exposure pathways to the workers in oil and gas production are similar to those in the uranium and heavy mineral sand mining and processing industry. This paper work provides a short review on the Specific Radiological Monitoring (SRM) program were carried out at oil and gas platforms in the east cost of Peninsular Malaysia. The objective of this paper work is to observe the monitoring parameters levels and to evaluate whether these levels are exceeding the limits set by Atomic Energy Licensing Board (AELB). The monitoring results showed that the surface contamination, airborne contamination and concentration of radon and thoron are well below the set limit stipulated in LEM/TEK/30 SEM.2, except for external radiation and radioactivity concentration of sludge and scales. About 2 (2.35%) from the 85 external radiation measurements performed were found above the permissible limit. While about 11 (36.6%) and 7 (23.3%) of the 30 collected sludge and scales samples were found containing higher Ra-226 and Ra-228, respectively, than the mean concentrations in normal soils of Peninsular Malaysia. In general, it can be concluded that a few of oil and gas production platform are producing TENORM. (Author)

  2. Gulf of Mexico Outer Continental Shelf daily oil and gas production rate projections from 1999 through 2003

    International Nuclear Information System (INIS)

    Melancon, J.M.; Baud, R.D.

    1999-02-01

    This paper provides daily oil and gas production rate projections for the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for the years 1999 through 2003. These projections represent daily oil and gas production estimates at calendar year end. In this report, daily oil production rates include both oil and condensate production, and daily gas production rates include both associated and nonassociated gas production. In addition to providing daily oil and gas production rate projections, the authors have included one figure and one table pertaining to leasing history and one table concerning exploration and development plan approvals

  3. Gulf of Mexico outer continental shelf daily oil and gas production rare projections from 1998 through 2002

    International Nuclear Information System (INIS)

    Melancon, J.M.; Roby, D.S.

    1998-02-01

    This paper provides daily oil and gas production rate projections for the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for the years 1998 through 2002. These projections represent daily oil and gas production estimates at calendar year end. In this report, daily oil production rates include both oil and condensate production, and daily gas production rates include both associated and nonassociated gas production. In addition to providing daily oil and gas production rate projections, the authors have included one figure and one table pertaining to leasing history and one table concerning exploration and development plan approvals

  4. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  5. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  6. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2017-03-01

    Full Text Available The Sichuan Basin represents the earliest area where natural gas is explored, developed and comprehensively utilized in China. After over 50 years of oil and gas exploration, oil and gas reservoirs have been discovered in 24 gas-dominant layers in this basin. For the purpose of predicting natural gas exploration direction and target of each layer in the Sichuan Basin, the sedimentary characteristics of marine and continental strata in this basin were summarized and the forms of multi-cycled tectonic movement and their controlling effect on sedimentation, diagenesis and hydrocarbon accumulation were analyzed. Based on the analysis, the following characteristics were identified. First, the Sichuan Basin has experienced the transformation from marine sedimentation to continental sedimentation since the Sinian with the former being dominant. Second, multiple source–reservoir assemblages are formed based on multi-rhythmed deposition, and multi-layered reservoir hydrocarbon accumulation characteristics are vertically presented. And third, multi-cycled tectonic movement appears in many forms and has a significant controlling effect on sedimentation, diagenesis and hydrocarbon accumulation. Then, oil and gas reservoir characteristics and enrichment laws were investigated. It is indicated that the Sichuan Basin is characterized by coexistence of conventional and unconventional oil and gas reservoirs, multi-layered reservoir hydrocarbon supply, multiple reservoir types, multiple trap types, multi-staged hydrocarbon accumulation and multiple hydrocarbon accumulation models. Besides, its natural gas enrichment is affected by hydrocarbon source intensity, large paleo-uplift, favorable sedimentary facies belt, sedimentary–structural discontinuity plane and structural fracture development. Finally, the natural gas exploration and research targets of each layer in the Sichuan Basin were predicted according to the basic petroleum geologic conditions

  7. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  8. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  9. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  10. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  11. Natural Surfactant Enrichments in the Atlantic Ocean Between 50°N and 50°S: Data from the Atlantic Meridional Transect, Oct-Nov 2014

    Science.gov (United States)

    Sabbaghzadeh, B.; Upstill-Goddard, R. C.; Nightingale, P. D.; Beale, R.

