WorldWideScience

Sample records for enriched gadolinia burnable

  1. A feasibility study for the application of enriched gadolinia burnable absorber rods in nuclear core design

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Zee, Sung Quun; Kim, Kang Seog; Song, Jae Seung

    2000-12-01

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  2. A study on the nuclear characteristics of enriched gadolinia burnable absorber rods; the first year (2000) report

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C.C.; Song, J. S.; Cho, B. O.; Joo, H. G.; Park, S. Y.; Kim, H. Y.; Cho, J. Y.; Kim, K. S.

    2001-04-01

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  3. PWR fuel of high enrichment with erbia and enriched gadolinia

    International Nuclear Information System (INIS)

    Bejmer, Klaes-Håkan; Malm, Christian

    2011-01-01

    Today standard PWR fuel is licensed for operation up to 65-70 MWd/kgU, which in most cases corresponds to an enrichment of more than 5 w/o "2"3"5U. Due to criticality safety reason of storage and transportation, only fuel up to 5 w/o "2"3"5U enrichment is so far used. New fuel storage installations and transportation casks are necessary investments before the reactivity level of the fresh fuel can be significantly increased. These investments and corresponding licensing work takes time, and in the meantime a solution that requires burnable poisons in all pellets of the fresh high-enriched fuel might be used. By using very small amounts of burnable absorber in every pellet the initial reactivity can be reduced to today's levels. This study presents core calculations with fuel assemblies enriched to almost 6 w/o "2"3"5U mixed with a small amount of erbia. Some of the assemblies also contain gadolinia. The results are compared to a reference case containing assemblies with 4.95 w/o "2"3"5U without erbia, utilizing only gadolinia as burnable poison. The comparison shows that the number of fresh fuel assemblies can be reduced by 21% (which increases the batch burnup by 24%) by utilizing the erbia fuel concept. However, increased cost of uranium due to higher enrichment is not fully compensated for by the cost gain due to the reduction of the number assemblies. Hence, the fuel cycle cost becomes slightly higher for the high enrichment erbia case than for the reference case. (author)

  4. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  5. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Watanabe, Shouichi; Yoshioka, Kenichi; Mitsuhashi, Ishi; Kumanomido, Hironori; Sugahara, Satoshi; Hiraiwa, Kouji

    2009-01-01

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO 2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO 2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO 2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  6. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  7. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  8. An evaluation of nuclear design characteristics of duplex burnable poison rods for extended cycle core

    International Nuclear Information System (INIS)

    Lee, D. J.; Kim, M. H.; Song, K. W.

    2003-01-01

    Nuclear design characteristics of duplex burnable poison rod were evaluated for three integral type burnable absorbers; Gadolinia, Erbia and IFBA. Inter-comparison was done for both 12 and 24 month cycle for Korean Standard Nuclear Plant. Fuel assemblies with duplex BP was designed to the equivalent assembly with 8 and 16 gadolinia BP 2 . Duplex BP is composed of inner region of natural U-Gd 2 O 3 , and outer shell of, UO 2 -Er2O 3 . In order to evaluate the duplex BP, assemblies with erbia and IFBA were compared with alternative options. A sensitivity studies were performed to the size of region, compositions and location of duplex BPs. It was shown that duplex BP gave favorable k-infinite curve to burnup, but IFBA provided the least residual reactivity penalty as EOC. Erbia was good for more negative MTCs. IFBA and erbia had better neutronic performance than gadolinia od duplex BP in the aspect of pin power peaking

  9. Radial power distribution shaping within a PWR fuel assembly utilizing asymmetrically loaded gadolinia-bearing fuel pins

    International Nuclear Information System (INIS)

    Stone, I.Z.

    1992-01-01

    As in-core fuel management designs evolve to meet the demands of increasing energy output, more innovative methods are developed to maintain power peaking within acceptable thermal margin limits. In-core fuel management staff must utilize various loading pattern strategies such as cross-core movement of fuel assemblies, multibatch enrichment schemes, and burnable absorbers as the primary means of controlling the radial power distribution. The utilization of fresh asymmetrically loaded gadolinia-bearing assemblies as a fuel management tool provides an additional means of controlling the radial power distribution. At Siemens Nuclear Power Corporation (SNP), fresh fuel assemblies fabricated with asymmetrically loaded gadolinia-bearing fuel rods have been used successfully for several cycles of reactor operation. Asymmetric assemblies are neutronically modeled using the same tools and models that SNP uses to model symmetrically loaded gadolinia-bearing fuel assemblies. The CASMO-2E code is used to produce the homogenized macroscopic assembly cross sections for the nodal core simulator. Optimum fuel pin locations within the asymmetrical assembly are determined using the pin-by-pin PDQ7 assembly core model for each new assembly design. The optimum pin location is determined by the rod loading that minimizes the peak-to-average pin power

  10. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  11. Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Carmona, Roberto; Oropeza, Ivonne P.

    2007-01-01

    An optimization methodology based on the Genetic Algorithms (GA) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The optimization algorithm was linked to the HELIOS code to evaluate the neutronic parameters included in the objective function. The goal is to search for a fuel lattice with the lowest average enrichment, which satisfy a reactivity target, a local power peaking factor (PPF), lower than a limit value, and an average gadolinia concentration target. The methodology was applied to the design of a 10 x 10 fuel lattice, which can be used in fuel assemblies currently used in the two BWRs operating at Mexico. The optimization process showed an excellent performance because it found forty lattice designs in which the worst one has a better neutronic performance than the reference lattice design. The main contribution of this study is the development of an efficient procedure for BWR fuel lattice design, using GA with an objective function (OF) which saves computing time because it does not require lattice burnup calculations

  12. Experience in the use of low concentration gadolinia as a PWR fuel burnable absorber

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Segovia, M.A.

    2001-01-01

    A description is provided of the low concentration gad design being used in the Spanish 3-loop 17 x 17 fueled PWR's. This design uses a relatively small number of high concentration gadolinia fuel rods (6 and 8 w/o Gd 2 O 3 ) with a large number of low concentration gad rods (2 w/o Gd 2 O 3 ). The 2 w/o gad rods substitute, in part, the high concentration gad rods, thereby helping reduce the end of cycle reactivity penalty from the residual absorption in the gadolinium. The low concentration gad design is advantageous for long cycles (18+ months) and plant up-rating scenarios in that the soluble boron concentration increases that would otherwise result for these situations are avoided. These boron concentration increases could have potentially adverse effects on the plant, since the moderator temperature coefficient (MTC) is made less negative, the effectiveness of the boron shutdown safety systems is reduced, and the safety margins are eroded for some accidents, such as for boron dilution events. These increases in the boron concentration would also require the plant to operate at higher lithium (Li) concentrations in the coolant in order to maintain the pH level at the desired value. Operation at the higher Li concentrations is undesirable because of the concerns over the potential impact on the fuel assembly material performance (e.g., crud and corrosion). This paper also reviews the APA (Alpha/Phoenix-P/ANC) nuclear design code system performance for the low concentration gad design. The design system performance for the reload cores that have or are employing this design has been completely satisfactory. The performance and accuracy of the nuclear design methodology is found to be as good for this design as for the reload cores that use exclusively high gad concentrations, or those that use WABA's - the discrete burnable absorber (BA) used prior to its substitution for gadolinium. (authors)

  13. Characteristics and use of urania-gadolinia fuels

    International Nuclear Information System (INIS)

    1995-11-01

    Burnable absorber fuels (BAF) are utilized, or are being considered for utilization, in all BWRs, in most PWRs and more recently in WWERs. The topic is therefore relevant to approximately 330 out of the 420 operating reactors in the world, representing 280 of the 330 GW(e) installed capacity worldwide. In the light of this importance, the IAEA has decided to issue this report providing an overall view of the various aspects of BAF. With the exception of Chapter 1, the whole report is devoted to urania-gadolinia fuel (''Gd fuel''), the most commonly used BAF, and a comprehensive technical review of this topic is provided, although the report does not include a complete survey of all examples of Gd utilization throughout the industry. Refs, figs and tabs

  14. Analytical out-of-pile and in-pile experiments on gadolinia bearing fuels

    International Nuclear Information System (INIS)

    Bruet, M.; Francois, B.; Do, Q.; Bergeron, J.; Trotabas, M.

    1986-06-01

    New fuel management schemes in PWRs can be achieved through the use of burnable poisons like gadolinia bearing fuel rods. However, the introduction of such a design has required a qualification program, which has been performed in collaboration between CEA, FRAGEMA and/or FRAMATOME by specialized teams in CEA facilities. The main scoops of this program concern: the fabrication process; the out of pile physical properties determination: the in pile thermomechanical behaviour and fission product release; the neutronic studies in view to validate the Computed Gd efficiency and the LBP depletion calculation schemes and to analyse and assess various schemes of core calculations

  15. Neutronic analysis of a fuel element with variations in fuel enrichment and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Martins, Felipe; Velasquez, Carlos E.; Cardoso, Fabiano; Fortini, Angela; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In this work, the goal was to evaluate the neutronic behavior during the fuel burnup changing the amount of burnable poison and fuel enrichment. For these analyses, it was used a 17 x 17 PWR fuel element, simulated using the 238 groups library cross-section collapsed from ENDF/BVII.0 and TRITON module of SCALE 6.0 code system. The results confirmed the effective action of the burnable poison in the criticality control, especially at Beginning Of Cycle (BOC) and in the burnup kinetics, because at the end of the fuel cycle there was a minimal residual amount of neutron absorbers ({sup 155}Gd and {sup 157}Gd), as expected. At the end of the cycle, the fuel element was still critical in all simulated situations, indicating the possibility of extending the fuel burn. (author)

  16. Comparison of heuristic optimization techniques for the enrichment and gadolinia distribution in BWR fuel lattices and decision analysis

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Martín-del-Campo, Cecilia; Montes-Tadeo, José-Luis; François, Juan-Luis; Ortiz-Servin, Juan-José; Perusquía-del-Cueto, Raúl

    2014-01-01

    Highlights: • Different metaheuristic optimization techniques were compared. • The optimal enrichment and gadolinia distribution in a BWR fuel lattice was studied. • A decision making tool based on the Position Vector of Minimum Regret was applied. • Similar results were found for the different optimization techniques. - Abstract: In the present study a comparison of the performance of five heuristic techniques for optimization of combinatorial problems is shown. The techniques are: Ant Colony System, Artificial Neural Networks, Genetic Algorithms, Greedy Search and a hybrid of Path Relinking and Scatter Search. They were applied to obtain an “optimal” enrichment and gadolinia distribution in a fuel lattice of a boiling water reactor. All techniques used the same objective function for qualifying the different distributions created during the optimization process as well as the same initial conditions and restrictions. The parameters included in the objective function are the k-infinite multiplication factor, the maximum local power peaking factor, the average enrichment and the average gadolinia concentration of the lattice. The CASMO-4 code was used to obtain the neutronic parameters. The criteria for qualifying the optimization techniques include also the evaluation of the best lattice with burnup and the number of evaluations of the objective function needed to obtain the best solution. In conclusion all techniques obtain similar results, but there are methods that found better solutions faster than others. A decision analysis tool based on the Position Vector of Minimum Regret was applied to aggregate the criteria in order to rank the solutions according to three functions: neutronic grade at 0 burnup, neutronic grade with burnup and global cost which aggregates the computing time in the decision. According to the results Greedy Search found the best lattice in terms of the neutronic grade at 0 burnup and also with burnup. However, Greedy Search is

  17. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  18. The burnable poisons utilization for fissile enriched CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D; Nainer, O [Team 3 Solutions, Don Mills, ON (Canada)

    1996-12-31

    Utilization of burnable poison for the fissile enriched fueled CANDU 6 Mk1 core is investigated. The main incentives for this analysis are the reduction of void reactivity effects, the maximization of the fissile content of fresh fuel bundles, and the achievement of better power shape control, in order to preserve the power envelope of the standard 37 rod fuel bundle. The latter allows also the preservation of construction parameters of the standard core (for example: number and location of reactivity devices). It also permits the use of regular shift fueling schemes. The paper makes analyses of MOX weapons-grade plutonium and 1.2% SEU fueled CANDU 6 Mk 1 cores. (author). 6 refs., 4 tabs., 10 figs.

  19. Heat capacity of Dy6UO12(s)

    International Nuclear Information System (INIS)

    Sahu, M.; Nagara, B.K.; Saxena, M.K.; Dash, S.

    2010-01-01

    There is a need to improve the reactor performance through longer cycle length, which is being carried out by initial fuel enrichment. This additional fuel enrichment is being compensated by introduction of additional neutron absorber material called as burnable poison. Burnable poisons are materials having one or more isotopes which have high neutron absorption cross section and gets converted into other isotopes of relatively low absorption cross section. The use of burnable poison provides the necessary negative moderator reactivity coefficient at the beginning of core life and helps shape core power distribution. Usually rare-earth elements such as gadolinium, dysprosium and samarium have been applied for this purpose. Presently gadolinia doped urania is being used as burnable poison in boiling water reactor (BWR)

  20. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  1. Optimization of axial enrichment and gadolinia distributions for BWR fuel under control rod programming, (2)

    International Nuclear Information System (INIS)

    Hida, Kazuki; Yoshioka, Ritsuo

    1992-01-01

    A method has been developed for optimizing the axial enrichment and gadolinia distributions for the reload BWR fuel under control rod programming. The problem was to minimize the enrichment requirement subject to the criticality and axial power peaking constraints. The optimization technique was based on the successive linear programming method, each linear programming problem being solved by a goal programming algorithm. A rapid and practically accurate core neutronics model, named the modified one-dimensional core model, was developed to describe the batch-averaged burnup behavior of the reload fuel. A core burnup simulation algorithm, employing a burnup-power-void iteration, was also developed to calculate the rigorous equilibrium cycle performance. This method was applied to the optimization of axial two- and 24-region fuels for demonstrative purposes. The optimal solutions for both fuels have proved the optimality of what is called burnup shape optimization spectral shift. For the two-region fuel with a practical power peaking of 1.4, the enrichment distribution was nearly uniform, because a bottom-peaked burnup shape flattens the axial power shape. Optimization of the 24-region fuel has shown a potential improvement in BWR fuel cycle economics, which will guide future advancement in BWR fuel designs. (author)

  2. Modification of Japanese first nuclear ship reactor for a regional energy supply system using gadolinia as a burnable poison

    International Nuclear Information System (INIS)

    Sato, Kotaro; Shimazu, Yoichiro; Narabayashi, Tadashi; Tsuji, Masashi

    2009-01-01

    In our laboratory, a small regional energy supply system which uses a small nuclear reactor has been studied for a long time. This system could supply not only heat but also electricity. Heat could be used for hot-water supply, a heating system of a house, melting snow and so on. In this point, this system seems to be useful for the places like northern part of Japan where it snows in winter. This reactor is based on Nuclear Ship Mutsu which was developed as the first nuclear ship of Japan about 40 years ago. It has several advantages for a small reactor. For example, its moderator temperature coefficient is always to be deeply negative because boric acid solution is not used in moderator and coolant. This can lead to a self-controlled operation without control rod maneuvering for load change. But some modifications have been performed in order to satisfy requirements such as (1) longer core life without refueling and reshuffling, (2) reactivity adjustment for load change without control rods or soluble boron, (3) simpler operations for load changes and (4) ultimate safety with sufficient passive capability. In our previous study, we confirmed the core based on Mutsu core had longer core life (about 10 years) using high uranium enrichment fuel (more than 5wt%) and current 17x17 fuel assemblies. We also confirmed excess reactivity during the cycle could be suppressed using combination of erbium oxide (Er 2 O 3 ) and gadolinium oxide (Gd 2 O 3 ) as burnable poisons. Er 2 O 3 has advantages such that criticality safety can be kept even if uranium enrichment is more than 5wt% and burnup characteristics of the core can be gradual. But at this time there are 2 problems to apply for the core using Er 2 O 3 in Japan. First problem is that more than 5wt% enrichment fuel is not yet accepted in Japan. Second problem is that there are no experiences of using Er 2 O 3 in commercial reactors in Japan. Considering these problems, we have to modify the design of the core, using

  3. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  4. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  5. Burnable poison rod

    International Nuclear Information System (INIS)

    Natsume, Tomohiro.

    1988-01-01

    Purpose: To decrease the effect of water elimination and the effect of burn-up residue boron, thereby reduce the effect of burnable poison rods as the neutron poisons at the final stage of reactor core lifetime. Constitution: In a burnable poison rod according to the present invention, a hollow burnable poison material is filled in an external fuel can, an inner fuel can mounted with a carbon rod is inserted to the hollow portion of the burnable poison material and helium gases are charged in the outer fuel can. In such a burnable poison rod, the reactivity worths after the burning are reduced to one-half as compared with the conventional case. Accordingly, since the effect of the burnable poison as the neutron poisons is reduced at the final stage of the reactor core of lifetime, the excess reactivity of the reactor core is increased. (Horiuchi, T.)

  6. Experience in the use of low concentration gadolinia as a PWR fuel burnable absorber

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Segovia, M.A.

    2001-01-01

    A description is provided of the low concentration gad design being used in the Spanish 3-loop 17 x 17 fueled PWR's. This design uses a relatively small number of high concentration gadolinia fuel rods (6 and 8 w/o Gd2O3) with a large number of low concentration gad rods (2 w/o Gd2O3). The 2 w/o gad rods substitute, in part, the high concentration gad rods, thereby helping reduce the end of cycle reactivity penalty from the residual absorption in the gadolinium. The low concentration gad design is advantageous for long cycles (more than 18 months) and plant up-rating scenarios in that the soluble boron concentration increases that would otherwise result for these situations are avoided. These boron concentration increases could have potentially adverse effects on the plant, since the moderator temperature coefficient (MTC) is made less negative, the effectiveness of the boron shutdown safety systems is reduced, and the safety margins are eroded for some accidents, such as for boron dilution events. This paper also reviews the APA nuclear design code system performance for the low concentration gad design. (author)

  7. Measurement of reactivity worths of burnable poison rods in enriched uranium graphite-moderated core simulated to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi; Takeuchi, Motoyoshi; Kitadate, Kenji; Yoshifuji, Hisashi; Kaneko, Yoshihiko

    1980-11-01

    As the core design for the Experimental Very High Temperature Gas Cooled Reactor progresses, evaluation of design precision has become increasingly important. For a high precision design, it is required to have adequate group constants based on accurate nuclear data, as well as calculation methods properly describing the physical behavior of neutrons. We, therefore, assembled a simulation core for VHTR, SHE-14, using a graphite-moderated 20%-enriched uranium Semi-Homogeneous Experimental Critical Facility (SHE), and obtained useful experimental data in evaluating the design precision. The VHTR is designed to accommodate burnable poison and control rods for reactivity compensation. Accordingly, the experimental burnable poison rods which are similar to those to be used in the experimental reactor were prepared, and their reactivity values were measured in the SHE-14 core. One to three rods of the above experimental burnable poison rods were inserted into the central column of the SHE-14 core, and the reactivity values were measured by the period and fuel rod substitution method. The results of the measurements have clearly shown that due to the self-shielding effect of B 4 C particles the reactivity value decreases with increasing particle diameter. For the particle diameter, the reactivity value is found to increase linearly with the logarithm of boron content. The measured values and those calculated are found to agree with each other within 5%. These results indicate that the reactivity of the burnable poison rod can be estimated fairly accurately by taking into account the self-shielding effect of B 4 C particles and the heterogeneity of the lattice cell. (author)

  8. Burnable poison rod

    International Nuclear Information System (INIS)

    Natsume, Tomohiro.

    1988-01-01

    Purpose: To increase the reactor core lifetime by decreasing the effect of neutron absorption of burnable poison rods by using material with less neutron absorbing effect. Constitution: Stainless steels used so far as the coating material for burnable poison rods have relatively great absorption in the thermal neutral region and are not preferred in view of the neutron economy. Burnable poison rods having fuel can made of zirconium alloy shows absorption the thermal neutron region lower by one digit than that of stainless steels but they shows absorption in the resonance region and the cost is higher. In view of the above, the fuel can of the burnable poison material is made of aluminum or aluminu alloy. This can reduce the neutron absorbing effect by stainless steel fuel can and effectively utilize neutrons that have been wastefully absorbed and consumed in stainless steels. (Takahashi, M.)

  9. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  10. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  11. Heterogeneous burnable poisons:

    International Nuclear Information System (INIS)

    Leiva, Sergio; Agueda, Horacio; Russo, Diego

    1989-01-01

    The use of materials possessing high neutron absorption cross-section commonly known as 'burnable poisons' have its origin in BWR reactors with the purpose of improving the efficiency of the first fuel load. Later on, it was extended to PWR to compensate of initial reactivity without infringing the requirement of maintaining a negative moderator coefficient. The present tendency is to increase the use of solid burnable poisons to extend the fuel cycle life and discharge burnup. There are two concepts for the burnable poisons utilization: 1) heterogeneously distributions in the form of rods, plates, etc. and 2) homogeneous dispersions of burnable poisons in the fuel. The purpose of this work is to present the results of sinterability studies, performed on Al 2 O 3 -B 4 C and Al 2 O 3 -Gd 2 O 3 systems. Experiments were carried on pressing at room temperature mixtures of powders containing up to 5 wt % of B 4 C or Gd 2 O 3 in Al 2 O 3 and subsequently sintering at 1750 deg C in reducing atmosphere. Evaluation of density, porosity and microstructures were done and a comparison with previous experiences is shown. (Author) [es

  12. Evaluation of the presence of a burnable absorber in an assembly 3x3 type PWR

    International Nuclear Information System (INIS)

    Martinez F, M. A.; Del Valle G, E.; Alonso V, G.

    2008-01-01

    In the present work the effect is evaluated that causes the presence of a burnable absorber in an adjustment of rods of 3x3 of a fuel assembly type PWR using CASMO-4 code, when comparing the infinite multiplication factor and some average cross sections by means of codes MCNP-4A, CASMO-3 and HELIOS. For this evaluation two cases are evaluated: first consists of an adjustment of rods of 3x3 full completely of fuel and the second consists of a central rod full with a burnable absorber type wet annular burnable absorber (WABA) and the remaining full fuel rods. In both cases the enrichment of the fissile isotopes is varied, for two types of fuel, MOX degree armament and UO 2 . (Author)

  13. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    Villarino, Eduardo Anibal

    2002-01-01

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  14. Summary of SEMO experience with PWR's cores containing Gadolinia bearing fuel in Tihange 1 nuclear power station

    International Nuclear Information System (INIS)

    Melice, M.; Jadot, J.J.; Duflou, P.; Wergifosse, C. de

    1984-01-01

    Future operating plans for Tihange unit 1 are based on cycle lengths approaching 18 months (from cycle 12). Since cycle 7, Gadolinia bearing assemblies were included in the reload batches in order to evaluate neutronic design methods employed. This Gadolinia program is briefly set out. Comparisons of measured to calculated data following the performance of the Gadolinia assemblies through cycles 7 and 8 are discussed. Loading pattern of cycle 9 including 4 Gadolinia high concentration assemblies and special features of cycle 10 are presented. An original device for ''in situ'' Gadolinia rod insertion into fresh assemblies is shortly described. (author)

  15. Fuel assembly and burnable poison rod

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1993-01-01

    In a fuel assembly having burnable poison rods arranged therein, the burnable poison comprises an elongate small outer tube and an inner tube coaxially disposed within the outer tube. Upper and lower end tubes each sealed at one end are connected to both of the upper and lower ends in the inner and the outer tubes respectively. A coolant inlet hole is disposed to the lower end tube, while a coolant leakage hole is disposed to the upper end tube. Burnable poison members are filled in an annular space. Further, the burnable poison-filling region is disposed excepting portions for 1/20 - 1/12 of the effective fuel length at each of the upper and the lower ends of the fuel rod. Then, the concentration of the burnable poisons in a region above a boundary defined at a position 1/3 - 1/2, from beneath, of the effective fuel length is made smaller than that in the lower region. This enables to suppress excess reactions of fuels to reduce the mass of the burnable neutron. Excellent reactivity control performance at the initial stage of the burning can be attained. (T.M.)

  16. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  17. Application of gadolinia credit to cask transportation of BWR-STEP3 SFAs

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Mitsuhashi, Ishi; Ito, Dai-ichiro; Nakamura, Yu

    2003-01-01

    Instead of the fresh-fuel assumption, the application of gadolinia credit to cask transportation of BWR SFAs is studied. Its efficacy for BWR-STEP2 SFAs had already been estimated. This paper reports on the application of gadolinia credit to cask transportation of BWR-STEP3 SFAs. (author)

  18. Neutron evaluation of burnable poison insertion in pressurized water reactor

    International Nuclear Information System (INIS)

    Faria, Rochkhudson Batista de

    2013-01-01

    The development of this work was to match the 'Burn-up Credit Criticality Benchmark - Phase II-D - PWR-UO 2 Assembly Study of Control Rod Effects on Spent Fuel Composition' (case 15), which was modeled using the code MCNP5 and SCALE 6.0. The results of the infinite multiplication factor (k inf ) were compared with those obtained by international institutions. Later we performed in this same benchmark, a sensitivity analysis using SCALE 6.0. Thus, we tested several changes in case 15 of Benchmark, such as insertion of different percentages of burnable poison, changing the number and positions of the rods. In all cases were analyzed, comparisons and discussions about the results. The same methodology was applied to the reactor core of the Nuclear Plant in Brazil, Angra II, initially to evaluate its behavior when subjected to a variation in the percentage of burnable poison and then, introduce changes also in the enrichment of nuclear fuel, doing the appropriate comparisons of results. Considering results and experience gained, the Department of Nuclear Engineering, is prepared to control analysis of reactivity with the use of different types of burnable poisons under the code SCALE 6.0 through its various modules. (author)

  19. Implementation of a Gadolinium Burnable Absorber in the Carbide LEU-NTR

    International Nuclear Information System (INIS)

    Venneria, Paolo; Kim, Yonghee

    2015-01-01

    Among the most crucial are the rapid reactivity depletion during full-power operation and the positive reactivity insertion during the full-submersion criticality accident. In previous work, it has been suggested that both challenges can be mitigated through the successful implementation of a burnable absorber in the active core. Of the poisons previously surveyed, one of the most promising is Gadolinium in the form of Gadolina (Gd2O4). This paper explores the possibility of different methods by which the Gadolinia can be implemented in the core and makes a preliminary study of its effect on the full submersion criticality accident and the reactivity depletion during operation. The application of a Gadolinium neutron absorber in the active core region of the LEU-NTR has been shown to be neutronically feasible. It can be introduced into the core in various locations without resulting in core performance loss. The utility of the poison in terms of mitigating the full-submersion reactivity accident and the rapid change in reactivity during full-power operation have been preliminarily shown and the first steps towards eventual implementation made. Future work will consist of determining the maximum poison content in the core and tailoring the self-shielding effect in order to determine a specific Gd depletion rate

  20. Local power peaking factor estimation in nuclear fuel by artificial neural networks

    International Nuclear Information System (INIS)

    Montes, Jose Luis; Francois, Juan Luis; Ortiz, Juan Jose; Martin-del-Campo, Cecilia; Perusquia, Raul

    2009-01-01

    This paper presents the training of an artificial neural network (ANN) to accurately predict, in very short time, a physical parameter used in nuclear fuel reactor optimization: the local power peaking factor (LPPF) in a typical boiling water reactor (BWR) fuel lattice. The ANN training patterns are distribution of fissile and burnable poison materials in the fuel lattice and their associated LPPF. These data were obtained by modeling the fuel lattices with a neutronic simulator: the HELIOS transport code. The combination of the pin U 235 enrichment and the Gd 2 O 3 (gadolinia) concentration, inside the 10 x 10 fuel lattice array, was encoded by three different methods. However, the only encoding method that was able to give a good prediction of the LPPF was the method which added the U 235 enrichment and the gadolinia concentration. The results show that the relative error in the estimation of the LPPF, obtained by the trained ANN, ranged from 0.022% to 0.045%, with respect to the HELIOS results

  1. Burnable poison fuel element and its fabrication

    International Nuclear Information System (INIS)

    Zukeran, Atsushi; Inoue, Kotaro; Aizawa, Hiroko.

    1985-01-01

    Purpose: To enable to optionally vary the excess reactivity and fuel reactivity. Method: Burnable poisons with a large neutron absorption cross section are contained in fuel material, by which the excess reactivity at the initial stage in the reactor is suppressed by the burnable poisons and the excess reactivity is released due to the reduction in the atomic number density of the burnable poisons accompanying the burning. The burnable poison comprises spherical or rod-like body made of a single material or spherical or rod-like member made of a plurality kind of materials laminated in a layer. These spheres or rods are dispersed in the fuel material. By adequately selecting the shape, combination and the arrangement of the burnable poisons, the axial power distribution of the fuel rods are flattened. (Moriyama, K.)

  2. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  3. Cutting system for burnable poison rod

    International Nuclear Information System (INIS)

    Shiina, Atsushi; Toyama, Norihide; Koshino, Yasuo; Fujii, Toshio

    1989-01-01

    Burnable poison rods attached to spent fuels are contained in a containing box and transported to a receiving pool. The burnable poison rod-containing box is provisionally situated by the operation to a handling device to a provisional setting rack in a cutting pool and attached to a cutting guide of a cutting device upon cutting. The burnable poison rod is cut only in a cutting pool water and tritium generated upon cutting is dissolved into the cutting pool water. Diffusion of tritium is thus restricted. Further, the cutting pool is isolated by a partition device from the receiving pool during cutting of the burnable poison rod. Accordingly, water in which tritium is dissolved is inhibited from moving to the receiving pool and prevail of tritium contamination can be avoided. (T.M.)

  4. Burnable absorber-integrated Guide Thimble (BigT) - 1. Design concepts and neutronic characterization on the fuel assembly benchmarks

    International Nuclear Information System (INIS)

    Yahya, Mohd-Syukri; Yu, Hwanyeal; Kim, Yonghee

    2016-01-01

    This paper presents the conceptual designs of a new burnable absorber (BA) for the pressurized water reactor (PWR), which is named 'Burnable absorber-integrated Guide Thimble' (BigT). The BigT integrates BA materials into standard guide thimble in a PWR fuel assembly. Neutronic sensitivities and practical design considerations of the BigT concept are points of highlight in the first half of the paper. Specifically, the BigT concepts are characterized in view of its BA material and spatial self-shielding variations. In addition, the BigT replaceability requirement, bottom-end design specifications and thermal-hydraulic considerations are also deliberated. Meanwhile, much of the second half of the paper is devoted to demonstrate practical viability of the BigT absorbers via comparative evaluations against the conventional BA technologies in representative 17x17 and 16x16 fuel assembly lattices. For the 17x17 lattice evaluations, all three BigT variants are benchmarked against Westinghouse's existing BA technologies, while in the 16x16 assembly analyses, the BigT designs are compared against traditional integral gadolinia-urania rod design. All analyses clearly show that the BigT absorbers perform as well as the commercial BA technologies in terms of reactivity and power peaking management. In addition, it has been shown that sufficiently high control rod worth can be obtained with the BigT absorbers in place. All neutronic simulations were completed using the Monte Carlo Serpent code with ENDF/B-VII.0 library. (author)

  5. Special quasirandom structures for gadolinia-doped ceria and related materials

    KAUST Repository

    Wang, Hao

    2012-01-01

    Gadolinia doped ceria in its doped or strained form is considered to be an electrolyte for solid oxide fuel cell applications. The simulation of the defect processes in these materials is complicated by the random distribution of the constituent atoms. We propose the use of the special quasirandom structure (SQS) approach as a computationally efficient way to describe the random nature of the local cation environment and the distribution of the oxygen vacancies. We have generated two 96-atom SQS cells describing 9% and 12% gadolinia doped ceria. These SQS cells are transferable and can be used to model related materials such as yttria stabilized zirconia. To demonstrate the applicability of the method we use density functional theory to investigate the influence of the local environment around a Y dopant in Y-codoped gadolinia doped ceria. It is energetically favourable if Y is not close to Gd or an oxygen vacancy. Moreover, Y-O bonds are found to be weaker than Gd-O bonds so that the conductivity of O ions is improved. © 2012 the Owner Societies.

  6. Study of low leakage reload schedulle without burnable posion for Angra-1

    International Nuclear Information System (INIS)

    Sakai, M.; Dias, A.

    1989-01-01

    At the moment, there is a world trend to design larger cycles for PWR. Then the reload batches are increased, the enrichment in 235 U is increased and/or advanced fuel management strategies with radial low neutron leakage are applied. For the low leakage reloads of Angra-1 calculations were performed for different number of fuel assemblies for reaload batch, 32,36,40,44 and 48, from the 4th cycle up to equilibrium cycle for two different enrichments 3,4 W/O and 3,9 W/O in 235 U. The results showed that for the enrichments used without burnable posion it is possible to reach an increase in cycle lenghts between 3% and 8% for the same conditions. (author) [pt

  7. A consolidation process for spent burnable poison rod assemblies

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Harada, M.; Komatsu, Y.

    1985-01-01

    A new consolidation system for the spent burnable poison assembly utilizing a sequence control robot operated under water was proposed. A credible accident in the system was analyzed mainly from the viewpoint of tritium release, based on the diffusion analysis of tritium in borosilicate glass. It was found that the amount of tritium released would be small even after the rupture of burnable poison rods. An experiment on a new consolidation system was performed using spent burnable poison assemblies. The volume of burnable poison assemblies was reduced safely and securely by a factor of 7 to 14 for burnable poison rods and by 22 for hold-down portions. It was proved that the consolidation system is collectively feasible

  8. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  9. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    Tanabe, A.; Yamamoto, T.; Shinfuku, K.; Nakamae, T.

    1992-01-01

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  10. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. These methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGRs are described. (author)

  11. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. The paper describes these methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGR's. (author)

  12. Burnable poison management in a HTR

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, J

    1971-09-21

    It is the purpose with this paper to describe the state-of-the-art of burnable poison investigations made within the Dragon Project and to give the results of a number of calculations, which show that it is possible to control the large initial surplus reactivity of the first core and the radial power distribution with two types of burnable poison sticks with Gadolinium (one type of stick to be used in the inner core region, the other in the outer core region), where the poison will burn away so that keff always stays around the desired value 1.03, and with the radial form-factor not exceeding 1.20. The calculations made for this paper are not too accurate, especially the chosen timestep for calculating the burn-up of the burnable poison stick proved to be too large. Nevertheless, the calculations are good enough to draw the above mentioned conclusions, although they have not given the concentration of Gadolinium to be used in the burnable poison sticks very accurately.

  13. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Renier, J.A.

    2002-04-17

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized

  14. Applying burnable poison particles to reduce the reactivity swing in high temperature reactors with batch-wise fuel loading

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Dam, H. van; Hagen, T.H.J.J. van der

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B 4 C highly enriched in 10 B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B 4 C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs

  15. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2009-01-01

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce 0.9 Gd 0.1 O 1.95 ) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce 4+ and Ce 3+ states. Presence of Ce 3+ state was ascribed to the differential yield of oxygen atoms in the sputtering process

  16. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ferrer, R.M.

    2010-01-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these 'spread' the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  17. Low reactivity penalty burnable poison rods

    International Nuclear Information System (INIS)

    1978-01-01

    A nuclear reactor burnable poison rod is described which consists of an elongated tubular sheath enclosing a neutron absorbing material which, at least during reactor operation, also encloses a neutron moderating material. The excess reactivity existing at the beginning of core life is compensated for by the depletion of the burnable poison throughout the life of the core, so that the life of the core is extended. (UK)

  18. New burnable absorber for long-cycle low boron operation of PWRs

    International Nuclear Information System (INIS)

    Choe, Jiwon; Shin, Ho Cheol; Lee, Deokjung

    2016-01-01

    Highlights: • A burnable absorber design for advanced PWRs with a low soluble boron concentration. • The burnable absorber consists of a UO 2 – 157 Gd 2 O 3 rod with a thin layer of Zr 167 Er 2 . • Three verification cases: two kinds of fuel assemblies and an OPR-1000 core. - Abstract: This paper presents a new high performance burnable absorber (BA) design for advanced Pressurized Water Reactors (PWRs) aiming for a long-cycle operation with a low soluble boron concentration. The new BA consists of a UO 2 – 157 Gd 2 O 3 rod covered with a thin layer of Zr 167 Er 2 . A key feature of this new BA is that enriched isotopes, 157 Gd and 167 Er, are used as absorber materials. Since the high absorption cross section of 157 Gd can reduce the mass fraction of Gd 2 O 3 in UO 2 –Gd 2 O 3 , the thermal margin of fuel rods will increase with higher heat conductivity. Also, the 157 Gd transmutes into 158 Gd by neutron absorption and therefore the residual penalty at the end of cycle (EOC) will decrease. Since 167 Er has a resonance near the thermal neutron energy region, the moderator temperature coefficient (MTC) will become more negative and the control rod worth will increase. These advantages of the new BA are demonstrated with three verification cases: a 17 × 17 Westinghouse (WH) type fuel assembly, a 16 × 16 Combustion Engineering (CE) type fuel assembly, and an OPR-1000 equilibrium core.

  19. Research on application of burnable poison in pebble bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhang Jian; Shan Wenzhi; Jing Xingqing

    2013-01-01

    Burnable poison in fuel ball was used in pebble bed high-temperature gas-cooled reactor (HTR) to optimize the shape and the peak factor of power distribution in certain conditions. Two options are available and evaluated, that is the homogeneous burnable poison in graphite matrix and burnable poison particles (BPPs) in fuel balls. Due to the absorption cross section of "1"0B, the depletion speed for homogeneous burnable poison is very fast, and difficult to control, on the other side, the depletion speed of BPPs can be optimized respecting to its size, and better shape and peak value of power distribution can be achieved. (authors)

  20. The research on burnup characteristic of doping burnable poison in PWR

    International Nuclear Information System (INIS)

    Qiang Shenglong; Qin Dong; Chai Xiaoming; Yao Dong

    2014-01-01

    In PWR core design, burnable poisons are usually used for reactive compensation and power flatten. The choice of burnable poisons and how to match burnup would be the key-points for a long-life core design. We study the burnup character of doping burnable poisons (such as natural element, manual nuclide and soluble boron) in the PWR by the core burnup code MOI based on Monte Carlo method. The results show that Hf, Er and Eu doping burnable poison would be applicable for the nuclear design research on the long-life PWR core. (authors)

  1. Generalized pin factor methodology for LWR reload cores with discrete burnable absorbers

    International Nuclear Information System (INIS)

    Hah, C.J.; Hideki Matsumoto; Toshikazu Ida; Lee, C.; Chao, Y.A.

    2005-01-01

    Discrete burnable absorbers are used to suppress excess reactivity as well as peak pin power in an assembly. After the burn-out of absorption material, discrete burnable absorbers are usually removed from assembly guide tubes for the next cycle. For that case, the pin factors with discrete burnable absorbers cannot be used since the assembly configuration is physically changed. The pin factors without discrete burnable absorbers also have noticeable deviation from the actual case because they do not take into account the history effect due to the residence of discrete burnable absorbers for the previous cycle. In this paper, the generalized pin factor (GPF) method is developed to accurately predict pin powers by considering the history effect. The method uses a second-order polynomial function to approximate the history effect which builds up during the residence of burnable absorber material and employs a linear approximation to simulate the decay of the history effect after discrete burnable absorbers are removed. The verification results from Westinghouse Vantage- 5H assemblies with WABAs showed that pin power errors were significantly reduced by using the GPF. (authors)

  2. Special quasirandom structures for gadolinia-doped ceria and related materials

    KAUST Repository

    Wang, Hao; Chroneos, Alexander I.; Jiang, Chao; Schwingenschlö gl, Udo

    2012-01-01

    cells describing 9% and 12% gadolinia doped ceria. These SQS cells are transferable and can be used to model related materials such as yttria stabilized zirconia. To demonstrate the applicability of the method we use density functional theory

  3. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  4. Initial study on burnable poisons in the Dragon HTR design

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Pedersen, J

    1971-06-15

    A first study on the effects of burnable poisons in a High Temperature Reactor is given in this paper, and some of the problems concerning the layout and distribution of burnable poison sticks in the core are explained. Time has not allowed us to obtain satisfactory solutions to these problems, but we hope, that this study could form the basis of valuable discussions on ways and means to overcome the difficulties of burnable poison management in HTRs.

  5. An initial applications study of ceria-gadolinia solid oxide fuel cells: V. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bauen, A.; Hart, D.; Mould, B.

    1998-11-01

    Fuel cells are categorised by their electrolytes, and the solid oxide fuel cell is so called because its electrolyte consists of a solid ceramic oxide. Commonly this has been a form of zirconia, though other materials are now being considered for their different electrical properties. One of these, ceria doped with gadolinia, shows promise for use in lower temperature regimes than zirconia, and may open up different areas of a future market for consideration. This report considers the opportunities for ceria-gadolinia solid oxide fuel cell systems by comparing them with the application requirements in markets where fuel cells may have potential. The advantages and disadvantages of the technology are analysed, together with the state of the art in research and development. The direction in which research effort needs to move to address some of the issues is assessed. The report then draws conclusions regarding the potential of ceria-gadolinia in solid oxide fuel cell systems and in the energy markets as a whole. It should be noted that while this report is an applications study, some technology assessment has been included. Much of this is found in Volume 2. (author)

  6. Influence of calcium and lithium on the densification and electrical conductivity of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Porfirio, Tatiane Cristina

    2011-01-01

    In this work, the use of calcium and lithium as sintering aid to gadolinia-doped ceria was systematically investigated. The main purpose was to verify the influence of these additives on the densification and electrical conductivity of sintered ceramics. Powder compositions containing up to 1.5 mol% (metal basis) of calcium or lithium were prepared by both solid state reaction and oxalate coprecipitation methods. The main characterization techniques were thermal analyses, X-ray diffraction, scanning electron microscopy and electrical conductivity by impedance spectroscopy. Both additives promoted densification of gadolinia-doped ceria. The densification increases with increasing the additive content. Different effects on microstructure and electrical conductivity result from the method of preparation, e.g., solid state reaction or coprecipitation. Calcium addition greatly enhances the grain growth compared to lithium addition. The electrical conductivity of specimens containing a second additive is lower than that of pure gadolinia-doped ceria. Both additives influence the intergranular conductivity and favor the exudation of gadolinium out of the solid solution. (author)

  7. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Grossbeck, M. L.; Renier, J-P.A.; Bigelow, Tim

    2003-01-01

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding

  8. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  9. Irradiation test of borosilicate glass burnable poison

    International Nuclear Information System (INIS)

    Feng Mingquan; Liao Zumin; Yang Mingjin; Lu Changlong; Huang Deyang; Zeng Wangchun; Zhao Xihou

    1991-08-01

    The irradiation test and post-irradiation examinations for borosilicate glass burnable poison are introduced. Examinations include visual examination, measurement of dimensions and density, and determination of He gas releasing and 10 B burnup. The corrosion and phenomenon of irradiation densification are also discussed. Two type glass samples have been irradiated with different levels of neutron flux. It proved that the GG-17 borosilicate glass can be used as burnable poison to replace the 10 B stainless steel in the Qinshan Nuclear Power Plant, and it is safe, economical and reasonable

  10. Feasibility of using gadolinium as a burnable poison in PWR cores. Final report

    International Nuclear Information System (INIS)

    Rothleder, B.M.

    1981-02-01

    As an alternative to the use of lumped burnable absorbers in PWR cores, distributed burnable absorbers are being considered for generic application. These burnable absorbers take the form of Gd 2 O 3 mixed with UO 2 in selected fuel rods (as is currently done in BWR cores). The work discussed herein concerns a three-dimensional feasibility study of the use of such distributed burnable absorbers in PWR cores. This study of distributed burnable absorbers was performed for the first cycle of a typical current design PWR using the following steps: analysis of a generic reference core design; determination of gadolinium assembly designs; determination of a generic gadolinium core design; evaluation of feasibility by examining selected parameters; and redesign of the generic gadolinium core, using axial zoning

  11. Nuclear fuel elements and assemblies

    International Nuclear Information System (INIS)

    Saito, Shozo; Maki, Hideo.

    1982-01-01

    Purpose: To facilitate the attainment of the uranium enrichment or gadolinia enrichment of a pellet filled in a fuel element. Constitution: The axial length of a pellet filled in a fuel element is set to predetermined sizes according to the uranium enrichment factor, gadolinia enrichment or their combination. Thus, the uranium enrichment factor or gadolinia enrichment can be identified by attaining the axial length of the pellet by using such a pellt. (Kamimura, M.)

  12. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  13. 75 FR 13314 - Duke Energy Carolinas, LLC; Notice of Consideration of Issuance of Amendments to Facility...

    Science.gov (United States)

    2010-03-19

    ... representative) to digitally sign documents and access the E-Submittal server for any proceeding in which it is... reactor cores with fuel containing lumped burnable and/or gadolinia integral absorbers does not involve a... acceptability of the CASMO-4/SIMULATE-3 code for performing reload design calculations for reactor cores...

  14. Analysis of burnable poison in Ford Nuclear Reactor fuel to extend fuel lifetime. Final report, August 1, 1994--September 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Burn, R.R.; Lee, J.C.

    1996-12-01

    The objective of the project was to establish the feasibility of extending the lifetime of fuel elements for the Ford Nuclear Reactor (FNR) by replacing current aluminide fuel with silicide fuel comprising a heavier uranium loading but with the same fissile enrichment of 19.5 wt% {sup 235}U. The project has focused on fuel designs where burnable absorbers, in the form of B{sub 4}C, are admixed with uranium silicide in fuel plates so that increases in the control reactivity requirements and peak power density, due to the heavier fuel loading, may be minimized. The authors have developed equilibrium cycle models simulating current full-size aluminide core configurations with 43 {approximately} 45 fuel elements. Adequacy of the overall equilibrium cycle approach has been verified through comparison with recent FNR experience in spent fuel discharge rates and simulation of reactor physics characteristics for two representative cycles. Fuel cycle studies have been performed to compare equilibrium cycle characteristics of silicide fuel designs, including burnable absorbers, with current aluminide fuel. These equilibrium cycle studies have established the feasibility of doubling the fuel element lifetime, with minimal perturbations to the control reactivity requirements and peak power density, by judicious additions of burnable absorbers to silicide fuel. Further study will be required to investigate a more practical silicide fuel design, which incorporates burnable absorbers in side plates of each fuel element rather than uniformly mixes them in fuel plates.

  15. Depletion optimization of lumped burnable poisons in pressurized water reactors

    International Nuclear Information System (INIS)

    Kodah, Z.H.

    1982-01-01

    Techniques were developed to construct a set of basic poison depletion curves which deplete in a monotonical manner. These curves were combined to match a required optimized depletion profile by utilizing either linear or non-linear programming methods. Three computer codes, LEOPARD, XSDRN, and EXTERMINATOR-2 were used in the analyses. A depletion routine was developed and incorporated into the XSDRN code to allow the depletion of fuel, fission products, and burnable poisons. The Three Mile Island Unit-1 reactor core was used in this work as a typical PWR core. Two fundamental burnable poison rod designs were studied. They are a solid cylindrical poison rod and an annular cylindrical poison rod with water filling the central region.These two designs have either a uniform mixture of burnable poisons or lumped spheroids of burnable poisons in the poison region. Boron and gadolinium are the two burnable poisons which were investigated in this project. Thermal self-shielding factor calculations for solid and annular poison rods were conducted. Also expressions for overall thermal self-shielding factors for one or more than one size group of poison spheroids inside solid and annular poison rods were derived and studied. Poison spheroids deplete at a slower rate than the poison mixture because each spheroid exhibits some self-shielding effects of its own. The larger the spheroid, the higher the self-shielding effects due to the increase in poison concentration

  16. Preparation and characterization of ceramic neutron absorbers based on dysprosia and gadolinia

    International Nuclear Information System (INIS)

    Burgos, F.; Oliber, E.; Leiva S; Lestani, H.; Malachevsky, M.T.; Taboada, H.; D'Ovidio, C.

    2012-01-01

    Among the elements of the lanthanide series, dysprosium and gadolinium have interesting nuclear properties. Due to their high thermal neutron absorption cross-section they are good neutron absorbers. The only compounds suitable for nuclear use are their oxides, dysprosia (Dy 2 O 3 ) and gadolinia (Gd 2 O 3 ). To fabricate neutron absorbers diluted in an inert matrix, e.g. alumina (Al 2 O 3 ), it is relevant to study the preparation of a ceramic compound based on alumina (Al 2 O 3 ) and dysprosia or gadolinia. In this work, we characterize four different nominal compositions with high contents of gadolinia and dysprosia: (a) (45 wt% Dy 2 O 3 , 55 wt% Al 2 O 3 ), (b) (93 wt% Dy 2 O 3 , 7 wt% Al 2 O 3 ), (c) (50 wt% Gd 2 O 3 , 50 wt% Al 2 O 3 ) and (d) (90 wt% Gd 2 O 3 , 10 wt% Al 2 O 3 ). These compositions were selected as their stoichiometry correspond to the eutectic phases found in the respective phase diagrams, so as to attain sinterization at lower temperatures of approximately 1700 o C in air. The investigated parameters are the geometrical density of the pellets, the microstructure and the phases observed using x-ray diffraction. Contraction of the pellets was obtained by measuring the volumetric change between the green and the sintered samples. It was observed that the relative contraction was the same both in thickness and diameter. We discuss the eutectic phase formation and densification observed for the different compositions (author)

  17. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  18. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  19. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  20. Effects of the burnable poison heterogeneity on the long term control of excess of reactivity

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2006-01-01

    According to the different geometry shape, the theory of black burnable particles predicts that the evolution of the poison macroscopic absorption cross section is exponentially, quadratic or linear when the burnable poison is displaced in homogeneous distribution, microspheres or needlecylinders heterogeneous distributions, respectively. In the present studies, we took advantage of the Monte Carlo Continuous Energy Burnup Code MCB to verify the black burnable particles theory on the Gas Turbine - Modular Helium Reactor fuelled by military plutonium at the year the fuel reaches the equilibrium composition; we investigated 8 different burnable poisons, B, Cd, Er, Eu, Gd, Dy, Hf and Sm, in three different geometry configurations and we have found that the numerical results qualitatively match the theory predictions when burnable poisons are disposed in small particles

  1. Effects of the burnable poison heterogeneity on the long term control of excess of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology - KTH, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se

    2006-06-15

    According to the different geometry shape, the theory of black burnable particles predicts that the evolution of the poison macroscopic absorption cross section is exponentially, quadratic or linear when the burnable poison is displaced in homogeneous distribution, microspheres or needlecylinders heterogeneous distributions, respectively. In the present studies, we took advantage of the Monte Carlo Continuous Energy Burnup Code MCB to verify the black burnable particles theory on the Gas Turbine - Modular Helium Reactor fuelled by military plutonium at the year the fuel reaches the equilibrium composition; we investigated 8 different burnable poisons, B, Cd, Er, Eu, Gd, Dy, Hf and Sm, in three different geometry configurations and we have found that the numerical results qualitatively match the theory predictions when burnable poisons are disposed in small particles.

  2. Hot channel calculation methodologies in case of Gd burnable poison

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2008-01-01

    The final step in the safety analysis is the investigation of the fulfilment of the acceptance criteria using hot channel calculations. Recently, there has been under way at Paks NPP to introduce a new, higher enriched (4.2 %) fuel type containing Gd burnable poison. To do that, for some transients the DBA analyses must be repeated and last year, as one of the first steps in this process, it was needed to review the hot channel calculation methodologies used in the analyses. The goal of the paper is to summarize some aspects of the hot channel calculation methodologies using different lattice pitches and different fuel types (Gd or non Gd and different enrichments). Mainly, three topics are discussed. First, the influence of the radial power distribution (and other burnup dependent parameters) inside the fuel pin are investigated, and then we discuss the problem of the selection of the appropriate 'frame parameter' in connection with the initial power level at the initial stationary state of DBA transients. Finally, we are trying to answer the question: is it possible to build up a conservative single closed sub-channel approach against multi channel approach?(Authors)

  3. Advanced gadolinia core and Toshiba advanced reactor management system

    International Nuclear Information System (INIS)

    Miyamoto, Toshiki; Yoshioka, Ritsuo; Ebisuya, Mitsuo

    1988-01-01

    At the Hamaoka Nuclear Power Station, Unit No. 3, advanced core design and core management technology have been adopted, significantly improving plant availability, operability and reliability. The outstanding technologies are the advanced gadolinia core (AGC) which utilizes gadolinium for the axial power distribution control, and Toshiba advanced reactor management system (TARMS) which uses a three-dimensional core physics simulator to calculate the power distribution. Presented here are the effects of these advanced technologies as observed during field testing. (author)

  4. Production method of burnable poison incorporated fuel pellet by coating

    International Nuclear Information System (INIS)

    Naito, Naoyoshi.

    1993-01-01

    A cylindrical member is formed with an organic material which is melted, decomposed or evaporated by heating. Such organic materials include polyethylene and polyvinyl alcohol, for example. A predetermined amount of burnable poisons are homogeneously incorporated in the cylindrical member by a means, such as melting before fabricating it into a cylindrical shape. UO 2 fuel pellets are inserted to the cylindrical member and heated, to scatter only the organic materials, so that non-volatile burnable poisons are homogeneously left on the surface of the pellets. It is preferred that the cylindrical member having pellets inserted therein is inserted to a cladding tube and applied with a heat treatment. With such procedures, a UO 2 pellet is coated with burnable poisons by a convenient and compact device. In addition, grinding step after the coating is unnecessary. (I.N.)

  5. Optimal burnable poison utilization in PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.

    1986-01-01

    A method was developed for determining the optimal distribution and depletion of burnable poisons in a Pressurized Water Reactor core. The well-known Haling depletion technique is used to achieve the end-of-cycle core state where the fuel assembly arrangement is configured in the absence of all control poison. The soluble and burnable poison required to control the core reactivity and power distribution are solved for as unknown variables while step depleting the cycle in reverse with a target power distribution. The method was implemented in the NRC approved licensing code SIMULATE

  6. Analysis of a possible experimental assessment of a prototype fuel element containing burnable poison in the RA-3 reactor

    International Nuclear Information System (INIS)

    Lerner, Ana Maria; Madariaga, Marcelo

    2002-01-01

    The Argentine RA-3 research reactor (5 MW) is presently operated with LEU fuel by the National Atomic Energy Commission (CNEA). It belongs to the group of nuclear installations controlled, from the radiological and nuclear safety point of view, by the Nuclear Regulatory Authority (ARN). A new type of fuel elements containing burnable absorbers, with similar enrichment as the standard fuel elements but greater fissile contents, has recently been proposed for a new Argentine reactor design (RRR). In this framework the ARN considers interesting, if technically possible, the performance of an experiment in the RA-3 reactor. The experiment might enable, for such fuel element containing burnable poison, the verification of its neutronic behaviour under irradiation as well as a validation of the calculation line by comparison to measured values. It should be desirable that such experiment could reproduce as much as possible those conditions estimated for the RRR reactor, still under design in Argentina, having Silicide fuel elements with burnable poison, in the shape of cadmium wires in their structure. We here analyse a possible experiment consisting in the loading of a prototype fuel element with burnable poison in a normally loaded RA-3 core configuration. It would essentially be a standard RA-3 fuel element, having cadmium wires in its frame. This experiment would enable the verification of the prototype behaviour under irradiation, its operation limits and conditions, and particularly, the reactivity safety margins established in Argentine Standards, both calculated and measured. The main part of the experiment would imply some 200 full power days of operation at 5 MW, which would be drastically reduced if the reactor power is increased to 10 MW, as foreseen. We also show that under the proposed conditions, the experiment would not represent a significant penalty to the reactor normal operation. (author)

  7. Managing the reactivity excess of the gas turbine-modular helium reactor by burnable poison and control rods

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2006-01-01

    The gas turbine-modular helium reactor coupled to the deep burn in-core fuel management strategy offers the extraordinary capability to incinerate over 50% of the initial inventory of fissile material. This extraordinary feature, coming from an advanced and well tested fuel element design, which takes advantage of the TRISO particles technology, is maintained while the reactor is loaded with the most different types of fuels. In the present work, we assumed the reactor operating at the equilibrium of the fuel composition, obtained by a 6 years irradiation of light water reactor waste, and we investigated the effects of the introduction of the burnable poison and the control rods; we equipped the core with all the three types of control rods: operational, startup and shutdown ones. We employed as burnable poison natural erbium, due to the 167 Er increasing neutron capture microscopic cross-section in the energy range where the neutron spectrum exhibits the thermal peak; in addition, we utilized boron carbide, with 90% enrichment in 1 B, as the absorption material of the control rods. Concerning the burnable poison studies, we focused on the k eff value, the 167 Er mass during burnup, the influence of modifying the radius of the BISO particles kernel and the fuel and moderator coefficients of temperature. Concerning the control rods studies, we investigated the reactivity worth, the changes in the neutron flux profile due to a partial insertion, the influence of modifying the radius of the BISO particles kernel and the β eff , at the beginning of the operation

  8. Managing the reactivity excess of the gas turbine-modular helium reactor by burnable poison and control rods

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se

    2006-01-15

    The gas turbine-modular helium reactor coupled to the deep burn in-core fuel management strategy offers the extraordinary capability to incinerate over 50% of the initial inventory of fissile material. This extraordinary feature, coming from an advanced and well tested fuel element design, which takes advantage of the TRISO particles technology, is maintained while the reactor is loaded with the most different types of fuels. In the present work, we assumed the reactor operating at the equilibrium of the fuel composition, obtained by a 6 years irradiation of light water reactor waste, and we investigated the effects of the introduction of the burnable poison and the control rods; we equipped the core with all the three types of control rods: operational, startup and shutdown ones. We employed as burnable poison natural erbium, due to the {sup 167}Er increasing neutron capture microscopic cross-section in the energy range where the neutron spectrum exhibits the thermal peak; in addition, we utilized boron carbide, with 90% enrichment in {sup 1}B, as the absorption material of the control rods. Concerning the burnable poison studies, we focused on the k {sub eff} value, the {sup 167}Er mass during burnup, the influence of modifying the radius of the BISO particles kernel and the fuel and moderator coefficients of temperature. Concerning the control rods studies, we investigated the reactivity worth, the changes in the neutron flux profile due to a partial insertion, the influence of modifying the radius of the BISO particles kernel and the {beta} {sub eff}, at the beginning of the operation.

  9. Spider and burnable poison rod combinations

    International Nuclear Information System (INIS)

    Walton, L.A.

    1980-01-01

    A description is given of an improved design of burnable poison rods and their associated spiders used in the fuel assemblies of pressurized water power reactor cores which allows the rods to be installed and removed more quickly, simply and gently than in previously described systems. (U.K.)

  10. A model for fuel shuffling and burnable absorbers optimization in low leakage PWRs

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    A nonlinear model for the simultaneous optimization of fuel shuffling and burnable absorbers in PWRs is formulated using the depletion perturbation theory. The sensitivity coefficients are defined in a new way, using a macroscopic burnup model coupled with the explicit burnable absorbers depletion equation. Since first-order perturbation theory is limited to small changes in burnable absorber concentration, the associated control variable is continuous, with a constraint on maximal increment. Fuel shuffling is described by Boolean variables. Thus a special case of a mixed-integer quadratic programming problem is obtained, since the interaction of fuel and absorber optimization is considered. (author)

  11. Burnable absorber for the PIK reactor

    International Nuclear Information System (INIS)

    Gostev, V.V.; Smolskii, S.L.; Tchmshkyan, D.V.; Zakharov, A.S.; Zvezdkin, V.S.; Konoplev, K.A.

    1998-01-01

    In the reactor PIK design a burnable absorber is not used and the cycle duration is limited by the rods weight. Designed cycle time is two weeks and seams to be not enough for the 100 MW power research reactor equipped by many neutron beams and experimental facilities. Relatively frequent reloading reduces the reactor time on full power and in this way increases the maintenance expenses. In the reactor core fuel elements well mastered by practice are used and its modification was not approved. We try to find the possibilities of installation in the core separate burnable elements to avoid poison of the fuel. It is possible to replace a part of the fuel elements by absorbers, since the fuel elements are relatively small (diameter 5.15mm, uranium 235 content 7.14g) and there are more then 3800 elements in the core. Nevertheless, replacing decreases the fuel burnup and its consumption. In the PIK fuel assembles a little part of the volume is occupied by the dumb elements to create a complete package of the assembles shroud, that is necessary in the hydraulic reasons. In the presented report the assessment of such a replacement is done. As a burnable material Gadolinium was selected. The measurements or the beginning of cycle were performed on the critical facility PIK. The burning calculation was confirmed by measurements on the 18MW reactor WWR-M. The results give the opportunity to twice the cycle duration. The proposed modification of the fuel assembles does not lead to alteration in the other reactor systems, but it touch the burned fuel reprocessing technology. (author)

  12. Characterization of gadolinia-doped ceria with manganese addition synthesized by the cation complexation technique; Caracterizacao de ceria-gadolinia e ceria-gadolinia-manganes sintetizados pelo metodo de complexacao de cations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.D.; Muccillo, R.; Muccillo, E.N.S., E-mail: enavarro@usp.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Rocha, R.A. [Universidade Federal do ABC (CEMCSA/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2010-07-01

    Ceria-based compounds may be used for several technological applications like catalysts, grinding media and materials for electrolyte and electrodes in solid oxide fuel cells. For most of these applications fine powders are required. In this work, nanostructured ceria powders containing 20 mol % gadolinia with and without manganese addition were synthesized by the cation complexation technique. The prepared powders were calcined at 600 deg C for thermal decomposition of the metal citrate precursors. Results of X-ray diffraction, scanning electron microscopy and specific surface area evidenced the role of manganese on physical characteristics of the nanostructured materials. The cation complexation technique revealed to be a promising method for obtaining nanostructured powders with high yield and suitable physical properties for several technological applications. (author)

  13. Calculation of burnable cells-Hammer versus Leopard

    International Nuclear Information System (INIS)

    Dias, A.M.; Almeida, C.U.C. de; Pina, C.M. de; Prestes, L.F.; Lederman, L.; Nunes, N.P.; Branco, W.H.

    1977-02-01

    The nuclear parameters for the Angra-1 reactor core are obtained from the cross sections of soluble boron and burnable boron, calculated by the code CITHAM. The results are compared with those developed by the code LEOCIT [pt

  14. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Fer, Nelson Custodio; Moreira, Joao Manoel Losada

    2000-01-01

    Burnable poison rods, made of B 4 C- Al 2 O 3 pellets with 5.01 mg/cm 3 10 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  15. Absorber management using burnable poisons

    International Nuclear Information System (INIS)

    Mortensen, L.

    1977-06-01

    An investigation of the problem of optimal control carried out by means of a two-dimensional model of a PWR reactor. A solution is found to the problem, and the possibility of achieving optimal control with burnable poisons such as boron, cadmium and gadolinium is discussed. Further, an attempt is made to solve the control problem of BWR, but no final solution is found. (author)

  16. Optimization of burnable poison disposition for in-core fuel assemblies

    International Nuclear Information System (INIS)

    Zhong Wenfa; Luo Rong; Zhou Quan

    1997-09-01

    The optimization of the burnable poison disposition in the initial core loading of the 200 MW nuclear heating reactor (NHR-200), is studied. The mass fraction of the burnable poison is used as the control variable with the objective to minimize the power peaking factor. The flexible tolerance method is used to solve the nonlinear programming optimal problem. The optimization method can be used in reactor physics design, and get a new pattern of initial core which is of reference value. (2 refs., 8 figs., 1 tab.)

  17. Burnable poison option for DUPIC fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Cupta, H. P.

    1996-08-01

    The mechanisms of positive coolant void reactivity of CANDU natural uranium and DUPIC fuel have been studied. The design study of DUPIC fuel was performed using the burnable poison material in the center pin to reduce the coolant void reactivity. The amount of burnable poison was determined such that the prompt inverse period of DUPIC fuel upon full coolant voiding is the same as that of natural uranium fuel at equilibrium burnup. A parametric study on various burnable poisons has shown that natural dysprosium has more merit over other materials because it uniformly controls the void reactivity throughout the burnup with reasonable amount of poison. Additional studies on the option of using scattering or absorber material in the center pin position and the option using variable fuel density were performed. In any case of option using variable fuel density were performed. In any case of options to reduce the void reactivity, it was found that either the discharge burnup and/or the relative linear pin power are sacrificed. A preliminary study was performed for the evaluation of reference DUPIC fuel performance especially represented by Stress Corrosion Cracking(SCC) parameters which is mainly influenced by the refueling operations. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increment of the reference DUPIC fuel are below the SCC thresholds of CANDU natural uranium fuel. For a 4-bundle shift refueling scheme, the envelopes of element ramped power and power increment upon refueling are 8% and 44% higher than those of a 2-bundle shift refueling scheme on the average, respectively, but still have margins to the failure thresholds of natural uranium fuel. 23 tabs., 25 figs., 20 refs. (Author)

  18. Spider and burnable poison rod combinations

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1980-01-01

    An improved design of burnable poison rods and associated spiders used in fuel assemblies of pressurized water power reactor cores, is described. The rods are joined to the spider arms in a manner which is proof against the reactor core environment and yet allows the removal of the rods from the spider simply, swiftly and delicately. (U.K.)

  19. Report on the evaluation of the tritium producing burnable absorber rod lead test assembly. Revision 1

    International Nuclear Information System (INIS)

    1997-03-01

    This report describes the design and fabrication requirements for a tritium-producing burnable absorber rod lead test assembly and evaluates the safety issues associated with tritium-producing burnable absorber rod irradiation on the operation of a commercial light water reactor. The report provides an evaluation of the tritium-producing burnable absorber rod design and concludes that irradiation can be performed within U.S. Nuclear Regulatory Commission regulations applicable to a commercial pressurized light water reactor

  20. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3...

  1. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spec......, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.......The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  2. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    Zajac, R.; Chrapciak, V.

    2010-01-01

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  3. Design and analysis challenges for advanced nuclear fuel

    International Nuclear Information System (INIS)

    Klepfer, H.; Abdollahian, D.; Dias, A.; Durston, C.; Eisenhart, L.; Engel, R.; Gilmore, P.; Rank, P.; Kjaer-Pedersen, N.; Sorensen, J.; Yang, R.; Agee, L.

    2004-01-01

    Significant changes have been incorporated in the light water reactor (LWR) fuel designs now being offered, and advanced fuel designs are currently being developed for the existing and the next generation of reactor designs. These advanced fuel design configurations are intended to offer utilities major economic gains, including: (1) improved fuel characteristics through optimized hydrogen to uranium ratio within the core; (2) increased capacity factor by allowing longer operating cycles, which is implemented by increasing the fuel enrichment and the amount and distribution of burnable poison, gadolinia, boron, or erbium within the fuel assembly to achieve higher discharge burnup; and (3) increased plant power output, if it can be accommodated by the balance of plant, by increasing the power density of the fuel assembly. The authors report here work being done to identify emerging technical issues in support of utility industry evaluations of advanced fuel designs. (author)

  4. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1991-01-01

    This patent describes a nuclear reactor core. It comprises a first group of fuel rods containing fissionable material and being free of burnable absorber material; and a second group of fuel rods containing fissionable material and first and second burnable absorber material; the first burnable absorber material being a boron-bearing material which does not contain erbium and the second burnable absorber material being an erbium material; the first and second burnable absorber materials being in the form of an outer coating on the fissionable material, the outer coating being composed of an inner layer of one of the boron-bearing material which does not contain erbium and the erbium material and an outer layer of the other of the boron-bearing material which does not contain erbium and the erbium material

  5. Burnable poison management in light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D; Mueller, A

    1970-07-01

    For a better reactivity control and power flattening as well as for an increase in dynamic stability the use of burnable poisons in light water reactors has been considered. The main goals for a burnable poison management and its technological realisation are discussed. The poison is assumed to be in the form of separate poison rods or homogeneous or inhomogeneous poisoning in the fuel rods. A new concept with a central poison rod within the fuel rod is discussed. The balance-equation for the needed concentration of burnable poisons for reactivity central as well as the problems of optimization of lumped poisons are treated in connection with the fuel lattice burnup. A first approximation for the design is found. For the calculation of the microburnup of lumped poison and fuel the special code NEUTRA has been developed. The burnup-equation can be chosen either in a simplified burnup-version with 2 pseudo fission products for each fissionable isotope or with an extended system of burnup equations to be used at sophisticated calculations. These burnup equations are coupled to S{sub N}-routines optionally for cylindrical or x-y-geometry for the proper calculation of the microscopic isotope density-, flux-, and power distributions. The theoretical predictions have been checked by means of special experiments so as to determine the accuracy of the computations. Even for a relatively long burnup of the fuel the predicted values are found to be within the experimental error in the case of lumped rods containing a cadmium-alloy or boron carbide. (auth)

  6. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    Science.gov (United States)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  7. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  8. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  9. Operating experience with Exxon nuclear advanced fuel assembly and fuel cycle designs in PWRs

    International Nuclear Information System (INIS)

    Skogen, F.B.; Killgore, M.R.; Holm, J.S.; Brown, C.A.

    1986-01-01

    Exxon Nuclear Company (ENC) has achieved a high standard of performance in its supply of fuel reloads for both BWRs and PWRs, while introducing substantial innovations aimed at realization of improved fuel cycle costs. The ENC experience with advanced design features such as the bi-metallic spacer, the dismountable upper tie plate, natural uranium axial blankets, optimized water-to-fuel designs, annular pellets, gadolinia burnable absorbers, and improved fuel management scenarios, is summarized

  10. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode

    DEFF Research Database (Denmark)

    Marina, O.A.; Mogensen, Mogens Bjerg

    1999-01-01

    Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials such as n......Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials...... such as nickel and platinum. CG4 was found to exhibit a low electrocatalytic activity for methane oxidation as well as no significant reforming activity implying that the addition of an electrocatalyst or cracking catalyst to the CG4 anode is required for SOFC operating on methane. The methane conversion...... observed at the open-circuit potential and low anodic overpotentials seems to be due to thermal methane cracking in the gas phase and on the alumina surfaces in the cell housing. At high anodic overpotentials, at electrode potentials where oxygen evolution was expected to take place, the formation of CO(2...