    2016-02-01

    Surfactants that decrease air-sea gas exchange by suppressing the gas transfer velocity (kw) show variable enrichments in the sea surface microlayer (SML) relative to the underlying water. This reflects variability in the rates of surfactant production and consumption. Total surfactant activity (SA: equivalent to Triton-X-100, mgL -1) was determined daily between the UK and the Falkland Islands, during cruise 24 of the Atlantic Meridional Transect programme (AMT 24). Samples were simultaneously obtained from the SML (Garrett screen), from the ship's underway system (inlet at 7m) and in hydrocasts to 500m. SA analysis was by hanging mercury drop electrode polarography (Metrohm 797 VA Computrace). SA enrichment factors (EF: SML SA / underlying water SA) >1 were observed at most locations, showing the SML to be consistently SA-enriched along the entire cruise transect. The persistence of these enrichments up to wind speeds 12m s-¹ support previous conclusions regarding the stability of the SML under high winds. More specifically, SA in the SML was up to four-fold higher in the Atlantic Northern Hemisphere than in the Atlantic Southern Hemisphere. Even so, EF values were not significantly different between the two hemispheres (p >0.05). These various findings have potentially important implications for kw variability across ocean basin scales.

  12. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid

  13. Gas Strategy of China: Developing competition between national production and imports

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-10-01

    The Chinese gas market is facing four key challenges and the government is elaborating responses which will have implications for the Chinese and world energy markets: - Enabling the development of gas demand in order to fight against the issue of air pollution which is particularly strong in the big coast cities of the East and South-East of the country. This means replacing coal and oil by cleaner energy sources, including natural gas for which demand is booming. In such a young market, everything needs to be put in place: from the construction of LNG terminals to the sale and installation of gas stoves. The price of gas needs to be competitive for the market to develop. - Securing supplies: As national production is struggling to follow the rise in demand and as shale gas - of which China owns the second largest reserves in the world - is still a distant dream, this country is more and more reliant on imports. For evident energy security reasons, China diversifies its supplies at the maximum level and develops new energy partnerships. Four importing routes are favoured: LNG transported by ships, the West axis with Central Asia, the South axis with Burma and the new North-East axis with Russia. These imports, which amounted to 53 bcm in 2013, may triple by 2020. Even though China managed to negotiate a favourable price with Russia and its LNG importing price is lower than the one of Japan - thanks to its first LNG importing contracts signed in the early 2000 - imports are expensive, in particular for a country used to producing or importing coal at a very low cost. Up to now, the price at which gas is sold could not cover the import price and this system is not sustainable. - Developing national production: Despite important gas reserves - in particular for unconventional gas (shale gas, tight gas, CBM) - production in China is still not much developed in comparison with its potential and the growth opportunities are significant. Making the best of this potential

  14. Research on technology of online gas chromatograph for SF6 decomposition products

    Science.gov (United States)

    Li, L.; Fan, X. P.; Zhou, Y. Y.; Tang, N.; Zou, Z. L.; Liu, M. Z.; Huang, G. J.

    2017-12-01

    Sulfur hexafluoride (SF6) decomposition products were qualitatively and quantitatively analyzed by several gas chromatographs in the laboratory. Test conditions and methods were selected and optimized to minimize and eliminate the SF6’ influences on detection of other trace components. The effective separation and detection of selected characteristic gases were achieved. And by comparison among different types of gas chromatograph, it was found that GPTR-S101 can effectively separate and detect SF6 decomposition products and has best the best detection limit and sensitivity. On the basis of GPTR-S101, online gas chromatograph for SF6decomposition products (GPTR-S201) was developed. It lays the foundation for further online monitoring and diagnosis of SF6.

  15. Bacterial Community Profiling of H2/CO2 or Formate-Utilizing Acetogens Enriched from Diverse Ecosystems

    Science.gov (United States)

    Han, R.; Zhang, L.; Fu, B.; Liu, H.