  11. Design and test of the borosilicate glass burnable poison rod for Qinshan nuclear power plant core

    International Nuclear Information System (INIS)

    Huang Jinhua; Sun Hanhong

    1988-08-01

    Material for the burnable poison of Qinshan Nuclear Power Plant core is GG-17 borosilicate glass. The chemical composition and physico-chemical properties of GG-17 is very close to Pyrex-7740 glass used by Westinghouse. It is expected from the results of the experiments that the borosilicate glass burnable poison rod can be successfully used in Qinshan Nuclear Power Plant due to good physical, mechanical, corrosion-resistant and irradiaton properties for both GG-17 glass and cold-worked stainless steel cladding. Change of material for burnable poison from boron-bearing stainless steel to borosilicate glass will bring about much more economic benefit to Qinshan Naclear Power Plant

  12. Safe core management with burnable absorbers in WWERs

    International Nuclear Information System (INIS)

    1996-01-01

    The objective of this TECDOC is to present state of the art information on burnable poisoned fuel during the CRP. It is based on experimental evidence and on the utilization of theoretical models and will help achieve improvements in safety and economy of LWR cores with hexagonal geometries. 149 refs, figs and tabs

  13. Burnable poison rod for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Funk, C.E.; Oneufer, A.S.

    1984-01-01

    A burnable poison rod for use in a nuclear reactor fuel assembly which includes concentrically disposed rods having an annular space therebetween which extends the full length of the rods. The inner rod is hollow to permit circulation of coolant therethrough. Annular burnable poison pellets are positioned in the annular space which is closed at both ends by plugs. A spring clip is located in the plenum space above the pellet stack in the rods. The spring clip is of cylindrical configuration having a gap in the material which provides two ends adapted to be squeezed toward each other. A cross section of the clip shows that its ends contain alternating flat and round edges, the round edges conforming to the outer rod inner surface to provide a retentive force which is releasably applied to the pellet stack as it grows during operation in a reactor

  14. MCNP apply in calculating reactor critical coefficient Keff under the changing of the burnable poison rod

    International Nuclear Information System (INIS)

    Wang Xinghua; Zhou Sichun; Zhang Qingxian; Zhao Feng; Liu Jun; Zhu Jian

    2013-01-01

    Taking Qinshan nuclear power plant as an example, in this paper, Monte Carlo method was used in the MCNP procedures for the establishment of nuclear power station simulation model, construct the reactor pressure vessel and vessel core component composition and arrangement, KCODE card was used to calculate the effect of the number and the location of burnable poison control rod factor K eff by the boron acid. The calculation results show that, with the increasing in the number of burnable poison control rod value-added factor K eff shown a downward trend, and with the burnable poison control rod from the dense to sparse, which K eff will be decreasing slowly. This condition is consistent with the theoretical. (authors)

  15. Optimization of gadolinium burnable poison loading by the conjugate gradients method

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1984-01-01

    Improved use of burnable poison is suggested for pressurized water reactors (PWR's) to insure a sufficiently negative moderator temperature coefficient of reactivity for extended burnup cycles and low leakage refueling patterns. The use of gadolinium as a burnable poison can lead to large axial fluctuations in the power distribution through the cycle. The goal of this work is to determine the optimal axial distribution of gadolinium burnable poison in a PWR to overcome the axial fluctuations, yielding an improved power distribution. The conjugate gradients optimization method is used in this work because of the high degree of nonlinearity of the problem. The neutron diffusion and depletion equations are solved for a one-dimensional one-group core model. The state variables are the flux, the critical soluble boron concentration, and the burnup. The control variables are the number of gadolinium pins per assembly and the beginning-of-cycle gadolinium concentration, which determine the gadolinium cross section. Two separate objectives are considered: 1) to minimize the power peaking factor, which will minimize the capital cost of the plant; and 2) to maximize the cycle length, which will minimize the fuel cost for the plant. It is shown in this work that optimizing the gadolinium distribution can yield an improved power distribution

  16. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This invention provides ceramic processing including sintering schedules which produce annular pellets containing burnable poisons for use in reactor control rods. Typically the powder includes Al 2 O 3 and from 1 to 50 weight percent B 4 C. The Al 2 O 3 and B 4 C, appropriately sized, are milled in a ball mill with liquid to produce a slurry. The slurry is spray dried to produce small spheres of the mixed powder, which is mixed with adequate organic binder and plasticizer and formed into a hollow green body having the shape of a tube. The green body is sintered to produce a ceramic tube from which the pellets are cut. The tube is sintered to size so that the pellets have the required dimensions. It is an important feature of this invention that the powder is formed into the green body by applying isostatic pressure to the powder

  17. Reloading optimization of pressurized water reactor core with burnable absorber fuel

    International Nuclear Information System (INIS)

    Shi Xiuan; Liu Zhihong; Hu Yongming

    2008-01-01

    The reloading optimization problem of PWR with burnable absorber fuel is very difficult, and common optimization algorithms are inefficient and have bad global performance for it. Characteristic statistic algorithm (CSA) is very fit for the problem. In the past, the reloading optimization using CSA has shortcomings of separating the fuel assemblies' loading pattern (LP) optimization from burnable absorber's placement (BP) optimization. In this study, LP and BP were optimized simultaneously using CSA coupled with CYCLE2D, which is a core analysis code. The corresponding reloading coupling optimization software, CSALPBP, was developed. The 10th cycle reloading design of Daya Bay Nuclear Power Plant was optimized using CSALPBP. The results show that CSALPBP has high efficiency and excellent global performance. (authors)

  18. Application of boron and gadolinium burnable poison particles in UO2 and PUO2 fuels in HTRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble (fuel zone with radius of 2.5 cm surrounded with a 0.5 cm thick graphite layer) and burnable poison particles (BPPs) containing B 4 C made of pure 10 B or containing Gd 2 O 3 made of natural Gd. Two types of fuel were considered: UO 2 fuel made of 8% enriched uranium and PuO 2 fuel made of plutonium from LWR spent fuel. The radius of the BPP and the number of particles per fuel pebble were varied to find the flattest reactivity-to-time curve. For the UO 2 fuel, the reactivity swing is lowest (around 2%) for BPPs made of B 4 C with radius of 75 μm. In this case around 1070 BPPs per fuel pebble are needed. For the PuO 2 fuel to get a reactivity swing below 4%, the optimal radius of the BPP is the same, but the number of particles per fuel pebble should be around 1600. The optimal radius of the Gd 2 O 3 particles in the UO 2 fuel is about 10 times that of the B 4 C particles. The reactivity swing is around 3% when each fuel pebble contains only 9 BPPs with radius of 840 μm. The results of the Gd particles illustrate nicely the usage of black burnable poison particles introduced by Van Dam [Ann. Nuclear Energy 27 (2000) 733

  19. Group constants calculation for fuel assemblies containing burnable absorbers; Prorachun grupnih konstanti gorivnih elemenata koji sadrzhe sagorive apsorbere

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, B [Institut Rudjer Boskovic, Zagreb (Yugoslavia); Pevec, D [Elektrotehnicki Fakultet, Zagreb Univ. (Yugoslavia); Urli, N; Shmuc, T [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1988-07-01

    The upgrading of the computer code package PSU-LEOPARD/MCRAC is described. The upgraded package enables modelling of fuel assemblies containing burnable absorbers in the form of borosilicate glass rodlets, or, integral fuel burnable absorbers. The package is tested using the NPP Krsko core data. (author)

  20. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  1. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  2. Neutronic analysis of Gd2O3 as burnable poison

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    For the reactors core design, the use of burnable poisons is one of the options for the control of in excess reactivity and the power form factor. As alternative procedures, the absorbing material may be included in pellets of an inert material or in fuel pellets. Besides, a cladding material and the locations of the fuel elements must be chosen for the first case. The CAREM reactor core design foresees the use of gadolinium oxide (Gd 2 O 3 ) as burnable poison. In this work, a comparative study was made, from the neutronic point of view, among the following alternatives for the poisons location: a) Gd 2 O 3 bars supports in alumina (Al 2 O 3 ), sheathed in steel; b) Gd 2 O 3 bars supports in alumina sheathed in Zry-4; c) Gd 2 O 3 in uranium dioxide (UO 2 ) fuel pellets. (Author) [es

  3. Methods of assembling and disassembling spider and burnable poison rod structures for nuclear reactors

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1981-01-01

    A technique is provided for engaging and disengaging burnable poison rods from a spider in a nuclear reactor fuel assembly. A cap on the end of each of the burnable poison rods is provided with a shank or stem that is received in a respective bore formed in the spider. A frangible flange secures the shank and rod to the spider. Pressing the shank in the direction of the bore axis by means, e.g., of a plate ruptures the frangible flange to release the rod from the spider. (author)

  4. Characterization of gadolinia doped ceria prepared with nanostructured powders

    International Nuclear Information System (INIS)

    Batista, R.M.; Muccillo, E.N.S.

    2012-01-01

    Gadolinia doped ceria is a potential material for application as solid electrolyte in solid oxide fuel cells that operate at intermediate temperatures. The performance of this kind of device is strongly influenced by the properties of the solid electrolyte, and then, by its microstructure. In this work the microstructure evolution of materials with surface area between 7 and 200 m 2 /g was investigated in detail. Cylindrical pellets were prepared by isostatic compaction and sintered in the 700 deg C to 1400 deg C temperature range. X-ray diffraction experiments were conducted to follow the crystallite growth. The microstructure evolution was accompanied by scanning electron microscopy. The densification was estimated by the geometric parameters of the samples and by dilatometry. The results revealed a fast sintering kinetics for materials with finer particle size, as expected. Different behaviors for crystallite growth were verified. (author)

  5. In-core fuel management: New challenges

    International Nuclear Information System (INIS)

    Kolmayer, A.; Vallee, A.; Mondot, J.

    1992-01-01

    Experience accumulated by pressurized water reactor (PWR) utilities allows them to improve their strategies in the use of eventual margins to core design limits. They are used for nuclear steam supply system (NSSS) power upgrading, to improve operating margins, or to adapt fuel management to specific objectives. As a result, in-core fuel management strategies have become very diverse: UO 2 or mixed-oxide loading, out-in or in-out fuel loading patterns, extended or annual cycle lengths with margins on design limits such as moderator temperature coefficients, boron concentrations, or peaking factors. Perspectives also appear concerning use of existing plutonium stocks or actinide incineration. Burnable poisons are most often needed to satisfactorily achieve these goals. Among them, gadolinia are now largely used, owing to their excellent performance. More than 24 Framatome first cores and reloads, representing more than 3000 gadolinia-bearing rods, have been irradiated since 1983

  6. The manufacture process and properties of (U, Gd)O2 burnable poisonous fuel pellets

    International Nuclear Information System (INIS)

    Yi Wei; Tang Yueming; Dai Shengping; Yang Youqing; Zuo Guoping; Wu Shihong; Gu Xiaofei; Gu Mingfei

    2006-03-01

    The main properties of important raw powder materials used in the (U, Gd)O 2 burnable poisonous fuel pellets production line of NPIC are presented. The powders included UO 2 , Gd 2 O 3 , (U, Gd) 3 O 8 and necessary additives, such as ammonium oxalate and zinc stearate. And the main properties of (U, Gd)O 2 burnable poisonous fuel pellets and the manufacture processes, such as ball-milling blending, granulation, pressing, sintering and grinding are also described. Moreover, the main effect of the process parameters controlled in the manufacture process have been discussed. (authors)

  7. Safety aspects of the using Gd as burnable poison in PWR's

    International Nuclear Information System (INIS)

    Vandenberg, C.; Bonet, H.; Charlier, A.

    1978-01-01

    The experience of BELGONUCLEAIRE in using Gd in LWR's has indicated the safety related advantages of this burnable poison. The successfully operation of the BR3 PWR power plant with 5% of Gd rods is presented and extrapolated to large PWR's. (authro)

  8. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Giada, Marino Reis

    2005-01-01

    Burnable poison rods made of Al 2 O 3 -B 4 C pellets with different concentrations of 10 B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10 B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm 3 of 10 B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  9. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  10. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  11. The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup, South Africa)

    Science.gov (United States)

    Vola, Gabriele; Sarandrea, Luca; Della Porta, Giovanna; Cavallo, Alessandro; Jadoul, Flavio; Cruciani, Giuseppe

    2017-12-01

    This study evaluates the influence of chemical, mineralogical and petrographic features of the Neoarchean limestone from the Ouplaas Mine (Griqualand West, South Africa) on its burnability and quicklime reactivity, considering the main use as raw material for high-grade lime production in twin shaft regenerative (TSR) kilns. This limestone consists of laminated clotted peloidal micrite and fenestrate microbial boundstone with herringbone calcite and organic carbon (kerogen) within stylolites. Diagenetic modifications include hypidiotopic dolomite, micrite to microsparite recrystallization, stylolites, poikilotopic calcite, chert and saddle dolomite replacements. Burning and technical tests widely attest that the Neoarchean limestone is sensitive to high temperature, showing an unusual and drastically pronounced sintering or overburning tendency. The slaking reactivity, according to EN 459-2 is high for lime burnt at 1050 °C, but rapidly decreases for lime burnt at 1150 °C. The predominant micritic microbial textures, coupled with the organic carbon, are key-factors influencing the low burnability and the high sintering tendency. The presence of burial cementation, especially poikilotopic calcite, seems to promote higher burnability, either in terms of starting calcination temperature, or in terms of higher carbonate dissociation rate. In fact, the highest calcination velocity determined by thermal analysis is consistent with the highest slaking reactivity of the lower stratum of the quarry, enriched in poikilotopic calcite. Secondly, locally concentered dolomitic marly limestones, and sporadic back shales negatively affects the quicklime reactivity, as well. This study confirms that a multidisciplinary analytical approach is essential for selecting the best raw mix for achieving the highest lime reactivity in TSR kilns.

  12. Calculation qualification of gadolinium burnable poisons in water reactors

    International Nuclear Information System (INIS)

    Chaucheprat, P.

    1988-01-01

    The work presented in this thesis constitutes the qualification on the one end of Appolo-Neptune scheme for the gadolinium burnable poison in a pressurized water reactor, and on the other end of basis nuclear data on natural gadolinium. This study has permitted to reduce by a factor 3 the actual incertitude on the gadolinium poison comparatively at precisions cited in international benchmarks calculations [fr

  13. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1992-01-01

    This patent describes a burnable absorber coated nuclear fuel. It comprises a nuclear fuel substrate containing a fissionable material; and an outer burnable absorber coating applied on an outer surface of the substrate; the outer absorber coating being composed of an inner layer of a boron-bearing material except for erbium boride and an outer layer of an erbium material

  14. Rare earths as burnable poison for extended cycles control in electricity generation reactors

    International Nuclear Information System (INIS)

    Asou, M.

    1995-01-01

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR's and PWR's operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR's. (author). 58 refs., 65 figs., 47 tabs

  15. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  16. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria; Efeitos da atmosfera de sinterizacao e do tamanho de particula na sinterizacao da ceria-gadolinia

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Rafael Morgado

    2014-07-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO{sub 1.5}) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m{sup 2}/g, 36,2 m{sup 2}/g e 7,4 m{sup 2}/g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce{sup 3+} bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  17. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  18. Gadolinium burnable absorber optimization by the method of conjugate gradients

    International Nuclear Information System (INIS)

    Drumm, C.R.; Lee, J.C.

    1987-01-01

    The optimal axial distribution of gadolinium burnable poison in a pressurized water reactor is determined to yield an improved power distribution. The optimization scheme is based on Pontryagin's maximum principle, with the objective function accounting for a target power distribution. The conjugate gradients optimization method is used to solve the resulting Euler-Lagrange equations iteratively, efficiently handling the high degree of nonlinearity of the problem

  19. Neutronic analysis of the JMTR with LEU fuel and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Yoshiharu; Oyamada, Rokuro [Japan Atomic Energy Research Institute, Oarai-machi Ibaraki-ken (Japan); Matos, J E; Woodruff, W L [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    The results of neutronics calculations are presented for the JMTR equilibrium core with LEU silicide fuel, boron and cadmium burnable poisons in the sideplates, and a cycle length of 24 days instead of 11 days with the current HEU fuel. The data indicate that several options are feasible provided that silicide fuels with high uranium densities are successfully demonstrated and licensed (author)

  20. Neutronic analysis of the JMTR with LEU fuel and burnable poison

    International Nuclear Information System (INIS)

    Nagaoka, Yoshiharu; Oyamada, Rokuro; Matos, J.E.; Woodruff, W.L.

    1985-01-01

    The results of neutronics calculations are presented for the JMTR equilibrium core with LEU silicide fuel, boron and cadmium burnable poisons in the sideplates, and a cycle length of 24 days instead of 11 days with the current HEU fuel. The data indicate that several options are feasible provided that silicide fuels with high uranium densities are successfully demonstrated and licensed (author)

  1. TU electric reactor model verification

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1989-01-01

    Power reactor benchmark calculations using the code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles include gadolinia as a burnable absorber, natural uranium axial blankets, and increased water-to-fuel ratio. The calculated results for both low-power physics tests (boron end points, control rod worths, and isothermal temperature coefficients) and full-power operation (power distributions and boron letdown) are compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important physics parameters for power reactors

  2. Neutronic analysis of the JMTR with LEU fuel and burnable poison

    International Nuclear Information System (INIS)

    Nagaoka, Yoshiharu; Oyamada, Rokuro; Matos, J.E.; Woodruff, W.L.

    1984-01-01

    The results of neutronics calculations are presented for the JMTR equilibrium core with LEU silicide fuel, boron and cadmium burnable poisons in the sideplates, and a cycle length of 24 days instead of 11 days with the current HEU fuel. The data indicate that several options are feasible provided that silicide fuels with high uranium densities are successfully demonstrated and licensed. 2 refs., 10 figs., 5 tabs

  3. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  4. Uncertainty Evaluation of the Thermal Expansion of Gd2O3-ZrO2 with a System Calibration Factor

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kweon Ho; Na, Sang Ho; Song, Kee Chan

    2007-01-01

    Both gadolinia (Gd 2 O 3 ) and zirconia (ZrO 2 ) are widely used in the nuclear industry, including a burnable absorber and additives in the fabrication of a simulated fuel. Thermal expansions of a mixture of gadolinia (Gd 2 O 3 ) 20 mol% and zirconia (ZrO 2 ) 80 mol% were measured by using a dilatometer (DIL402C) from room temperature to 1500 .deg. C. Uncertainties in the measurement should be quantified based on statistics. Referring to the ISO (International Organization for Standardization) guide, the uncertainties of the thermal expansion were quantified for three parts - the initial length, the length variation, and the system calibration factor. The whole system, the dilatometer, is composed of many complex sub-systems and in fact it is difficult to consider all the uncertainties of the sub-systems. Thus, the system calibration factor was introduced with a standard material for the uncertainty evaluation. In this study, a new system calibration factor was formulated in a multiplicative way. Further, the effect of calibration factor with random deviation was investigated for the uncertainty evaluation of a thermal expansion

  5. Fuel assemblies

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo.

    1983-01-01

    Purpose: To improve the operation performance of a BWR type reactor by improving the distribution of the uranium enrichment and the incorporation amount of burnable poisons in fuel assemblies. Constitution: The average enrichment of uranium 235 is increased in the upper portion as compared with that in the lower portion, while the incorporation amount of burnable poisons is increased in an upper portion as compared with that in the lower portion. The difference in the incorporation amount of the burnable poisons between the upper and lower portions is attained by charging two kinds of fuel rods; the ones incorporated with the burnable poisons over the entire length and the others incorporated with the burnable poisons only in the upper portions. (Seki, T.)

  6. Methods of assembling and disassembling spider and burnable poison rod structures for nuclear reactors

    International Nuclear Information System (INIS)

    Walton, L.A.

    1981-01-01

    A method is described of joining burnable poison rods to the spider arms of a pressurised water power reactor fuel assembly which is proof against the reactor core environment but permits these rods to be removed from the spider simply, swiftly and delicately. (U.K.)

  7. A proposal for a unified fuel thermal conductivity model available for UO{sub 2}, (U-Pu)O{sub 2} and UO{sub 2}-GD{sub 2}O{sub 3} PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Baron, D [Electrice de France, Moret-sur-Loing (France); Couty, J C [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-08-01

    In order to cope with the current fuel management targets which are focussed on higher discharge burnups, initial {sup 235}U fuel enrichments have been increased from 3.25% to 4%. To avoid an increase in boron concentration in the primary circuit, Gadolinium is used as a burnable poison, spread in the uranium oxide matrix of selected rods, in order to absorb the initial reactivity excess. Obviously, fuel thermal conductivity is affected when introducing any stranger element. Previously, the EDF thermomechanical code provided two different models to simulate the fuel thermal conductivity: one available for UO{sub 2} and (U-Pu)O{sub 2} fuels, the other for Gadolinia fuels, depending on the calculations to be done. No effect of the initial fuel stoichiometry was taken into account in the second model. That situation suggested the development of a unified model available for any fuels presently loaded in the EDF PWR reactors. This paper deals with the choice of the formulation, the data base used and the methodology applied for parameter fitting. Results in terms of measured versus predicted evaluation are then discussed. (author). 11 refs, 5 figs.

  8. CEA contribution to power plant operation with high burnup level

    International Nuclear Information System (INIS)

    1981-03-01

    High level burnup in PWR leads to investigate again the choices carried out in the field of fuel management. French CEA has studied the economic importance of reshuffling technique, cycle length, discharge burnup, and non-operation period between two cycles. Power plants operators wish to work with increased length cycles of 18 months instead of 12. That leads to control problems because the core reactivity cannot be controlled with the only soluble boron: moderator temperature coefficient must be negative. With such cycles, it is necessary to use burnable poisons and for economic reasons with a low penalty in end of cycle. CEA has studied the use of Gd 2 O 3 mixed with fuel or with inert element like Al 2 O 3 . Parametric studies of specific weights, efficacities relatively to the fuel burnup and the fuel enrichment have been carried out. Particular studies of 1 month cycles with Gd 2 O 3 have shown the possibility to control power distribution with a very low reactivity penalty in EOC. In the same time, in the 100 MW PWR-CAP, control reactivity has been made with large use of gadolinia in parallel with soluble boron for the two first cycles

  9. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  10. Experimental and theoretical burnup investigations on model arrangements with solid burnable poisons

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  11. Experimental and theoretical investigations on solid burnable poison burnup of model arrangements

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments reported here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Sano, Hiroki; Fushimi, Atsushi; Tominaga, Kenji; Aoyama, Motoo; Ishii, Kazuya.

    1997-01-01

    In burnable poison-incorporated uranium fuels of a BWR type reactor, the compositional ratio of isotopes of the burnable poisons is changed so as to increase the amount of those having a large neutron absorbing cross sectional area. For example, if the ratio of Gd-157 at the same burnable poison enrichment degree is made greater than the natural ratio, this gives the same effect as the increase of the enrichment degree per one fuel rod, thereby providing an effect of reducing a surplus reactivity. Gadolinium, hafnium and europium as burnable poisons have an absorbing cross sectional area being greater in odd numbered nuclei than in even numbered nuclei, on the contrary, boron has a cross section being greater in even numbered nucleus than odd numbered nuclei. Accordingly, if the ratio of isotopes having greater cross section at the same burnable poison enrichment degree is made greater than the natural ratio, surplus reactivity at the initial stage of the burning can be reduced without greatly increasing the amount of burnable poison-incorporated uranium fuels, fuel loading amount is not reduced and the fuel economy is not worsened. (N.H.)

  13. The treatment of burnable poison pins in LWRWIMS

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-12-01

    This report describes an investigation into the modelling approximations normally made when the LWR lattice code LWRWIMS is used for design calculations on assemblies containing burnable poison pins. Parameters investigated include energy group structure, intervals between calculations in MWd/te and spatial subdivision of the poison pins. An estimate is made of the effect of using pin-cell smearing with diffusion theory for the assembly geometry, instead of a more exact heterogeneous transport theory calculation. The influence on reactivity of the minor gadolinium isotopes 152, 154, 156, 158 and 160 in a poison pin dominated by the isotopes 155 and 157 is presented, and finally, recommendations on the use of LWRWIMS for this type of calculation are made. (author)

  14. Assessment of erbium as candidate burnable absorber for future PWR operaning cycles: A neutronic and fabrication study

    International Nuclear Information System (INIS)

    Asou, M.; Dehaudt, P.; Porta, J.

    1995-01-01

    Erbium begins to play a role in the control of PWR core reactivity. Generally speaking, burnable absorbers were only used to establish fresh core equilibrium. In France, since the possibility of extending irradiation cycles by 12 to 18 months, then up to 24 and 30 months, has been envisaged, there is renewed interest in burnable absorbers. The fabrication of PWR pellets has been investigated, providing high density and a good erbium homogeneity. The pellets characteristics were consistent with the specifications of PWR fuel. However, with the present process, the grain size remains small. Studies in progress now shows that erbium is not only a valuable alternative to gadolinium, for long fuel cycles (≥18 months) but also a new fuel concept. (orig.)

  15. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  16. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M.; Palomera, M.A.

    2005-01-01

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  17. Neutron physical investigations on the use of burnable poisons and gray absorber rods in large pressurized water reactors

    International Nuclear Information System (INIS)

    Brosche, C.; Katinger, T.; Kollmar, W.; Thieme, K.; Wagner, M.R.

    1977-11-01

    Methods and results of neutron physics calculations are described using burnable poisons and gray absorber rods in large PWR's. Calculated and measured values are compared, the effort for programming has been guessed. (orig.) [de

  18. Concept and nuclear performance of direct-enrichment fusion breeder blanket using UO2 powder

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Kasahara, Takayasu; An, Shigehiro

    1985-01-01

    A new concept is presented for direct enrichment of fissile fuel in the blanket of a fusion-fission hybrid reactor. The enriched fuel produced by this means can be used in fission reactors without reprocessing. The outstanding feature of the concept is the powdered form in which UO 2 fuel is placed in the reactor blanket, where it is irradiated to the requisite enrichment for use as fuel in burner reactor, e.g. 3%. After removal from blanket, the powder is mixed to homogenize the enrichment. Fuel pellets and assemblies are then fabricated from the powder without reprocessing. The concept of irradiating UO 2 in powder eliminates the problems of spatial nonuniformity in fissile enrichment, and of radiation damage to fuel clad, encountered in attempting to enrich prefabricated fuel. Powder mixing for homogenization brings the additional benefit of removing volatile fission products. Also burnable poison can be added, as necessary, after irradiation. An extensive neutronic parameter survey showed that the optimum blanket arrangement for this enrichment concept is one presenting a fission suppressing configuration and with beryllium adopted as moderator. By this arrangement, the average 239 Pu enrichment obtained on the natural UO 2 fuel in the blanket reaches 3% after only 0.56 MW.yr/m"2 exposure. A conceptual design is presented of the blanket, together with associated fusion breeder, from which, practical application of the concept is shown to be promising. (author)

  19. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  20. Study of the Effect of Burnable Poison Particles Applying in a Pebble Bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhao Jing; Zhang Jian; Xia Bing

    2014-01-01

    In pebble bed high temperature gas cooled reactors (HTR), spherical fuel elements pass through the core several times to balance the burnup process in the fuel region, resulting in an acceptable shape and peak factor of power density in the simulation analysis. In contrast, when fuel elements pass through the core only once, the peak of power density occurs at the top of the core and its value is too high to be safe. These indicators/parameters can be improved by incorporating burnable poison in the fuel elements under certain conditions. In the current study, burnable poison particles (BPPs) in fuel elements are evaluated. In spite of the strong absorption capability of "1"0B, BPPs can decrease the depletion speed and increase the duration of "1"0B because of the self-shielding effect, resulting in improved shape and peak factor of power distribution. Several BPPs with different radius are discussed in power distribution, following the calculation for a full-scale reactor core with modified VSOP code. According the result, applying BPPs on fuel pebbles is an effective means to improve the distribution of the power density under one-through fuel load in HTR. (author)

  1. Burnable poison calculations for Mk.III gas-cooled reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Gubbins, M E

    1971-02-15

    A method of calculating the reactivity and burn-up hisotry of a Mk.III GCR system containing burnable poisons has been described. The method allows for poison-fuel interaction. Using the method it has been shown that burn-up of the poison under a constant incident flux can give errors of the order of 1-2 niles. A calculation using the method described will take about 50% longer than a straightforward fuel burn-up calculation in the same number of groups. The multi-cell approach has a potential for handling greater geometrical complexity. It is intended to compare the method against experiment as soon as suitable experimental results become available.

  2. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  3. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  4. Synthesis and characterization of gadolinia-doped ceria-silver cermet cathode material for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    A series of Ce 0.9 Gd 0.1 O 2-δ -Ag cermets with different Ag contents were prepared by conventional sintering process aiming at assessing the suitability of using them as cathode material for solid oxide fuel cell (SOFC) with Gadolinia-doped ceria electrolyte. The chemical compatibility between Ce 0.9 Gd 0.1 O 2-δ (CGO) and Ag was investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Thermal expansion coefficients of the cermets were measured as a function of Ag content and were found to increase with metallic content. Although oxygen adsorption at the surface of the cermets could be detected, no reaction or solid solubility between CGO and Ag was found

  5. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga 2 O 3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  6. Guidebook on quality control of mixed oxides and gadolinium bearing fuels for light water reactors

    International Nuclear Information System (INIS)

    1991-02-01

    Under the coverage of an efficient quality assurance system, quality control in nuclear fuel fabrication is an essential element to assure the reliable performance of all its components in service. Incentives to increase fuel performance, by extending reactor cycles or achieving higher burnups and, in some countries to use recycled plutonium in light water reactors (LWRs) necessitated the development of new types of fuels. In the first case, due to higher uranium enrichments, a burnable neutron absorber was integrated to the fuel pellets. Gadolinia was found to form a solid solution with Uranium dioxide and, to present a burnup rate which matches fissile uranium depletion. (U,Gd)O 2 fuels which have been successfully used since the seventies, in boiling water reactors have more recently found an increased utilization, in pressurized water reactors. This amply justifies the publication of this TECDOC to encourage authorities, designers and manufacturers of these types of fuel to establish a more uniform, adapted and effective system of control, thus promoting improved materials reliability and good performance in advanced fuel for light water reactors. The Guidebook is subdivided into four chapters written by different authors. A separate abstract was prepared for each of these chapters. Refs, figs and tabs

  7. Irradiation and corrosion behaviour of cadmium aluminate, a burnable poison for light water reactors

    International Nuclear Information System (INIS)

    Hattenbach, K.; Ahlf, J.; Hilgendorff, W.; Zimmermann, H.U.

    1979-01-01

    In quest of a cadmium containing material for use as burnable poison cadmium aluminate seemed promising. Therefore irradiation and corrosion experiments on specimens of cadmium aluminate in a matrix of aluminia were performed. Irradiation at 575 K and fast fluences up to 10 25 m -2 showed the material to have good radiation resistance and low swelling rates. Cadmium pluminate was resistant to corrosion attack in demineralized water of 575K. (orig.) [de

  8. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  9. Microstructural evaluation of ceria-samaria-gadolinia-nickel oxide composite after reduction in hydrogen atmosphere

    International Nuclear Information System (INIS)

    Arakaki, A. R.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2012-01-01

    The ceria-samaria-gadolinia-nickel composite (Ni-SGDC), used as Solid Oxide Fuel Cell (SOFC) anode, was obtained by 'in situ' reduction of NiO-SGDC, with composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass proportion 40:60%. The composite was produced by hydroxides coprecipitation using CTAB surfactant, followed by solvothermal treatment in butanol, calcination at 600 deg C, pressing and sintering at 1350 deg C for 1 h. The composite reduction kinetic was evaluated in a tubular furnace under dynamic atmosphere of 4% H2 /Air, fixing the temperature at 900 deg C and time between 10 and 120 minutes. The microstructural characterization was performed by optical and scanning electron microscopy. The samples were characterized either by X-ray diffraction and density measurements by immersion technique in water. It was verified that the NiO reduced fraction reached values between 80 and 90% and the achieved porosity (about 30%) is acceptable to a good anode performance (author)

  10. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    International Nuclear Information System (INIS)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-01-01

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows f or surface

  11. Small PWR 'PFPWR50' using cermet fuel of Th-Pu particles

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Shimazu, Yoichiro

    2009-01-01

    An innovative concept of PFPWR50 has been studied. The main feature of PFPWR50 has been to adopt TRISO coated fuel particles in a conventional PWR cladding. Coated fuel particle provides good confining ability of fission products. But it is pointed out that swelling of SiC layer at low temperature by irradiation has possibilities of degrading the integrity of coated fuel particle in the LWR environment. Thus, we examined the use of Cermet fuel replacing SiC layer to Zr metal or Zr compound. And the nuclear fuel has been used as fuel compact, which is configured to fix coated fuel particles in the matrix material to the shape of fuel pellet. In the previous study, graphite matrix is adopted as the matrix material. According to the burnup calculations of the several fuel concepts with those covering layers, we decide to use Zr layer embedded in Zr metal base or ZrC layer with graphite matrix. But carbon has the problem at low temperature by irradiation as well as SiC. Therefore, Zr covering layer and Zr metal base are finally selected. The other feature of PFPWR50 concept has been that the excess reactivity is suppressed during a cycle by initially loading burnable poison (gadolinia) in the fuels. In this study, a new loading pattern is determined by combining 7 types of assemblies in which the gadolinia concentration and the number of the fuel rods with gadolinia are different. This new core gives 6.7 equivalent full power years (EFPY) as the core life of a cycle. And the excess reactivity is suppressed to less than 2.0%Δk/k during the cycle. (author)

  12. Effect of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria prepared by the coprecipitation technique; Efeito de adicoes de litio e calcio na densificacao e na condutividade eletrica da ceria-10% mol gadolinia preparada pela tecnica de co-precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, T.C.

    2010-07-01

    Ceria containing rare-earth ceramics are potential candidates for application in intermediate-temperature solid oxide fuel cells. One of the main problems related to these ceramic materials is their relatively low sinterability. In this work, the effects of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria was investigated. Ceramic compositions containing 1.5 mol% Ca or Li were prepared by the oxalate coprecipitation technique. Results of sintered density and electrical conductivity were compared to those of ceramic samples obtained by solid state reactions showing the effects of the synthesis method on densification and total electrical conductivity of the sintered materials. (author)

  13. Design improvements, construction and operating experience with BWRs in Japan

    International Nuclear Information System (INIS)

    Uchigasaki, G.; Yokomi, M.; Sasaki, M.; Aoki, R.; Hashimoto, H.

    1983-01-01

    (1) The first domestic-made 1100-MW(e) BWR in Japan commenced commercial operation in April 1982. The unit is the leading one of the subsequent three in Fukushima Daini nuclear power station owned by the Tokyo Electric Power Company Inc. (Tepco). Based on the accumulated construction and operation experience of 500-MW(e) and 800-MW(e) class BWRs, improvements in various aspects during both the design and construction stages were introduced in core and fuel design with advanced gadolinia distribution, reactor feedwater treatment technology for crud reduction, a radwaste island, control and instrumentation to cope with the lessons learned through Three Mile Island assessment etc. (2) Based on many operating experiences with BWRs, an improved BWR core, which has easier operability and higher load factor than the conventional core, has been developed. The characteristic of the improved core is ''axially two-zoned uranium enrichment distribution''; the enrichment of the upper part of the fuel is slightly higher than that of the lower part. Through the improved core it became possible to optimize the axial power flattening and core reactivity control separately by axial enrichment distribution and burnable poison content. The improved fuels were loaded into operating BWRs and successfully proved the performance by this experience. (3) To shorten annual outage time, to reduce radiation exposure, to save manpower, and to achieve high reliability and safety of inspection operation, the remote automatic service and inspection equipment were developed in Japan. This paper presents the concept, distinctive features, and actual operation experience of the automatic refuelling machine, control-rod drive (CRD) remote-handling machine, improved main steam line isolation plug, and the automated ultrasonic inspection system with a computerized data processing unit, which have been developed by Hitachi, Ltd. with excellent results. (author)

  14. Nuclear criticality safety: general. 5. Reactivity Effect of Burnable Absorbers in Burnup Credit for the CASTOR X/32S Storage and Transport Cask

    International Nuclear Information System (INIS)

    Rombough, Charles T.; Lancaster, Dale B.; Diersch, Rudolf; Spilker, Harry

    2001-01-01

    When considering burnup credit in the licensing of storage and transportation casks, a significant effect is whether or not the burned fuel was depleted with burnable absorbers present. This paper presents the results of detailed calculations to quantitatively determine the burnable absorber effect for the CASTOR X/32S transport cask, which assumes burnup of the fuel in the criticality analysis. A radial view of the CASTOR X/32S cask is shown in Fig. 1. This is the actual plot of the geometry as modeled in KENO V.a. Note that there are no water-filled flux traps and the assemblies are tightly packed. This reduces the overall dimensions of the cask for a given number of fuel assemblies. Reactivity is held down by borated aluminum plates between the fuel assemblies and by placing absorber rod modules (ARMs) in the guide tubes of selected assemblies. If burnup of the fuel is not considered and the initial enrichment is 5.0 wt% 235 U, then 28 of the 32 fuel assemblies must contain an ARM to maintain a k eff 3 ; 4. moderator temperature of 604 K; 5. cooling time of 9.5 yr; 6. specific power of 60 W/g of U metal; 7. conservative axial and radial burnup shape distribution; 8. Westinghouse BP material containing 12.5 wt% B 4 C. Using the model described earlier, calculations were performed with varying numbers of BP fingers inserted for different exposure times. The results are shown in Tables I and II. The 1 s statistical error in these results is σ equals ±0.05%. Note that the BP finger and exposure effects decrease with fuel burnup and the effect is smaller when the cask contains ARMs. Conservatively combining the results from Tables I and II and interpolating, we can equate fewer BP fingers with longer BP exposure time as shown in Table III. The Table III results were checked by running the actual cases (for example, 20 BP fingers for 24 GWd/tonne exposure) to verify that the k eff 's for the cask were always less than the base-case values. These results can also be

  15. Spanish collaboration in the OECD Halden Reactor Project research on Gadolinia Fuel

    International Nuclear Information System (INIS)

    Horvath, M.; Munoz-Reja, C.; Tverberg, T.; Jenssen, H. K.

    2010-01-01

    Safe and reliable operation of nuclear power plants benefit from research and development advances and related technical solutions. One research platform is the OECD Halden Reactor Project (HRP). HRP is a joint undertaking of national organisations in 18 countries sponsoring a jointly financed programme under the auspices of the OECD - Nuclear Energy Agency (NEA). As a member state, Spain is participating HRP research programs with ENUSA as a partner in the fuel research programs. Improving the NPP operations, fuel cycles were designed to increase fuel burnup. Higher fuel burnup reduces the number of spent fuel assemblies and thus the costs of new fuel as well as the costs of back-end management. Higher burnup is reached either by prolonging the reactor cycles or by increasing the number of reactor cycles for the fuel in the core. Both ways entail additional requirements concerning fuel enrichment and burnable absorbers as additives and adjustments on the cladding material properties, such as mechanical treatment and chemical composition of the alloys. For these demands and needs ENUSA promotes the research on high burnup effects, gadolinium doped fuels and cladding material behaviour under irradiation. Various experiments, called IFA, are developed and performed also by providing materials. ENUSA collaborates with HRP on various experiments investigating the fuel densification and swelling, fission gas release, pressure limits on UO 2 and (U,Gd)O 2 fuels (IFA-504, -515, -636, -681); the cladding creep, lift-off, corrosion and hydrides on different tubing materials (IFA-567, -610, -638); instrumentation of the experiments, especially on pre-irradiated materials (IFA-533). These experiments are combined with model calculations to improve predictions for higher burnups and to maintain safety margins (IFA-515, -636, -681). Besides these unique in-pile experiments PIEs are performed as well on fuel and structural materials to complete the scope of these studies (IFA

  16. Application of B{sub 4}C/Al{sub 2}O{sub 3} Burnable Absorber Rod to Control Excess Reactivity of SMR

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Boravy; Hah, C. J. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Soluble boron in a nuclear reactor coolant is one of the methods to control excess reactivity of the reactor. However, the use of soluble boron also causes some negative effects such as corrosion, more-positive tendency of Moderator Temperature Coefficient (MTC) and the requirement of Chemical Volume Control System (CVCS). One of the conceptual design features of SMR having been developed in Korea is soluble boron- free reactor to eliminate those drawbacks. Control rods and Burnable Absorber (BA) rods can be other methods than soluble to control excess reactivity. WABA (Wet Annular Burnable Absorber) and PYREX are such type. The other type is IFBA (Integral Fuel Burnable Absorber) in which fuel pellet surface is coated with BA. This paper compares nuclear characteristics of three types of BA as well as SLOBA in terms of k-infinite vs. burnup and explain design basis of SLOBA. This paper also presents the application of SLOBA rods to control long-term excess reactivity of SMR. The SMR loaded with SLOBA rods has been developed for the past few years in Korean. It is named as Bandi-50 with design features of 180 MWth, 37 FAs, fuel assembly height of 200 cm. Soluble-boron-free is one of nuclear design requirements of Bandi-50 and is achieved by controlling excess reactivity of the SMR using BAs and control rods only. To achieve this design requirement, LP is carefully determined in such way that CBC should be as low as possible. Fuel assembly cross-sections are generated by CASMO-3, and core depletion calculations are performed by MASTER.

  17. Evaluation of accuracy of Monte Carlo code MVP with VHTRC experiments. Multiplication factor at criticality, burnable poison worth and void worth

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Yamashita, Kiyonobu; Fiujimoto, Nozomu; Nakano, Masaaki , Yamane, Tsuyoshi; Akino, Fujiyoshi.

    1997-11-01

    Experimental data of VHTRC (Very High Temperature Reactor Critical Assembly) were analyzed using Monte Carlo code MVP (general purpose Monte Carlo code of neutron and photon transport calculations based on the continuous energy method). The calculation accuracy of the code was evaluated by the analysis for nuclear characteristics of a HTGR (high temperature gas-cooled reactor). The MVP code can analyze with a detailed three-dimensional core model with a few approximations. The HTGRs have following characteristics from view point of nuclear design : they have burnable poisons, many void holes, namely, the control insertion holes and so on. Taking account of these characteristics, multiplication factor at criticality, burnable poison worth, and void worth were evaluated. The maximum calculation errors were 0.8%Δk, 7%, and 25% respectively, From these results, it can be concluded that the MVP code is able to be applied to the nuclear characteristics analysis of the HTGR like the High Temperature Engineering Test Reactor (HTTR). (author)

  18. Optimizing the use of gadolinium as burnable poison in nuclear fuel: towards a boron free PWR

    International Nuclear Information System (INIS)

    Pieck, D.

    2013-01-01

    Reactivity excess in Nuclear Power Plants is controlled by reactor's active systems: boric acid dilution and control rods. Alternatively, negative reactivity insertion can be made in a passive way using burnable poisons, i.e. neutron absorbers, this is the case of gadolinium (Gd). In the industrial framework of U 235 enrichment increase and boric acid restraint, the goal of this thesis is to optimize the distribution of gadolinium in UO 2 ceramics to obtain a high-performance provision of negative reactivity in Pressurized Water Reactors. In this sense, the work is focus on new gadolinium-rich materials. Thus, U-Gd-O phase diagram was explored in the field of high Gd contents. Two cubic phases were found and characterized: the C1 and C2 phases. With the aim of an industrial application, C1 phase was selected as candidate for Gd addition into UO 2 pellets. The optimal distribution of C1 phase within a nuclear fuel assembly was studied using APOLLO 2.8 neutron transport code. Parametric calculations were performed. These neutronic studies have ends in a successful 'concept of poisoned pellet'. Finally, some prototype pellets following this concept were made in laboratory to proof it feasibility. All the obtained results shows that the proposed concept of a neutro-phage C1-phase coating on UO 2 pellets is a convenient way to reduce reactivity excess within the framework of long irradiation cycles. This concept could be potentially applied in industrial scale. Consequently a patent application process was initiated.(author) [fr

  19. Investigation of neutron physical features of WWER-440 assembly containing differently enriched pins and Gd burnable poison

    International Nuclear Information System (INIS)

    Nemes, Imre

    2000-01-01

    In this paper different pin-distributions of WWER-440 fuel assembly are examined. Assemblies contain 3 Gd-doped pins (Hungarian design), 6 Gd-doped pins near the assembly corners (Russian design) and differently profiled U5-enrichment in different pins. The main neutron physical characteristics of this assemblies - as the function of burnup - are calculated using HELIOS code. The calculated parameters of different assembly designs are analyzed from the standpoint of fuel cycle economy and refueling design practice. (Authors)

  20. Anode-supported single-chamber SOFCs based on gadolinia doped ceria electrolytes

    Directory of Open Access Journals (Sweden)

    Morales, M.

    2008-12-01

    Full Text Available The utilization of anode supported electrolytes is a useful strategy to increase the electrical properties of the solid oxide fuel cells, because it is possible to decrease considerably the thickness of the electrolytes. We have prepared successfully singlechamber fuel cells of gadolinia doped ceria electrolytes Ce1-xGdxO2-y (CGO supported on an anode formed by a cermet of Ni-CGO. Mixtures of precursor powders of NiO and gadolinium doped ceria with different particle sizes and compositions were analyzed to obtain optimal bulk porous anodes to be used as anode supported fuel cells. Doped ceria electrolytes were prepared by sol-gel related techniques. Then, ceria based electrolytes were deposited by dip coating at different thickness (15-30 µm using an ink prepared with nanometric powders of electrolytes dispersed in a commercial liquid polymer. Cathodes of La1-xSrxCoO3-s (LSCO were also prepared by sol-gel related techniques and were deposited by dip coating on the electrolyte thick films. Finally, electrical properties were determined in a single-chamber reactor where propane as fuel was mixed with synthetic air above the higher explosive limit. Stable density currents were obtained in these experimental conditions, but flow rates of the carrier gas and propane partial pressure were determinants for the optimization of the electrical properties of the fuel cells.

    La utilización de electrolitos soportados en el ánodo es una estrategia muy útil para mejorar las propiedades eléctricas de las pilas de combustible de óxido sólido, debido a que permiten disminuir considerablemente el espesor de los electrolitos. Para este trabajo, se han preparado exitosamente pilas de combustible de óxido sólido con electrolitos de ceria dopada con Gd, Ce1-xGdxO2-y (CGO soportados sobre un ánodo formado por un cermet de Ni/CGO. Dichas pilas se han

  1. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  2. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  3. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    International Nuclear Information System (INIS)

    Gharari, Rahman; Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi

    2016-01-01

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor

  4. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

  5. Singler-chamber SOFCs based on gadolinia doped ceria operated on methane and propane; Pilas de combustible de una sola camara, basadas en electrolitos de ceria dopada con gadolinia y operadas con metano y propano

    Energy Technology Data Exchange (ETDEWEB)

    Morales, M.; Roa, J. J.; Capdevila, X. G.; Segarra, M.; Pinol, S.

    2010-07-01

    The main advantages of single-chamber solid oxide fuel cells (SOFCs) respect to dual-chamber SOFCs, are to simplify the device design and to operate in mixtures of hydrocarbon (methane, propane...) and air, with no separation between fuel and oxidant. However, this design requires the use of selective electrodes for the fuel oxidation and the oxidant reduction. In this work, electrolyte-supported SOFCs were fabricated using gadolinia doped ceria (GDC) as the electrolyte, Ni + GDC as the anode and LSC(La{sub 0}.5Sr{sub 0}.5CoO{sub 3}-{delta})-GDC-Ag{sub 2}O as the cathode. The electrical properties of the cell were determined in mixtures of methane + air and propane + air. The influence of temperature, gas composition and total flow rate on the fuel cell performance was investigated. As a result, the power density was strongly increased with increasing temperature, total flow rate and hydrocarbon composition. Under optimized gas compositions and total flow conditions, power densities of 70 and 320 mW/cm{sup 2} operating on propane at a temperature of 600 degree centigrade and methane (795 degree centigrade) were obtained, respectively. (Author)

  6. Evaluation of CASMO-3 and HELIOS for Fuel Assembly Analysis from Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyung Jin; Song, Jae Seung; Lee, Chung Chan

    2007-05-15

    This report presents a study comparing deterministic lattice physics calculations with Monte Carlo calculations for LWR fuel pin and assembly problems. The study has focused on comparing results from the lattice physics code CASMO-3 and HELIOS against those from the continuous-energy Monte Carlo code McCARD. The comparisons include k{sub inf}, isotopic number densities, and pin power distributions. The CASMO-3 and HELIOS calculations for the k{sub inf}'s of the LWR fuel pin problems show good agreement with McCARD within 956pcm and 658pcm, respectively. For the assembly problems with Gadolinia burnable poison rods, the largest difference between the k{sub inf}'s is 1463pcm with CASMO-3 and 1141pcm with HELIOS. RMS errors for the pin power distributions of CASMO-3 and HELIOS are within 1.3% and 1.5%, respectively.

  7. Study of burnable poison in the dupic cycle

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clarysson A.M. da; Almeida, Michel C.B. de; Faria, Rochkhudson B. de; Moreira, Arthur P.C.; Pereira, Claubia, E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recent studies confirm the potential of using reprocessed PWR (Pressurized Water Reactor) fuels in the CANDU (Canada Deuterium Uranium) reactor fuel cycle. An important proposal is the 'Direct Use of spent PWR fuel In CANDU' (DUPIC) cycle, where spent fuels from a PWR are packaged into a CANDU fuel bundle with only mechanical reprocessing (cut into pieces) but no chemical reprocessing. The fissile contents of the spent fuel from Pressurized Water Reactor (PWR) are about 1.5 wt%, which is higher than that of the fuel of CANDU. When this reactor is reload with reprocessed fuel, the reactivity of system will increase and this behavior may affect the safety parameters of reactor. To reduce the initial reactivity, Burnable Poison (BP) can be inserted in the fuel bundle of CANDU. In this way, the present paper evaluates the insertion of the different types of BP considering the DUPIC cycle. The following BPs were evaluated: Boron, Cadmium, Dysprosium, Erbium, Europium, Gadolinium, Hafnium and Samarium. The goal is to verify the neutronic behavior of the fuel bundle at steady state and during the reactor burnup. The SCALE 6.0 (Standardized Computer Analyses for Licensing Evaluation) code was employed to model a standard CANDU-6 fuel element. (author)

  8. Monte Carlo simulation in UWB1 depletion code

    International Nuclear Information System (INIS)

    Lovecky, M.; Prehradny, J.; Jirickova, J.; Skoda, R.

    2015-01-01

    U W B 1 depletion code is being developed as a fast computational tool for the study of burnable absorbers in the University of West Bohemia in Pilsen, Czech Republic. In order to achieve higher precision, the newly developed code was extended by adding a Monte Carlo solver. Research of fuel depletion aims at development and introduction of advanced types of burnable absorbers in nuclear fuel. Burnable absorbers (BA) allow the compensation of the initial reactivity excess of nuclear fuel and result in an increase of fuel cycles lengths with higher enriched fuels. The paper describes the depletion calculations of VVER nuclear fuel doped with rare earth oxides as burnable absorber based on performed depletion calculations, rare earth oxides are divided into two equally numerous groups, suitable burnable absorbers and poisoning absorbers. According to residual poisoning and BA reactivity worth, rare earth oxides marked as suitable burnable absorbers are Nd, Sm, Eu, Gd, Dy, Ho and Er, while poisoning absorbers include Sc, La, Lu, Y, Ce, Pr and Tb. The presentation slides have been added to the article

  9. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics

    International Nuclear Information System (INIS)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2011-01-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m 2 / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  10. Burnable poisons in the light water reactor design, microburnup experiments and calculations. Part of a coordinated programme on burnup calculations and experiments for thermal reactors

    International Nuclear Information System (INIS)

    Penndorf, K.

    1976-04-01

    Investigations on Research Agreement N 1519/CF (1.8.1974 - 31.7.1975) entitled ''Burnable poisons in light water reactor design, microburnup experiments and calculations'' were carried out in the frame of the IAEA's coordinated research programme on ''Burn-up calculation and experiments for thermal reactors''. The theoretical and experimental work on application of solid burnable poison used for reduction of the amount of boric acid necessary to control of PWR or to lower the number of control rods needed in a BWR. Solid burnable poisons are needed in present PWR designs for the reduction of the boron acid concentration in order to prevent positive coefficients of reactivity. The special operational conditions of a ship reactor lead to the application of this kind of poison for compensation of almost all burnup reactivity. This strengthens the necessity of a very accurate and many dimensional calculations because an appropriate binding of reactivity has to be kept over the whole cycle time. Several burnup experiments had been run in the 15 MW material test reactor FRG-II. The following devices have been irradiated: poison pins within and without PWR fuel pin lattice segments and fuel pins containing pellets with a poison core. Measurements of reactivity, fluence, fission product concentration have been performed. Methods applied were γ-scanning and neutron pulse, radiography and transmission measurement techniques. Evaluation of the experiments was done by one and two dimensional Ssub(N) transport burnup calculations. In parallel a collision probability transport burnup code for current PWR design work is being developed, the main feature of which is economy in manpower and computer time

  11. Study of burnable poisons and gadolinium qualification in light water reactors

    International Nuclear Information System (INIS)

    Nasr, Mohamed.

    1981-09-01

    The aim of this work is to develop a calculation procedure for analyzing light water moderated reactors utilizing gadolinium as a burnable poison. The main points of this work can be summarized as follows: the available cross section data of gadolinium were analysed and corrected whenever it was necessary. The processes which include required precautions for obtaining multigroup cross sections were defined; an exhaustive study of the assumptions used in multicell calculation methods allowed the definition of option to be used for obtaining good results without excessive calculation cost. This study was followed by the interpretation of experimental results; when gadolinium is used in grain structure, a problem of double heterogeneity is encountered. A new calculation method was developed for such situations. Its validity was confirmed by a comparison with the Monte Carlo method; the problems encountered in performing a study of burn up of fuel elements containing gadolinium were analysed and the necessary precautions were established. The effect of the initial charge and geometrical form of the gadolinium and the behavior of lattices during the burn up were examined [fr

  12. The slightly-enriched spectral shift control reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering); Edlund, M.C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering)

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  13. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Larsen, E.W.; Edlund, M.C.

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC

  14. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Isaiah D. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States); Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States)

    2010-11-01

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration. (author)

  15. Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement

    International Nuclear Information System (INIS)

    Khoshahval, F.; Fadaei, A.

    2012-01-01

    Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.

  16. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  17. Resonance self-shielding method using resonance interference factor library for practical lattice physics computations of LWRs

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Khassenov, Azamat; Lee, Deokjung

    2016-01-01

    This paper presents a new method of resonance interference effect treatment using resonance interference factor for high fidelity analysis of light water reactors (LWRs). Although there have been significant improvements in the lattice physics calculations over the several decades, there exist still relatively large errors in the resonance interference treatment, in the order of ∼300 pcm in the reactivity prediction of LWRs. In the newly developed method, the impact of resonance interference to the multi-group cross-sections has been quantified and tabulated in a library which can be used in lattice physics calculation as adjustment factors of multi-group cross-sections. The verification of the new method has been performed with Mosteller benchmark, UO_2 and MOX pin-cell depletion problems, and a 17×17 fuel assembly loaded with gadolinia burnable poison, and significant improvements were demonstrated in the accuracy of reactivity and pin power predictions, with reactivity errors down to the order of ∼100 pcm. (author)

  18. Calculational modeling of fuel assemblies of WWER-1000 type with the use of burnable absorber Gadolinum; comparative analysis

    International Nuclear Information System (INIS)

    Yeremenko, M.L.; Kovbasenko, Yu.P.; Loetsch, T.

    2001-01-01

    In connection with the beginning of the use of fuel assemblies with burnable absorbers by integration of Gadolinum into the nuclear fuel at Ukrainian NPP the task of testing the code systems and the pertinent neutron cross section libraries for the new fuel arose. Taking into account the long term experience of German experts with calculations and evaluation of nuclear fuel containing Gadolinum it was decided to carry out a series of test calculations for fuel assembly lattices of PWR, WWER-440 and WWER-1000 types using the NESSEL/PYTHIA and CASMO/SIMULATE code systems (Authors)

  19. A Conceptual Supercritical Water Cooled Reactor Design Using a Cruciform Solid Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Bae, Kang Mok; Yoo, Jae Woon; Lee, Hyun Chul; Noh, Jae Man; Bae, Yoon Yong

    2006-01-15

    A Super Critical Water-Cooled Reactor(SCWR) concept proposed by Gen-IV has an advantage of a high thermal efficiency. However, there are some difficulties in neutronic core design for a SCWR due to lower moderator density resulting from the high operating temperature over the pseudo-critical temperature. In this report, the design concepts for the fuel assembly and the core for a SCWR were described as a feasibility study on the SCWR core design. HELIOS lattice code which will be used for group constants generation was verified for the application to the low coolant density condition of a SCWR. The TAF module for a thermal hydraulic feedback in MASTER was modified to consider high pressure and temperature of the supercritical coolant with single-phase fluid. A cruciform ZrH{sub 2} solid moderator was proposed for the SCWR fuel assembly design to compensate the lower coolant density. The axial zoning concept with three different enrichments for a fuel rod was used for the axial power shape control. Gadolinia burnable poison rods were used to reduce excess reactivity. Control rod system was grouped into 6 banks to control the excess reactivity of the core during normal operation. An orifice concept for each assembly was applied to control a coolant flow rate individually. As a result of the neutronic analysis for the equilibrium SCWR core, the maximum linear heat generation rete limit was satisfied and the maximum coolant temperature of the core outlet was {approx}590 .deg. C which is lower than 620 .deg. C of the maximum clad temperature limit.

  20. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  1. The main conditions ensured problemless implementation of 235U high enriched fuel in Kozloduy NPP (Bulgaria) - WWER-1000 Units

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.; Minkova, K.; Michaylov, G.; Penev, P.; Gerchev, N.

    2009-01-01

    The collected water chemistry and radiochemistry data during the operation of the Kozloduy NPP Unit 5 for the period 2006-2009 (12-th, 13-th 14-th and 15-th fuel cycles) undoubtedly indicate for WWER-1000 Units (whose specific features are: Steam generators with austenitic stainless steel 08Cr18N10T tubing; Steam generators are with horizontal straight tubing and Fuel elements cladding material is Zr-1%Nb (Zr1Nb) alloy), that one realistic way for problemless implementation of 235 U high enriched fuel have been found. The main feature characteristics of this way are: Implementation of solid neutron burnable absorbers together with the dissolved in coolant neutron absorber - natural boric acid; Application of fuel cladding materials with enough corrosion resistance by the specific fuel cladding environment created by presence of SNB; Keeping of suitable coolant water chemistry which ensures low corrosion rates of core- and out-of-core- materials and limits in core (cladding) depositions and restricts out-of-core radioactivity buildup. The realization of this way in WWER-1000 Units in Kozloduy NPP was practically carried out through: 1) Implementation of Russian fuel assemblies TVSA which have as fuel cladding material E-110 alloy (Zr1Nb) with enough high corrosion resistance by presence of sub-cooled nucleate boiling (SNB) and use burnable absorber (Gd) integrated in the uranium-gadolinium (U-Gd 2 O 3 ) fuel (fuel rod with 5.0% Gd 2 O 3 ); 2) Development and implementation of water chemistry primary circuit guidelines, which require the relation between boric acid concentration and total alkalising agent concentrations to ensure coolant pH 300 = 7.0 - 7.2 values during the whole operation period. The above mentioned conditions by the passing of WWER-1000 Units in NPP Kozloduy to uranium fuel with 4.4% 235 U (TVSA fuel assemblies) practically ensured avoidance of the creation of the necessary conditions for AOA onset. The operational experience (2006-2009) of the

  2. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  3. DESCRIPTION OF THE TRITIUM-PRODUCING BURNABLE ABSORBER ROD FOR THE COMMERCIAL LIGHT WATER REACTOR TTQP-1-015 Rev 19

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Love, Edward F.; Thornhill, Cheryl K.

    2012-02-01

    Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy’s Tritium Readiness Program are designed to produce tritium when placed in a Westinghouse or Framatome 17x17 fuel assembly and irradiated in a pressurized water reactor (PWR). This document provides an unclassified description of the current design baseline for the TPBARs. This design baseline is currently valid only for Watts Bar reactor production cores. A description of the Lead Use TPBARs will not be covered in the text of the document, but the applicable drawings, specifications and test plan will be included in the appropriate appendices.

  4. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  5. Design of 50 MWe HTR-PBMR reactor core and nuclear power plant fuel using SRAC2006 programme

    International Nuclear Information System (INIS)

    Bima Caraka Putra; Yosaphat Sumardi; Yohannes Sardjono

    2014-01-01

    This research aims to assess the design of core and fuel of nuclear power plant type High Temperature Reactor-Pebble Bed Modular Reactor 50 MWe from the Beginning of Life (BOL) to Ending of life (EOL) with eight years operating life. The parameters that need to be analyzed in this research are the temperature distribution inside the core, quantity enrichment of U 235 , fuel composition, criticality, and temperature reactivity coefficient of the core. The research was conducted with a data set of core design parameters such as nuclides density, core and fuel dimensions, and the axial temperature distribution inside the core. Using SRAC2006 program package, the effective multiplication factor (k eff ) values obtained from the input data that has been prepared. The results show the value of the criticality of core is proportional to the addition of U 235 enrichment. The optimum enrichment obtained at 10.125% without the use of burnable poison with an excess reactivity of 3.1 2% at BOL. The addition Gd 2O3 obtained an optimum value of 12 ppm burnable poison with an excess reactivity 0.38 %. The use of Er 2O3 with an optimum value 290 ppm has an excess reactivity 1.24 % at BOL. The core temperature reactivity coefficient with and without the use of burnable poison has a negative values that indicates the nature of its inherent safety. (author)

  6. Modeling of the reactor core

    International Nuclear Information System (INIS)

    1999-01-01

    In order to improve technical - economical parameters fuel with 2.4% enrichment and burnable absorber is started to be used at Ignalina NPP. Using code QUABOX/CUBBOX the main neutronic - physical characteristics were calculated for selected reactor core conditions

  7. Report on the meeting for examining replacing core

    International Nuclear Information System (INIS)

    1977-01-01

    At the time of examining the application for approval of reactor installation, it must be confirmed that the safety of the concerned reactor is secured with not only the initially loaded core but also the replacing core. Besides, it must be confirmed again that the various criteria concerning the safety are satisfied after the start of operation, because a part of the parameters of the replacing core is dependent on the operational history. On the above described viewpoints, the main parameters affecting the safety and the nuclear and thermal limits of replacing core were reviewed. Moreover, the contents of description concerning replacing core in the application form were examined. As the general matters concerning the safety of replacing core, the scram reactivity curves for BWRs and PWRs, the method of description in the application form concerning the fuel containing gadolinia, and the use of burnable poison in replacing core were examined. The meeting for examining replacing core was organized on September 20, 1976, at the Committee for Examining Reactor Safety, and this report was compiled as the results of 10 meetings. (Kako, I.)

  8. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  9. Numerical study of optimal equilibrium cycles for pressurized water reactors

    International Nuclear Information System (INIS)

    Mahlers, Y.P.

    2003-01-01

    An algorithm based on simulated annealing and successive linear programming is applied to solve equilibrium cycle optimization problems for pressurized water reactors. In these problems, the core reload scheme is represented by discrete variables, while the cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are treated as continuous variables. The enrichments are considered to be distinct in all feed fuel assemblies. The number of batches and their sizes are not fixed and also determined by the algorithm. An important feature of the algorithm is that all the parameters are determined by the solution of one optimization problem including both discrete and continuous variables. To search for the best reload scheme, simulated annealing is used. The optimum cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are determined for each reload pattern examined using successive linear programming. Numerical results of equilibrium cycle optimization for various values of the effective price of electricity and fuel reprocessing cost are studied

  10. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    Science.gov (United States)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as

  11. Optimization method of rod-type burnable poisons for nuclear designs of HTGRs

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    1994-01-01

    In block-type HTGRs, control rod insertion depths into cores had to be maintained as small as possible at full power operations, to avoid a fuel temperature rise. Thus, specifications (poison atom density (N BP ) and radius (r)) of rod-type burnable poisons (BPs) had to be optimized so that the effective multiplication factor (k eff ) would be constant at a minimum value throughout a planned burnup period. However, the optimization had been a time-consuming work until now since survey calculations had to be done for most possible combinations of N BP and r. To solve this problem, I have found a optimization method consisting of two steps. In the first step, approximation formulas describing a time-dependent relation among effective absorption cross sections (Σ aBP ), N BP and r are used to select promising combinations of N BP and r beforehand. In the second step, the best combination of N BP and r is determined by a comparison between Σ aBP of each promising combination and expected one. The number of survey calculations was reduced to about 1/10 by the optimization method. The change in k eff for 600 burnup days was reduced to 2%Δk by the method. Hence, it was made possible to operate reactors practically without inserting the control rods into cores. (author)

  12. The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo, K.; Pryds, N.; Theil Kuhn, L.; Esposito, V.; Linderoth, S. [Technical University of Denmark, Fuel Cells and Solid State Chemistry Division, Risoe DTU, Roskilde (Denmark); Heiroth, S.; Lippert, T. [Paul Scherrer Institute, General Energy Research Department, Villigen PSI (Switzerland); Schou, J. [Technical University of Denmark, Department of Photonics Engineering, Roskilde (Denmark)

    2011-09-15

    Ultrathin crystalline films of 10 mol% gadolinia-doped ceria (CGO10) are grown on MgO (100) substrates by pulsed laser deposition at a moderate temperature of 400 C. As-deposited CGO10 layers of approximately 4 nm, 14 nm, and 22 nm thickness consist of fine grains with dimensions {<=}{proportional_to}11 nm. The films show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat treatment at 400 C and 800 C. The effect of the grain coarsening on the electrical characteristics of the layers is investigated and discussed in the context of a variation of the number density of grain boundaries. The results are evaluated with regard to the use of ultrathin CGO10 films as seeding templates for the moderate temperature growth of thick solid electrolyte films with improved oxygen transport properties. (orig.)

  13. Out-of-core fuel cycle optimization for nonequilibrium cycles

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1988-01-01

    A methodology has been developed for determining the family of near-optimum fuel management schemes that minimize the levelized fuel cycle costs of a light water reactor over a multicycle planning horizon. Feed batch enrichments and sizes, burned batches to reinsert, and burnable poison loadings are determined for each cycle in the planning horizon. Flexibility in the methodology includes the capability to assess the economic benefits of various partially burned bath reload strategies as well as the effects of using split feed enrichments and enrichment palettes. Constraint limitations are imposed on feed enrichments, discharge burnups, moderator temperature coefficient, and cycle energy requirements

  14. Automatic fuel lattice design in a boiling water reactor using a particle swarm optimization algorithm and local search

    International Nuclear Information System (INIS)

    Lin Chaung; Lin, Tung-Hsien

    2012-01-01

    Highlights: ► The automatic procedure was developed to design the radial enrichment and gadolinia (Gd) distribution of fuel lattice. ► The method is based on a particle swarm optimization algorithm and local search. ► The design goal were to achieve the minimum local peaking factor. ► The number of fuel pins with Gd and Gd concentration are fixed to reduce search complexity. ► In this study, three axial sections are design and lattice performance is calculated using CASMO-4. - Abstract: The axial section of fuel assembly in a boiling water reactor (BWR) consists of five or six different distributions; this requires a radial lattice design. In this study, an automatic procedure based on a particle swarm optimization (PSO) algorithm and local search was developed to design the radial enrichment and gadolinia (Gd) distribution of the fuel lattice. The design goals were to achieve the minimum local peaking factor (LPF), and to come as close as possible to the specified target average enrichment and target infinite multiplication factor (k ∞ ), in which the number of fuel pins with Gd and Gd concentration are fixed. In this study, three axial sections are designed, and lattice performance is calculated using CASMO-4. Finally, the neutron cross section library of the designed lattice is established by CMSLINK; the core status during depletion, such as thermal limits, cold shutdown margin and cycle length, are then calculated using SIMULATE-3 in order to confirm that the lattice design satisfies the design requirements.

  15. Evaluation of the need for stochastic optimization of out-of-core nuclear fuel management decisions

    International Nuclear Information System (INIS)

    Thomas, R.L. Jr.

    1989-01-01

    Work has been completed on utilizing mathematical optimization techniques to optimize out-of-core nuclear fuel management decisions. The objective of such optimization is to minimize the levelized fuel cycle cost over some planning horizon. Typical decision variables include feed enrichments and number of assemblies, burnable poison requirements, and burned fuel to reinsert for every cycle in the planning horizon. Engineering constraints imposed consist of such items as discharge burnup limits, maximum enrichment limit, and target cycle energy productions. Earlier the authors reported on the development of the OCEON code, which employs the integer Monte Carlo Programming method as the mathematical optimization method. The discharge burnpups, and feed enrichment and burnable poison requirements are evaluated, initially employing a linear reactivity core physics model and refined using a coarse mesh nodal model. The economic evaluation is completed using a modification of the CINCAS methodology. Interest now is to assess the need for stochastic optimization, which will account for cost components and cycle energy production uncertainties. The implication of the present studies is that stochastic optimization in regard to cost component uncertainties need not be completed since deterministic optimization will identify nearly the same family of near-optimum cycling schemes

  16. IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments

    International Nuclear Information System (INIS)

    2003-01-01

    Description: B and W has performed and analysed a series of physics experiments basically concerned with the technology of heterogeneous reactors moderated and cooled by a variable mixture of heavy and light water. A reactor so moderated is termed Spectral Shift Control Reactor (S SCR). In the practical application of this concept, the moderator mixture is rich in heavy water at the beginning of core life, so a relatively large fraction of the neutrons are epithermal and are absorbed in the fertile material. As fuel is consumed, the moderator is diluted with light water. In this way the neutron spectrum is shifted, thereby increasing the proportion of thermal neutrons and the reactivity of the system. The general objective of the S SCR Basic Physics Program was to study the nuclear properties of rod lattices moderated by D 2 O-H 2 O mixtures. The volume ratio of moderator to non-moderator in all lattices was approximately 1.0, and the fuel was either 4%-enriched UO 2 clad in stainless steel or 93%-enriched UO 2 -ThO 2 (Nth/N 15) pellets clad in aluminum. The D 2 O concentration in the moderator ranged from zero to about 90 mole %. The experimental program includes critical experiments with both types of fuel, exponential experiments at room temperature with both types of fuel, exponential experiments at elevated temperatures with the 4%-enriched UO 2 fuel, and neutron age measurements in ThO 2 lattices. The theoretical program included the development of calculation methods applicable to these systems, and the analysis and correlation of the experimental data. A first report provides the results of critical experiments performed under the Spectral Shift Control Reactor Basic Physics Program. A second report documents experimental results and theoretical interpretation of a series of twenty uniform lattice critical experiments in which the neutron spectrum is varied over a fairly broad range. A third report addresses issues that bear on the problems associated with

  17. Pilas de combustible de una sola cámara, basadas en electrolitos de ceria dopada con gadolinia y operadas con metano y propano

    Directory of Open Access Journals (Sweden)

    Piñol, S.

    2010-02-01

    Full Text Available The main advantages of single-chamber solid oxide fuel cells (SOFCs respect to dual-chamber SOFCs, are to simplify the device design and to operate in mixtures of hydrocarbon (methane, propane… and air, with no separation between fuel and oxidant. However, this design requires the use of selective electrodes for the fuel oxidation and the oxidant reduction. In this work, electrolyte-supported SOFCs were fabricated using gadolinia doped ceria (GDC as the electrolyte, Ni + GDC as the anode and LSC(La0.5Sr0.5CoO3-δ-GDC-Ag2O as the cathode. The electrical properties of the cell were determined in mixtures of methane + air and propane + air. The influence of temperature, gas composition and total flow rate on the fuel cell performance was investigated. As a result, the power density was strongly increased with increasing temperature, total flow rate and hydrocarbon composition. Under optimized gas compositions and total flow conditions, power densities of 70 and 320 mW/cm2 operating on propane at a temperature of 600ºC and methane (795ºC were obtained, respectively.

    La principal ventaja de las pilas de combustible de óxido sólido (SOFCs de una sola cámara, frente a las bicamerales convencionales, es que permiten simplificar el diseño del dispositivo y operar con mezclas de hidrocarburos (metano, propano... y aire, sin necesidad de separar ambos gases, por medio del uso de electrodos selectivos a la oxidación del combustible y reducción del oxidante. En el presente trabajo, se han fabricado monopilas soportadas sobre electrolitos de ceria dopada con gadolinia (GDC, de 200 µm de espesor, usando Ni-GDC como ánodo y LSC(La0.5Sr0.5CoO3-δ-GDC-Ag2O como cátodo. Las propiedades eléctricas de la celda se determinaron en un reactor de una sola cámara, usando mezclas de metano + aire y propano + aire. Se investigó la influencia de la

  18. The use of graphite for the reduction of void reactivity in CANDU reactors

    International Nuclear Information System (INIS)

    Min, B.J.; Kim, B.G.; Sim, K-S.

    1995-01-01

    Coolant void reactivity can be reduced by using burnable poison in CANDU reactors. The use of graphite in the fuel bundle is introduced to reduce coolant void reactivity by adding an appropriate amount of burnable poison in the central rod. This study shows that sufficiently low void reactivity which in controllable by Reactor Regulating System (RRS) can be achieved by using graphite used fuel with slightly enriched uranium. Zero void reactivity can be also obtained by using graphite used fuel with a large central rod. A new fuel bundle with graphite rods can substantially reduce the void reactivity with less burnup penalty compared to previously proposed low void reactivity fuel with depleted uranium. (author)

  19. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  20. Fuel with advanced burnable absorbers design for the IRIS reactor core: Combined Erbia and IFBA

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto [Westinghouse Electric Company LLC, Science and Technology Department, Pittsburgh, PA 15235 (United States)], E-mail: FranceF@westinghouse.com; Petrovic, Bojan [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School, Atlanta, GA 30332-0405 (United States)

    2009-08-15

    IRIS is an advanced medium-size (1000 MW) PWR with integral primary system targeting deployment already around 2015-2017. Consistent with its aggressive development and deployment schedule, the 'first IRIS' core design assumes current, licensed fuel technology, i.e., UO{sub 2} fuel with less than 5% {sup 235}U enrichment. The core consists of 89 fuel assemblies employing the 17x17 Westinghouse Robust Fuel Assembly (RFA) design and Standard Fuel dimensions. The adopted design enables to meet all the objectives of the first IRIS core, including over 3-year cycle length with low soluble boron concentration, within the envelope of licensed, readily available fuel technology. Alternative fuel designs are investigated for the subsequent waves of IRIS reactors in pursuit of further improving the fuel utilization and/or extending the cycle length. In particular, an increase in the lattice pitch from the current 0.496 in. for the Standard Fuel to 0.523 in. is among the objectives of this study. The larger fuel pitch and increased moderator-to-fuel volume ratio that it entails fosters better neutron thermalization in an altogether under-moderated lattice thereby offering the potential for considerable increase of fuel utilization and cycle length, up to 5% in the two-batch fuel management scheme considered for IRIS. However, the improved moderation also favors higher values of the Moderator Temperature Coefficient, MTC, which must be properly counteracted to avoid undesired repercussions on the plant safety parameters or controllability during transient operations. This paper investigates counterbalancing the increase in the MTC caused by the enhanced moderation lattice by adopting a suitable choice of fuel burnable absorber (BA). In particular, a fuel design combining erbia, which benefits MTC due to its resonant behavior but leads to residual reactivity penalty, and IFBA, which maximizes cycle length, is pursued. In the proposed approach, IFBA provides the bulk

  1. Pellet cladding interaction (PCI) fuel duty during normal operation of ASEA-ATOM BWRs

    International Nuclear Information System (INIS)

    Vaernild, O.; Olsson, S.

    1983-01-01

    Local power changes may under special conditions cause PCI fuel failures in a power reactor. By restricting the local power increase rate in certain situations it is possible to prevent PCI failures. Fine motion control rod drives, large operating range of the main recirculation pumps and an advanced burnable absorber design have minimized the impact of the PCI restrictions. With current ICFM schemes the power of an assembly is due to the burnup of the gadolinia gradually increasing during the first cycle of operation. After this the power is essentially decreasing monotonously during the remaining life of the assembly. Some assemblies are for short burnup intervals operated at very low power in control cells. The control rods in these cells may however be withdrawn without restrictions leading to energy production losses. Base load operation would in the normal case lead to very minor PCI loads on the fuel regardless of any PCI related operating restrictions. At the return to full power after a short shutdown or in connection with load follow operation, the xenon transient may cause PCI loads on the fuel. To avoid this a few hoursholdtime before going back to full power is recommended. (author)

  2. Pellet-cladding interaction (PCI) fuel duty during normal operation of ASEA-ATOM BWRs

    International Nuclear Information System (INIS)

    Vaernild, O.; Olsson, S.

    1985-01-01

    Local power changes may, under special conditions, cause PCI fuel failures in a power reactor. By restricting the local power increase rate in certain situations it is possible to prevent PCI failures. Fine motion control rod drives, large operating range of the main recirculation pumps and an advanced burnable absorber design have minimized the impact of the PCI restrictions. With current ICFM schemes the power of an assembly is due to the burnup of the gadolinia gradually increasing during the first cycle of operation. After this the power is essentially decreasing monotonously during the remaining life of the assembly. Some assemblies are for short burnup intervals operated at very low power in control cells. The control rods in these cells may, however, be withdrawn without restrictions leading to energy production losses. Base load operation would in the normal case lead to very minor PCI loads on the fuel regardless of any PCI-related operating restrictions. At the return to full power after a short shutdown or in connection with load follow operation, the xenon transient may cause PCI loads on the fuel. To avoid this a few hours hold-time before going back to full power is recommended. (author)

  3. Obtaining of ceria - samaria - gadolinia ceramics for application as solid oxide fuel cell (SOFC) electrolyte

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo

    2010-01-01

    Cerium oxide (CeO 2 ) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700 degree C. The most effective additives or dopants for ionic conductivity improvement are (samarium oxide - Sm 2 O 3 ) and gadolinia (gadolinium oxide - Gd 2 O 3 ), fixing the concentration between 10 and 20 molar%. In this work, Ce 0,8 (SmGd) 0,2 O 1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO 2 and other containing 51% of Sm 2 O 3 and 30% of Gd 2 O 3 , both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800 degree C presented high specific surface area (90 - 150 m 2 .g -1 ) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350 degree C. High densification values (>95% TD) was obtained at temperatures above 1400 degree C. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nano powders at low temperatures (200 degree C). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m 2 .g -1

  4. Study and optimization of the composite nuclear fuel with burnable poison UO2/Gd2O3

    International Nuclear Information System (INIS)

    Balestrieri, D.