    2014-12-01

    Synthetic gases are usually generated from either cellulosic agricultural waste combustion or industrial release and could be subsequently transformed into acetate, ethanol, and/or butyrate by homoacetogenic bacteria, which commonly possess reductive acetyl-CoA synthesis pathway. Homoacetogen-based syngas fermentation technology provides an alternative solution to link greenhouse gas emission control and cellulosic solid waste treatment with biofuels production. The objective of our current project is to hunt for homoacetogens with capabilities of highly efficiently converting syngases to chemical solvents. In this study, we evaluated homoacetogens population dynamics during enrichments and pinpointed dominant homoacetogens representing diverse ecosystems enriched by different substrates. We enriched homoacetogens from four different samples including waste activate sludge, freshwater sediment, anaerobic methanogenic sludge, and cow manure using H2/CO2 (4:1) or formate as substrate for homoacetogen enrichment. Along with the formyltetrahydrofolate synthetase (FTHFS) gene (fhs gene)-specific real time qPCR assay and Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis, 16S rRNA based 454 high-throughput pyrosequencing was applied to reveal the population dynamic and community structure during enrichment from different origins. Enrichment of homoacetogenic populations coincided with accumulations of short chain fatty acids such as acetate and butyrate. 454 high-throughput pyrosequencing revealed Firmicutes and Spirochaetes populations became dominant while the overall microbial diversity decreased after enrichment. The most abundant sequences among the four origins belonged to the following phyla: Firmicutes, Spirochaetes, Proteobacteria, and Bacteroidetes, accounting for 62.1%-99.1% of the total reads. The major putative homoacetogenic species enriched on H2/CO2 or formate belonged to Clostridium spp., Acetobacterium spp., Acetoanaerobium spp

  16. Impurity enrichment and radiative enhancement using induced SOL flow in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; West, W.P.; Wood, R.D.

    1998-07-01

    Experiments on DIII-D have demonstrated the efficacy of using induced scrap-off-layer (SOL) flow to preferentially enrich impurities in the divertor plasma. This SOL floe is produced through simultaneous deuterium gas injection at the midplane and divertor exhaust. Using this SOL flow, an improvement in enrichment (defined as the ratio of impurity fraction in the divertor to that in the plasma core) has been observed for all impurities in trace-level experiments (i.e., impurity level is non-perturbative), with the degree of improvement increasing with impurity atomic number. In the case of argon, exhaust gas enrichment using modest SOL flow is as high as 17. Using this induced SOL flow technique and argon injection, radiative plasmas have been produced that combine high radiation losses (P rad /P input > 70%), low core fuel dilution (Z eff E > 1.0 τ E,ITER93H )

  17. 30 CFR 206.174 - How do I value gas production when an index-based method cannot be used?

    Science.gov (United States)

    2010-07-01

    ... to consider include prices received in spot sales of gas, residue gas or gas plant products, other... part, or timely, for a quantity of gas, residue gas, or gas plant product. (j) Non-binding MMS reviews..., DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Gas § 206.174 How do I value...

  18. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  19. The Supply of Medical Radioisotopes. Market impacts of converting to low-enriched uranium targets for medical isotope production

    International Nuclear Information System (INIS)

    Westmacott, Chad; Cameron, Ron

    2012-01-01

    The reliable supply of molybdenum-99 ( 99 Mo) and its decay product, technetium-99m ( 99m Tc), is a vital component of modern medical diagnostic practices. At present, most of the global production of 99 Mo is from highly enriched uranium (HEU) targets. However, all major 99 Mo-producing countries have recently agreed to convert to using low-enriched uranium (LEU) targets to advance important non-proliferation goals, a decision that will have implications for the global supply chain of 99 Mo/ 99m Tc and the long-term supply reliability of these medical isotopes. This study provides the findings and analysis from an extensive examination of the 99 Mo/ 99m Tc supply chain by the OECD/NEA High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR). It presents a comprehensive evaluation of the potential impacts of converting to the use of LEU targets for 99 Mo production on the global 99 Mo/ 99m Tc market in terms of costs and available production capacity, and the corresponding implications for long-term supply reliability. In this context, the study also briefly discusses the need for policy action by governments in their efforts to ensure a stable and secure long-term supply of 99 Mo/ 99m Tc

  20. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  1. Overview of the 2006-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Test Program

    Science.gov (United States)

    Yamamoto, K.; Dallimore, S. R.

    2008-12-01

    During the winters of 2007 and 2008 the Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resources Canada (NRCan), with Aurora Research Institute as the operator, carried out an on-shore gas hydrate production test program at the Mallik site, Mackenzie Delta, Northwest Territories, Canada. The prime objective of the program was to verify the feasibility of depressurization technique by drawing down the formation pressure across a 12m perforated gas hydrate bearing section. This project was the second full scale production test at this site following the 2002 Japex/JNOC/GSC et al Mallik research program in which seven participants organizatinos from five countries undertook a thermal test using hot water circulation Field work in 2007 was devoted to establishing a production test well, installing monitoring devices outside of casing, conducting base line geophysical studies and undertaking a short test to gain practical experience prior to longer term testing planned for 2008 . Hydrate-dissociated gas was produced to surface by depressurization achieved by lowering the fluid level with a dowhole pump. However, the operation was terminated 60 hours after the start of the pumping mainly due to sand production problems. In spite of the short period (12.5 hours of ellapsed pumping time), at least 830m3 of the gas was produced and accumulated in the borehole. Sand screens were installed across the perforated interval at the bottom hole for the 2008 program to overcome operational problems encountered in 2007 and achieve sustainable gas production. Stable bottom hole flowing pressures were successfully achieved during a 6 day test with continuous pump operation. Sustained gas production was achieved with rates between 2000- 4000m3/day and cummulative gas volume in the surface of approximately 13,000m3. Temperature and pressure data measured at the bottom hole and gas and water production rates gave positive evidence for the high efficiency of gas