    1995-09-01

    The studied composite ceramics is a nuclear fuel constituted of a uranium dioxide matrix UO 2 in which big grains (or 'macro-masses') of gadolinium oxide (Gd 2 O 3 ) of 300 ± 100 μm of diameter (mass fraction of 12%) are dispersed. Used as burnable poison (neutron absorbent whose action disappears progressively during the irradiation), gadolinium oxide is the object of a particular attention because some of its properties as the crystal structure, the aptitude to sintering and the thermomechanical behavior have been studied. The aim of this work is to perfect and optimize the process of manufacture of the composite in order to answer to accurate specifications for the density, the shape and the mass fraction of macro-masses. In this framework, it has been necessary to strengthen the Gd 2 O 3 macro-masses by a thermal treatment in order to avoid their deformation during the uniaxial pressing. The influence of this pre-consolidation on the ended microstructure, the aptitude to sintering and the thermal conductivity of the composite have been studied. (O.M.)

  5. The slightly-enriched spectral shift control reactor. Final report, September 30, 1988--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering; Edlund, M.C. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  6. Modular enrichment measurement system for in-situ enrichment assay

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    A modular enrichment measurement system has been designed and is in operation within General Electric's Nuclear Fuel Fabrication Facility for the in-situ enrichment assay of uranium-bearing materials in process containers. This enrichment assay system, which is based on the ''enrichment meter'' concept, is an integral part of the site's enrichment control program and is used in the in-situ assay of the enrichment of uranium dioxide (UO 2 ) powder in process containers (five gallon pails). The assay system utilizes a commercially available modular counting system and a collimnator designed for compatability with process container transport lines and ease of operator access. The system has been upgraded to include a microprocessor-based controller to perform system operation functions and to provide data acquisition and processing functions. Standards have been fabricated and qualified for the enrichment assay of several types of uranium-bearing materials, including UO 2 powders. The assay system has performed in excess of 20,000 enrichment verification measurements annually and has significantly contributed to the facility's enrichment control program

  7. Optimization of enrichment distributions in nuclear fuel assemblies loaded with Uranium and Plutonium via a modified linear programming technique

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas Vivas, Gabriel Francisco

    1999-12-01

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed Oxide (MOX) isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide range of applicability of the optimization technique. The feature of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactor (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or in the

  8. Sintering, microstructure and electrical conductivity of gadolinia-doped ceria with SrO, TiO2 and SrTiO3

    International Nuclear Information System (INIS)

    Dias, Maria Cely Freitas

    2013-01-01

    Ceria containing trivalent rare-earths is a solid electrolyte with higher ionic conductivity than the standard yttria fully-stabilized zirconia ionic conductor. This property turns these ceria-based ionic conductors promising materials for application in solid oxide fuel cells operating at intermediate temperatures (500-700 deg C). One of the most utilized approaches to optimize the electrical conductivity and other properties of these materials is the introduction of a second additive. In this work, ceria-20 mol% gadolinia with additions of 1, 2.5 and 5 mol% of SrO, TiO 2 and SrTiO 3 as co-additives were prepared by solid state reaction. The main purpose was to investigate the effects of the co-additives on densification, microstructure and electrical conductivity of the solid electrolyte. Sintered pellets were characterized by apparent density, X-ray diffraction, Raman spectroscopy, scanning electron microscopy and electrical conductivity by impedance spectroscopy. The additives were found to exert different influences in all studied properties. The way they influence the solid electrolyte properties depends on the type and content of the additive. SrO addition to doped ceria improves the intergranular conductivity, but decreases the apparent density of the pellets. Increase of densification was obtained with TiO 2 addition. This additive promotes increase of the blocking of charge carriers at the grain boundaries due to solute exsolution and formation of the pyrochlore Gd 2 Ti 2 O 7 phase at grain boundaries for contents in excess of the solubility limit. No influence on densification was found for SrTiO 3 additions. (author)

  9. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi

    2015-01-01

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  10. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  11. LEU WWR-M2 fuel assemblies burnable test

    International Nuclear Information System (INIS)

    Kirsanov, G.A.; Konoplev, K.A.; Pikulik, R.G.; Sajkov, Yu. P.; Tchmshkyan, D.V.; Tedoradze, L.V.; Zakharov, A.S.

    2000-01-01

    The results of in-pile irradiation tests of LEU WWR-M2 fuel assemblies with reduced enrichment of fuel are submitted in the report. The tests are made according to the Russian Program on Reduced Enrichment for Research and Test Reactors (RERTR). United States Department of Energy and the Ministry of Atomic Energy of Russian Federation jointly fund this Program. The irradiation tests of 5 WWR-M2 experimental assemblies are carried out at WWR-M reactor of the Petersburg Nuclear Physics Institute (PNPI). The information on assembly design and technique of irradiation tests is presented. In the irradiation tests the integrity of fuel assemblies is periodically measured. The report presents the data for the integrity maintained during the burnup of 5 fuel assemblies up to 45%. These results demonstrate the high reliability of the experimental fuel assemblies within the guaranteed burnup limits specified by the manufacturer. The tests are still in progress; it is planned to test and analyze the change in integrity for burnup of up to 70% - 75% or more. LEU WWR-M2 fuel assemblies are to be offered for export by their Novosibirsk manufacturer. Currently, HEU WWR-M2 fuel assemblies are used in Hungary, Ukraine and Vietnam. LEU WWR-M2 fuel assemblies were designed as a possible replacement for the HEU WWR-M2 fuel assemblies in those countries, but their use can be extended to other research reactors. (author)

  12. Determining fissile content of nuclear fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.; Grossman, L.N.; Schoenig, F.C.

    1980-01-01

    This invention relates to the determination of the fissile fuel content of fuel for nuclear reactors. A nondestructive method is described for determining rapidly, accurately and simultaneously the fissile content, enrichment and location of fuel material which may also contain amounts of burnable poison, by detecting the γ-rays emitted from the fuel material due to natural radioactive decay. (U.K.)

  13. A two-group study on the gadolinium particle depletion in light water reactor fuel rods

    International Nuclear Information System (INIS)

    Lee, C.

    1989-01-01

    The effect of gadolinia particles on the assembly criticality of a light water reactor was investigated using two 2-group models. The particle effect was calculated by comparing the criticalities of two fuel assemblies, each containing one gadolinia-poisoned rod. For purposes of comparison, both rods contained an equal quantity of gadolinia, but the gadolinia fraction in one rod was in particle form. It was assumed that one pseudo-isotope represented Gd-155 and Gd-157, while the other isotopes were not considered. A one-group model developed by Kenneth Hartley(KH), was expanded into a two-group model, using a flat distribution for the fast group neutron flux. Gadolinia density was uniformly reduced by fast neutrons and the gadolinia burnup-rate was increased. The transparency effect of the gadolinia core was also included in the two group-KH model, allowing predictions of smoother changes at the peak of Δk (difference between k of the particle rod assembly and k of the uniform rod assembly). The Oregon State University Collision Probability (OSUCP) two-group model was developed for the investigation of the inter-particle shielding effect. A collision probability method was used to calculate thermal flux, and the flat fast-group flux assumption was used. The results of this study indicated that for small, 10-micron particles, the KH model failed to predict correct Δk behavior for the two assemblies. However, for larger, 100-micron particles both models well in agreement for the Δk profile, and for 500-micron particles both models were in agreement on both the behavior and magnitude of Δk

  14. Sintering, microstructure and electrical conductivity of gadolinia-doped ceria with SrO, TiO{sub 2} and SrTiO{sub 3}; Sinterizacao, microestrutura e condutividade eletrica da ceria-gadolinia com adicoes de SrO, TiO{sub 2} e SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Maria Cely Freitas

    2013-07-01

    Ceria containing trivalent rare-earths is a solid electrolyte with higher ionic conductivity than the standard yttria fully-stabilized zirconia ionic conductor. This property turns these ceria-based ionic conductors promising materials for application in solid oxide fuel cells operating at intermediate temperatures (500-700 deg C). One of the most utilized approaches to optimize the electrical conductivity and other properties of these materials is the introduction of a second additive. In this work, ceria-20 mol% gadolinia with additions of 1, 2.5 and 5 mol% of SrO, TiO{sub 2} and SrTiO{sub 3} as co-additives were prepared by solid state reaction. The main purpose was to investigate the effects of the co-additives on densification, microstructure and electrical conductivity of the solid electrolyte. Sintered pellets were characterized by apparent density, X-ray diffraction, Raman spectroscopy, scanning electron microscopy and electrical conductivity by impedance spectroscopy. The additives were found to exert different influences in all studied properties. The way they influence the solid electrolyte properties depends on the type and content of the additive. SrO addition to doped ceria improves the intergranular conductivity, but decreases the apparent density of the pellets. Increase of densification was obtained with TiO{sub 2} addition. This additive promotes increase of the blocking of charge carriers at the grain boundaries due to solute exsolution and formation of the pyrochlore Gd{sub 2}Ti{sub 2}O{sub 7} phase at grain boundaries for contents in excess of the solubility limit. No influence on densification was found for SrTiO{sub 3} additions. (author)

  15. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  16. Gas-phase UF6 enrichment monitor for enrichment plant safeguards

    International Nuclear Information System (INIS)

    Strittmatter, R.B.; Tape, J.W.

    1980-03-01

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF 6 feed stream of an enrichment plant. The nondestructive gamma-ray assay method can be used to determine the enrichment of natural UF 6 with a relative precision of better than 1% for a wide range of pressures

  17. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natori, Hisahide; Kurihara, Kunitoshi.

    1982-01-01

    Purpose: To increase the fuel safety by decreasing the gap conductance between fuels and cladding tubes, as well as improve the reactor core controllability by rendering the void coefficient negative. Constitution: Fuel assemblies in a pressure tube comprise a tie-rod, fuel rods in a central region, and fuel rods with burnable poison in the outer circumference region. Here, B 4 C is used as the burnable poison by 1.17 % by weight ratio. The degrees of enrichment for the fissile plutonium as PuO 2 -UO 2 fuel used in the assemblies are 2.7 %, 2.7 % and 1.5 % respectively in the innermost layer, the intermediate layer and the outermost layer. This increases the burn-up degree to improve the plant utilizability, whereby the void coefficient is rendered negative to improve the reactor core controllability. (Horiuchi, T.)

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  19. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1988-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century

  20. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1987-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century. (author)

  1. Juvenile psittacine environmental enrichment.

    Science.gov (United States)

    Simone-Freilicher, Elisabeth; Rupley, Agnes E

    2015-05-01

    Environmental enrichment is of great import to the emotional, intellectual, and physical development of the juvenile psittacine and their success in the human home environment. Five major types of enrichment include social, occupational, physical, sensory, and nutritional. Occupational enrichment includes exercise and psychological enrichment. Physical enrichment includes the cage and accessories and the external home environment. Sensory enrichment may be visual, auditory, tactile, olfactory, or taste oriented. Nutritional enrichment includes variations in appearance, type, and frequency of diet, and treats, novelty, and foraging. Two phases of the preadult period deserve special enrichment considerations: the development of autonomy and puberty. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  3. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  4. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  5. Enhancement of actinide incineration and transmutation rates in Ads EAP-80 reactor core with MOX PuO2 and UO2 fuel

    International Nuclear Information System (INIS)

    Kaltcheva-Kouzminava, S.; Kuzminov, V.; Vecchi, M.

    2001-01-01

    Neutronics calculations of the accelerator driven reactor core EAP-80 with UO 2 and PuO 2 MOX fuel elements and Pb-Bi coolant are presented in this paper. Monte Carlo optimisation computations of several schemes of the EAP-80 core with different types of fuel assemblies containing burnable absorber B4 C or H 2 Zr zirconium hydride moderator were performed with the purpose to enhance the plutonium and actinide incineration rate. In the first scheme the reactor core contains burnable absorber B4 C arranged in the cladding of fuel elements with high enrichment of plutonium (up to 45%). In the second scheme H2 Zr zirconium hydride moderated zones were located in fuel elements with low enrichment (∼20%). In both schemes the incineration rate of plutonium is about two times higher than in the reference EAP-80 core and at the same time the power density distribution remains significantly unchanged compared to the reference core. A hybrid core containing two fuel zones one of which is the inner fuel region with UO 2 and PuO 2 high enrichment plutonium fuel and the second one is the outer region with fuel elements containing zirconium hydride layer was also considered. Evolution of neutronics parameters and actinide transmutation rates during the fuel burn-up is presented. Calculations were performed using the MCNP-4B code and the SCALE 4.3 computational system. (author)

  6. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi; Masumi, Ryoji; Soneda, Hideo.

    1994-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison rods incorporated with burnable poisons, and water rods which can vary the height in the tube depending on the coolant flow rate flown into the assembly. The amount of entire burnable poisons of the burnable poison-containing rods in adjacent with the water rods is smaller than the amount of entire burnable poisons in the burnable poison containing rods not in adjacent with the water rods. Then the average concentration of burnable poisons in the axial upper half region is made smaller than the average concentration of the burnable poisons at the axial lower half region. Further, a burnable poison concentration at the upper half region of at least one of burnable poison-containing rods in adjacent with the water rods is made lower than the burnable poison concentration in the lower half region. Since this can fasten the combustion of the burnable poisons, a fuel assembly having good fuel economy can be attained. (I.N.)

  7. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ianakiev, Kiril D.; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-01-01

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF 6 containing low enriched (approximately 4% 235 U) and highly enriched (above 20% 235 U) uranium. This instrument used the 22-keV line from a 109 Cd source as a transmission source to achieve a high sensitivity to the UF 6 gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF 6 product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  8. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  9. Analyses for licensing of new fuel types at Paks NPP

    International Nuclear Information System (INIS)

    Kereszturi, A.; Bogatyr, S.; Miko, S.; Nemes, I.

    2003-01-01

    In the last years Paks NPP initiated several projects aiming at the introduction of new fuel types and resulting in more economic fuel cycles. The motivations, the reasons, and the economic consequences of the above modifications are detailed. The application of a new fuel type requires the renewal of the relevant chapters of the Safety Analysis Report. The fulfilment of fuel design basis requirements, to be summarised briefly also in the paper, must be investigated during normal and accidental conditions. The characteristics of the different codes, the data transfer between them are detailed. After, the cases of the Normal Operation, Anticipated Operation Occurrence, and the Postulated Accidents, judged as the most relevant ones in case of fuel modifications, are overviewed. In the last part, selected examples of the licensing calculations, performed by the above tools are presented. In conclusion, modifications of the WWER fuel, namely increased enrichment, application of burnable fuel pins, modified geometry make more economic fuel cycles (larger discharge burnup, power up-rate, reduced pressure vessel fluence) are possible. The further step (increased enrichment, burnable poison) of the fuel modernisation at NPP Paks is necessary for more economic fuel cycles and fuel consuming. A sound basis of licensing methodology, safety analysis, and necessary computer codes for the WWER fuel modernisation is available

  10. Research on reactor physics using the Very High Temperature Reactor Critical Assembly (VHTRC)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1988-01-01

    The High Temperature Engineering Test Reactor (HTTR), of which the research and development are advanced by Japan Atomic Energy Research Institute, is planned to apply for the permission of installation in fiscal year 1988, and to start the construction in the latter half of fisical year 1989. As the duty of reactor physics research, the accuracy of the nuclear data is to be confirmed, the validity of the nuclear design techniques is to be inspected, and the nuclear safety of the HTTR core design is to be verified. Therefore, by using the VHTRC, the experimental data of the reactor physics quantities are acquired, such as critical mass, the reactivity worth of simulated control rods and burnable poison rods, the temperature factor of reactivity, power distribution and so on, and the experiment and analysis are advanced. The cores built up in the VHTRC so far were three kinds having different lattice forms and degrees of uranium enrichment. The calculated critical mass was smaller by 1-5 % than the measured values. As to the power distribution and the reactivity worth of burnable poison rods, the prospect of satisfying the required accuracy for the design of the HTTR core was obtained. The experiment using a new core having axially different enrichment degree is planned. (K.I.)

  11. Disposition of weapons-grade plutonium in Westinghouse reactors

    International Nuclear Information System (INIS)

    Alsaed, A.A.; Adams, M.

    1998-03-01

    The authors have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. They have designed three transition Cycles from an all LEU core to a partial MOX core. They found that four-loop Westinghouse reactors such as the Vogtle power plant are capable of handling up to 45 percent weapons-grade MOX loading without any modifications. The authors have also designed two kinds of weapons-grade MOX assemblies with three enrichments per assembly and four total enrichments. Wet annular burnable absorber (WABA) rods were used in all the MOX feed assemblies, some burned MOX assemblies, and some LEU feed assemblies. Integral fuel burnable absorber (IFBA) was used in the rest of the LEU feed assemblies. The average discharge burnup of MOX assemblies was over 47,000 MWD/MTM, which is more than enough to meet the open-quotes spent fuel standard.close quotes One unit is capable of consuming 0.462 MT of weapons-grade plutonium per year. Preliminary analyses showed that important reactor physics parameters for the three transitions cycles are comparable to those of LEU cores including boron levels, reactivity coefficients, peaking factors, and shutdown margins. Further transient analyses will need to be performed

  12. Other enrichment related contracts

    International Nuclear Information System (INIS)

    Hall, J.C.

    1978-01-01

    In addition to long-term enrichment contracts, DOE has other types of contracts: (1) short-term, fixed-commitment enrichment contract; (2) emergency sales agreement for enriched uranium; (3) feed material lease agreement; (4) enriched uranium storage agreement; and (5) feed material usage agreement

  13. Nuclear design report for Yonggwang nuclear power plant unit 2 cycle 7

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Choi, Gyoo Hwan; Lee, Ki Bog; Park, Sang Yoon

    1993-02-01

    This report presents nuclear design calculations for Cycle 7 of Yonggwang Unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA's enriched by nominally 3.70 w/o U235. Among the KOFA's, 40 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 367 EFPD corresponding to a cycle burnup of 14770 MWD/MTU. (Author)

  14. Feasibility study of chabazite absorber tube utilization in online absorption of released gaseous fission products and substitution of burnable absorber rods with chabazite absorber tubes in VVER-1000 reactor series

    International Nuclear Information System (INIS)

    Rahmani, Yashar

    2017-01-01

    Highlights: • Chabazite tubes are used for online removal of the released gaseous fission products. • The feasibility of using chabazite tubes instead of burnable absorber rods was studied. • A computational cycle was designed using the WIMSD5-B, CITATION-LDI2 and WERL codes. • In modeling fission gas release, the Weisman, Booth, Mason and T.S. models were used. • By this method, it is possible to increase cycle length and enhance heat transfer. - Abstract: As gaseous fission products, e.g. xenon and krypton have adverse effects such as reducing the rate of heat transfer in fuel rods and adding negative reactivity to the reactor core, the present manuscript was dedicated to development of a novel method for improving these defects. In the proposed method, chabazite absorber tubes were used for online removal of the released gaseous fission products from gaseous gap spaces. Moreover, in this research, feasibility of using chabazite absorber tubes instead of burnable absorber rods was examined. To perform the required modeling and calculations to successfully meet the mentioned objectives, a thermo-neutronic computational cycle was designed using the coupling of WIMSD5-B and CITATION-LDI2 codes in the neutronic section and the WERL code in the thermo-hydraulic calculations. In addition, in modeling the release process of gaseous fission products, the Weisman, Booth, Mason, and T.S. models were examined. It is worth mentioning that in this research, calculations and modeling procedures were based on the first cycle of Bushehr’s VVER-1000 reactor to study the feasibility of the proposed solution. The obtained results revealed that with application of the proposed method in this research, it is possible to increase cycle length, improve safety thresholds, and enhance heat transfer in the core of nuclear reactors.

  15. On-Line Enrichment Monitor for UF{sub 6} Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K. D.; Boyer, B.; Favalli, A.; Goda, J. M.; Hill, T.; Keller, C.; Lombardi, M.; Paffett, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Parker, R.; Smith, M. K.; Swinhoe, M. T. [Los Alamos National Laboratory, Los Alamos (United States)

    2012-06-15

    This paper is a continuation of the Advanced Enrichment Monitoring Technology for UF{sub 6} Gas Centrifuge Enrichment Plant (GCEP) work, presented in the 2010 IAEA Safeguards Symposium. Here we will present the system architecture for a planned side-by-side field trial test of passive (186-keV line spectroscopy and pressure-based correction for UF{sub 6} gas density) and active (186-keV line spectroscopy and transmission measurement based correction for UF{sub 6} gas density) enrichment monitoring systems in URENCO's enrichment plant in Capenhurst. Because the pressure and transmission measurements of UF{sub 6} are complementary, additional information on the importance of the presence of light gases and the UF{sub 6} gas temperature can be obtained by cross-correlation between simultaneous measurements of transmission, pressure and 186-keV intensity. We will discuss the calibration issues and performance in the context of accurate, on-line enrichment measurement. It is hoped that a simple and accurate on-line enrichment monitor can be built using the UF{sub 6} gas pressure provided by the Operator, based on online mass spectrometer calibration, assuming a negligible (a small fraction of percent) contribution of wall deposits. Unaccounted-for wall deposits present at the initial calibration will lead to unwanted sensitivity to changes in theUF{sub 6} gas pressure and thus to error in the enrichment results. Because the accumulated deposits in the cascade header pipe have been identified as an issue for Go/No Go measurements with the Cascade Header Enrichment Monitor (CHEM) and Continuous Enrichment Monitor (CEMO), it is important to explore their effect. Therefore we present the expected uncertainty on enrichment measurements obtained by propagating the errors introduced by deposits, gas density, etc. and will discuss the options for a deposit correction during initial calibration of an On-Line Enrichment Monitor (OLEM).

  16. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  17. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  19. United States uranium enrichment policies

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    ERDA's uranium enrichment program policies governing the manner in which ERDA's enrichment complex is being operated and expanded to meet customer requirements for separative work, research and development activities directed at providing technology alternatives for future enrichment capacity, and establishing the framework for additional domestic uranium enrichment capacity to meet the domestic and foreign nuclear industry's growing demand for enrichment services are considered. The ERDA enrichment complex consists of three gaseous diffusion plants located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Today, these plants provide uranium enrichment services for commercial nuclear power generation. These enrichment services are provided under contracts between the Government and the utility customers. ERDA's program involves a major pilot plant cascade, and pursues an advanced isotope separation technique for the late 1980's. That the United States must develop additional domestic uranium enrichment capacity is discussed

  20. Blueprint for domestic uranium enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    The AEC advisory committee on domestic production of uranium enrichment has studied for more than a year how to achieve the domestic enrichment of uranium by the construction and operation of a commercial enriching plant using centrifugal separation method, and the report was submitted to the Atomic Energy Commission on August 18, 1980. Japan has depended wholly on overseas services for her uranium enrichment needs, but the development of domestic enrichment has been carried on in parallel. The AEC decided to construct a uranium enrichment pilot plant using centrifuges, and it has been forwarded as a national project. The plant is operated by the Power Reactor and Nuclear Fuel Development Corp. since 1979. The capacity of the plant will be raised to approximately 75 ton SWU a year. The centrifuges already operated have provided the first delivery of fuel of about 1 ton for the ATR ''Fugen''. The demand-supply balance of uranium enrichment service, the significance of the domestic enrichment of uranium, the evaluation of uranium enrichment technology, the target for domestic enrichment plan, the measures to promote domestic uranium enrichment, and the promotion of the construction of a demonstration plant are reported. (Kako, I.)

  1. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  2. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  3. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  4. Effect of fuel burnup on the mechanical safety coefficients

    International Nuclear Information System (INIS)

    Plyashkevich, V.Ju.; Sidorenko, V.D.; Shishkov, L.K.

    2001-01-01

    )In the paper the results of studies of changes in the process of campaign 'disturbances' of local heat flux and local fuel burnup, resulting from the 'mechanical' deviations in the composition and geometrical characteristics of fuel rods from the nominal are given. As example, the WWER-440 fuel assembly with burnable poisons used in the five-year fuel cycle is considered. The effect of deviations in fuel enrichment, fuel content, gadolinium content and geometrical size was studied (Authors)

  5. From high enriched to low enriched uranium fuel in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L. [Nuclear Materials Science Institute, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-07-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% {sup 235}U), low-density UAlx research reactor fuel with high-density, low enriched (<20% {sup 235}U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U{sub 3}Si{sub 2} dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U{sub 3}Si{sub 2} (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  6. From high enriched to low enriched uranium fuel in research reactors

    International Nuclear Information System (INIS)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L.

    2010-01-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% 235 U), low-density UAlx research reactor fuel with high-density, low enriched ( 235 U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U 3 Si 2 dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U 3 Si 2 (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  7. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  8. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  9. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  10. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  11. Radiometric enrichment of nonradioactive ores

    International Nuclear Information System (INIS)

    Mokrousov, V.A.; Lileev, V.A.

    1979-01-01

    Considered are the methods of mineral enrichment based on the use of the radioation of various types. The physical essence of enrichment processes is presented, their classification is given. Described are the ore properties influencing the efficiency of radiometric enrichment, methods of the properties study and estimation of ore enrichment. New possibilities opened by radiometric enrichment in the technology of primary processing of mineral raw materials are elucidated. A considerable attention is paid to the main and auxiliary equipment for radiometric enrichment. The foundations of the safety engineering are presented in a brief form. Presented are also results of investigations and practical works in the field of enrichment of ores of non-ferrous, ferrous and non-metallic minerals with the help of radiometric methods

  12. IFBA credit in the Shearon Harris fuel racks with Vantage 5 fuel

    International Nuclear Information System (INIS)

    Boyd, W.A.; Schmidt, R.F.; Erwin, R.D.

    1989-01-01

    At the Shearon Harris nuclear plant, fuel management strategies are being considered which will result in feed fuel enrichments approaching 5.0 w/o U-235. These types of enrichments require a new criticality analysis to raise the existing fuel rack enrichment limit. It is receiving Westinghouse Vantage 5 fuel with integral fuel burnable absorber (IFBA) rods providing the depletable neutron absorber. An analysis was performed on the fuel racks which demonstrates that fuel enriched up to 5.0 w/o U-235 can be stored by taking credit for the IFBA rods present in the high enriched fuel assemblies. This is done by calculating the maximum Vantage 5 fuel assembly reactivity that can be placed in the fuel racks and meet the criticality K-eff limit. A methodology is also developed which conservatively calculates the minimum number of IFBA rods needed per assembly to meet the fuel rack storage limits. This eliminates the need for core designers to determine assembly K-inf terms for every different enrichment/IFBA combination

  13. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  14. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 7

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Park, Yong soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    This report presents nuclear design calculations for Cycle 7 of Ulchin Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 56 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 355 EFPD corresponding to a cycle burnup of 14280 MWD/MTU. (Author) 8 refs., 55 figs., 21 tabs.

  15. Nuclear design report for Kori nuclear power plant unit 4 cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyoon; Jung, Yil Sub; Kim, Si Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s 48 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 421 EFPD corresponding to a cycle burnup of 16950 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  16. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  17. Nuclear design report for Yonggwang nuclear power plant unit 1 cycle 9

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young chul; Kim, Jae Hak; Song, Jae Woong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-03-01

    This report presents nuclear design calculations for Cycle 6 of Yonggwng Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s, 60 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 9 amounts to 434 EFPD corresponding to a cycle burnup of 17470 MWD/MTU. (Author) 8 refs., 55 figs., 19 tabs.

  18. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Kim, Yong Rae; Park, Yong Soo; Cho, Byeong Ho; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 32 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 369 EFPD corresponding to a cycle burnup of 14850 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  19. Nuclear design report for Ulchin nuclear power plant unit 2, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Park, Jin Ha; Kim, Yong Rae; Park, Sang Yoon; Lee, Jong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.80 w/o U{sub 235}. Among the KOFA`s, 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 388 EFPD corresponding to a cycle burnup of 15610 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  20. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    International Nuclear Information System (INIS)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA's enriched by nominally 3.70 w/o U 235 . Among the KOFA's, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs

  1. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    International Nuclear Information System (INIS)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA's enriched by nominally 3.50 w/o U 235 . Among the KOFA's, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs

  2. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs.

  3. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  4. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  5. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  6. High enrichment to low enrichment core's conversion. Technical securities

    International Nuclear Information System (INIS)

    Abbate, P.; Madariaga, M.R.

    1990-01-01

    This work presents the fulfillment of the technical securities subscribed by INVAP S.E. for the conversion of a high enriched uranium core. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. These are neutronic and thermohydraulic securities. (Author) [es

  7. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  8. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  9. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  10. Enrichment technology. Dependable vendor of gas centrifuges; Enrichment Technology. Zuverlaessiger Lieferant von Gaszentrifugen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-10-15

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  11. 76 FR 11523 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility...

    Science.gov (United States)

    2011-03-02

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of... Governmental Entities Regarding Environmental Portion of Enrichment Facility Licensing Proceeding February 24.... White. In this 10 CFR part 70 proceeding regarding the request of applicant AREVA Enrichment Services...

  12. Physical characteristics of Gd2O3-UO2 fuel in LWR

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Kobayashi, Iwao; Furuta, Toshiro; Toba, Masao; Tsuda, Katsuhiro.

    1981-12-01

    A series of critical experiments in light water lattice were carried out on five kinds of Gadolinia-Uranium dioxide (Gd 2 O 3 -UO 2 ) test fuel rods containing 0.0, 0.05, 0.25, 1.50, 3.00 weight % of Gd 2 O 3 in Gd 2 O 3 -UO 2 . Reactivity effect, power distribution, neutron flux distribution, and temperature coefficient were measured for three types of lattices which were in shapes of annular, rectangular parallele-piped, and JPDR mockup core. The theoretical values corresponding to the measured ones were obtained by means of the design method for the FTA which is the test fuel assembly with Gd 2 O 3 -UO 2 rods for JPDR, and the accuracy was checked. In general, the calculated values were in good agreement with the measured ones. Besides, the following characteristics of Gd 2 O 3 -UO 2 rods are recognized both in measurement and calculation, i.e. (1) the effect due to gadolinia on reactivity, power distribution, and thermal neutron flux distribution are steeply saturating; the gadolinia content of only 1.50 weight % is enough to reach the almost saturated condition, (2) the relative power becomes 20% to that of normal fuel under the saturated condition, (3) the relation between the negative reactivity and the power depression effect due to gadolinia is almost linear, and (4) the interference on power depression between the adjacent gadolinia loaded rods is almost negligible, and that on reactivity effect is 15% at most. (author)

  13. 76 FR 34103 - In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of...

    Science.gov (United States)

    2011-06-10

    .... 10-899-02-ML-BD01] In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility...'' portion of this proceeding regarding the December 2008 application by AREVA Enrichment Services, LLC (AES... gas centrifuge uranium enrichment facility--denoted as the Eagle Rock Enrichment Facility (EREF)--in...

  14. Enrichment plants. A survey of major new uranium enriching projects

    International Nuclear Information System (INIS)

    Kovan, D.

    1976-01-01

    The work enrichment situation is reported. The development of enrichment in the U.S. and in Europe is outlined. A brief description is given of the technology of separation by diffusion and by centrifugation and the advantages and disadvantages of the two processes are compared. Finally the supply and demand situation is briefly considered. (U.K.)

  15. Developments in uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1995-01-01

    The enrichment services market is still characterized by overcapacities. While consumption worldwide will rise by some 15% to 39,000 t SWU/a over the next ten years, capacities amount to nearly 50,000 t SWU/a. The price for enrichment services probably has reached its all time low. Prices below U.S. $ 100/kg SWU are not likely to cover costs even of the economically most advanced enrichment processes. Urenco has prepared for the difficult enrichment business in the years to come by streamlining and cost cutting measures. The company intends to hold and increase its share of more than 10% in the world market. The uranium enrichment plant of Gronau will be expanded further. Expansion beyond 1000 t is subject to another permit being granted under the Atomic Energy Act, an application for which was filed in December 1994. Centrifuge technology is the superior enrichment technology, i.e., there is still considerable potential for further development. Construction of enrichment plants employing the centrifuge technology in the United States and in France is being pursued in various phases, from feasibility studies to licensing procedures. Before these plants could be implemented, however, considerable problems of organization would have to be solved, and the market would have to change greatly, respectively. The laser process, at the present time, does not seem to be able to develop into a major industrial competitor. (orig.) [de

  16. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  17. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  18. Feasibility study of the design of homogeneously mixed thorium-uranium oxide and all-uranium fueled reactor cores for civil nuclear marine propulsion - 15082

    International Nuclear Information System (INIS)

    Alam, S.B.; Lindley, B.A.; Parks, G.T.

    2015-01-01

    In this reactor physics study, we attempt to design a civil marine reactor core that can operate over a 10 effective-full-power-years life at 333 MWth using ThUO 2 and all-UO 2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements, optimizing: subassembly and core geometry; fuel enrichment; burnable and moveable poison design; and whole-core loading patterns. We compare designs with a 14% fissile loading for ThUO 2 and all-UO 2 fuel in 13*13 assemblies with ZrB 2 integral fuel burnable absorber pins for reactivity control. Taking advantage of self-shielding effects, the ThUO 2 option shows greater promise in the final burnable poison design while maintaining low, stable reactivity with minimal burnup penalty. For the final poisoning design with ZrB 2 , ThUO 2 contributes 2.5% more initial reactivity suppression, although the all-UO 2 design exhibits lower reactivity swing. All the candidate materials show greater rod worth for the ThUO 2 design. For both fuels, B 4 C has the highest reactivity worth, providing 10% higher control rod worth for ThUO 2 fuel than all-UO 2 . Finally, optimized assemblies were loaded into a 3D reactor model in PANTHER. The PANTHER results show that after 10 years, the core is on the border of criticality, confirming the fissile loading is well-designed. (authors)

  19. A Systematic Approach to Marital Enrichment.

    Science.gov (United States)

    Dinkmeyer, Don; Carlson, Jon

    1986-01-01

    Presents a systematic approach to enriching marital relationships. The history and current status of marital enrichment is reviewed. An Adlerian approach to marital enrichment is described. Applications of the program in enrichment groups, marriage therapy and couple groups are included. (Author)

  20. 77 FR 13367 - General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0157] General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment Facility, Wilmington, NC AGENCY: Nuclear Regulatory... Impact Statement (EIS) for the proposed General Electric- Hitachi Global Laser Enrichment, LLC (GLE...

  1. The enrichment secondary market

    International Nuclear Information System (INIS)

    Einbund, D.R.

    1986-01-01

    This paper will addresses two topics: the background to the present status of the enrichment secondary market and the future outlook of the secondary market in enrichment services, and the viability of the nuclear fuel brokerage industry. These two topics are inevitably connected, as most secondary market activity, not only in enrichment but also in natural uranium, has traditionally been conducted with the participation of brokers. Therefore, the author interrelates these topics

  2. Thermal breeder fuel enrichment zoning

    International Nuclear Information System (INIS)

    Capossela, H.J.; Dwyer, J.R.; Luce, R.G.; McCoy, D.F.; Merriman, F.C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect. 1 figure

  3. Uranium enrichment in the United States

    International Nuclear Information System (INIS)

    Hill, J.H.; Parks, J.W.

    1975-01-01

    History, improvement programs, status of electrical power availability, demands for uranium enrichment, operating plan for the U. S. enriching facilities, working inventory of enriched uranium, possible factors affecting deviations in the operating plan, status of gaseous diffusion technology, status of U. S. gas centrifuge advances, transfer of enrichment technology, gaseous diffusion--gas centrifuge comparison, new enrichment capacity, U. S. separative work pricing, and investment in nuclear energy are discussed. (LK)

  4. Enrichment into the 21st century

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1995-01-01

    This article discusses the future of the enrichment services market into the next century. It is estimated that demand for enrichment services will reach 31 million SWU by the end of the century and remain constant for the following 10 years. The current world enrichment capacity is 44 million SWU, or some 50% ahead of the demand. This oversupply is projected to continue into the next century, but in spite of this, several suppliers are planning new enrichment facilities. HEU as a source of enriched uranium is examined. Overall, long-term prices for enrichment services are expected to decline in the coming decade

  5. The commercial role for centrifuge enrichment

    International Nuclear Information System (INIS)

    Readle, P.H.; Wilcox, P.

    1987-01-01

    The enrichment market is extremely competitive and capacity greatly exceeds demand. BNFL [British Nuclear Fuels Ltd.] is in a unique position in having commercial experience of the two enrichment technologies currently used industrially: diffusion, and centrifuge enrichment through its associate company Urenco. In addition, BNFL is developing laser enrichment techniques as part of a UK development programme. The paper describes the enrichment market, briefly discusses the relative merits of the various methods of uranium enrichment and concludes that the gas centrifuge will be best able to respond to market needs for at least the remainder of the century. (author)

  6. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  7. A microcomputer program for coupled cycle burnup calculations

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Downar, T.J.; Taylor, E.L.

    1986-01-01

    A program, designated BRACC (Burnup, Reactivity, And Cycle Coupling), has been developed for fuel management scoping calculations, and coded in the BASIC language in an interactive format for use with microcomputers. BRACC estimates batch and cycle burnups for sequential reloads for a variety of initial core conditions, and permits the user to specify either reload batch properties (enrichment, burnable poison reactivity) or the target cycle burnup. Most important fuel management tactics (out-in or low-leakage loading, coastdown, variation in number of assemblies charged) can be simulated

  8. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  9. Prospects and problems of uranium enrichment

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1974-01-01

    The problem of uranium enrichment now concerns principally peaceful nuclear power generation. With the current oil crisis, energy resources assume unprecedented importance. However, the requirements for enriched uranium vary with the vicissitude of the world situation in nuclear power generation; the enterprise of uranium enrichment is related to economic aspect. The following matters are described: dimension of enrichment problem, political factors, changes in requirements, projects in each country, and strategy of enrichment in Japan. (Mori, K.)

  10. Uranium enrichment: an overview

    International Nuclear Information System (INIS)

    Cazalet, J.

    1995-01-01

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs

  11. Supply of low enriched (LEU) and highly enriched uranium (HEU) for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Enriched uranium for research reactors in the form of LEU /= low enriched uranium at 19.75% U-235) and HEU (= highly enriched uranium at 90 to 93% U-235) was and is - due to its high U-235 enrichment - a political fuel other than enriched uranium for power reactors. The sufficient availability of LEU and HEU is a vital question for research reactors, especially in Europe, in order to perform their peaceful research reactor programs. In the past the USA were in the Western hemisphere sole supplier of LEU and HEU. Today the USA have de facto stopped the supply of LEU and HEU, for HEU mainly due to political reasons. This paper deals, among others, with the present availability of LEU and HEU for European research reactors and touches the following topics: - historical US supplies, - influence of the RERTR-program, - characteristics of LEU and HEU, - military HEU enters the civil market, -what is the supply situation for LEU and HEU today? - outlook for safe supplies of LEU and HEU. (author)

  12. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA`s enriched by nominally 3.50 w/o U{sub 235}. Among the KOFA`s, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  13. Nuclear fuel rod with burnable plate and pellet-clad interaction fix

    International Nuclear Information System (INIS)

    Boyle, R.F.

    1987-01-01

    This patent describes a nuclear fuel rod comprising a metallic tubular cladding containing nuclear fuel pellets, the pellets containing enriched uranium-235. The improvement described here comprises: ceramic wafers, each wafter comprising a sintered mixture of gadolinium oxide and uranium dioxide, the uranium oxide having no more uranium-235 than is present in natural uranium dioxide. Each of the wafers is axially disposed between a major portion of adjacent the nuclear fuel pellets, whereby the wafers freeze out volatile fission products produced by the nuclear fuel and prevent interaction of the fission products with the metallic tubing cladding

  14. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Masumi, Ryoji; Ishibashi, Yoko.

    1995-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison-incorporated fuel rods and a spectral shift-type water rod. As the burnable poison for the burnable poison-incorporated fuel rod, a plurality of burnable poison elements each having a different neutron absorption cross section are used. A burnable poison element such as boron having a relatively small neutron absorbing cross section is disposed more in the upper half region than the lower half region of the burnable poison-incorporated fuel rods. In addition, a burnable poison element such as gadolinium having a relatively large neutron absorbing cross section is disposed more in the lower half-region than the upper half region thereof. This can flatten the power distribution in the vertical direction of the fuel assembly and the power distribution in the horizontal direction at the final stage of the operation cycle. (I.N.)

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi.

    1995-01-01

    Burnable poison-incorporating fuel rods of a first group are disposed in a region in adjacent with a water rod having a large diameter (neutron moderator rod) disposed to the central portion of a fuel assembly. Burnable poison-incorporating fuel rods of a second group are disposed to a region other than peripheral zone in adjacent with a channel box and corners positioned at an inner zone, in adjacent with the channel box. The average concentration of burnable poisons of the burnable poison-incorporating fuel rods of the first group is made greater than that of the second group. With such a constitution, when the burnable poisons of the first group are burnt out, the burnable poisons of the second group are also burnt out at the same time. Accordingly, an amount of burnable poisons left unburnt at the final stage of the operation cycle is reduced, to improve the reactivity. This can improve the economical property. (I.N.)

  16. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  17. The competitive enrichment market

    International Nuclear Information System (INIS)

    Parks, J.W.; Huffman, F.C.

    1984-01-01

    With the enactment of the ''Private Ownership of Special Nuclear Materials Act'' in 1964, the U.S. Government made provisions to enter into the uranium enrichment services business. Since nuclear power was in its infancy and the Government was promoting its growth as well as trying to help U.S. industry sell reactors overseas, the initial contracts (Requirements Contracts) for enrichment services placed most of the risks associated with the supplying of the services on the Government. Projections of nuclear power additions continued to grow and in 1972 the Atomic Energy Commission (AEC) stopped contracting under Requirements Contracts in order to study which mode of contracting best suited the commercial development of the industry. In mid-1973, the AEC introduced the Long-Term Fixed Commitment (LTFC) contract which shifted the risk to the customer. By mid-1974, AEC had contracts which completely used the enrichment capacity of its complex and refused to accept requests for additional contracts. This action further convinced European nations that they should continue to develop their own enrichment capacity and resulted in the EURODIF and URENCO projects. Before this time the U.S. supplied 100% of the world market for enriching services

  18. Enrichment: Dealing with overcapacity

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1989-01-01

    Today's surplus of enrichment capacity will continue until at least the end of this century. This will challenge the ingenuity of the separative work unit (SWU) suppliers as they attempt to keep market share and remain profitable in a very competitive marketplace. The utilities will be faced with attractive choices, but making the best choice will require careful analysis and increased attention to market factors. Current demand projections will probably prove too high to the extent that more reactors are canceled or delayed. The DOE has the vast majority of the unused capacity, so it will feel the most immediate impact of this large surplus in productive capacity. The DOE has responded to these market challenges by planning another reorganization of its enriching operations. Without a major agreement among the governments affected by the current surplus in enrichment capacity, the future will see lower prices, more competitive terms, and the gradual substitution of centrifuge or laser enrichment for the gaseous diffusion plants. The competition that is forcing the gaseous diffusion prices down to marginal cost will provide the long-term price basis for the enrichment industry

  19. Development of on-line uranium enrichment monitor of gaseous UF6 for uranium enrichment plant

    International Nuclear Information System (INIS)

    Lu Xuesheng; Liu Guorong; Jin Huimin; Zhao Yonggang; Li Jinghuai; Hao Xueyuan; Ying Bin; Yu Zhaofei

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF 6 , flowing through the processing pipes in uranium enrichment plant. A Nal (Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235 U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant. (authors)

  20. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  1. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  2. 75 FR 10525 - In the Matter of: AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) and All Other...

    Science.gov (United States)

    2010-03-08

    ...: AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) and All Other Persons Who Seek or Obtain... for the Implementation of a Safeguards Information Program (Effective Immediately) I AREVA Enrichment... it to construct and operate a uranium enrichment facility in Bonneville County, Idaho. AES submitted...

  3. Influence of prolonged nuclear fuel burnup on safety characteristics of advanced PWRs

    International Nuclear Information System (INIS)

    Spasojevic, D.; Matausek, M.; Marinkovic, N.

    1989-01-01

    Prolonged nuclear fuel burnup in advanced NPP with four or more instead of three one-year cycles, and/or with 15- to 18-month instead of standard 12-month cycles, requires the fresh fuel to have increased enrichment combined with burnable poisons. This causes changes in axial and radial distribution of power generation during the particular fuel cycles, so that detailed analyses of thermal reliability of reactor core becomes necessary. This paper presents the results of the analysis of the departure from nuclear boiling ratio DNBR for an equilibrium cycle of an advanced PWR. (author)

  4. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  5. Substitution of the soluble boron reactivity control system of a pressurized water reactor by gadolinium burnable poisons

    International Nuclear Information System (INIS)

    Galperin, A.; Segev, M.; Radkowsky, A.

    1986-01-01

    The results are presented of a research project that is aimed at designing a gadolinium burnable poison (BP) system for complete reactivity control of a pressurized water reactor (PWR) core during the ''equilibrium'' cycle, resulting in the elimination of the soluble boron system, which represents a considerable saving in both capital and operating costs. A flat and strong negative moderator temperature coefficient is assured for a poison-free moderator. The design analysis of a core, heavily loaded with gadolinium BP rods, was based on a BGUCORE neutronic package and cluster model of a fuel assembly. The project objective was achieved by a novel lumped BP rod, designed as an annulus of gadolinium, clad by zirconium, and inserted into vacant guide thimbles of fresh-fuel assemblies. Specific combinations were found for the inner/outer radii of the poison ring, gadolinium densities, and number of rods per assembly, resulting in an almost flat criticality curve during the cycle. A reactivity swing of ≅1% ΔK can be easily controlled by an existing system of control rods. Comparison of the fuel cycle length of a gadolinium-controlled core with that of the reference, soluble, boron-controlled core indicated that there is no penalty due to residual poison at end of life. Unique guidelines for the fuel loading strategy were applied to find a practical fuel-shuffling scheme by which the design and operational constraints of a typical PWR core of current design were satisfied. Several problems should be solved for a practical implementation of the presented design relative to operational and safety requirements of the existing control rod system. Adequate movement of the regulating rods should be determined and shutdown margins of the safety rods should be ascertained. Final judgment of the feasibility of the concept may be made following the solution of these and other regulatory-related issues

  6. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Science.gov (United States)

    2011-01-04

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...

  7. The low-enrichment fuel development program

    International Nuclear Information System (INIS)

    Stahl, D.

    1993-01-01

    In the 1950s and 1960s, low-power research reactors were built around the world utilized MTR-type fuel elements containing 20% enriched uranium. However, the demand for higher specific power created a need for greater uranium-235 concentrations. Early difficulties in increasing uranium content led to the substitution of highly enriched uranium in place of the 20% enriched fuel previously utilized. The highly enriched material also yielded other benefits including longer core residence time, higher specific reactivity, and somewhat lower cost. Highly enriched material then became readily available and was used for high-power reactors as well as in low-power reactors where 20% enriched material would have sufficed. The trend toward higher and higher specific power also led to the development of the dispersion-type fuels which utilized highly enriched uranium at a concentration of about 40 wt%. In the 1970's, however, concerns were raised about the proliferation resistance of fuels and fuel cycles. As a consequence, the U.S. Department of State has recently prohibited the foreign shipment of highly enriched material, except where prior contractual obligation or special merit exists. This will impact on the availability and utilization of highly enriched uranium for research and test reactor fuel. It has also stimulated development programs on fuels with higher uranium content which would allow the use of uranium of lower enrichment. The purpose of this report is to briefly describe the overall fuel-development program which is coordinated by Argonne National Laboratory for the Department of Energy, and to indicate the current and potential uranium loadings. Other reports will address the individual fuel-development activities in greater detail

  8. A fuel thermal conductivity correlation based on the latest experimental results

    International Nuclear Information System (INIS)

    Sontheimer, F.; Landskron, H.; Billaux, M.R.

    2000-01-01

    A new fuel thermal conductivity (ftc) correlation for UO 2 and (U,Gd)O 2 is presented, which is based on the relaxation-time theory of Klemens. The correlation is chosen because of its validity in a wide range of defect concentrations as for instance encountered in fuel with a wide range of burnup and gadolinia additions, as has been shown by Ishimoto. The phonon term of the new correlation has the form 1/x·arctan(x) , where x is a measure of the defect concentration introduced by burnup and gadolinia additions. For low defect concentrations, this term is identical with the classical form for the phonon term 1/(A+B.T). At high defect concentrations, however, when phonon-point defect scattering starts dominating over phonon-phonon scattering, the new correlation deviates from the classical formulation and has a distinctly weaker dependence on temperature and defect concentration than the classical form. The new arctan correlation in combination with an appropriate electronic ftc term is fitted to the Halden data base of fuel centre-line temperature measurements (represented by the ''Halden ftc correlation recommendation''). Agreement is very good up to a burnup of about 60 MWd/kgU; beyond, the arctan form has a saturating burnup degradation. The new arctan correlation in combination with an appropriate electronic ftc term is also shown to describe very well our latest ftc measurements on unirradiated gadolinia fuel up to 9% gadolinia content. Application to Halden measurements up to very high burnup is successful, when combined with the so-called ''rim-effect'', which counteracts the saturation tendency of the new correlation at high burnup. Latest laser thermal diffusivity measurements on irradiated gadolinia fuel in the frame of the NFIR program, although not yet open for literature and not discussed in the paper, indicate very good agreement with the new arctan correlation. (author)

  9. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  10. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  11. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data.

    Directory of Open Access Journals (Sweden)

    Yuttachon Promworn

    Full Text Available Biochemical methods are available for enriching 5' ends of RNAs in prokaryotes, which are employed in the differential RNA-seq (dRNA-seq and the more recent Cappable-seq protocols. Computational methods are needed to locate RNA 5' ends from these data by statistical analysis of the enrichment. Although statistical-based analysis methods have been developed for dRNA-seq, they may not be suitable for Cappable-seq data. The more efficient enrichment method employed in Cappable-seq compared with dRNA-seq could affect data distribution and thus algorithm performance.We present Transformation of Nucleotide Enrichment Ratios (ToNER, a tool for statistical modeling of enrichment from RNA-seq data obtained from enriched and unenriched libraries. The tool calculates nucleotide enrichment scores and determines the global transformation for fitting to the normal distribution using the Box-Cox procedure. From the transformed distribution, sites of significant enrichment are identified. To increase power of detection, meta-analysis across experimental replicates is offered. We tested the tool on Cappable-seq and dRNA-seq data for identifying Escherichia coli transcript 5' ends and compared the results with those from the TSSAR tool, which is designed for analyzing dRNA-seq data. When combining results across Cappable-seq replicates, ToNER detects more known transcript 5' ends than TSSAR. In general, the transcript 5' ends detected by ToNER but not TSSAR occur in regions which cannot be locally modeled by TSSAR.ToNER uses a simple yet robust statistical modeling approach, which can be used for detecting RNA 5'ends from Cappable-seq data, in particular when combining information from experimental replicates. The ToNER tool could potentially be applied for analyzing other RNA-seq datasets in which enrichment for other structural features of RNA is employed. The program is freely available for download at ToNER webpage (http://www4a

  12. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data.

    Science.gov (United States)

    Promworn, Yuttachon; Kaewprommal, Pavita; Shaw, Philip J; Intarapanich, Apichart; Tongsima, Sissades; Piriyapongsa, Jittima

    2017-01-01

    Biochemical methods are available for enriching 5' ends of RNAs in prokaryotes, which are employed in the differential RNA-seq (dRNA-seq) and the more recent Cappable-seq protocols. Computational methods are needed to locate RNA 5' ends from these data by statistical analysis of the enrichment. Although statistical-based analysis methods have been developed for dRNA-seq, they may not be suitable for Cappable-seq data. The more efficient enrichment method employed in Cappable-seq compared with dRNA-seq could affect data distribution and thus algorithm performance. We present Transformation of Nucleotide Enrichment Ratios (ToNER), a tool for statistical modeling of enrichment from RNA-seq data obtained from enriched and unenriched libraries. The tool calculates nucleotide enrichment scores and determines the global transformation for fitting to the normal distribution using the Box-Cox procedure. From the transformed distribution, sites of significant enrichment are identified. To increase power of detection, meta-analysis across experimental replicates is offered. We tested the tool on Cappable-seq and dRNA-seq data for identifying Escherichia coli transcript 5' ends and compared the results with those from the TSSAR tool, which is designed for analyzing dRNA-seq data. When combining results across Cappable-seq replicates, ToNER detects more known transcript 5' ends than TSSAR. In general, the transcript 5' ends detected by ToNER but not TSSAR occur in regions which cannot be locally modeled by TSSAR. ToNER uses a simple yet robust statistical modeling approach, which can be used for detecting RNA 5'ends from Cappable-seq data, in particular when combining information from experimental replicates. The ToNER tool could potentially be applied for analyzing other RNA-seq datasets in which enrichment for other structural features of RNA is employed. The program is freely available for download at ToNER webpage (http://www4a.biotec.or.th/GI/tools/toner) and Git

  13. Considering the post-1995 enrichment market

    International Nuclear Information System (INIS)

    Gunter, L.

    1994-01-01

    World demand for uranium enrichment services is likely to grow only a little over the next decade, from the current 28 million separative work units (SWU) per year to 33 MSWU per year. Much of the growth will come from Asia where nuclear generating capacity is still increasing. The current situation of the primary enrichment companies is summarized. The primary Western suppliers, Cogema, United States Enrichment Corporation and Urenco, are competing for increased market share in the USA, Europe and Asia as utilities purchase their post-1995 requirements. Entry of the Russian enrichment company, Tenex, into Western markets has been limited by trade restrictions. As a consequence of disarmament, blended weapons material has resulted in a surplus of low-enriched uranium. Together with over-capacity amongst the primary enrichers this has led to an expectation that reduced prices will be negotiable in the medium term. (3 figures). (UK)

  14. Present state of development of uranium enrichment

    International Nuclear Information System (INIS)

    1979-01-01

    The pilot plant for uranium enrichment started the operation on September 12, 1979. The pilot plant has been constructed by the Power Reactor and Nuclear Fuel Development Corp. in Ningyo Pass, Okayama Prefecture. 7000 centrifugal separators will be installed by mid 1981, and yearly production of 70 t SWU is expected. The Uranium Enrichment Committee of Japan Atomic Industrial Forum has made the proposal on the method of forwarding the development of uranium enrichment in Japan to Atomic Energy Commission and related government offices in December, 1978. This survey summarized the trends of uranium enrichment in Japan and foreign countries and the problems about nuclear non-proliferation, and provides with the reference materials. The demand and supply of uranium enrichment in the world, the present states and plans in USA, Europe, USSR and others, the demand and supply of uranium enrichment and the measures for securing it in Japan, the present state and future plan of uranium enrichment project in Japan, the international regulation of uranium enrichment, the recent policy of USA and INFCE, and the trend of the regulation of utilizing enriched uranium are described. Moreover, the concept of separation works in uranium enrichment and the various technologies of separation are explained. (Kako, I.)

  15. Inoculation stress hypothesis of environmental enrichment.

    Science.gov (United States)

    Crofton, Elizabeth J; Zhang, Yafang; Green, Thomas A

    2015-02-01

    One hallmark of psychiatric conditions is the vast continuum of individual differences in susceptibility vs. resilience resulting from the interaction of genetic and environmental factors. The environmental enrichment paradigm is an animal model that is useful for studying a range of psychiatric conditions, including protective phenotypes in addiction and depression models. The major question is how environmental enrichment, a non-drug and non-surgical manipulation, can produce such robust individual differences in such a wide range of behaviors. This paper draws from a variety of published sources to outline a coherent hypothesis of inoculation stress as a factor producing the protective enrichment phenotypes. The basic tenet suggests that chronic mild stress from living in a complex environment and interacting non-aggressively with conspecifics can inoculate enriched rats against subsequent stressors and/or drugs of abuse. This paper reviews the enrichment phenotypes, mulls the fundamental nature of environmental enrichment vs. isolation, discusses the most appropriate control for environmental enrichment, and challenges the idea that cortisol/corticosterone equals stress. The intent of the inoculation stress hypothesis of environmental enrichment is to provide a scaffold with which to build testable hypotheses for the elucidation of the molecular mechanisms underlying these protective phenotypes and thus provide new therapeutic targets to treat psychiatric/neurological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Heterogeneous assembly for plutonium multi recycling in PWRs: the Corail concept

    International Nuclear Information System (INIS)

    Youinou, G.; Zaetta, A.; Vasile, A.; Delpech, M.; Rohart, M.; Guillet, J.L.

    2001-01-01

    The CORAIL assembly is a standard 17 x 17 PWR fuel assembly containing 180 UO 2 rods and 84 MOX rods located at the periphery to limit the hot-channel factor. After many recycling, the plutonium content stabilizes around 8% and the U 235 enrichment around 4.8% (for a 3 u 15000 MWd/t fuel cycle length). An all-CORAIL park would have a zero plutonium mass balance, and compared with an all-UO 2 park the gain in terms of Separating Work Units and natural uranium would be between 15% and 20%. Detailed calculations of a 1300 MWe PWR loaded with such assemblies show that its control would not require the use of enriched boron. Burnable poison is necessary to limit the hot-channel factor. (author)

  17. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  18. Extraosseus enrichments in bone scintigraphy

    International Nuclear Information System (INIS)

    Jochens, R.; Schumacher, T.; Amthauer, H.; Wolter, M.; Stock, W.; Stroszczynski, C.; Moersler, J.P.; Eichstaedt, H.

    1996-01-01

    Extraosseus enrichments are common findings in bone scintigraphy. Main causes are artifacts by skin or cloth contamination, paravenous and subcutaneous injection. Physical examination, removal of cloths, skin cleaning or further images in differing projections lead to the correct diagnosis artefact or extraosseous enrichments. Further on, extraosseous enrichments are seen in physiological variants. In different diseases extraosseous enrichments are common, especially in urinary tract, liver and extremities. Further diagnostics, e.g. conventional radiologic procedures, sonography and CT scans, have to be performed. In individual cases side results in bone scintigraphy lead to formerly unknown diagnosis, further diagnostic procedure is influenced decisively. Own cases show for example a cerebral apoplectic insult, formerly unknown liver metastasis or metastasis in extraosseous Ewings's sarcoma. (orig.) [de

  19. Report of the Subcommittee on Domestic Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Subcommittee on Domestic Uranium Enrichment to the Atomic Energy Commission is described; which covers the procedure of the domestic uranium enrichment by centrifugal process up to the commercial production, reviewing the current situation in this field. Domestic uranium enrichment is important in the aspects of securing stable enrichment service, establishing sound fuel cycle, and others. As the future target, the production around the year 2000 is set at 3,000 tons SWU per year at least. The business of uranium enrichment, which is now developed in the Power Reactor and Nuclear Fuel Development Corporation, is to be carried out by private enterprise. The contents are as follows: demand and supply balance of uranium enrichment service, significance of domestic uranium enrichment, evaluation of centrifugal uranium enrichment technology, the target of domestic uranium enrichment, the policy of domestic uranium enrichment promotion. (J.P.N.)

  20. 31 CFR 540.316 - Uranium enrichment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium enrichment. 540.316 Section 540.316 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...

  1. The reduced enrichment program for JRR-4

    International Nuclear Information System (INIS)

    Takayanagi, M.

    1992-01-01

    Japan Research Reactor No. 4(JRR-4) with the rated power of 3.5 MW, swimming pool type research reactor, 93 % enriched uranium ETR-type fuel used, light water moderated and cooled. The first criticality reached on 28th January, 1965. The reactor has operated for about 26 years. However, it was planed to the reduced enrichment of the fuels to low enrichment according to the International Reduced Enrichment for Research and Test Reactors (RERTR) program. This paper describes the program for conversion of the enrichment of fuel from 93 % to less than 20 %. (author)

  2. Competing for the non-US enrichment markets

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The article discusses three basic steps: first, the historical perspectives; second, where the enrichment industry and the non-US markets for enrichment stand today (the present situation); and third, the likely future developments, which, for practical purposes, are dealt with in two parts: the non-US enrichment markets in the 1980s; and the non-US enrichment markets beyond the 1980s;

  3. Enriched uranium sales: effect on supply industry

    International Nuclear Information System (INIS)

    Andersen, R.K.

    1985-01-01

    The subject is covered in sections: introduction (combined effect of low-enriched uranium (LEU) inventory sales and utility services enrichment contract terms); enrichment market overview; enrichment market dynamics; the reaction of the US Department of Energy; elimination of artificial demand; draw down of inventories; purchase and sale of LEU inventories; tails assay option; unfulfilled requirements for U 3 O 8 ; conclusions. (U.K.)

  4. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  5. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  6. U.S. forms uranium enrichment corporation

    International Nuclear Information System (INIS)

    Seltzer, R.

    1993-01-01

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel

  7. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  8. Uranium enrichment. Technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Saire, D.E.; Gestson, D.K.; Peske, S.E.; Vanstrum, P.R.

    1983-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R+D efforts on various processes. (author)

  9. Uranium enrichment: technology, economics, capacity

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Jr., W. R.; Vanstrum, P. R.; Saire, D. E.; Gestson, D. K.; Peske, S. E.

    1982-08-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes.

  10. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  11. Development of long-life low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.J.; West, G.B.

    1978-01-01

    With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on non-proliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U. S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of this year, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  12. World enrichment requirements to 2005

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The primary enrichment suppliers-Eurodif, Techsnabexport, Urenco, and the US DOE - are positioning themselves to take advantage of the post - 1995 market. Overall, unfilled requirements represent about 40 percent of world requirements in the year 2000. The USA will be the primary market, as US utilities' unfilled enrichment requirements account for over 60 percent of the world's total unfilled requirements. The enrichment market is moving toward more global competition, as each supplier tries to maintain its current regional market base and then to capture additional market share in other regions

  13. DOE enrichment plants-safeguards means business

    International Nuclear Information System (INIS)

    Donnelly, R.

    1987-01-01

    The Portsmouth Gaseous Diffusion Plant, owned by the US Department of Energy (DOE) and operated by Martin Marietta Energy Systems, Inc., is a full service enrichment plant. Its long enriching cascade can process uranium hexafluoride (UF 6 ) feeds at almost any 235 U level and can produce UF 6 over the complete spectrum from depleted to very highly enriched uranium. The DOE uranium enrichment program is a government-owned enterprise operating as a business. The operating concerns of the DOE uranium enrichment plants and their safeguards programs have evolved together over the past three decades, and that evolution will likely continue. As the risk associated with possession, processing, and shipment of strategic nuclear material increased, the protection and control of it increased; as the value of the product grew with time, better ways were found to measure and conserve it. In each of these areas, safeguards objectives and the business requirements of the plant are complementary, and the progress made in one area has been reflected by progress in the other. The plant's material control and accountability program has become crucial to such business requirements as quantifying the enriched uranium (separative work units) produced in each monthly period and convincing financial auditors that the multibillion dollar enriched uranium assets located at the Portsmouth plant are properly stated

  14. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  15. Availability of enrichment services

    International Nuclear Information System (INIS)

    Svenke, E.

    1977-01-01

    The report summarizes major uncertainties which are likely to influence future demands for uranium isotopic enrichment. Since for the next decade the development of nuclear power will be largely concerned with the increment in demand the timely need for enrichment capacity will be particularly sensitive to assumptions about growth rates. Existing worldwide capacity together with capacities under construction will be sufficient well into the 1980's. However, long decision and construction leadtime, uncertainty as to future demand as well as other factors, specifically high capital need, all of which entail financial risks, create hindrances to a timely development of increment. The adequacy of current technology is well demonstrated in plant operation and new technology is under way. Technology is, however, not freely available on a purely commercial basis. Commercial willingness, which anticipates a limited degree of financial risk, is requesting both long term back-up from the utilities that would parallel their firm decisions on the acquisition of nuclear power units, and a protective government umbrella. This situation depends on the symbiotic relationship that exists between the nuclear power generating organizations, the enrichment undertakings and the governments involved. The report accordingly stresses the need for a more cooperative approach and this, moreover, at the multinational level. There is otherwise a risk that proper resources and financing means will not be allocated to the enrichment sector. Export limitations that request the highest degree of industrial processing of nuclear fuel, i.e. the compulsory enrichment of natural uranium, do not serve the interests of overall industrial efficiency

  16. Analysis of the performance of fuel cells PWR with a single enrichment and radial distribution of enrichments

    International Nuclear Information System (INIS)

    Vargas, S.; Gonzalez, J. A.; Alonso, G.; Del Valle, E.; Xolocostli M, J. V.

    2008-01-01

    One of the main challenges in the design of fuel assemblies is the efficient use of uranium achieving burnt homogeneous of the fuel rods as well as the burnt maximum possible of the same ones to the unload. In the case of the assemblies type PWR has been decided actually for fuel assemblies with a single radial enrichment. The present work has like effect to show the because of this decision, reason why a comparison of the neutronic performance of two fuel cells takes place with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The results shown in the present study of the behavior of the neutron flow as well as the power distribution through of assembly sustain the because of a single radial enrichment. (Author)

  17. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  18. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    Moran, B.W.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235 U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235 U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  19. Environmental enrichment choices of shelter cats.

    Science.gov (United States)

    Ellis, J J; Stryhn, H; Spears, J; Cockram, M S

    2017-08-01

    Choices made by cats between different types of environmental enrichment may help shelters to prioritize how to most effectively enrich cat housing, especially when limited by space or funds. This study investigates the environmental enrichment use of cats in a choice test. Twenty-six shelter cats were kept singularly in choice chambers for 10days. Each chamber had a central area and four centrally-linked compartments containing different types of environmental enrichment: 1) an empty control, 2) a prey-simulating toy, 3) a perching opportunity, and 4) a hiding opportunity. Cat movement between compartments was quantitatively recorded using a data-logger. Enriched compartments were visited significantly more frequently during the light period than during the dark period. Cats spent a significantly greater percentage of time in the hiding compartment (median=55%, IQR=46) than in the toy compartment (median=2%, IQR=9), or in the empty control compartment (median=4%, IQR=4). These results provide additional evidence to support the value of a hiding box to cats housed in a novel environment, in that they choose hiding relative to other types of environmental enrichment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Uranium enrichment: heading for a cliff

    International Nuclear Information System (INIS)

    Norman, C.

    1987-01-01

    Thanks to drastic cost cutting in the past 2 years, US enrichment plants now have the lowest cost production in the world, but US prices are still higher than those of overseas competitors because the business is paying for past mistakes. The most serious difficulty is that the Department of Energy (DOE), which owns and operates the US enrichment enterprise, is paying more than $500 million a year to the Tennessee Valley Authority (TVA) for electricity it once thought it would need but no longer requires. Another is that billions of dollars were spent in the 1970s and early 1980s to build new capacity that is now not needed. As a result, the enrichment enterprise has accumulated a debt to the US Treasury that the General Accounting Office (GAO) estimates at $8.8 billion. This paper presents the background and current debate in Congress about the difficulties facing the enrichment industry. In the midst of this debate over the future of the enterprise, the development of the next generation of enrichment technology is being placed in jeopardy. Known as atomic vapor laser isotope separation, or AVLIS, the process was viewed as the key to the long-term competitiveness of US enrichment. As the federal deficit mounted, however, funding for the AVLIS program was cut back and the timetable was stretched out. The US enrichment program has reached the point at which Congress will be forced to make some politically difficult decisions

  1. Safety of uranium enrichment plant

    International Nuclear Information System (INIS)

    Yonekawa, Shigeru; Morikami, Yoshio; Morita, Minoru; Takahashi, Tsukasa; Tokuyasu, Takashi.

    1991-01-01

    With respect to safety evaluation of the gas centrifuge enrichment facility, several characteristic problems are described as follows. Criticality safety in the cascade equipments can be obtained to maintain the enrichment of UF 6 below 5 %. External radiation dose equivalent rate of the 30B cylinder is low enough, the shield is not necessary. Penetration ratio of the two-stage HEPA filters for UF 6 aerosol is estimated at 10 -9 . From the experimental investigation, vacuum tightness is not damaged by destruction of gas centrifuge rotor. Carbon steel can be used for uranium enrichment equipments under the condition below 100degC. (author)

  2. Profile of World Uranium Enrichment Programs - 2007

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2007-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  3. Method for distinguishing fuel pellets

    International Nuclear Information System (INIS)

    Sagami, Masaharu; Kurihara, Kunitoshi.

    1978-01-01

    Purpose: To distinguish correctly and efficiently the kind of fuel substance enclosed in a cladding tube. Method: Elements such as manganess 55, copper 65, vanadium 51, zinc 64, scandium 45 and the like, each having a large neutron absorption cross section and discharging gamma rays of inherent bright line spectra are applied to or mixed in fuel pellets of different kinds in uranium enrichment degree, plutonium concentration, burnable poison concentration or the like. These fuel rods are irradiated with neutron beams, and energy spectra of gamma rays discharged upon this occasion are observed to carry out distinguishing of fuel pellets. (Aizawa, K.)

  4. The future cost of uranium enrichment

    International Nuclear Information System (INIS)

    Pouris, A.

    1986-01-01

    The cost of uranium enrichment is the most important factor determining the fuel cost of nuclear energy. This paper attempts to forecast the future direction of the price of separative work by examining the forces that determine it. It is argued that the interplay among the characteristics of enrichment technologies, the structure of the international market, and the balance of supply and demand determine the enrichment price. The analysis indicates that all forces point towards a price much lower than the current one. It is predicted that, depending on the technological advances, the price of separative work unit for uranium enrichment will range between $40 and $90 by the year 2000. (author)

  5. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  6. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  7. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.go [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-07-15

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  8. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2010-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  9. Industrial aspects in uranium enrichment

    International Nuclear Information System (INIS)

    Mezin, M.

    1982-05-01

    Characteristics of isotope separation processes in operation and under development are discussed. These include the number of stages in series, the number of components, the component unit capacity and enery requirements. The implementation of an enrichment process and the question of an enrichment plant in Australia are also considered

  10. Feasibility study of 24-month cycle using enriched Gadolinium as burnable poison for OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sang-Rae; Shin, Ho-Cheol [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    All of cobalt-60 sources are imported to Korea. CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor's full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly.

  11. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.; Slater, J.B.

    1986-05-01

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  12. Environmental enrichment for aquatic animals.

    Science.gov (United States)

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Review of uranium enrichment prospects in Canada, 1976

    International Nuclear Information System (INIS)

    Developments since 1971 which affect the prospects for uranium enrichment in Canada from the federal government point of view are reviewed. The market for enriched uranium to the year 2000 is similar to that projected in 1971. The committed enrichment capacity of the world will be sufficient until 1990. The Canadian uranium mining capability may be adequate to supply an enrichment plant, but the present reserves policy along with the currently known resources are likely to restrict exports of its products during the plant life. Prices for enriched uranium produced in Canada would be higher than those reported by other proposed new plants; however, newer enrichment techniques have some potential for cost reductions. Application of enrichment with U235 (or plutonium and U233/thorium) to CANDU offers some uranium resource conservation and possible slight power cost reductions. Construction of an enrichment plant in Canada to supply the export market is less attractive in 1976 than in 1971, but there is potential for such a business in the future. (L.L.)

  14. Profile of World Uranium Enrichment Programs-2009

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2009-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  15. In-core fuel management for nuclear reactor

    International Nuclear Information System (INIS)

    Ross, M.F.; Visner, S.

    1986-01-01

    This patent describes in-core fuel management for nuclear reactor in which the first cycle of a pressurized water nuclear power reactor has a multiplicity of elongated, square fuel assemblies supported side-by-side to form a generally cylindrical, stationary core consisting entirely of fresh fuel assemblies. Each assembly of the first type has a substantially similar low average fissile enrichment of at least about 1.8 weight percent U-235, each assembly of the second type having a substantially similar intermediate average fissile enrichment at least about 0.4 weight percent greater than that of the first type, and each assembly of the third type having a substantially similar high average fissile enrichment at least about 0.4 weight percent greater than that of the intermediate type, the arrangement of the low, intermediate, and high enrichment assembly types which consists of: a generally cylindrical inner core region consisting of approximately two-thirds the total assemblies in the core and forming a figurative checkerboard array having a first checkerboard component at least two-thirds of which consists of high enrichment and intermediate enrichment assemblies, at least some of the high enrichment assemblies containing fixed burnable poison shims, and a second checkerboard component consisting of assemblies other than the high enrichment type; and a generally annular outer region consisting of the remaining assemblies and including at least some but less than two-thirds of the high enrichment type assemblies

  16. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  17. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  18. Evaluating biomarkers for prognostic enrichment of clinical trials.

    Science.gov (United States)

    Kerr, Kathleen F; Roth, Jeremy; Zhu, Kehao; Thiessen-Philbrook, Heather; Meisner, Allison; Wilson, Francis Perry; Coca, Steven; Parikh, Chirag R

    2017-12-01

    A potential use of biomarkers is to assist in prognostic enrichment of clinical trials, where only patients at relatively higher risk for an outcome of interest are eligible for the trial. We investigated methods for evaluating biomarkers for prognostic enrichment. We identified five key considerations when considering a biomarker and a screening threshold for prognostic enrichment: (1) clinical trial sample size, (2) calendar time to enroll the trial, (3) total patient screening costs and the total per-patient trial costs, (4) generalizability of trial results, and (5) ethical evaluation of trial eligibility criteria. Items (1)-(3) are amenable to quantitative analysis. We developed the Biomarker Prognostic Enrichment Tool for evaluating biomarkers for prognostic enrichment at varying levels of screening stringency. We demonstrate that both modestly prognostic and strongly prognostic biomarkers can improve trial metrics using Biomarker Prognostic Enrichment Tool. Biomarker Prognostic Enrichment Tool is available as a webtool at http://prognosticenrichment.com and as a package for the R statistical computing platform. In some clinical settings, even biomarkers with modest prognostic performance can be useful for prognostic enrichment. In addition to the quantitative analysis provided by Biomarker Prognostic Enrichment Tool, investigators must consider the generalizability of trial results and evaluate the ethics of trial eligibility criteria.

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  20. Enrichment of Acinetobacter spp. from food samples.