  2. Current status of production and supply of molybdenum-99 and 99Mo/99mTc generators in Indonesia

    International Nuclear Information System (INIS)

    Mutalib, A.

    2003-01-01

    Production of high-specific activity molybdenum-99 and 99 Mo/ 99m Tc Generators in Indonesia commenced when a new production facility supported by the presence of a 30 MW multipurpose reactor (RSG-GAS) was established in Serpong in 1990. This report describes the current production and supply of molybdenum-99m devoted mainly to fulfill the domestic demands in supplying 99 Mo/ 99m Tc Generators. Recent development on the use of LEU (Low Enriched Uranium) targets for replacing current HEU (High Enriched Uranium) targets in the production of 99 Mo will be reviewed briefly. (author)

  3. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  4. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  5. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-10-01

    Full Text Available Background: Distiller's dried grains with solubles (DDGS and soybean meal were used as the substrates for the production of polyunsaturated fatty acids (PUFA in solid-state fermentation (SSF by Mortierella alpine. These fermented products were fed to laying hens. PUFA enrichment from chicken breasts was studied. Methods: The maximum productivity of PUFA was achieved under optimized process condition, including 1% w/w yeast extract as additive, an incubation period of 5 days at 12°C, 10% v/w inoculum level, 75% moisture content, and pH 6.0. The hens were then fed with ration containing soybean DDGS, rapeseed oil, soybean oil, and peanut oil. The control group was fed with basal ration. Results: Under the optimal condition, M. alpine produced total fatty acids (TFA of 182.34 mg/g dry substrate. It has better mycelial growth when soybean meal was added to DDGS (SDDGS. PUFA in fermentation product increased with higher soybean meal content. The addition of 70% soybean meal to DDGS substrate yielded 175.16 mg of TFA, including 2.49 mg eicosapentaenoic acid (EPA and 5.26 mg docosahexaenoic acid (DHA. The ratios of ω-6/ω-3 found in chicken breasts fat were all lower than that found in control by 36.98, 31.51, 18.15, and 12.63% for SDDGS, rapeseed oil, soybean oil, and peanut oil, respectively. Conclusions: This study identified an optimized SSF process to maximize PUFA productivity by M. alpine as the strain. This PUFA-enriched feed increased the PUFA contents as well as the proportions of ω-6 and ω-3 in chicken breasts and liver.

  6. Uranium enrichment in South Africa: from the world-unique Z-plant to the use of high-technology lasers

    International Nuclear Information System (INIS)

    McDowell, M.W.

    1995-01-01

    A historical discussion of the technology used in South Africa for the enrichment of uranium, as well as other technological spin-offs for the country that followed from the construction of the Z-plant. The national energy strategy and objectives of the government during the Apartheid years resulted in the development of several large-scale energy projects. The pressure of sanctions forced the Z-plant to be rushed into operation at an uneconomical capacity of 250 000 SWU per annum. In 1994 this implied that enriched uranium was produced at a cost of $200 per SWU while the world market price was below $90. While the production of enriched uranium at the Z-plant ceased early in 1995, the expertise gained will not be lost entirely. As a result of the high energy and financial capital intensive current methods of producing enriched uranium, research started in the early 1970's into alternative production processes making use of lasers. South Africa has opted for the MLIS (molecular laser isotope separation) process, as a result of its vast experience gained from the Z-plant in the handling of the molecular input gas UF6 (uranium hexafluoride), and this has been under development since the early 1980's. During 1994 significant progress was made with MLIS, in particular with single-step enrichment from natural uranium to better than 4% uranium 235 on a macro scale. The Atomic Energy Corporation of South Africa's strategy is to licence the process internationally. 3 tabs., 3 figs

  7. Use of Se-enriched mustard and canola seed meals as potential bioherbicides and green fertilizers in strawberry production

    Science.gov (United States)

    New plant-based products can be produced from seed harvested from Brassica species used for phytomanaging selenium (Se) in the westside of central California. We tested Se-enriched seed meals produced from canola (Brassica napus) and mustard (Sinapis alba) plants as potential bio-herbicides and as g...

  8. Exploration and production of crude oil and natural gas in Germany in 2012

    International Nuclear Information System (INIS)

    Pasternak, Michael

    2013-01-01

    This article presents an overview of oil and gas exploration and production in Germany in 2012. The report is based on data gathered on a regular basis by the State Authority for Mining, Energy and Geology (LBEG) from the oil and gas companies and the other state mining offices. Due to the granting of new licences in the last years, a significant increase of geophysical prospecting of the subsurface for oil and gas deposits was observed. Six 3D seismic surveys were conducted. Five surveys were located in the Upper Rhine Valley and one in the lowlands of Northwest Germany. 2D seismic data were acquired in Lusatia (Brandenburg) and at the coast of the Baltic Sea. The number of exploration wells decreased once again. In 2012 nine exploration wells were drilled, compared to ten in the previous year. In addition to that number, another seven exploration wells were drilled to total depth already before 2012, but not completed by final well results in 2012. None of the ten new field wildcats were completed by result. Three exploration wells (appraisal wells) were completed successfully. Two of these wells confirmed the presence of gas and one the presence of oil. The number of development wells decreased significantly. In 2012 31 wells were drilled, compared to 46 in the prominent year 2011. Another 13 wells were drilled to total depth already before 2012, but not completed by final well results in 2012. 31 wells were completed successfully. 30 of these wells encountered oil or gas pay zones. In 2011 drilling meterage has reached its highest value since 1998. In contrast the total drilling meterage decreased slightly by less than 2000 m to 71,424 min 2012. The natural gas production continued its downward trend. Due to the depletion of gas fields, the annual natural gas production dropped by 9.1% compared to the previous year and amounted to 11.7 billion m 3 (field quality). After the increase in 2011, the annual crude oil production decreased by 2.1% to 2.6 million t

  9. European energy security. An analysis of future Russian natural gas production and exports

    Energy Technology Data Exchange (ETDEWEB)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden)

    2010-12-15

    The widening gap between EU gas production and consumption may require an 87% increase of import volumes between 2006 and 2030, and there are great uncertainties regarding the amounts of gas that can be expected from new suppliers. The potential of increased production from Norway and Algeria is limited; hence, Russia is likely to play a crucial part of meeting the anticipated growing gas demand of the EU. A field-by-field study of 83 giant gas fields shows that the major producing Russian gas fields are in decline, and by 2013 much larger supplies from the Yamal Peninsula and the Shtokman field will be needed in order to avoid a decline in production. Gas from fields in Eastern Siberia and the Far East will mainly be directed to the Asian and Pacific Rim markets, thereby limiting its relevance to the European and CIS markets. As a result, the maximum export increase to the European and CIS markets amounts only to about 45% for the period 2015-2030. The discourse surrounding the EU's dependence on Russian gas should thus not only be concerned with geopolitics, but also with the issue of resource limitations. (author)

  10. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  11. Gas tagging system development in Japan

    International Nuclear Information System (INIS)

    Sekiguchi, N.; Rindo, H.; Akiyama, T.; Miyazawa, T.; Heki, H.

    1981-05-01

    The Gas tagging method has been considered to be most desirable for a failed fuel location system for the fast breeder reactor, regarding the component reduction in the reactor vessel and rapid location during reactor operation. The gas tagging system has been designed by referring to R and D results obtained in Japan and other countries. The designed system is comprised of tag gas filling pins, cover gas sampling system, tag gas recovery and enrichment system, tag gas analyzer and system control and data handling computers. The main specifications for this system have been decided as follows; 1) Main function is location of failed fuels in core and a part of blanket region, 2) Identification capability is each subassembly, 3) Time for identification is within a few days, 4) Continuous operation with automatic start at fuel failure, 5) Detection sensitivity must cover both gas leak and pin burst. In designing the gas tagging system, the following R and D items were selected; 1) System design study, 2) Tag gas capsule development, 3) Modeling the tag gas behavior in reactor primary cooling system, 4) Tag gas recovery and enrichment system, 5) Computer code development for tag gas isotope ratio change estimation. Details of the Japanese gas tagging system development appear in this paper. (author)

  12. CMS endcap RPC gas gap production for upgrade

    International Nuclear Information System (INIS)

    Park, S K; Choi, S; Hong, B; Jeng, Y Gun; Kang, M; Lee, K S; Sim, K-S; Colaleo, A; Pugliese, G; Loddo, F; Calabria, C; Maggi, M; Verwillingen, P; Berzano, U; Carrillo, C; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Shopova, M

    2012-01-01

    The CMS experiment will install a RE4 layer of 144 new Resistive Plate Chambers (RPCs) on the existing york YE3 at both endcap regions to trigger high momentum muons from the proton-proton interaction. In this paper, we present the detailed procedures used in the production of new RPC gas gaps adopted in the CMS upgrade. Quality assurance is enforced as ways to maintain the same quality of RPC gas gaps as the existing 432 endcap RPC chambers that have been operational since the beginning of the LHC operation. (technical report)

  13. Biosensor technology for the detection of illegal drugs I: objectives, preparatory work, and drug enrichment

    Science.gov (United States)

    Hilpert, Reinhold; Binder, Florian; Grol, Michael; Hallermayer, Klaus; Josel, Hans-Peter; Klein, Christian; Maier, Josef; Oberpriller, Helmut; Ritter, Josef; Scheller, Frieder W.

    1994-10-01

    In a joint project of Deutsche Aerospace, Boehringer Mannheim and the University of Potsdam portable devices for the detection of illegal drugs, based on biosensor technology, are being developed. The concept enrichment of the drug from the gas phase and detection by immunological means. This publication covers the description of our objectives, preparatory work and results concerning enrichment of drugs from the gas phase. Vapor pressures of cocaine and cannabinoids have been determined. A test gas generator has been constructed which allows for reproducible preparation of cocaine concentrations between 2 ng/l and 2 pg/l. Coupling of a thermodesorption unit with GC/MS has been established for reference analysis. As another analytical tool, an ELISA with a lower detection limit of about 0,5 pg cocaine/assay has been developed. Applying fleece-type adsorbers, enrichment factors for cocaine in the range of 105 have been realized. No significant interference was found with potentially disturbing substances.

  14. Management's Ecstasy and Disparity Over Job Enrichment

    Science.gov (United States)

    King, Albert S.

    1976-01-01

    A case study analyzing job enrichment schemes and manager expectations of increased productivity is presented. It was found that it was the managers' expectations of increased productivity, not the reorganization of work, that led to higher productivity. (EC)

  15. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  16. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    International Nuclear Information System (INIS)

    Ward, R.; Rosenthal, M.

    2009-01-01

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector's efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the 'Option 4' safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo's paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

  17. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Science.gov (United States)

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A review of literature relevant to gas production in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A review of relevant recent papers on gas generation in low-level wastes and intermediate-level wastes is presented. Chemical, microbiological, radiolytic and thermal reactions are considered for both unconditioned wastes and wastes conditioned in cement, or bitumen, or polymer. Possible reaction mechanisms are identified and the effects of temperature and pressure are evaluated. Estimations of the production of combustible gases (which also have the potential to form explosive mixtures) have been taken from the literature. The implications of gas production for pressurisation (and possible rupture) of waste drums and of a repository are assessed. Waste-treatment schemes for the reduction of gas-generation capacity of several waste-types are highlighted. Recommendations for further work are summarised. (author)

  19. The NNSA global threat reduction initiative's efforts to minimize the use of highly enriched uranium for medical isotope production

    International Nuclear Information System (INIS)

    Staples, Parrish

    2010-01-01

    The mission of the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction (GTRI) is to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. GTRI is a key organization for supporting domestic and global efforts to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications. GTRI implements the following activities in order to achieve its threat reduction and HEU minimization objectives: Converting domestic and international civilian research reactors and isotope production facilities from the use of HEU to low enriched uranium (LEU); Demonstrating the viability of medical isotope production technologies that do not use HEU; Removing or disposing excess nuclear and radiological materials from civilian sites worldwide; and Protecting high-priority nuclear and radiological materials worldwide from theft and sabotage. This paper provides a brief overview on the recent developments and priorities for GTRI program activities in 2010, with a particular focus on GTRI's efforts to demonstrate the viability of non-HEU based medical isotope production technologies. (author)

  20. Different palm oil production systems for energy purposes and their greenhouse gas implications

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955; Dornburg, V.|info:eu-repo/dai/nl/189955007; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2008-01-01

    This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to