    Science.gov (United States)

    Carvalheira, Ana; Ferreira, Vânia; Silva, Joana; Teixeira, Paula

    2016-05-01

    Relatively little is known about the role of foods in the chain of transmission of acinetobacters and the occurrence of different Acinetobacter spp. in foods. Currently, there is no standard procedure to recover acinetobacters from food in order to gain insight into the food-related ecology and epidemiology of acinetobacters. This study aimed to assess whether enrichment in Dijkshoorn enrichment medium followed by plating in CHROMagar™ Acinetobacter medium is a useful method for the isolation of Acinetobacter spp. from foods. Recovery of six Acinetobacter species from food spiked with these organisms was compared for two selective enrichment media (Baumann's enrichment and Dijkshoorn's enrichment). Significantly (p enrichment. Next, the Dijkshoorn's enrichment followed by direct plating on CHROMagar™ Acinetobacter was applied to detect Acinetobacter spp. in different foods. Fourteen different presumptive acinetobacters were recovered and assumed to represent nine different strains on the basis of REP-PCR typing. Eight of these strains were identified by rpoB gene analysis as belonging to the species Acinetobacter johnsonii, Acinetobacter calcoaceticus, Acinetobacter guillouiae and Acinetobacter gandensis. It was not possible to identify the species level of one strain which may suggests that it represents a distinct species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enrichment of sub-milligram size carbon samples

    NARCIS (Netherlands)

    Kitagawa, H; vanderPlicht, J

    We have developed a carbon isotope enrichment system for use in conjunction with the Groningen Accelerator Mass Spectrometer. Using thermal diffusion of CO, we obtained an enrichment factor of about 3 for C-13 for half-gram carbon in 5 days. This means we expect for C-14 an enrichment factor of 6,

  2. Review of environmental enrichment for broiler chickens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Van de Weerd, H.A.; de Jong, I.C.

    2018-01-01

    to improvements of the biological function. This definition has been broadened to include practical and economic aspects, as any enrichment strategy that adversely affects the health of animals or that has too many economic or practical constraints will never be implemented on commercial farms and thus never...... benefit animals. Environmental enrichment for broilers often has the purpose of satisfying behavioral needs and/or stimulating the broilers to an increased level of activity, which among others will reduce the occurrence of leg problems. Potentially successful environmental enrichments for broiler...... chickens are elevated resting-places, panels, barriers, and bales of straw (“point-source enrichment”), as well as covered verandas and outdoor ranges (“complex enriched environments”). Many of the ideas for environmental enrichment for broilers need to be further developed and studied, preferably...

  3. Current perspective of the uranium enrichment market

    International Nuclear Information System (INIS)

    Laughon, K.O.

    1986-01-01

    Over the past several years, developments in the uranium enrichment market have required the Department of Energy (DOE) to make a number of changes in the U.S. enrichment enterprise. These changes have been made to allow DOE to conduct our enrichment business so as to be more responsive to changing market forces. Needless to say, some of these changes have been difficult, but they have been necessary if they are to conduct a healthy and competitive uranium enrichment business in the United States. This paper discusses several topics, including: The Uranium Enrichment Market, Utility Services (US) Contracts, Reduced Prices, Incentive Pricing, Better Customer Services, and Advanced Technology. In addition to these topics, information is provided on the recent court action regarding the US Contracts and the viability finding on the uranium mining industry

  4. Review of environmental enrichment for broiler chickens.

    Science.gov (United States)

    Riber, A B; van de Weerd, H A; de Jong, I C; Steenfeldt, S

    2018-02-01

    Welfare problems are commonly found in both conventional and organic production of broiler chickens. In order to reduce the extent of welfare problems, it has been suggested to provide stimulating, enriched environments. The aim of the present paper is to provide a review of the effect on behavior and welfare of the different kinds of environmental enrichments in the production of broilers that have been described in the scientific literature. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements of the biological function. This definition has been broadened to include practical and economic aspects, as any enrichment strategy that adversely affects the health of animals or that has too many economic or practical constraints will never be implemented on commercial farms and thus never benefit animals. Environmental enrichment for broilers often has the purpose of satisfying behavioral needs and/or stimulating the broilers to an increased level of activity, which among others will reduce the occurrence of leg problems. Potentially successful environmental enrichments for broiler chickens are elevated resting-places, panels, barriers, and bales of straw ("point-source enrichment"), as well as covered verandas and outdoor ranges ("complex enriched environments"). Many of the ideas for environmental enrichment for broilers need to be further developed and studied, preferably in commercial trials, with respect to the use, the effect on behavior and on other welfare aspects such as leg health, and the interaction with genotype, production system, stocking density, light, and flock size. In addition, information on the practical application and the economics of the production system is often lacking, although it is important for application in practice. © 2017 Poultry Science Association Inc.

  5. Super enrichment of Fe-group nuclei in solar flares and their association with large 3He enrichments

    International Nuclear Information System (INIS)

    Anglin, J.D.; Dietrich, W.F.; Simpson, J.A.

    1977-01-01

    ''Fe''/He ratios at approximately 2 MeV/n have been measured in 60 solar flares and periods of enhanced fluxes during the interval 1972-1976. The observed ditribution of ratios is extremely wide with values ranging from approximately 1 to more than 1000 times the solar abundance ratio. In constrast, most of the CHO/He ratios for the same flares lie within a factor 2 of the observed mean value of 2 x 10 -2 . While experimental limitations prevent a complete correlation study of Fe-group and 3 He abundances, comparison of flares with large Fe enrichments with flares with large 3 He enrichments for the period 1969-1976 shows that a 3 He-rich flare is also likely to be rich in iron. We feel that the association of 3 He and Fe enrichments may be explained by a two-stage process in which a preliminary enrichment of heavy nuclei precedes the preferential acceleration of ambient 3 He. Nuclear interactions are ruled out as the principal source of the enriched 3 He. (author)

  6. Comparative proteomic assessment of matrisome enrichment methodologies

    Science.gov (United States)

    Krasny, Lukas; Paul, Angela; Wai, Patty; Howard, Beatrice A.; Natrajan, Rachael C.; Huang, Paul H.

    2016-01-01

    The matrisome is a complex and heterogeneous collection of extracellular matrix (ECM) and ECM-associated proteins that play important roles in tissue development and homeostasis. While several strategies for matrisome enrichment have been developed, it is currently unknown how the performance of these different methodologies compares in the proteomic identification of matrisome components across multiple tissue types. In the present study, we perform a comparative proteomic assessment of two widely used decellularisation protocols and two extraction methods to characterise the matrisome in four murine organs (heart, mammary gland, lung and liver). We undertook a systematic evaluation of the performance of the individual methods on protein yield, matrisome enrichment capability and the ability to isolate core matrisome and matrisome-associated components. Our data find that sodium dodecyl sulphate (SDS) decellularisation leads to the highest matrisome enrichment efficiency, while the extraction protocol that comprises chemical and trypsin digestion of the ECM fraction consistently identifies the highest number of matrisomal proteins across all types of tissue examined. Matrisome enrichment had a clear benefit over non-enriched tissue for the comprehensive identification of matrisomal components in murine liver and heart. Strikingly, we find that all four matrisome enrichment methods led to significant losses in the soluble matrisome-associated proteins across all organs. Our findings highlight the multiple factors (including tissue type, matrisome class of interest and desired enrichment purity) that influence the choice of enrichment methodology, and we anticipate that these data will serve as a useful guide for the design of future proteomic studies of the matrisome. PMID:27589945

  7. Study on the radiotoxicology of enriched uranium

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Guolin; Wang Chongdao; Cao Genfa

    1987-12-01

    A study on the retentive peculiarity of soluble enriched uranium UO 2 F 2 were observed after iv once or consecutive ip qd x 3d to Wistar male rats. The dynamic retention of radioactivity in the body showed that the enriched uranium UO 2 F 2 was chiefly localized in kidney, and then in skeleton and liver. The radioactivity of the enriched uranium UO 2 F 2 in skeleton rose steadily while the concentratoin in kidney and liver droped. When enriched uranium UO 2 F 2 was accumulated in organism, it caused chromosome aberrations on bone marrow cells. Results indicated that the chromosome aberration rates were elevated when the dose of the enriched uranium UO 2 F 2 was increased, at the same time, the cell division was depressed. Accumulation of insoluble enriched uranium U 3 O 8 in gastrointestinal tract was well described by a two exponential expression. Values of retention estimate for fast component, T 1 = 0.34 d, and for relatively long term component, T 2 = 4.05 d. The deposition of UO 2 F 2 in the intact skin was only 0.16 to 0.18% of the total contaminated UO 2 F 2 . Penetration of the enriched uranium UO 2 F 2 was dominantly increased in abraded skin. This value is about 25 to 32 times as compaired with that in intact skin. Retention of the enriched uranium UO 2 F 2 through abraded skins was dominantly localized in kidney and skeleton

  8. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  9. Comments on applications of reduced enrichment fuels

    International Nuclear Information System (INIS)

    Winkler, M.H.

    1983-01-01

    Full text: I will briefly describe the experience gained using different fuels in the SAPHIR reactor in Switzerland. The SAPHIR has been operating since 1957 and was the first swimming pool reactor built outside of the United States, which was originally known as the Geneva Conference Reactor. The first core was loaded with 20 percent enriched high density UO 2 fuel with a density of about 2.5 grams per cc, fabricated in 1955 by Oak Ridge National Laboratory. After a few years of operation at a power level of one MW, more than one batch of the elements released small amounts of fission products mainly Xe and Kr. When these releases were discovered, high enriched fuel was becoming available so that the fuel fabricators began to produce the lower density high enriched fuels. During this transition from fabrication of low to high enriched fuels no one could foresee that the stone age of nuclear fuel fabrication would come back again. Therefore, we did not investigate the reasons for the fission product release from the high density low enriched UO 2 fuel. The second fuel type used in the SAPHIR was the 90 percent enriched low density U 3 O 8 fuel fabricated by NUKEM. This high enriched fuel has performed satisfactorily over the years. Since 1968, the core has been using improved 23 plate fuel elements with a loading of 280 grams of uranium. The reactor power has been recently increased to five MW. An additional increase in the power level to 10 MW is planned at the end of next year so that heavier loaded elements will be needed. In order to follow the recommendations of the INFCE working group 8C and in cooperation with the reduced enrichment program, we intend to initially reduce the fuel enrichment to 45 percent. Last year we ordered five fuel elements with a loading of 320 grams 235 U/element and 45 percent enrichment for full power tests. Unfortunately, the delivery of the necessary enriched fuel uranium has been delayed and it is not available at this time. If

  10. Continuous monitoring of variations in the 235U enrichment of uranium in the header pipework of a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.

    1991-01-01

    Non-destructive assay equipment, based on gamma-ray spectrometry and x-ray fluorescence analysis has previously been developed for confirming the presence of low enriched uranium in the header pipework of UF 6 gas centrifuge enrichment plants. However inspections can only be carried out occasionally on a limited number of pipes. With the development of centrifuge enrichment technology it has been suggested that more frequent, or ideally, continuous measurements should be made in order to improve safeguards assurance between inspections. For this purpose we have developed non-destructive assay equipment based on continuous gamma-ray spectrometry and x-ray transmission measurements. This equipment is suitable for detecting significant changes in the 235 U enrichment of uranium in the header pipework of new centrifuge enrichment plants. Results are given in this paper of continuous measurements made in the laboratory and also on header pipework of a centrifuge enrichment plant at Capenhurst

  11. Enriching an effect calculus with linear types

    DEFF Research Database (Denmark)

    Egger, Jeff; Møgelberg, Rasmus Ejlers; Simpson, Alex

    2009-01-01

    We define an ``enriched effect calculus'' by conservatively extending  a type theory for computational effects with primitives from linear logic. By doing so, we obtain a generalisation of linear type theory, intended as a formalism for expressing linear aspects of effects. As a worked example, we...... formulate  linearly-used continuations in the enriched effect calculus. These are captured by a fundamental translation of the enriched effect calculus into itself, which extends existing call-by-value and call-by-name linearly-used CPS translations. We show that our translation is involutive. Full...... completeness results for the various linearly-used CPS translations  follow. Our main results, the conservativity of enriching the effect calculus with linear primitives, and the involution property of the fundamental translation, are proved using a category-theoretic semantics for the enriched effect calculus...

  12. Multinational uranium enrichment in the Middle East

    International Nuclear Information System (INIS)

    Ahmad, Ali; Salahieh, Sidra; Snyder, Ryan

    2017-01-01

    The Joint Comprehensive Plan of Action (JCPOA) agreed to by Iran and the P5+1 in July 2015 placed restrictions on Iran’s nuclear program while other Middle Eastern countries– Egypt, Jordan, Saudi Arabia, Turkey, and the United Arab Emirates–are planning to build their own nuclear power plants to meet increasing electricity demands. Although the JCPOA restricts Iran's uranium enrichment program for 10–15 years, Iran's neighbors may choose to develop their own national enrichment programs giving them a potential nuclear weapons capability. This paper argues that converting Iran's national enrichment program to a more proliferation-resistant multinational arrangement could offer significant economic benefits–reduced capital and operational costs–due to economies of scale and the utilization of more efficient enrichment technologies. In addition, the paper examines policy aspects related to financing, governance, and how multinational enrichment could fit into the political and security context of the Middle East. A multinational enrichment facility managed by regional and international partners would provide more assurance that it remains peaceful and could help build confidence between Iran and its neighbors to cooperate in managing other regional security challenges. - Highlights: • Freezing Iran's nuclear program is an opportunity to launch joint initiatives in ME. • A joint uranium enrichment program in the Middle East offers economic benefits. • Other benefits include improved nuclear security and transparency in the region.

  13. 21 CFR 137.260 - Enriched corn meals.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched corn meals. 137.260 Section 137.260 Food... Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of which conforms to the definition and standard of identity prescribed for a kind of corn meal by §§ 137...

  14. PC based uranium enrichment analyser

    International Nuclear Information System (INIS)

    Madan, V.K.; Gopalakrishana, K.R.; Bairi, B.R.

    1991-01-01

    It is important to measure enrichment of unirradiated nuclear fuel elements during production as a quality control measure. An IBM PC based system has recently been tested for enrichment measurements for Nuclear Fuel Complex (NFC), Hyderabad. As required by NFC, the system has ease of calibration. It is easy to switch the system from measuring enrichment of fuel elements to pellets and also automatically store the data and the results. The system uses an IBM PC plug in card to acquire data. The card incorporates programmable interval timers (8253-5). The counter/timer devices are executed by I/O mapped I/O's. A novel algorithm has been incorporated to make the system more reliable. The application software has been written in BASIC. (author). 9 refs., 1 fig

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Wataumi, Kazutoshi; Tajiri, Hiroshi.

    1992-01-01

    In a fuel assembly of a BWR type reactor, a pellet to be loaded comprises an external layer of fissile materials containing burnable poisons and an internal layer of fissile materials not containing burnable poison. For example, there is provided a dual type pellet comprising an external layer made of UO 2 incorporated with Gd 2 O 3 at a predetermined concentration as the burnable poisons and an internal layer made of UO 2 not containing Gd 2 O 3 . The amount of the burnable poisons required for predetermined places is controlled by the thickness of the ring of the external layer. This can dissipate an unnecessary poisoning effect at the final stage of the combustion cycle. Further, since only one or a few kinds of powder mixture of the burnable poisons and the fissile materials is necessary, production and product control can be facilitated. (I.N.)

  16. A Summary of Actinide Enrichment Technologies and Capability Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Bradley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. The EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.

  17. Uranium enrichment (a strategy analysis overview)

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-08-01

    An analysis of available information on enrichment technology, separative work supply and demand, and SWU cost is presented. Estimates of present and future enrichment costs are provided for use in strategy analyses of alternate nuclear fuel cycles and systems. (auth)

  18. Providing incentives to buy US enrichment

    International Nuclear Information System (INIS)

    Steyn, J.

    1985-01-01

    The U.S. Department of Energy is making a series of commercial and technological decisions crucial to its future as an enriching enterprise. The state of US enrichment, as revealed in this years AIF Fuel Cycle conference, is reported. (U.K.)

  19. Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements

    International Nuclear Information System (INIS)

    Ravnik, M.

    1988-11-01

    The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs

  20. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    Francois, J.L.; Martin-del-Campo, C.; Francois, R.; Morales, L.B.

    2003-01-01

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  1. Synthesis of 15N-enriched fertilizers. Pt. II. Synthesis of 15N-enriched urea

    International Nuclear Information System (INIS)

    Bondassolli, J.A.; Trivelin, P.C.O.; Mortatti, J.; Victoria, R.L.

    1988-01-01

    The results of studies on the production of 15 N-urea through the reaction between 15 N-enriched anhidrous ammonia, carbon monoxide and sulfur, using hydrogen sulfite as a auto catalizers and methyl alcohol as a liquid reaction medium is presented. The influence of the quantities of reagents on final yield of synthesised urea were studied. Analysis of the cost of 5 Atoms % 15 N-enriched urea were made. (M.A.C.) [pt

  2. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  3. Long term assurance of supply of uranium enrichment

    International Nuclear Information System (INIS)

    1978-01-01

    After elaborating a number of key questions on uranium enrichment, the representatives of 10 countries and of the EC commission present their answers. Attention is paid to the assurance of uranium supply, to uranium enrichment, market trends and flexibility in enrichment agreements

  4. GOMA: functional enrichment analysis tool based on GO modules

    Institute of Scientific and Technical Information of China (English)

    Qiang Huang; Ling-Yun Wu; Yong Wang; Xiang-Sun Zhang

    2013-01-01

    Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology.A variety of enrichment analysis tools have been developed in recent years,but most output a long list of significantly enriched terms that are often redundant,making it difficult to extract the most meaningful functions.In this paper,we present GOMA,a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules.With this method,we systematically revealed functional GO modules,i.e.,groups of functionally similar GO terms,via an optimization model and then ranked them by enrichment scores.Our new method simplifies enrichment analysis results by reducing redundancy,thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results.

  5. Fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Yamanaka, Akihiro; Haikawa, Katsumasa; Haraguchi, Yuko; Nakamura, Mitsuya; Aoyama, Motoo; Koyama, Jun-ichi.

    1996-01-01

    In a BWR type fuel assembly comprising first fuel rods filled with nuclear fission products and second fuel rods filled with burnable poisons and nuclear fission products, the concentration of the burnable poisons mixed to a portion of the second fuel rods is controlled so that it is reduced at the upper portion and increased at the lower portion in the axial direction. In addition, a product of the difference of an average concentration of burnable poisons between the upper portion and the lower portion and the number of fuel rods is determined to higher than a first set value determined corresponding to the limit value of a maximum linear power density. The sum of the difference of the average concentration of the burnable poisons between the upper portion and the lower portion of the second fuel rod and the number of the second fuel rods is determined to lower than a second set value determined corresponding to a required value of a surplus reactivity. If the number of the fuel rods mixed with the burnable poisons is increased, the infinite multiplication factor at an initial stage of the burning is lowered and, if the concentration of the mixed burnable poisons is increased, the time of exhaustion of the burnable poisons is delayed. As a result, the maximum value of the infinite multiplication factor is suppressed thereby enabling to control surplus reactivity. (N.H.)

  6. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  7. Uranium enrichment capacity: public versus private ownership

    International Nuclear Information System (INIS)

    Fraser, J.T.

    1977-01-01

    Continual growth of conventional nuclear capacity requires an assured supply of enriched uranium and, hence, potential expansion of domestic uranium enrichment capacity. The question of ownership of new enrichment capacity, i.e., public or private, entails not only the social-opportunity costs of alternative investments but also technical parameters of uranium utilization and advanced reactor development. Inclusion of risk preferences in both the public and private sectors produces interesting results in terms of optimal investment strategies with respect to choice of technology and scale of investment. Utilization of a nuclear fuel cycle requirements process model allows explicit specification of production technology. Integration of process model output with a least-cost investment model permits flexibility in parametric analysis. Results indicate minimum incentive for Government subsidy of a private enrichment sector through 2000 given moderate to low nuclear growth assumptions. The long-run scenario, to 2020, exhibits potentially greater incentives for private enrichment investment

  8. Evaluation of the uranium enrichment demonstration plant project

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the organization system of the uranium enrichment business is evaluated, based on the operation of the uranium enrichment demonstration plant. As a result, in uranium enrichment technology development or business, it was acknowledged that maintenance of the organization which has the Trinity of a research/engineering/operation was necessary in an industrialization stage by exceptional R and D cycle. Japan Nuclear Fuel Ltd. (JNFL) set up the Rokkashomura Aomori Uranium Enrichment Research and Development Center in November 2000. As a result, the system that company directly engaged in engineering development was prepared. And results obtained in this place is expected toward certain establishment of the uranium enrichment business of Japan. (author)

  9. Uranium enrichment: a vital new industry

    International Nuclear Information System (INIS)

    1975-10-01

    The energy problem facing the nation and the need for nuclear power are pointed out. Uranium enrichment and the demand for it are discussed. Reasons for, and obstacles to, private enrichment are outlined. The President's plan (including the Nuclear Fuel Assurance Act) is summarized

  10. The Helikon technique for isotope enrichment

    International Nuclear Information System (INIS)

    Haarhoff, P.C.

    1976-11-01

    The separating element employed in the UCOR process for uranium enrichment has an enriched stream which is much smaller than the depleted stream. To deal with this small cut and to exploit the full potential of the process, a new cascade technique has been developed, the so-called helikon technique. It is based on the principle that an axial flow compressor can simultaneously compress a number of streams of different isotopic composition, which flow through it in parallel, without any significant mixing between them. The technique makes it possible to achieve the desired enrichment with a relatively small number of separating units, by making the best use of the high enrichment factor available. A further feature of the helikon technique is that a module yields an enrichment factor which is not constant, but can vary. In this way a cascade can be built up from modules of a fixed size, which is a great advantage when compared to conventional cascade arrangements where several unit sizes are required. A general theoretical treatment of the helikon technique is given and the similarity between helikon and conventional cascades is pointed out. Practical helikon cascades are subsequently discussed on the basis of the UCOR process

  11. INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS

    International Nuclear Information System (INIS)

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity Z-bar and intrinsic spread in metallicity σ(Z) 2 . A plot of σ(Z) 2 versus Z-bar shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model, where the star cluster and dwarf galaxy behavior in the σ(Z) 2 - Z-bar diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy σ(Z) 2 - Z-bar correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the σ(Z) 2 - Z-bar relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters. Therefore we suggest that the σ(Z) 2 - Z-bar relationship can provide insight into what drives the efficiency of star formation and chemical evolution in galaxies, and is an important prediction for galaxy simulation models to reproduce.

  12. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  13. 31 CFR 540.306 - Highly Enriched Uranium (HEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Highly Enriched Uranium (HEU). 540...) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.306 Highly Enriched Uranium (HEU). The term highly...

  14. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain.

    Science.gov (United States)

    Hamberger, A; Blomstrand, C; Lehninger, A L

    1970-05-01

    Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na(+)- and K(+)-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.

  15. Enriched uranium recovery flowsheet improvements

    International Nuclear Information System (INIS)

    Holt, D.L.

    1986-01-01

    Savannah River uses 7.5% TBP to recover and purify enriched uranium. Adequate decontamination from fission products is necessary to reduce personnel exposure and to ensure that the enriched uranium product meets specifications. Initial decontamination of the enriched uranium from the fission products is carried out in the 1A bank, 16 stages of mixer-settlers. Separation of the enriched uranium from the fission product, 95 Zr, has been adequate, but excessive solvent degradation caused by the long phase contact times in the mixer-settlers has limited the 95 Zr decontamination factor (DF). An experimental program is investigating the replacement of the current 1A bank with either centrifugal contactors or a combination of centrifugal contactors and mixer-settlers. Experimental work completed has compared laboratory-scale centrifugal contactors and mixer-settlers for 95 Zr removal efficiencies. Feed solutions spiked with actual plant solutions were used. The 95 Zr DF was significantly better in the mixer-settlers than in the centrifugal contactors. As a result of this experimental study, a hybrid equipment flowsheet has been proposed for plant use. The hybrid equipment flowsheet combines the advantages of both types of solvent extraction equipment. Centrifugal contactors would be utilized in the extraction and initial scrub sections, followed by additional scrub stages of mixer-settlers

  16. Stable isotope enrichment by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2003-01-01

    Thermal diffusion (TD) in both gaseous and liquid phase has been the subject of extensive experimental and theoretical investigations, especially after the invention by K. Clusius and G. Dickel of the thermal diffusion column, sixty years ago. This paper gives a brief overview of the most important applications and developments of this transport phenomenon for enrichment of 13 C and of some noble gases isotopes in our institute. The results of calculations of the transport coefficients H and K for a concentric tube type TD column, operated with methane as process gas, are presented. Static separation factor at equilibrium vs gas pressure has been calculated for various molecular models. The experimental separation factors for different gas pressure were found to be consistent with those calculated for the inverse power repulsion model and the Lennard-Jones model. The most important characteristics of a seven-stage cascade consisting of 19 TD columns of concentric tube type are given. This system has been constructed and successfully operated at a temperature of 673 K and produces an enrichment of methane of natural isotopic 13 C abundance, up to the concentration of 25% 13 CH 4 . Enrichment of the noble gases isotopes implies: - a . Enrichment of 20 Ne and 22 Ne in a eight-stage cascade consisting of 8 TD columns; - b. enrichment of 46 Ar in a seven-stage cascade consisting of TD columns and finally; - c. enrichment of 78 Kr and 86 Kr in a fifteen-stage cascade, consisting of 35 TD columns. For all these installations we have adopted TD columns of hot wire type (4 m in length), operated at a temperature of 1073 K. (author)

  17. MICROBIOLOGICAL AND NUTRITIONAL QUALITY OF WARANKASHI ENRICHED BREAD

    Directory of Open Access Journals (Sweden)

    O. E. Dudu

    2012-08-01

    Full Text Available The study was carried out to determine the microbiological and nutritional quality, organoleptic, rheological and textural effect as well as the effect on the shelf life of wheat bread enriched with West African cottage cheese (warankashi at different substitution levels (1 %, 3 % and 5 %. The protein and fat content of wheat bread significantly increased but carbohydrate levels decreased significantly as enrichment with Warankashi increased. The amino acid profile of the wheat bread increased with increasing enrichment. The incorporation of Warankashi into wheat flour affected the rheological and textural properties of wheat flour; the rate of water absorption of the wheat flour decreased as Warankashi incorporation levels increased. Also, the dough stability time of the enriched flours was lesser than that of the wheat flour. The 3 % enrichment level had the highest dough consistency (520 BU. The extensibility of 1 % and 3 % wara bread dough were the same while that of wheat flour bread and 5 % Warankashi were the same. The 3 % wara bread dough had the highest resistance to extension. Shelf life of the bread remained unaffected by Warankashi incorporation but the rate of bacteria and fungi (yeast and mould growth decreased significantly (P < 0.05 as enrichment levels increased. There was no significant difference between the organoleptic properties of wheat bread to that of the enriched breads but the 3 % Warankshi enriched bread had the highest consumer acceptability.

  18. Criticality analysis of the CAREM-25 reactor irradiated fuel elements storage pool

    International Nuclear Information System (INIS)

    Albornoz, A.F.; Jatuff, F.E.; Gho, C.J.

    1993-01-01

    A criticality safety analysis of the irradiated fuel element pool storage of the CAREM-25 reactor was performed. The CAREM project is property of the Comision Nacional de Energia Atomica (CNEA) of Argentine, and it is being executed by INVAP S.E. difficult evaluation of the CAREM core (relatively high -3,4%- enriched U O 2 , Gd 2 O 3 burnable absorber in different densities, or criticality achievement with as few as 7 fuel elements is inherited by the pool storage. The lattice code CONDOR 1.1 was used for investigating the problem scene, and some results compared on the Monte Carlo codes MONK 5.0 and MONK 6.3. Circular and square tubes of 304-L stainless steel, borated steel and boral B 4 C in Al) were tested as suitable channels for fuel element containment, in square and hexagonal arrays; in addition, burnup, burnable absorber concentration, Sm and leakage credits were determined. It was found that the critical is strongly dependent on the separation of the fuel elements in the pool. Out-of-nominal conditions were investigated too, showing that the loss of coolant and the change in temperature and density conditions in the storage lead to an increase in reactivity, but the system's reactivity remains near the safety limits. (author)

  19. Optimization of Gad Pattern with Geometrical Weight

    International Nuclear Information System (INIS)

    Chang, Do Ik; Woo, Hae Seuk; Choi, Seong Min

    2009-01-01

    The prevailing burnable absorber for domestic nuclear power plants is a gad fuel rod which is used for the partial control of excess reactivity and power peaking. The radial peaking factor, which is one of the critical constraints for the plant safety depends largely on the number of gad bearing rods and the location of gad rods within fuel assembly. Also the concentration of gad, UO 2 enrichment in the gad fuel rod, and fuel lattice type play important roles for the resultant radial power peaking. Since fuel is upgraded periodically and longer fuel cycle management requires more burnable absorbers or higher gad weight percent, it is required frequently to search for the optimized gad patterns, i.e., the distribution of gad fuel rods within assembly, for the various fuel environment and fuel management changes. In this study, the gad pattern optimization algorithm with respect to radial power peaking factor using geometrical weight is proposed for a single gad weight percent, in which the candidates of the optimized gad pattern are determined based on the weighting of the gad rod location and the guide tube. Also the pattern evaluation is performed systematically to determine the optimal gad pattern for the various situation

  20. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  1. Uranium enrichment: an evolving market

    International Nuclear Information System (INIS)

    Longenecker, J.; Witzel, R.

    1997-01-01

    With over half of the world uranium enrichment market uncommitted to any supplier early in the next century, competition is certain to be fierce. In the meantime the outlood remains unclear, with the market dominated by a number of developments -privatisation of the United States Enrichment Corp (USEC), increasing availability of Russian and US military inventories, the deployment of advanced technology and the closure of nuclear power plants due to deregulation. (author)

  2. A theory of surface enrichment in ordered alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Sachtler, W.M.H.

    1974-01-01

    A simple theory was developed to explain exptl. data on surface enrichment in Pt3Sn. The computed surface enrichment is in accord with exptl. findings. The theory predicts that in the Pt3Sn system enrichment occurs by interchange of atoms of the element with the lower heat of sublimation from the

  3. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  4. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    Hartmann, F.X.; Hahn, R.L.

    1991-01-01

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  5. How is uranium supply affecting enrichment?

    International Nuclear Information System (INIS)

    Steve Kidd

    2007-01-01

    As a result of the enlivened uranium market, momentum has in turn picked up in the enrichment sector. What are the consequences of higher uranium prices? There is, of course, a link between uranium and enrichment supply to the extent that they are at least partial substitutes. On the enrichment supply side, the most obvious feature is the gradual replacement of the old gas diffusion facilities of Usec in the USA and EURODIF in France with more modern and economical centrifuge plants. Assuming Usec can overcome the financing and technical issues surrounding its plans, the last gas diffusion capacity should disappear around 2015 and the entire enrichment market should then be using centrifuges. On the commercial side, the key anticipated developments are mostly in Russia. Although there should still continue to be substantial quantities of surplus Russian HEU available for down blending in the period beyond 2013, it is now reasonable to expect that it will be mostly consumed by internal needs, to fuel Russian-origin reactors both at home and in export markets such as China and India. Finally, as a key sensitive area for the non-proliferation of nuclear weapons, the enrichment sector is likely to be a central point of the new international arrangements which must be developed to support a buoyant nuclear sector throughout this century.

  6. Toward a predictive theory for environmental enrichment.

    Science.gov (United States)

    Watters, Jason V

    2009-11-01

    There have been many applications of and successes with environmental enrichment for captive animals. The theoretical spine upon which much enrichment work hangs largely describes why enrichment should work. Yet, there remains no clear understanding of how enrichment should be applied to achieve the most beneficial results. This lack of understanding may stem in part from the assumptions that underlie the application of enrichment by practitioners. These assumptions are derived from an understanding that giving animals choice and control in their environment stimulates their motivation to perform behaviors that may indicate a heightened state of well-being. Learning theory provides a means to question the manner in which these constructs are routinely applied, and converting learning theory's findings to optimality predictions suggests a particularly vexing paradox-that motivation to perform appears to be maintained best when acquiring a payoff for expressing the behavior is uncertain. This effect occurs even when the actual value of the payoff is the same for all schedules of certainty of payoff acquisition. The paradox can be resolved by invoking rewards of an alternative type, such as cognitive rewards, or through an understanding of how the average payoff changes with changes in the probability of reward. This model, with measures of the average change of the payoff, suggests testable scenarios by which practitioners can measure the quality of environmental uncertainty in enrichment programs.

  7. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.C.

    1997-01-01

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  8. The isotopic enrichment of uranium in 1979

    International Nuclear Information System (INIS)

    Baron, M.

    1979-01-01

    The Eurodif uranium enrichment plant built on the Tricastin site is described. The uranium isotope separation plants in service abroad are presented. The main characteristics of the international enrichment market are defined [fr

  9. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  10. Method and apparatus for enrichment or upgrading heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for upgrading and final enrichment of heavy water are described, comprising means for contacting partially enriched heavy water feed in a catalyst column with hydrogen gas (essentially D 2 ) originating in an electrolysis cell so as to enrich the feed water with deuterium extracted from the electrolytic hydrogen gas and means for passing the deuterium enriched water to the electrolysis cell. (author)

  11. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  12. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  13. Curriculum enrichment through indigenous Zulu games | Roux ...

    African Journals Online (AJOL)

    Curriculum enrichment through indigenous Zulu games. ... 1997). The aim of the study was to document and analyze indigenous Zulu games for possible curriculum enrichment of physical ... AJOL African Journals Online. HOW TO USE AJOL.

  14. Unjust enrichment in business law

    OpenAIRE

    Vydrová, Zuzana

    2016-01-01

    This thesis analyses the concept of unjust enrichment under the business law. First of all the thesis explains the term of business law. Business law is a complex of legal rules concerning the contractual relationships between entrepreneurs arising from their business activities. Business law is a comprehensive field of law which extends into many other fields of law, both private and public law. Equally the regulation of unjust enrichment within the business law expands into many other laws ...

  15. Uranium enrichment by centrifuge in Japan

    International Nuclear Information System (INIS)

    Watanabe, T.; Murase, T.

    1977-01-01

    The demand for enriched uranium is on the increase with nuclear power capacity in which the LWR predominates and is estimated to exceed the supply from the present facilities in the world in less than ten years. Therefore, the basic strategy for enriched uranium is investigated on the following three-point long-range program in Japan: 1. To continue negotiations to extend the current allocation by the long-term contract; 2. To seek active participation in international enrichment projects; and 3. To make efforts to develop uranium enrichment technology and to construct inland facilities. On this basis, a vigorous development program of gas centrigue process for industrialization was launched out in 1972 as a national project. Ever since substantial progress in this field has been made and development works have been increased year after year. At present, a concrete plan of a pilot plant is taking shape. Up to now, several types of centrifuges were developed, of which some were completed as prototype models, and subjected to life tests and also to extensive earthquake-resistivity tests for the characteristics of Japanese geological condition. An enrichment plant is composed of so many centrifuges that the installation and piping system of centrifuges is an important factor which has an effect on plant economy and reliability. Two types of the experimental cascade were constructed in Japan. One has been in operation since 1973, and the other since 1975. Valuable empirical data have been accumulated on cascade characteristics, maintenance scheme and so on. It will be important for the coming plants to have a flexibility to escalation of labor and energy cost, or to variation of the separative work requirement and further. An economic prospect of centrifuge enrichment process is presented

  16. US enrichment reduction studies

    International Nuclear Information System (INIS)

    1979-06-01

    A major national program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is currently under way in the U.S., centered at the Argonne National Laboratory (ANL), to reduce the potential of research and test reactor fuels for increasing the proliferation of nuclear explosive devices. The main objective of the program is to provide the technical means by which the uranium enrichment to be used in these reactors can be reduced to less than 20% without significant economic and performance penalties. The criteria, basis and goals of the program are consistent with the results of a number of case studies which have been performed as part of the program

  17. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  18. Low-resolution gamma-ray measurements of uranium enrichment

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-01-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the 211 U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals

  19. A consideration on laser enrichment module

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1983-09-01

    Several problems are discussed for designing a simplified enrichment module based on Atomic Laser Isotope Separation Method, which involve the vaporization of metal, laser excitation, laser ionization and ion recovery. The conditions at which the consumed energy has the minimum value are obtained by calculating the specific energy consumption for producing unit amount of enriched products. It is found that there should be an appropriate relationship between the processing atomic density and the electrode gap in order to avoid the enrichment loss caused by the charge exchange during the ion recovery. Moreover it is also found that this relation depends on the electrode length measured along both the atomic beam direction and the laser beam direction. (author)

  20. 21 CFR 137.350 - Enriched rice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose and...

  1. Theoretical studies aiming at the IEA-R1 reactor core conversion from high U-235 enrichment to low U-235 enrichment

    International Nuclear Information System (INIS)

    Frajndlich, R.

    1982-01-01

    The research reactors, of which the fuel elements are of MTR type, functions presently, almost in their majority with high U-235 enrichment. The fear that those fuel elements might generate a considerabLe proliferation of nuclear weapons rendered almost mandatory the conversion of highly enriched fuel elements to a low U-235 enrichment. As the IEA-R1 reactor of IPEN is operating with highly enriched fuel elements a study aiming at this conversion was done. The problems related to the conversion and the results obtained, demonstrated the technical viabilty for its realization. (E.G.) [pt

  2. Axial blanket enrichment optimization of the NPP Krsko fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2001-01-01

    In this paper optimal axial blanket enrichment of the NPP Krsko fuel is investigated. Since the optimization is dictated by economic categories that can significantly vary in time, two step approach is applied. In the first step simple relationship between the equivalent change in enrichment of axial blankets and central fuel region is established. The relationship is afterwards processed with economic criteria and constraints to obtain optimal axial blanket enrichment. In the analysis realistic NPP Krsko conditions are considered. Except for the fuel enrichment all other fuel characteristics are the same as in the fuel used in the few most recent cycles. A typical reload cycle after the plant power uprate is examined. Analysis has shown that the current blanket enrichment is close to the optimal. Blanket enrichment reduction results in an approximately 100 000 US$ savings per fuel cycle.(author)

  3. Reducing enrichment of fuel for research reactors

    International Nuclear Information System (INIS)

    Kanda, Keiji; Matsuura, Shojiro.

    1980-01-01

    In research reactors, highly enriched uranium (HEU) is used as fuel for their purposes of operation. However, the United States strongly required in 1977 that these HEU should be replaced by low enrichment uranium (LEU) of 20% or less, or even in unavoidable cases, it should be replaced by medium enrichment uranium (MEU). INFCE (International Nuclear Fuel Cycle Evaluation) which started its activity just at that time decided to discuss this problem in the research reactor group of No. 8 sectional committee. Japan has been able to forward the work, taking a leading part in the international opinion because she has taken the countermeasures quickly. INFCE investigated the problem along the lines of policy that the possibility of reducing the degree of enrichment should be limited to the degree in which the core structures and equipments of research reactors will be modified as little as possible, and the change of fuel element geometry will be done within the permissible thermohydrodynamic capacity, and concluded that it might be possible in near future to reduce the degree of enrichment to about 45% MEU, while the reduction to 20% LEU might require considerable research, development and verification. On the other hand, the joint researches by Kyoto University and ANL (Argonne National Laboratory) and by Japan Atomic Energy Research Institute and ANL are being continued. IAEA has edited the guidebook (IAEA-TECDOC-233) for reducing the degree of enrichment for developing countries. (Wakatsuki, Y.)

  4. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  5. Managing public acceptance for a new enrichment facility

    International Nuclear Information System (INIS)

    Boyd, M.

    1992-01-01

    The Claiborne Enrichment Center has many first associated with it, and a solid nuclear-based community relations experience has been combined with fly-by-the-seat-of-your-pants techniques to successfully introduce a first-of-a-kind facility not only to Louisiana, but also to the US. The project is being developed by Louisiana Energy Services (LES), a limited partnership consisting of Urenco, the European enrichment consortium that operates centrifuge enrichment facilities in the United Kingdom, the Netherlands, and Germany; Fluor Daniel, an internationally known engineering and construction firm; and three utilities - Duke Power, Northern States Power, and Louisiana Power and Light (LP and L). Louisiana Energy will build the nation's first privately owned uranium enrichment facility. It will be the first commercial use of centrifuge technology for enrichment in the US. Some of the community relations challenges the project has had and their solutions are described

  6. Reactor fuel element and fuel assembly

    International Nuclear Information System (INIS)

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  7. Future of uranium enrichment

    International Nuclear Information System (INIS)

    Hosmer, C.

    1981-01-01

    The increasing amount of separative work being done in government facilities to produce low-enriched uranium fuel for nuclear utilities again raises the question: should this business-type, industrial function be burned over the private industry. The idea is being looked at by the Reagan administration, but faces problems of national security as well as from the unique nature of the business. This article suggests that a joint government-private venture combining enriching, reprocessing, and waste disposal could be the answer. Further, a separate entity using advanced laser technology to deplete existing uranium tails and lease them for fertile blankets in breeder reactors might earn substantial revenues to help reduce the national debt

  8. Uranium enrichment: investment options for the long term

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables

  9. Environmental Enrichment for Broiler Breeders: An Undeveloped Field

    Directory of Open Access Journals (Sweden)

    Anja B. Riber

    2017-06-01

    Full Text Available Welfare problems, such as hunger, frustration, aggression, and abnormal sexual behavior, are commonly found in broiler breeder production. To prevent or reduce these welfare problems, it has been suggested to provide stimulating enriched environments. We review the effect of the different types of environmental enrichment for broiler breeders, which have been described in the scientific literature, on behavior and welfare. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements in biological function. This definition has been broadened to include practical and economic aspects as any enrichment strategy that adversely affects the health of animals (e.g., environmental hygiene, or that has too many economic or practical constraints will never be implemented on commercial farms and thus never benefit animals. Environmental enrichment for broiler breeders often has the purpose of satisfying the behavioral motivations for feeding and foraging, resting, and/or encouraging normal sexual behavior. Potentially successful enrichments for broiler breeders are elevated resting places, cover panels, and substrate (for broiler breeders housed in cage systems. However, most of the ideas for environmental enrichment for broiler breeders need to be further developed and studied with respect to the use, the effect on behavior and welfare, and the interaction with genotype and production system. In addition, information on practical use and the economics of the production system is often lacking although it is important for application in practice.

  10. Measurement of the enrichment of uranium in the pipework of a gas centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Close, D.; Nixon, K.V.; Pratt, J.C.; Strittmatter, R.

    1985-01-01

    The US and UK have been separately working on the development of a NDA instrument to determine the enrichment of gaseous UF 6 at low pressures in cascade header pipework in line with the conclusions of the Hexapartite Safeguards Project viz. the instrument is capable of making a ''go/no go'' decision of whether the enrichment is less than/greater than 20%. Recently, there has been a series of very useful technical exchanges of ideas and information between the two countries. This has led to a technical formulation for such an instrumentation based on γ-ray spectrometry which, although plant-specific in certain features, nevertheless is based on the same physical principles. Experimental results from commercially operating enrichment plants are very encouraging and indicate that a complete measurement including set up time on the pipe should be attainable in about 30 minutes when measuring pipes of diameter around 110 mm. 5 refs., 4 figs

  11. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips.

    Science.gov (United States)

    Chen, Xueye; Zhang, Shuai; Zhang, Lei; Yao, Zhen; Chen, Xiaodong; Zheng, Yue; Liu, Yanlin

    2017-09-01

    This review reports the progress on the recent development of electrokinetic enrichment in micro-nanofluidic chips. The governing equations of electrokinetic enrichment in micro-nanofluidic chips are given. Various enrichment applications including protein analysis, DNA analysis, bacteria analysis, viruses analysis and cell analysis are illustrated and discussed. The advantages and difficulties of each enrichment method are expatiated. This paper will provide a particularly convenient and valuable reference to those who intend to research the electrokinetic enrichment based on micro-nanofluidic chips.

  12. Process for recovering water enriched with deuterium

    International Nuclear Information System (INIS)

    Mandel, H.

    1975-01-01

    By the process proposed herewith, enrichment of deuterium in water by cooling water recirculation through series-connection of several cooling ciruits in the form of columns is obtained. With this method, conventional, open-type cooling towers without special installations can be applied, which is an important advantage as compared with a formerly proposed single-stage process with specially designed, complicated cooling towers. Series-connection of the cooling towers is carried out in such a way that the circulating water of a certain cooling circuit, which has a corresponding output value of deuterium enrichment, is conveyed to a succeeding circuit where further enrichment is achieved. The water enriched with deuterium is removed from the last cooling circuit of the series while an amount of fresch water equivalent to the water removed or evaporated altogether is fed to the first circuit of the series. (RB) [de

  13. Possibility of implementation of 6-year fuel cycle at NPP with VVER-440 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heraltova, L., E-mail: lenka.heraltova@fjfi.cvut.cz [UJV Rez a.s., Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2015-12-15

    Highlights: • Possibility of extension of fuel cycle. • Increase of enrichment above 5% {sup 235}U. • Core properties calculated by diffusion code ANDREA. • Back end fuel cycle characteristic. - Abstract: This paper discusses possibility of an extension of a fuel cycle at a VVER-440 reactor for up to 6 years. The prolongation of a fuel cycle was realized by optimization of a fuel design and increasing of a fuel enrichment. The modified design of the fuel assembly covers change of pellet geometry, decreasing of parasitic absorption in construction materials, improved moderation of fuel pins and also increase of enrichment. Fuel assemblies with enrichment up to 7% {sup 235}U are considered for prolonged fuel batches. Three different batch lengths were considered for evaluation of core properties – 12, 18 and 24 months, and two types of burnable absorbers were included – Gd{sub 2}O{sub 3} and Er{sub 2}O{sub 3}. Comparison of proposed fuel assemblies was realized by length of a batch, average burnup, maximal power of fuel assembly or fuel pin, control fuel assembly worth, reactivity coefficients, and effective delayed neutrons fraction. Comparison of characteristics of a burned fuel discharged from a reactor core is discussed in the last part of the paper.

  14. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.

    Science.gov (United States)

    Long, Rachel M; Lappin-Scott, Hilary M; Stevens, Jamie R

    2009-07-01

    The degradation of polycyclic aromatic compounds (PACs) has been widely studied. Knowledge of the degradation of PACs by microbial populations can be utilized in the remediation of contaminated sites. To isolate and identify PAC-degrading bacteria for potential use in future bioremediation programmes, we established a series of PAC enrichments under the same experimental conditions from a single sediment sample taken from a highly polluted estuarine site. Enrichment cultures were established using the pollutants: anthracene, phenanthrene and dibenzothiophene as a sole carbon source. The shift in microbial community structure on each of these carbon sources was monitored by analysis of a time series of samples from each culture using 16S rRNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Significantly, our findings demonstrate that shifts in the constituent species within each degradative community are directly attributable to enrichment with different PACs. Subsequently, we characterized the microorganisms comprising the degradative communities within each enrichment using 16S rRNA sequence data. Our findings demonstrate that the ability to degrade PACs is present in five divisions of the Proteobacteria and Actinobacteria. By determining the precise identity of the PAC-degrading bacterial species isolated from a single sediment sample, and by comparing our findings with previously published research, we demonstrate how bacteria with similar PAC degrading capabilities and 16S rRNA signatures are found in similarly polluted environments in geographically very distant locations, e.g., China, Italy, Japan and Hawaii. Such a finding suggests that geographical barriers do not limit the distribution of key PAC-degrading bacteria; this finding is in accordance with the Baas-Becking hypothesis "everything is everywhere; the environment selects" and may have significant consequences for the global distribution of PAC-degrading bacteria and

  15. 75 FR 21680 - GE-Hitachi Global Laser Enrichment LLC;

    Science.gov (United States)

    2010-04-26

    ... Global Laser Enrichment LLC; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by... over the following proceeding: GE-Hitachi Global Laser Enrichment LLC (GLE Commercial Facility) This... application of GE-Hitachi Global Laser Enrichment LLC for a license to possess and use source, byproduct, and...

  16. Selective adsorption-desorption method for the enrichment of krypton

    International Nuclear Information System (INIS)

    Yuasa, Y.; Ohta, M.; Watanabe, A.; Tani, A.; Takashima, N.

    1975-01-01

    Selective adsorption-desorption method has been developed as an effective means of enriching krypton and xenon gases. A seriesof laboratory-scale tests were performed to provide some basic data of the method when applied to off-gas streams of nuclear power plants. For the first step of the enrichment process of the experiments, krypton was adsorbed on solid adsorbents from dilute mixtures with air at temperatures ranging from -50 0 C to -170 0 C. After the complete breakthrough was obtained, the adsorption bed was evacuated at low temperature by a vacuum pump. By combining these two steps krypton was highly enriched on the adsorbents, and the enrichment factor for krypton was calculated as the product of individual enrichment factors of each step. Two types of adsorbents, coconut charcoal and molecular sieves 5A, were used. Experimental results showed that the present method gave the greater enrichment factor than the conventional method which used selective adsorption step only. (U.S.)

  17. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    1981-05-01

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  18. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Device and method to enrich and process heavy water

    International Nuclear Information System (INIS)

    Hammerli, M.M.; Butler, J.P.

    1979-01-01

    A device to process and enrich heavy water is proposed which is based on a combined electrolysis catalyst exchange system in which a D 2 O enrichment of more than 99.8% is achieved in the end stage. Water partly enriched with D 2 -containing hydrogen gas from an electrolysis cell is brought into contact in a catalyst column. The water is further enriched here with deuterium. It is then fed to the electrolysis cell. Details of the apparatus are closely described. (UWI) [de

  20. Motif enrichment tool.

    Science.gov (United States)

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The case for enrichment of uranium in Australia

    International Nuclear Information System (INIS)

    George, D.W.

    1981-01-01

    Information is presented on the number of nuclear power plants in operation and under construction and on the extent of the use of uranium. The case for enrichment of uranium in Australia is then considered in detail and the status of feasbility studies being carried out is discussed. Arguments to support an enrichment industry include: the need for additional enrichment capacity; added value; potential profitability; increased employment and industrial opportunities; and retention of depleted uranium

  2. Code systems for effective and precise calculation of the basic neutron characteristics, core loading optimization, analysis and estimation of the operation regimes of WWER type reactors

    International Nuclear Information System (INIS)

    Apostolov, T.; Ivanov, K.; Prodanova, R.; Manolova, M.; Petrova, T.; Alekova, G.

    1993-01-01

    Two directions for investigations are suggested: 1) Analysis and evaluation of the real loading patterns and operational regimes for Kozloduy NPP WWER-440 and WWER-1000 in the frame of the recent safety criteria and nuclear power plant operating limits. 2) Development of modern code system for WWER type reactor core analysis with advanced features: new design and materials for fuel and control rods, increasing the fuel enrichment, using the integral and discrete burnable absorbers etc. The fuel technology design evolution maximizes the fuel utilization efficiency, improves operation performance and enhances safety margins. By the joint efforts of specialists from INRNE, Sofia (BG) and KAB, Berlin (GE), the codes NESSEL-IV-EC, PYTHIA and DERAB have been developed and verified. In the frame of the PHARE programme the joint project ASPERCA has been proposed intended for reactor physics calculations with PHYBER-WWER code for safety enhancement and operation reliability improvement. In-core fuel management benchmarks for 4 cycles of unit 2 (WWER-440) and 2 cycles of unit 5 (WWER-1000) have been performed. The coordination of burnable absorber design implementation, low leakage loadings usage, reloading enrichment increase and steel content reduction in the core have made the reactor core analysis more demanding and the definition of loading patterns - more difficult. This complexity requires routine use of three-dimensional fast accurate core model with extended and updated cross section libraries. To meet the needs of WWER advanced loading patterns and in-core fuel management improvements the HEXANES code systems is being developed and qualified. Some test calculations have been carried out by the HEXANES code system investigating the influence of Gd in the fuel on the main reactor physics parameters. For reevaluation of the core safety-related design limits forming the basis of licensing procedure, the code DYN3D/M2 is used. 16 refs., 3 figs. (author)

  3. Weapons-grade plutonium dispositioning. Volume 4

    International Nuclear Information System (INIS)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO 2 -ZrO 2 -CaO) with the addition of thorium oxide (ThO 2 ) or a burnable poison such as erbium oxide (Er 2 O 3 ) or europium oxide (Eu 2 O 3 ) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl 4 -Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams

  4. Optimal pin enrichment distributions in nuclear reactor fuel bundles

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1976-01-01

    A methodology has been developed to determine the fuel pin enrichment distribution that yields the best approximation to a prescribed power distribution in nuclear reactor fuel bundles. The problem is formulated as an optimization problem in which the optimal pin enrichments minimize the sum of squared deviations between the actual and prescribed fuel pin powers. A constant average enrichment constraint is imposed to ensure that a suitable value of reactivity is present in the bundle. When constraints are added that limit the fuel pins to a few enrichment types, one must determine not only the optimal values of the enrichment types but also the optimal distribution of the enrichment types amongst the pins. A matrix of boolean variables is used to describe the assignment of enrichment types to the pins. This nonlinear mixed integer programming problem may be rigorously solved with either exhaustive enumeration or branch and bound methods using a modification of the algorithm from the continuous problem as a suboptimization. Unfortunately these methods are extremely cumbersome and computationally overwhelming. Solutions which require only a moderate computational effort are obtained by assuming that the fuel pin enrichments in this problem are ordered as in the solution to the continuous problem. Under this assumption search schemes using either exhaustive enumeration or branch and bound become computationally attractive. An adaptation of the Hooke--Jeeves pattern search technique is shown to be especially efficient

  5. Functional properties of pasta enriched with variable cereal brans.

    Science.gov (United States)

    Kaur, Gurkirat; Sharma, Savita; Nagi, H P S; Dar, Basharat N

    2012-08-01

    To explore the potentiality of cereal brans for preparation of fiber enriched pasta, various cereal brans (Wheat, Rice, Barley and Oat) were added at 0, 5, 10, 15, 20 and 25 per cent to durum wheat semolina. The effect of cereal bran enrichment on the colour, cooking, sensory quality and shelf life of enriched pasta was assessed at ambient temperature. Pasta prepared with added fiber at 25 per cent level had the highest protein and dietary fiber content as compared to control. Enrichment with variable fiber sources improved the brightness of pasta, as colour of pasta enhanced significantly. Addition of cereal brans resulted an increase in the water absorption and cooking losses of pasta. This effect was dependent on the level and type of cereal brans. Significant correlation (r = 0.80) was obtained between water absorption and volume expansion in all types of bran enriched pasta. At 25 per cent level of supplementation, maximum solids were leached into cooking water. Bran enriched pasta required less cooking time for complete gelatinization of starch. Increasing level of cereal brans had significantly affected the overall acceptability of enriched pasta. Cooking quality of pasta remained constant during storage. Non significant effect of storage was found on water activity, free fatty acids. Enriched pasta (15 per cent level of wheat, rice and oat bran and 10 per cent barley bran) was highly acceptable upto 4 months of storage with respect to quality.

  6. Synthesis of fertilizers nitrogen and 15N-enriched. Pt. I. Production of enriched 15N-anhydrous ammonia

    International Nuclear Information System (INIS)

    Bendassolli, J.A.; Mortatti, J.; Trivelin, P.C.O.; Victoria, R.L.

    1988-01-01

    The results of 15 N-anhydrous ammonia production through reaction between 15 N-enriched ammonium sulphate and sodium hidroxide are reported. Influence of the reaction temperature, carrier gas flow, reaction time and mass of ammonium sulphate on the production of anhydrous ammonia were studied. Analyses for the cost of production of 5% atoms in 15 N-enriched anhydrous ammonia were made. (M.A.C.) [pt

  7. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  8. Principles and techniques of uranium enrichment

    International Nuclear Information System (INIS)

    Frejacques, Claude; Mezin, Michel

    1975-01-01

    The main separation processes already used industrially or likely to be used before the end of century (gas diffusion, ultracentrifugation, laser, the nozzle process, a process developed in South Africa) are presented. Some data on the costs of the enrichment are clarified. The main characteristics of the enrichment market in which the Eurodif plant is called upon, on the expiration of five years, to take a foremost place are reported [fr

  9. A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Bugel, Susanne; Krath, Britta

    2008-01-01

    -enriched yeast or Se-enriched milk. We found no effect on plasma lipid resistance to oxidation, total cholesterol, TAG, HDL- and LDL-cholesterol, GPX, glutathione reductase (GR) and glutathione S-transferase (GST) activities measured in erythrocytes, GPX and GR activities determined in plasma, or GR and GST...

  10. Enriched uranium cycles in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Mazzola, A.

    1994-01-01

    A study was made on the substitution of natural uranium with enriched and on plutonium recycle in unmodified PHWRs (pressure vessel reactor). Results clearly show the usefulness of enriched fuel utilisation for both uranium ore consumption (savings of 30% around 1.3% enrichment) and decreasing fuel cycle coasts. This is also due to a better plutonium exploitation during the cycle. On the other hand plutonium recycle in these reactors via MOX-type fuel appears economically unfavourable under any condition

  11. The Passive Neutron Enrichment Meter for Uranium Cylinder Assay

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A.; Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johanna B. [Safeguards Science and Technology Group (N-1), Los Alamos National Laboratory, Los Alamos (United States)

    2011-12-15

    As fuel cycle technology becomes more prevalent around the world, international safeguards have become increasingly important in verifying that nuclear materials have not been diverted. Uranium enrichment technology is a critical pathway to nuclear weapons development, making safeguards of enrichment facilities especially important. Independently-verifiable material accountancy is a fundamental measure in detecting diversion of nuclear materials. This paper is about a new instrument for uranium cylinder assay for enrichment plant safeguards called the Passive Neutron Enrichment Meter (PNEM). The measurement objective is to simultaneously verify uranium mass and enrichment in Uf6 cylinders. It can be used with feed, product, and tails cylinders. Here, we consider the enrichment range up to 5% {sup 235}U. The concept is to use the Doubles-to-Singles count rate to give a measure of the {sup 235}U enrichment and the Singles count rate to provide a measure of the total uranium mass. The cadmium ratio is an additional signature for the enrichment that is especially useful for feed and tails cylinders. PNEM is a {sup 3}He-based system that consists of two portable detector pods. Uranium enrichment in UF{sub 6} cylinders is typically determined using a gamma-ray-based method that only samples a tiny volume of the cylinder's content and requires knowledge of the cylinder wall thickness. The PNEM approach has several advantages over gamma-ray-based methods including a deeper penetration depth into the cylinder, meaning it can be used with heterogeneous isotopic mixtures of UF{sub 6}. In this paper, we describe a Monte Carlo modelling study where we have examined the sensitivity of the system to systematic uncertainties such as the distribution of UF{sub 6} within the cylinder. We also compare characterization measurements of the PNEM prototype to the expected measurements calculated with Monte Carlo simulations.

  12. Novel meat-enriched foods for older consumers.

    Science.gov (United States)

    Farouk, Mustafa M; Yoo, Michelle J Y; Hamid, Nazimah S A; Staincliffe, Maryann; Davies, Briar; Knowles, Scott O

    2018-02-01

    Red meat enriched versions of bread, spaghetti, yoghurt, ice cream and chocolate were prototyped and assessed for some of their physical, chemical and microbiological properties, as well as sensory appeal. The protein content of the products were significantly increased and their colour went darker with meat enrichment (pice cream meltability and yoghurt apparent viscosity decreased with meat enrichment (pice cream and spaghetti were not affected (p>0.05) but that of non-flavoured ice cream and yoghurt went down (pindustry stretch its established business models, and encouraging further development of novel food choices for elderly and other groups of consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Uranium enrichment management review. Final report

    International Nuclear Information System (INIS)

    Ellett, J.D.; Rieke, W.B.; Simpson, J.W.; Sullivan, P.E.

    1980-01-01

    The uranium enrichment enterprise of the US Department of Energy (DOE) provides enriched nuclear fuel for private and government utilities domestically and abroad. The enterprise, in effect, provides a commercial service and represents a signficant business operation within the US government: more than $1 billion in revenues annually and future capital expenditures estimated at several billions of dollars. As a result, in May 1980, the Assistant Secretary for Resource Applications within DOE requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. The review group was specifically asked to focus on the management activities to which sound business practices could be applied. The group developed findings and recommendations in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. The chapters of this report present first the management review group's recommendations in the six areas evaluated and then the findings and issues in each area. An appendix provides the group's calendar of meetings. A list of major reference sources used in the course of the study is also included. 12 references

  14. Measurement of the enrichment of uranium-hexafluoride gas in product pipes in the centrifuge enrichment plant at Almelo

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Aaldijk, J.K.; Harry, R.J.S.

    1987-09-01

    One of the objectives of safeguarding centrifuge enrichment plants is to apply non-destructive measurements inside the cascade area to confirm that the enrichment level is in the low enriched uranium range. Research in the UK and USA has developed a NDA instrument which can confirm the presence of low enriched uranium on a rapid go/no go basis in cascade header pipework of their centrifuge enrichment plants. The instrument is based on a gamma spectroscopic measurement coupled with an X-ray fluorescence analysis. This report gives the results of measurements carried out at Almelo by the UKAEA Harwell, ECN Petten and KFA Juelich to determine if these techniques could be employed at Almelo and Gronau. The energy dispersive X-ray fluorescence analysis has been applied to determine the total mass of uranium in the gas phase, and the deposit correction technique and the two geometry technique have been applied at Almelo to correct the measured gamma intensities for those emitted by the deposit. After an executive summary the report discusses the principles of the two correction methods. A short description of the equipment precedes the presentation of the results of the measurements and the discussion. After the conclusions the report contains two appendices which contain the derivation of the formulae for the deposit correction technique and a discussion of the systematic errors of this technique. 8 figs.; 11 refs.; 6 tables

  15. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    International Nuclear Information System (INIS)

    Myers, Astasia

    2011-01-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  16. Neutronic design of an ADS

    International Nuclear Information System (INIS)

    Cintas, A; Lopasso, E.M; Marquez Damian, J.I

    2009-01-01

    We present a LEU-ADS design based on an existing Argentine experimental facility, the RA-8 pool type zero power reactor. The versatility of this reactor allows measurement of different core configurations using different fuel enrichment, burnable poison rods, water perturbations and different control rods types in critical or subcritical configurations with an external source. To assess the feasibility of the LEU-ADS, multiplication factors, kinetic parameters, spectra, and time flux evolution were computed. Two external sources were considered: an isotopic 252 C f source, and a D-D pulsed neutron source. Parameters for different core configurations were calculated, and the feasibility of using continuous and pulsed neutron sources was verified. [es

  17. Energy consumption of chemical uranium enrichment

    International Nuclear Information System (INIS)

    Miyake, T.; Takeda, K.; Obanawa, H.

    1987-01-01

    A quantitative study of chemical separation energy for enriching uranium-235 by the redox chromatography was conducted. Isotope exchange reactions between U 4+ -UO 2 2+ ions in the enrichment column are maintained by the redox reactions. The chemical separation energy is ultimately supplied by hydrogen and oxygen gas for regenerating redox agents. The redox energy for the isotope separation is theoretically predicted as a function of the dynamic enrichment factor observed in the chromatographic development of uranium adsorption band. Thermodynamic treatments of the equilibrium reactions implies and inverse redox reaction which can be enhanced by the chemical potential of the ion-exchange reaction of oxidant. Experimental results showed 30 to 90% recovery of the redox energy by the inverse reaction. These results will devise a simplified redox chromatography process where a number of columns in one module is reduced

  18. An Enriching Community.

    Science.gov (United States)

    Holland, Nancy A.; Burroughs, Jean

    2001-01-01

    Successful school-community partnerships in Volusia (Florida) Public Schools are the results of marketing creatively, meeting community members' needs, and bringing the right people together. The 3-year old program now offers students of all ages an expanding list of enrichment classes on many subjects for a nominal fee. (MLH)

  19. The in-core fuel management code system for VVER reactors

    International Nuclear Information System (INIS)

    Cada, R.; Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.

    2004-01-01

    The structure and methodology of a fuel management system for NPP VVER 1000 (NPP Temelin) and VVER 440 (NPP Dukovany) is described. It is under development in SKODA JS a.s. and is followed by practical applications. The general objectives of the system are maximization of end of cycle reactivity, the minimization of fresh fuel inventory for the minimization of fed enrichment and minimization of burnable poisons (BPs) inventory. They are also safety related constraints in witch minimization of power peaking plays a dominant role. General structure of the system consists in preparation of input data for macrocode calculation, algorithms (codes) for optimization of fuel loading, calculation of fuel enrichment and BPs assignment. At present core loading can be calculated (optimized) by Tabu search algorithm (code ATHENA), genetic algorithm (code Gen1) and hybrid algorithm - simplex procedure with application of Tabu search algorithm on binary shuffling (code OPAL B ). Enrichment search is realized by the application of simplex algorithm (OPAL B code) and BPs assignment by module BPASS and simplex algorithm in OPAL B code. Calculations of the real core loadings are presented and a comparison of different optimization methods is provided. (author)

  20. Is there a potential win for companies when women enrich their role of workers through the enrichement of their family lives?

    OpenAIRE

    Oliveira, Inês Martins

    2015-01-01

    While the work-family relation conflict literature has received much attention, there is a lack of empirical evidence towards work-family positive relation. Furthermore, there is a lack of understanding and recognition of possible benefits obtained by skills’ development during maternity. This study concludes that a family-work relation has a positive outcome, namely the enrichment. It was evident that there is a potential win when women enrich their role as workers through the enrichment of ...

  1. Uranium-enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by the anatexis of continental crust or processes occurring at a much greater depth. They commonly show enrichment in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (author)

  2. Uranium enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by (1) the anatexis of continental crust (2) processes occurring at a much greater depth. They commonly show enrichement in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (Authors)

  3. Environmental Enrichment for Broiler Breeders: An Undeveloped Field

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Jong, Ingrid de; van de Werd, Heleen A.

    2017-01-01

    Welfare problems, such as hunger, frustration, aggression, and abnormal sexual behavior, are commonly found in broiler breeder production. To prevent or reduce these welfare problems, it has been suggested to provide stimulating enriched environments. We review the effect of the different types...... of environmental enrichment for broiler breeders, which have been described in the scientific literature, on behavior and welfare. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements...... in biological function. This definition has been broadened to include practical and economic aspects as any enrichment strategy that adversely affects the health of animals (e.g., environmental hygiene), or that has too many economic or practical constraints will never be implemented on commercial farms...

  4. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  5. The assisting system for uranium enrichment plant operation

    International Nuclear Information System (INIS)

    Nakazawa, Hiroaki; Yamamoto, Fumio

    1990-01-01

    We have been developing an operation assisting system, partially supported by AI system, for uranium enrichment plant. The AI system is a proto-type system aiming a final one which can be applied to any future large uranium enrichment plant and also not only to specific operational area but also to complex and multi-phenomenon operational area. An existing AI system, for example facility diagnostic system that utilizes the result of CCT analysis as knowledge base, has weakness in flexibility and potentiality. To build AI system, we have developed the most suitable knowledge representations using deep knowledge for each facility or operation of uranium enrichment plant. This paper describes our AI proto-type system adopting several knowledge representations that can represent an uranium enrichment plant's operation with deep knowledge. (author)

  6. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  7. Enriching the Catalog

    Science.gov (United States)

    Tennant, Roy

    2004-01-01

    After decades of costly and time-consuming effort, nearly all libraries have completed the retrospective conversion of their card catalogs to electronic form. However, bibliographic systems still are really not much more than card catalogs on wheels. Enriched content that Amazon.com takes for granted--such as digitized tables of contents, cover…

  8. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  9. Tritium enrichment of environmental waters by electrolysis: Development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1976-01-01

    Equations are developed for the estimation of tritium enrichment in batch, continuous feed and periodic addition electrolysis cells. Optimum enrichment and minimum variability is obtained using developed cathode surfaces which catalyse the separation of tritium, as exhibited by the results of experiments using mild steel cathodes with NaOH electrolyte. The equations and various simple refinements of technique are applied to the determination of tritium enrichment factors by the spike cell method: for batch cells the standard errors are less than 1%. (author)

  10. Uranium enrichment : global view and Brazilian perspectives

    International Nuclear Information System (INIS)

    Zouain, D.M.; Sakamoto, L.H.

    1981-12-01

    A global view of isotope enrichment involving a general description of process (technical-economical aspects and policy) and status in developing countries is done. An enrichment demand in function of the Brazilian Nuclear Program is evaluated, analyzing a probable market and a low market. The perspectives to attend this demand, are studied. (E.G.) [pt

  11. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  12. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched {sup 235}U fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Sara

    2004-04-01

    A possibility for more efficient use of the nuclear fuel in a pressurized water reactor is investigated. The alternative proposed here consists of the implementation of PWR fuel assemblies with differently enriched {sup 235}U fuel pins. This possibility is examined in comparison with the standard assembly design. The comparison is performed both in terms of single assembly performance and in the terms of nuclear reactor core performance and fuel utility. For the evaluation of the actual performance of the new assembly types, 5 operated fuel core sequences of R3 (Ringhals' third unit), for the period 1999 - 2004 (cycles 17 - 21) were examined. For every cycle, the standard fresh fuel assemblies have been identified and taken as reference cases for the study of the new type of assemblies with differently enriched uranium rods. In every cycle, assemblies with and without burnable absorber are freshly loaded into the core. The axial enrichment distribution is kept uniform, allowing for a radial (planar) enrichment level distribution only. At an assembly level, it has been observed that the implementation of the alternative enrichment configuration can lead to lower and flatter internal peaking factor distribution with respect to the uniformly enriched reference assemblies. This can be achieved by limiting the enrichment levels distribution to a rather narrow range. The highest enrichment level chosen has the greatest impact on the power distribution of the assemblies. As it increases, the enrichment level drives the internal peaking factor to greater values than in the reference assemblies. Generally, the highest enrichment level that would allow an improvement in the power performance of the assembly lies between 3.95 w/o and 4.17 w/o. The highest possible enrichment level depends on the average enrichment of the overall assembly, which is kept constant to the average enrichment of the reference assemblies. The improvements that can be obtained at this level are

  13. The evolution of the enriched uranium markets

    International Nuclear Information System (INIS)

    Arnaiz, J.; Moleres, C.; Tarin, F.

    2004-01-01

    This paper deals with the evolution of the enriched uranium component markets (uranium concentrates, conversion and enrichment), starting with the situation of historically low prices that occurred during 2000. The situation that has been reached as on December 2003, when the concentrates and conversion markets were 44% and 70% (current US$) respectively, and the enrichment prices 30%, higher, is analysed. Finally, the negative impact of the 90's depressed prices, due to abundant alternative sources of uranium components, on the primary production of all three components and, as a conclusion, the impact of the new situation on the transport logistics, and the need of appropriate economic conditions to make the future primary production sustainable, is commented. (Author)

  14. Experience with environmental sampling at gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ekenstam, G. af; Bush, W.; Janov, J.; Kuhn, E.; Ryjinski, M.

    2001-01-01

    Environmental sampling has been used routinely by the IAEA since 1996 after the IAEA Board of Governors approved it in March 1995 as a new technique to strengthen safeguards and improve efficiency. In enrichment plants it is used to confirm that there has been no production of highly enriched uranium (HEU), or production of uranium at above the declared enrichment. The use of environmental sampling is based on the assumption that every process, no matter how leak tight, will release small amounts of process material to the environment. Even though these releases of nuclear material are extremely small in gas centrifuge enrichment plants, and well below levels of concern from a health physics and safety standpoint, they are detectable and their analysis provides an indication of the enrichment of the material that has been processed in the plant. The environmental samples at enrichment plants are collected by swiping selected areas of the plant with squares of cotton cloth (10x10 cm) from sampling kits prepared in ultra clean condition. The squares of cotton cloth sealed in plastic bags are sent for analysis to the Network Analytical Laboratories. The analysis includes the measurement of the uranium isotopic composition in uranium-containing particles by Thermal lonization Mass Spectroscopy (TIMS) or Secondary ION Mass Spectroscopy (SIMS). Since the implementation of environmental sampling, swipes have been collected from 240 sampling points at three gas centrifuge plants of URENCO, which have a total throughput of more than 8,000 tonnes of uranium per year. The particle analysis results generally reflected the known operational history of the plants and confirmed that they had only been operated to produce uranium with enrichment less than 5% 235 U. The information about the content of the minor isotopes 234 U and 236 U also indicates that depleted and recycled uranium were sometimes used as feed materials in some plants. An example is given of the TIMS particle

  15. Enrichment measurement in TRIGA type fuels

    International Nuclear Information System (INIS)

    Aguilar H, F.; Mazon R, R.

    2001-05-01

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  16. DOE hands over uranium enrichment duties to government corporation

    International Nuclear Information System (INIS)

    Simpson, J.

    1993-01-01

    In an effort to renew the United States' competitiveness in the world market for uranium enrichment services, the Department of Energy (DOE) is turning over control of its Paducah, KY, and Portsmouth, OH, enrichment facilities to a for-profit organization, the United States Enrichment Corp. (USEC), which was created by last year's Energy Policy Act. William H. Timbers, Jr., a former investment banker who was appointed acting CEO in March, said the Act's mandate will mean more competitive prices for enriched reactor fuel and greater responsiveness to utility customers. As a government corporation, USEC, with current annual revenues estimated at $1.5 billion, will no longer be part of the federal budget appropriations process, but will use business management techniques, set market-based prices for enriched uranium, and pay annual dividends to the US Treasury-its sole stockholder-from earnings. The goal is to finish privatizing the corporation within two years, and to sell its stock to investors for an estimated $1 to $3 billion. USEC's success will depend in part on developing short- and long-term marketing plants to help stanch the flow of enriched-uranium customers to foreign suppliers. (DOE already has received notice from a number of US utilities that they want to be let out of their long-term enrichment contracts as they expire over the next several years).USEC's plans likely will include exploring new joint ventures with other businesses in the nuclear fuel cycle-such as suppliers, fabricators, and converters-and offering a broader range of enrichment services than DOE provided. The corporation will have to be responsive to utilities on an individual basis

  17. GSL-enriched membrane microdomains in innate immune responses.

    Science.gov (United States)

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  18. Evaluation of economical at a uranium enrichment demonstration plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the economy of technical achievement apply in the uranium enrichment demonstration plant is evaluated. From the evaluation, it can be concluded that the expected purpose was achieved because there was a definite economic prospect to commercial plant. The benefit analysis of thirteen years operation of the uranium enrichment demonstration plant also provides a financial aspect of the uranium enrichment business. Therefore, the performance, price and reliability of the centrifuge is an important factor in the uranium enrichment business. And the continuous development of a centrifuge while considering balance with the development cost is necessary for the business in the future. (author)

  19. KUCA critical experiments using MEU fuel (II)

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    1983-09-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  20. KUCA critical experiments using MEU fuel (II)

    International Nuclear Information System (INIS)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu

    1983-01-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments