Sample records for enhancing enzymatic digestibility

  1. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.


    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure......) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195degreesC, 15 min, 12 bar O-2, 2 g/L of Na2CO) increased the enzymatic conversion of corn stover four times, compared...... the efficiency of hydrolysis, an important economical aspect....

  2. Enhancing Enzymatic Digestibility of Alkaline Pretreated Banana Pseudostem for Sugar Production


    Joo Choo Low; Rasmina Halis; U. K. M Shah; M. T. Paridah; Faizah Abood; Tukimin Tuhaila; M. I. Danial; Lanika Lakarim; Norhaslida Razali


    This study compares the efficacy of a soaking pretreatment with an alkaline solution for banana pseudostem prior to enzymatic hydrolysis. Banana pseudostem was pretreated by soaking in sodium hydroxide solutions at various concentrations and durations. The pretreatment more than doubled delignification but retained 82.09% of the holocellulose content and 73.74% of the cellulose content. The enzymatic (Trichoderma reesei) digestibility of pretreated banana pseudostem was found to have been enh...

  3. Microwave Assisted Alkali Pretreatment of Rice Straw for Enhancing Enzymatic Digestibility

    Directory of Open Access Journals (Sweden)

    Renu Singh


    Full Text Available Rapid industrialization, increasing energy demand, and climate change are the conditions that forced the researchers to develop a clean, efficient, renewable, and sustainable source of energy which has a potential to replace fossil fuels. Ethanol is one of the attractive and suitable renewable energy resources. In present study, effectiveness of microwave pretreatment in combination with sodium hydroxide (NaOH for increasing enzymatic hydrolysis of rice straw has been investigated and under optimum conditions obtained a maximum reducing sugar (1334.79 µg/mL through microwave assisted NaOH pretreatment. Chemical composition analysis and scanning electron microscope (SEM images showed that the removal of lignin, hemicellulose, and silicon content is more in microwave assisted NaOH pretreatment than the blank sample. X-ray diffraction (XRD analysis revealed that the crystallinity index of rice straw treated with microwave assisted alkali (54.55% is significantly high as compared to the blank (49.07%. Hence, the present study proves that microwave assisted alkali pretreatment can effectively enhance enzymatic digestibility of rice straw and it is feasible to convert rice straw for bioethanol production.

  4. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Rezende Camila


    Full Text Available Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process, the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between

  5. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. (United States)

    Meng, Ying; Luan, Fubo; Yuan, Hairong; Chen, Xue; Li, Xiujin


    Three lipases were applied to hydrolyze the floatable grease (FG) in the food waste for eliminating FG inhibition and enhancing digestion performance in anaerobic process. Lipase-I, Lipase-II, and Lipase-III obtained from different sources were used. Animal fat (AF) and vegetable oil (VO) are major crude lipids in Chinese food waste, therefore, applied as substrates for anaerobic digestion tests. The results showed that Lipase-I and Lipase-II were capable of obviously releasing long chain fatty acid in AF, VO, and FG when hydrolyzed in the conditions of 24h, 1000-1500μL and 40-50°C. Compared to the untreated controls, the biomethane production rate were increased by 80.8-157.7%, 26.9-53.8%, and 37.0-40.7% for AF, VO, and FG, respectively, and the digestion time was shortened by 10-40d. The finding suggests that pretreating lipids with appropriate lipase could be one of effective methods for enhancing anaerobic digestion of food waste rich in crude lipid. Copyright © 2016. Published by Elsevier Ltd.

  6. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L. Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    Directory of Open Access Journals (Sweden)

    Chuanji Fang


    Full Text Available Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis and xylan (>75% for leaflets and >79% for rachis recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis and fermentable (ethanol yield, 96% to leaflets, 80% to rachis solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region.

  7. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential (United States)

    Fang, Chuanji; Cybulska, Iwona; Brudecki, Grzegorz P.; Frankær, Christian Grundahl; Thomsen, Mette Hedegaard


    Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis) and xylan (>75% for leaflets and >79% for rachis) recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min) highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis) and fermentable (ethanol yield, 96% to leaflets, 80% to rachis) solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region. PMID:26347878

  8. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential. (United States)

    Fang, Chuanji; Schmidt, Jens Ejbye; Cybulska, Iwona; Brudecki, Grzegorz P; Frankær, Christian Grundahl; Thomsen, Mette Hedegaard


    Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis) and xylan (>75% for leaflets and >79% for rachis) recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min) highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis) and fermentable (ethanol yield, 96% to leaflets, 80% to rachis) solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region.

  9. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation. (United States)

    Lin, Richen; Cheng, Jun; Song, Wenlu; Ding, Lingkan; Xie, Binfei; Zhou, Junhu; Cen, Kefa


    Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dilute H{sub 2}SO{sub 4}-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Marasabessy, Ahmad [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group; Rijksuniversiteit Groningen (Netherlands). Dept. of Chemical Engineering; Agency for the Assessment and Application of Technology (BPPT), Jakarta (Indonesia); Kootstra, A. Maarten J. [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group; Wageningen Univ. (Netherlands). Bioprocess Engineering Group; Sanders, Johan P.M.; Westhuis, Ruud A. [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group


    Dilute sulfuric acid pretreatment of the Jatropha curcas fruit hull at high temperatures (140 C to 180 C) performed in a 110-mL stainless steel reactor was investigated to enhance the enzymatic digestibility of its lignocellulosic components. Carbohydrates accounted for 43% of the dry matter of the J. curcas fruit hull biomass. The goal of the study was to optimize the pretreatment conditions (acid concentration, time, and temperature) in order to obtain the highest sugar yield after subsequent enzymatic hydrolysis. A Box-Behnken design was applied to the experimental setup in order to reduce the number of experiments. The optimal pretreatment conditions are 30-min incubations at a temperature of 178 C with a sulfuric acid concentration of 0.9% (w/v). Using these pretreatment conditions for a fruit solid loading of 9.52% followed by a 24-h enzymatic hydrolysis resulted in a liberation of 100% of all pentoses present (71% yield and 29% degradation to furfural) and 83% of the hexoses (78% yield and 5% degradation to 5-hydroxymethylfurfural). The simultaneous saccharification and fermentation experiment showed that acid-pretreated fruit hull can be used as a substrate for Saccharomyces cerevisiae to produce ethanol. (orig.)

  11. Biological activity of camel milk casein following enzymatic digestion. (United States)

    Salami, Maryam; Moosavi-Movahedi, Ali Akbar; Moosavi-Movahedi, Faezeh; Ehsani, Mohammad Reza; Yousefi, Reza; Farhadi, Mohammad; Niasari-Naslaji, Amir; Saboury, Ali Akbar; Chobert, Jean-Marc; Haertlé, Thomas


    The aim of this study was to investigate the effects of enzymatic hydrolysis with digestive enzymes of camel whole casein and beta-casein (β-CN) on their antioxidant and Angiotensin Converting Enzyme (ACE)-inhibitory properties. Peptides in each hydrolysate were fractionated with ultra-filtration membranes. The antioxidant activity was determined using a Trolox equivalent antioxidant capacity (TEAC) scale. After enzymatic hydrolysis, both antioxidant and ACE-inhibitory activities of camel whole casein and camel β-CN were enhanced. Camel whole casein and β-CN showed significant ACE-inhibitory activities after hydrolysis with pepsin alone and after pepsinolysis followed by trypsinolysis and chymotrypsinolysis. Camel β-CN showed high antioxidant activity after hydrolysis with chymotrypsin. The results of this study suggest that when camel milk is consumed and digested, the produced peptides start to act as natural antioxidants and ACE-inhibitors.

  12. Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility. (United States)

    Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Hassan, Mohd Ali


    Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Enhanced enzymatic conversion with freeze pretreatment of rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ken-Lin; Thitikorn-amorn, Jitladda; Ou, Bay-Ming; Chen, Shan-He; Huang, Po-Jung [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Hsieh, Jung-Feng [Department of Food Science, Fu Jen Catholic University, Xin Zhuang, Taipei 242 (China); Ratanakhanokchai, Khanok [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkok 10150 (Thailand); Chen, Shui-Tein [Institute of Biological Chemistry and Genomics Research Center Academia Sinica, Nankang, Taipei 115 (China); Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106 (China)


    Production of bioethanol by the conversion of lignocellulosic waste has attracted much interest in recent years, because of its low cost and great potential availability. The pretreatment process is important for increasing the enzymatic digestibility of lignocellulosic materials. Enzymatic conversion with freeze pretreatment of rice straw was evaluated in this study. The freeze pretreatment was found to significantly increase the enzyme digestibility of rice straw from 48% to 84%. According to the results, enzymatic hydrolysis of unpretreated rice straw with 150 U cellulase and 100 U xylanase for 48 h yielded 226.77 g kg{sup -1} and 93.84 g kg{sup -1} substrate-reducing sugars respectively. However, the reducing sugar yields from freeze pretreatment under the same conditions were 417.27 g kg{sup -1} and 138.77 g kg{sup -1} substrate, respectively. In addition, hydrolyzates analysis showed that the highest glucose yield obtained during the enzymatic hydrolysis step in the present study was 371.91 g kg{sup -1} of dry rice straw, following pretreatment. Therefore, the enhanced enzymatic conversion with freeze pretreatment of rice straw was observed in this study. This indicated that freeze pretreatment was highly effective for enzymatic hydrolysis and low environmental impact. (author)

  14. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    National Research Council Canada - National Science Library

    June, Ronald K; Fyhrie, David P


    .... This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules...

  15. Effect of Kraft Pulping Pretreatment on the Chemical Composition, Enzymatic Digestibility, and Sugar Release of Moso Bamboo Residues


    Caoxing Huang; Qiulu Chu; Yihui Xie; Xin Li; Yongcan Jin;; Douyong Min; Qiang Yong


    In this work, kraft pulping was carried out on moso bamboo residues as a pretreatment and its impact on the chemical compositions and the digestibility of the sample was investigated. Meanwhile, steam explosion and sulfuric acid pretreatments were also carried out on the sample to determine their impacts on enzymatic saccharification. Results showed that kraft pulping pretreatment removed a significant amount of lignin from the sample, and its enzymatic saccharification was enhanced. Approxim...

  16. Structural Orders of Wheat Starch Do Not Determine the In Vitro Enzymatic Digestibility. (United States)

    Wang, Shujun; Wang, Shaokang; Liu, Lu; Wang, Shuo; Copeland, Les


    In this study, we elucidated the underlying mechanisms that are responsible for the rate-limiting step for wheat starch digestion. Wheat starch samples with a degree of gelatinization (DG) ranging from 0 to 100% were prepared. As DG increased, the ordered structures of the starch were disrupted increasingly. In contrast, almost all of the increase in the rate and extent of in vitro enzymatic digestion coincided with a DG of only 6% and a minor loss of structural order. As DG increased beyond 6%, digestibility of the starch increased only slightly. We propose that the access and binding of enzymes to starch is greatly increased with only a small DG, which is followed by the simultaneous hydrolysis of crystalline and amorphous areas in gelatinized starch. In vitro enzymatic digestibility of starch was determined predominantly by enzyme binding to starch rather than the ordered structures of starch.

  17. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks. (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola


    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  18. Release of Antioxidant Capacity from Five Plant Foods during a Multistep Enzymatic Digestion Protocol

    NARCIS (Netherlands)

    Papillo, V.A.; Vitaglione, P.; Graziani, G.; Gokmen, V.; Fogliano, V.


    This study aimed at elucidating the influence of food matrix on the release of antioxidant activity from five plant foods (apple, spinach, walnut, red bean, and whole wheat). To this purpose a protocol based on sequential enzymatic digestion was adopted. The total antioxidant capacity (TAC) of both

  19. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis. (United States)

    Ling, Zhe; Chen, Sheng; Zhang, Xun; Xu, Feng


    The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose Iβ dominated samples, alkaline pretreatment (cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Silica nanoparticle stabilization of liquid crystalline lipid dispersions: impact on enzymatic digestion and drug solubilization. (United States)

    Bhatt, Achal B; Barnes, Timothy J; Prestidge, Clive A


    The high internal surface area and drug solubilizing capacity of liquid crystal lipids makes them promising oral drug delivery systems. Pluronic F127 is typically used to disperse highly viscous cubic liquid crystal lipids into cubosomes; however, such copolymers alter the internal structure and provide little control over enzymatic digestion. This study aimed to use hydrophilic silica nanoparticles to stabilize glyceryl monooleate (GMO) cubosomes prepared by ultrasonication. We investigate the influence of silica nanoparticles size and concentration on the physical (colloidal) and chemical (enzymatic digestion) stability, as well as in vitro solubilization of cinnarizine as a poorly soluble model drug. Silica stabilized nanostructured liquid crystal dispersions (120 nm to150 nm in diameter and zeta potentials of-30 mV to -60 mV) were successfully prepared with excellent long-term stability (Silica stabilized GMO cubosomes demonstrated reduced enzymatic digestion compared to pluronic F127 stabilized cubosomes. This reduced digestion was attributed to a combination of adsorbed silica nanoparticles acting as a physical barrier and excess dispersed silica adsorbing/scavenging the lipase enzyme. Under simulated intestinal digestion conditions, silica stabilized GMO cubosomes showed a greater solubilization capacity for cinnarizine, which precipitated in non-crystalline form, in comparison to pure drug suspensions or pluronic F127 stabilized GMO cubosomes. Silica nanoparticle stabilized GMO liquid crystal dispersions are a promising oral delivery vehicle.

  1. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio). (United States)

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella


    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. (United States)

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella


    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Matrix generation within a macroporous non-degradable implant for osteochondral defects is not enhanced with partial enzymatic digestion of the surrounding tissue: evaluation in an in vivo rabbit model. (United States)

    Krych, Aaron J; Wanivenhaus, Florian; Ng, Kenneth W; Doty, Stephen; Warren, Russell F; Maher, Suzanne A


    Articular cartilage defects are a significant source of pain, have limited ability to heal, and can lead to the development of osteoarthritis. However, a surgical solution is not available. To tackle this clinical problem, non-degradable implants capable of carrying mechanical load immediately after implantation and for the duration of implantation, while integrating with the host tissue, may be viable option. But integration between articular cartilage and non-degradable implants is not well studied. Our objective was to assess the in vivo performance of a novel macroporous, nondegradable, polyvinyl alcohol construct. We hypothesized that matrix generation within the implant would be enhanced with partial digestion of the edges of articular cartilage. Our hypothesis was tested by randomizing an osteochondral defect created in the trochlea of 14 New Zealand white rabbits to treatment with: (i) collagenase or (ii) saline, prior to insertion of the implant. At 1 and 3-month post-operatively, the gross morphology and histologic appearance of the implants and the surrounding tissue were assessed. At 3 months, the mechanical properties of the implant were also quantified. Overall, the hydrogel implants performed favorably; at all time-points and in all groups the implants remained well fixed, did not cause inflammation or synovitis, and did not cause extensive damage to the opposing articular cartilage. Regardless of treatment with saline or collagenase, at 1 month post-operatively implants from both groups had a contiguous interface with adjacent cartilage and were populated with chondrocyte-like cells. At 3 months fibrous encapsulation of all implants was evident, there was no difference between area of aggrecan staining in the collagenase versus saline groups, and implant modulus was similar in both groups; leading us to reject our hypothesis. In summary, a porous PVA osteochondral implant remained well fixed in a short term in vivo osteochondral defect model

  4. Albedo hydrolysis modelling and digestion with reused effluents in the enzymatic peeling process of grapefruits. (United States)

    Pagán, Axel; Conde, Josep; Ibarz, Albert; Pagán, Jordi


    Until now, the optimisation of enzymatic peeling of grapefruit in the reactor has been obtained as the result of the semi-qualitative effects of enzyme activity. This work is an attempt to obtain quantified data. The reuse of enzymes to reduce costs in this process is unprecedented in the literature and is the aim of the present work. The optimal conditions determined for the maximum albedo degradation were a temperature of 40.6 °C and a time of 13.1 min in an enzymatic concentration of 0.067 mL enzymatic preparation per gram of peel in each litre of citrate buffer solution. The decrease in relative enzymatic activities in reused effluents was determined, as was the increase in activity when the enzymes were purified. These increases were 15.5% for polygalacturonase and 15.4% for cellulase activity. Optimal temperature, time and the ratio between peel mass and the enzymatic preparation volume were the best conditions for obtaining good peeling efficiency. The effluents from the enzymatic peeling process of the grapefruit still contain appreciable enzymatic activity after the digestion process. Thus, reusing these effluents while maintaining peeling efficacy and a subsequent recovery of the active enzymes by ultra-filtration of the effluents is the way to improve the efficiency of the process. 2010 Society of Chemical Industry

  5. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K


    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  6. Endo-glucanase digestion of oat beta-Glucan enhances Dectin-1 activation in human dendritic cells

    NARCIS (Netherlands)

    Sahasrabudhe, Neha M.; Tian, Lingmin; van den Berg, Marco; Bruggeman, Geert; Bruininx, Erik; Schols, Henk A.; Faas, Marijke M.; de Vos, Paul

    Oat beta-Glucans were studied for their immunological impact before and after enzymatic digestion in order to enhance the efficacy of oat beta-Glucans for application in functional foods. Oat beta-Glucan is reported to have minimal impact compared to its fungal counterpart in vitro. Digestion with

  7. Enhancement of enzymatic adipyl-7-ADCA hydrolysis

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Kroon, P.J.; Vanderlaan, J.M.; Janssen, A.E.M.; Tramper, J.


    We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was

  8. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao


    To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

  9. Enzymatic tissue digestion as an alternative sample preparation approach for quantitative analysis using liquid chromatography-tandem mass spectrometry. (United States)

    Yu, Chongwoo; Penn, Lara D; Hollembaek, John; Li, Wenlin; Cohen, Lucinda H


    Compound extraction from biological tissue often presents a challenge for the bioanalytical chemist. Labor-intensive homogenization or sonication of whole or powdered tissue is performed before compounds can be extracted and analyzed. Enzymatic digestion is commonly used for tissue dissociation and cell harvesting and offers the advantages of unattended sample preparation, potential automation, and low cost. The feasibility of enzymatic digestion as an alternate tissue preparation technique was evaluated for bioanalysis of drugs in conjunction with LC/MS/MS. Two different enzymes (collagenase and proteinase K) that are known to degrade connective tissues to allow tissue dissolution were chosen for evaluation, employing well-known antidepressants desipramine and fluoxetine as test compounds in dog and rat brain tissue. Comparison between enzymatic digestion and conventional homogenization tissue preparation was performed, including investigation of matrix ionization suppression of both methods using a postcolumn infusion system. Results showed that enzymatic digestion has extraction efficiency comparable to homogenization. Matrix ionization suppression was not observed for either the test compounds evaluated or the sample extraction method. Test compound levels of incurred tissue samples prepared by enzymatic digestion were in good agreement with the values obtained by the conventional homogenization tissue preparation, indicating that enzymatic digestion is an appropriate tissue sample preparation method.

  10. Effect of harvest date on Arundo donax L. (giant reed) composition, ensilage performance, and enzymatic digestibility. (United States)

    Liu, Shan; Ge, Xumeng; Liu, Zhe; Li, Yebo


    Composition and ensilage performance of giant reed harvested in August, October, November, and December, were evaluated and compared. Generally, late-harvested giant reed had higher dry matter content, lower nitrogen content, and higher water soluble carbohydrates (WSC) content than early-harvested giant reed. During 90days of ensilage, giant reed harvested in October, November, and December showed dry matter losses of about 1%, while giant reed harvested in August showed a higher dry matter loss of about 8%. During the ensilage process, more lactic acid was produced in late-harvested giant reed than in early-harvested giant reed. Late-harvested giant reed had a higher lignin content and lower enzymatic digestibility than early-harvested giant reed. However, enzymatic digestibility of all the giant reed biomass was improved by the 90-day ensilage process, reaching levels of 43-46%. In summary, ensilage could be used for storing giant reed biomass harvested at different times and for improving its digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Detection and Quantitation of Afucosylated N-Linked Oligosaccharides in Recombinant Monoclonal Antibodies Using Enzymatic Digestion and LC-MS (United States)

    Du, Yi; May, Kimberly; Xu, Wei; Liu, Hongcheng


    The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC). Therefore, a method that can specifically determine the level of oligosaccharides without the core-fucose (afucosylation) is highly desired. In the current study, recombinant monoclonal antibodies and tryptic peptides from the antibodies were digested using endoglycosidases F2 and H, which cleaves the glycosidic bond between the two primary GlcNAc residues. As a result, various oligosaccharides of either complex type or high mannose type that are commonly observed for recombinant monoclonal antibodies are converted to either GlcNAc residue only or GlcNAc with the core-fucose. The level of GlcNAc represents the sum of all afucosylated oligosaccharides, whereas the level of GlcNAc with the core-fucose represents the sum of all fucosylated oligosaccharides. LC-MS analysis of the enzymatically digested antibodies after reduction provided a quick estimate of the levels of afucosylation. An accurate determination of the level of afucosylation was obtained by LC-MS analysis of glycopeptides after trypsin digestion.

  12. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. (United States)

    Rocha-Martín, Javier; Martinez-Bernal, Claudio; Pérez-Cobas, Yolanda; Reyes-Sosa, Francisco Manuel; García, Bruno Díez


    Linked to the development of cellulolytic enzyme cocktails from Myceliophthora thermophila, we studied the effect of different additives on the enzymatic hydrolysis yield. The hydrolysis of pretreated corn stover (PCS), sugar cane straw (PSCS) and microcrystalline cellulose (Avicel) was performed under industrial conditions using high solid loadings, limited mixing, and low enzyme dosages. The addition of polyethylene glycol (PEG4000) allowed to increase the glucose yields by 10%, 7.5%, and 32%, respectively in the three materials. PEG4000 did not have significant effect on the stability of the main individual enzymes but increased beta-glucosidase and endoglucanase activity by 20% and 60% respectively. Moreover, the presence of PEG4000 accelerated cellulase-catalyzed hydrolysis reducing up to 25% the liquefaction time. However, a preliminary economical assessment concludes that even with these improvements, a lower contribution of PEG4000 to the 2G bioethanol production costs would be needed to reach commercial feasibility. Copyright © 2017. Published by Elsevier Ltd.

  13. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic ...

    African Journals Online (AJOL)

    Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. ... These results provided a feasible way for the potential application of BsEXLX1 in the efficient saccharification of cellulose materials for bioethanol production. Key word: Bacillus subtilis, BsEXLX1, ...

  14. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær


    .7% of the theoretical maximum value. Pretreatment at 200 C with oxygen exhibited enhanced enzymatic efficiency but lower xylose recovery and formation of the degradation products such as acetate, furfural and HMF of 7.6, 3.3 and 1.0 g/L, respectively. In the hydrolysis, the total sugars (glucose + xylose) yielded...

  15. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse. (United States)

    Zhang, Hongdan; Wu, Shubin


    Most biomass pretreatment processes for sugar production are run at low-solid concentration (carbon dioxide (CO2) could provide a more sustainable pretreatment medium while using relative high-solid contents (15 wt.%). The effects of subcritical CO2 pretreatment of sugarcane bagasse to the solid and glucan recoveries at different pretreatment conditions were investigated. Subsequently, enzymatic hydrolysis at different hydrolysis time was applied to obtain maximal glucose yield, which can be used for ethanol fermentation. The maximum glucose yield in enzyme hydrolyzate reached 38.5 g based on 100g raw material after 72 h of enzymatic hydrolysis, representing 93.0% glucose in sugarcane bagasse. The enhanced digestibilities of subcritical CO2 pretreated sugarcane bagasse were due to the removal of hemicellulose, which were confirmed by XRD, FTIR, SEM, and TGA analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Enhancement of fermentable sugar yield by competitive adsorption of non-enzymatic substances from yeast and cellulase on lignin. (United States)

    Tang, Yong; Lei, Fuhou; Cristhian, Carrasco; Liu, Zuguang; Yu, Hailong; Jiang, Jianxin


    Enhancement of enzymatic digestibility by some supplementations could reduce enzyme loading and cost, which is still too high to realize economical production of lignocellulosic biofuels. A recent study indicates that yeast hydrolysates (YH) have improved the efficiency of cellulases on digestibility of furfural residues (FR). In the current work, the components of YH were separated by centrifugation and size exclusion chromatography and finally characterized in order to better understand this positive effect. A 60.8% of nitrogen of yeast cells was remained in the slurry (YHS) after hydrothermal treatment. In the supernatant of YH (YHL), substances of high molecular weight were identified as proteins and other UV-absorbing compounds, which showed close molecular weight to components of cellulases. Those substances attributed to a synergetic positive effect on enzymatic hydrolysis of FR. The fraction of YHL ranged from 1.19 to 2.19 mL (elution volume) contained over 50% of proteins in YHL and had the best performance in stimulating the release of glucose. Experiment results proved the adsorption of proteins in YHL on lignin. Supplementation of cellulases with YH enhances enzymatic digestibility of FR mainly by a competitive adsorption of non-enzymatic substances on lignin. The molecular weight of these substances has a significant impact on their performance. Different strategies can be used for a good utilization of yeast cells in terms of biorefinery concept.

  17. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  18. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step. (United States)

    Mendes, Fernanda M; Laurito, Debora F; Bazzeggio, Mariana; Ferraz, André; Milagres, Adriane M F


    Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline-sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample. © 2013 American Institute of Chemical Engineers.

  19. Effects of aqueous ammonia treatment on fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Tang Pei; Hassan, Osman [Department of Food Science, School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia)


    This study was conducted to investigate the effects of aqueous ammonia reflux and soaked treatment on the fiber’s surface morphology and enzymatic digestibility of empty fruit bunch fiber (EFBF). The surface morphological changes of the fiber after aqueous ammonia treatment was linked to the sugars yield by enzymatic hydrolysis. The effectiveness of 6.25% aqueous ammonia treatment in improving enzymatic digestibility of EFBF was initially studied in reflux system and by soaking. The results showed that soaked treatment was more effective than reflux system. Further study on soaked treatment of EFBF was carried out by increasing the ammonia concentration to 12.50%. Soaking in aqueous ammonia was conducted at 30°C and 50°C for 24 hours. The results of enzymatic hydrolysis showed that sugar yield from EFBF soaked in 12.50% aqueous ammonia at 50°C was the highest. Approximately 242.91±15.50 mg/g EFBF of xylose and 320.49±28.31 mg/g EFBF of glucose were produced by the action of enzyme Cellic Ctec 2. Results of scanning electron microscopic showed that aqueous ammonia treatment by soaking had caused a more severe structural distortion on the fiber’s surface and higher removal of silica bodies that embedded on the fiber than those in reflux system. The changes on the fiber’s surface morphology were believed is the contributing factor that improved the enzymatic digestibility of EFBF after aqueous ammonia treatment.

  20. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. (United States)

    Ziemiński, Krzysztof; Kowalska-Wentel, Monika


    Results of sugar beet pulp silage (SBPS) and vinasse (mixed in weight ratios of 3:1, 1:1 and 1:3, respectively) co-fermentation, obtained in this study, provide evidence that addition of too high amount of vinasse into the SBPS decreases biogas yields. The highest biogas productivity (598.1mL/g VS) was achieved at the SBPS-vinasse ratio of 3:1 (w/w). Biogas yields from separately fermented SBPS and vinasse were by 13% and 28.6% lower, respectively. It was found that enzymatic pretreatment of SBPS before methane fermentation that caused partial degradation of component polysaccharides, considerably increased biogas production. The highest biogas yield (765.5mL/g VS) was obtained from enzymatic digests of SBPS-vinasse (3:1) blend (27.9% more than from fermentation of the counterpart blend, which was not treated with enzymes). The simulation of potential biogas production from all the aforementioned mixtures using the Gompertz equation showed fair fit to the experimental results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Exploring amino acid side chain decomposition using enzymatic digestion and HPLC-MS: combined lysine transformations in chlorinated waters. (United States)

    Walse, Spencer S; Plewa, Michael J; Mitch, William A


    Characterizing the transformations of polypeptides is important across a broad range of scientific disciplines. As polypeptides are an important constituent of dissolved organic matter within seawater and freshwater, it is important to understand their (bio)geochemical fate. Oxidants, formed in blood as part of the immunological response or applied to waters for disinfection, react with polypeptides to form transformation products that may exert toxicity. An analytical method was developed to characterize and quantify modifications to the side chains of amino acid residues within polypeptides. Enzymatic digestion of polypeptides using Pronase E, a protease cocktail, proved preferable to common strong acid digestion techniques, because the circumneutral pH conditions employed during enzymatic digestion prevent artifacts arising from extreme pH conditions. Lysine nitrile, one of the predicted transformation products of lysine residues within polypeptides, was destroyed during strong acid digestion but not enzymatic digestion. Due to the potential variability in enzymatic digestion efficiencies, the liberation of a mass-labeled leucine monomer from an octapeptide spiked standard was employed as a measure of complete digestion efficiency for each sample and enabled quantification of modified amino acid residues within polypeptides. A multivariate statistical analysis was conducted to evaluate the influence on digestion efficiency of Pronase E loadings, salinity, natural organic matter concentration, and pH across the range of conditions relevant to blood, seawater, and concentrated freshwaters and disinfected drinking/recreational waters. At Pronase E loadings of 10 mg, the analysis indicated that digestion efficiencies ranged from 25 to 55% over the range of conditions expected for typical drinking waters concentrated from 1 L to 10 mL. The analytical method was applied to triplicate 1 L samples of a chlorinated tap water and a chlorinated indoor pool water. For the

  2. The In Vitro Effects of Enzymatic Digested Gliadin on the Functionality of the Autophagy Process

    Directory of Open Access Journals (Sweden)

    Federico Manai


    Full Text Available Gliadin, the alcohol-soluble protein fraction of wheat, contains the factor toxic for celiac disease (CD, and its toxicity is not reduced by digestion with gastro-pancreatic enzymes. Importantly, it is proved that an innate immunity to gliadin plays a key role in the development of CD. The immune response induces epithelial stress and reprograms intraepithelial lymphocytes into natural killer (NK-like cells, leading to enterocyte apoptosis and an increase in epithelium permeability. In this contribution, we have reported that in Caco-2 cells the administration of enzymatically digested gliadin (PT-gliadin reduced significantly the expression of the autophagy-related marker LC3-II. Furthermore, electron and fluorescent microscope analysis suggested a compromised functionality of the autophagosome apparatus. The rescue of the dysregulated autophagy process, along with a reduction of PT-gliadin toxicity, was obtained with a starvation induction protocol and by 3-methyladenine administration, while rapamycin, a well-known autophagy inducer, did not produce a significant improvement in the clearance of extra- and intra-cellular fluorescent PT-gliadin amount. Altogether, our results highlighted the possible contribution of the autophagy process in the degradation and in the reduction of extra-cellular release of gliadin peptides and suggest novel molecular targets to counteract gliadin-induced toxicity in CD.

  3. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content

    Directory of Open Access Journals (Sweden)

    Masarin Fernando


    Full Text Available Abstract Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during

  4. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. (United States)

    Karray, Raida; Hamza, Manel; Sayadi, Sami


    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin. (United States)

    Cai, Cheng; Qiu, Xueqing; Zeng, Meijun; Lin, Meilu; Lin, Xuliang; Lou, Hongming; Zhan, Xuejuan; Pang, Yuxia; Huang, Jinhao; Xie, Lingshan


    Polyvinylpyrrolidone (PVP) is an antifouling polymer to resist the adsorption of protein on solid surface. Effects of PVP on the enzymatic hydrolysis of pretreated lignocelluloses and its mechanism were studied. Adding 1g/L of PVP8000, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) was increased from 28.9% to 73.4%, which is stronger than the classic additives, such as PEG, Tween and bovine serum albumin. Compared with PEG4600, the adsorption of PVP8000 on lignin was larger, and the adsorption layer was more stable and hydrophilic. Therefore, PVP8000 reduced 73.1% of the cellulase non-productive adsorption on lignin and enhanced the enzymatic hydrolysis of lignocelluloses greatly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Hansen, Mads A.T.; Ahl, Louise I.; Pedersen, Henriette L.


    to about 20, but mostly around 3-8, and notably more acetylated in stems. Arabinoxylan (AX) and mixed-linkage glucan (MLG) became water-extractable while xylan, xyloglucan (XG), mannan and glucan remained only alkali-extractable. All polysaccharides became partly digestible after pretreatment however......, regardless their extractability in water or only alkali. Based on the results, AX and MLG appear to be loosely bound in the cell wall matrix while the other polysaccharides are bound more tightly and shielded from enzymatic attack by AX and MLG until pretreatment. The gradual solubilisation and digestion...

  7. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus: A mechanistic investigation. (United States)

    Singh, Shuchi; Agarwal, Mayank; Bhatt, Aditya; Goyal, Arun; Moholkar, Vijayanand S


    This study has attempted to establish the mechanism of the ultrasound-induced enhancement of enzymatic hydrolysis of pretreated and delignified biomass of Parthenium hysterophorus. A dual approach of statistical optimization of hydrolysis followed by application of sonication at optimum conditions has been adopted. The kinetics of hydrolysis shows a marked 6× increase with sonication, while net sugar yield shows marginal rise of ∼ 20%. The statistical experimental design reveals the hydrolysis process to be enzyme limited. Profile of sugar yield in ultrasound-assisted enzymatic hydrolysis has been analyzed using HCH-1 model coupled with Genetic Algorithm optimization. The trends in the kinetic and physiological parameters of HCH-1 model reveal that sonication enhances enzyme/substrate affinity and reaction velocity of hydrolysis. The product inhibition of enzyme in all forms (free, adsorbed, complexed) also reduces with ultrasound. These effects are attributed to intense micro-convection induced by ultrasound and cavitation in the liquid medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Peracetic acid-ionic liquid pretreatment to enhance enzymatic saccharification of lignocellulosic biomass. (United States)

    Uju; Abe, Kojiro; Uemura, Nobuyuki; Oshima, Toyoji; Goto, Masahiro; Kamiya, Noriho


    To enhance enzymatic saccharification of pine biomass, the pretreatment reagents peracetic acid (PAA) and ionic liquid (IL) were validated in single reagent pretreatments or combination pretreatments with different sequences. In a 1h saccharification, 5-25% cellulose conversion was obtained from the single pretreatment of PAA or IL. In contrast, a marked enhancement in conversion rates was achieved by PAA-IL combination pretreatments (45-70%). The PAA followed by IL (PAA+IL) pretreatment sequence was the most effective for preparing an enzymatic digestible regenerated biomass with 250-fold higher glucose formation rates than untreated biomass and 2- to 12-fold higher than single pretreatments with PAA or IL alone. Structural analysis confirmed that this pretreatment resulted in biomass with highly porous structural fibers associated with the reduction of lignin content and acetyl groups. Using the PAA+IL sequence, biomass loading in the pretreatment step can be increased from 5% to 15% without significant decrease in cellulose conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. (United States)

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A


    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. (United States)

    Desta, Seare T; Yuan, XianJun; Li, Junfeng; Shao, Tao


    Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility (ED) of Napier grass silage was examined. Napier grass ensiled with no additive control, 0.2% formic acid, 0.4% molasses, and 0.3% fibrolytic enzyme for, 7, 30, 60 and 90days. Additives increased lactic acid, soluble carbohydrate and decreased all of lignocellulosic contents except acid detergent lignin and pH than control. The highest value of nonstructural carbohydrate and large reduction in lignocellulosic contents was observed in formic acid and fibrolytic enzyme silage respectively. The content of glucose and fructose showed rapid drop in the first 7days of ensilage. Ensilage decreased lignocellulosic contents and increased ED compared to fresh material. The ED of formic acid and molasses silage was significantly higher than control and fibrolytic enzyme silages in all tested days. In summery the ensiling quality structural and nonstructural carbohydrate and ED value of mature Napier grass silage improved through additives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ingestion, enzymatic digestion and absorption of particles derived from different vegetal sources by the cockle Cerastoderma edule (United States)

    Arambalza, U.; Urrutia, M. B.; Navarro, E.; Ibarrola, I.


    Ingestion, enzymatic digestion and absorption of particulate detrital matter derived from six different vegetal sources by the common cockle Cerastoderma edule was analyzed in a series of seasonal experiments performed in March, May and October 2005. Two green macroalgae: Ulva lactuca and Enteromorpha sp; two vascular plants: Spartina maritima and Juncus maritimus, the red macroalgae Gracilaria gracilis; and the microalgae Isochrysis galbana were used in experiments. Detrital matter was elaborated by freeze-drying, grinding and sieving (food source for bivalves.

  12. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers. (United States)

    Goodarzi Boroojeni, F; Senz, M; Kozłowski, K; Boros, D; Wisniewska, M; Rose, D; Männer, K; Zentek, J


    The present study examined the impacts of native, fermented or enzymatically treated peas (Pisum sativum L.) inclusion in broiler diets, on growth performance and nutrient digestibility. For the fermentation process, Madonna pea was mixed with water (1/1) containing 2.57×108 Bacillus subtilis (GalliPro®) spores/kg pea and then, incubated for 48 h at 30 °C. For the enzymatic treatment process, the used water for dough production contained three enzymes, AlphaGalTM (α-galactosidase), RONOZYME® ProAct and VP (protease and pectinases respectively - DSM, Switzerland) and the pea dough incubated for 24 h at 30°C. Nine corn-wheat-soybean diets were formulated by supplying 10%, 20% and 30% of the required CP with either native, fermented or enzymatically treated peas. Performance was recorded weekly and at the end of the experiment (day 35), apparent ileal digestibility (AID) of CP, amino acids (AA), crude fat, starch, Ca, P and K were determined. Data were subjected to ANOVA using GLM procedure with a 3×3 factorial arrangement of treatments. Both processes reduced α-galactosides, phytate, trypsin inhibitor activity and resistant starch in peas. Increasing levels of pea products up to 300 g/kg diet, reduced BW gain and feed intake (P⩽0.05). Broilers fed diets containing enzymatically treated pea had the best feed conversion ratio at day 35. Different types of pea product and their inclusion levels had no effect on AID of all nutrients. The interaction between type of the pea products and inclusion levels was significant for AID of starch. For native pea diets, 10% group showed similar AID of starch to 20% native pea but it had higher AID than 30% native pea. For fermented and enzymatically treated groups, all three levels displayed similar AID of starch. In conclusion, enzymatic treatment and fermentation could improve the nutritional quality of pea. Inclusion of enzymatically treated pea in broiler diets could improve broiler performance compared with other pea

  13. Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication (United States)

    Büks, Frederick; Kaupenjohann, Martin


    The stability of soil aggregates against shearing and compressive forces as well as water-caused dispersion is an integral marker of soil quality. High stability results in less compaction and erosion and has been linked to enhanced water retention, dynamic water transport and aeration regimes, increased rooting depth, and protection of soil organic matter (SOM) against microbial degradation. In turn, particulate organic matter is supposed to support soil aggregate stabilization. For decades the importance of biofilm extracellular polymeric substances (EPSs) regarding particulate organic matter (POM) occlusion and aggregate stability has been canonical because of its distribution, geometric structure and ability to link primary particles. However, experimental proof is still missing. This lack is mainly due to methodological reasons. Thus, the objective of this work is to develop a method of enzymatic biofilm detachment for studying the effects of EPSs on POM occlusion. The method combines an enzymatic pre-treatment with different activities of α-glucosidase, β-galactosidase, DNAse and lipase with a subsequent sequential ultrasonic treatment for disaggregation and density fractionation of soils. POM releases of treated samples were compared to an enzyme-free control. To test the efficacy of biofilm detachment the ratio of bacterial DNA from suspended cells and the remaining biofilm after enzymatic treatment were measured by quantitative real-time PCR. Although the enzyme treatment was not sufficient for total biofilm removal, our results indicate that EPSs may attach POM within soil aggregates. The tendency to additional POM release with increased application of enzymes was attributed to a slight loss in aggregate stability. This suggests that an effect of agricultural practices on soil microbial populations could influence POM occlusion/aggregate stability and thereby carbon cycle/soil quality.

  14. Structural and Digestion Properties of Soluble-, Slowly Digestible and Resistant Maltodextrin from Cassava Starch by Enzymatic Modification

    DEFF Research Database (Denmark)

    Sorndech, Waraporn

    to produce slowly digestible and resistant maltodextrin structures. Well-defined ratios of amylose only-barley starch (AO) and waxy maize starch (WX) with non-granular AO content varied from 0 to 100% were used as a substrate. For only BE catalysis, an increase rate of α-1,6 linkage formation for the 0% AO......The combination of branching enzyme (BE) and amylomaltase (AM) were selected to modify cassava starch. AM were used to elongate the glucan chains in order to enhance BE activity to create branching linkages. Cassava starch were gelatinized and incubated with BE or AMBE or BEAMBE or simultaneous...... sample treated with BE was 1.5-fold while the 100% AO sample showed a 34.0-fold as compared to the original substrates. An increase in α-1,6 linkages for the 100% WX treated sequentially with BEAMBE was 1.8-fold as compared to the WX substrate used while the 100% AO showed a 39.0-fold. All BE and BE...

  15. Use of bio-enzymatic preparations for enhancement biogas production

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz


    Full Text Available Biogas is a renewable energy resource with high increasing developed in last few decades. It’s big opportunity for stabilization rural areas, concretely agriculture sector. This technology can decentralize supply of energy. The number of operated biogas plants is rapidly increasing. Biogas plants require a high level of intensity and stableness of the process of anaerobic fermentation with biogas production for efficiency treatment, also for good quality of development biogas and fertilization effect of the rest of fermentation. If this is not completed the operator has problem to keep the process in optimal condition for anaerobic fermentation. Researchers have tried different techniques to enhance biogas production. In order to achieve the aforementioned state, it is essential to ensure increased activity of microorganisms that contribute to the anaerobic fermentation. The metabolic activity of microorganisms is preconditioned by availability of easily decomposable solids. Adding of bacterial and enzymatic cultures into a fermented substrate represents one of the possibilities. The enzymes contained in this preparation are responsible for better exposing methanogenic bacteria to the material. The tested bio-enzymatic preparation, APD BIO GAS, is a mixture that contains bacteria and enzymes which are essential for the efficient progress of anaerobic fermentation. The reference biogas laboratory of the Mendel University in Brno was used for the purpose of testing of APD BIOGAS in mesophilic conditions of anaerobic fermentation on a substrate consisting of a mixture of maize silage and liquid manure. The producer of this preparation declare enhancement of quality and quantity of developed biogas, elimination of smell level of the rest of fermentation its higher homogenity. For the test were used lab scale fermenters of batch type with work volume 0.12 m3. An increase of biogas production by 15% was determined in connection with addition of the

  16. High-Sensitivity LC-MS/MS Quantification of Peptides and Proteins in Complex Biological Samples : The Impact of Enzymatic Digestion and Internal Standard Selection on Method Performance

    NARCIS (Netherlands)

    Bronsema, Kees J.; Bischoff, Rainer; van de Merbel, Nico C.


    Two important aspects of peptide and protein quantification by LC-MS/MS, the enzymatic digestion step and the internal standardization approach, were systematically investigated with a small protein, salmon calcitonin, which could be analyzed both without and with digestion. Quantification of

  17. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. (United States)

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo


    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Three-stage enzymatic digestive system for a gut-on-a-chip

    NARCIS (Netherlands)

    de Haan, Pim; Ianovska, Margaryta A.; Mathwig, Klaus; Bouwmeester, Hans; Verpoorte, Elisabeth


    In this work, we present the development of a three-stage microfluidic system as a cell-free model for digestion in the human gastrointestinal (GI) tract. Larger-scale digestion models are currently being used for pharmacological, toxicological and nutritional studies to determine the possible

  19. Effects of host plants on digestive enzymatic activities and some components involved in intermediary metabolism of Chrysodeixis chalcites (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    M. Mardani-Talaee


    Full Text Available Chrysodeixis chalcites (Esper is a serious pest that causes devastating damages in infested areas to many fruits, vegetables, ornamental crops and weeds. In the current study, effects of three host plants including lemon balm (Melissa officinalis L.; corn (Zea mays L. and dill (Anethum graveolens L. were determined on digestive enzyme activities and intermediary metabolism of C. chalcites larvae. The highest activities of α-amylase, glucosidases and specific proteases were observed in the larvae fed on dill. Our results showed that C. chalcites larvae had the highest TAG-lipase activity on corn in comparison with other host plants. Significant differences were found among enzymatic activities of acid (ACP and alkaline phosphatases, aspartate aminotransferases and lactate dehydrogenase (LDH in the haemolymph of C. chalcites larvae reared on lemon balm, corn and dill, respectively, although activity of alanine aminotransferase showed no statistically significant differences among different host plants. The enzymatic activity of ACP significantly decreased on dill in comparison with lemon balm and corn. The activity of LDH significantly increased on dill compared with other host plants. These results revealed that dill (A. graveolens is the most appropriate host plant for larvae of C. chalcites as evidenced by the highest digestive enzyme activities and intermediary metabolism.

  20. Chemicals effect on the enzymatic digestibility of rape straw over the thermo-mechanical pretreatment using a continuous twin screw-driven reactor (CTSR). (United States)

    Um, Byung-Hwan; Choi, Chang Ho; Oh, Kyeong Keun


    Rape straw pretreated by a continuous twin screw-driven reactor (CTSR) with hot water presented a distinctive particle-size distribution profile as a function of the operating temperature. The relative amount of finer particle size dramatically increased as the ratio of solid to liquid was increased. Size reduction through physical CTSR process effectively promoted the enzymatic hydrolysis of pretreated rape straw. Meanwhile, the crystallinity of the physically pretreated straw was not a greater factor affecting the enzyme digestibility. The glucose conversion from the enzymatic hydrolysis of the straw pretreated by CTSR with hot water was maximized at 52%. Using the chemicals as catalyst have affected considerably for increasing the digestibility at same condition with hot water pretreatment. The enzymatic digestibilities of the straw pretreated by CTSR with sodium hydroxide and sulfuric acid were 60% and 77%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Successive analysis of antigen trapping and enzymatic digestion on membrane-immobilized avidin. (United States)

    Shimazaki, Youji; Kohno, Yoshinori


    Avidin from egg white was migrated toward a cathode of nondenaturing electrophoresis and then immobilized on a polyvinylidene difluoride membrane. Adrenocorticotropic hormone (ACTH) was specifically captured after the biotinylated anti-ACTH antibody was bound to the membrane-immobilized avidin, and the captured ACTH was digested by the biotinylated trypsin on the membrane after extraction. The digested polypeptides from the ACTH were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). These results indicate that target substances can be specifically trapped and digested on membrane-immobilized avidin. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Aged refuse enhances anaerobic digestion of waste activated sludge. (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi


    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. (United States)

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André


    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.

  4. Effect of Enzymatic Treatment of Different Starch Sources on the in Vitro Rate and Extent of Starch Digestion (United States)

    Kasprzak, Mirosław Marek; Lærke, Helle Nygaard; Larsen, Flemming Hofmann; Knudsen, Knud Erik Bach; Pedersen, Sven; Jørgensen, Anne Skov


    Gelatinized wheat, potato and waxy maize starches were treated enzymatically in order to increase the degree of branching of the amylopectin fraction and thereby change the starch degradation profile towards a higher proportion of slowly digestible starch (SDS). The materials were characterized by single-pulse 1H HR-MAS NMR spectroscopy and in vitro digestion profile according to the Englyst procedure. Using various concentrations and incubation times with branching enzyme (EC without or with additional treatment with the hydrolytic enzymes; β-amylase (EC, α-glucosidase (EC, or amyloglucosidase (EC the proportion of α-(1–6) linkages was increased by up to a factor of 4.1, 5 and 5.8 in waxy maize, wheat and potato starches, respectively. The proportion of SDS was significantly increased when using hydrolytic enzymes after treatment with branching enzyme but it was only for waxy maize that the proportion of α-(1–6) bonds and the in vitro digestion profile was significantly correlated. PMID:22312295

  5. The Minor Wall-Networks between Monolignols and Interlinked-Phenolics Predominantly Affect Biomass Enzymatic Digestibility in Miscanthus (United States)

    Zha, Yi; Wan, Can; Si, Shengli; Liu, Fei; Zhang, Rui; Li, Fengcheng; Yu, Bin; Yi, Zili; Xu, Ning; Peng, Liangcai; Li, Qing


    Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H) and S/G ratio could account for lignin negative influence on biomass digestibility upon NaOH and H2SO4 pretreatments. Notably, the biomass enzymatic digestions were predominately affected by the non-KOH-extractable lignin and interlinked-phenolics, other than the KOH-extractable ones that cover 80% of total lignin. Furthermore, a positive correlation was found between the monolignols and phenolics at p<0.05 level in the non-KOH-extractable only, suggesting their tight association to form the minor wall-networks against cellulases accessibility. The results indicated that the non-KOH-extractable lignin-complex should be the target either for cost-effective biomass pretreatments or for relatively simply genetic modification of plant cell walls in Miscanthus. PMID:25133694

  6. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos


    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  7. Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions.

    Directory of Open Access Journals (Sweden)

    Emeka A Okoroma

    Full Text Available The prion agent is notoriously resistant to common proteases and conventional sterilisation procedures. The current methods known to destroy prion infectivity such as incineration, alkaline and thermal hydrolysis are harsh, destructive, environmentally polluting and potentially hazardous, thus limit their applications for decontamination of delicate medical and laboratory devices, remediation of prion contaminated environment and for processing animal by-products including specified risk materials and carcases. Therefore, an environmentally friendly, non-destructive enzymatic degradation approach is highly desirable. A feather-degrading Bacillus licheniformis N22 keratinase has been isolated which degraded scrapie prion to undetectable level of PrP(Sc signals as determined by Western Blot analysis. Prion infectivity was verified by ex vivo cell-based assay. An enzymatic formulation combining N22 keratinase and biosurfactant derived from Pseudomonas aeruginosa degraded PrP(Sc at 65 °C in 10 min to undetectable level -. A time-course degradation analysis carried out at 50 °C over 2 h revealed the progressive attenuation of PrP(Sc intensity. Test of residual infectivity by standard cell culture assay confirmed that the enzymatic formulation reduced PrP(Sc infectivity to undetectable levels as compared to cells challenged with untreated standard scrapie sheep prion (SSBP/1 (p-value = 0.008 at 95% confidence interval. This novel enzymatic formulation has significant potential application for prion decontamination in various environmentally friendly systems under mild treatment conditions.

  8. Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion

    Directory of Open Access Journals (Sweden)

    Zeineb Jrad


    Full Text Available The effect of a successive in vitro hydrolysis by pepsin and pancreatin on the free radical scavenging activity of camel milk casein was investigated in order to assess the effect of gastro-intestinal digestion. Hydrolysis of camel casein was controlled by reversed-phase high performance liquid chromatography. Anti-oxidant activity was measured by the 2,2’-azino-bis-(3-ethylbensothiazoline-6- sulfonic acid (ABTS method. The Trolox equivalent antioxidant capacity (TEAC values of camel casein and its hydrolysate were 1.6±0.12 μmol TE/mg protein and 0.25 μmol TE/μmol eq. NH2, respectively. After digestion, the scavenging activity of the casein peptides was more efficient than those reported in the literature regarding digestive hydrolysates of camel milk, colostrum and whey proteins.

  9. Molecular dynamics study of enhanced Man5B enzymatic activity. (United States)

    Bernardi, Rafael C; Cann, Isaac; Schulten, Klaus


    Biofuels are a well-known alternative to the largely used fossil-derived fuels, however the competition with food production is an ethical dilemma. Fortunately a solution is offered by second-generation biofuels which can be produced from agricultural waste or, more specifically, from plant cell wall polysaccharides. The conversion process involves typically enzymatic hydrolysis of lignocellulosic biomass and then separation of its constituent sugars that are further fermented to produce ethanol. Over the years several technologies have been developed that allow this conversion process to occur and the objective is now to make this process cost-competitive in today's markets. We observe that reduction of enzymatic efficiency in the presence of gluco-oligosaccharides is associated with a loss of the enzyme's flexibility, the latter being required to bind new substrate, while the presence of manno-oligosaccharides does not pose this problem. Molecular dynamics simulations identify key contacts between substrates and the enzyme catalytic pocket that might be modified through site-directed mutagenesis to prevent loss of enzymatic efficiency. Based on previous experimental studies and the new molecular dynamics data, we suggest that cellohexaose in the active site pocket slows down or even inhibits Man5B enzymatic activity. The assumption of such a mechanism is reasonable since when the gluco-oligosaccharide substrate is attached to the catalytic pocket it takes much longer to leave the pocket and thus prevents other substrates from reaching the active site. The insight is of crucial importance since the inhibition of enzymes by the enzymatic product or by an unsuitable substrate is a major technological problem in reducing the competitiveness of second-generation biofuel production.

  10. An automated modular microsystem for enzymatic digestion with gut-on-a-chip applications

    NARCIS (Netherlands)

    de Haan, P.; Ianovska, M.A.; Mathwig, K.; Bouwmeester, H.; Verpoorte, E


    Gut-on-a-chip models have gained attention as replacements for other cell-based assays or animal studies in drug development or toxicological studies. These models aim to provide a more accurate representation of the in vivo situation in form and function; however, no digestive processes have been

  11. Three-stage enzymatic digestive system for a gut-on-a-chip

    NARCIS (Netherlands)

    de Haan, Pim; Ianovska, Margaryta A.; Bouwmeester, Hans; Verpoorte, Elisabeth


    Several different devices to model the human gastrointestinal (GI) tract have been developed, which may find applications as pharmacological or toxicological model systems.1 To create a fully functional gut-on-a-chip, it is essential to incorporate the digestive functions of the GI tract into such a

  12. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard


    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...... achievable by intermittent product removal during cellulose hydrolysis....

  13. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. (United States)

    Hideno, Akihiro; Kawashima, Ayato; Endo, Takashi; Honda, Katsuhisa; Morita, Masatoshi


    The effects of adding trace acids in ethanol based organosolv treatment were investigated to increase the enzymatic digestibility of Japanese cypress. A high glucose yield (60%) in the enzymatic hydrolysis was obtained by treating the sample at 170 °C for 45 min in 50% ethanol liquor containing 0.4% hydrochloric acid. Moreover, the enzymatic digestibility of the treated sample was improved to ∼70% by changing the enzyme from acremonium cellulase to Accellerase1500. Field emission scanning electron microscopy revealed the presence of lignin droplets and partial cellulose nanofibers on the surface of the treated sample. Simultaneous saccharification and fermentation of the treated samples using thermotolerant yeast (Kluyveromyces marxianus NBRC1777) was tested. A high ethanol concentration (22.1 g/L) was achieved using the EtOH50/W50/HCl0.4-treated sample compared with samples from other treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A comparison of enzymatic digestion for the quantitation of an oligonucleotide by liquid chromatography-isotope dilution mass spectrometry. (United States)

    Donald, Carol E; Stokes, Peter; O'Connor, Gavin; Woolford, Alison J


    DNA is a universal analyte found in almost every organism. It is the code that dictates our genetic make-up and it provides a vast library of information. DNA sequences can indicate genetic modification of foodstuffs, how we may metabolise pharmaceuticals and the likelihood of suffering particular diseases. The basis for many of these genetic tests would benefit greatly from procedures that can accurately quantitate DNA in an absolute manner. This would then provide a sound and universally consistent foundation for regulatory and diagnostic decision making. This work compares two different enzymatic digestion systems as precursor steps to high accuracy isotope dilution mass spectrometry (IDMS) quantitation of a 20mer oligonucleotide. In the first approach, snake venom phosphodiesterase (SVP) digests the oligonucleotide to its constituent deoxynucleotides (dNMPs), followed by liquid chromatography-IDMS (LC-IDMS) quantitation. The second enzyme digestion approach used a combination of snake venom phosphodiesterase and shrimp alkaline phosphatase (SAP) which reduces the oligonucleotide to its constituent deoxynucleosides (dNs). This was then followed by an alternative LC separation and equivalent IDMS measurements. Total phosphorous content of the 20mer oligonucleotide was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). This provided independent data for comparison with the two enzyme digestion-IDMS based procedures. The most appropriate method of quantitation was found to be the combined SVP and SAP digestion. This approach negates the need to consider and/or account for the lack of a 5' terminal phosphate residue. It also enables the use of positive ion mass spectrometry which simplifies the chromatographic requirements. Based on the exact matched IDMS of the adenine deoxynucleoside, the concentration of the original 20mer oligonucleotide was found to be 110+/-9 microg g(-1). This showed good agreement with the ICP-OES data based on

  15. Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Yenal, U.; Ahring, Birgitte Kiær


    The present study aimed at investigating the effect of thermal pretreatment of sludge at 70degreesC on the anaerobic degradation of three commonly found phthalic acid esters (PAE): di-ethyl phthalate (DEP), di-butyl phthalate (DBP), and di-ethylhexyl phthalate (DEHP). Also, the enzymatic treatment...... pretreatment was found to be proportional to the PAE solubility in water: the higher the solubility, the higher the percentage of the reduction (DEP > DBP > DEHP). PAE were slowly degraded during the pretreatment at 70degreesC, yet this was probably due to physicochemical reactions than to microbial...

  16. Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility. (United States)

    Raj, Tirath; Gaur, Ruchi; Lamba, Bhawna Yadav; Singh, Nitu; Gupta, Ravi P; Kumar, Ravindra; Puri, Suresh K; Ramakumar, S S V


    An insight into the properties of cell wall of mustard stalk (MS) pretreated by five ionic liquids (ILs) revealed ILs interaction with cellulose, hemicellulose and lignin components. Differential Scanning Calorimetry (DSC) showed increased pore size coupled with increased population of pores evoked by certain ILs in better facilitating enzymatic accessibility. Interestingly, all the five ILs predominantly increased the propensity of two pore sizes formation; 19 and 198 nm, but remarkable difference in the pore volumes of pretreated MS suggested the supremacy of [OAc](-) based ILs, resulting in higher glucose yields. Cellulose I to II transition in pretreated MS was supported by the reduced total crystallinity index (TCI), lateral order index (LOI) values. Strong inverse correlation existed between the said parameters and residual acetyl content with enzymatic hydrolysis (R(2) > 0.8). An inverse relationship between hydrogen bond basicity, LOI and TCI suggested it to be a good indicator of IL pretreatment efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Directory of Open Access Journals (Sweden)

    Wang ZJ


    Full Text Available Abstract Background Nonspecific (nonproductive binding (adsorption of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL is a relatively new process, but demonstrated robust performance for sugar and biofuel production from woody biomass especially softwoods in terms of yields and energy efficiencies. This study demonstrated the role of lignin sulfonation in enhancing enzymatic saccharification of lignocelluloses – lignosulfonate from SPORL can improve enzymatic hydrolysis of lignocelluloses, contrary to the conventional belief that lignin inhibits enzymatic hydrolysis due to nonspecific binding of cellulase. Results The study found that lignosulfonate from SPORL pretreatment and from a commercial source inhibits enzymatic hydrolysis of pure cellulosic substrates at low concentrations due to nonspecific binding of cellulase. Surprisingly, the reduction in enzymatic saccharification efficiency of a lignocellulosic substrate was fully recovered as the concentrations of these two lignosulfonates increased. We hypothesize that lignosulfonate serves as a surfactant to enhance enzymatic hydrolysis at higher concentrations and that this enhancement offsets its inhibitive effect from nonspecific binding of cellulase, when lignosulfonate is applied to lignocellulosic solid substrates. Lignosulfonate can block nonspecific binding of cellulase by bound lignin on the solid substrates, in the same manner as a nonionic surfactant, to significantly enhance enzymatic saccharification. This enhancement is linearly proportional to the amount of lignosulfonate applied which is very important to practical applications. For a SPORL-pretreated lodgepole pine solid, 90% cellulose saccharification was achieved at cellulase loading of 13 FPU/g glucan with the application of its

  18. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population. (United States)

    Penning, Bryan W; Sykes, Robert W; Babcock, Nicholas C; Dugard, Christopher K; Held, Michael A; Klimek, John F; Shreve, Jacob T; Fowler, Matthew; Ziebell, Angela; Davis, Mark F; Decker, Stephen R; Turner, Geoffrey B; Mosier, Nathan S; Springer, Nathan M; Thimmapuram, Jyothi; Weil, Clifford F; McCann, Maureen C; Carpita, Nicholas C


    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population1[W][OPEN (United States)

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.; Mosier, Nathan S.; Springer, Nathan M.; Thimmapuram, Jyothi; Weil, Clifford F.; McCann, Maureen C.; Carpita, Nicholas C.


    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. PMID:24972714

  20. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. (United States)

    Zappone, Bruno; Greene, George W; Oroudjev, Emin; Jay, Gregory D; Israelachvili, Jacob N


    Lubricin (LUB) is a glycoprotein of the synovial cavity of human articular joints, where it serves as an antiadhesive, boundary lubricant, and regulating factor for the cartilage surface. It has been proposed that these properties are related to the presence of a long, extended, heavily glycosylated and highly hydrated mucinous domain in the central part of the LUB molecule. In this work, we show that LUB has a contour length of 220 +/- 30 nm and a persistence length of bonds. We have studied the effect of proteolytic digestion by chymotrypsin and removal of the disulfide bonds, both of which mainly affect the N- and C- terminals of the protein, on the adsorption, normal forces, friction (lubrication) forces, and wear of LUB layers adsorbed on smooth, negatively charged mica surfaces, where the protein naturally forms lubricating polymer brush-like layers. After in situ digestion, the surface coverage was drastically reduced, the normal forces were altered, and both the coefficient of friction and the wear were dramatically increased (the COF increased to mu = 1.1-1.9), indicating that the mucinous domain was removed from the surface. Removal of disulfide bonds did not change the surface coverage or the overall features of the normal forces; however, we find an increase in the friction coefficient from mu = 0.02-0.04 to mu = 0.13-1.17 in the pressure regime below 6 atm, which we attribute to a higher affinity of the protein terminals for the surface. The necessary condition for LUB to be a good lubricant is that the protein be adsorbed to the surface via its terminals, leaving the central mucin domain free to form a low-friction, surface-protecting layer. Our results suggest that this "end-anchoring" has to be strong enough to impart the layer a sufficient resistance to shear, but without excessively restricting the conformational freedom of the adsorbed proteins.

  1. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion. (United States)

    Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare


    Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Exploring surface characterization and electrostatic property of Hybrid Pennisetum during alkaline sulfite pretreatment for enhanced enzymatic hydrolysability. (United States)

    Yang, Ming; Wang, Jingfeng; Hou, Xincun; Wu, Juying; Fan, Xifeng; Jiang, Fan; Tao, Pan; Wang, Fan; Peng, Pai; Yang, Fangxia; Zhang, Junhua


    The surface characterization and electrostatic property of Hybrid Pennisetum (HP) after alkaline sulfite pretreatment were explored for enhanced enzymatic hydrolysability. The O/C ratio in HP increased from 0.34 to 0.60, and C1 concentration decreased from 62.5% to 31.6%, indicating that alkaline sulfite pretreatment caused poorer lignin but richer carbohydrate on HP surface. Zeta potential and sulfur element analysis indicated that more enzymes would preferably adsorb on the carbohydrate surface of alkaline sulfite pretreated HP because the lignin was sulfonated, which facilitated the decrease of non-productive adsorption. Glucose yield of alkaline sulfite pretreated HP reached to 100% by synergistic action of cellulase and xylanase in the hydrolysis, which was significantly higher than that of NaOH pretreated, and the concentration of glucose released was 1.52times higher. The results suggested that alkaline sulfite pretreatment had potential for improving the HP hydrolysability, and the surface characterization and electrostatic property facilitated the enzymatic digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP). (United States)

    Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott


    Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A New UPLC-MS/MS Method for the Characterization and Discrimination of Polysaccharides from Genus Ephedra Based on Enzymatic Digestions

    Directory of Open Access Journals (Sweden)

    Yong-Gang Xia


    Full Text Available Ephedra sinica polysaccharides have been reported to possess important activities, so quality evaluation of polysaccharides from the genus Ephedra is urgent. In this study, enzymatic digestions were performed to establish multiple saccharide fingerprints by ultra-performance liquid chromatography with electrospray ionization triple quadrupole linear ion trap mass spectrometry (UPLC-ESI-TQ-MS/MS based on a multiple-reaction monitoring in negative mode. Under optimum UPLC-ESI--TQ-MS/MS conditions, excellent separation and quantification of 21 constituents were achieved within 20 min on a solid core column with a 1.6 μm particle using pre-column derivatization with a PMP reagent. This method, coupled with enzymatic digestions and principal component analysis, has been successfully applied to characterize and discriminate Ephedra polysaccharides attributed to different species and plant parts. The results suggest that the proposed analytical strategy could achieve a quality evaluation of plant polysaccharides from traditional Chinese medicines.

  5. Enzymatic Digestion and Mass Spectroscopies of N-Linked Glycans in Lacquer Stellacyanin from Rhus vernicifera

    Directory of Open Access Journals (Sweden)

    Oyunjargal Tumurbaatar


    Full Text Available Lacquer stellacyanin was isolated and purified from lacquer acetone powder by continuous Sephadex column chromatographies using Sephadex C-50, DEAE A-50, and C-50 gels. The purified lacquer stellacyanin had a blue color with one major and three minor bands around 26 k Dain SDS PAGE. Trypsin- and chymotrypsin-treated lacquer stellacyanins were examined by LC/MS/MS to determine three N-glycosylation sites (N28, N60, and N102 and were further analyzed by MALDI TOF MS, indicating that the N-linked glycans were attached to the three asparagine (Asn sites, respectively. In addition, after trypsin digestion and PNGase A and PNGase F treatments to cleave N-linked glycans from the Asn sites, it was found that lacquer stellacyanin had a xylose containing a biantennary N-linked glycan with core fucosylation consisting of 13 sugar residues (a complex type N-linked glycan by MALDI TOF MS analysis. This is the first report on the structure of an N-linked glycan in lacquer stellacyanin.

  6. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. (United States)

    Chundawat, Shishir P S; Venkatesh, Balan; Dale, Bruce E


    Particle size and compositional variance are found to have a substantial influence on ammonia fiber explosion (AFEX) pretreatment and enzymatic hydrolysis of lignocellulosic biomass. Corn stover was milled and fractionated into particle sizes of varying composition. The larger particle size fractions (rich in corn cob and stalk portions) were found to be more recalcitrant to hydrolysis compared to the smaller size fractions (rich in leaves and husk portion). Electron spectroscopy for chemical analysis (ESCA) and Fourier transform infrared spectroscopy (FTIR) were used for biomass surface and bulk compositional analysis, respectively. The ESCA results showed a 15-30% decrease in the O/C (oxygen to carbon) ratio after the pretreatment indicating an increase in the hydrophobic nature of biomass surface. FTIR results confirmed cleavage of the lignin-carbohydrate complex (LCC) for the AFEX-treated fractions. The spectroscopic results indicate the extraction of cleaved lignin phenolic fragments and other cell wall extractives to the biomass surface upon AFEX. Water washing of AFEX-treated fractions removed some of the hydrophobic extractives resulting in a 13% weight loss (dry weight basis). Phenolic content of wash stream was evaluated by the modified Prussian blue (MPB) method. Removal of ligno-phenolic extractives from the AFEX-treated biomass by water washing vastly improved the glucan conversion as compared to the unwashed samples. Reduction in substrate particle size was found to affect the AFEX process and rate of hydrolysis as well. Implications of the stover particle size, composition, and inhibitory role of the phenolic fragments on an integrated biorefinery are discussed. (c) 2006 Wiley Periodicals, Inc.

  7. Immobilization of enzymes to silver island films for enhanced enzymatic activity. (United States)

    Abel, Biebele; Aslan, Kadir


    The performance of the enzyme-based biosensors depends on the enzymatic activity and the use of an appropriate technique for immobilization of enzymes. The incorporation of silver island films (SIFs) into the enzyme-based biosensors is expected to enhance the enzymatic activity and to increase the detectability of analytes of interest. Two enzymes, β-galactosidase (β-Gal) and alkaline phosphatase (AP) were immobilized onto SIFs using the interactions of avidin-modified enzymes with (i) a monolayer of biotinylated bovine serum albumin (b-BSA) and/or (ii) a monolayer of biotinylated poly(ethylene-glycol)-amine (BEA molecular weight: 550-10,000Da). To confirm the effect of SIFs on enzymatic activity, two control surfaces (no silver) were also employed. No enhancement in enzymatic activity for β-Gal on all SIFs was observed, which was attributed to the inhibition of β-Gal activity due to direct interactions of β-Gal with SIFs. The AP activity on SIFs with BEA was significantly larger than that observed on SIFs with b-BSA, where a 300% increase in AP activity was observed as compared to control surfaces. These observations suggest that SIFs can significantly enhance AP activity, which could help improve the detection limits of ELISAs and immunoassays that employ AP. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment. (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E


    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Influence of Different Food Commodities on Life History, Feeding Efficiency, and Digestive Enzymatic Activity of Tribolium castaneum (Coleoptera: Tenebrionidae). (United States)

    Naseri, Bahram; Borzoui, Ehsan; Majd, Shadi; Mozaffar Mansouri, Seyed


    The life history, feeding indices, and digestive enzymatic activity of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) were studied on flours of 10 commodities (artificial diet, barley, cowpea, maize, millet, rice, sorghum, soybean, triticale, and wheat) at 30 ± 1°C, relative humidity 75 ± 5% (12 h photophase). The maximum survival rate of immature stages was on artificial diet (75%), and the minimum rate was on soybean flour (30%). The duration of immature stages was significantly longer on soybean flour (33.3 ± 0.6 days) than on other tested flours of commodities. Record for the highest fecundity of this insect was on artificial diet (418.9 ± 9.1 eggs/female) and the lowest was on soybean flour (121.5 ± 7.0 eggs/female). The results showed that fourth instar of T. castaneum reared on soybean flour had the lowest relative growth rate (RGR; 0.141 ± 0.011 mg/mg/d) and efficiency of conversion of ingested food (34.59 ± 0.009%). The amylolytic activity of fourth instar was the highest when larvae were fed on barley flour (8.97 ± 0.25 mU/min/larva) and the lowest when they were fed on wheat flour (1.64 ± 0.23 mU/min/larva). Larvae exhibited a single strong band of amylolytic activity among different flours of commodities; the lowest and highest intensity was for larvae fed on wheat and barley flours, respectively. The zymogram of the general protease activity showed four main bands, which the first band was unique for triticale- and artificial diet-fed larvae. The results of this study indicated that soybean flour was the most unsuitable food for feeding and development of T. castaneum. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email:

  10. pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses (United States)

    Hongming Lou; J.Y. Zhu; Tian Qing Lan; Huranran Lai; Xueqing Qiu


    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL...

  11. [Enzymatic activities of bacteria isolated from the digestive tract of caterpillars and the pupal content of Automeris zugana and Rothschildia lebeau (Lepidoptera: Saturniidae)]. (United States)

    Pinto-Tomás, Adrián; Uribe-Lorío, Lorena; Blanco, John; Fontecha, Gustavo; Rodríguez, César; Mora, Marielos; Janzen, Daniel; Chavarría, Felipe; Díaz, Joel; Sittenfeld, Ana


    The enzymatic activities of bacteria isolated from the digestive tracts of caterpillars and the pupal contents of Automeris zugana and Rothschildia lebeau was studied. This digestive tract represents an extreme microenvironment due to its high pH and presence of antimicrobial substances secreted by the insect or derived from ingested plant tissue. At the same time, it contains large amounts of nutrient-rich food, for which microbes may compete among themselves and with the caterpillar. There is little information about the microbiota associated with tropical caterpillar guts, although bacteria from different genera have been isolated from gut and pupae samples. The study of the enzymatic activities generated by these organisms constitutes a starting point to understand their metabolic and physiological relationships with their hosts, and to find enzymes that have potential biotechnological applications. In this study we evaluated several enzymatic activities in two collections of bacteria isolated from caterpillar guts and pupae of the tropical lepidopteran species A. zugana and R. lebeau. Bacteria grown under aerobic conditions were tested for an array of enzymes, including gelatinases, caseinases, lipases, esterases, cellulases, xylanases, amylases and chitinases. Both collections displayed similar patterns of enzymatic activity. No isolate showed activity for all enzymatic tests, but as a whole, at least some bacteria in each collection were able to degrade each substrate tested. Isolates with the same taxonomic identification obtained from caterpillar guts and pupae had almost the same enzymatic activities. In both collections, it was possible to group bacterial isolates according to their enzyme activity pattern. In addition to a heterogeneous ensemble of isolates exhibiting two or less enzymatic activities, there were two groups with at least five activities that showed an apparent specialization for the substrates they were able to use. The first consisted

  12. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid (United States)

    Lee, Byoung-Min; Jeun, Joon-Pyo; Kang, Phil-Hyun


    This study was performed to determine the effect of electron beam dose and enzymatic hydrolysis time for production of sugar such as glucose and xylose. After kenaf core was exposed to an irradiation dose that ranged from 0 to 500 kGy, the irradiated kenaf core was treated with a 3% (v/v) sulfuric acid solution using an autoclave for 5 h at 120 °C. The pretreated kenaf core was subsequently subjected to enzymatic hydrolysis at 50 °C in a shaking water bath at 150 rpm for 12, 24, 48, and 72 h. The determined enzyme activity rates were 70 FPU (Celluclast 1.5 L) and 40 CBU (Novozyme-188). The crystallinity index decreased from 50.6% in a non-pretreated kenaf core to 27.7% in kenaf core that was subjected to the two-stage pretreatment at dose of 500 kGy. The sugar yield of the two-stage pretreated kenaf core increased with an increase in irradiation dose. The sugar yield after 72 h of enzymatic hydrolysis was 73.6% at its highest with an irradiation dose of 500 kGy. The enhancement of enzymatic hydrolysis by two-stage pretreatment was more effective than non- and single pretreatment (36.9%, 40.6% and 44.0% in non-pretreatment, electron beam and dilute acid, respectively).

  13. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    Directory of Open Access Journals (Sweden)

    Rami Gherib


    Full Text Available Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis.

  14. Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning

    Directory of Open Access Journals (Sweden)

    Raquel Martín-Sampedro


    Full Text Available Olive tree pruning, as one of the most abundant lignocellulosic residues in Mediterranean countries, has been evaluated as a source of sugars for fuel and chemicals production. A mild acid pretreatment has been combined with a fungal pretreatment using either two endophytes (Ulocladium sp. and Hormonema sp. or a saprophyte (Trametes sp. I-62. The use of endophytes is based on the important role that some of them play during the initial stages of wood decomposition. Without acid treatment, fungal pretreatment with Ulocladium sp. provided a nonsignificant enhancement of 4.6% in glucose digestibility, compared to control. When a mild acid hydrolysis was carried out after fungal pretreatments, significant increases in glucose digestibility from 4.9% to 12.0% (compared to control without fungi were observed for all fungal pretreatments, with maximum values yielded by Hormonema sp. However, despite the observed digestibility boost, the total sugar yields (taking into account solid yield were not significantly increased by the pretreatments. Nevertheless, based on these preliminary improvements in digestibility, this work proves the potential of endophytic fungi to boost the production of sugar from olive tree pruning, which would add an extra value to the bioeconomy of olive crops.

  15. Pretreatments to enhance the digestibility of lignocellulosic biomass

    NARCIS (Netherlands)

    Hendriks, A.T.W.M.; Zeeman, G.


    Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a

  16. Detection of modified peptides in enzymatic digests by capillary liquid chromatography/electrospray mass spectrometry and a programmable skimmer CID acquisition routine. (United States)

    Jedrzejewski, P T; Lehmann, W D


    A method for the identification of multiple covalent protein modifications in enzymatic protein digests by specific marker ion signals in a single analysis is described. This method is based on the combined strengths of capillary liquid chromatography (microLC) to purify, concentrate, and resolve complex mixtures and electrospray mass spectrometry (ESI-MS) to selectively and sensitively detect ions. A variety of modification-specific marker ions can be generated using a programmable skimmer collision-induced dissociation (sCID) acquisition routine, which allows for flexibility in the (i) number of marker ions monitored under single-ion monitoring conditions, (ii) selection of optimal polarity for both marker ions and molecular ions, (iii) use of variable dwell times for marker ions, and (iv) selection of optimal sCID offset. Using this combined method of microLC/ESI/sCID-MS, phosphorylated, sulfated, acrylamide-modified, and glycosylated peptides were identified in a model enzymatic digest at 200 fmol. The capability of reversed-phase LC to resolve isomeric compounds which cannot be identified by low-energy CID underscores the utility of this combined method. Further capabilities of this technique are demonstrated by the analysis of biologically important proteins.

  17. Enzymatic Digestion and Selective Quantification of Underivatised Delta-9-Tetrahydrocannabinol and Cocaine in Human Hair Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Salah Eddine Breidi


    Full Text Available Gas chromatography-mass spectrometric (GC-MS methods for drug analysis routinely employ derivatising reagents. The aim of this paper was to develop a method for the analysis of two recreational drugs, delta-9-tetrahydrocannabinol (Δ9-THC and cocaine in hair samples using GC-MS, without prior derivatisation, thus allowing the sample to be reanalysed in its original form. An enzymatic digestion technique was also developed. Ten hair samples, that were known positive for either Δ9-THC and/or cocaine, were enzymatically digested, extracted, and then analysed by GC-MS. All samples measured contained Δ9-THC and one sample contained cocaine. The limits of detection (LOD and quantification (LOQ were 0.02 ng/mg and 0.05 ng/mg, respectively, for cocaine and 0.015 ng/mg and 0.02 ng/mg, respectively, for Δ9-THC. The wide detection window, ease of direct analysis by GC-MS, lower detection limits of underivatised samples, and the stability of drugs using this technique may offer an improved method of analysis.

  18. Enhanced anaerobic digestion of corn stover by thermo-chemical pretreatment

    National Research Council Canada - National Science Library

    Wang Fang; Niu Weisheng; Zhang Andong; Yi Weiming


      In order to solve the problem of lignocellulose degraded speedily and efficiently in anaerobic digestion, the thermo-chemical pretreatment was applied to enhance biogas production from corn stover...

  19. Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. (United States)

    Uju; Nakamoto, Aya; Shoda, Yasuhiro; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Ogino, Chiaki; Kamiya, Noriho


    The potential of 1-hexylpyridinium chloride ([Hpy][Cl]), to pretreat cellulosic feedstocks was investigated using microcrystalline cellulose (Avicel) and Bagasse at 80 °C or 100 °C. Short [Hpy][Cl] pretreatments, <30 min, at lower temperature accelerate subsequent enzymatic saccharification of Avicel. Over 95% conversion of pretreated Avicel to glucose was attained after 24h enzymatic saccharification under optimal conditions, whereas regenerated Bagasse showed 1-3-fold higher conversion than untreated biomass. FT-IR analysis of both Avicel and Bagasse samples pretreated with [Hpy][Cl] or 1-ethyl-3-methyimidazolium acetate ([Emim][OAc]) revealed that these ionic liquids behaved differently during pretreatment. [Hpy][Cl] pretreatment for an extended duration (180 min) released mono- and disaccharides without using cellulase enzymes, suggesting [Hpy][Cl] has capability for direct saccharification of cellulosic feedstocks. On the basis of the results obtained, [Hpy][Cl] pretreatment enhanced initial reaction rates in enzymatic saccharification by either crystalline polymorphic alteration of cellulose or partial degradation of the crystalline cellulosic fraction in biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. (United States)

    Monlau, Florian; Trably, Eric; Barakat, Abdellatif; Hamelin, Jérôme; Steyer, Jean-Philippe; Carrere, Hélène


    Because of their rich composition in carbohydrates, lignocellulosic residues represent an interesting source of biomass to produce biohydrogen by dark fermentation. Nevertheless, pretreatments should be applied to enhance the solubilization of holocelluloses and increase their further conversion into biohydrogen. The aim of this study was to investigate the effect of thermo-alkaline pretreatment alone and combined with enzymatic hydrolysis to enhance biohydrogen production from sunflower stalks. A low increase of hydrogen potentials from 2.3 ± 0.9 to 4.4 ± 2.6 and 20.6 ± 5.6 mL of H2 g(-1) of volatile solids (VS) was observed with raw sunflower stalks and after thermo-alkaline pretreatment at 55 °C, 24 h, and 4% NaOH and 170 °C, 1 h, and 4% NaOH, respectively. Enzymatic pretreatment alone showed an enhancement of the biohydrogen yields to 30.4 mL of H2 g(-1) of initial VS, whereas it led to 49 and 59.5 mL of H2 g(-1) of initial VS when combined with alkaline pretreatment at 55 and 170 °C, respectively. Interestingly, a diauxic effect was observed with sequential consumption of sugars by the mixed cultures during dark fermentation. Glucose was first consumed, and once glucose was completely exhausted, xylose was used by the microorganisms, mainly related to Clostridium species.

  1. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    Directory of Open Access Journals (Sweden)

    Gruppen Harry


    Full Text Available Abstract Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP. Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose.

  2. Enhanced anaerobic digestion of waste activated sludge of low organic content in a novel digester. (United States)

    Wu, J; Jiang, Y; Cao, Z P; Li, Z H; Hu, Y Y; Li, H Z; Zuo, J E; Wang, K J


    A novel digester, termed an internal circulation anaerobic digester (ICAD), was developed to intensify sludge digestion. It consists of reaction zone, settling zone, thickening zone, riser and downcomer. Internal circulation in the digester is intensified by backflow biogas. The mesophilic ICAD treating thermal pretreated waste activated sludge with volatile suspended solids (VSS)/suspended solids (SS) of 0.45-0.49 was conducted in this study to reduce and stabilize the low organic content sludge. The results showed that the VSS removal rate and biogas rate reached 46.0% and 0.72 m(3)/kg VSS(fed) at hydraulic retention time (HRT) of 15 days. VSS/SS and soluble chemical oxygen demand (SCOD) of the effluent sludge ranged from 0.39 to 0.41 and 274 mg/L to 473 mg/L, respectively, under various HRTs from 10 to 27 days. The degradation ability of ICAD derived from the improved mass transfer by internal circulation and long solid retention time at short HRT is compared with continuous stirred tank reactor.

  3. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester (United States)

    Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd


    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  4. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Himmel Michael E


    Full Text Available Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220. The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content. Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I

  5. Comparative Analysis of End Point Enzymatic Digests of Arabino-Xylan Isolated from Switchgrass (Panicum virgatum L of Varying Maturities using LC-MSn

    Directory of Open Access Journals (Sweden)

    Michael J. Bowman


    Full Text Available Switchgrass (Panicum virgatum L., SG is a perennial grass presently used for forage and being developed as a bioenergy crop for conversion of cell wall carbohydrates to biofuels. Up to 50% of the cell wall associated carbohydrates are xylan. SG was analyzed for xylan structural features at variable harvest maturities. Xylan from each of three maturities was isolated using classical alkaline extraction to yield fractions (Xyl A and B with varying compositional ratios. The Xyl B fraction was observed to decrease with plant age. Xylan samples were subsequently prepared for structure analysis by digesting with pure endo-xylanase, which preserved side-groups, or a commercial carbohydrase preparation favored for biomass conversion work. Enzymatic digestion products were successfully permethylated and analyzed by reverse-phase liquid chromatography with mass spectrometric detection (RP-HPLC-MSn. This method is advantageous compared to prior work on plant biomass because it avoids isolation of individual arabinoxylan oligomers. The use of RP-HPLC- MSn differentiated 14 structural oligosaccharides (d.p. 3–9 from the monocomponent enzyme digestion and nine oligosaccharide structures (d.p. 3–9 from hydrolysis with a cellulase enzyme cocktail. The distribution of arabinoxylan oligomers varied depending upon the enzyme(s applied but did not vary with harvest maturity.

  6. Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency. (United States)

    Yuan, Tao; Li, Xiekun; Xiao, Shiyuan; Guo, Ying; Zhou, Weizheng; Xu, Jingliang; Yuan, Zhenhong


    Nowadays, microalgae are being considered as promising raw material for bioethanol production. In this work, three process variables during liquid hot water (LHW) pretreatment prior to enzymatic hydrolysis by response surface methodology on Scenedesmus sp. WZKMT were investigated to enhance glucose recovery. Results indicated that the order of significance for three parameters was temperature>solid-to-liquid ratio>time. The optimal condition was 1:13 (w/v), 147°C and 40min. The concentration and recovery of glucose under this condition were 14.223g·L(-1) and 89.32%, respectively, which were up to 5-fold higher than the samples without LHW pretreatment. In addition, the surface morphologies of microalgae cells before and after LHW pretreatment were also verified using scanning electron microscopy (SEM). LHW pretreatment can greatly enhance the enzymatic efficiency, and can be regarded as an ideal pretreatment method for glucose recovery from microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing


    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  8. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. (United States)

    Cybulska, Iwona; Chaturvedi, Tanmay; Brudecki, Grzegorz P; Kádár, Zsófia; Meyer, Anne S; Baldwin, Robert M; Thomsen, Mette Hedegaard


    Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing equipment and avoid inhibition of enzymes and yeast. Composition of the washed biomass was comparable to traditional lignocellulosic biomasses with relatively high glucan and xylan content (26 and 22g/100gDM, respectively) but with lower lignin content (7g/100gDM). The washed feedstock was subjected to hydrothermal pretreatment, producing highly digestible (up to 92% glucan-to-glucose conversion) and fermentable (up to 100% glucose-to-ethanol conversion) fiber fractions. Liquid fractions obtained in the pretreatment did not show inhibition towards Saccharomyces cerevisiae. No significant differences among the enzymatic convertibility and microbial fermentability of the fibers as well as low xylose recoveries suggest that lower severity pretreatment conditions could be exploited for S. bigelovii. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Wet oxidation pre-treatment of woody yard waste: Parameter optimization and enzymatic digestibility for ethanol production

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.


    Woody yard waste with high lignin content (22% of dry matter (DM)) was subjected to wet oxidation pre-treatment for subsequent enzymatic conversion and fermentation. The effects of temperature (185-200 degreesC), oxygen pressure (3-12 bar) and addition of sodium carbonate (0-3.3 g per 100 g DM bi...

  10. Correlating physical changes and enhanced enzymatic saccharification of pine flour pretreated by Ν-Methylmorpholine-Ν-oxide (United States)

    Ye Liu; Qixin Zhong; Siqun Wang; Zhiyong Cai


    Pretreatment of lignocellulosic biomass by Ν-methylmorpholine-Ν-oxide (NMMO), a solvent used in the textile industry to dissolve cellulose for production of regenerated cellulose fibers, was observed to enhance significantly enzymatic saccharification and fermentation. The enhancement was speculated to have been caused by reduced cellulose crystallinity...


    Directory of Open Access Journals (Sweden)

    Javkhlan eAriunbaatar


    Full Text Available This paper discusses the potential to enhance the anaerobic digestion of food waste FW by supplementing trace elements (Fe, Co, Ni, Zn, Mn, Cu, Se, and Mo individually as well as in cocktails. A series of batch experiments on the biomethane potential of synthetic food waste were performed with low (FW-A and high (FW-B trace element background concentrations prepared in, respectively, Delft (The Netherlands and Tampa (Florida, USA. The most effective trace elements for FW-A were Fe with an increase of 39.2 (± 0.6 % of biomethane production, followed by Se (34.1 ± 5.6 % increase, Ni (26.4 ± 0.2 % increase and Co (23.8 ± 0.2 % increase. For FW-B supplementing these trace elements did not result in enhancement of the biomethane production, except for Se. FW-B had a Se concentration of 1.3 (± 0. 5 µg/gTS, while it was below the detection limit for FW-A. Regardless of the FW source, Se resulted in 30 – 35% increase of biomethane production at a concentration range of 25-50 µg/L (0.32 – 0.63 µM. Volatile fatty acids analysis revealed that TE supplementation enhances their consumption, thus yielding a higher biomethane production. Moreover, additional experiments on sulfide inhibition showed the enhancing effects of trace elements on the anaerobic digestion of food waste were not related with sulfide toxicity, but with the enzymatic reactions and/or microbial biomass aggregation.

  12. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. (United States)

    Huang, Yu; Wei, Xiaoyang; Zhou, Shiguang; Liu, Mingyong; Tu, Yuanyuan; Li, Ao; Chen, Peng; Wang, Yanting; Zhang, Xuewen; Tai, Hongzhong; Peng, Liangcai; Xia, Tao


    In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. (United States)

    Yuan, Huiming; Zhang, Lihua; Zhang, Yukui


    In this work, a novel kind of organic-silica hybrid monolith based immobilized enzymatic reactor (IMER) was developed. The monolithic support was prepared by a single step "one-pot" strategy via the polycondensation of tetramethoxysilane and vinyltrimethoxysilane and in situ copolymerization of methacrylic acid and vinyl group on the precondensed siloxanes with ammonium persulfate as the thermal initiator. Subsequently, the monolith was activated by N-(3-dimethylaminopropyl) - N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS), followed by the modification of branched polyethylenimine (PEI) to improve the hydrophilicity. Finally, after activated by EDC and NHS, trypsin was covalently immobilized onto the monolithic support. The performance of such a microreactor was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin, followed by MALDI-TOF-MS analysis. Compared to those obtained by traditional in-solution digestion, not only higher sequence coverages for BSA (74±1.4% vs. 59.5±2.7%, n=6) and myoglobin (93±3% vs. 81±4.5%, n=6) were obtained, but also the digestion time was shortened from 24h to 2.5 min, demonstrating the high digestion efficiency of such an IMER. The carry-over of these two proteins on the IMER was investigated, and peptides from BSA could not be found in mass spectrum of myoglobin digests, attributed to the good hydrophilicity of our developed monolithic support. Moreover, the dynamic concentration range for protein digestion was proved to be four orders of magnitude, and the IMER could endure at least 7-day consecutive usage. Furthermore, such an IMER was coupled with nano-RPLC-ESI/MS/MS for the analysis of extracted proteins from Escherichia coli. Compared to formerly reported silica hybrid monolith based IMER and the traditional in-solution counterpart, by our developed IMER, although the identified protein number was similar, the identified distinct peptide number was improved by 7% and 25% respectively

  14. Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk. (United States)

    Banerjee, Saumita; Sen, Ramkrishna; Mudliar, Sandeep; Pandey, R A; Chakrabarti, Tapan; Satpute, Dewanand


    Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H(2)O(2) solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H(2)O(2) and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (˜8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13-fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  15. Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. (United States)

    Uju; Shoda, Yasuhiro; Nakamoto, Aya; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Nakashima, Kazunori; Ogino, Chiaki; Kamiya, Noriho


    The potential of 1-buthyl-3-methylpyridinium chloride, [Bmpy][Cl], as a pretreatment solvent for lignocellulosic biomasses, Bagasse and Eucalyptus, was investigated. The yields of regenerated biomasses ranged between 35% and 96%, and varied according to the pretreatment time, type of ionic liquid (IL) and biomass. The pretreatment of the biomass with [Bmpy][Cl] resulted in up to 8-fold increase in the cellulose conversion when compared with the untreated biomass. For a short pretreatment period (i.e., 10 min), [Bmpy][Cl] showed better performance than 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) with respect to the initial enzymatic saccharification rates. The increase in the reaction rates with [Emim][OAc] treatment was because of a reduction in the cellulose crystallinity. In contrast, a decrease in the crystallinity index was not clearly observed for the biomass pretreated with [Bmpy][Cl], and the enhancement of the enzymatic saccharification rates using this IL is presumably due to a reduction in the degree of polymerization of cellulose in the biomass. Copyright © 2011. Published by Elsevier Ltd.

  16. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus. (United States)

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René


    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology. (United States)

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying


    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde


    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation. (United States)

    de Araújo, Cynthia Kérzia Costa; de Oliveira Campos, Alan; de Araújo Padilha, Carlos Eduardo; de Sousa Júnior, Francisco Canindé; do Nascimento, Ruthinéia Jéssica Alves; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino


    This work investigated the influence of chemical (Triton X-100) and biological surfactant preparation (rhamnolipids) in coconut husk hydrolysis that was subjected to pretreatment with acid-alkali or alkaline hydrogen peroxide. The natural and pretreated biomass was characterized using the National Renewable Energy Laboratory protocol analysis as well as X-ray diffraction and scanning electron microscopy. The results demonstrated that in terms of the total reducing sugars, there was no significant difference between the hydrolysis using Triton X-100 and rhamnolipids, regardless of the pretreatment. A cellulosic conversion value as high as 33.0% was obtained in experiments with rhamnolipids. The coconut husk was observed to be a potential biomass that could produce second generation ethanol, and the rhamnolipid preparation can be used to support for the enzymatic hydrolysis, enhancing the advantage of cellulose conversion into glucose over chemical surfactants because it is an environmentally friendly approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhancement of enzymatic colorimetric response by silver island films on high throughput screening microplates. (United States)

    Abel, Biebele; Clement, Travis C; Aslan, Kadir


    In this study, we report the use of an enzyme-based hybrid platform, which is comprised of silver island films, enzymes (HRP and AP) and high-throughput screening (HTS) microplates, to enhance the colorimetric response of enzymatic reactions. The hybrid platform was designed in a two-step process: (i) deposition of SIFs onto HTS microplates with low, medium, and high loading (refers to the extent of the surface plasmon resonance peak of SIFs at 460 nm) using Tollen's reaction scheme; and (ii) attachment of b-BSA or BEA as linkers for the immobilization of enzymes. The presence of SIFs within the wells of the HTS microplates was confirmed using an optical spectrophotometer and real-color photography. Control experiments, where SIFs were omitted from the surfaces were carried out to confirm the effect of SIFs on the enzymatic colorimetric response. Significant colorimetric signal enhancement was observed for HRP or AP on SIFs (high loading) deposited HTS microplates using b-BSA (up to ~3-fold for AP and ~6-fold HRP) or BEA (up to ~7-fold for both HRP and AP), as compared to our control samples. The observed increase in colorimetric response can be attributed to the nature of BEA, which exposes surface-bound enzymes to the substrate present in bulk more efficiently than b-BSA. This study proves that SIFs can serve as a valuable tool to improve the signal output of existing bioassays carried out in HTS microplates, which can be applicable to the field biosensors and plasmonics. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus

    DEFF Research Database (Denmark)

    Nielsen, Susanne Frydendal; Hjorth, Maibritt; Baby, Sanmohan


    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling...... the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling...

  2. Enhanced single-particle brightness and photostability of semiconductor polymer dots by enzymatic oxygen scavenging system (United States)

    Liu, Zhihe; Yang, Yingkun; Sun, Zezhou; Wu, Changfeng


    Semiconductor polymer dots (Pdots) are emerging as an excellent fluorescent probe in biology and medicine. However, the photostability of Pdots can't meet the requirements of long term single-particle imaging and tracking applications. Here we describe the enhanced single-particle brightness and photostability of Pdots by using an efficient enzymatic oxygen scavenging system (OSS). Pdots with particle diameters of 21 nm and 43 nm (PFBT21 and PFBT43) were prepared by a nanoprecipitation method. Single-particle imaging and photobleaching were performed to investigate the effect of OSS on the per-particle brightness and photostability of Pdots. Our results indicate that the single-particle brightness of the PFBT21 Pdots in OSS was enhanced nearly two times as compare to the PFBT21 Pdots in water. The photobleaching percentages of PFBT21 and PFBT43 in OSS were determined to be 29% and 33%, respectively. These values are decreased by 2-3 times as compared to those of the same Pdots in water, indicating the significantly improved photostability of Pdots by OSS. This study provides a promising approach for enhancing photostability of Pdots in long term single-particle tracking.

  3. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. (United States)

    Ariunbaatar, Javkhlan; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco


    Treatment of food waste by anaerobic digestion can lead to an energy production coupled to a reduction of the volume and greenhouse gas emissions from this waste type. According to EU Regulation EC1774/2002, food waste should be pasteurized/sterilized before or after anaerobic digestion. With respect to this regulation and also considering the slow kinetics of the anaerobic digestion process, thermal and chemical pretreatments of food waste prior to mesophilic anaerobic digestion were studied. A series of batch experiments to determine the biomethane potential of untreated as well as pretreated food waste was carried out. All tested conditions of both thermal and ozonation pretreatments resulted in an enhanced biomethane production. The kinetics of the anaerobic digestion process were, however, accelerated by thermal pretreatment at lower temperatures (food waste, was obtained with thermal pretreatment at 80 °C for 1.5 h. On the basis of net energy calculations, the enhanced biomethane production could cover the energy requirement of the thermal pretreatment. In contrast, the enhanced biomethane production with ozonation pretreatment is insufficient to supply the required energy for the ozonator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Jurado, Esperanza; Malmgren-Hansen, Bjørn

    In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily...... degradable fraction of manure in the biogas process. 2. Separation of the residual recalcitrant digested fiber fraction project. 3. Ultrasound and/or enzymatic treatment of the digested fiber fraction. 4. Recirculation of the treated fiber fraction into the reactor....

  5. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C

    NARCIS (Netherlands)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Heijne, ter Annemiek


    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from

  6. Cross-Linking Biomechanical Effect in Human Corneas by Same Energy, Different UV-A Fluence: An Enzymatic Digestion Comparative Evaluation. (United States)

    Kanellopoulos, Anastasios J; Loukas, Yannis L; Asimellis, George


    To evaluate ex vivo the possible difference in corneal cross-linking (CXL) biomechanical effect of different ultraviolet-A (UV-A) irradiances. The study involved 25 human donor corneas, randomly allocated to 5 groups (n = 5 each). CXL was applied with UV-A irradiances of 3, 9, 18, 30, and 45 mW/cm2, maintaining equal cumulative energy dose of 5.4 J/cm2. UV-A was delivered on half of the cornea. The nonirradiated halves served as controls. Specimens were subjected to collagenase-A enzymatic digestion. The time to complete dissolution in each specimen was recorded. Time to dissolution in group-A (3 mW/cm2 for 30 minutes) was 321 ± 13.4 minutes (range: 300-330) compared with 171 ± 8.2 (range: 165-180) for their control. In group-B (9 mW/cm2 for 10 minutes), it was 282 ± 19.6 minutes (range: 270-315) compared with 177 ± 6.7 (165-180) for their control. In group-C (18 mW/cm2 for 5 minutes), it was 267 ± 19.6 minutes (range: 240-285) compared with 177 ± 7.7 (range: 165-180) for their control. In group-D (30 mW/cm2 for 3 minutes), it was 252 ± 12.5 minutes (range: 240-270) compared with 180 ± 10.6 minutes (range: 165-195) for their control. In group-E (45 mW/cm2 for 2 minutes), it was 204 ± 17.1 minutes (range: 180-225) compared with 186 ± 8.2 minutes (range: 180-195) for their control. The data in this ex vivo human corneal study indicate that the biomechanical effect of CXL studied by resistance to enzymatic digestion in human corneas is comparable between irradiances of 9, 18 and 30 mW/cm and seems to be reduced at a fluence of 45 mW/cm2.

  7. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.


    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  8. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)


    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  9. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source. (United States)

    Hu, Rongting; Zheng, Xilai; Xin, Jia; Sun, Zhaoyue; Zheng, Tianyuan


    The denitrification efficiency of woody biomass as carbon source is low because of its poor carbon availability. In this study, representative poplar sawdust was pretreated with lime and peracetic acid to enhance the biomass digestibility to different degrees; sawdust was then mixed with soil to investigate its denitrification efficiency. Under controllable conditions (25-95°C, 12-24h, varying dosages), sawdust digestibility (characterized by reducing sugar yield) was selectively enhanced 1.0-21.8 times over that of the raw sawdust (28.8mgeq.glucoseg-1 dry biomass). This increase was mainly attributed to the removal of lignin from the biomass. As a carbon source, the sawdust (digestibility enhanced by 5.4 times) increased the nitrate removal rate by 4.7 times, without N2O emission. However, the sawdust with high digestibility (12.6 or 18.0 times), despite releasing more dissolved organic carbon (DOC), did not exhibit further increase in denitrification efficiency, and emitted N2O. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. (United States)

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou


    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively.

  11. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. (United States)

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie


    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. (United States)

    Mu, Ying; Jia, Dongling; He, Yayun; Miao, Yuqing; Wu, Hai-Long


    Development of fast and sensitive sensors for glucose determination is important in food industry, clinic diagnostics, biotechnology and many other areas. In these years, considerable attention has been paid to develop non-enzymatic electrodes to solve the disadvantages of the enzyme-modified electrodes, such as instability, high cost, complicated immobilization procedure and critical operating situation et al. Nano nickel oxide (NiO) modified non-enzymatic glucose sensors with enhanced sensitivity were investigated. Potential scanning nano NiO modified carbon paste electrodes up to high potential in alkaline solution greatly increases the amount of redox couple Ni(OH)(2)/NiOOH derived from NiO, and thus improves their electrochemical properties and electrocatalytical performance toward the oxidation of glucose. The non-enzymatic sensors response quickly to glucose and the response time is less than 5s, demonstrating excellent electrocatalytical activity and assay performance. The calibration plot is linear over the wide concentration range of 1-110 μM with a sensitivity of 43.9 nA/μM and a correlation coefficient of 0.998. The detection limit of the electrode was found to be 0.16 μM at a signal-to-noise ratio of 3. The proposed non-enzymatic sensors can be used for the assay of glucose in real sample. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Immunomodulatory activity of enzymatically synthesized glycogen and its digested metabolite in a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages. (United States)

    Yasuda, Michiko; Furuyashiki, Takashi; Nakamura, Toshiyuki; Kakutani, Ryo; Takata, Hiroki; Ashida, Hitoshi


    Previously, we developed enzymatically synthesized glycogen (ESG) from starch, and showed its immunomodulatory and dietary fiber-like activities. In this study, we investigated the metabolism of ESG and its immunomodulatory activity using differentiated Caco-2 cells as a model of the intestinal barrier. In a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages, mRNA expression of IL-6, IL-8, IL-1β and BAFF cytokines was up-regulated in Caco-2 cells and IL-8 production in basolateral medium was induced after 24 h apical treatment with 5 mg ml(-1) of ESG. The mRNA level of iNOS was also up-regulated in RAW264.7 macrophages. After characterization of the binding of anti-glycogen monoclonal antibodies (IV58B6 and ESG1A9) to ESG and its digested metabolite resistant glycogen (RG), an enzyme-linked immunosorbent assay (ELISA) system was developed to quantify ESG and RG. Using this system, we investigated the metabolism of ESG in differentiated Caco-2 cells. When ESG (7000 kDa, 5 mg ml(-1)) was added to the apical side of Caco-2 monolayers, ESG disappeared and RG (about 3000 kDa, 3.5 mg ml(-1)) appeared in the apical solution during a 24 h incubation. Neither ESG nor RG was detected in the basolateral solution. In addition, both ESG and RG were bound to TLR2 in Caco-2 cells. In conclusion, we suggest that ESG is metabolized to a RG-like structure in the intestine, and this metabolite activates the immune system via stimulation of the intestinal epithelium, although neither ESG nor its metabolite could permeate the intestinal cells under our experimental conditions. These results provide evidence for the beneficial function of ESG as a food ingredient.

  14. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. (United States)

    Lou, Hongming; Zhu, J Y; Lan, Tian Qing; Lai, Huanran; Qiu, Xueqing


    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5-6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). The adsorption isotherms of a commercial Trichoderma reesi cellulase cocktail (CTec2) produced by these lignin residues at 50 °C were measured in the pH range of 4.5-6.0. The zeta potentials of these lignin samples were also measured. We discovered that an elevated pH significantly increased the lignin surface charge (negative), which causes lignin to become more hydrophilic and reduces its coordination affinity to cellulase and, consequently, the nonspecific binding of cellulase. The decreased nonspecific cellulase binding to lignin is also attributed to enhanced electrostatic interactions at elevated pH through the increased negative charges of cellulase enzymes with low pI. The results validate the hypothesis that the increases in enzymatic saccharification efficiencies at elevated pH for different pretreated lignocelluloses are solely the result of decreased nonspecific cellulase binding to lignin. This study contradicts the well-established concept that the optimal pH is 4.8-5.0 for enzymatic hydrolysis using Trichoderma reesi cellulose, which is widely accepted and exclusively practiced in numerous laboratories throughout the world. Because an elevated pH can be easily implemented commercially without capital cost and with minimal operating cost, this study has both scientific importance and practical significance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin (United States)

    Haifeng Zhou; Hongming Lou; Dongjie Yang; J.Y. Zhu; Xueqing Qiu


    This study conducted an investigation of the effect of lignosulfonate (LS) on enzymatic saccharification of lignocelluloses. Two commercial LSs and one laboratory sulfonated kraft lignin were applied to Whatman paper, dilute acid and SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses) pretreated aspen, and kraft alkaline and SPORL pretreated...

  16. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin (United States)

    Zhaojiang Wang; JY Zhu; Yingjuan Fu; Menghua Qin; Zhiyong Shao; Jungang Jiang; Fang Yang


    Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively...

  17. Super blue box recycling (SUBBOR) enhanced two-stage anaerobic digestion process for recycling municipal solid waste: laboratory pilot studies. (United States)

    Vogt, G M; Liu, H W; Kennedy, K J; Vogt, H S; Holbein, B E


    The super blue box recycling (SUBBOR) process is an enhanced, multi-stage anaerobic digestion process for mixed municipal solid waste (MSW) and other biomass feedstock materials. The technology centers on enhanced high solids, thermophilic digestion after steam-pressure disruption of the ligno-cellulosic fiber components that are recalcitrant to conventional anaerobic digestion. Mixed MSW, rich in organic components but also containing inorganic materials, such as glass, aluminum and steel, as well as non-digestible plastic materials, has been laboratory pilot tested with a fully integrated process train designed to treat and recycle all of the MSW components. Methane yields from the MSW were 0.36 m3 CH4/kg volatile solids (VS) representing a 40% increase over the yield obtained from conventional single stage digestion. The secondary digestion step after steam pressure disruption also provided a 40% improvement in total solids and VS reduction. The residual organic fraction following two-stage digestion was fine in texture and was recovered as a clean peat fraction with reduced contents of heavy metal and other fugitive non-digested contaminants. Mass and energy balance determinations indicated a high degree of MSW diversion from landfill disposal (>80%) was achievable by the SUBBOR process as well as substantial net electrical and thermal energy production. Continuous long-term trials of the SUBBOR process at 25,000 tonnes/year are underway.

  18. Blending based optimisation and pretreatment strategies to enhance anaerobic digestion of poultry manure. (United States)

    Rodriguez-Verde, Ivan; Regueiro, Leticia; Lema, Juan M; Carballa, Marta


    Anaerobic digestion of poultry manure is limited by the excessive levels of nitrogen and the high concentration of dry matter. These limitations are usually overcome either by applying procedures to remove nitrogen or by employing pretreatments that allows to solubilise organic matter. In this work, the treatment of poultry manure was enhanced by co-digestion with pig manure through the methodological determination of optimal mixtures combined together with a thermochemical pretreatment coupled to ammonia stripping. The optimum poultry-pig mixture, resulting in a 24%:76% (volume basis) poultry-pig manure, was determined by applying a methodology based on linear programming which calculates the proportions of the blend which returns the maximum methane production while keeping a stable process. Pretreatment batch experiments, consisting of increasing both temperature and pH simultaneously with ammonia stripping process was optimised for a temperature of 90 °C and a pH of 10 resulting in a nitrogen removal efficiency of 72% and a 1.2-fold higher methane production in comparison to the unpretreated mixture. Continuous anaerobic co-digestion of pretreated optimum mixture enhanced the COD removal efficiency by 37% when compared with the treatment of unpretreated feedstock (37% vs 27%, respectively). This study indicates that combining blending optimisation of substrates, thermochemical pretreatments and ammonia stripping procedures prior to anaerobic co-digestion becomes a good strategy to overtake the limitations offered by solid- and nitrogen-rich substrates, such as poultry manure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains. (United States)

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena


    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  20. Enhanced ultrasound-assisted enzymatic hydrolysis extraction of quinolizidine alkaloids from Sophora alopecuroides L. seeds. (United States)

    Wang, Hanqing; Tong, Yue; Li, Wei; Zhang, Xia; Gao, Xiaojuan; Yong, Jingjiao; Zhao, Jianjun; Koike, Kazuo


    Quinolizidine alkaloids are the main bioactive components in Sophora alopecuroides L. This study reports a novel ultrasound-assisted enzymatic hydrolysis method for the extraction of these important alkaloids. Box-Behnken design, a widely used response surface methodology, was used to investigate the effects of process variables on ultrasound bath-assisted enzymatic hydrolysis (UAEH) extraction. Four independent variables, pH, extraction temperature (°C), extraction time (min) and solvent-to-material ratio (mL/g), were studied. For the extraction of sophocarpine, oxysophocarpine, oxymatrine, matrine, sophoramine, sophoridine and cytisine, the optimal UAEH condition was found to be a pH of 5, extraction temperature of 54 °C, extraction time of 60 min and solvent-to-material ratio of 112 mL/g. The experimental values obtained under optimal conditions were fairly consistent with the predicted values. UAEH extraction was then compared with reflux heating, enzymatic extraction and ultrasound-assisted extraction. Of these extraction methods, UAEH extraction under optimal conditions produced the highest yield for seven types of alkaloids. In addition, UAEH extraction resulted in lower ingredient degradation than reflux heating extraction.

  1. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? (United States)


    Background We and other workers have shown that accessory enzymes, such as β-glucosidase, xylanase, and cellulase cofactors, such as GH61, can considerably enhance the hydrolysis effectiveness of cellulase cocktails when added to pretreated lignocellulosic substrates. It is generally acknowledged that, among the several factors that hamper our current ability to attain efficient lignocellulosic biomass conversion yields at low enzyme loadings, a major problem lies in our incomplete understanding of the cooperative action of the different enzymes acting on pretreated lignocellulosic substrates. Results The reported work assessed the interaction between cellulase and xylanase enzymes and their potential to improve the hydrolysis efficiency of various pretreated lignocellulosic substrates when added at low protein loadings. When xylanases were added to the minimum amount of cellulase enzymes required to achieve 70% cellulose hydrolysis of steam pretreated corn stover (SPCS), or used to partially replace the equivalent cellulase dose, both approaches resulted in enhanced enzymatic hydrolysis. However, the xylanase supplementation approach increased the total protein loading required to achieve significant improvements in hydrolysis (an additive effect), whereas the partial replacement of cellulases with xylanase resulted in similar improvements in hydrolysis without increasing enzyme loading (a synergistic effect). The enhancement resulting from xylanase-aided synergism was higher when enzymes were added simultaneously at the beginning of hydrolysis. This co-hydrolysis of the xylan also influenced the gross fiber characteristics (for example, fiber swelling) resulting in increased accessibility of the cellulose to the cellulase enzymes. These apparent increases in accessibility enhanced the steam pretreated corn stover digestibility, resulting in three times faster cellulose and xylan hydrolysis, a seven-fold decrease in cellulase loading and a significant increase in


    Directory of Open Access Journals (Sweden)



    Full Text Available In this experiment we have studied the effect of different levels of main cellulose categories (NDF, ADF on nutritive and bioproductive indices and on digestive viscosity at the jejunum and ileum level at broiler chickens. The experiment was carried out on 44 broiler chickens divided into two experimental groups (V1-5% and V2-15%. In the structure of combined feed was used barley in proportion of 5% for V1-5% and 15% for V2-15%. For both experimental groups were used enzymatic mixture which contained protease and cellulose. The hybrid used was Ross 308. The raising of NDF and ADF levels in broiler diet did not affect significantly the nutritive and bioproductive indices, but was recorded an increase of digestive viscosity at the jejunum and ileum level with 28,31%.

  3. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.; Schoene, Robin P.; Urgun-Demirtas, Meltem


    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amended digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.

  4. Gluten-free starch noodles from sweet potato with reduced starch digestibility and enhanced protein content. (United States)

    Menon, Renjusha; Padmaja, G; Jyothi, A N; Asha, V; Sajeev, M S


    Sweet potato starch (SPS) noodles despite being gluten-free, has low nutritional value as it lacks proteins, minerals, vitamins etc. The objective of this study was to develop gluten-free starch noodles from sweet potato with enhanced protein content through fortification with whey protein concentrate (WPC) and to study the effect of protein fortification and blending SPS with banana (BS), cassava (CS) and mung bean (MBS) starches and annealed cassava starch (ACS) in reducing the starch digestibility. The highest protein retention in cooked noodles was obtained for 20 % WPC fortification, while the lowest starch digestibility was observed for 40 % BS fortified noodles followed by 50 % ACS fortified noodles. The highest resistant starch (RS) retention was for BS and ACS fortified noodles, which also had medium glycemic index of 66.3 (BS) and 67.2 (ACS). High sensory scores were obtained for the BS and 20 % WPC fortified noodles. The study showed that protein and/or BS fortification with SPS could enhance the acceptability as well as functional value of SPS noodles.

  5. Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars. (United States)

    Mou, Hong-Yan; Orblin, Elina; Kruus, Kristiina; Fardim, Pedro


    The surface chemistry of milled birch and pine wood pretreated by ionic liquid, hydrothermal and hydrotropic methods, followed by enzymatic hydrolysis was studied in this work. Surface coverage by lignin was measured by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to describe the surface chemical composition after pretreatment in detail, and the morphology after pretreatment was investigated by FE-SEM. Ionic liquid (1-ethyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride) pretreatment at room temperature made the samples swell but did not dissolve the wood. Comparing the surface coverage by lignin, both in the case of birch and pine wood, hydrotropic worked best to remove the lignin hampering enzymatic hydrolysis. ToF-SIMS supported this finding, and showed that in birch, the carbohydrates were degraded more than in pine after hydrotropic pretreatment. The glucose yield of birch was improved by hydrotropic pretreatment from 5.1% to 83.9%, more significantly than in case of pine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Enhancement of high-solids enzymatic hydrolysis of corncob residues by bisulfite pretreatment for biorefinery. (United States)

    Xing, Yang; Bu, Lingxi; Zheng, Tianran; Liu, Shijie; Jiang, Jianxin


    Co-production of glucose, furfural and other green materials based on a lignocellulosic biorefinery is a promising way to realize the commercial application of corncob residues. An effective process was developed for glucose production using low temperature bisulfite pretreatment and high-solids enzymatic hydrolysis. Corncob residues from furfural production (FRs) were pretreated with 0.1g NaHSO3/g dry substrate at 100°C for 3h. Lignin was sulfonated and sulfonic groups were produced during pretreatment, which resulted in decreasing the zeta potential of the samples. Compared with raw material, bisulfite pretreatment of FRs increased the glucose yield from 18.6 to 99.45% after 72h hydrolysis at a solids loading of 12.5%. The hydrolysis residues showed a relatively high thermal stability and concentrated high derivatives. Direct pretreatment followed by enzymatic hydrolysis is an environmentally-friendly and economically-feasible method for the production of glucose and high-purity lignin, which could be further converted into high-value products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment. (United States)

    Garmakhany, Amir Daraei; Kashaninejad, Mahdi; Aalami, Mehran; Maghsoudlou, Yahya; Khomieri, Mortza; Tabil, Lope G


    In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw. © 2013 Society of Chemical Industry.

  8. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. (United States)

    An, Liangliang; Wang, Guanhua; Jia, Hongyu; Liu, Cuiyun; Sui, Wenjie; Si, Chuanling


    The heterogeneity of lignin chemical structure and molecular weight results in the lignin inhomogeneous properties which also covers the antioxidant performance. In order to evaluate the effects of lignin heterogeneity on its antioxidant activity, four lignin fractions from enzymatic hydrolysis lignin were classified by sequential organic solvent extraction and further evaluated by DPPH (1,1-Diphenyl-2-Picrylhydrazyl) free radical scavenging capacity and reducing power analysis. The characterization including FTIR, (1)H NMR and GPC showed that the fractionation process could effectively separate lignin fractions with distinctly different molecular weight and weaken the heterogeneity of unfractionated lignin. The antioxidant performance comparison of lignin fractions indicated that the dichloromethane fraction (F1) with lowest molecular weight (4585g/mol) and highest total phenolics content (246.13mg GAE/g) exhibited the highest antioxidant activity whose value was close to commercial antioxidant BHT (butylated hydroxytoluene). Moreover, the relationship between the antioxidant activity and the structure of lignin was further discussed to elucidate the mechanism of antioxidant activity improvement of lignin fractionation. Consequently, this study suggested that the sequential extraction was an effective way to obtain relatively homogeneous enzymatic hydrolysis lignin fractions which showed the potential for the value-added antioxidant application. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    NARCIS (Netherlands)

    Kuhnel, S.; Schols, H.A.; Gruppen, H.


    Background - Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be

  10. Enzymatic detection of formalin-fixed museum specimens for DNA analysis and enzymatic maceration of formalin-fixed specimens

    DEFF Research Database (Denmark)

    Sørensen, Margrethe; Redsted Rasmussen, Arne; Simonsen, Kim Pilkjær


    Abstract.—A simple enzymatic screening method has been developed to detect whether a tissue sample has been preserved with formalin or with ethanol only because such a method is a useful tool for predicting the quality of genetic test results. The method is based on enzymatic digestion at 55 C at...... be macerated by enzymatic digestion under alkaline conditions at 55 C....

  11. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Su

    Full Text Available The glycoside hydrolases (GH of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  12. Enzymatic Inactivation of Endogenous IgG by IdeS Enhances Therapeutic Antibody Efficacy. (United States)

    Järnum, Sofia; Runström, Anna; Bockermann, Robert; Winstedt, Lena; Crispin, Max; Kjellman, Christian


    Endogenous plasma IgG sets an immunologic threshold that dictates the activity of tumor-directed therapeutic antibodies. Saturation of cellular antibody receptors by endogenous antibody limits antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Here, we show how enzymatic cleavage of IgG using the bacterial enzyme IdeS can be utilized to empty both high and low affinity Fcγ-receptors and clear the entire endogenous antibody pool. Using in vitro models, tumor animal models as well as ex vivo analysis of sera collected during a previous clinical trial with IdeS, we show how clearing of competing plasma antibody levels with IdeS unblocks cellular antibody receptors. We show that therapeutic antibodies against breast cancer (trastuzumab), colon cancer (cetuximab), and lymphomas (rituximab and alemtuzumab) can be potentiated when endogenous IgG is removed. Overall, IdeS is shown to be a potent tool to reboot the human antibody repertoire and to generate a window to preferentially load therapeutic antibodies onto effector cells and thereby create an armada of dedicated tumor-seeking immune cells. Mol Cancer Ther; 16(9); 1887-97. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. (United States)

    Hu, Yuansheng; Hao, Xiaodi; Wang, Jimin; Cao, Yali


    This study attempted to enhance anaerobic conversion of lignocellulosic materials in excess sludge by bioaugmentation and pretreatment. The results reveal that highly active lignocellulolytic microorganisms (Clostridium stercorarium and Bacteroides cellulosolvens) could be enriched from anaerobic sludge in ordinarily operated anaerobic digester (AD). Inoculating these microorganisms into AD could substantially enhance the degradation of cellulose and hemicellulose. However, this effect of bioaugmentation was shielded for raw excess sludge due to lignin incrustation in native biosolids. For this problem, pretreatments including acid, alkali, thermal and ultrasonic methods were effectively used to deconstruct the lignin incrustation, in which thermal pretreatment was demonstrated to be the most effective one. Then, pretreatment associated with bioaugmentation was successfully used to enhance the energy conversion of lignocellulosic materials, which resulted in the degradation of cellulose, hemicellulose and lignin to 68.8-78.2%, 77.4-89% and 15.4-33.7% respectively and thus increased the CH4 production by 210-246%, compared with ordinary AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 liters (United States)

    A fermentation process, which was designated the EDGE (enhanced dry grind enzymatic) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial Beta-glucanases were used to hydrolyze (1,3)(1,...

  15. Plasmon-Enhanced Enzymatic Reactions 2:Optimization of Enzyme Activity by Surface Modification of Silver Island Films with Biotin-Poly (Ethylene-glycol)-Amine (United States)

    Abel, Biebele; Aslan, Kadir


    Surface modification of silver island films (SIFs) was carried out with Biotin-Poly (Ethylene-glycol)-Amine (BEA), which acts as a cross-linker between the silver surface and horse radish peroxidase (HRP) enzyme for optimum plasmon-enhanced enzymatic activity. SIFs-deposited blank glass slides and SIFs-deposited 3-Aminopropyltriethoxysilane(APTES)-coated glass slides were used as our plasmonic surfaces.In this regard, three different extent of loading of SIFs were also prepared (low, medium and high) on APTES-coated glass slides. Streptavidin-linked HRP enzyme was attached to SIFs-deposited blank glass slides and SIFs-deposited APTES-coated glass slides through the well-known biotin-streptavidin interactions. The characterization of these surfaces was done using optical absorption spectroscopy. The loading of SIFs on glass slides was observed to have significant effect on the efficiency of plasmon-enhanced enzymatic activity, where an enhancement of 200% in the enzymatic activity was observed when compared to our previously used strategies for enzyme immobilization in our preceding work[1]. In addition, SIFs-deposited on APTES-coated glass slides were found to be re-usable for plasmon-enhanced enzymatic reactions unlike SIFs deposited on to blank glass slides. PMID:22485194

  16. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. (United States)

    Baek, Gahyun; Kim, Jaai; Cho, Kyungjin; Bae, Hyokwan; Lee, Changsoo


    The effect of biostimulation with ferric oxides, semiconductive ferric oxyhydroxide, and conductive magnetite on the anaerobic digestion of dairy wastewater was examined in a batch mode. The reactors supplemented with ferric oxyhydroxide (R2) and magnetite (R3) showed significantly enhanced biomethanation performance compared with the control (R1). The removal of chemical oxygen demand (COD) after 30 days was 31.9, 59.3, and 82.5% in R1, R2, and R3, respectively. The consumed COD was almost fully recovered as biogas in R2 and R3, while only 79% was recovered in R1. The total energy production as biogas was accordingly 32.2, 71.0, and 97.7 kJ in R1, R2, and R3, respectively. The reactors also differed in the acid formation profile with more propionate and butyrate found in R1 and more acetate found in R3. The enhanced biomethanation seems to be associated with variations in the bacterial community structure supposedly induced by the ferric oxides added. In contrast, no evident variation was observed in the archaeal community structure among the reactors. The potential electric syntrophy formed between Methanosaeta concilii-like methanogens and electroactive iron-reducing bacteria, particularly Trichococcus, was likely responsible for the enhanced performance. The stimulated growth of fermentative iron reducers may also have contributed by altering the metabolic characteristics of the bacterial communities to produce more favorable acidogenic products for methanogenesis. The overall results suggest the potential of biostimulation with (semi)conductive ferric oxides to enhance the rate and efficiency of the biomethanation of organic wastes. This seems to be potentially attractive, as increasing attention is being paid to the energy self-sufficiency of waste/wastewater treatment processes today.

  17. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution. (United States)

    Zhang, Jingsi; Li, Ning; Dai, Xiaohu; Tao, Wenquan; Jenkinson, Ian R; Li, Zhuo


    Comprehensive insights into the sludge digestate dewaterability were gained through porous network structure of sludge. We measured the evolution of digestate dewaterability, represented by the solid content of centrifugally dewatered cake, in high-solids sequencing batch digesters with and without thermal hydrolysis pretreatment (THP). The results show that the dewaterability of the sludge after digestion was improved by 3.5% (±0.5%) for unpretreated sludge and 5.1% (±0.4%) for thermally hydrolyzed sludge. Compared to the unpretreated sludge digestate, thermal hydrolysis pretreatment eventually resulted in an improvement of dewaterability by 4.6% (±0.5%). Smaller particle size and larger surface area of sludge were induced by thermal hydrolysis and anaerobic digestion treatments. The structure strength and compactness of sludge, represented by elastic modulus and fractal dimension respectively, decreased with increase of digestion time. The porous network structure was broken up by thermal hydrolysis pretreatment and was further weakened during anaerobic digestion, which correspondingly improved the dewaterability of digestates. The logarithm of elastic modulus increased linearly with fractal dimension regardless of the pretreatment. Both fractal dimension and elastic modulus showed linear relationship with dewaterability. The rheological characterization combined with the analysis of fractal dimension of sewage sludge porous network structure was found applicable in quantitative evaluation of sludge dewaterability, which depended positively on both thermal hydrolysis and anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology. (United States)

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C


    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. Published by Elsevier Ltd.

  19. A Novel Laccase from Ganoderma Lucidum Capable of Enhancing Enzymatic Degradation of Lignocellulolytic Biomass

    DEFF Research Database (Denmark)


    for the hydrolysis of biomass using a laccase derived from Ganoderma lucidum. Further, the invention provides an enzyme composition comprising a laccase derived from Ganoderma lucidum which may be combined with one or more cellulases, and for its use in enhancing lignocellulose biomass hydrolysis....

  20. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production. (United States)

    Anjum, Muzammil; Khalid, Azeem; Qadeer, Samia; Miandad, Rashid


    Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20-50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l -1 ) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m 3 t -1 substrate compared with 57.35 m 3 t -1 substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.

  1. Non-enzymatic glucose sensing by enhanced Raman spectroscopy on flexible 'as-grown' CVD graphene. (United States)

    Chattopadhyay, Surojit; Li, Mau-Shiun; Kumar Roy, Pradip; Wu, C T


    Unmodified, as-grown few layered graphene on copper substrates have been used for glucose sensing using Raman spectroscopy. Graphene with a stronger 2D band is a better Raman enhancer with significant fluorescence suppression and finer line widths of the Raman signals. The origin of the graphene enhanced Raman spectroscopy (GERS) signal of glucose is attributed to a fractional charge transfer (calculated to be 0.006 using electrochemical parameters) between glucose and graphene aided by a possible π-π interaction. Physiological concentrations of glucose (10-500 mg dl(-1)) in PBS have been used for the study. For each glucose concentration, the spectral reproducibility is within 5-25% as calculated by the relative standard deviation of several measurements. The intensity ratio of the 1122 cm(-1) peak of glucose and the 2D peak of graphene varied linearly with the glucose concentration and can be used as a calibration curve for unknown sample measurements.

  2. Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield. (United States)

    Liu, H W; Walter, H K; Vogt, G M; Vogt, H S; Holbein, B E


    Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials. Copyright 2002 John Wiley & Sons, Inc.

  3. Performance of thermophilic anaerobic digesters using inoculum mixes with enhanced methanogenic diversity

    KAUST Repository

    Ghanimeh, Sophia


    BACKGROUND Reportedly, various mixes of seeds were quasi-randomly selected to startup anaerobic digesters. In contrast, this study examines the impact of inoculating thermophilic anaerobic digesters with a designed mix of non-acclimated seeds based on their methanogen composition, using Quantitative Polymerase Chain Reaction (QPCR) of 16S rRNA gene, to achieve high abundance and diversity of methanogens. RESULTS Based on QPCR results, two seed mixes were selected to inoculate two anaerobic digesters: digester (A) was inoculated with a control seed consisting of digestate, manure, and activated sludge; and digester (B) was inoculated with a further methanogen-enriched seed consisting of the control seed with added compost and leachate. Both seed combinations yielded a balanced microflora that is able to achieve a successful startup. However, upon reaching steady state, digester B exhibited lower propionate levels, resulting in lower VFA concentration and increased buffering capacity, indicating greater stability. Acetotrophs and hydrogenotrophs were dominated by Methanosarcinaceae and Methanobacteriales, respectively, in both digesters, exhibiting an average ratio of 66-to-34% in A and 76-to-24% in B during steady state. CONCLUSION The inoculation strategy in digester B resulted in improved stability, lower propionate concentration and 10% higher relative abundance of acetotrophs.

  4. Characterisation of selenium compounds in rye seedling biomass using {sup 75}Se-labelling/SDS-PAGE separation/{gamma}-scintillation counting, and HPLC-ICP-MS analysis of a range of enzymatic digests

    Energy Technology Data Exchange (ETDEWEB)

    Bryszewska, Malgorzata A. [Technical University of Lodz (Poland). Institute of General Food Chemistry; Ambroziak, Wojciech [Technical University of Lodz (Poland). Institute of Fermentation Technology and Microbiology; Rudzinski, Juliusz [Technical University of Lodz (Poland). Institute of Applied Radiation Chemistry; Lewis, D. John [Central Science Laboratory, York (United Kingdom)


    In the present study, selenium-enriched plant biomass was investigated to evaluate the ability of rye seedlings to take up, and assimilate, inorganic selenium. Two different analytical approaches were used. Electrophoretic separation (SDS-PAGE) of proteins extracted from {sup 75}Se-labelled biomass was used to investigate the biotransformation of selenite into organic forms of the element. Ion-pair chromatography coupled with ICP-MS detection was chosen for the analysis of selenium species, enzymatically extracted from the plant biomass. The results of three enzymatic hydrolysis procedures and three sequential enzymatic extractions procedures are compared. The most effective single extraction was proteolysis (using protease type XIV), giving an overall extraction efficiency of 48%. However, for combinations of enzymes, the most effective was cellulase (Trichoderma viride) followed by sequential extraction of the solid pellet using protease type XIV, giving an extraction efficiency of 70%. The complementary data from the electrophoretic fractionation of proteins, and the HPLC separation of Se-species in the proteolytic digests, reveal the existence of large number of selenium-containing compounds in the rye seedling plant biomass. The results showed the complete biotransformation of inorganic selenium into organic forms during germination of the rye seedlings. HPLC-ICP-MS analysis of extracts from the plant biomass did not show the presence of selenate or selenite. At the time of this study, the lack of suitable organic-MS facilities meant that it was not possible to characterise them fully. However, the data does show that a combination of different enzymes, rather than just the commonly-used protease, should be considered when developing an extraction strategy for selenium in different food types to those already reported in the literature. (orig.)

  5. Characterisation of selenium compounds in rye seedling biomass using 75Se-labelling/SDS-PAGE separation/gamma-scintillation counting, and HPLC-ICP-MS analysis of a range of enzymatic digests. (United States)

    Bryszewska, Malgorzata A; Ambroziak, Wojciech; Rudzinski, Juliusz; Lewis, D John


    In the present study, selenium-enriched plant biomass was investigated to evaluate the ability of rye seedlings to take up, and assimilate, inorganic selenium. Two different analytical approaches were used. Electrophoretic separation (SDS-PAGE) of proteins extracted from 75Se-labelled biomass was used to investigate the biotransformation of selenite into organic forms of the element. Ion-pair chromatography coupled with ICP-MS detection was chosen for the analysis of selenium species, enzymatically extracted from the plant biomass. The results of three enzymatic hydrolysis procedures and three sequential enzymatic extractions procedures are compared. The most effective single extraction was proteolysis (using protease type XIV), giving an overall extraction efficiency of 48%. However, for combinations of enzymes, the most effective was cellulase (Trichoderma viride) followed by sequential extraction of the solid pellet using protease type XIV, giving an extraction efficiency of 70%. The complementary data from the electrophoretic fractionation of proteins, and the HPLC separation of Se-species in the proteolytic digests, reveal the existence of large number of selenium-containing compounds in the rye seedling plant biomass. The results showed the complete biotransformation of inorganic selenium into organic forms during germination of the rye seedlings. HPLC-ICP-MS analysis of extracts from the plant biomass did not show the presence of selenate or selenite. At the time of this study, the lack of suitable organic-MS facilities meant that it was not possible to characterise them fully. However, the data does show that a combination of different enzymes, rather than just the commonly-used protease, should be considered when developing an extraction strategy for selenium in different food types to those already reported in the literature.

  6. Anaerobic Co-digestion for Enhanced Renewable Energy and Green House Gas Emission Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Navaratnam, Navaneethan; Zitomer, Daniel


    The need to develop renewable energy is important for replacing fossil fuel, which is limited in quantity and also tends to increase in price over time. The addition of high strength organic wastes in municipal anaerobic digesters is growing and tends to increase renewable energy production. In addition, conversion of wastes to energy significantly reduces uncontrolled greenhouse gas emissions. Co-digestion of municipal sludge with any combination of wastes can result in synergistic, antagonistic or neutral outcomes. The objectives of this study were to identify potential co-digestates, determine synergistic, antagonistic and neutral effects, determine economic benefits, quantify performance of bench scale co-digesters, identify influence of co-digestion on microbial communities and implement appropriate co-digestion, if warranted, after full-scale testing. A market study was used to identify promising co-digestates. Most promising wastes were determined by biochemical methane potential (BMP) and other testing followed by a simple economic analysis. Performance was investigated using bench-scale digesters receiving synthetic primary sludge with and without co-digestates. Denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction (qPCR) analyses were performed on the gene encoding the α subunit of methyl coenzyme M reductase (mcrA) to compare methanogen communities among the digesters. One significant band contributing to the greatest difference in banding patterns was excised, cloned, amplified and sequenced. Full- scale co-digestion was conducted using the most promising co-digestate at South Shore Wastewater Reclamation Facility (Oak Creek, WI). Over 80 wastes were identified from 54 facilities within 160 km of an existing municipal digester. A simple economic comparison identified the greatest benefits for seven co-digestates. Methane production rates of two co- digester systems increased by 105% and 66% in comparison to a control

  7. Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids. (United States)

    Parrilla, Marc; Cánovas, Rocío; Andrade, Francisco J


    A novel paper-based potentiometric sensor with an enhanced response for the detection of glucose in biological fluids is presented. The electrode consists on platinum sputtered on a filter paper and a Nafion membrane to immobilize the enzyme glucose oxidase. The response obtained is proportional to the logarithm of the concentration of glucose, with a sensitivity of -119±8mV·decade-1, a linear range that spans from 10-4M to 10-2.5 M and a limit of detection of 10-4.5 M of glucose. It is shown that Nafion increases the sensitivity of the technique while minimizing interferences. Validation with human serum samples shows an excellent agreement when compared to standard methods. This approach can become an interesting alternative for the development of simple and affordable devices for point of care and home-based diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Progress in digestive endoscopy: Flexible Spectral Imaging Colour Enhancement (FICE)-technical review. (United States)

    Negreanu, L; Preda, C M; Ionescu, D; Ferechide, D


    Background. A substantial advance in digestive endoscopy that has been made during the last decade is represented by digital chromoendoscopy, which was developed as a quicker and sometimes better alternative to the gold standard of dye spraying. Fujifilm developed a virtual coloration technique called Flexible spectral Imaging Color Enhancement (FICE). FICE provides a better detection of lesions of "minimal" esophagitis, of dysplasia in Barrett's esophagus and of squamous cell esophageal cancer. The use of FICE resulted in an improvement in the visualization of the early gastric cancer, being less invasive, and time consuming than the classic dye methods. Current evidence does not support FICE for screening purposes in colon cancer but it definitely improves characterization of colonic lesions. Its use in inflammatory bowel disease is still controversial and in video capsule endoscopy is considered a substantial progress. Conclusions. The use of FICE endoscopy in routine clinical practice can increase the diagnostic yield and can provide a better characterization of lesions. Future studies to validate its use, the good choice of channels, and the "perfect indications" and to provide common definitions and classifications are necessary.

  9. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Hejnfelt, Anette; Ellegaard, L.


    The main objective of this study was to investigate the degradation efficiency of centralized biogas plants and provide guidance for the design of more efficient digester and post-digestion systems. These centralized biogas plants in Denmark digest manure together with organic waste from the food...... industry to generate biogas, which is used for electricity and thermal energy. A total of 20 such plants are currently active in Denmark, most of which were included in the investigation. From the plants, samples were obtained from various steps of the process. Samples were analysed and the residual biogas...... potential determined by batch post-digestion at various temperature levels. Results were correlated with plant characteristics and production statistics in order to judge the efficiency of various digestion concepts. A simplified model based on a two-step biogas production process was developed...

  10. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. (United States)

    Montazer, Majid; Seifollahzadeh, Samira


    Textile materials can be treated with some enzymes to improve their functionality. The usual enzymatic treatment hydrolyzes the textile surfaces that leads to increase the functional groups. Here, the polyester/wool fabric as a blend of fibers fabric was selected and treated with the two different types of enzymes to increase the surface activity with a propose of higher nano-TiO(2) adsorption. The fabric was first treated with proteases and lipases to hydrolyze the wool and the polyester surfaces, respectively. It has been then dipped into an ultrasound bath containing nano TiO(2) and cross-linking agent followed by curing. The cross-linking agent, butane tetracarboxylic acid (BTCA), also assisted to enhance the nano-particles adsorption and stabilization on the fabric surface. The self-cleaning properties of the fabrics were examined through evaluating the color removal from the stained fabric with Acid Blue 113. The antibacterial properties were determined by reduction growth of a Gram-negative bacteria E. coli. and the UV protection was assessed by UV-reflectance spectrum. The SEM pictures and EDX spectrums of some samples were also reported. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  11. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production

    DEFF Research Database (Denmark)

    Søndergaard, Marie M.; Fotidis, Ioannis; Kovalovszki, Adam


    all mono-substrates tested. On the basis of BMP, the substrates ranked as follows: meadow grass > spring barley, winter wheat, winter barley, ryegrass > rapeseed > manure. Co-digestion of manure with byproducts resulted in only an additive and not synergistic methane production. Continuous co-digestion...... potential (BMP) of six agricultural organic byproducts were tested. Consecutively, the byproduct with the highest BMP was used as a co-digestion substrate with manure, in a continuous stirred tank reactor (CSTR). Meadow grass had the highest BMP value [388 ± 30 NmL of CH4 g–1 of volatile solids (VS)] among...

  12. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment. (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie


    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931 Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

    Directory of Open Access Journals (Sweden)

    Manuel J. Becerra-Dórame


    Full Text Available Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control, an autotrophic system (AS based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.

  14. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931) Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems (United States)

    Becerra-Dórame, Manuel J.; Martínez-Porchas, Marcel; Martínez-Córdova, Luis R.; Rivas-Vega, Martha E.; Lopez-Elias, José A.; Porchas-Cornejo, Marco A.


    Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control), an autotrophic system (AS) based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS) based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp. PMID:22649317



    Thaniya Kaosol; Narumol Sohgrathok


    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...



    Thaniya Kaosol; Narumol Sohgrathok


    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  17. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2. (United States)

    Hu, Yuansheng; Hao, Xiaodi; Zhao, Dan; Fu, Kunming


    A large amount (25-60%) of degraded organics is converted directly to CO2 during anaerobic digestion (AD) process, which substantially lowers the energy (methane, CH4) yield. In this study, endogenous CO2 fixation by H2 from in-situ iron corrosion was explored to enhancing the CH4 yield. The results demonstrated that a substantial enhancement (up to 61%) in the CH4 yield could be achieved with both nano-scale zero-valent iron (NZVI) and waste iron scraps (WIS) being the added iron. Additionally, the added iron could also achieve effective phosphorus removal from the AD supernatant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. (United States)

    Ebrahimi, Majid; Villaflores, Oliver B; Ordono, Emma E; Caparanga, Alvin R


    Rice husk as an abundant biomass was used in this study, and it contained 30.1% glucan and 13.5% xylan, 22.4% lignin. The pretreated rice husk with glycerol carbonate and acidified aqueous glycerol (10% water) at 90°C and 130°C for 60min had the maximum yield of glucan digestibility which was 78.2% and 69.7% respectively, using cellulase for 72h. The simultaneous saccharification and fermentation was conducted anaerobically at 37°C with Saccharomyces cerevisiae, 5% w/v glucan and 10FPU/g glucan of cellulase. 11.58 and 8.84g/L was the highest ethanol concentration after 3days of incubation form pretreated rice husk with glycerol carbonate and acidified aqueous glycerol respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. (United States)

    Bocher, Benjamin T; Agler, Matthew T; Garcia, Marcelo L; Beers, Allen R; Angenent, Largus T


    Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 degrees C) and thermophilic (55 degrees C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of approximately 40 g l(-1). At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l(-1) day(-1), the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l(-1) day(-1) and an effluent VS concentration of 22.2 g VS l(-1) (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g(-1) VS fed and 0.47-0.48 l CH4 g(-1) VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4+) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone.

  20. Enhanced biogas production from rice straw by selective micronutrients under solid state anaerobic digestion. (United States)

    Narra, Madhuri; Balasubramanian, Velmurugan; Kurchania, Anil; Pathak, Bhim Sen; Shyam, Murari


    Biomethanation of rice straw (RS) was studied in a batch mode at high total solid content (TSC) of 25% in outdoor pilot scale digesters. Performance was monitored for over six months by supplementing Nickel and Cobalt 15 and 10mgkg(-1) RS to each of mesophilic and thermophilic digesters for 35 and 21days retention time (RT), respectively. The average biogas production from mesophilic and thermophilic digesters were found varying 310 and 396Lkg(-1)TS, respectively. The corresponding figures for the control digesters were 225 and 270Lkg(-1)TS. Around 37 and 46% higher biogas production was recorded by supplementing the micronutrients in mesophilic and thermophilic digesters, respectively. Methane content in biogas was 57-59%. Matured compost had nitrogen, phosphorus and potassium contents of 1.0-1.2, 1.3-2.2, and 1.2-2.1%, respectively. The results demonstrated that the present process is faster, requires less than 85% water and produces green energy in addition to manure in less time compared to conventional process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhancing the Energy Efficiency of Wastewater Treatment Plants through Co-digestion and Fuel Cell Systems

    Directory of Open Access Journals (Sweden)

    Marta Gandiglio


    Full Text Available The present work provides an overview of technological measures to increase the self-sufficiency of wastewater treatment plants (WWTPs, in particular for the largely diffused activated sludge-based WWTP. The operation of WWTPs entails a huge amount of electricity. Thermal energy is also required for pre-heating the sludge and sometimes exsiccation of the digested sludge. On the other hand, the entering organic matter contained in the wastewater is a source of energy. Organic matter is recovered as sludge, which is digested in large stirred tanks (anaerobic digester to produce biogas. The onsite availability of biogas represents a great opportunity to cover a significant share of WWTP electricity and thermal demands. Especially, biogas can be efficiently converted into electrical energy (and heat via high temperature fuel cell generators. The final part of this work will report a case study based on the use of sewage biogas into a solid oxide fuel cell. However, the efficient biogas conversion in combined heat and power (CHP devices is not sufficient. Self-sufficiency requires a combination of efficient biogas conversion, the maximization the yield of biogas from the organic substrate, and the minimization of the thermal duty connected to the preheating of the sludge feeding the anaerobic digester (generally achieved with pre-thickeners. Finally, the co-digestion of the organic fraction of municipal solid waste (OFMSW into digesters treating sludge from WWTPs represent an additional opportunity for increasing the biogas production of existing WWTPs, thus helping the transition toward self-sufficient plants.

  2. Enhancing anaerobic digestion of poultry litter in field digestors by incorporating in-line pre-digestor assembly

    Directory of Open Access Journals (Sweden)

    M. J. Barooah


    Full Text Available Anaerobic fermentation inside the digestor is the continuous process which results in the formation of useful biogas fuel. All feedstocks are not easily decomposable thereby necessitating the design of an “optional in-line pre-digestor assembly”. Initially a 2 m3 modified fixed dome ‘Deenbandhu’ type biogas plant was commissioned with cattle dung, bypassing the pre-digestor assembly. In a phased manner, cattle dung was substituted with poultry litter as feedstock. Gradually increasing the substitution @ of 10% per fortnight, complete substitution of cattle dung could be attained in 18 week time. Poultry droppings assorted with paddy husk from deep litter system of poultry housings were used as feedstock. As paddy husk were indecomposable inside the digestor, an in-line pre-digestor assembly was used to remove the unwanted paddy husk by water dissolution technique. Enzymatic hydrolysis initiated in the pre-digestion tank in the 24 hours residence time improved the digestibility of the feedstock for generating biogas. The process of cattle dung substitution with poultry litter was complete in 18 weeks duration. Daily gas production was recorded with the help of wet type gas flow meter. The gas produced was continuously used for domestic cooking. The total solid (TS content of the poultry litter based feedstock slurry was maintained at around the same TS (9 - 10% as that of cattle dung (dung to water at 1:1 ratio slurry. With 100% use of poultry droppings at 10.3 % TS, average gas production level was 208.5 lit per kg of TS.

  3. Biogas production enhancement by soya sludge amendment in cattle dung digesters

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayan, Shanta; Ramakant; Shivayogi [WWT Division, NEERI, Nagpur 400 020 (India)


    Biogas energy production from cattle dung is an economically feasible and eco-friendly in nature. But dependence only on cattle dung is a limiting factor. Rich nitrogen containing substrate addition to extra carbohydrate digester like cattle dung could improve the biogas production. Detailed performance of the digesters at different ratios of cattle dung and soya sludge has been discussed in this paper considering the cold countries climate. Soya sludge substrate not only has high nitrogen content of 4.0-4.8% but it also has high percentage of volatile solids content in the range of 97.8-98.8%. Soya sludge addition also improved the manurial value of the digested slurry and also improved the dewater-ability of the sludge. Results indicated an increment of 27.0% gas production at 25.0% amendment of soya sludge in non-homogenized cattle dung (NCD) digester. The amount of gas production increased to 46.4% in case of homogenized cattle dung (HCD) with respect to NCD feed at the same amendment. (author)

  4. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion (United States)

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  5. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge. (United States)

    Wang, Tongyu; Qin, Yujie; Cao, Yan; Han, Bin; Ren, Junyi


    The performance of biogas generation and sludge degradation was studied under different zero-valent iron/activated carbon (ZVI/AC) ratios in detail in mesophilic anaerobic digestion of sludge. A good enhancement of methane production was obtained at the 10:1 ZVI/AC ratio, and the cumulative methane production was 132.1 mL/g VS, 37.6% higher than the blank. The methane content at the 10:1 ZVI/AC ratio reached 68.8%, which was higher than the blank (55.2%) and the sludge-added AC alone (59.6%). For sludge degradation, the removal efficiencies of total chemical oxygen demand (TCOD), proteins, and polysaccharides were all the highest at the 10:1 ZVI/AC ratio. The concentration of available phosphorus (AP) decreased after anaerobic digestion process. On the other hand, the concentrations of available nitrogen (AN) and available potassium (AK) increased after the anaerobic digestion process and showed a gradually decreasing trend with increasing ZVI/AC ratio. The concentrations of AN and AK were 2303.1-4200.3 and 274.7-388.3 mg/kg, showing a potential for land utilization.

  6. Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production (United States)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical, or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid state cultivation of corn stover with Phlebia bre...

  7. Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. (United States)

    Pérez-Rodríguez, N; García-Bernet, D; Domínguez, J M


    Due to their lignocellulosic nature, corn cob and vine trimming shoots (VTS) could be valorized by anaerobic digestion for biogas production. To enhance the digestibility of substrates, pretreatments of lignocellulosic materials are recommended. The effect of enzymatic hydrolysis, ultrasounds pretreatments (US) and the combination of both was assayed in lignocellulosic composition, methane, and biogas yields. The pretreatments leaded to a reduction in lignin and an increase in neutral detergent soluble compounds making corn cob and VTS more amendable for biogas conversion. The US were negative for biogas production from both substrates and in particular strongly detrimental for VTS. On the opposite side, the enzymatic hydrolysis was certainly beneficial increasing 59.8% and 14.6% the methane production from VTS and corn cob, respectively. The prior application of US did not potentiate (or not sufficiently) the improvement in the methane production reflected by the enzymatic hydrolysis pretreatment of VTS and corn cob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment. (United States)

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen


    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. (United States)

    Singh, Shachi


    Phytochemicals are health promoting compounds, synthesized by the plants to protect them against biotic or abiotic stress. The metabolic pathways leading to the synthesis of these phytochemicals are highly inducible; therefore methods could be developed to enhance their production by the exogenous application of chemical inducers/elicitors. In the present experiment, chitosan was used as an elicitor molecule to improve the phytochemical content of spinach plant. When applied at a concentration of 0.01 mg/ml as a foliar spray, chitosan was able to cause an increase in the enzymatic (peroxidase, catalase and phenylalanine ammonium lyase (PAL)) and non enzymatic (total phenolics, flavonoids and proteins) defensive metabolites, as well as, in the total antioxidant activity of the spinach leaves. A 1.7-fold increase in the total phenolics, a 2-fold increase in total flavonoid and a 1.6-fold increase in total protein were achieved with the treatment. A higher level of enzymatic activity was observed with a 4-fold increase in peroxidase and approximately 3-fold increases in catalase and phenylalanine ammonium lyase activity. Antioxidant activity showed a positive correlation between phenolic compounds and the enzymatic activity. Direct analysis in real time mass spectrometry (DART-MS) was applied to generate the metabolite profile of control and treated leaves. DART analysis revealed the activation of phenylpropanoid pathway by chitosan molecule, targeting the synthesis of diverse classes of flavonoids and their glycosides. Important metabolites of stress response were also visible in the DART spectra, including proline and free sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Fungal pretreatment of raw digested piggery wastewater enhancing the survival of algae as biofuel feedstock. (United States)

    Liu, Junying; Qiu, Wen; Wang, Yunpu


    Understanding about the impact of white rot fungi on indigenous bacterial communities, NH4+ and turbidity in digested piggery wastewater, will allow the optimization of wastewater treatment methods and its use as a feasible medium for algal growth. Here, the white rot fungi were inoculated into undiluted and unsterilized digested piggery wastewater under different temperatures and pH regimes in order to lower the pretreatment cost. Diversity and abundance of the bacterial communities in the pretreated wastewater were assessed by PCR-denaturing gradient gel electrophoresis coupled with 16S rDNA sequencing. The research showed a significant reduction on the microbial diversity with the presence of white rot fungi which occur at pH 6. The distribution and presence of bacteria taxa were strongly correlated with NH4+ concentration, pH, and the presence of white rot fungi. Variance partition analysis also showed that the effect on the chlorophyll content of algae in fungi-filtered wastewater was as the following hierarchy: bacterial diversity > NH4+ > turbidity. Therefore, the algae in treated wastewater with less abundance of bacteria proliferated more successfully, indicating that bacterial community not only played an important role in algal growth but also imposed a strong top-down control on the algal population. The algae grown in wastewater treated with fungi reached the highest specific growth rate (0.033 day-1), whereas the controls displayed the negative specific growth rate. The fatty acid composition varied markedly in C16:0 and C18:0 between these treatments, with a higher content of C16:0. This study firstly showed that Chlorella can grow as cost-effective biofuel feedstocks in undiluted and unsterilized digested wastewater with high ammonium concentration and dark brown color because the bacterial abundance of digested piggery wastewater could be reduced greatly by the white rot fungi.

  11. Enhanced SDC-assisted digestion coupled with lipid chromatography-tandem mass spectrometry for shotgun analysis of membrane proteome. (United States)

    Lin, Yong; Wang, Kunbo; Liu, Zhonghua; Lin, Haiyan; Yu, Lijun


    Despite the biological importance of membrane proteins, their analysis has lagged behind that of soluble proteins and still presents a great challenge mainly because of their highly hydrophobic nature and low abundance. Sodium deoxycholate (SDC)-assisted digestion strategy has been introduced in our previous papers, which cleverly circumvents many of the challenges in shotgun membrane proteomics. However, it is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of 1% SDC. In this study, an enhanced SDC-assisted digestion method (ESDC method) was developed that incorporates the almost strongest ability of SDC with a high concentration (5%) to lyse membrane and extract/solubilize hydrophobic membrane proteins, and then dilution to 1% for more efficient digestion. The comparative study using rat liver membrane-enriched sample showed that, compared with previous SDC-assisted method and the "universal" filter-aided sample preparation (FASP) method, the ESDC method not only increased the identified number of total proteins, membrane proteins, hydrophobic proteins, integral membrane proteins (IMPs) and IMPs with more than 5 transmembrane domains (TMDs) by an average of 10.8%, 13.2%, 17.8%, 17.9% and 52.9%, respectively, but also enhanced the identified number of total peptides and hydrophobic peptides by averagely 12.5% and 14.2%. These results demonstrated that the ESDC method provides a substantial improvement in the recovery and identification of membrane proteins, especially those with high hydrophobicity and multiple TMDs, and thereby displaying more potential for shotgun membrane proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Combinational enhancing effects of formulation and encapsulation on digestive stability and intestinal transport of green tea catechins. (United States)

    Son, Yu-Ra; Chung, Jae-Hwan; Ko, Sanghoon; Shim, Soon-Mi


    The hypothesis was that green tea catechins (GTCs) formulated with vitamin C and xylitol followed by enteric coating with hydroxypropyl methyl cellulose phthalate (HPMCP) or encapsulated into γ-cyclodextrin (γ-CD) could enhance intestinal absorption of GTCs. Surface morphology and size obtained by SEM were different. Digestive stability of GTCs encapsulated into γ-CD or coated with HPMCP was enhanced up to 65.56% or 57.63%, respectively. When GTCs were formulated, the digestive stability was greater than the one not formulated. Formulated GTCs followed by encapsulation into γ-CD significantly increased intestinal transport. Absorption of GTCs was 2.8%, 9.64%, 11.97%, 8.41% and 14.36% for only GTCs, GTCs encapsulated into γ-CD, formulated GTCs encapsulated into γ-CD, GTCs coated with HPMCP and formulated GTCs coated with HPMCP, respectively. This study suggests that GTCs, formulated with vitamin C and xylitol followed by γ-CD encapsulation or HPMCP enteric coating, provide combinational effect to increase bioavailability of GTCs.

  13. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.


    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis,

  14. Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization. (United States)

    Kong, Xin; Xu, Shuang; Liu, Jianguo; Li, Huan; Zhao, Ke; He, Liang


    The inoculation for extruded food waste anaerobic digestion (AD) was optimized to improve methane (CH4) yield. The inoculum of acclimated anaerobic sludge resulted in high biodegradability, producing CH4 yields from 580 mLCH4 g(-1)·VSadded to 605 mLCH4 g(-1)·VSadded, with corresponding BDCH4 ranging from 90% to 94%. We also investigated inoculum to substrate ratios (ISRs). With regards to digested slurry as inoculum, we found that a decrease in ISR improved CH4 yield, while a lower ISR prolonged the lag time of the initial AD stage due to lipid inhibition caused by excessive food waste. These results demonstrate that minimal inocula are required to start the AD system for high-pressure extruded food waste because it is easily biodegraded. High ammonia concentration had a negative effect on CH4 production (i.e., when free ammonia nitrogen [FAN] increased from 20 to 30 mg L(-1) to 120-140 mg L(-1), the CH4 yield decreased by 25%), suggesting that FAN was a significant inhibitor in CH4 yield reduction. In terms of CH4 yield and lag time of the AD process, the optimal inoculation of digested slurry for the extruded food waste had an ISR of 0.33 with CH4 yield of 505 mLCH4 g(-1)VSadded, which was 20% higher than what was found for higher ISR controls of 2, 1 and 0.5. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment. (United States)

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani


    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  16. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms]. (United States)

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie


    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  17. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions. (United States)

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C


    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  18. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. (United States)

    Hobbs, Shakira R; Landis, Amy E; Rittmann, Bruce E; Young, Michelle N; Parameswaran, Prathap


    Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH 4 -COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH 4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30days and maximum methane productions of 370, 910, and 1950mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhanced anaerobic digestion performance via combined solids- and leachate-based hydrolysis reactor inoculation. (United States)

    Wilson, L Paige; Sharvelle, Sybil E; De Long, Susan K


    Suboptimal conditions in anaerobic digesters (e.g., presence of common inhibitors ammonia and salinity) limit waste hydrolysis and lead to unstable performance and process failures. Application of inhibitor-tolerant inocula improves hydrolysis, but approaches are needed to establish and maintain these desired waste-hydrolyzing bacteria in high-solids reactors. Herein, performance was compared for leach bed reactors (LBRs) seeded with unacclimated or acclimated inoculum (0-60% by mass) at start-up and over long-term operation. High quantities of inoculum (∼60%) increase waste hydrolysis and are beneficial at start-up or when inhibitors are increasing. After start-up (∼112days) with high inoculum quantities, leachate recirculation leads to accumulation of inhibitor-tolerant hydrolyzing bacteria in leachate. During long-term operation, low inoculum quantities (∼10%) effectively increase waste hydrolysis relative to without solids-derived inoculum. Molecular analyses indicated that combining digested solids with leachate-based inoculum doubles quantities of Bacteria contacting waste over a batch and supplies additional desirable phylotypes Bacteriodes and Clostridia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Vegetable proteins enhance the growth of milk-fed piglets, despite lower apparent ileal digestibility. (United States)

    Ebert, André R; Berman, Adam S; Harrell, Robert J; Kessler, Alexandre M; Cornelius, Steven G; Odle, Jack


    This experiment compared the replacement of whey protein with isolated soy protein (ISP), or 2 levels of a hydrolyzed vegetable protein mixture (Lo HVPM and Hi HVPM, containing a partially hydrolyzed blend of soy, wheat, and other proteins) in liquid milk-replacer diets fed to neonatal pigs from 2 to 19 d of age. Piglets fed the vegetable protein diets weighed 20% more (8179 +/- 211 g, P piglets fed the whey diet (6805 +/- 244 g). Growth rates were 35% higher for piglets fed the Hi HVPM diet than for piglets fed the whey diet. Similarly, intakes of the vegetable protein diets exceeded that for the whey diet (P digestibilities of most amino acids were greater for the whey diet, digestible amino acid intakes (especially Arg, Phe, Met, and His) were greater in pigs fed the Hi HVPM and ISP diets (P piglets fed the whey diet contained a higher percentage of fat and ash, whereas piglets fed the vegetable protein-containing diets accreted protein 42% faster (P piglets fed the Lo HVPM diet than in those fed the ISP diet. Collectively, these data support the conclusion that some processed vegetable proteins may be good alternatives to whey protein in liquid diets formulated for neonatal pigs and that an appropriate balance of amino acids is more important than the source of protein per se.

  1. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. (United States)

    Yin, F G; Liu, Y L; Yin, Y L; Kong, X F; Huang, R L; Li, T J; Wu, G Y; Hou, Yongqing


    Two experiments were conducted to evaluate the effects of dietary supplementation with Astragalus polysaccharide (APS) on growth performance, apparent ileal digestibilities (AID) of amino acids (AA), and their serum concentrations in early weaned piglets. In Exp. 1, 60 pigs were weaned at 21 days of age (BW 7.35 +/- 0.23 kg) and allocated to three treatments (20 pigs/treatment), representing supplementing 0.0% (control), 0.02% colistin (antibiotic), or 0.1% APS to a corn- and soybean meal-based diet. Average daily gain (ADG), average daily feed intake (ADFI), and feed/gain ratio (F/G) were measured weekly. Blood samples were obtained from five pigs selected randomly from each treatment for the measurement of serum free AA concentrations on days 7, 14, and 28. In Exp. 2, 12 pigs were weaned at 21 day of age (BW 7.64 +/- 0.71 kg), assigned to three treatment groups as in Exp. 1, and surgically fitted with a simple T-cannula at the terminal ileum. Ileal digesta samples were obtained for the measurement of AID of AA on days 7, 14 and 28. Dietary APS did not affect ADFI, but enhanced (P digestive and absorptive function and regulate AA metabolism to beneficially increase the entry of dietary AA into the systemic circulation, which provide a mechanism to explain the growth-promoting effect of APS in early weaned piglets.

  2. Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. (United States)

    Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh


    High efficiency resource recovery from dairy waste activated sludge (WAS) has been a focus of attention. An investigation into the influence of two step sono-alkalization pretreatment (using different alkaline agents, pH and sonic reaction times) on sludge reduction potential in a semi-continuous anaerobic reactor was performed for the first time in literature. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (4172 kJ/kg TS of supplied energy for NaOH - pH 10), COD solubilization, suspended solids reduction and biogas production was 59%, 46% and 80% higher than control. In order to clearly describe the hydrolysis of waste activated sludge during sono-alkalization pretreatment by a two step process, concentrations of ribonucleic acid (RNA) and bound extracellular polymeric substance (EPS) were also measured. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5L), with 4 L working volume. With three operated SRTs, the SRT of 15 d was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 58% and 62% of suspended solids and volatile solids reduction, respectively, with an improvement of 83% in biogas production. Thus, two step sono-alkalization pretreatment laid the basis in enhancing the anaerobic digestion potential of dairy WAS. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro


    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  4. Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. (United States)

    Surra, Elena; Bernardo, Maria; Lapa, Nuno; Esteves, Isabel; Fonseca, Isabel; Mota, José Paulo


    In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above

  5. Enzymatic decontamination

    Directory of Open Access Journals (Sweden)

    Edyta Prusińska-Kurstak


    Full Text Available [b]Abstract[/b]. This paper is devoted to the methods of decontamination of weapons of mass destruction (biological and chemical, based on the use of protein catalysts of chemical reactions — enzymes. This paper presents the possibility of using enzymes to neutralize the harmful and destructive to the environment and human chemicals used in weapons of mass destruction. The mechanism of the enzymatic reaction is showed. These are the possibilities of using lysozyme as destructor dangerous bacteria (E. coli, anthrax Bacillus anthracis and their spores. The advantages and disadvantages of chemical and enzymatic methods of decontamination have been compared. It was found that under certain conditions the enzymes can be an alternative to chemical methods of decontamination of weapons of mass destruction.[b]Keywords[/b]: decontamination, weapons of mass destruction, enzymes

  6. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique's bagasse as an example. (United States)

    Quintero, Mabel; Castro, Liliana; Ortiz, Claudia; Guzmán, Carolina; Escalante, Humberto


    In Colombia there are 20,000 ha of fique fields (Furcraea sp., family Agavaceae), that produce around 93,400 tons of fique's bagasse per year. These residuals are disposed into rivers and soil causing pollution. According to physicochemical characteristics, the lignocellulosic residues from fique crops (fique's bagasse) are appropriate carbon source to biogas production. Anaerobic digestion from fique's Bagasse (FB) requires a specialized microbial consortium capable of degrading its high lignocellulosic concentration. In this study, the capacities of seven microbial consortia for biomethane potential (BMP) from FB were evaluated. Inoculum of ruminal liquid achieved high hydrolytic activity (0.068 g COD/g VSS day), whereas pig waste sludge inoculum showed high methanogenic activity (0.146 g COD/g VSS day). Mixtures of these two inoculums (RL+PWS) showed the best yields for biomethane potential (0.3 m(3) CH4/Kg VS ad). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. (United States)

    Jang, Hyun Min; Shin, Jingyeong; Choi, Sangki; Shin, Seung Gu; Park, Ki Young; Cho, Jinwoo; Kim, Young Mo


    Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH 4 /g VS removed in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate. (United States)

    Ara, Efath; Sartaj, Majid; Kennedy, Kevin


    The synergetic enhancement of mesophilic anaerobic co-digestion of trinary and binary mix of organic fraction of municipal solid waste (OFMSW) + primary sludge (PS) + thickened waste activated sludge (TWAS) as substrates was investigated through batch biological methane potential (BMP) and semi-continuous flow reactor tests. Cumulative biogas yield (CBY) yield for the binary mix of OFMSW:TWAS was 555, 580, and 660 mL/g volatile solids (VS)added for an OFMSW:TWAS ratio of 25:75, 50:50, and 75:25, respectively, which was 48, 78.5, and 140% higher than the calculated expected biogas (CEB) yield from the corresponding individual substrates. The trinary mixture of OFMSW:TWAS:PS at ratios of 25:37.5:375.5, 50:25:25 and 75:12.5:12.5 was able to produce 680, 710 and 780 mL/g VSadded, respectively, which was 25.5, 62.0 and 135.6% more biogas than the calculated expected biogas yield from the corresponding individual substrates. Cumulative methane yield (CMY) of trinary mixtures was also higher than the corresponding binary mixtures (20, 27, and 12 % increase for OFMSW:TWAS:PS at a ratio of 25:37.5:37.5, 50:25:25, and 75:12.5:12.5 compared to the binary mix of OFMSW:TWAS at a ratio of 25:75, 50:50, and 75:25, respectively). Methane content of the biogas varied from 54 to 57%. The results from semi-continuous flow anaerobic reactors under hydraulic retention times (HRT) of 15, 10 and 7 days supported the results of batch biological methane potential tests. The results were conclusive that enhancement in biogas production was noticeably higher from the co-digestion of trinary mix of organic fraction of municipal solid waste+ thickened waste activated sludge + primary sludge than the binary mix organic fraction of municipal solid waste+thickened waste activated sludge or thickened waste activated sludge+primary sludge with concomitant improvements in VS removal and biodegradability for tri-digestion of organic fraction of municipal solid waste, thickened waste activated sludge

  9. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak


    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  10. Harvesting microalgae using activated sludge can decrease polymer dosing and enhance methane production via co-digestion in a bacterial-microalgal process

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta; Radovici, Maria; Smets, Barth F.


    , there is the potential to produce energy by co-digesting the two types of biomass. We present an innovative approach to recover microalgal biomass via a two-step flocculation using bacterial biomass after the destabilisation of microalgae with conventional cationic polymer. A short solids retention time (SRT) enhanced...

  11. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao


    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  12. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao


    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  13. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris. (United States)

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming


    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process.

  14. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. (United States)

    Prandini, Jean Michel; da Silva, Márcio Luís Busi; Mezzari, Melissa Paola; Pirolli, Mateus; Michelon, William; Soares, Hugo Moreira


    This work investigated the effects of swine wastewater-derived biogas on microalgae biomass production and nutrient removal rates from piggery wastewater concomitantly with biogas filtration. Photobioreactors with dominant Scenedesmus spp. were prepared using non-sterile digestate and exposed to different photoperiods. In the presence of biogas and autotrophic conditions microalgae yield of 1.1±0.2 g L(-1) (growth rate of 141.8±3.5 mg L(-1) d(-1)) was obtained leading to faster N-NH3 and P-PO4(3-) assimilation rate of 21.2±1.2 and 3.5±2.5 mg L(-1) d(-1), respectively. H2S up to 3000 ppmv was not inhibitory and completely removed. Maximum CO2 assimilation of 219±4.8 mg L(-1) d(-1) was achieved. Biological consumption of CH4 up to 18% v/v was verified. O2 up to 22% v/v was controlled by adding acetate to exacerbate oxygen demand by microorganisms. Microalgae-based wastewater treatment coupled to biogas purification accelerates nutrient removal concomitantly producing valuable biomass and biomethane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nutrient value of spray field forages fed to pigs and the use of feed enzymes to enhance nutrient digestibility. (United States)

    Passos, A A; Andrade, C; Phillips, C E; Coffey, M T; Kim, S W


    field forages including Bermuda grass, forage sorghum, and sweet sorghum can partly be utilized in pig feed to provide energy, although N is rather poorly digested. Feed enzymes could enhance both energy and N utilization in Bermuda grass but not sorghum.

  16. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. (United States)

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E


    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Enhanced biohydrogen production from oat straw co-digested with cow dung / sewage sludge by combined aerobic digestion and anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Loretta Li


    Full Text Available Hydrogen was produced from oat straw by combined aerobic and anaerobic fermentation with fungi and cow dung. With aerobic pre-digestion, the maximum hydrogen production rate reached 133 ml/g volatile suspended solids per hour. The maximum hydrogen yield was 71.5 ml/g straw in 6 days by biological process. The lignocellulosic conversion of oak-straw waste was 39%, with the complex component converting 68% of the hemi-cellulose and 61% of the cellulose, but only 34% of lignin conversion. Aerobic pre-digestion by Trichoderma viride and Saccharomyces cerevisiae was significantly effective for lignin degradation.  Combining aerobic and anaerobic fermentation is a promising low-cost efficient and environmentally friendly method, compared with hydrogen fermentation, not only for hydrogen production, but also for converting straw biomass.

  18. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge. (United States)

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi


    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.

  19. Improved digestibility of β-lactoglobulin by pulsed light processing: a dilatational and shear study. (United States)

    del Castillo-Santaella, Teresa; Sanmartín, Esther; Cabrerizo-Vílchez, Miguel Angel; Arboleya, Juan Carlos; Maldonado-Valderrama, Julia


    Modifying the protein conformation appears to improve the digestibility of proteins in the battle against allergies. However, it is important not to lose the protein functionality in the process. Light pulse technology has been recently tested as an efficient non-thermal process which alters the conformation of proteins while improving their functionality as stabilizers. Also, in order to rationally design emulsion based food products with specific digestion profiles, we need to understand how interfacial composition influences the digestion of coated interfaces. This study has been designed to investigate the effects of pulsed light (PL) treatment on the gastrointestinal digestion of protein covered interfaces. We have used a combination of dilatational and shear rheology which highlights inter and intra-molecular interactions providing new molecular details on protein digestibility. The in vitro digestion model analyses sequentially pepsinolysis, trypsinolysis and lipolysis of β-lactoglobulin (BLG) and pulsed light treated β-lactoglobulin (PL-BLG). The results show that the PL-treatment seems to facilitate digestibility of the protein network, especially regarding trypsinolysis. Firstly, PL treatment just barely enhances the enzymatic degradation of BLG by pepsin, which dilutes and weakens the interfacial layer, due to increased hydrophobicity of the protein owing to PL-treatment. Secondly, PL treatment importantly modifies the susceptibility of BLG to trypsin hydrolysis. While it dilutes the interfacial layer in all cases, it strengthens the BLG and weakens the PL-BLG interfacial layer. Finally, this weakening appears to slightly facilitate lipolysis as evidenced by the results obtained upon addition of lipase and bile salts (BS). This research allows identification of the interfacial mechanisms affecting enzymatic hydrolysis of proteins and lipolysis, which demonstrates an improved digestibility of PL-BLG. The fact that PL treatment did not affect the

  20. Production of digestive enzymes along the gut of the giant keyhole limpet Megathura crenulata (Mollusca: Vetigastropoda). (United States)

    Martin, Gary G; Martin, Alanna; Tsai, Whitney; Hafner, John C


    The esophagus and intestine form the longest regions of the digestive tract in the giant keyhole limpet and are lined by epithelial cells sharing a common morphology and releasing materials into the gut lumen by apocrine secretion. The purpose of this study was to determine if these morphologically similar regions release similar digestive enzymes and compare their contributions to digestive enzymes released from other regions of the gut. Principal component analysis of enzymes detected by the API ZYM system for 19 enzymes plus EnzChek assays for protease, α-amylase, lipase, cellulase, and lysozyme identify four distinct regions of the gut: 1) crystalline style and style sac, 2) digestive gland, 3) salivary glands, and 4) esophagus and intestine. Heterogeneity in enzymatic activity was observed in regions of the gut with similar cell morphology (middle and posterior esophagus and intestine) as well as regions with different cell morphology (salivary glands, digestive gland and crystalline style). Enzyme activity in each of these regions is compared to other gastropods, in particular the abalone. Although much of the length of the digestive tract is lined by a morphologically similar epithelium, different regions of the alimentary tract produce a different suite of enzymes which may contribute to the digestive process. These data will help enhance our limited understanding of the digestive physiology of Megathura crenulata and lead to improvement of its culture for clinical research. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant : recovering a wasted methane potential and enhancing the biogas yield


    Martín González, Lucia


    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valori...

  2. Enrichment of pasta with faba bean does not impact glycemic or insulin response but can enhance satiety feeling and digestive comfort when dried at very high temperature. (United States)

    Greffeuille, Valérie; Marsset-Baglieri, Agnès; Molinari, Nicolas; Cassan, Denis; Sutra, Thibault; Avignon, Antoine; Micard, Valérie


    Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.

  3. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. (United States)

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho


    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Elmitwalli, T.A.; Zeeman, G.


    Anaerobic digestion of concentrated domestic wastewater streams - black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR - decentralised sanitation and reuse). A simple anaerobic digester can be implemented

  5. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. (United States)

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto


    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. In Vitro and In Vivo Evaluation of Casein as a Drug Carrier for Enzymatically Triggered Dissolution Enhancement from Solid Dispersions. (United States)

    Bani-Jaber, Ahmad; Alshawabkeh, Iyad; Abdullah, Samaa; Hamdan, Imad; Ardakani, Adel; Habash, Maha


    Due to its unique properties, such as biodegradability, biocompatibility, high amphiphilic property, and micelle formation, casein (CS) has been increasingly studied for drug delivery. We used CS as a drug carrier in solid dispersions (SDs) and evaluated the effect of its degradation by trypsin on drug dissolution from the dispersions. SDs of CS and mefenamic acid (MA) were prepared by physical mixing, kneading, and coprecipitation methods. In comparison to pure MA, the dispersions were evaluated for drug-protein interaction, loss of drug crystalinity, and drug morphology by differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Drug dissolution from the dispersions was evaluated in simulated intestinal fluid as enzyme free and trypsin-enriched media. Furthermore, in vivo drug absorption of MA from CS-MA coprecipitate was evaluated in rats, in comparison with a reference SD of polyethylene glycol and MA (PEG-MA SD). Relative to other CS preparations, CS-MA coprecipitate showed the highest loss of drug crystallinity, drug micronization, and CS-MA interaction. CS remarkably enhanced the dissolution rate and extent of MA from the physical and kneaded mixtures. However, the highest dissolution enhancement was obtained when MA was coprecipitated with CS. Trypsin that can hydrolyze CS during dissolution resulted in further enhancement of MA dissolution from the physical and kneaded mixtures. However, a corresponding retardation effect was obtained for the coprecipitate. In correlation with in vitro drug release, CS-MA coprecipitate also showed significantly higher MA bioavailability in rats than PEG-MA SD.

  7. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability (United States)


    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  8. Pepsin-Digestibility of Contaminated Estuarine Sediments (United States)

    Turner, A.; Henon, D. N.; Dale, J. L. L.


    A standard method for the in vitro digestion of animal protein feeds (2% pepsin in 0·075 N HCl) has been applied to contaminated sediments in order to evaluate a ' bioavailable ' or ' gut-soluble ' fraction of carbon, nitrogen and mineral and trace metals. For most sediment samples, considerably more nitrogen was digested than carbon because of enzymatic digestion of proteinaceous material, and the sequence of metal ' gut-solubility ' was: Cu, Zn>Mn>Fe≫Al. The principal mechanism of metal release appears to be hydrochloric acid digestion of inorganic hydrogenous host phases (e.g. amorphous Fe and Mn oxides), although release of Cu via surface complexation with pepsin molecules may also be significant, and the amount of metal digested enzymatically is restricted to a small and unquantifiable fraction associated with proteinaceous material. Dilute HCl alone does not, however, afford a suitable surrogate for assessing a gut-soluble fraction of metal because enzymatic and acid digestions exhibit synergistic effects, including possible re-adsorption of pepsin-metal complexes under acidic conditions, and exposure and acid attack of otherwise inaccessible hydrogenous material following enzymatic digestion of organic matter.

  9. Synergistic effects of metal salt and ionic liquid on the pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. (United States)

    Xu, Jiaxing; Xu, Jiming; Zhang, Sen; Xia, Jun; Liu, Xiaoyan; Chu, Xiaozhong; Duan, Jinao; Li, Xiangqian


    High cost of ionic liquids (ILs) restricts the industrial application of IL-mediated lignocellulose pretreatment. In this study, a simple and economic technology for the pretreatment of natural lignocellulose was developed. The delignification capacity of aqueous choline ornithine ([Cho][Orn]) and hemicellulose-removal capacity of metal salt FeCl2 were combined. The changes of morphological structure and composition indicated a synergistic interaction of [Cho][Orn] and FeCl2 in the pretreatment process. The delignification and hemicellulose-removal capacity of aqueous [Cho][Orn]50% solution was significantly improved in the presence of FeCl2 by 28% and 53%, respectively. The combination use of FeCl2 and [Cho][Orn] made it possible to save the amount of IL used for pretreatment in half. Enhancement effect of metal salts on the IL-pretreatment efficiency was proved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction. (United States)

    Dai, Yong; Zhang, Hai-Sheng; Huan, Bin; He, Yucai


    In this study, sequential biological pretreatment (BP) with Galactomyces sp. CCZU11-1 at 30 °C for 3 days and deep eutectic solvent (DES) choline chloride: oxalic acid (ChCl:OA, 1 mol/2 mol) extraction at 120 °C for 1.5 h was used for pretreating BSS. It was found that combination pretreatment could effectively remove xylan and lignin for enhancing enzymatic saccharification. The reducing sugars and glucose from the hydrolysis of 100 g/L pretreated BSS with complexed cellulases of Galactomyces sp. CCZU11-1 were obtained in the yields of 81.0% and 74.1%, respectively. The BSS-hydrolyzates had no inhibitory effects on the lipid-accumulating microorganism Bacillus sp. CCZU11-1, and the cell mass and TAG accumulation were 4.8 g CDW/L and 2.2 g TAG/L, respectively. Fatty acids including palmitic acid (C16:0; 25.3%), palmitoleic acid (C16:1; 24.4%), stearic acid (C18:0; 15.1%), and oleic acid (C18:1; 21.6%) were accumulated in cells. Clearly, this combination pretreatment has high potential application in future.

  11. Mechanism exploration of adsorption-immobilized enzymatic reactor using polymer-coated silica microbeads. (United States)

    Liu, Minbo; Hu, Yuanyuan; Zhang, Yahong; Lu, Haojie


    A verified mechanism of adsorption-immobilized enzymatic reactor for enhanced proteolysis is presented. Silica microbeads coated with poly (diallyldimethylammonium chloride) (PDDA) or poly (styrene sulfonate) (PSS) were used to trap trypsin and proteins on the surface through electrostatic interactions in order to improve digestion efficiency. Charge states measured by zeta-potentials showed their positively and negatively charged respectively. We found that high proteolytic efficiency could be achieved only if both proteases and proteins were adsorbed by materials. Once the proteins and proteases were confined together in a nanoscopic area, the enrichment of the substrate could lead to a high performance proteolytic effect. Electrostatic interactions were considered as the predominant adsorption factor rather than hydrophilic/hydrophobic interactions. In less than 5 min, in the presence of PSS-coated silica beads, 10 peptides digested from positively-charged cytochrome C were detected by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF), with the high sequence coverage up to 63%, while using PDDA-coated silica beads or conventional in-solution digestion yielded only 5 detectable peptides and 39% sequence coverage was obtained. Ovalbumin seemed incompatible with any kind of charged-material-aided tryptic digestion. The mechanism of adsorption-immobilized enzymatic processes has also been studied in detail. The adsorption equilibrium was proven to be attained in less than one minute, and the proteolytic procedure was regarded as the rate-determining step. This study provides a reasonable mechanism for an adsorption-material catalyzed proteolytic procedure and a promising guideline for designing the next generation of high-performance enzymatic reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effect of enzymatic hydrolysis on native starch granule structure. (United States)

    Blazek, Jaroslav; Gilbert, Elliot Paul


    Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline

  13. Digestibility of rice (Oryza sativa L.) flours and starches differing in amylose content (United States)

    Digestibility of starches in four rice samples with amylose content (AC) from 1.7 to 55.4%, including a newly developed high-amylose rice, was investigated. An in vitro enzymatic starch digestion method an an AOAC method were applied to correlate rapidly digestible starch (RDS), slowly digestible s...

  14. Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. (United States)

    Hallac, Bassem B; Ray, Michael; Murphy, Richard J; Ragauskas, Arthur J


    Buddleja davidii is a unique biomass that has many attractive agroenergy features, especially its wide range of growth habitat. The anatomical characteristics of B. davidii were investigated before and after ethanol organosolv pretreatment (one of the leading pretreatment technologies) in order to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. Results showed that the ethanol organosolv pretreatment of B. davidii selectively removes lignin from the middle lamella (ML), which does not significantly disrupt the crystalline structure of cellulose. The removal of ML lignin is a major factor in enhancing enzymatic cellulose-to-glucose hydrolysis. The pretreatment also causes cell deformation, resulting in cracks and breaks in the cell wall. These observations, together with characterization analysis of the cell wall polymer material, lend support to the hypothesis that the physical distribution of lignin in the biomass matrix is an important structural feature affecting biomass enzymatic digestibility. © 2010 Wiley Periodicals, Inc.

  15. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate?

    DEFF Research Database (Denmark)

    Kocatürk, Nazli Pelin; Zwart, Kor; Bruun, Sander


    Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium......, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal...

  16. Chemically modified, immobilized trypsin reactor with improved digestion efficiency

    NARCIS (Netherlands)

    Freije, J.R.; Mulder, P.P.; Werkman, W.; Rieux, L.; Niederlander, H.A G; Verpoorte, Sabeth; Bischoff, Rainer


    Tryptic digestion followed by identification using mass spectrometry is an important step in many proteomic studies. Here, we describe the preparation of immobilized, acetylated trypsin for enhanced digestion efficacy in integrated protein analysis platforms. Complete digestion of cytochrome c was

  17. Adaptation of Bacteria of Anaerobic Digestion to Higher Salinity for the Application to Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Ivanova, Yanina; Spirov, Pavel

    digestion can be an attractive candidate for MEOR implementation due to their ability to withstand high temperature and salinity, and produce gas in a large volume. Economical comparison between MEOR and foam injection revealed that MEOR is a cheaper and more sustainable method....

  18. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate?

    NARCIS (Netherlands)

    Kocatürk-Schumacher, Nazlı Pelin; Zwart, Kor; Bruun, Sander; Brussaard, Lijbert; Jensen, Lars Stoumann


    Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium,

  19. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. (United States)

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami


    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g-1 VSadded was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Efeito da suplementação enzimática em rações com farelo de soja e soja integral extrusada sobre a digestibilidade de nutrientes, o fluxo de nutrientes na digesta ileal e o desempenho de frangos Enzymatic supplementation on soybean meal and full fat extruded soybean based diet on the digestibility of nutrients, ileal digest flow and broiler performance

    Directory of Open Access Journals (Sweden)

    Elis Regina de Moraes Garcia


    enzymatic supplementation of corn and soybean based diets on performance (Trial 1, nutrients digestibility (Trial 2, performance and nutrient flow in the ileal digesta (Trial 3 in broiler chickens. In Trial 1, for experimental diet formulation, the chemical composition of soybean meal (SM and full fat extruded soybean (ES were overestimated in 7% for ME and CP, and 5% for Met, Met+Cys and Lys (Treatment C, D, and E and 9% for ME, 7% for CP and 5% for Met, Met+Cys and Lys (Treatments F, G e H when there was enzymes addition (Allzyme Vegproâ e Allzyme Lipaseâ. It was concluded that ME, CP and amino acids (Met, Met+Cys and Lys values can be overestimated in 9, 7 and 5%, respectively, when there was the addition of enzymatic complex to the broilers diets (1-42 days, without reducing bird performance. Treatments used on trials 2 and 3 were: A and B - diets based on soybean meal (SBM with and without addition of multienzymatic complex (Allzyme Vegproâ and C and D - diets based on soybean meal (SBM and full fat extruded soybean (ES with and without addition of multienzymatic complex (Allzyme Vegproâ. In Trial 2 differences were not observed among treatments for coefficients of apparent metabolization of dry matter, crude protein, gross energy and AMEn. In trial 3, for initial period (1-21 days, growth period (22-42 days and total period (1-42 days differences were not observed in feed intake, weight gain and feed: gain among birds fed with diets supplemented with enzymes. In the determination of nutrient flow in ileal digesta, differences among studied treatments were not observed, for 21 and 42 days age.

  1. Pancreatic islet isolation by mechanical-enzymatic separation, stationary collagenase digestion and dextran discontinuous density gradient purification: experimental study in dogs Isolamento das ilhotas pancreáticas pela separação mecânica-enzimática digestão estacionária com colagenase e purificação com gradiente de densidade descontínua de dextran: estudo experimental em cães

    Directory of Open Access Journals (Sweden)

    Jaques Waisberg


    Full Text Available The prospects for allotransplantation of pancreatic islets in man depend on the development of methods that provide sufficient quantities of pancreatic islets from a single donor, which are capable, when transplanted, of achieve the normalization of carbohydrate metabolism. Objective: Evaluate the efficacy of the isolation of Langerhans islets from dogs, by means of mechanical-enzymatic separation technique with stationary digestion using collagenase, and purification with a discontinuous dextran density gradient. Methods: The counting of islet numbers and evaluation of their sizes was accomplished by staining with diphenylthiocarbazone and using stereoscopic microscopes equipped with eyepiece reticule for the measurement of average diameters of stained islets. Results: The results disclosed that the average number of islets isolated was 81032.20 ± 24736.79 and the average number of islets isolated per kg of body weight was 6938.70 ± 1392.43. The average number of islets isolated per kg of body weight showed significant correlation with body weight and weight of the pancreas resected. Conclusion: The number of islets isolated, of a single donor, by mechanical-enzymatic separation, stationary collagenase digestion and discontinuous dextran density gradient purification can be sufficient to success of pancreatic islets transplant in dogs.A perspectiva do alotransplante de ilhotas pancreáticas no homem está na dependência do desenvolvimento de métodos que propiciem quantidades suficientes de ilhotas pancreáticas, originadas de doador único, capazes de, quando transplantadas, levarem à normalização do metabolismo dos hidratos de carbono. Objetivo: Avaliar, em cães, a eficácia do isolamento das ilhotas de Langerhans por meio da técnica de separação mecânica-enzimática, digestão estacionária com colagenase e purificação pelo gradiente de densidade descontínua de dextran. Métodos: A contagem do número e avaliação do tamanho

  2. Comprehensive enzymatic analysis of the amylolytic system in the digestive fluid of the sea hare, Aplysia kurodai: Unique properties of two α-amylases and two α-glucosidases

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuji


    Full Text Available Sea lettuce (Ulva pertusa is a nuisance species of green algae that is found all over the world. East-Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding preference for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai has not been studied in detail. We purified α-amylases and α-glucosidases from the digestive fluid of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai contain two α-amylases (59 and 80 kDa and two α-glucosidases (74 and 86 kDa. The 59-kDa α-amylase, but not the 80-kDa α-amylase, was markedly activated by Ca2+ or Cl−. Both α-amylases degraded starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from starch was higher with 80-kDa α-amylase than with 59-kDa α-amylase. Kinetic analysis indicated that 74-kDa α-glucosidase prefers short α-1,4-linked oligosaccharide, whereas 86-kDa α-glucosidase prefers large α-1,6 and α-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa α-amylase and 74-kDa α-glucosidase than by treatment with 45-kDa cellulase and 210-kDa β-glucosidase of A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination of two α-amylases and two α-glucosidases in the digestive fluids without membrane-bound maltase–glucoamylase and sucrase–isomaltase complexes.

  3. Digestibility of nutrients and aspects of the digestive physiology of ...

    African Journals Online (AJOL)

    An insight in its digestive physiology will enhance our understanding of its feeding habits. Digestibility coefficients of the food were determined during two seasons before the animals were euthanased. The distribution and concentrations of nutrients and energy in different parts of the gastrointestinal tract were determined at ...

  4. Enzymatic synthesis of designer lipids


    Devi B.L.A. Prabhavathi; Zhang Hong; Damstrup Marianne L.; Guo Zheng; Zhang Long; Lue Bena-Marie; Xu Xuebing


    Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (inter)esterification reactions ...

  5. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuji

    Full Text Available Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds. In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa. Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase and 2 ß-glucosidases (110K and 210K were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU-ß-glucoside, 4MU-ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K

  6. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase. (United States)

    Tsuji, Akihiko; Tominaga, Keiko; Nishiyama, Nami; Yuasa, Keizo


    Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU-ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the

  7. Comprehensive Enzymatic Analysis of the Cellulolytic System in Digestive Fluid of the Sea Hare Aplysia kurodai. Efficient Glucose Release from Sea Lettuce by Synergistic Action of 45 kDa Endoglucanase and 210 kDa ß-Glucosidase (United States)

    Tsuji, Akihiko; Tominaga, Keiko; Nishiyama, Nami; Yuasa, Keizo


    Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU–ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the

  8. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. 1. Biochemical analysis. (United States)

    Alvarez-González, C A; Moyano-López, F J; Civera-Cerecedo, R; Carrasco-Chávez, V; Ortiz-Galindo, J L; Dumas, S


    Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.

  9. Effects of non-digestible oligosaccharides in young pig diets

    NARCIS (Netherlands)

    Houdijk, J.


    Some carbohydrates in young pig diets escape enzymatic digestion and form substrates for the gastrointestinal microflora. These include the non-digestible oligosaccharides ( NDO ), which are found in e.g. cereals and legumes. Certain NDO may selectively

  10. Comparative Digestive Physiology (United States)

    Karasov, William H.; Douglas, Angela E.


    In vertebrates and invertebrates, morphological and functional features of gastrointestinal (GI) tracts generally reflect food chemistry, such as content of carbohydrates, proteins, fats, and material(s) refractory to rapid digestion (e.g., cellulose). The expression of digestive enzymes and nutrient transporters approximately matches the dietary load of their respective substrates, with relatively modest excess capacity. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. Transcriptional and posttranscriptional adjustments mediate phenotypic changes in the expression of hydrolases and transporters in response to dietary signals. Many species respond to higher food intake by flexibly increasing digestive compartment size. Fermentative processes by symbiotic microorganisms are important for cellulose degradation but are relatively slow, so animals that rely on those processes typically possess special enlarged compartment(s) to maintain a microbiota and other GI structures that slow digesta flow. The taxon richness of the gut microbiota, usually identified by 16S rRNA gene sequencing, is typically an order of magnitude greater in vertebrates than invertebrates, and the interspecific variation in microbial composition is strongly influenced by diet. Many of the nutrient transporters are orthologous across different animal phyla, though functional details may vary (e.g., glucose and amino acid transport with K+ rather than Na+ as a counter ion). Paracellular absorption is important in many birds. Natural toxins are ubiquitous in foods and may influence key features such as digesta transit, enzymatic breakdown, microbial fermentation, and absorption PMID:23720328

  11. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate? (United States)

    Kocatürk-Schumacher, Nazlı Pelin; Zwart, Kor; Bruun, Sander; Brussaard, Lijbert; Jensen, Lars Stoumann


    Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal efficiency. Increasing the initial loading ratios increased nutrient concentrations on biochar to 8.61 mg NH4-N g-1, 1.95 mg PO4-P g-1 and 13.01 mg DOC g-1, but resulted in decreasing removal efficiencies. The combination of biochar and clinoptilolite resulted in improved ammonium, potassium and DOC removal efficiencies compared to biochar alone, but did not significantly change PO4-P removal efficiencies. Removal efficiencies with combined sorbents were up to 67% for ammonium, 58% for DOC and 58% for potassium. Clinoptilolite showed higher removal efficiencies compared to biochar alone, and combining clinoptilolite with biochar improved only total P removal efficiency. Concentrating nutrients with clinoptilolite and biochar may be an option when both sorbents are available at low cost.

  12. Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system. (United States)

    Sanaei-Moghadam, Akbar; Abbaspour-Fard, Mohammad Hossein; Aghel, Hasan; Aghkhani, Mohammad Hossein; Abedini-Torghabeh, Javad


    Anaerobic digestion (AD) process is a well-established method to generate energy from the organic wastes both from the environmental and economical perspectives. The purpose of present study is to evaluate energy production from potato wastes by incorporating cow manure into the process. Firstly, a laboratory pilot of one-stage biogas production was designed and built according to continuously stirred tank reactor (CSTR) system. The setup was able to automatically control the environmental conditions of the process including temperature, duration, and rate of stirring. AD experiment was exclusively performed on co-digestion of potato peel (PP) and cow manure (CM) in three levels of mixing ratio including 20:80, 50:50, 80:20 (PP:CM), and 0:100 as control treatment based on the volatile solid (VS) weight without adding initial inoculums. After hydraulic retention time (HRT) of 50 days on average 193, 256, 348, and 149 norm liter (LN) (kg VS)(-1), methane was produced for different mixing ratios, respectively. Statistical analysis shows that these gas productions are significantly different. The average energy was determined based on the produced methane which was about 2.8 kWh (kg VS)(-1), implying a significant energy production potential. The average chemical oxygen demand (COD) removal of treatments was about 61%, showing that it can be leached significantly with high organic matter by the employed pilot. The energy efficiency of 92% of the process also showed the optimum control of the process by the pilot.

  13. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion. (United States)

    Guo, Ruixue; Chang, Xiaoxiao; Guo, Xinbo; Brennan, Charles Stephen; Li, Tong; Fu, Xiong; Liu, Rui Hai


    Phenolics, antioxidant and antiproliferative properties of Sea buckthorn berries were evaluated using a simulated in vitro digestion and compared with a chemical extraction method. Digested samples were subjected to antiproliferation evaluation against human liver, breast and colon cancer cells. Furthermore, the bioaccessibility of digested berries was evaluated using a Caco-2 cell culture model. Results revealed that after enzymatic digestion the phenolic compounds were quite different from the chemical extracts, more flavonoid aglycones were released, whereas less total phenolics, phenolic acids and flavonoid glycosides were detected. Although the extracellular antioxidant activity of the digesta was lower than that of extracts, the cellular antioxidant activity (CAA) and antiproliferative effects of berries were significantly enhanced by digestion. This was attributed to their higher flavonoid aglycone content and could be verified by testing individual active compounds, suggesting that the cellular uptake of samples might be improved, which was also certified by the Caco-2 cell uptake model. The digested samples showed an almost 5-fold cellular accumulative amount of isorhamnetin than pure isorhamnetin, which was attributed to the significant down regulation of the mRNA expression level of efflux transporters MRP2 and P-gp. This finding indicated that the digestion enhanced the bioaccessibility of bioactive compounds of berries.

  14. Enzymatic conversion of carbon dioxide. (United States)

    Shi, Jiafu; Jiang, Yanjun; Jiang, Zhongyi; Wang, Xueyan; Wang, Xiaoli; Zhang, Shaohua; Han, Pingping; Yang, Chen


    With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into fuels/chemicals/materials as an indispensable element for CO2 capture, sequestration and utilization may offer a win-win strategy to both decrease the CO2 concentration and achieve the efficient exploitation of carbon resources. Among the current major methods (including chemical, photochemical, electrochemical and enzymatic methods), the enzymatic method, which is inspired by the CO2 metabolic process in cells, offers a green and potent alternative for efficient CO2 conversion due to its superior stereo-specificity and region/chemo-selectivity. Thus, in this tutorial review, we firstly provide a brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Next, we focus on the state-of-the-art routes for the catalytic conversion of CO2 by a single enzyme system and by a multienzyme system. Some emerging approaches and materials utilized for constructing single-enzyme/multienzyme systems to enhance the catalytic activity/stability will be highlighted. Finally, a summary about the current advances and the future perspectives of the enzymatic conversion of CO2 will be presented.

  15. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process? (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing


    This study investigated the effects of residual H2O2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H2O2 (MW-H2O2) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H2O2 remained and refractory compounds were thus generated with high dosage of H2O2 (0.6 g H2O2/g total solids (TS), 1.0 g H2O2/g TS) pretreatment. The residual H2O2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H2O2 at 0.2 g H2O2/g TS was used in MW-H2O2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H2O2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  16. Enhanced biogas yield by thermo-alkali solubilization followed by co-digestion of intestine waste from slaughterhouse with food waste. (United States)

    Porselvam, S; Soundara Vishal, N; Srinivasan, S V


    Intestine waste generated from slaughterhouse (IWS) is difficult to degrade in anaerobic process due to the presence of high protein and lipid contents. However, anaerobic co-digestion helps to increase the degradation of IWS by the addition of carbon-rich food waste (FW). To increase the biogas yield, thermo-alkali pretreatment may be more viable method for the anaerobic digestion of protein and lipid rich wastes. In the present study, Thermo-alkali pretreatment of intestine waste from slaughterhouse and food waste alone and mixing of IWS and FW with different ratios (1:1-1:3) on VS basis have been studied. To study the effect of Thermo-alkali pretreatment on solubilization of substrate, the substrate was mixed with alkali solutions (NaOH and KOH) at different concentrations of 1, 2, 3, 4 and 5% solutions. The results revealed that the maximum solubilization was observed to be 94.7% and 90.1% at KOH (1:3 and 5%) and NaOH (1:3 and 5%), respectively. Based on the study, enhancement in biogas yield by 16% (IWS), 11.5% (FW), 12.2% (1:1), 18.11% (1:2) and 22.5% (1:3) in KOH pretreated waste when compared with NaOH pretreated waste.

  17. Phytase from Citrobacter koseri PM-7: Enhanced production using statistical method and application in ameliorating mineral bioaccessibility and protein digestibility of high-phytate food. (United States)

    Tripathi, Preeti; A, Jyothi Lakshmi; Kapoor, Mukesh


    The present study was aimed at enhancing phytase (Phy-Ck) production from Citrobacter koseri PM-7 using response surface methodology (RSM) and improving the bioaccessibility of minerals (Fe and Zn) and protein digestibility in high-phytate food using Phy-Ck. A five-variable and three-level central composite design of RSM using wheat bran (6.681%, w/v), inoculum level (2.5%, v/v), and triton X-100 (0.2%, v/v) resulted in up to 5.57-fold (1.047 U/ml) improvement in Phy-Ck yield from C. koseri PM-7 when compared with fermentation media I and II. The model was successfully validated in the design space by taking a random set of variable combinations. Treatment of high-phytate food with partially purified Phy-Ck showed improvement in mineral bioaccessibility maximally for defatted sesame flour (DSF) (Fe 45.5%; Zn 50.7%) followed by wheat flour (WF) (Fe 13.5%; Zn 14.4%), green gram flour (GGF) (Fe 0.7%; Zn 3.8%) and defatted groundnut flour (DGF) (Zn 5.6%). The in vitro protein digestibility (IVPD) of WF increased from 48.83 to 65.04%, GGF from 45.04 to 57.12%, and DSF from 47.34 to 55.7% after Phy-Ck treatment.

  18. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying


    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. Copyright © 2015. Published by Elsevier B.V.

  19. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility. (United States)

    Palmero, Paola; Colle, Ines; Lemmens, Lien; Panozzo, Agnese; Nguyen, Tuyen Thi My; Hendrickx, Marc; Van Loey, Ann


    High-pressure homogenization disrupts cell structures, assisting carotenoid release from the matrix and subsequent micellarization. However, lycopene bioaccessibility of tomato puree upon high-pressure homogenization is limited by the formation of a process-induced barrier. In this context, cell wall-degrading enzymes were applied to hydrolyze the formed barrier and enhance lycopene bioaccessibility. The effectiveness of the enzymes in degrading their corresponding substrates was evaluated (consistency, amount of reducing sugars, molar mass distribution and immunolabeling). An in vitro digestion procedure was applied to evaluate the effect of the enzymatic treatments on lycopene bioaccessibility. Enzymatic treatments with pectinases and cellulase were proved to effectively degrade their corresponding cell wall polymers; however, no further significant increase in lycopene bioaccessibility was obtained. A process-induced barrier consisting of cell wall material is not the only factor governing lycopene bioaccessibility upon high-pressure homogenization. © 2015 Society of Chemical Industry.

  20. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose (United States)

    H. Liu; Junyong Zhu; S.Y. Fu


    This study investigated the inhibition of enzymatic hydrolysis by unbound lignin (soluble and insoluble) with or without the addition of metal compounds. Sulfonated, Organosolv, and Kraft lignin were added in aqueous enzyme-cellulose systems at different concentrations before hydrolysis. The measured substrate enzymatic digestibility (SED) of cellulose was decreased by...


    Directory of Open Access Journals (Sweden)

    Bárbara Karolina Ratier da Silva


    Full Text Available The effects of fiber level and the enzymatic supplementation in diets for broilers were evaluated in two trials. The experimental treatments were diets with high and low fiber level and with enzymatic supplementation (α-galactosidase, cellulase, amylase e protease. In the first trial (14 to 19 days of birds age, 190 broilers were randomly distributed in a 2x2 factorial arrangement (fiber x enzymes, placed in metabolic cages between (9-10 birds/cage, 5 cages per treatment. It was evaluate the metabolizability (MET of the dry matter (DM, the crude protein (CP and the energy (E, the total apparent digestibility coefficient (TDC for fat (F and acid detergent fiber (ADF, the apparent metabolisable energy (AME and the performance. Four replicates of each treatment were maintained to use in the second trial. In the 21st day age, after adaptation to the intake of the diets with indicator, the broilers were slaughtered and the ileal content was collected to evaluation of the ileal apparent digestibility coefficient (IDC for DM, CP, E, F and the weight of the caeca. The high fiber level resulted in lower MET of DM, E, CP, and lower TDC of F and ADF (P<0.05, as well as lower IDC of DM and E (P<0.01. Enzymatic supplementation reduced the fiber effect on MET of DM, E, CP and on the TDC of ADF (P<0.05. Higher empty weight of the caeca of the birds on the high fiber diet was observed (P<0.01, as well as lower weight gain (P<0.03 and worst feed conversion ratio (P<0.01. The performance of broilers was more related with ileal apparent digestibility then with the total apparent digestibility of the nutrients and the energy.

    KEY WORDS: Caeca, ileal digestibility, metabolizability, performance, total digestibility. Avaliaram-se os efeitos do nível de fibra e da suplementação enzimática em dietas de frangos de corte em dois experimentos. Os tratamentos experimentais foram as dietas formuladas com alta ou baixa fibra e suplementação enzimática (

  2. Enzymatic synthesis of designer lipids

    Directory of Open Access Journals (Sweden)

    Devi B.L.A. Prabhavathi


    Full Text Available Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (interesterification reactions and genetic engineering of oilseed crops. This review gives a general idea about the enzymatic modifications of natural lipids and their derivatives for the preparation of designer lipids. The commercialization outlook, food, nutritional and pharmaceutical applications of designer lipids are also briefly discussed.

  3. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong


    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. (United States)

    Kumi, Philemon J; Henley, Adam; Shana, Achame; Wilson, Victoria; Esteves, Sandra R


    The extracellular polymeric substances and microbial cytoplasmic contents seem to hold inorganic ions and organic products, such as proteins and carbohydrates that are of critical importance for the metabolism of hydrolytic and acidogenic anaerobic microorganisms. The addition of soluble microbially recovered nutrients from thermally treated digestate sludge, for the fermentation of thermally hydrolysed waste activated sludge, resulted in higher volatile fatty acids yields (VFAs). The yield of VFAs obtained from the recovered microbial nutrients was 27% higher than the no micronutrients control, and comparable to the yield obtained using a micronutrients commercial recipe. In addition, the use of a low pH resulting from a high sucrose dose to select spore forming acidogenic bacteria was effective for VFA production, and yielded 20% higher VFAs than without the pH shock and this associated with the addition of recovered microbial nutrients would overcome the need to thermally pre-treat the inoculum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. (United States)

    Lim, Jun Wei; Wang, Jing-Yuan


    Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O2/L(R)-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Digestive Diseases (United States)

    ... Control Problems (Fecal Incontinence) Gas Lactose Intolerance Diarrhea Diverticulosis & Diverticulitis Acid Reflux (GER & GERD) More Digestive Disease ... Polyps Constipation Crohn's Disease Cyclic Vomiting ... and Diverticulitis Dumping Syndrome Foodborne Illnesses Gallstones Gas ...

  7. Mechanical pre-treatment for enzymatically enhanced energy efficient TMP; Mekanisk foerbehandling av flis foer effektiv enzymatisk paaverkan vid energieffektiv TMP tillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Viforr, Silvia


    Thermomechanical pulp (TMP) processes are high energy demanding. This together with the high energy prices of nowadays results in significant costs, why less energy demanding processes are wished. This project has evaluated the potential for energy reductions in a TMP process by a mechanical pre-treatment of the wood chips combined with an enzymatic modification based on a cellulase mixture. The structure of the wood was opened up by the mechanical pre-treatment making it easier for the enzymes to penetrate into the pre-treated wood material. The enzymatic treatment was then run at optimum standard conditions. The EU project - Ecotarget 2004-2008 ( have studied different types of enzymes that could be used for pre-treatment of wood chips in order to save energy during TMP processes. Based on these studies cellulose enzyme was recommended to be used at pre-treatment experiment performed by the Vaermeforsk project. Due to the fact that the Ecotarget-project has also been run during 2008 with activities involving enzymes, the steering board of the Vaermeforsk project took the decision to co-ordinate the experiments from both of the projects. This co-operation increased the funds and also the number of experiments for both of the projects. The experimental results from this project showed that energy reductions at a given tensile index could be achieved if gently mechanical pre-treated wood chips were enzymatically treated. An intensive mechanical pre-treatment gave negative effects on both fibre length and tear index while the light scattering coefficient was promoted, probably due to the fibre shortening. Enzymatic modification of mechanically pre-treated chips showed a favourable modification of the fibres, even regarding the fibre shortening, if compared to mechanical pre-treated chips only. The effects of cellulases was however not as expected, why a high amount of cellulases was used. Other types of enzymes which could attack the primary wall of

  8. Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system. (United States)

    Narra, Madhuri; Balasubramanian, Velmurugan; James, Jisha P


    In the present study, scale-up systems for cellulase production and enzymatic hydrolysis of pre-treated rice straw at high-solid loadings were designed, fabricated and tested in the laboratory. Cellulase production was carried out using tray fermentation at 45 °C by Aspergillus terreus in a temperature-controlled humidity chamber. Enzymatic hydrolysis studies were performed in a horizontal rotary drum reactor at 50 °C with 25 % (w/v) solid loading and 9 FPU g(-1) substrate enzyme load using in-house as well commercial cellulases. Highly concentrated fermentable sugars up to 20 % were obtained at 40 h with an increased saccharification efficiency of 76 % compared to laboratory findings (69.2 %). These findings demonstrate that we developed a simple and less energy intensive bench scale system for efficient high-solid saccharification. External supplementation of commercial β-glucosidase and hemicellulase ensured better hydrolysis and further increased the saccharification efficiency by 14.5 and 20 %, respectively. An attempt was also made to recover cellulolytic enzymes using ultrafiltration module and nearly 79-84 % of the cellulases and more than 90 % of the sugars were recovered from the saccharification mixture.

  9. Enhanced anaerobically digested swine wastewater treatment by the composite of polyaluminum chloride (PAC) and Bacillus megatherium G106 derived EPS. (United States)

    Guo, Junyuan; Huang, Yang; Chen, Cheng; Xiao, Yu; Chen, Jing; Jian, Biyu


    A strain was isolated from biological sludge to produce EPS by using anaerobically digested swine wastewater (ADSW). Potential of the EPS in ADSW treatment were discussed. Results showed that the optimal fermentation medium for EPS production was determined as 4 g K2HPO4, 2 g KH2PO4, and 2 g sucrose dissolved in 1 L ADSW. After fermentation for 60 h, 2.98 g EPS with main backbone of polysaccharides can be extracted from 1 L of fermentation broth. The EPS showed good performances in ADSW treatment, after conditioned by this EPS, removal efficiencies of COD, ammonia, and TP reached 70.2%, 76.5% and 82.8%, respectively, which were higher than that obtained when chemicals were selected as conditioning agents. Removal efficiencies were further improved when the EPS and polyaluminum chloride (PAC) were used simultaneously, and finally reached 91.6%, 90.8%, and 92.5%, respectively, under the optimized conditioning process by the composite of EPS of 16 mg/L, PAC of 12 g/L, pH of 7.5, and agitation speed of 200 r/min.

  10. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets. (United States)

    Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Xiao, Hang; Zhang, Guodong; Decker, Eric Andrew; McClements, David Julian


    The influence of initial lipid droplet size on the ability of excipient emulsions to increase carotenoid bioaccessibility from carrots was investigated using a simulated gastrointestinal tract (GIT). Corn oil-in-water excipient emulsions were fabricated with different surface-weighted mean droplet diameters: d32 = 0.17 μm (fine), 0.46 μm (medium), and, 10 μm (large). Bulk oil containing a similar quantity of lipids as the emulsions was used as a control. The excipient emulsions and control were mixed with pureed carrots, and then passed through a simulated GIT (mouth, stomach, and small intestine), and changes in particle size, charge, microstructure, lipid digestion, and carotenoid bioaccessibility were measured. Carotenoid bioaccessibility significantly increased with decreasing lipid droplet size in the excipient emulsions, which was attributed to the rapid formation of mixed micelles that could solubilize the carotenoids in the intestinal fluids. These results have important implications for designing excipient foods, such as dressings, dips, creams, and sauces, to increase the bioavailability of health-promoting nutraceuticals in foods.

  11. Enzymatic glycoprotein synthesis: Preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Witte, K.; Sears, P.; Martin, R.; Wong, C.H. [Scripps Research Inst., La Jolla, CA (United States)


    In order to study the effects carbohydrates have on glycoprotein structure and funciton, it is imperative to be able to synthesize the appropriate natural and non-natural glycoprotein variants in a single form. Because the available in vivo techniques provide only heterogeneous mixtures of different glycoforms, enzymatic in vitro methodologies have been pursued. Using the N-glycoprotein RNase B as a model system, the oligosaccharide was removed leaving only the N-acetylglucosamine as a `tag` to the site of glycosylation. Glycosyltransferases were then used to build a unique carbohydrate moiety. A new RNase glycoform containing the branched oligosccharide, sialyl Lewis X or the Hg derivative, was synthesized enzymatically to demonstrate the feasibility of the method. In addition, the monoglycosylated protein was digested into several smaller pieces by subtilisin BPN`. These fragments were religated by subtilisin 8397 to the full length RNase by addition glycerol; this method points to a new chemical-enzymatic process for the synthesis of glycoproteins using synthetic peptides and glycopeptides as substrates for enzymatic ligation followed by further enzymatic glycosylations. 29 refs., 6 figs.

  12. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)


    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  13. Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. (United States)

    Sun, Dan; Alam, Aftab; Tu, Yuanyuan; Zhou, Shiguang; Wang, Yanting; Xia, Tao; Huang, Jiangfeng; Li, Ying; Zahoor; Wei, Xiaoyang; Hao, Bo; Peng, Liangcai


    In this study, total ten Miscanthus accessions exhibited diverse cell wall compositions, leading to largely varied hexoses yields at 17%-40% (% cellulose) released from direct enzymatic hydrolysis of steam-exploded (SE) residues. Further supplied with 2% Tween-80 into the enzymatic digestion, the Mis7 accession showed the higher hexose yield by 14.8-fold than that of raw material, whereas the Mis10 had the highest hexoses yield at 77% among ten Miscanthus accessions. Significantly, this study identified four wall polymer features that negatively affect biomass saccharification as pbiomass enzymatic digestion. Hence, this study provides the potential strategy to enhance biomass saccharification using optimal biomass process technology and related genetic breeding in Miscanthus and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion. (United States)

    Liu, Shan; Ge, Xumeng; Liew, Lo Niee; Liu, Zhe; Li, Yebo


    The effect of urea addition on giant reed ensilage and sequential anaerobic digestion (AD) of the ensiled giant reed was evaluated. The dry matter loss during ensilage (up to 90 days) with or without urea addition was about 1%. Addition of 2% urea enhanced production of lactic acid by about 4 times, and reduced production of propionic acid by 2-8 times. Besides, urea addition reduced degradation of cellulose and hemicellulose, and increased degradation of lignin in giant reed during ensilage. Ensilage with or without urea addition had no significant effects on the enzymatic digestibility of giant reed, but ensilage with urea addition achieved a cumulative methane yield of 173 L/kg VS, which was 18% higher than that of fresh giant reed. The improved methane yield of giant reed could be attributed to the production of organic acids and ethanol during ensilage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. (United States)

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin


    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Low C/N ratio raw textile wastewater reduced labile C and enhanced organic-inorganic N and enzymatic activities in a semiarid alkaline soil. (United States)

    Roohi, Mahnaz; Riaz, Muhammad; Arif, Muhammad Saleem; Shahzad, Sher Muhammad; Yasmeen, Tahira; Ashraf, Muhammad Arslan; Riaz, Muhammad Atif; Mian, Ishaq A


    Application of raw and treated wastewater for irrigation is an extensive practice for agricultural production in arid and semiarid regions. Raw textile wastewater has been used for cultivation in urban and peri-urban areas in Pakistan without any systematic consideration to soil quality. We conducted a laboratory incubation study to investigate the effects of low C/N ratio raw textile wastewater on soil nitrogen (N) contents, labile carbon (C) as water-soluble C (WSC) contents, and activities of urease and dehydrogenase enzymes. The 60-day incubation study used an alkaline clay loam aridisol that received 0 (distilled water), 25, 50, and 100% wastewater concentrations, and microcosms were incubated aerobically under room temperature at 70% water holding capacity. Results revealed that raw wastewater significantly (p soil N pools and processes, WSC contents, and enzymatic activities. The organic and inorganic N species increased with increasing wastewater concentrations, whereas WSC contents followed an opposite trend. The highest NH4+-N and NO3--N contents were observed in soil treated with 100% wastewater. The extractable organic N (EON) contents always represented >50% of the soil total Kjeldahl N (TKN) contents and served as the major N pool. However, nitrification index (NO3--N/NH4+-N ratio) decreased at high wastewater concentrations. A significant negative correlation was observed between EON and WSC (p soil urease and dehydrogenase enzymatic activities with soil-extractable mineral N contents indicating coupled N cycling and soil biological activity. Higher production and accumulation of soil NO3--N and EON contents in concentrated wastewater-treated soil could pose an ecological concern for soil fertility, biological health, and water quality. However, the EON could lead to mineral N pool but only if sufficient labile C source was present. The effects of wastewater irrigation on soil N cycling need to be assessed before it is recommended for crop

  17. Feral pigeons in urban environments: dietary flexibility and enzymatic digestion? Palomas domésticas en ambientes urbanos: ¿flexibilidad dietaria y digestión enzimática?

    Directory of Open Access Journals (Sweden)



    Full Text Available Columba livia, original from Europe, is at present widely distributed all over the world. These granivores colonized urban environments where the availability of crops and seeds is not always permanent and, for that are forced to exploit other resources with different composition, e.g. high protein foodstuff. Thus, feral pigeons should have the ability to survive on a diet rich in protein as they do with starchy items by having an adequate digestive biochemical machinery to process it. Phylogenetical and functional hypothesis has been proposed linking dietary flexibility and enzyme lability. All Passeriformes studied to date show the expected positive correlation between aminopeptidase-N and dietary protein but not for intestinal carbohydrases. Conversely, all the non-passerine species modulate intestinal carbohydrases, but not peptidases. Moreover, different scenarios may be posed as the output of a phylogenetical effect, e.g., adding constraints to a lability scheme in certain groups or just determining it (e.g., intestinal disaccharidases modulated in Galloanserae and peptidases modulated in Passeriformes. Consequently, we tested the prediction that feral pigeons adjust digestive enzyme activities according to the level of the respective substrate (e.g., carbohydrates, protein in the diet. Birds were fed for 15 days with two different diets, one with high protein content (low in starch (HP and the other rich in starch and low in proteins (HS. Pigeons fed on the HP were able to survive with no other dietary supplement, as predicted. Pancreatic enzymes did not change between diet treatments. Birds fed on HP exhibited the predicted upward modulation of aminopeptidase-N activity, when compared to birds on HS, while intestinal carbohydrases did not show differences between diets. These results give an apparent support to the functional hypothesis, but are not enough to reject that the observed intestinal protease lability has a phylogenetical

  18. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. (Boston Univ., MA (United States). School of Medicine); Kitchell, J.P. (Holometrix, Inc., Cambridge, MA (United States))


    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  19. Enhanced recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membranes and aeration (United States)

    Atmospheric ammonia pollution from livestock wastes can be reduced using gas-permeable membrane technology by converting ammonia contained in the manure into ammonium salt for use in fertilizers. In this study, gas-permeable membrane technology was enhanced using aeration combined with nitrificatio...

  20. Monitoring of Enzymatic Proteolysis Using Self-Assembled Quantum Dot-Protein Substrate Sensors

    Directory of Open Access Journals (Sweden)

    Aaron R. Clapp


    Full Text Available We have previously utilized hybrid semiconductor quantum dot- (QD- peptide substrates for monitoring of enzymatic proteolysis. In this report, we expand on this sensing strategy to further monitor protein-protease interactions. We utilize QDs self-assembled with multiple copies of dye-labeled proteins as substrates for the sensing of protease activity. Detection of proteolysis is based on changes in the rate of fluorescence resonance energy transfer (FRET between the QDs and the proximal dye-labeled proteins following protein digestion by added enzyme. Our study focused on two representative proteolytic enzymes: the cysteine protease papain and the serine protease endoproteinase K. Analysis of the enzymatic digestion allowed us to estimate minimal values for the enzymatic activities of each enzyme used. Mechanisms of enzymatic inhibition were also inferred from the FRET data collected in the presence of inhibitors. Potential applications of this technology include drug discovery assays and in vivo cellular monitoring of enzymatic activity.

  1. Pepsin-Cellulase Digestibility of Pasture Silages: Effects of Pasture Type, Maturity Stage, and Variations in the Enzymatic Method Digestibilidad mediante Pepsina-Celulasa de Ensilajes de Pradera: Efectos del Tipo de Pradera, Estado de Madurez y Variaciones en el Método Enzimático

    Directory of Open Access Journals (Sweden)

    Claudia Barchiesi-Ferrari


    Full Text Available Enzymatic in vitro digestibility has been studied as a method to predict energy values of forages for ruminants, although results have been affected by type of forage and methodological details of the technique. This work was performed to evaluate the effects of cellulase concentration (0.75, 1.0 and 6.25 g L-1, incubation time (24 or 48 h and type of final washing of the residue (water or acetone on the in vitro digestibility of the dry matter (DMD, organic matter (OMD and content of digestible organic matter in the DM (D value of silages made at three maturity stages from three types of pastures: a permanent pasture (Dactylis glomerata, Lolium perenne, Bromus catharticus Vahl var. catharticus, Trifolium repens and Holcus lanatus; b Italian ryegrass ley (Lolium multiflorum Lam. cv. Tama; c oats (Avena sativa L. and d mixed pasture (L. perenne-T. repens. Regression equations among cellulase results and in vitro values obtained with rumen fluid were also developed. Higher enzyme concentration, longer incubation time and final washing with acetone, resulted in a significant (P La digestibilidad enzimática in vitro ha sido estudiada para predecir el valor energético de forrajes para rumiantes, aunque el tipo de forraje y los detalles metodológicos han afectado los resultados obtenidos. Este trabajo pretende evaluar los efectos de la concentración de celulasa (0,75; 1,0 y 6,25 g L-1, tiempo de incubación (24 o 48 h y tipo de lavado final (agua o acetona del residuo, sobre la digestibilidad in vitro de la materia seca (DMD, materia orgánica (OMD y el contenido de materia orgánica digestible en la materia seca, o valor D (D value de ensilajes hechos con tres estados de madurez, de diferentes praderas: a pradera permanente (Dactylis glomerata, Lolium perenne, Bromus catharticus Vahl var. catharticus, Trifolium repens y Holcus lanatus; b ballica Italiana (Lolium multiflorum Lam. cv. Tama; c avena (Avena sativa L.; y d pradera mixta (L. perenne

  2. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield. (United States)

    Martín-González, L; Colturato, L F; Font, X; Vicent, T


    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.

  3. In vitro digestibility of specific dsRNA by enzymes of digestive tract of shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Ana R Álvarez-Sánchez


    Full Text Available Objective. The digestibility of specific dsRNA by action of the enzymes of digestive tract of the whiteleg shrimp Litopenaeus vannamei was determined in vitro. Materials and methods. Digestive enzyme activity (amylase, lipase, protease, DNase and RNase was measured in the stomach, digestive gland, and anterior, middle, and posterior intestine of juvenile shrimp, and the digestibility of DNA, RNA and the dsRNA-ORF89, specific to WSSV, was determined by in vitro assays, as well as electrophoretic and densitometric analyses. Results. The highest enzymatic activity was found in the digestive gland: amylase (81.41%, lipase (92.60%, protease (78.20%, DNase (90.85%, and RNase (93.14%. The highest digestive capacity against DNA, RNA, and dsRNA was found in the digestive gland (5.11 ng of DNA per minute, 8.55 ng of RNA per minute, and 1.48 ng dsRNA per minute. Conclusions. The highest digestibility of dsRNA-ORF89, specific to WSSV, was found in the digestive gland, whereas the lowest digestibility was observed in the posterior intestine. This is the first report regarding the digestibility of dsRNA-ORF89 by whiteleg shrimp digestive tract enzymes, with potential therapeutic importance in shrimp culture to prevent WSSV disease through balanced feed.

  4. Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. (United States)

    Paszota, Paulina; Escalante-Perez, Maria; Thomsen, Line R; Risør, Michael W; Dembski, Alicja; Sanglas, Laura; Nielsen, Tania A; Karring, Henrik; Thøgersen, Ida B; Hedrich, Rainer; Enghild, Jan J; Kreuzer, Ines; Sanggaard, Kristian W


    Predation plays a major role in energy and nutrient flow in the biological food chain. Plant carnivory has attracted much interest since Darwin's time, but many fundamental properties of the carnivorous lifestyle are largely unexplored. In particular, the chain of events leading from prey perception to its digestive utilization remains to be elucidated. One of the first steps after the capture of animal prey, i.e. the enzymatic breakup of the insects' chitin-based shell, is reflected by considerable chitinase activity in the secreted digestive fluid in the carnivorous plant Venus flytrap. This study addresses the molecular nature, function, and regulation of the underlying enzyme, VF chitinase-I. Using mass spectrometry based de novo sequencing, VF chitinase-I was identified in the secreted fluid. As anticipated for one of the most prominent proteins in the flytrap's "green stomach" during prey digestion, transcription of VF chitinase-I is restricted to glands and enhanced by secretion-inducing stimuli. In their natural habitat, Venus flytrap is exposed to high temperatures. We expressed and purified recombinant VF chitinase-I and show that the enzyme exhibits the hallmark properties expected from an enzyme active in the hot and acidic digestive fluid of Dionaea muscipula. Structural modeling revealed a relative compact globular form of VF chitinase-I, which might contribute to its overall stability and resistance to proteolysis. These peculiar characteristics could well serve industrial purposes, especially because of the ability to hydrolyze both soluble and crystalline chitin substrates including the commercially important cleavage of α-chitin. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: Enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment. (United States)

    Seesuriyachan, Phisit; Kawee-Ai, Arthitaya; Chaiyaso, Thanongsak


    In this study, the pressures at 50-500MPa were evaluated at different time to pretreat and further enzyme hydrolysis. The ultra-high pressure (UHP) pretreatment at 100MPa for 10min led to improved accessibility of enzyme for conversion of xylan to xylooligosaccharide (XOS). The maximum XOS yield of 35.6mg/g substrate was achieved and firstly reported at 10% (w/v) of substrate, 100U of endo-xylanase/g corncobs and incubation time of 18h. The enzymatic hydrolysis efficiency was increased by 180.3% and released a high amount of xylobiose. The UHP pretreatment relatively did not affect to the composition of corncob, but decreased 34.3% of lignin. Interestingly, antioxidant activities of XOS using UHP pretreatment were higher than untreated corncob. The UHP pretreatment improved lignocellulosic destructuration and XOS yields in a shorter time without the need of chemicals, implying that UHP could be an effective pretreatment of biomass with a chemical-free process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Photoelectrochemical enzymatic biosensors. (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan


    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production. (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I


    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. (United States)

    Liu, Haitian; Wang, Shifeng; Cai, Yan; Guo, Xiaohui; Cao, Zhenjie; Zhang, Yongzheng; Liu, Shubin; Yuan, Wei; Zhu, Weiwei; Zheng, Yu; Xie, Zhenyu; Guo, Weiliang; Zhou, Yongcan


    The probiotic properties of Bacillus subtilis HAINUP40 isolated from the aquatic environment, and the effects of dietary administration of B. subtilis HAINUP40 on the growth performance, intestinal probiotic recovery, digestive enzyme activities, innate immunity and disease resistance of tilapia (Oreochromis niloticus) were evaluated. The probiotic properties investigated include tolerance to simulated gastrointestinal stress, auto-aggregation, cell surface hydrophobicity and extracellular enzyme production. The cell number of B. subtilis changed little after 4 h in simulated gastric fluid at pH = 2.0, 3.0, 4.0 and simulated intestinal fluid at pH = 6.8.B.subtilis HAINUP40 revealed strong auto-aggregation property (34.6-87.0%) after 24 h incubation period. It exhibited significant cell surface hydrophobicity in xylene (28.8%) and chloroform (41.3%) and produced extracellular proteases and amylase. After tilapia (mean weight = 95 ± 8 g) were fed with a diet containing 10 8  cfu/g B. subtilis HAINUP40, their final body weight, percent weight gain (PWG), specific growth rate (SGR), total antioxidant capacity (T-AOC) and serum superoxide dismutase (SOD) increased significantly (p subtilis HAINUP40 can effectively enhances the growth performance, immune response, and disease resistance of Nile tilapia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Improving the Thermostability of Raw-Starch-Digesting Amylase from a Cytophaga sp. by Site-Directed Mutagenesis


    Shiau, Rong-Jen; Hung, Hui-Chen; Jeang, Chii-Ling


    A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65°C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca2+-independent mechanism.

  10. Improving the Thermostability of Raw-Starch-Digesting Amylase from a Cytophaga sp. by Site-Directed Mutagenesis (United States)

    Shiau, Rong-Jen; Hung, Hui-Chen; Jeang, Chii-Ling


    A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65°C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca2+-independent mechanism. PMID:12676725

  11. Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity (United States)

    Yang Huang; Shaolong Sun; Chen Huang; Qiang Yong; Thomas Elder; Maobing Tu


    Background: Lignin typically inhibits enzymatic hydrolysis of cellulosic biomass, but certain organosolv lignins or lignosulfonates enhance enzymatic hydrolysis. The hydrophobic and electrostatic interactions between lignin and cellulases play critical roles in the enzymatic hydrolysis process. However, how to incorporate these two...

  12. The effects of gastric digestion on codfish allergenicity

    DEFF Research Database (Denmark)

    Untersmayr, Eva; Poulsen, Lars K.; Platzer, Michael H


    In a recent murine study, we showed that impaired gastric digestion supports the induction of fish allergy by protecting the digestion-sensitive major allergen parvalbumin and thus enhancing its sensitizing properties.......In a recent murine study, we showed that impaired gastric digestion supports the induction of fish allergy by protecting the digestion-sensitive major allergen parvalbumin and thus enhancing its sensitizing properties....

  13. Enzymatic Modifications of Polysaccharides (United States)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  14. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  15. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics. (United States)

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing


    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L. flour using commercial protease and Bacillus sp. protease Digestibilidade protéica in vitro de farinhas de feijão (Phaseolus vulgaris L. pré-tratadas com protease comercial e protease de Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Disney Ribeiro Dias


    Full Text Available The common bean (Phaseolus vulgaris L. is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3. The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco, treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition. The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour. The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above was used. The concentration of total protein (g.100 g-1 of dry matter in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter. The in vitro protein digestibility of enzymatically untreated bean flour (control ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p O feijão (Phaseolus vulgaris L. é um alimento básico na refeição do brasileiro

  17. Nanosilver: A Catalyst in Enzymatic Hydrolysis of Starch

    Directory of Open Access Journals (Sweden)

    Falkowska Marta


    Full Text Available Silver nanoparticles are widely used, because of their antimicrobial properties. In this paper, the rate of starch digestion in the presence of nanocatalyst was compared with the rate of reaction without nanosilver. The rate of enzymatic degradation of starch was found to be increased in the presence of silver nanoparticles. It is considered that α-amylase was immobilized onto the surface of nanoparticles.

  18. The human digestive tract has proteases capable of gluten hydrolysis

    Directory of Open Access Journals (Sweden)

    Sergio Gutiérrez


    Conclusion: The digestive tracts of patients with CD and healthy subjects have enzymatic machinery needed for gluten degradation. Patients with CD showed more gluten hydrolysis than did healthy individuals, although, in both cases, a fraction of 33-mer peptide remained intact. Gliadin peptides derived from gastrointestinal digestion, especially the 33-mer, can potentially be used by commensal microbiota from both CD-positive and CD-negative individuals, and differences in bacterial hydrolysis can modify its immunogenic capacity.

  19. Kinetics of starch digestion and performance of broiler chickens


    Weurding, R.E.


    Keywords: starch, digestion rate, broiler chickens, peas, tapioca

    Starch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy source in broiler feeds. The properties of starch from different origin vary condiderably and these properties determine its resistance to enzymatic digestion. The objective of the research project de...

  20. Acidic peptides enhanced genistein-dependent inhibition of human platelet aggregation: potential protective effect of digestible peptides plus genistein against atherosclerosis. (United States)

    Borgwardt, Kerstin; Bonifatius, Susanne; Gardemann, Andreas


    The leading cause of death in the United States and European countries is coronary heart disease. We hypothesized that the ingestion of soy compounds may not only have beneficial effects on atherosclerotic risk by lowering lipid compounds, but also by reducing platelet aggregability. Therefore, we analyzed in vitro the influence of defined and digestible peptides, frequently found in glycinin and beta-conglycinin as important proteins of soy bean, on platelet aggregation of 180 healthy volunteers with or without the isoflavone genistein by aggregometry and flow cytometry. (i) The predominating share of amino acids and acidic, neutral, and basic di- and tripeptides of up to 2 mmol/L did not modify platelet aggregation induced by collagen, adenosine diphosphate, epinephrine, or arachidonic acid. (ii) Genistein inhibited agonist-induced platelet aggregation dose dependently. (iii) In the presence of the acidic peptides glutamate-glutamate and aspartate-aspartate-aspartate (1 mmol/L each), genistein reduced collagen- and ADP-dependent platelet activation stronger than 250 micromol/L of this isoflavone alone. Other peptides were less effective (eg, glutamate-glutamate-glutamate) or ineffective (eg, asparagine-asparagine). (iv) Glutamate-glutamate-glutamate (1 nmol/L), glutamate-glutamate (1 micromol/L), and aspartate-aspartate-aspartate (1 micromol/L) enhanced the inhibition of genistein on platelet aggregation induced by arachidonic acid. Thus, the results of the present in vitro investigation allow the assumption that nutrition with specific compounds of soy--acidic peptides together with genistein--might protect against coronary atherosclerosis by attenuating platelet activity. In vivo studies are warranted to check this assumption.

  1. Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production. (United States)

    Elsamadony, M; Tawfik, A


    The aim of this study is to investigate the bio-H2 production via dry anaerobic co-fermentation of organic fraction of municipal solid waste (OFMSW) with protein and calcium-rich substrates such as gelatin solid waste (GSW) and paperboard mill sludge (PMS). Co-fermentation of OFMSW/GSW/PMS significantly enhanced the H2 production (HP) and H2 yield (HY). The maximum HP of 1082.5±91.4 mL and HY of 144.9±9.8 mL/gVSremoved were achieved at a volumetric ratio of 70% OFMSW:20% GSW:10% PMS. COD, carbohydrate, protein and lipids conversion efficiencies were 60.9±4.4%, 71.4±3.5%, 22.6±2.3% and 20.5±1.8% respectively. Co-fermentation process reduced the particle size distribution which is favorably utilized by hydrogen producing bacteria. The mean particle size diameters for feedstock and the digestate were 939.3 and 115.2μm, respectively with reduction value of 8.15-fold in the mixtures. The volumetric H2 production increased from 4.5±0.3 to 7.2±0.6 L(H2)/L(substrate) at increasing Ca(+2) concentrations from 1.8±0.1 to 6.3±0.5 g/L respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Digestive System (For Teens) (United States)

    ... Counselors Kidney Stones Brain and Nervous System Digestive System KidsHealth > For Teens > Digestive System Print A A ... of the body as feces. About the Digestive System Every morsel of food we eat has to ...

  3. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G). (United States)

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian


    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate.

  4. Study of enzymatic hydrolysis of pretreated biomass at increased solids loading


    Michael Ioelovich; Ely Morag


    The effect of biomass loading from 50 to 200 g/L on enzymatic hydrolysis was studied using switchgrass samples pretreated by dilute acid and hypochlorite-alkaline methods. It was confirmed that an increase of initial loading of the pretreated biomass leads to a decrease of enzymatic digestibility, probably due to difficulty of mass transfer of cellulolytic enzymes in the high-viscous substrate slurry and also because of an inhibiting effect of the formed sugars. An additional sharp problem co...

  5. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.


    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  6. Enzymatic Synthesis of Psilocybin. (United States)

    Fricke, Janis; Blei, Felix; Hoffmeister, Dirk


    Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called "magic mushrooms". Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Glycoside hydrolase production by Aspergillus terreus CM20 using mixture design approach for enhanced enzymatic saccharification of alkali pretreated paddy straw. (United States)

    Saritha, M; Tiwari, Rameshwar; Singh, Surender; Nain, Pawan K S; Rana, Sarika; Adak, Anurup; Arora, Anju; Nain, Lata


    A successful lignocellulosic ethanol production process needs to address the technological impediments such as cost-competitiveness and sustainability of the process. Effective biomass utilization requires a repertoire of enzymes including various accessory enzymes. Developing an enzyme preparation with defined hydrolytic activities can circumvent the need for supplementing cellulases with accessory enzymes for enhanced hydrolysis. With this objective, mixture design approach was used in the present study to enhance glycoside hydrolase production of a fungal isolate, Aspergillus terreus CM20, by determining the proportion of different lignocellulosic components as enzyme inducers in the culture medium. A mixture of paddy straw and wheat straw (1.42:1.58) resulted in improved cellulolytic activities. The precipitated crude enzyme showed higher CMCase (365.03 18 IU g-1), FPase (161.48 IU g-1), avicelase (15.46 IU g-1), β-glucosidase (920.92 IU g-1) and xylanase (9627.79 IU g-1) activities. The potential of the crude enzyme for saccharification of alkali pretreated paddy straw was also tested. Under optimum conditions, saccharification released 25.0 g L-1 of fermentable sugars. This indicates the superiority of the crude enzyme produced with respect to its hydrolytic enzyme components.

  8. Modifying crops to increase cell wall digestibility. (United States)

    Jung, Hans-Joachim G; Samac, Deborah A; Sarath, Gautam


    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter. Published by Elsevier Ireland Ltd.

  9. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency


    Anne Mößeler; Sandra Vagt; Martin Beyerbach; Josef Kamphues


    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic...

  10. Enzymatically Modified Low-Density Lipoprotein Promotes Foam Cell Formation in Smooth Muscle Cells via Macropinocytosis and Enhances Receptor-Mediated Uptake of Oxidized Low-Density Lipoprotein. (United States)

    Chellan, Bijoy; Reardon, Catherine A; Getz, Godfrey S; Hofmann Bowman, Marion A


    Enzyme-modified nonoxidized low-density lipoprotein (ELDL) is present in human atherosclerotic lesions. Our objective is to understand the mechanisms of ELDL uptake and its effects on vascular smooth muscle cells (SMC). Transformation of murine aortic SMCs into foam cells in response to ELDL was analyzed. ELDL, but not acetylated or oxidized LDL, was potent in inducing SMC foam cell formation. Inhibitors of macropinocytosis (LY294002, wortmannin, amiloride) attenuated ELDL uptake. In contrast, inhibitors of receptor-mediated endocytosis (dynasore, sucrose) and inhibitor of caveolae-/lipid raft-mediated endocytosis (filipin) had no effect on ELDL uptake in SMC, suggesting that macropinocytosis is the main mechanism of ELDL uptake by SMC. Receptor for advanced glycation end products (RAGE) is not obligatory for ELDL-induced SMC foam cell formation, but primes SMC for the uptake of oxidized LDL in a RAGE-dependent manner. ELDL increased intracellular reactive oxygen species, cytosolic calcium, and expression of lectin-like oxidized LDL receptor-1 in wild-type SMC but not in RAGE(-/-) SMC. The macropinocytotic uptake of ELDL is regulated predominantly by intracellular calcium because ELDL uptake was completely inhibited by pretreatment with the calcium channel inhibitor lacidipine in wild-type and RAGE(-/-) SMC. This is in contrast to pretreatment with PI3 kinase inhibitors which completely prevented ELDL uptake in RAGE(-/-) SMC, but only partially in wild-type SMC. ELDL is highly potent in inducing foam cells in murine SMC. ELDL endocytosis is mediated by calcium-dependent macropinocytosis. Priming SMC with ELDL enhances the uptake of oxidized LDL. © 2016 American Heart Association, Inc.

  11. Engineering Digestion: Multiscale Processes of Food Digestion. (United States)

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim


    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  12. Enzymatic cascade bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A. (San Francisco, CA); Volponi, Joanne V. (Livermore, CA); Ingersoll, David (Albuquerque, NM); Walker, Andrew (Woodinville, WA)


    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  13. Enzymatic Hydrolysis of Lignocelluloses

    DEFF Research Database (Denmark)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen


    bonds. Cellulose can be degraded to simple sugar components by means of enzymatic hydrolysis. However, due to its complex, crystalline structure it is difficult to break it down and the cooperative action of a variety of cellulolytic enzymes is necessary. Fungi are known to have potential in production...... source. By means of degenerate PCR, specific genes, homologous to the genes of previously classified glycoside hydrolases from CAZY database, are searched for in selected strains of Aspergillus sp., Trichoderma sp. and Penicillium sp. Both methods are anticipated to facilitate identification of target...

  14. A specific mixture of non-digestible oligosaccharides enhances the tolerizing capacity of a partial whey hydrolysate in a mouse model for cow's milk allergy

    NARCIS (Netherlands)

    Van Esch, Betty Cam|info:eu-repo/dai/nl/304839256; De Kivit, Sander|info:eu-repo/dai/nl/315555351; Hofman, Gerard A.|info:eu-repo/dai/nl/30483923X; Nauta, Alma J.; Willemsen, Linette E. M.|info:eu-repo/dai/nl/260086541; Garssen, Johan|info:eu-repo/dai/nl/086369962; Knippels, Léon M. J.|info:eu-repo/dai/nl/170352153


    Hypoallergenic infant formulas (HA) are considered a good alternative for infants at high risk for developing allergy if breastfeeding is not possible. Dietary intervention studies with HA combined with a specific mixture of non-digestible oligosaccharides, have been shown to reduce allergic

  15. In vitro gastrointestinal digestion study of a novel bio-tofu with special emphasis on the impact of microbial transglutaminase

    Directory of Open Access Journals (Sweden)

    Guangliang Xing


    Full Text Available We have developed a novel bio-tofu, made from mixed soy and cow milk (MSCM, using Lactobacillus helveticus MB2-1 and Lactobacillus plantarum B1-6 incorporated with microbial transglutaminase (MTGase as coagulant. MTGase was added to improve the textural properties and suit for cooking. However, the effect of MTGase on the digestion of mixed-protein fermented by lactic acid bacteria was unclear. This study aimed at evaluating the effect of MTGase on protein digestion of bio-tofu under simulated gastrointestinal digestion condition. The results showed that addition of MTGase could affect the particle size distribution, degree of hydrolysis, the content of soluble proteins and free amino acids. Based on the electrophoresis data, MTGase addition enhanced protein polymerization. During gastric and intestinal digestion process, proteins from bio-tofu were degraded into low molecular mass peptides. Our results suggested that incorporation of MTGase could lead to enzymatic modification of proteins of bio-tofu which may help in controlling energy intake and decrease the chance of food allergy.

  16. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Galbe Mats


    -filtered solids. However, pressing in combination with not washing the material between the two steps enhanced the sugar yield of the enzymatic digestion step. Hence, it is suggested that the unwashed slurry be pressed to as high a dry matter content as possible between the two acid hydrolysis stages in order to achieve high final sugar yields.

  17. Enzymatically induced motion at nano- and micro-scales (United States)

    Gáspár, Szilveszter


    In contrast to adenosine triphosphate (ATP)-dependent motor enzymes, other enzymes are little-known as ``motors'' or ``pumps'', that is, for their ability to induce motion. The enhanced diffusive movement of enzyme molecules, the self-propulsion of enzyme-based nanomotors, and liquid pumping with enzymatic micropumps were indeed only recently reported. Enzymatically induced motion can be achieved in mild conditions and without the use of external fields. It is thus better suited for use in living systems (from single-cell to whole-body) than most other ways to achieve motion at small scales. Enzymatically induced motion is thus not only new but also important. Therefore, the present work reviews the most significant discoveries in enzymatically induced motion. As we will learn, freely diffusing enzymes enhance their diffusive movement by nonreciprocal conformational changes which parallel their catalytic cycles. Meanwhile, enzyme-modified nano- and micro-objects turn chemical energy into kinetic energy through mechanisms such as bubble recoil propulsion, self-electrophoresis, and self-diffusiophoresis. Enzymatically induced motion of small objects ranges from enhanced diffusive movement to directed motion at speeds as high as 1 cm s-1. In spite of the progress made in understanding how the energy of enzyme reactions is turned into motion, most enzymatically powered devices remain inefficient and need improvements before we will witness their application in real world environments.

  18. Modelling Tethered Enzymatic Reactions (United States)

    Solis Salas, Citlali; Goyette, Jesse; Coker-Gordon, Nicola; Bridge, Marcus; Isaacson, Samuel; Allard, Jun; Maini, Philip; Dushek, Omer

    Enzymatic reactions are key to cell functioning, and whilst much work has been done in protein interaction in cases where diffusion is possible, interactions of tethered proteins are poorly understood. Yet, because of the large role cell membranes play in enzymatic reactions, several reactions may take place where one of the proteins is bound to a fixed point in space. We develop a model to characterize tethered signalling between the phosphatase SHP-1 interacting with a tethered, phosphorylated protein. We compare our model to experimental data obtained using surface plasmon resonance (SPR). We show that a single SPR experiment recovers 5 independent biophysical/biochemical constants. We also compare the results between a three dimensional model and a two dimensional model. The work gives the opportunity to use known techniques to learn more about signalling processes, and new insights into how enzyme tethering alters cellular signalling. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).

  19. The non-enzymatic inactivation of thirteen β-lactam antibiotics in human faeces

    NARCIS (Netherlands)

    Jansen, G; Weissing, F; de Vries Hospers, H; Tonk, R; van der Waaij, D


    In order to obtain a method that could predict the in vitro inactivation of an antibiotic in the digestive tract, the non-enzymatic inactivation of 13 beta-lactam antibiotics by human faeces was investigated. Benzylpenicillin, amoxicillin, amoxicillin/clavulanate, cloxacillin, piperacillin,

  20. The non-enzymatic inactivation of thirteen beta-lactam antibiotics in human faeces

    NARCIS (Netherlands)

    Jansen, G; Weissing, F; de Vries-Hospers, H; Tonk, R; van der Waaij, D


    In order to obtain a method that could predict the in vitro inactivation of an antibiotic in the digestive tract, the non-enzymatic inactivation of 13 beta-lactam antibiotics by human faeces was investigated. Benzylpenicillin, amoxicillin, amoxicillin/clavulanate, cloxacillin, piperacillin,

  1. Oral administration recombinant porcine epidermal growth factor enhances the jejunal digestive enzyme genes expression and activity of early-weaned piglets. (United States)

    Lee, D N; Chuang, Y S; Chiou, H Y; Wu, F Y; Yen, H T; Weng, C F


    This study attempted to determine ingested porcine epidermal growth factor (pEGF) on the gastrointestinal tract development of early-weaned piglets. Thirty-two piglets (14-day weaned) were randomly allotted to supplemented with 0 (control), 0.5, 1.0, or 1.5 mg pEGF/kg diet. Each treatment consisted of four replicates with two pigs per pen for a 14 days experimental period. Piglets were sacrificed and gastrointestinal tract samples were collected to measure mucosa morphology, mRNA expression and activities of digestive enzymes in the gastrointestinal tract of piglets at the end of the experiment. Diets supplemented with pEGF failed to influence growth performance but tended to increase jejunal mucosa weight (p Piglets supplemental pEGF induced incrementally the gastric pepsin activity (p digestive enzymes in the stomach and jejunum of piglets.

  2. Traditional Chinese Medicine Prescriptions Enhance Growth Performance of Heat Stressed Beef Cattle by Relieving Heat Stress Responses and Increasing Apparent Nutrient Digestibility

    Directory of Open Access Journals (Sweden)

    Xiaozhen Song


    Full Text Available The present aim was to investigate the effects of traditional Chinese medicine prescriptions (TCM on body temperature, blood physiological parameters, nutrient apparent digestibility and growth performance of beef cattle under heat stress conditions. Twenty-seven beef cattle were randomly divided into three groups as following; i high temperature control (HTC, ii traditional Chinese medicine prescriptions I+high temperature (TCM I and iii traditional Chinese medicine prescriptions II+high temperature (TCM II (n = 9 per group. The results showed that the mean body temperature declined in TCM II treatment (p<0.05. Serum T3 and T4 levels with TCM I and TCM II treatments elevated (p<0.05, and serum cortisol levels of TCM I treatments decreased (p<0.05, compared with the HTC group. Total protein, albumin, globulin in TCM II treatments elevated and blood urea nitrogen levels of both TCM treatments increased, but glucose levels of both TCM treatments decreased, compared with the HTC group (p<0.05. The apparent digestibility of organic matter and crude protein with TCM I treatment increased, and the apparent digestibility of acid detergent fiber elevated in both TCM treatments (p<0.05. Average daily feed intake was not different among three groups, however average daily gain increased and the feed:gain ratio decreased with both TCM treatments, compared with the HTC group (p<0.05. The present results suggest that dietary supplementation with TCM I or TCM II improves growth performance of heat stressed beef cattle by relieving heat stress responses and increasing nutrient apparent digestibility.

  3. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... of the obtained products and were correlated to properties of the starch substrates. It was found that the obtained products differed depending on both the conditions used and the properties of the starch. Products of starch from certain origins completely lost their granular structure during the enzyme treatment...

  4. Enzymatic modifications of exopolysaccharides enhance bacterial persistence

    Directory of Open Access Journals (Sweden)

    Gregory B. Whitfield


    Full Text Available Biofilms are surface-attached communities of bacterial cells embedded in a self-produced matrix that are found ubiquitously in nature. The biofilm matrix is composed of various extracellular polymeric substances, which confer advantages to the encapsulated bacteria by protecting them from eradication. The matrix composition varies between species and is dependent on the environmental niche that the bacteria inhabit. Exopolysaccharides play a variety of important roles in biofilm formation in numerous bacterial species. The ability of bacteria to thrive in a broad range of environmental settings is reflected in part by the structural diversity of the exopolysaccharides produced both within individual bacterial strains as well as by different species. This variability is achieved through polymerization of distinct sugar moieties into homo- or hetero-polymers, as well as post-polymerization modification of the polysaccharide. Specific enzymes that are unique to the production of each polymer can transfer or remove non-carbohydrate moieties, or in other cases, epimerize the sugar units. These modifications alter the physicochemical properties of the polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental adaptability. Herein, we review the diversity of modifications that the exopolysaccharides alginate, the Pel polysaccharide (PEL, Vibrio polysaccharide (VPS, cepacian, glycosaminoglycans (GAGs, and poly-N-acetylglucosamine (PNAG undergo during biosynthesis. These are exopolysaccharides produced by human pathogenic bacteria for which studies have begun to unravel the effect modifications have on their physicochemical and biological properties. The biological advantages these polymer modifications confer to the bacteria that produce them will be discussed. The expanding list of identified modifications will allow future efforts to focus on linking these modifications to specific biosynthetic genes and biofilm phenotypes.

  5. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions. (United States)

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I


    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Human digestion--a processing perspective. (United States)

    Boland, Mike


    The human digestive system is reviewed in the context of a process with four major unit operations: oral processing to reduce particle size and produce a bolus; gastric processing to initiate chemical and enzymatic breakdown; small intestinal processing to break down macromolecules and absorb nutrients; and fermentation and water removal in the colon. Topics are highlighted about which we need to know more, including effects of aging and dentition on particle size in the bolus, effects of different patterns of food and beverage intake on nutrition, changes in saliva production and composition, mechanical effects of gastric processing, distribution of pH in the stomach, physicochemical and enzymatic effects on nutrient availability and uptake in the small intestine, and the composition, effects of and changes in the microbiota of the colon. Current topics of interest including food synergy, gut-brain interactions, nutritional phenotype and digestion in the elderly are considered. Finally, opportunities for food design based on an understanding of digestive processing are discussed. © 2015 Society of Chemical Industry.

  7. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.


    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  8. Kinetic and Enhancement of Biogas Production For The Purpose of Rnewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System

    Directory of Open Access Journals (Sweden)

    Jabraeil Taghinazhad


    Full Text Available Biogas production from anaerobic co-digestion of cow manure (CM and corn straw residue (CSR were experimentally investigated using a completely stirred tank reactor (CSTR under semi- continuously feeding circumstance at mesophilic (35°C±2 temperature. The pilot-scale digester with 180 L in volume was employed under experimental protocol to examine the effect of the change in organic loading rate on efficiency of biogas production and to report on its steady-state performance. An average organic loading rates of 2 and 3 kg VS. (m-3.d-1 and a hydraulic retention time (HRT of 25 days was examined with respect to two different CM to CSR mixing ratios of 100:0 , 75:25 and 50:50, respectively. The results showed both organic loading rates at co-digestion of CM+ CSR gave better methane yields than single digestion of cow manure. The biogas production efficiency was obtained 0.242, 0.204, 0.311 0.296, 259.5 and 235 m3.(kg VS input-1 for 2 and 3 kg VS.(m-3.d-1 at CM to CSR mixing ratios of100:0 , 75:25 and 50:50, respectively. The reactor showed stable performance with VS reduction between 55-74% during different runs. With increment of loading rate, the VS degradation and biogas yield decreased. Modified Gompertz and logistic plot equation was employed to model the methane production at different organic loading rates and substrate concentrations. The equations gave a good approximation of the maximum methane production (rm and the methane yield potential (P with correlation coefficient (R2 over 0.99. Keywords: Biogas; cow manure; corn straw; Kinetic; semi-continuously Article History: Received Oct 25th 2016; Received in revised form Dec 19th 2016; Accepted 2nd January 2017; Available online How to Cite This Article: Taghinazhad. J., Abdi, R. and Adl, M. (2017. Kinetic and Enhancement of Biogas Production for the purpose of renewable fuel generation by Co-digestion of Cow Manure and Corn Straw in a Pilot Scale CSTR System. Int Journal of Renewable

  9. Enzymatic Pre-Treatment Increases the Protein Bioaccessibility and Extractability in Dulse (Palmaria palmata

    Directory of Open Access Journals (Sweden)

    Hanne K. Mæhre


    Full Text Available Several common protein extraction protocols have been applied on seaweeds, but extraction yields have been limited. The aims of this study were to further develop and optimize existing extraction protocols and to examine the effect of enzymatic pre-treatment on bioaccessibility and extractability of seaweed proteins. Enzymatic pre-treatment of seaweed samples resulted in a three-fold increase in amino acids available for extraction. Combining enzymatic pre-treatment with alkaline extraction resulted in a 1.6-fold increase in the protein extraction yield compared to a standard alkaline extraction protocol. A simulated in vitro gastrointestinal digestion model showed that enzymatic pre-treatment of seaweed increased the amount of amino acids available for intestinal absorption 3.2-fold. In conclusion, enzymatic pre-treatment of seaweeds is effective for increasing the amount of amino acids available for utilization and may thus be an effective means for increasing the utilization potential of seaweed proteins. However, both the enzymatic pre-treatment protocol and the protein extraction protocol need further optimization in order to obtain optimal cost-benefit and results from the in vitro gastrointestinal digestion model need to be confirmed in clinical models.



    Bárbara Karolina Ratier da Silva; Tatiane Aparecida Ramos; Joseane Crystina Costa Rego; Cátia Chilanti Pinheiro; Marson Bruck Warpechowski


    The effects of fiber level and the enzymatic supplementation in diets for broilers were evaluated in two trials. The experimental treatments were diets with high and low fiber level and with enzymatic supplementation (α-galactosidase, cellulase, amylase e protease). In the first trial (14 to 19 days of birds age), 190 broilers were randomly distributed in a 2x2 factorial arrangement (fiber x enzymes), placed in metabolic cages between (9-10 birds/cage, 5 cages per treatment). It was evaluate ...

  11. Sequence characterization and glycosylation sites identification of donkey milk lactoferrin by multiple enzyme digestions and mass spectrometry

    DEFF Research Database (Denmark)

    Gallina, Serafina; Cunsolo, Vincenzo; Saletti, Rosaria


    . The characterization of its primary structure, by means of enzymatic digestions, SPITC derivatization of tryptic digest, reversed-phase high performance liquid chromatography, electrospray and matrix-assisted laser desorption/ionization mass spectrometry, is reported. Our results allowed the almost complete...

  12. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye


    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  13. Enzymatic Modification of Corn Starch Influences Human Fecal Fermentation Profiles. (United States)

    Dura, Angela; Rose, Devin J; Rosell, Cristina M


    Enzymatically modified starches have been widely used in food applications to develop new products, but information regarding digestion and fecal fermentation of these products is sparse. The objective of this study was to determine the fermentation properties of corn starch modified with α-amylase, amyloglucosidase, or cyclodextrin glycosyltransferase and the possible role of hydrolysis products. Samples differed in their digestibility and availability to be fermented by the microbiota, resulting in differences in microbial metabolites produced during in vitro fermentation. The presence or absence of hydrolysis products and gelatinization affected starch composition and subsequent metabolite production by the microbiota. Amyloglucosidase-treated starch led to the greatest production of short- and branched-chain fatty acid production by the microbiota. Results from this study could be taken into consideration to confirm the possible nutritional claims and potential health benefits of these starches as raw ingredients for food development.

  14. Enzymatic Catalysis at Interfaces—Heterophase Systems as Substrates for Enzymatic Action

    Directory of Open Access Journals (Sweden)

    Katharina Landfester


    Full Text Available Several important enzymatic reactions occurring in nature, such as, e.g., the digestion of fat, proceed only at the interface of two immiscible phases. Typically, these systems consist of an organic substrate, dispersed in an aqueous continuous phase, with a specialized enzyme capable of working at the interface. For adopting such a system for organic synthesis, a stable heterophase system with a large interfacial area is required. These prerequisites can be found in so-called miniemulsions. Such liquid-liquid heterophase systems feature droplets with sizes smaller than 500 nm, and more importantly, these emulsions do not suffer from Ostwald ripening, as conventional emulsions do. Consequently, the droplets show long-term stability, even throughout reactions conducted in the droplets. In this review, we will briefly discuss the physicochemical background of miniemulsions, provide a comprehensive overview of the enzymatically catalyzed reactions conducted in miniemulsions and, as data are available, to compare the most important features to conventional systems, as reverse microemulsions, (macroemulsions and solvent-based systems.

  15. Homogeneous, Heterogeneous, and Enzymatic Catalysis. (United States)

    Oyama, S. Ted; Somorjai, Gabor A.


    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  16. Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose (United States)

    Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu


    The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...

  17. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell......-N/L(CSTR)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m2 was produced (10 Ω). Both current driven NH4+ migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMRC...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  18. Digestion with initial thermophilic hydrolysis step for sanitation and enhanced methane extraction in wastewater treatment plants; Roetning med inledande termofilt hydrolyssteg foer hygienisering och utoekad metanutvinning paa avloppsreningsverk

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin [BioMil AB, Lund (Sweden); Carlsson, My; Uldal, Martina; Johannesson, Sofia [AnoxKaldnes AB, Lund (Sweden)


    Thermophilic (55 deg) pre-hydrolysis has been shown to improve methane yield, organics reduction and/or treatment capacity when applied to anaerobic digestion (Persson m. fl. 2010). The method has also proven to kill off pathogens, making it an interesting hygienisation alternative to pasteurisation. The Swedish Environmental Protection Agency has opened up for the possibility to validate new methods for hygienisation, if the pathogen reduction can be proven to be efficient enough. Thermophilic pre-hydrolysis has several possible advantages to pasteurization; e. g. district heating of lower temperature can be used, the stability of the process may increase, as well as the efficiency and extent of the digestion process. The objective of this study is to evaluate the effect of thermophilic pre-hydrolysis on anaerobic digestion (AD) of sewage sludge with respect to: 1. Biogas/methane production and solids reduction. 2. Correlations between substrate properties, process conditions and effect on the AD process. 3. Pathogen reduction efficiency. 4. Operational consequences. Laboratory trials in continuous and batch mode were conducted on sewage sludge from four Swedish wastewater treatment plants. In the trials thermophilic pre-hydrolysis with consecutive mesophilic AD was compared to conventional one-step mesophilic AD, as well as pre-pasteurisation with consecutive AD. For all the tested sludge samples the reduction of TS and VS increased as a result of thermophilic pre-hydrolysis prior to mesophilic AD. The results with respect to methane yield were not as straightforward. Increased production of biogas was achieved in pilot scale, but the methane production did not improve. In the laboratory trials the effect on methane production varied from -8 % till +18 % for the sludge samples tested. The most positive results were achieved in the test that had the highest organic load and that was fed with a sludge that was low in fat and high in carbohydrates, compared to the

  19. Dephosphorylation of intact glycoprotein to greatly improve digestion efficiency coupled with matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometric analysis. (United States)

    Li, Fenjie; Wang, Xiaodong; Liu, Yujie; Liu, Hui; Li, Zhili


    Sialylation is essential for a variety of cellular functions. Herein, we used bovine fetuin with three potential N-linked glycosylation sites containing complex-type glycan structures, four potential O-linked glycosylation sites and six potential phosphorylation sites as a model compound to develop a highly-efficient digestion strategy for sialylated glycoproteins and efficient enrichment strategy for sialylated glycopeptides using titanium dioxide. The former according to the process of alkaline phosphatase digestion followed by tryptic digestion and then proteinase K digestion could greatly improve the enzymatic efficiency on fetuin, and the latter could obviously enhance the enrichment efficiency for multisialylated glycopeptides using phosphoric acid solution as elution buffer. The mass spectra of the enriched glycopeptides derived from fetuin reveal that several series of the ion clusters with mass difference of 291 Da correspond to the presence of multisialylated glycopeptides. In addition, the approach was applied to characterize the sialylated status of α2-macroglobulin and transferrin, respectively, from the sera of healthy subjects and sex- and age-matched patients with thyroid cancer, and their spectra indicate that the change in the amount of the glycoforms containing different number of sialic acid (SA) residues from one glycosylation site may be used to differentiate between healthy subjects and cancer cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Aqueous Ammonia soaking of digested manure fibers

    DEFF Research Database (Denmark)

    Mirtsou-Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis


    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. Thus......-scale anaerobic digester to enhance their methane productivity. Soaking in six different reagent concentrations in ammonia (5%, 10%, 15%, 20%, 25%, 32%) was applied for 3 days at 22°C. An overall methane yield increase from 85% to 110% was achieved compared to controls (digested manure fibers where AAS......, their economical profitable operation relies on increasing the methane yield from manure, and especially of its solid fraction which is not so easily degradable. In the present study, Aqueous Ammonia Soaking was successfully applied on digested fibers separated from the effluent of a manure-fed, full...

  1. Secondary Structure and Subunit Composition of Soy Protein In Vitro Digested by Pepsin and Its Relation with Digestibility

    Directory of Open Access Journals (Sweden)

    Yong Yang


    Full Text Available In the present study, in vitro digestibility and structure of soybean protein isolates (SPIs prepared from five soybean varieties were investigated in simulated gastric fluid (SGF, using FT-IR microspectroscopy and SDS-PAGE. The result indicated that β-conformations were prone to be hydrolyzed by pepsin preferentially and transformed to unordered structure during in vitro digestion, followed by the digestion of α-helix and unordered structure. A negative linear correlation coefficient was found between the β-conformation contents of five SPIs and their in vitro digestibility values. The intensities of the protein bands corresponding to 7S and 11S fractions were decreased and many peptide bands appeared at 11~15 kDa during enzymatic hydrolysis. β-conglycinin was poorly hydrolyzed with pepsin, especially the β-7S subunit. On the other hand, basic polypeptides of glycinin degraded slower than acidic polypeptides and represented a large proportion of the residual protein after digestion. 11S-A3 of all SPIs disappeared after 1 h digestion. Moreover, a significant negative linear correlation coefficient (r=-0.89 was found between the β-7S contents of five SPIs and their in vitro digestibility values. These results are useful for further studies of the functional properties and bioactive properties of these varieties and laid theoretical foundations for the development of the specific functional soy protein isolate.

  2. Colors as catalysts in enzymatic reactions. (United States)

    Azeemi, Samina T Yousuf; Raza, Syed Mohsin; Yasinzai, Masoom


    We studied the effects of visible range irradiation (in vitro) on the enzyme solutions (glucose oxidase, cholesterol oxidase + cholesterol esterase and lipase) in order to infer the changes produced in the human body after chromotherapy. The glucose oxidase showed enhanced activity to the color purple (464 nm), while the activity of the other enzymes, cholesterol esterase + cholesterol oxidase and lipase, increased when exposed to dark violet (400 nm). Purple is being used in conventional chromotherapy for diabetes, as supported by the experimental observation in which purple enhanced the activity of enzymes responsible for the oxidation of glucose. Specific wavelengths regulate living processes by acting as catalysts in enzyme activity, while some wavelengths may reduce enzyme activity. The irradiation of specific wavelengths effect enzymatic processes, which as a consequence, accelerated biochemical reactions. This particular frequency when provided to the enzymes (in vitro) lead to changes which may well be occurring in vivo.

  3. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. (United States)

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T


    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.


    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  5. Anaerobic Digestion and its Applications (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  6. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. (United States)

    Garcia-Mora, P; Peñas, E; Frias, J; Gomez, R; Martinez-Villaluenga, C


    Angiotensin I converting enzyme (ACE) inhibitory and antioxidant peptides are receiving attention due to their beneficial effects in the prevention/treatment of hypertension. The objective was to explore the effect of high hydrostatic pressure (HP) on proteolysis by different proteases and the release of bioactive peptides from lentil proteins. Pressurisation (100-300 MPa) enhanced the hydrolytic efficiency of Protamex, Savinase and Corolase 7089 compared to Alcalase. Proteolysis at 300 MPa led to a complete degradation of lentil proteins and increased peptide (antioxidant activities that were retained upon in vitro gastrointestinal digestion. The peptides responsible for the multifunctional properties of S300 hydrolysate were identified as different fragments from storage proteins and the allergen Len c 1. These results support the potential of HP as a technology for the cost-effective production of bioactive peptides from lentil proteins during enzymatic proteolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Molecular Analysis of Bacterial Community DNA in Sludge Undergoing Autothermal Thermophilic Aerobic Digestion (ATAD: Pitfalls and Improved Methodology to Enhance Diversity Recovery

    Directory of Open Access Journals (Sweden)

    Anna V. Piterina


    Full Text Available Molecular analysis of the bacterial community structure associated with sludge processed by autothermal thermophilic aerobic digestion (ATAD, was performed using a number of extraction and amplification procedures which differed in yield, integrity, ability to amplify extracted templates and specificity in recovering species present. Interference to PCR and qPCR amplification was observed due to chelation, nuclease activity and the presence of thermolabile components derived from the ATAD sludge. Addition of selected adjuvant restored the ability to amplify community DNA, derived from the thermophilic sludge, via a number of primer sets of ecological importance and various DNA polymerases. Resolution of community profiles by molecular techniques was also influenced by the ATAD sludge extraction procedure as demonstrated by PCR-DGGE profiling and comparison of taxonomic affiliations of the most predominant members within 16S rRNA gene libraries constructed from ATAD DNA extracted by different methods. Several modifications have been shown to be necessary to optimize the molecular analysis of the ATAD thermal niche which may have general applicability to diversity recovery from similar environments.

  8. Enzymatic Browning: a practical class

    Directory of Open Access Journals (Sweden)

    Maria Teresa Pedrosa Silva Clerici


    Full Text Available This paper presents a practical class about the enzymes polyphenol oxidases, which have been shown to be responsible for the enzymatic browning of fruits and vegetables. Vegetables samples were submitted to enzymatic inactivation process with chemical reagents, as well as by bleaching methods of applying heat by conventional oven and microwave oven. Process efficiency was assessed qualitatively by both observing the guaiacol peroxidase activity and after the storage period under refrigeration or freezing. The practical results obtained in this class allow exploring multidisciplinary knowledge in food science, with practical applications in everyday life.

  9. Sea buckthorn (Hippophae rhamnoides) proanthocyanidins inhibit in vitro enzymatic hydrolysis of protein. (United States)

    Arimboor, Ranjith; Arumughan, C


    Interactions of phenolics with other food constituents and digestive enzymes are likely to have interference with the digestion and bioavailability of food and phenolics. In this study the effect of sea buckthorn proanthocyanidins on in vitro digestion of protein was evaluated. Optimization of the extraction conditions showed that maximum recovery of sea buckthorn proanthocyanidins was obtained with acidified acetone; water mixture (60% to 70%, v/v). Crude proanthocyanidin extracts thus prepared were purified using sephadex gel column chromatography and their average degree of polymerization and the effects on enzymatic hydrolysis of bovine serum albumin as influenced by their protein precipitation capacities were studied. Average degree of polymerization of proanthocyanidins in berry pulp, kernel, seed coat, and leaves was 7.4, 5.6, 8.2, and 10.6, respectively. The EC50 values for the protein precipitation by the PA of berry pulp, kernel seed coat, and leaves were 44.2, 44.1, 65.8, and 39.8 μg, respectively. Relative enzymatic hydrolysis of the protein-proanthocyanidin complexes was 44.1% to 60.3% for pepsin and 57.5% to 67.7% for trypsin. Interactions of sea buckthorn proanthocyanidins with food proteins and digestive enzymes might alter the protein digestibility and phenolic bioavailabilty. © 2011 Institute of Food Technologists®

  10. Effect of Hot-Pressing Temperature on the Subsequent Enzymatic Saccharification and Fermentation Performance of SPORL Pretreated Forest Biomass (United States)

    Jingzhi Zhang; Andrea Laguna; Craig Clemons; Michael P. Wolcott; Rolland Gleisner; J.Y. Zhu; Xu Zhang


    Methods to increase the energy density ofbiofuel feedstock for shipment are important towards improving supply chain efficiency in upstream processes. Towards this end, densified pretreated lignocellulosic biomass was produced using hot-pressing. The effects offiber hornification induced by hot-pressing on enzymatic digestibilities of lodgepolepine and poplar NE222...

  11. A simplified CsCL protocol for lambda DNA purification: no enzymatic treatment/one phenol extraction

    Directory of Open Access Journals (Sweden)

    Santelli Roberto V.


    Full Text Available A modification of the CsCl gradient centrifugation method for DNA phage purification is presented. It avoids the enzymatic steps as well the need for a preliminary phage titration, a tedious process proposed in the majority of the protocols in use. The quality of the DNA obtained makes it amenable for additional manipulations like digestions, ligations, labelling, subcloning, etc.

  12. Problems of the Digestive System (United States)

    ... QUESTIONS FAQ120 WOMEN’S HEALTH Problems of the Digestive System • What are some common digestive problems? • What is ... hormones during pregnancy can slow down the digestive system. How can constipation be treated? If constipation continues, ...

  13. Protocols for the analytical characterization of therapeutic monoclonal antibodies. II - Enzymatic and chemical sample preparation. (United States)

    Bobaly, Balazs; D'Atri, Valentina; Goyon, Alexandre; Colas, Olivier; Beck, Alain; Fekete, Szabolcs; Guillarme, Davy


    The analytical characterization of therapeutic monoclonal antibodies and related proteins usually incorporates various sample preparation methodologies. Indeed, quantitative and qualitative information can be enhanced by simplifying the sample, thanks to the removal of sources of heterogeneity (e.g. N-glycans) and/or by decreasing the molecular size of the tested protein by enzymatic or chemical fragmentation. These approaches make the sample more suitable for chromatographic and mass spectrometric analysis. Structural elucidation and quality control (QC) analysis of biopharmaceutics are usually performed at intact, subunit and peptide levels. In this paper, general sample preparation approaches used to attain peptide, subunit and glycan level analysis are overviewed. Protocols are described to perform tryptic proteolysis, IdeS and papain digestion, reduction as well as deglycosylation by PNGase F and EndoS2 enzymes. Both historical and modern sample preparation methods were compared and evaluated using rituximab and trastuzumab, two reference therapeutic mAb products approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA). The described protocols may help analysts to develop sample preparation methods in the field of therapeutic protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ammonia Fiber Expansion Pretreatment and Enzymatic Hydrolysis on Two Different Growth Stages of Reed Canarygrass (United States)

    Bradshaw, Tamika C.; Alizadeh, Hasan; Teymouri, Farzaneh; Balan, Venkatesh; Dale, Bruce E.

    Plant materials from the vegetative growth stage of reed canarygrass and the seed stage of reed canarygrass are pretreated by ammonia fiber expansion (AFEX) and enzymatically hydrolyzed using 15 filter paper units (FPU) cellulase/g glucan to evaluate glucose and xylose yields. Percent conversions of glucose and xylose, effects of temperature and ammonia loading, and hydrolysis profiles are analyzed to determine the most effective AFEX treatment condition for each of the selected materials. The controls used in this study were untreated samples of each biomass material. All pretreatment conditions tested enhanced enzyme digestibility and improved sugar conversions for reed canarygrass compared with their untreated counterparts. Based on 168 h hydrolysis results using 15 FPU Spezyme CP cellulase/g glucan the most effective AFEX treatment conditions were determined as: vegetative growth stage of reed canarygrass—100°C, 60% moisture content, 1.2∶1 kg ammonia/kg of dry matter (86% glucose and 78% xylose) and seed stage of reed canarygrass—100°C, 60% moisture content, 0.8∶1 kg ammonia/kg of dry matter (89% glucose and 81% xylose). Supplementation by commercial Multifect 720 xylanase along with cellulase further increased both glucose and xylose yields by 10-12% at the most effective AFEX conditions.

  15. Digestibility of the same

    African Journals Online (AJOL)

    The question is posed of the applicability to cattle feeding, of digestibility data obtained with sheep. An experiment is described where the same high concentrate diet was fed at three levels, equalised per kg body mass between species. In energy and crude fibre cattle showed consistently lower digestibilities than sheep ...

  16. Digestibility of the same

    African Journals Online (AJOL)

    be of great value for cattle (Moe, Tyrell and Flatt, L974). There are indications that sheep ruminate more effectively and therefore digest grain more efficiently than cattle, while cattle are more efficient in digesting long roughages. In their comprehensive overview of the subject Schneider and Flatt (1975) found published data ...


    African Journals Online (AJOL)

    One procedure involved digesting grass samples in prepared cellulase solution without any pre-treatment (CSD), and the other procedure used an acid pepsin pre-treatment prior to digestion in the prepared cellulase solution (APCS). The CSD procedure in comparison to APCS generally underestimated in vitro dry matter ...

  18. Anaerobic sludge digestion with a biocatalytic additive

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.


    The objective of this research was to evaluate the effects of a lactobacillus additive an anaerobic sludge digestion under normal, variable, and overload operating conditions. The additive was a whey fermentation product of an acid-tolerant strain of Lactobacillus acidophilus fortified with CaCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid. The lactobacillus additive is multifunctional in nature and provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. The experimental work consisted of several pairs of parallel mesophilic (35/sup 0/C) digestion runs (control and test) conducted in five experimental phases. Baseline runs without the additive showed that the two experimental digesters had the same methane content, gas production rate (GPR), and ethane yield. The effect of the additive was to increase methane yield and GPR by about 5% (which was statistically significant) during digester operation at a loading rate (LR) of 3.2 kg VS/m/sup 3/-day and a hydraulic retention time (HRT) of 14 days. Data collected from the various experimental phases showed that the biochemical additive increased methane yield, gas production rate, and VS reduction, and decreased volatile acids accumulation. In addition, it enhanced digester buffer capacity and improved the fertilizer value and dewatering characteristics of the digested residue.

  19. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.


    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value and dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.


    Directory of Open Access Journals (Sweden)

    Jelena Krstanović


    Full Text Available Perinatal development of the digestive system of piglets is a complex process characterized by numerous changes in the structural and functional level caused by the action of various factors. As the main organ in which digestion and absorption take place, the small intestine is most affected by these changes. During parturition the digestive system is colonized by numerous microorganisms which further stimulate the structural and immune development acting as a part of the protective barrier lining. Colostrum intake passively immunizes and promotes the development of the digestive system. The enzymatic system of piglets is undeveloped after parturition and adapted to colostrum and milk digestion developing gradually due to the interaction of food ingredients, microbiota and genes. After weaning piglets stop to eat temporarily and a short delay in growth and invasion of intestinal structure and function occure. In order to prepare the digestive system for weaning, it is important to start feeding piglets with high quality, hygienic and balanced forage on time.

  1. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.


    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  2. Instrumentation and control of anaerobic digestion processes : A review and some research challenges

    NARCIS (Netherlands)

    Jimenez, J.; Latrille, E.; Harmand, J.; Robles, A.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; Mendez-Acosta, H.; Zitomer, D.; Totzke, D.; Spanjers, H.; Jacobi, F.; Guwy, A.; Dinsdale, R.; Premier, G.; Mazhegrane, S.; Ruiz-Filippi, G.; Seco, A.; Ribeiro, T.; Pauss, A.; Steyer, J.P.


    To enhance energy production from methane or resource recovery from digestate, anaerobic digestion processes require advanced instrumentation and control tools. Over the years, research on these topics has evolved and followed the main fields of application of anaerobic digestion processes: from

  3. Your Digestive System and How It Works (United States)

    ... mixes food with digestive juice Stomach acid and digestive enzymes Proteins Small intestine Peristalsis Small intestine digestive juice ... these digestive juices. Pancreas. Your pancreas makes a digestive juice that has enzymes that break down carbohydrates, fats, and proteins. The ...

  4. Short-time alkaline peroxide pretreatment for rapid pulping and efficient enzymatic hydrolysis of rice straw. (United States)

    Hideno, Akihiro


    To improve utilization of agricultural residues in biorefineries, the effects of alkaline peroxide (AP) pretreatment on thermal degradation and enzymatic digestibility of rice straw were investigated. A high-cellulose (>70%) pulp with a width of a few micrometers was obtained by rapid (10min) treatment with AP, without prior heating or other treatment. Moreover, enzymatic hydrolysis of the pulp produced a high glucose yield (approximately 80%). Microfibril networks were exposed, and many nano-scale pores that are easily penetrated by cellulases were observed on the surface of the AP-treated sample. For enzymatic hydrolysis of the pulp, increasing the dosage of cellulases was more effective for improving the glucose yield than addition of a grinding treatment. This AP treatment has the potential for on-site application because it is simple, highly efficient, and can be performed in a short time. Copyright © 2017. Published by Elsevier Ltd.

  5. Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield. (United States)

    Zhang, Meng; Ju, Xiaohui; Song, Xiaoxu; Zhang, Xiao; Pei, Z J; Wang, Donghai


    The aim of this study was to understand how cutting orientation in poplar wood biomass size reduction affects enzymatic hydrolysis sugar yield of wood particles. A metal cutting (milling) machine was used to produce poplar wood particles from three cutting orientations. Results showed that cutting orientation significantly affected enzymatic hydrolysis sugar yield of wood particles. In this study, size reduction from the optimum cutting orientation produced 50% more sugars than the other two cutting orientations. Particles from the cutting orientation with the highest sugar yield had a large enzyme accessible area (125 mg orange dye/g biomass, as evaluated by Simons' stain procedure) and low crystallinity (50% crystallinity index, as calculated by the Segal method). Furthermore, small particle size did not necessarily lead to improvement in enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Carbon balances for in vitro digestion an fermentation of potential roughages for pregnant sows

    NARCIS (Netherlands)

    Becker, P.M.; Gelder, van A.H.; Wikselaar, van P.G.; Jongbloed, A.W.; Cone, J.W.


    Ad libitum feeding of pregnant sows requires satiating, intake-restricting feed components to prevent sows from getting excessively fat. Because hindgut fermentation starts only after and proceeds much slower than enzymatic digestion in the small intestine, fermentation products might, as nutrients,

  7. In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions

    NARCIS (Netherlands)

    Tzoumaki, M.V.; Moschakis, T.; Scholten, E.; Biliaderis, C.G.


    Chitin nanocrystals (ChN) have been shown to form stable Pickering emulsions. These oil-in-water emulsions were compared with conventional milk (whey protein isolate, WPI, and sodium caseinate, SCn) protein-stabilized emulsions in terms of their lipid digestion kinetics using an in vitro enzymatic

  8. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu


    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  9. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus

    Directory of Open Access Journals (Sweden)

    Xu Ning


    Full Text Available Abstract Background Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. Results A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. Conclusions Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.

  10. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)


    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  11. Rhythmicity and plasticity of digestive physiology in a euryhaline teleost fish, permit (Trachinotus falcatus)

    DEFF Research Database (Denmark)

    Lazado, Carlo Cabacang; Pedersen, Per Bovbjerg; Nguyen, Huy Quang


    experiment identified the rhythms of digestive factors throughout the light-dark (LD) cycle. Gastric luminal pH and pepsin activity showed significant daily variation albeit not rhythmic. These dynamic changes were likewise observed in several digestive enzymes, in which the activities of intestinal protease......Digestive physiology is considered to be under circadian control, but there is little evidence in teleost fish. The present study explored the rhythmicity and plasticity to feeding schedules of enzymatic digestion in a candidate aquaculture fish, the permit (Trachinotus falcatus). The first......, chymotrypsin and lipase exhibited significant daily rhythms. In the second experiment, the existence of feed anticipatory activity in the digestive factors was investigated by subjecting the fish to either periodic or random feeding. Anticipatory gastric acidification prior to feeding was identified...

  12. Monitoring the progress of non-enzymatic glycation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, S.M.; Crabbe, M.J. [University of Reading, The Wolfson Laboratory, School of Animal and Microbial Sciences, Whiteknights, Reading (United Kingdom)


    The progress of in vitro non-enzymatic glycation of bovine serum albumin was followed by using {sup 14}C-glucose and a nitroblue tetrazolium assay, absorption and fluorescence spectroscopy, SDS gel electrophoresis and protease digestion. The number of adducts detectable using both {sup 14}C-tracers and a fructosamine assay remained low at physiological glucose concentrations, fewer than five adducts being detectable. When glucose concentrations > 1.0 M were used the number of adducts was found to greatly exceed the number of lysyl residues available in BSA, indicative of cross-linking between Maillard products. Incubation of BSA with glucose concentrations of up to 160 mM for one month produced no observable increase in molecular weight by SDS gel electrophoresis, showing that at physiological glucose concentrations, increases in molecular weight were minimal for short incubation periods. Increases in absorption were proportial to both the glucose concentration and the incubation time. Several absorption peaks, at 370, 488 and 554 nm, were consistent in appearance throughout the course of each incubation. Fluorescence spectroscopy of the modified proteins showed a disappearance of the fluorescence associated with peptide bonds and aromatic residues and the appearance of a broad peak at longer wavelengths due to the wide range of absorptive/fluorescent wavelengths of the developing Maillard products. Protease digestion gave similar patterns with non-glycated and glycated protein, suggesting that glycation did not block digestion sites, and that partial digestion did not cause significant further exposure of susceptible sites. Our results show that while glycation ultimately results in protein conformational changes and the formation of large molecular weight species, these occur at a relatively late stage in the maturation of protein Maillard products, after {>=} nine months of incubation with glucose concentration of {>=} 20 mM. (Abstract Truncated)

  13. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)


    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  14. Digestive ripening of nanoparticles (United States)

    Irzhak, V. I.


    A relatively new method of regulating the size distribution function of nanoparticles—digestive ripening— was described. A hypothetical mechanism of dissolution of nanoparticles was proposed. It includes the effect of the ligand layer on the internal stability of the nanoparticle nucleus: the change in the structure of the ligand layer caused by a decrease in the nanoparticle size determines the kinetics of digestive ripening.

  15. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity. (United States)

    Iskandar, Michèle M; Lands, Larry C; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D; Kubow, Stan


    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  16. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Michèle M. Iskandar


    Full Text Available Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI and native (nWPI whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  17. Processing biogas planet digestates into value-added products -BIOVIRTA

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, T.; Rintala, J. (MTT Agrifood Research Finland, Jokioinen (Finland)), Email:; Sahltroem, L.; Maunuksela, L.; Torniainen, M. (Finnish Food Safety Authority, EVIRA, Helsinki (Finland)), Email:; Kaparaju, P.; Rintala, J. (Univ. of Jyvaeskylae (Finland)), Email:; Vikman, M.; Kapanen, A. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email:


    The objective of BIOVIRTA project is to develop technologies and practices with which digestates, originating from anaerobic digestion of different organic wastes and by-products, can be refined to value-added and safe products for various end-uses. It is expected that the operational preconditions for biogas plants will be significantly enhanced when the end-products are proven safe and applicable. Selection of the raw materials for anaerobic codigestion is the main operational strategy that could influence the nutrient content in the digestate. This has been clearly established in the laboratory and full-scale studies with various digestates originating from different raw materials, e.g. rendering and slaughterhouse byproducts. The nutrient content in the digestate also affects the opportunities to produce refined digestate products. In this project, the possibilities for several processing technologies, e.g. mechanical separation and stripping, have been intensively evaluated for the production of different digestate products. Their mass balances have also been estimated. The feasibility for the use of the digestate products has been assessed based on their chemical and hygienic quality and for various end-uses, including as organic fertiliser and/or soil improver in crop production. The preliminary results of these field-experiments showed that the yield of barley fertilised with digestate products was comparable to inorganic fertilisers. (orig.)

  18. Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass. (United States)

    Tai, Chao; Arellano, Maria G; Keshwani, Deepak R


    An epidemic based model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, dilute sulfuric acid pretreated corn stover. The process of substrate getting adsorbed and digested by enzyme was simulated as susceptibles getting infected by viruses and becoming removed and recovered. This model simplified the dynamic enzyme "infection" process and the catalysis of cellulose into a two-parameter controlled, enzyme behavior guided mechanism. Furthermore, the model incorporates the adsorption block by lignin and inhibition effects on cellulose catalysis. The model satisfactorily predicted the enzyme adsorption and hydrolysis, negative role of lignin, and inhibition effects over hydrolysis for a broad range of substrate and enzyme loadings. Sensitivity analysis was performed to evaluate the incorporation of lignin and other inhibition effects. Our model will be a useful tool for evaluating the effects of parameters during hydrolysis and guide a design strategy for continuous hydrolysis and the associated process control. © 2014 American Institute of Chemical Engineers.

  19. Preliminary characterization of digestive enzymes in freshwater mussels (United States)

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.


    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  20. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. (United States)

    Zhang, Hongdan; Wu, Shubin; Xie, Jun


    The different physical and chemical properties of lignin might have various effects on the enzymatic hydrolysis of lignocellulosic substrates. In this study, the influence of lignin on enzymatic digestibility of cellulose was assessed. Addition of 20% (4g/L) isolated enzymatic lignin (lignin 2 and 3) and kraft lignin (lignin 4) resulted in 5-20% drop of glucose yield, depending on lignin sources. The inhibitory effect of lignin was abated as the enzyme loading increased from 10 to 20FPU/g dry substrate. However, the increasing lignin amount to 40% (8g/L) did not appear to further decrease the cellulose hydrolysis efficiency. Ethanol lignin (lignin 1) and calcium lignosulfonate (lignin 5) had no negative effect on the enzymatic hydrolysis of cellulose at cellulase loading of 10 or 20FPU/g dry substrate, the increasing lignin content to 40% presented 6.2% increase of glucose yield. The results indicated that different lignin had significantly influence on the enzymatic hydrolysis, which was confirmed by analysis in chemical composition, elemental analysis, functionality, and thermogravimetry. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enzymatic activity of myccorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Roman Pachlewski


    Full Text Available The investigations included assays of enzymatic activity of ectomycorrhizal fungi from the genera: Amanita, Cenococcum, Coltricia, Hebeloma, Lactarius, Rhizopogon, Russula, Suillus, Tricholoma and the pine ectendomycorrhizal strain MrgX. Among the 22 investigated strains of fungi 18 could decompose starch, 14 urea, 11 asparagine, 7 protein, 6 pectin and 3 ce1lulose. The most varied enzyme activities were found in Amanita muscaria, A. verna, Hebeloma, mesophaeum, ectendomycorrhizal isolate MrgX, Rhizopogon luteolus and Suillus bovinus, the highest cellolotytic activity was shown by the ectendomycorrhizal strain.

  2. Enzymatic reaction paths as determined by transition path sampling (United States)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  3. Aquaporins in Digestive System. (United States)

    Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan


    In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.

  4. Enzymatic synthesis of structured lipids. (United States)

    Iwasaki, Yugo; Yamane, Tsuneo


    Structured lipids (SLs) are defined as lipids that are modified chemically or enzymatically in order to change their structure. This review deals with structured triacylglycerols (STGs) and structured phospholipids (SPLs). The most typical STGs are MLM-type STGs, having medium chain fatty acids (FAs) at the 1- and 3-positions and a long chain fatty acid at the 2- position. MLM-type STGs are synthesized by: 1) 1,3-position-specific lipase-catalyzed acyl exchange of TG with FA or with FA ethylester (FAEt); 2) 1,3-position-specific lipase-catalyzed acylation of glycerol with FA, giving symmetric 1,3-diacyl-sn-glycerol, followed by chemical acylation at the sn-2 position, and; 3) 1,3-position-specific lipase-catalyzed deacylation of TG, giving 2-monoacylglycerol, followed by reacylation at the 1- and 3-positions with FA or with (FAEt). Enzymatic preparation of SPLs requires: 1) acyl group modification, and 2) head group modification of phospholipids. Acyl group modification is performed using lipases or phospholipase A2-mediated transesterification or ester synthesis to introduce arbitrary fatty acid to phospholipids. Head group modification is carried out by phospholipase D-catalyzed transphosphatidylation. A wide range of compounds can be introduced into the polar head of phospholipids, making it possible to prepare various SPLs.

  5. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi


    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  6. Anaerobic digestion in Denmark

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.


    Centralized biogas plants (CBP) in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste and sewage sludge. Today 22 large scale CBP's are in operation in Denmark and in 2001 they treated approx. 1.2 mio tonnes of manure ...... comprises about 80% of this potential. Special emphasis has been paid to establish good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils....

  7. Personal Relationships and Digestive Disorders (United States)

    ... Upper GI Disorders Lower GI Disorders Other Disorders Kids & Teens Manage Your Health Finding a Doctor The Digestive ... Upper GI Disorders Lower GI Disorders Other Disorders Kids & Teens Manage Your Health Finding a Doctor The Digestive ...

  8. Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. (United States)

    Li, Rongping; Chen, Shulin; Li, Xiujiu


    Co-digestion of food waste and dairy manure in a two-phase digestion system was conducted in laboratory scale. Four influents of R0, R1, R2, and R3 were tested, which were made by mixing food waste with dairy manure at different ratios of 0:1, 1:1, 3:1, and 6:1, respectively. For each influent, three runs of experiments were performed with the same overall hydraulic retention time (HRT) of 13 days but different HRT for acidification (1, 2, and 3 days) and methanogenesis (12, 11, and 10 days) in two-phase digesters. The results showed that the gas production rate (GPR) of co-digestion of food waste with dairy manure was enhanced by 0.8-5.5 times as compared to the digestion with dairy manure alone. Appropriate HRT for acidification was mainly determined by the biodegradability of the substrate digested. Three-, 2-, and 1-day HRT for acidification were found to be optimal for the digestion of R0, R1, and R2/R3, respectively, when overall HRT of 13 days was used. The highest GPR of 3.97 L/ was achieved for R3(6:1) in Run 1 (1 + 12 days), therefore, the mixing ratio of 6:1 and HRT of 1 day for acidification were considered to be the optimal ones and thus recommended for co-digestion of food waste and dairy manure. There were close correlations between degradation of organic matters and GPR. The highest VS removal rate was achieved at the same HRT for acidification and mixing ratio of food waste and dairy manure as GPR in the co-digestion. The two-phase digestion system showed good stability, which was mainly attributed to the strong buffering capacity with two-phase system and the high alkalinity from dairy manure when co-digested with food waste.

  9. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. (United States)

    Vargas-Chacoff, L; Saavedra, E; Oyarzún, R; Martínez-Montaño, E; Pontigo, J P; Yáñez, A; Ruiz-Jarabo, I; Mancera, J M; Ortiz, E; Bertrán, C


    In this study we assessed the influence of three different environmental salinities (5, 15 and 31 psu during 90 days) on growth, osmoregulation, energy metabolism and digestive capacity in juveniles of the Notothenioid fish Eleginops maclovinus. At the end of experimental time samples of plasma, liver, gill, intestine, kidney, skeletal muscle, stomach and pyloric caeca were obtained. Growth, weight gain, hepatosomatic index and specific growth rate increased at 15 and 31 psu and were lower at 5 psu salinity. Gill Na(+), K(+)-ATPase (NKA) activity presented a "U-shaped" relationship respect to salinity, with its minimum rates at 15 psu, while this activity correlated negatively with salinity at both anterior and posterior intestinal portions. No significant changes in NKA activity were observed in kidney or mid intestine. Large changes in plasma, metabolite levels and enzymatic activities related to energy metabolism in liver, gill, intestine, kidney and muscle were generally found in the groups exposed to 5 and 31 psu compared to the 15 psu group. Only the pepsin activity (digestive enzymes) assessed enhanced with environmental salinity, while pyloric caeca trypsin/chymotrypsin ratio decreased. This study suggests that juvenile of E. maclovinus presents greater growth near its iso-osmotic point (15 psu) and hyperosmotic environment (31 psu). Acclimation to low salinity increased the osmoregulatory expenditure as seen by the gill and anterior intestine results, while at high salinity, branchial osmoregulatory activity was also enhanced. This requires the mobilization of lipid stores and amino acids, thereby holding the growth of fish back. The subsequent reallocation of energy sources was not sufficient to maintain the growth rate of fish exposed to 5 psu. Thus, E. maclovinus juveniles present better growth efficiencies in salinities above the iso-osmotic point and hyperosmotic environment of this species, showing their best performance at 15 psu as seen by the main

  10. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)


    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  11. Anaerobic digestion without biogas?

    NARCIS (Netherlands)

    Kleerebezem, R.; Joosse, B.; Rozendaal, R.; Van Loosdrecht, M.C.M.


    Anaerobic digestion for the production of methane containing biogas is the classic example of a resource recovery process that combines stabilization of particulate organic matter or wastewater treatment with the production of a valuable end-product. Attractive features of the process include the

  12. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)



    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  13. Steam Digest: Volume IV

    Energy Technology Data Exchange (ETDEWEB)


    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  14. Protein digestion in ruminants

    African Journals Online (AJOL)

    acids absorbed into the circulation of the animal. Ideally, therefore, the biological value of a feed protein should be determined from the amount and type of amino acid appearing in the portal circulation of the animal, and not simplythe dissappearance of amino acids from the tract. Ruminant digestion may be more easily ...

  15. Bibliotherapy. ERIC Digest. (United States)

    Abdullah, Mardziah Hayati

    This digest suggests that bibliotherapy is a potentially powerful method for school teachers and counselors to use on many levels and in every school grade. It begins with a brief review of the history of bibliotherapy; continues with a discussion of some approaches to bibliotherapy (interactive, clinical, and developmental); then addresses the…

  16. Enzymatic acylglycerol synthesis in membrane reactor systems

    NARCIS (Netherlands)

    Padt, van der A.


    Up till twenty years ago, only chemical modifications of agricultural oils for novel uses were studied. Because of the instability of various fatty acids, enzymatic biomodifications can have advantages above the chemical route. Nowadays, enzymatic catalysis can be used for the modification

  17. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala


    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  18. The complexities of hydrolytic enzymes from the termite digestive system. (United States)

    Saadeddin, Anas


    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  19. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance. (United States)

    Diak, James; Örmeci, Banu; Kennedy, Kevin J


    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.

  20. Preparation and Enzymatic Degradation of Porous Crosslinked Polylactides of Biomass Origin

    Directory of Open Access Journals (Sweden)

    Yuya Kido


    Full Text Available To understand the enzymatic degradation behavior of crosslinked polylactide (PLA, the preparation and enzymatic degradation of both thermoplastic (linear and crosslinked PLAs that have pore structures with different dimensions were carried out. The porous structures of the linear PLA samples were of micro and nanoporous nature, and prepared by batch foaming with supercritical CO2 and compared with the porous structures of crosslinked PLA (Lait-X created by the salt leaching method. The surface and cross-sectional morphologies of the porous structures were investigated by using scanning electron microscopy. The morphological analysis of porous Lait-X showed a rapid loss of physical features within 120 h of exposure to proteinase-K enzymatic degradation at 37 °C. Due to the higher affinity for water, enhanced enzymatic activity as compared to the linear PLA porous structures in the micro and nanoporous range was observed.

  1. Preparation and Enzymatic Degradation of Porous Crosslinked Polylactides of Biomass Origin (United States)

    Kido, Yuya; Sakai, Reika; John, Baiju; Okamoto, Masami; Seppälä, Jukka V.


    To understand the enzymatic degradation behavior of crosslinked polylactide (PLA), the preparation and enzymatic degradation of both thermoplastic (linear) and crosslinked PLAs that have pore structures with different dimensions were carried out. The porous structures of the linear PLA samples were of micro and nanoporous nature, and prepared by batch foaming with supercritical CO2 and compared with the porous structures of crosslinked PLA (Lait-X) created by the salt leaching method. The surface and cross-sectional morphologies of the porous structures were investigated by using scanning electron microscopy. The morphological analysis of porous Lait-X showed a rapid loss of physical features within 120 h of exposure to proteinase-K enzymatic degradation at 37 °C. Due to the higher affinity for water, enhanced enzymatic activity as compared to the linear PLA porous structures in the micro and nanoporous range was observed. PMID:24893222

  2. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius


    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  3. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. (United States)

    Li, Li; Somerset, Shawn


    Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Enzymatic saccharification and lactic acid production from banana pseudo-stem through optimized pretreatment at lowest catalyst concentration


    Adnan, Ahmad; Idrees, Muhammad; Malik, Farnaz; Qureshi, Fahim Ashraf


    This work estimates the potential of banana pseudo-stem with high cellulosic content 42.2-63 %, for the production of fermentable sugars for lactic acid production through statistically optimized pretreatment method. To evaluate the catalyzed pretreatment efficiency of banana pseudo stem based on the enzymatic digestibility, Response Surface Methodology (RSM) was employed for the optimization of pretreatment temperature and time using lowest concentrations of H2SO4, NaOH, NaOH catalyzed Na2S ...

  5. Production of fermentable sugars by combined chemo-enzymatic hydrolysis of cellulosic material for bioethanol production

    Directory of Open Access Journals (Sweden)

    M. Idrees


    Full Text Available To change the recalcitrant nature of the lignocellulosic material for maximum hydrolysis yield, a comprehensive study was done by using sulphuric acid as an exclusive catalyst for the pretreatment process. The enzymatic digestibility of the biomass [Water Hyacinth: Eichhornia crassipes] after pretreatment was determined by measuring the hydrolysis yield of the pretreated material obtained from twenty four different pretreatment conditions. These included different concentrations of sulphuric acid (0.0, 1.0, 2.0 and 3.0%, at two different temperatures (108 and 121 ºC for different residence times (1.0, 2.0 and 3.0h.The highest reducing sugar yield (36.65 g/L from enzymatic hydrolysis was obtained when plant material was pretreated at 121 ºC for 1.0 h residence time using 3.0% (v/v sulphuric acid and at 1:10 (w/v solid to liquid ratio. The total reducing sugars obtained from the two-stage process (pretreatment + enzymatic hydrolysis was 69.6g/L. The resulting sugars were fermented into ethanol by using Saccharomyces cerevisiae. The ethanol yield from the enzymatic hydrolyzate was 95.2% of the theoretical yield (0.51g/g glucose, as determined by GS-MS, and nearly 100% since no reducing sugars were detected in the fermenting media by TLC and DNS analysis.

  6. Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. (United States)

    Janzon, Ron; Schütt, Fokko; Oldenburg, Saskia; Fischer, Elmar; Körner, Ina; Saake, Bodo


    Steam refining of non-debarked spruce forest residues was investigated as pretreatment for enzymatic hydrolysis as well as for biogas production. Pretreatment conditions were varied in the range of 190-220 °C, 5-10 min and 0-3.7% SO₂ according to a statistical design. For both applications highest product yields were predicted at 220 °C and 2.4% SO₂, whereas the reaction time had only a minor influence. The conformity of the model results allows the conclusion that enzymatic hydrolysis is a suitable test method to evaluate the degradability of lignocellulosic biomass in the biogas process. In control experiments under optimal conditions the results of the model were verified. The yield of total monomeric carbohydrates after enzymatic hydrolysis was equivalent to 55% of all theoretically available polysaccharides. The corresponding biogas yield from the pretreated wood amounted to 304 mL/gODM. Furthermore, furans produced under optimal process conditions showed no inhibitory effect on biogas production. It can be concluded that steam refining opens the structure of wood, thus improving the enzymatic hydrolysis of the polysaccharides to fermentable monomeric sugars and subsequently enabling a higher and faster production of biogas. Anaerobic fermentation of pretreated wood is a serious alternative to alcoholic fermentation especially when low quality wood grades and residues are used. Anaerobic digestion should be further investigated in order to diversify the biorefinery options for lignocellulosic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of Polyphenol Content and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction

    Directory of Open Access Journals (Sweden)

    Rudy Álvarez


    Full Text Available Fruits and vegetables are considered a good source of polyphenols and antioxidant capacities which are beneficial in protecting the human body against damage induced by reactive species. The objective of this work is to conduct an assessment of the polyphenol content and antioxidant activities of diff erent fruit (kiwi, pear, green apple, raspberry, blackberry, strawberry and blueberry and vegetable (pumpkin, green and red pepper extracts using both chemical extraction and a modified in vitro digestive enzymatic extraction in order to compare results. Polyphenol content and antioxidant capacity of different fruits, vegetables and fruit juices were determined by Folin-Ciocalteu and FRAP methods, respectively. It was observed that polyphenol content expressed as gallic acid equivalents of extracts obtained with the two extraction methods was signifi cantly (p<0.05 different (on average 310.3 and 231.8 mg per 100 g of fresh sample in enzymatic and methanolic extracts, respectively. Antioxidant capacity was also significantly (p<0.05 different in the extracts obtained by the two methods, with higher values in enzymatic extracts (1.91 mmol of Fe2+ per 100 g of fresh sample. Analyses of apple samples with and without skin also revealed important differences related to methodology and composition. Additionally, the original enzymatic extraction method was improved to avoid interferences caused by the presence of protein residues in the extract.

  8. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  9. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus

    Directory of Open Access Journals (Sweden)

    Sakaki Tsuyoshi


    Full Text Available Abstract Background Lignocellulosic biomass such as wood is an attractive material for fuel ethanol production. Pretreatment technologies that increase the digestibility of cellulose and hemicellulose in the lignocellulosic biomass have a major influence on the cost of the subsequent enzymatic hydrolysis and ethanol fermentation processes. Pretreatments without chemicals such as acids, bases or organic solvents are less effective for an enzymatic hydrolysis process than those with chemicals, but they have a less negative effect on the environment. Results The enzymatic digestibility of eucalyptus was examined following a combined pretreatment without chemicals comprising a ball milling (BM and hot-compressed water (HCW treatment. The BM treatment simultaneously improved the digestibility of both glucan and xylan, and was effective in lowering the enzyme loading compared with the HCW treatment. The combination of HCW and BM treatment reduced the BM time. The eucalyptus treated with HCW (160°C, 30 minutes followed by BM (20 minutes had an approximately 70% yield of total sugar with a cellulase loading of 4 FPU/g substrate. This yield was comparable to the yields from samples treated with HCW (200°C, 30 minutes or BM (40 minutes hydrolyzed with 40 FPU/g substrate. Conclusion The HCW treatment is useful in improving the milling efficiency. The combined HCW-BM treatment can save energy and enzyme loading.

  10. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes. (United States)

    Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang


    Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass. (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S


    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  12. Co-digestion of pig slaughterhouse waste with sewage sludge. (United States)

    Borowski, Sebastian; Kubacki, Przemysław


    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Combined mechanical enzymatic pretreatment for an improved substrate conversion when fermenting biogenic resources

    Energy Technology Data Exchange (ETDEWEB)

    Ellenrieder, Johannes; Mayer, Wolfgang; Faulstich, Martin [Chair of Resource and Energy Technology, Technische Universitaet Muenchen, Petersgasse 18, 94315 Straubing (Germany); Schieder, Doris [Chair of Chemistry of Biogenic Resources, Technische Universitaet Muenchen, Schulgasse 16, 94315 Straubing (Germany)


    Anaerobic digestion of lignocellulosic fractions of biogenic resources in biogas plants performs slowly and incompletely leaving fibrous residues. Thus, this work focused on a combined mechanical and enzymatic pretreatment of maize and grass silage to achieve a partial hydrolysis of the substrates and a higher biogas yield. To get an intensive disintegration, the refiner technology was used. For subsequent enzymatic hydrolysis, several commercially available enzyme preparations were tested, and their effect on solid substrate degradation, viscosity and pumpability of the suspensions was investigated. Experiments were performed in laboratory fermenters as well as in pilot scale (1 m{sup 3}) at a biogas plant. The most promising enzymatic pretreatments with respect to their effect on the fermentation process were tested in 20-L semicontinuously operated laboratory scale digesters. On maize silage, a dry mass (DM) reduction up to 40% with an amylase-based preparation was achieved. Equal results were obtained with a cellulase preparation on grass silage. Yet, due to the high demand of enzyme, the economical feasibility was doubtful. Laboratory semicontinuous fermentation experiments, therefore, were performed on maize silage. At a substrate load of 1.5-2.0 kg organic DM (oDM)/(m{sup 3} d), a good biogas yield of about 0.7 L{sub N} (liter norm)/g oDM and methane yield of about 0.4 L{sub N}/g oDM were obtained. However, at the chosen fermentation conditions at 37 C and 25 days hydraulic retention time, no positive effect of the enzymatic prehydrolysis on the biogas yield of fine grinded substrate could be established. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain. (United States)

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R


    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (Pbrain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (Ptraining are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  15. A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær


    A mathematical model for anaerobic degradation of complex organic material, such as manure, has been developed. The model includes an enzymatic hydrolytic step and four bacterial steps and involves 12 chemical compounds. The model focuses on ammonia inhibition and includes a detailed description ......), and results compare favorably with experimental data. 0 1993 John Wiley & Sons, Inc. Key words: anaerobic digestion ammonia inhibition manure mathematical model.......A mathematical model for anaerobic degradation of complex organic material, such as manure, has been developed. The model includes an enzymatic hydrolytic step and four bacterial steps and involves 12 chemical compounds. The model focuses on ammonia inhibition and includes a detailed description...... of pH and temperature characteristics in order to accurately simulate free ammonia concentration. Free ammonia and acetate constitute the primary modulating factors in the model. The model has been applied for the simulation of digestion of cattle manure in continuously stirred tank reactors (CSTRs...

  16. Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion. (United States)

    Vandemoortele, Angelique; Babat, Pinar; Yakubu, Mariam; De Meulenaer, Bruno


    An aqueous buffer, a saturated glycerol triheptanoate oil, and a Tween 20 stabilized fully hydrogenated coconut oil-in-water emulsion, all spiked with malondialdehyde, were subjected to in vitro digestion. A dynamic equilibrium between malondialdehyde, its aldol self-condensation products, and its hydrolytic cleavage products was observed. This equilibrium depended upon the kind of sample and the temperature at which these samples were preincubated during 24 h. The presence of oil during gastric digestion protected the aldol self-condensation and cleavage products from conversion to malondialdehyde, which occurred in the aqueous acidic gastric chyme. In parallel, the presence of oil enhanced the reactivity of malondialdehyde throughout the gastrointestinal digestion process. Malondialdehyde recoveries after digestion varied between 42 and 90%, depending upon the model system studied, with the aldol self-condensation as the main reaction pathway. In conclusion, this study revealed that malondialdehyde is a very reactive molecule whose reactivity does not stop at the point of ingestion.

  17. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity


    Michèle M. Iskandar; Lands, Larry C.; Kebba Sabally; Behnam Azadi; Brian Meehan; Nadir Mawji; Cameron D. Skinner; Stan Kubow


    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin di...

  18. A Metagenomic Analysis of Bacterial Microbiota in the Digestive Tract of Triatomines

    Directory of Open Access Journals (Sweden)

    Nicolas Carels


    Full Text Available The digestive tract of triatomines (DTT is an ecological niche favored by microbiota whose enzymatic profile is adapted to the specific substrate availability in this medium. This report describes the molecular enzymatic properties that promote bacterial prominence in the DTT. The microbiota composition was assessed previously based on 16S ribosomal DNA, and whole sequenced genomes of bacteria from the same genera were used to calculate the GC level of rare and prominent bacterial species in the DTT. The enzymatic reactions encoded by coding sequences of both rare and common bacterial species were then compared and revealed key functions explaining why some genera outcompete others in the DTT. Representativeness of DTT microbiota was investigated by shotgun sequencing of DNA extracted from bacteria grown in liquid Luria-Bertani broth (LB medium. Results showed that GC-rich bacteria outcompete GC-poor bacteria and are the dominant components of the DTT microbiota. In addition, oxidoreductases are the main enzymatic components of these bacteria. In particular, nitrate reductases (anaerobic respiration, oxygenases (catabolism of complex substrates, acetate-CoA ligase (tricarboxylic acid cycle and energy metabolism, and kinase (signaling pathway were the major enzymatic determinants present together with a large group of minor enzymes including hydrogenases involved in energy and amino acid metabolism. In conclusion, despite their slower growth in liquid LB medium, bacteria from GC-rich genera outcompete the GC-poor bacteria because their specific enzymatic abilities impart a selective advantage in the DTT.

  19. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose. (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin


    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.


    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).


    Directory of Open Access Journals (Sweden)

    O.S. Gundobina


    Full Text Available The article considers one of the topical issues of children's gas troenterology — disturbance of the pancreas functioning, its possible reasons and clinical manifestations, as well as diagnostics and treatment issues. The article considers the requirements for enzymatic medications to efficiently correct the excretory insufficiency of the pancreas. The authors describe a high performance medication for this case, demonstrate its features.Key words: excretory insufficiency pancreas, treatment, enzymatic medications, children.

  2. Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors


    Ansari, Anees A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S.


    The unique electrocatalytic properties of the metal oxides and the ease of metal oxide nanostructured fabrication make them extremely interesting materials for electrochemical enzymatic biosensor applications. The application of nanostructured metal oxides in such sensing devices has taken off rapidly and will surely continue to expand. This article provides a review on current research status of electrochemical enzymatic biosensors based on various new types of nanostructured metal oxides su...

  3. Biogas from mesophilic anaerobic digestion of cow dung using gelatin as additive (United States)

    Salam, Bodius; Rahman, Md Mizanur; Sikder, Md Asif R.; Islam, Majedul


    A research work was conducted to investigate the enhanced production ability of biogas from mesophilic anaerobic digestions of cow dung (CD) using gelatin as additive. Five laboratory scale digesters were constructed to digest cow dung, where one set up was used for digestion of cow dung without additive and the other set up were used for digestion with additive. Gelatin additive was added in the slurry of amount 0.29, 0,57, 0.85 and 1.14% (wt.). The digesters were made of glass conical flask of 1-liter capacity each. Cow dung was used 335 gm and water was used 365 gm in each experiment. In the slurry, total solid content was maintained 8% (wt.) for all the observations. The digesters were fed on batch basis. The digesters were operated at ambient temperatures of 26 - 35°C. The total gas yield was obtained about 14.4 L/kg CD for digestion without additive and about 65% more biogas for digestion with 0.29% gelatin additive. The retention time for digestion without additive was 38 days and with additive retention time varied between 24 and 52 days.

  4. [Enzymatic properties in muscle membranes]. (United States)

    Kursky, M D; Grigoryeva, V A


    A study in the enzymatic properties of muscle membranes established that sarcolemma of the rabbit skeletal muscles contains the Ca2+-ATPase system which does not require Mg2+ for manifestation of ions activity. By some kinetic properties it differs from ATPase of myosin. The complex Ca-ATP2+ is a substrate of Ca2+-ATPase. Ions of a series of bivalent metals inhibit the latter as well as the passive transport of Ca2+, that may evidence for a definite relation of Ca2+-ATPase with Ca+2 transport in skeletal muscles. Acetyl cholinesterase and AMP-aminohydrolase are strongly bound with the sarcolemma. The sarcolemma structural organization is shown to play a certain role in manifestation of their activity. On the basis of the data obtained when studying the activity in the ATPase systems and dynamics of formation and decay of the intermediate phosphorylated product in the microsomal fraction of cow and rabbit myometrium certain peculiarities are established for the active mechanisms of Ca2+ transport in smooth muscles. A problem is under discussion on the possible active participation of sarcolemma in regulation of Ca2+ concentration in the smooth muscle cells. Two ATPase systems, Mg2+-dependent and Mg2+-dependent Ca2+ activated are found in nuclei; the role of lipids of the skeletal muscles in manifestation of their activity is studied. AMP-amino hydrolase properties are characterized for different areas of the sarcoplasmatic reticulum membranes. The model of E-avitaminous muscular distrophy was used to show disturbances in the structure of sarcolemma and membranes of the sarcoplasmatic reticulum which are accompanied by changes in their ATPase and Ca2+-transporting properties.

  5. The digestive system: part 1. (United States)

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series and is the first of two articles on the digestive system, explores the structure and function of the digestive system. It is important that nurses understand how the digestive system works and its role in maintaining health. The article describes the gross structure of the gastrointestinal tract along with relevant physiology. It also outlines several disorders of the gastrointestinal tract and their treatment and nursing management. The second article will explain the liver, pancreas and gall bladder and their digestive functions, and provides a brief overview of the disorders of chronic liver disease, pancreatitis and gallstones.

  6. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)


    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  7. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis. (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua


    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterizing the range of extracellular protein post-translational modifications in a cellulose-degrading bacteria using a multiple proteolyic digestion/peptide fragmentation approach. (United States)

    Dykstra, Andrew B; Rodriguez, Miguel; Raman, Babu; Cook, Kelsey D; Hettich, Robert L


    Post-translational modifications (PTMs) are known to play a significant role in many biological functions. The focus of this study is to optimize an integrated experimental/informatics approach to more confidently characterize the range of post-translational modifications of the cellulosome protein complex used by the bacterium Clostridium thermocellum to better understand how this protein machine is tuned for enzymatic cellulose solubilization. To enhance comprehensive characterization, the extracellular cellulosome proteins were analyzed using multiple proteolytic digests (trypsin, Lys-C, Glu-C) and multiple fragmentation techniques (collisionally activated dissociation, electron transfer dissociation, decision tree). As expected, peptide and protein identifications were increased by utilizing alternate proteases and fragmentation methods, in addition to the increase in protein sequence coverage. The complementarity of these experiments also allowed for a global exploration of PTMs associated with the cellulosome based upon a set of defined PTMs that included methylation, oxidation, acetylation, phosphorylation, and signal peptide cleavage. In these experiments, 85 modified peptides corresponding to 28 cellulosome proteins were identified. Many of these modifications were located in active cellulolytic or structural domains of the cellulosome proteins, suggesting a level of possible regulatory control of protein function in various cellulotyic conditions. The use of complementary proteolytic digestion/peptide fragmentation processes allowed for independent verification of PTMs in different experiments, thus leading to increased confidence in PTM identifications.

  9. Combination of an Enzymatically Hydrolyzed Yeast and Yeast Culture with a Direct-fed Microbial in the Feeds of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    S. Gómez


    Full Text Available A balance trial experiment was carried out to evaluate the potential relationship between an enzymatically hydrolyzed yeast (EHY and yeast culture combined with a live Bacillus subtilis (Bs on the productive parameters, ileal digestibility, retention of nutrient and energy and villus morphology in broilers. Seventy two 28 d old, Ross B308 male broilers were assigned to a factorial combination of 2 levels of EHY (0 and 1 kg/ton of feed and 2 levels of Bs (0 and 125 g/ton of feed. The experiment lasted 2 weeks. Several treatment interactions were observed. EHY-fed broilers showed the lowest feed intake and feed conversion ratio whereas Bs-fed broilers showed the highest feed intake and intermediate feed conversion ratio (EHY and BS interaction, p<0.05. Also, EHY-fed broilers had greater ileal digestibility of dry matter (EHY and BS interaction, p<0.01 and energy (EHY and BS interaction, p<0.05 but these responses were counterbalanced by the combination of EHY and Bs. The thickness of the mucosa was similar between the control and EHY-fed broilers, but was lowest when Bs was added alone (EHY and BS interaction, p<0.01. The thickness of the villus was greater in EHY plus Bs-fed broilers, intermediate for the control and lower for Bs or EHY-fed broilers (EHY and BS interaction, p<0.05. The area of the villus was greater in the control and EHY plus Bs-fed broilers (EHY and BS interaction, p<0.05. In addition, EHY-fed broilers showed greater breast yield and nitrogen retention (p<0.01 and ashes digestibility (p<0.05. On the other hand, Bs-fed broilers had greater carcass and breast weight, nitrogen retention, energy excretion and villus height (p<0.05. In summary, EHY and Bs enhanced some growth, carcass and nutrient retention responses, but did not show any synergic relationship in these responses. Opposite to this, the results suggest that the positive effect of EHY on the feed conversion and digestibility of nutrients were counterbalanced by the

  10. The relation between starch digestion rate and amino acid level for broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Enting, H.; Verstegen, M.W.A.


    Digestion coefficients of nutrients give information about the amount of nutrients available to the animal but not about the rate or site of absorption. Gradual digestion of starch may have an amino acid sparing effect and therefore enhance growth efficiency of broiler chickens. A growth trial was

  11. Protein cluster formation during enzymatic cross-linking of globular proteins

    NARCIS (Netherlands)

    Saricay, Y.; Dhayal, S.K.; Wierenga, P.A.; Vries, de R.J.


    Work on enzymatic cross-linking of globular food proteins has mainly focused on food functional effects such as improvements of gelation and enhanced stabilization of emulsions and foams, and on the detailed biochemical characterization of the cross-linking chemistry. What is still lacking is a

  12. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge


    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment pro...

  13. Effective of Microwave-KOH Pretreatment on Enzymatic Hydrolysis of Bamboo (United States)

    Zhiqiang Li; Zehui Jiang; Yan Yu; Zhiyong Cai


    Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the fea- sibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was car- ried out by...

  14. Macrobenthic physiological responses to environmental fluctuations: the reproductive cycle and enzymatic polymorphism of a eurybathic sea-urchin on the northwestern Mediterranean continental shelf and slope (United States)

    Féral, Jean-Pierre; Ferrand, Jean-Guy; Guille, Alain


    Two hundred and twenty-seven sea-urchins, Brissopsis lyrifera, were collected in the Gulf of Lions between 60 and ca 1000 m depth, over a21/2 year period. The reproductive cycle was found to be independent of depth. Males and females were sexually mature at the end of summer. After a period of gonadal rest during winter, gametogenesis resumed at the beginning of spring. Specific enzymatic reactions on gut extracts, after PAA-electrophoresis, indicated that B. lyrifera is not a very polymorphic species and is generally homozygotic at the tested loci, except for esterases. Individual regrouping (discriminant factorial analysis) did not appear to be sensitive to the depth factor. On the contrary, a relationship between zymogrammes of the digestive tube and the sampling season was enhanced when sex and maturation stage were considered (main concerned activities: alkaline phosphatase ALK 1 and α-amylase AMY 1 and AMY 2), especially for females. These results indicate that enzymatic activities may be seasonal. They also indicate metabolic differences dependent upon the sex in somatic tissues, on one hand, and depending on environmental fluctuations on the other. Biological cycles are seasonal in the Mediterranean Sea, to 1000 m. In the case of B. lyrifera, a relationship could be established between flux increases of sediment carbon and sterols in winter and the beginning of gametogenesis. It is concluded that physiological signals, studied at different depths, would permit us to appreciate biological components of the margin ecosystem dynamics. This will also help define the place of life in the general oceanic fluxes (matter and energy).

  15. Children and Grief. ERIC Digest. (United States)

    McEntire, Nancy

    Noting that the death of a loved one brings grief to children as well as adults, this Digest draws on research to examine how children respond to death and the role of parents and teachers in helping children cope with loss. The Digest delineates children's "tasks" during mourning that are essential to their adjustment to loss, such as…

  16. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.


    Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solilds, lower methane emissions to the environment, and higher green energy...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability...... from anaerobic digested biowaste....

  17. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance. (United States)

    Rojas-Sossa, Juan Pablo; Murillo-Roos, Mariana; Uribe, Lidieth; Uribe-Lorio, Lorena; Marsh, Terence; Larsen, Niels; Chen, Rui; Miranda, Alberto; Solís, Kattia; Rodriguez, Werner; Kirk, Dana; Liao, Wei


    The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.


    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated....... In the system, the threshold methanogenic biomass concentration existed because of inhibition by high VFA concentration. High methanogenic biomass concentration is required for efficient anaerobic digestion of MSW in order to avoid possible inhibition due to high VFA build-up. Thus, CSTR configuration might...... have unstable dynamics at high organic loading as shown in earlier experiments carried out by Stroot et al. (2001). A gradual increase of organic loading during the start up of a completely mixed digester causing an accumulation of methanogenic biomass is a solution to prevent a probable digester...

  19. The in vitro digestibility of beef varies with its inherent ultimate pH. (United States)

    Farouk, Mustafa M; Wu, Guojie; Frost, Deborah A; Clerens, Stefan; Knowles, Scott O


    Animal carcasses and cuts of meat are usually differentiated and valued according to size and compositional attributes. An underappreciated variable of red meat is its inherent ultimate pH (pHu) value, which affects organoleptic and processing characteristics. This study tests the hypothesis that high pHu aged meat would be more digestible than low pHu unaged (fresh) meat. Longissimus dorsi muscles collected from 59 bull carcasses had pHu values of 5.6-6.9. These were aged for 21 days at -1.5 °C, then raw and cooked (72 °C) samples were enzymatically digested at 37 °C with pepsin (pH 1.9 for 90 min) followed by pancreatin (pH 8.0 for an additional 120 min) to simulate conditions in the stomach and small intestine, respectively. Meat proteins and peptides in the digests were separated by 1D SDS PAGE. Regardless of pHu, ageing or cooking, most sarcoplasmic and myofibrillar proteins were rapidly digested by pepsin, with concomitant release of products identified by LC-MS/MS as mainly myosin-1, -2 and -7, α-actinin-2 or -3 and tropomyosin beta and alpha chains. These products were resistant to further digestion for the entire 210 min duration of the incubation. In terms of rate and extent of digestibility of these resistant products, high pHu > low pHu (P unaged (P protein. Overall, the digestibility of meat samples increased with increasing pHu (P digestible but could be further differentiated on the basis of its pHu and the ease of digestibility of proteins. Specific carcasses or cuts could be targeted to consumer groups in order to provide benefits and add value.

  20. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Juan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Kim, Jin Yong [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of); Wang, Yuan Yuan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Qi, Li, E-mail: [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Wang, Fu Yi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Moon, Myeong Hee, E-mail: [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of)


    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  1. Methane emissions from digestate at an agricultural biogas plant. (United States)

    Baldé, Hambaliou; VanderZaag, Andrew C; Burtt, Stephen D; Wagner-Riddle, Claudia; Crolla, Anna; Desjardins, Raymond L; MacDonald, Douglas J


    Methane (CH4) emissions were measured over two years at an earthen storage containing digestate from a mesophilic biodigester in Ontario, Canada. The digester processed dairy manure and co-substrates from the food industry, and destroyed 62% of the influent volatile solids (VS). Annual average emissions were 19gCH4m(-3)d(-1) and 0.27gCH4kg(-1)VSd(-1). About 76% of annual emissions occurred from June to October. Annual cumulative emissions from digestate corresponded to 12% of the CH4 produced within the digester. A key contributor to CH4 emissions was the sludge layer in storage, which contained as much VS as the annual discharge from the digester. These findings suggest that digestate management provides an opportunity to further enhance the benefits of biogas (i.e. reducing CH4 emissions compared to undigested liquid manure, and producing renewable energy). Potential best practices for future study include complete storage emptying, solid-liquid separation, and storage covering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Flexible digestion strategies and trace metal assimilation in marine bivalves (United States)

    Decho, Alan W.; Luoma, Samuel N.


    Pulse-chase experiments show that two marine bivalves take optimal advantage of different types of particulate food by varying food retention time in a flexible two-phase digestive system. For example, carbon is efficiently assimilated from bacteria by subjecting nearly all the ingested bacteria to prolonged digestion. Prolonging digestion also enhances assimilation of metals, many of which are toxic in minute quantities if they are biologically available. Detritus-feeding aquatic organisms have always lived in environments naturally rich in particle-reactive metals. We suggest that avoiding excess assimilation of metals could be a factor in the evolution of digestion strategies. We tested that suggestion by studying digestion of particles containing different Cr concentrations. We show that bivalves are capable of modifying the digestive processing of food to reduce exposure to high, biologically available, Cr concentrations. The evolution of a mechanism in some species to avoid high concentrations of metals in food could influence how effects of modern metal pollution are manifested in marine ecosystems.

  3. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    Directory of Open Access Journals (Sweden)

    Magdalena Montowska


    Full Text Available New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages. Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed aft er 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  4. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M


    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  5. Enzymatic Degradation Identifies Components Responsible for the Structural Properties of the Vitreous Body (United States)

    Filas, Benjamen A.; Zhang, Qianru; Okamoto, Ruth J.; Shui, Ying-Bo; Beebe, David C.


    Purpose. Vitreous degeneration contributes to several age-related eye diseases, including retinal detachment, macular hole, macular traction syndrome, and nuclear cataracts. Remarkably little is understood about the molecular interactions responsible for maintaining vitreous structure. The purpose of this study was to measure the structural properties of the vitreous body after enzymatic degradation of selected macromolecules. Methods. Mechanical properties of plugs of bovine and porcine vitreous were analyzed using a rheometer. Oscillatory and extensional tests measured vitreous stiffness and adhesivity, respectively. Major structural components of the vitreous were degraded by incubation overnight in collagenase, trypsin, or hyaluronidase, singly or in combination. Vitreous bodies were also incubated in hyper- or hypotonic saline. Effects of these treatments on the mechanical properties of the vitreous were measured by rheometry. Results. Enzymatic digestion of each class of macromolecules decreased the stiffness of bovine vitreous by approximately half (P vitreous (P vitreous and increased adhesivity. Collagen degradation resulted in the opposite effect, whereas digestion of proteins and proteoglycans with trypsin did not alter behavior relative to controls. Osmotic perturbations and double-enzyme treatments further implicated hyaluronan and hyaluronan-associated water as a primary regulator of adhesivity and material behavior in extension. Conclusions. Collagen, hyaluronan, and proteoglycans act synergistically to maintain vitreous stiffness. Hyaluronan is a key mediator of vitreous adhesivity, and mechanical damping is an important factor influencing dynamic vitreous behavior. PMID:24222300

  6. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis


    in starch concentration and an increase in crude protein concentration. Nevertheless, the digestibility of DM and organic matter (OM) increased with enhanced aNDFom digestibility. Milk yield and live weight gain also increased with enhanced aNDFom digestibility. A 0.01 increase in the coefficient of maize......NDFom concentration and aNDFom digestibility are key determinants of the nutritive value of a diet. Therefore, the importance of maize silage aNDFom digestibility on nutritive value, dry matter (DM) intake (DMI) and milk production was investigated in a literature review across a wide range of studies varying...... in ration composition and characteristics of maize silage. The dataset compiled for the study comprised 29 experiments with 96 dietary treatments, but for a number of parameters less observations were published and therefore used in the analyses. Enhanced aNDFom digestibility was associated with a decrease...

  7. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. (United States)

    Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa


    This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined

  8. Differential digestion of human milk proteins in a simulated stomach model. (United States)

    Zhang, Qiang; Cundiff, Judy K; Maria, Sarah D; McMahon, Robert J; Wickham, Martin S J; Faulks, Richard M; van Tol, Eric A F


    A key element in understanding how human milk proteins support the health and development of the neonate is to understand how individual proteins are affected during digestion. In the present study, a dynamic gastric model was used to simulate infant gastric digestion of human milk, and a subsequent proteomic approach was applied to study the behavior of individual proteins. A total of 413 human milk proteins were quantified in this study. This approach demonstrated a high degree of variability in the susceptibility of human milk proteins to gastric digestion. Specifically this study reports that lipoproteins are among the class of slowly digested proteins during gastric processes. The levels of integral lysozyme C and partial lactadherin in milk whey increase over digestion. Mucins, ribonuclease 4, and macrophage mannose receptor 1 are also resistant to gastric digestion. The retention or enhancement in whey protein abundance can be ascribed to the digestive release of milk-fat-globule-membrane or immune-cell enclosed proteins that are not initially accessible in milk. Immunoglobulins are more resistant to digestion compared to total milk proteins, and within the immunoglobulin class IgA and IgM are more resistant to digestion compared to IgG. The gastric digestion of milk proteins becomes more apparent from this study.

  9. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility. (United States)

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui


    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (pproteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.

  10. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey. (United States)

    Li, Yueh-Fen; Abraham, Christopher; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Yu, Zhongtang


    Temperature-phased anaerobic digestion (TPAD) has gained increasing attention because it provides the flexibility to operate digesters under conditions that enhance overall digester performance. However, research on impact of organic overloading rate (OLR) to microbiota of TPAD systems was limited. In this study, we investigated the composition and successions of the microbiota in both the thermophilic and the mesophilic digesters of a laboratory-scale TPAD system co-digesting dairy manure and waste whey before and during organic overloading. The thermophilic and the mesophilic digesters were operated at 50 and 35 °C, respectively, with a hydraulic retention time (HRT) of 10 days for each digester. High OLR (dairy manure with 5 % total solid and waste whey of ≥60.4 g chemical oxygen demand (COD)/l/day) resulted in decrease in pH and in biogas production and accumulation of volatile fatty acids (VFAs) in the thermophilic digester, while the mesophilic digester remained unchanged except a transient increase in biogas production. Both denaturant gradient gel electrophoresis (DGGE) and Illumina sequencing of 16S ribosomal RNA (rRNA) gene amplicons showed dramatic change in microbiota composition and profound successions of both bacterial and methanogenic communities. During the overloading, Thermotogae was replaced by Proteobacteria, while Methanobrevibacter and archaeon classified as WCHD3-02 grew in predominance at the expense of Methanoculleus in the thermophilic digester, whereas Methanosarcina dominated the methanogenic community, while Methanobacterium and Methanobrevibacter became less predominant in the mesophilic digester. Canonical correspondence analysis (CCA) revealed that digester temperature and pH were the most influential environmental factors that explained much of the variations of the microbiota in this TPAD system when it was overloaded.

  11. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure. (United States)

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G


    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor. (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg


    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  13. Food microstructure and starch digestion. (United States)

    Singh, Jaspreet; Kaur, Lovedeep; Singh, Harjinder


    Microstructural characteristics of starch-based natural foods such as parenchyma or cotyledon cell shape, cell size and composition, and cell wall composition play a key role in influencing the starch digestibility during gastrointestinal digestion. The stability of cell wall components and the arrangement of starch granules in the cells may affect the free access of amylolytic enzymes during digestion. Commonly used food processing techniques such as thermal processing, extrusion cooking, and post-cooking refrigerated storage alter the physical state of starch (gelatinization, retrogradation, etc.) and its digestibility. Rheological characteristics (viscosity) of food affect the water availability during starch hydrolysis and, consequently, the absorption of digested carbohydrates in the gastrointestinal tract. The nonstarch ingredients and other constituents present in food matrix, such as proteins and lipids interact with starch during processing, which leads to an alteration in the overall starch digestibility and physicochemical characteristics of digesta. Starch digestibility can be controlled by critically manipulating the food microstructure, processing techniques, and food composition. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch. (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi


    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Enzymatic desulfurization of coal: Third quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Judith K. [School of Medicine, Boston Univ., MA (United States); Kitchell, Judith P. [Holometrix, Inc., Cambridge, Massachusetts (United States)


    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ''model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix. In this quarter we obtained important results both with the development of our understanding of the enzyme reaction systems and also with the microbial work at Woods Hole. 12 figs., 11 tabs.

  16. Novel anti-oxidative peptides from enzymatic digestion of human milk

    DEFF Research Database (Denmark)

    Tsopmo, Apollinaire; Romanowski, Andrea; Banda, Lyness


    )/g). Tandem mass spectrometry allowed the identification of twenty peptides. Eight small molecular weight peptides from 4 to 6 amino acids were synthesised and screened for antioxidant properties using ORAC and linoleic acid emulsion. On ORAC, the peptides YGYTGA (5169 μM TE/mmol) and ISELGW (4479 μM TE...

  17. Analysis of digester design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wilson, E. H.


    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gas cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.

  18. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    Directory of Open Access Journals (Sweden)

    Indrakumar Vetharaniam


    Full Text Available We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a range of systems where cell walls are degraded and to the modification of cell walls by endogenous enzymes. As a proof of principle, we have modelled the wall of a mesophyll cell from the leaf of perennial ryegrass and then simulated its enzymatic degradation. This is a primary, non-lignified cell wall and the model includes cellulose, hemicelluloses (glucuronoarabinoxylans, 1,3;1,4-β-glucans, and xyloglucans and pectin. These polymers are represented at the level of constituent monosaccharides, and assembled to form a 3-D, meso-scale representation of the molecular structure of the cell wall. The composition of the cell wall can be parameterised to represent different walls in different cell types and taxa. The model can contain arbitrary combinations of different enzymes. It simulates their random diffusion through the polymer networks taking collisions into account, allowing steric hindrance from cell-wall polymers to be modelled. Steric considerations are included when target bonds are encountered, and breakdown products resulting from enzymatic activity are predicted.

  19. Mapping the eosinophil cationic protein antimicrobial activity by chemical and enzymatic cleavage. (United States)

    Sánchez, Daniel; Moussaoui, Mohammed; Carreras, Esther; Torrent, Marc; Nogués, Victòria; Boix, Ester


    The eosinophil cationic protein (ECP) is a human antimicrobial protein involved in the host immune defense that belongs to the pancreatic RNase A family. ECP displays a wide range of antipathogen activities. The protein is highly cationic and its bactericidal activity is dependant on both cationic and hydrophobic surface exposed residues. Previous studies on ECP by site-directed mutagenesis indicated that the RNase activity is not essential for its bactericidal activity. To further understand the ECP bactericidal mechanism, we have applied enzymatic and chemical limited cleavage to search for active sequence determinants. Following a search for potential peptidases we selected the Lys-endoproteinase, which cleaves the ECP polypeptide at the carboxyl side of its unique Lys residue, releasing the N-terminal fragment (0-38). Chemical digestion using cyanogen bromide released several complementary peptides at the protein N-terminus. Interestingly, ECP treatment with cyanogen bromide represents a new example of selective chemical cleavage at the carboxyl side of not only Met but also Trp residues. Recombinant ECP was denatured and carboxyamidomethylated prior to enzymatic and chemical cleavage. Irreversible denaturation abolishes the protein bactericidal activity. The characterization of the digestion products by both enzymatic and chemical approaches identifies a region at the protein N-terminus, from residues 11 to 35, that retains the bactericidal activity. The most active fragment, ECP(0-38), is further compared to ECP derived synthetic peptides. The region includes previously identified stretches related to lipopolysaccharide binding and bacteria agglutination. The results contribute to define the shortest ECP minimized version that would retain its antimicrobial properties. The data suggest that the antimicrobial RNase can provide a scaffold for the selective release of cytotoxic peptides. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  20. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo Seed Powder

    Directory of Open Access Journals (Sweden)

    Gia Loi Tu


    Full Text Available In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group from defatted pumpkin (Cucurbita pepo seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16 % higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability.

  1. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    In margarine formulation, oils of different melting points are blended to make a product that is spreadable at room temperature. Usually, the blend would be subjected to modification process, either by interesterification (chemical or enzymatic) or partial hydrogenation in order to achieve...... the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... they are consumed as a quick source of energy. The remaining 2-monoacyl- glycerol becomes a source of essential fatty acid, after being absorbed through the intestinal wall. This would enhance the nutritional value of the enzymatically interesterified product. However, the incorporation of FO into the blend would...

  2. Use of bio-enzymatic preparations for enhancement biogas production


    Tomáš Vítěz; M. Haitl; Z. Karafiát; P. Mach; J. Fryč; T. Lošák; M. Szostková


    Biogas is a renewable energy resource with high increasing developed in last few decades. It’s big opportunity for stabilization rural areas, concretely agriculture sector. This technology can decentralize supply of energy. The number of operated biogas plants is rapidly increasing. Biogas plants require a high level of intensity and stableness of the process of anaerobic fermentation with biogas production for efficiency treatment, also for good quality of development biogas and fertilizatio...

  3. Anaerobic digestion and co-digestion of slaughterhouse wastes

    National Research Council Canada - National Science Library

    Castellucci, Sonia; Cocchi, Silvia; Allegrini, Elena; Vecchione, Luigi


    .... In the present work, the case of slaughterhouse wastes (SHWs) has been investigated. Anaerobic digestion is nowadays considered as one of the most important and sustainable conversion technology exploiting organic matter and biodegradable wastes...

  4. Application of multi-enzymatic hydrolysis for improving the efficiency of the biogas production in solid waste fermentation process in Ostróda WWTP

    Directory of Open Access Journals (Sweden)

    Lipiński Kamil


    Full Text Available Biomass fermentation is one of the important sources of renewable energy in EU. Application of multi-enzymatic hydrolysis process enables a significant increase in efficiency of biogas production. The main goal of the paper is to present the results of the pilot scale research performed in WWTP in óstroda. The fixed combination of three enzymes was continiously introduced: amylase, lipase and protease. Research aimed at verifying the impact of enzyme dose on sludge digestion process and on the amount of biogas produced. Statistical analysis of the research results allows to determine the influence of dosing the enzymes in mesophilic digestion on the biogas production.

  5. Application of multi-enzymatic hydrolysis for improving the efficiency of the biogas production in solid waste fermentation process in Ostróda WWTP (United States)

    Lipiński, Kamil; Umiejewska, Katarzyna


    Biomass fermentation is one of the important sources of renewable energy in EU. Application of multi-enzymatic hydrolysis process enables a significant increase in efficiency of biogas production. The main goal of the paper is to present the results of the pilot scale research performed in WWTP in óstroda. The fixed combination of three enzymes was continiously introduced: amylase, lipase and protease. Research aimed at verifying the impact of enzyme dose on sludge digestion process and on the amount of biogas produced. Statistical analysis of the research results allows to determine the influence of dosing the enzymes in mesophilic digestion on the biogas production.

  6. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief


    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  7. Transforming anaerobic digestion with the Model T of digesters

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.F.; Ciotola, R.; Castano, J.; Eger, C.; Schlea, D. [Ohio State Univ., Columbus, OH (United States). Ecological Engineering Program


    Most livestock farmers in the United States do not take advantage of anaerobic digester technology because of the high cost and large scale. These limitations therefore reduce the production of renewable energy from farmlands. In order to expand anaerobic digestion methods and improve environmental quality, affordable and smaller-scale digesters should be developed to enable most livestock farmers to convert manure to methane. Doing so would improve their economic efficiency and environmental sustainability. This paper provided an analogy to the development of the Model T to better explain the need and potential for this technology. A modified fixed-dome digester was installed on the Ohio State University dairy in Columbus, Ohio. The digester was unheated, buried, had a volume of 1 m{sup 3} and received diluted dairy manure as feedstock. Biogas was produced at digester temperatures as low 10 degrees C during colder ambient temperatures. Water quality also improved. Results from the first year of operation will be analyzed to improve performance and enable future development of this technology.

  8. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene


    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design and a l...

  9. pH & Rate of Enzymatic Reactions. (United States)

    Clariana, Roy B.


    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  10. Enzymatic hydrolysis - present status and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Linko, M.


    The environmental conditions for efficient cellulose and scylanate production with Trichoderma reesei have been studied. An interesting new aproach is cellulose production by Trichoderma reesei immobilized on K-carageenan. Hexoses and pentoses are produceed by the enzymatic hydrolysis of cellulose and hemicellulose and used for ethanol fermentation.

  11. Tandem and sequential multi-enzymatic syntheses

    NARCIS (Netherlands)

    Kim, B.G.; Ahn, J.H.; Sello, G.; Di Gennaro, P.; van Herk, T.; Hartog, A.F.; Wever, R.; Oroz-Guinea, I.; Sánchez-Moreno, I.; García-Junceda, E.; Wu, B.; Szymanski, W.; Feringa, B.L.; Janssen, D.B.; Villo, L.; Kreen, M.; Kudryashova, M.; Metsala, A.; Tamp, S.; Lille, ü.; Pehk, T.; Parve, O.; McClean, K.; Eddowes, P.; Whittall, J.; Sutton, P.W.


    This chapter contains sections titled: Production of Isorhamnetin 3-O-Glucoside in Escherichia coli Using Engineered Glycosyltransferase Multienzymatic Preparation of (−)-3-(Oxiran-2-yl)Benzoic Acid Enzymatic Synthesis of Carbohydrates from Dihydroxyacetone and Aldehydes by a One Pot Enzyme Cascade


    African Journals Online (AJOL)


    out on the fish to ascertain the normal range of blood parameter, find out the variation with age, sex, season, and determine the effects of disease condition on the fish. This study is aimed at assessing the enzymatic biomarkers and haematological indices of Tilapia specie (Sarotherodon melanotheron) of the Lagos lagoon.

  13. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.


    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  14. The digestion of dietary triacylglycerols

    DEFF Research Database (Denmark)

    Mu, Huiling; Høy, Carl-Erik


    Dietary triacylglycerols (TAGs) are the major lipid components in the human diet and they are carriers of energy as well as important fatty acids. Many factors affect the digestion and absorption of TAGs. Evidence is accumulating that, in addition to the overall fatty acid profile, the TAG......, or one may speculate additionally on the possibilities of modifying the structure of fats to affect their absorption and the distribution of the fatty acids in the body after digestion and uptake. In this review we will summarize diverse aspects of TAG digestion and absorption, as well as the influences...... of the fatty acid composition and the intramolecular structure of dietary TAGs on their digestion and absorption....

  15. Smoking and Your Digestive System (United States)

    ... 54(4):753–759. [11] Lakatos PL. Environmental factors affecting inflammatory bowel disease: have we made progress? Digestive ... Contacts Human Subjects Research Funding Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at ...

  16. Implementing Livestock Anaerobic Digestion Projects (United States)

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  17. In vitro digestibility and proteases inhibitory effect of several feedstuffs for Parachromis dovii juveniles and P. dovii hybrid larvae. (United States)

    Valverde-Chavarría, Silvia; Álvarez-González, Carlos A; Brais-Medina, Miguel; Calvo-Elizondo, Elman; Ulloa-Rojas, Juan B


    Parachromis dovii, a native cichlid from Costa Rica, is highly appreciated for its size and flesh quality. Further, P. dovii easily accept inert feed from the beginning of exogenous feeding; however, its growth is low compared to live food. For this reason, evaluation of several feedstuffs using two in vitro techniques was done. The quantification of the in vitro inhibitory effect of seven plant ingredients on the alkaline protease activity was done using enzymatic extracts from larvae samples of 6, 15, 22 and 30 days after hatching (DAH). The in vitro alkaline digestibility assays were run for six protein sources (from animal and plant origin) using the enzymatic extract from larvae 30 DAH. Independent of fish age, all plant feedstuffs reduced alkaline digestive proteases activity; however, the wheat flour (14.1 % at 6 DAH, 33.4 % at 15 DAH) and broken rice meal (51.6 % at 22 DAH) showed the lowest inhibition percentage of alkaline digestive activity, whereas the highest inhibition percentage was found with soybean and palm kernel meals (92.5 % at 30 DAH and 87.4 %, respectively) (P protein dietary sources tested, tankage and fish meal presented the highest in vitro digestibility values, 113.9 and 74.9 %, respectively. Contrary, the lowest digestibility was found for blood and soybean meals (38.07 and 19.82 %, respectively).

  18. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits

    Directory of Open Access Journals (Sweden)

    Stefania Marono


    Full Text Available The aims of this study were to evaluate the correlation between in vitro crude protein digestibility coefficients of insect meals from Tenebrio molitor (TI and Hermetia illucens (HI and their chemical composition traits as well as to develop regression equations able to estimate the in vitro crude protein digestibility (CPd from proximate analysis of insect meals. Twelve samples of insect meals (6 from TM larvae, TM 1-6 and 6 from HI larvae, HI 1-6 were obtained from different producers and analysed for chemical composition and in vitro crude protein digestibility by a two-step enzymatic method (digestion with pepsin and trypsin-enriched pancreatin. For both insect meal samples, CPd was negatively correlated to ADF and chitin contents, while just for HI there was a positive correlation (P<0.01 between CP percentage of the samples and CPd. For both insect meals the former variable chosen in the stepwise analysis was the chitin, explaining the 79.45% of CPd variability for Tenebrio molitor samples and the 98.30% for Hermetia illucens. In the second step, the amount of protein linked to ADF was added in the model for T. molitor and CP for H. illucens samples. The coefficients chitin is the main constituent of insect body able to affect the crude protein digestibility of Tenebrio molitor and Hermetia illucens larvae meals estimated by an in vitro enzymatic method.

  19. Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. (United States)

    Zhou, Qi; Yuan, Hairong; Liu, Yanping; Zou, Dexun; Zhu, Baoning; Chufo, Wachemo A; Jaffar, Muhammad; Li, Xiujin


    Feature objects aided strategy was used to predict and evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. The kinetics of co-digestion and mono-digestion of food waste and/or corn stalk was also analyzed. The results indicated that the compositions of food waste and corn stalk were significantly different. The anaerobic digestion of three feature objects at different mixing ratios showed the different biomethane yields and kinetic constants. Food waste and corn stalk co-digestion enhanced the digestion rate and achieved 22.48% and 41.55% higher biomethane production than those of food waste and corn stalk mono-digestion, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Brabrand, Myung Suk Jung; Sloth, Jens Jørgen


    , not much is known about the applicability of spICPMS for determination of NPs in complex matrices such as biological tissues. In the present study, alkaline and enzymatic treatments were applied to solubilize spleen samples from rats, which had been administered 60-nm gold nanoparticles (Au......NPs) intravenously. The results showed that similar size distributions of AuNPs were obtained independent of the sample preparation method used. Furthermore, the quantitative results for AuNP mass concentration obtained with spICPMS following alkaline sample pretreatment coincided with results for total gold...... concentration obtained by conventional ICPMS analysis of acid-digested tissue. The recovery of AuNPs from enzymatically digested tissue, however, was approximately four times lower. Spiking experiments of blank spleen samples with AuNPs showed that the lower recovery was caused by an inferior transport...

  1. Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. (United States)

    Bhasarkar, Jaykumar; Borah, Arup Jyoti; Goswami, Pranab; Moholkar, Vijayanand S


    This study has attempted to gain physical insight into ultrasound-assisted enzymatic desulfurization using system comprising horseradish peroxidase enzyme and dibenzothiophene (DBT). Desulfurization pathway (comprising DBT-sulfoxide and DBT-sulfone as intermediates and 4-methoxy benzoic acid as final product) has been established with GC-MS analysis. Intrinsic fluorescence and circular dichroism spectra of ultrasound-treated enzyme reveal conformational changes in secondary structure (reduction in α-helix and β-conformations and increase in random coil content) leading to enhancement in activity. Concurrent analysis of desulfurization profiles, Arrhenius and thermodynamic parameters, and simulations of cavitation bubble dynamics reveal that strong micro-convection generated by sonication enhances enzyme activity and desulfurization kinetics. Parallel oxidation of DBT by radicals generated from transient cavitation gives further boost to desulfurization kinetics. However, random motion of enzyme molecules induced by shock waves reduces frequency factor and limits the ultrasonic enhancement of enzymatic desulfurization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Improved enzymatic production of phenolated glycerides through alkyl phenolate intermediate

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Feddern, Vivian; Glasius, Marianne


    This work reported a novel approach for synthesis of dihydrocaffoylated glycerides, consisting of 2 steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid (DHCA), and enzymatic interesterification of triglycerides with octyl dihydroc...

  3. Steam explosion pretreatment for enhancing biogas production of late harvested hay. (United States)

    Bauer, Alexander; Lizasoain, Javier; Theuretzbacher, Franz; Agger, Jane W; Rincón, María; Menardo, Simona; Saylor, Molly K; Enguídanos, Ramón; Nielsen, Paal J; Potthast, Antje; Zweckmair, Thomas; Gronauer, Andreas; Horn, Svein J


    Grasslands are often abandoned due to lack of profitability. Extensively cultivating grassland for utilization in a biogas-based biorefinery concept could mend this problem. Efficient bioconversion of this lignocellulosic biomass requires a pretreatment step. In this study the effect of different steam explosion conditions on hay digestibility have been investigated. Increasing severity in the pretreatment induced degradation of the hemicellulose, which at the same time led to the production of inhibitors and formation of pseudo-lignin. Enzymatic hydrolysis showed that the maximum glucose yields were obtained under pretreatment at 220 °C for 15 min, while higher xylose yields were obtained at 175 °C for 10 min. Pretreatment of hay by steam explosion enhanced 15.9% the methane yield in comparison to the untreated hay. Results indicate that hay can be effectively converted to methane after steam explosion pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Starch digestion capacity of poultry. (United States)

    Svihus, B


    Starch is quantitatively the most important nutrient in poultry diets and will to a large extent be present as intact starch granules due to very limited extent of gelatinization during pelleting. Although native starch is difficult to digest due to a semi-crystalline structure, even fast-growing broiler chickens appears to be able to digest this starch more or less completely during passage through the jejunum. However, reduced starch digestibility has been observed, particularly in pelleted diets containing large quantities of wheat. Although properties of the starch granule such as size and components on the granule surface may affect digestibility, the entrapment of starch granules in cell walls and a protein matrix may be even more important factors impeding starch digestion. In that case, this and the fact that amylase secretion is normally very high in poultry may explain the lack of convincing effects of exogenous α-amylase added to the diet. However, few well-designed experiments assessing mechanisms of starch digestion and the effect of α-amylase supplementation have been carried out, and thus more research is needed in this important area. © 2014 Poultry Science Association Inc.

  5. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan


    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated....... The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter...... and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...

  6. Thermal pre-treatment of primary and secondary sludge at 70 °C prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis; Gavala, Hariklia N.; Lu, J.


    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared tothermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated...... studyinvestigates the effect of the pre-treatment at 70 °C on thermophilic (55 °C) anaerobic digestion of primaryand secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondarysludge at 70 °C enhanced the removal of organic matter and the methane production during...... the subsequentanaerobic digestion step at 55 °C. It also greatly contributed to the destruction of pathogens present inprimary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic stepsuggesting that the same efficiencies in organic matter removal and methane recovery could be obtained...

  7. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N


    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  8. Lessons from Digestive-Tract Symbioses Between Bacteria and Invertebrates. (United States)

    Graf, Joerg


    In most animals, digestive tracts harbor the greatest number of bacteria in the animal that contribute to its health: by aiding in the digestion of nutrients, provisioning essential nutrients and protecting against colonization by pathogens. Invertebrates have been used to enhance our understanding of metabolic processes and microbe-host interactions owing to experimental advantages. This review describes how advances in DNA sequencing technologies have dramatically altered how researchers investigate microbe-host interactions, including 16S rRNA gene surveys, metagenome experiments, and metatranscriptome studies. Advantages and challenges of each of these approaches are described herein. Hypotheses generated through omics studies can be directly tested using site-directed mutagenesis, and findings from transposon studies and site-directed experiments are presented. Finally, unique structural aspects of invertebrate digestive tracts that contribute to symbiont specificity are presented. The combination of omics approaches with genetics and microscopy allows researchers to move beyond correlations to identify conserved mechanisms of microbe-host interactions.

  9. Ultrasonic treatment to improve anaerobic digestibility of dairy waste streams. (United States)

    Palmowski, L; Simons, L; Brooks, R


    The dairy-processing industry generates various types of organic wastes, which are utilised as stock feed, for anaerobic digestion, spread on land or alternatively land-filled at high costs. Owing to the generation of renewable energy, anaerobic digestion is an attractive option for many factories. To enhance the biological degradation process, a mechanical disintegration of various waste dairy streams was undertaken. While the successful application of ultrasonic treatment has been reported for various municipal waste streams, limited information was available for dairy industry applications. The results of this study showed that ultrasonic treatment can improve the digestibility of the more problematic dairy waste streams, such as sludges, by breaking down micro-organisms' cell walls and releasing soluble cell compounds. For more soluble streams, such as dairy factory effluent, an increased gas production was observed and attributed to the reduced particle size of the fat globules.

  10. Performance of a UASB-digester system treating domestic wastewater. (United States)

    Alvarez, J A; Armstrong, E; Presas, J; Gómez, M; Soto, M


    The anaerobic treatment of raw domestic wastewater by a novel technology consisting of an Up-flow Anaerobic Sludge Bed (UASB) reactor combined with a completely mixed digester for the stabilisation of the UASB sludge was assessed. A pilot-scale plant of the so-called UASB-Digester system was located at the municipal wastewater treatment facility of Santiago de Compostela (Northwest of Spain). The main aim of the Digester was to enhance the biodegradation of influent solids retained in the UASB reactor at low temperatures, then increasing its specific methanogenic activity. The sludge drawn from the middle zone of the UASB entered the upper zone of the Digester and then circulated from the bottom of the Digester to the UASB bottom. Circulating in an automated semi-continuous way, the flow of this sludge stream was selected in order to set a previously defined hydraulic retention time (HRT) (16-27 d) in the digester. The Digester temperature was set at an optimum value ranging from 25 to 35 degrees C. The steady state efficiency of the UASB system, at 6-8 h of HRT, 15-16 degrees C of temperature and 330-360 mg l(-1) of influent total chemical oxygen demand (TCOD) was 79% of total suspended solids (TSS) removal, 52% of TCOD removal and 60% of biological oxygen demand (BOD5) removal. The hydrolysis of retained solids reached 85%, while excess sludge generation was only 7% of influent TCOD. A stable anaerobic (pre)treatment of diluted domestic wastewater was reached as the sludge concentration in the reactor remained mainly constant and the specific methanogenic activity showed a slight increase.

  11. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion. (United States)

    Jin, Guang; Bierma, Tom; Walker, Paul M


    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  12. Digestive enzyme ratios are good indicators of hatchling yolk reserve and digestive gland maturation in early life stages of cuttlefish Sepia officinalis L.: application of these new tools in ecology and aquaculture. (United States)

    Safi, Georges; Martinez, A S; Le Pabic, C; Le Bihan, E; Robin, J P; Koueta, N


    In Sepia officinalis (Linnaeus, 1758), the digestive gland matures during the first month post-hatching, while a shift from intracellular acid to extracellular alkaline digestion occurs. The purpose of this study was to investigate the possibility of using enzymatic ratios for the description of digestive system maturation in early life stages of S. officinalis. Second, it is intended to apply these new tools as eco-physiological indicators for understanding the impact of cuttlefish eggs' life history from different spawning sites of the English Channel on digestive performance of juveniles. An experimental rearing was performed over 35 days after hatching (DAH) on juveniles from wild collected eggs in 2010 and 2011. Four digestive enzyme activities and their ratios [i.e., trypsin, cathepsin, acid (ACP), and alkaline (ALP) phosphatase, ALP/ACP, and trypsin/cathepsin] were studied along with histological features (e.g., internal yolk surface and digestive gland development). The two enzyme ratios were good indicators of digestive system maturation allowing the study of the digestive gland's development. They were highly correlated to juveniles' weight increase and histological features of the gland in early DAH. These ratios described more accurately the shift occurring between the intracellular acid and the extracellular alkaline modes of digestion in S. officinalis and were more specific than separated enzyme activities. Their application as eco-physiological tools revealed that enzyme ratios reflected yolk content and digestive gland development in new hatching juveniles. Finally, ALP/ACP ratio was shown to be a powerful tool to describe growth performance of S. officinalis which is useful for aquaculture optimization.

  13. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Wei Hui


    Full Text Available Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1 acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2 this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  14. Anaerobic digestion and co-digestion of slaughterhouse wastes

    Directory of Open Access Journals (Sweden)

    Sonia Castellucci


    Full Text Available The use of renewable energy is becoming increasingly necessary in order to address the global warming problem and, as a consequence, has become an high priority for many countries. Biomass is a clean and renewable energy source with growing potential to replace conventional fossil fuels. Among biomass, residual and waste ones represent a great resource for energy generation since they permit both to eliminate a possible waste and to produce energy. In the present work, the case of slaughterhouse wastes (SHWs has been investigated. Anaerobic digestion is nowadays considered as one of the most important and sustainable conversion technology exploiting organic matter and biodegradable wastes. Biogas results from this bio-chemical process and mainly consists of methane and carbon dioxide, leading to produce thermal energy and/or electricity. In this paper, the European Regulations on animal by-products (ABPs are described, and some previous study on anaerobic digestion and co-digestion of ABPs - more precisely SHWs - are considered and compared in order to fix a starting point for future tests on their co-digestion in a micro-scale pilot digester. This is to define optimal feed ratio values which ensure an increasing content of methane in the outgoing biogas.

  15. Composition, ileal amino acid digestibility and nutritive value of organically grown legume seeds and conventional rapeseed cakes for pigs

    Directory of Open Access Journals (Sweden)



    Full Text Available Eight white-flowered pea (Pisum sativum and two white-flowered field bean (Vicia faba cultivars grown organically were analysed for proximate composition and amino acid content. In vivo ileal amino acid digestibilities and faecal energy digestibility were predicted from the in vitro enzymatic digestibility of nitrogen and organic matter, respectively. The crude protein (CP content of the pea and field bean cultivars ranged from 244 to 279 and from 320 to 347 g/kg dry matter (DM, respectively. The concentrations of several essential amino acids in protein decreased as the CP content increased. In peas, predicted in vivo digestibilities did not correlate with chemical composition, and in field beans were lower than in peas. A digestibility trial was carried out on six cannulated barrows according to a 6 ´ 5 cyclic change-over design to determine the faecal and ileal nutrient digestibilities of organically grown leafed peas (cv. Sohvi, 199 g CP/kg DM, semileafless peas (cv. Karita, 240 g CP/kg DM, field beans (cv. Kontu, 320 g CP/kg DM, narrow-leafed lupins (Lupinus angustifolius cv. Pershatsvet, 220 g CP/kg DM, and conventional warm- and cold-pressed rapeseed cakes (360 and 313 g CP/kg DM, respectively. The net energy contents of the leafed and semileafed peas, field beans, lupins, and cold- and warm-pressed rape seed cakes were 10.8, 11.2, 9.8, 9.7, 9.4 and 12.3 MJ/kg DM, respectively. The apparent ileal digestibilities of lysine and threonine were similar, but the digestibility of methionine was poor in all legume seeds. Cystine digestibility was highest in lupins and lowest in field beans. With the exception of phenylalanine, there was no difference in apparent ileal amino acid digestibilities between rapeseed cakes.;

  16. The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle. (United States)

    Hu, Zhengyan; Zhao, Liang; Zhang, Hongyan; Zhang, Yi; Wu, Ren'an; Zou, Hanfa


    Proteins interacting with nanoparticles would form the protein coronas on the surface of nanoparticles in biological systems, which would critically impact the biological identities of nanoparticles and/or result in the physiological and pathological consequences. The enzymatic digestion of protein corona was the primary step to achieve the identification of protein components of the protein corona for the bottom-up proteomic approaches. In this study, the investigation on the tryptic digestion of protein corona by the immobilized trypsin on a magnetic nanoparticle was carried out for the first time. As a comparison with the usual overnight long-time digestion and the severe self-digestion of free trypsin, the on-bead digestion of protein corona by the immobilized trypsin could be accomplished within 1h, along with the significantly reduced self-digestion of trypsin and the improved reproducibility on the identification of proteins by the mass spectrometry-based proteomic approach. It showed that the number of identified bovine serum (BS) proteins on the commercial Fe3O4 nanoparticles was increased by 13% for the immobilized trypsin with 1h digestion as compared to that of using free trypsin with even overnight digestion. In addition, the on-bead digestion of using the immobilized trypsin was further applied on the identification of human plasma protein corona on the commercial Fe3O4 nanoparticles, which leads the efficient digestion of the human plasma proteins and the identification of 149 human plasma proteins corresponding to putative critical pathways and biological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparison of HPLC-RI, LC/MS-MS and enzymatic assays for the analysis of residual lactose in lactose-free milk. (United States)

    Trani, A; Gambacorta, G; Loizzo, P; Cassone, A; Fasciano, C; Zambrini, A V; Faccia, M


    Lactose intolerance is the decreased ability to digest lactose, and the population involved is rapidly increasing all over the world. Different procedures have been reported in the literature to quantify lactose in dairy products, but the official method of analysis is based on enzymatic assay. In this paper, the effectiveness of two enzymatic kits in detecting residual lactose in lactose-free milk was investigated, and a comparison with two alternative chromatographic methods was done. The investigation used several samples of UHT milk containing different levels of lactose, and the results highlighted the inadequacy of the enzymatic assays and of the HPLC-RI method to analyse lactose-free milk. An LC-MS/MS method using the formate adduct was developed, and it allowed quantitation of lactose and lactulose in all samples at a high level of precision and repeatability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enzymatic induction of supramolecular order and bioactivity (United States)

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou


    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity.We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine

  19. Enzymatically synthesized glycogen inhibits colitis through decreasing oxidative stress. (United States)

    Mitani, Takakazu; Yoshioka, Yasukiyo; Furuyashiki, Takashi; Yamashita, Yoko; Shirai, Yasuhito; Ashida, Hitoshi


    Inflammatory bowel diseases are a group of chronic inflammation conditions of the gastrointestinal tract. Disruption of the mucosal immune response causes accumulation of oxidative stress, resulting in the induction of inflammatory bowel disease. In this study, we investigated the effect of enzymatically synthesized glycogen (ESG), which is produced from starch, on dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Oral administration of ESG suppressed DSS- and TNBS-induced shortening of large intestine in female mice and significant decreased DSS-induced oxidative stress and TNBS-induced pro-inflammatory cytokine expression in the large intestine. ESG increase in the expression levels of heme oxygenase-1 (HO-1) and NF-E2-related factor-2 (Nrf2), a transcription factor for HO-1 expressed in the large intestine. Furthermore, ESG-induced HO-1 and Nrf2 were expressed mainly in intestinal macrophages. ESG is considered to be metabolized to resistant glycogen (RG) during digestion with α-amylase in vivo. In mouse macrophage RAW264.7 cells, RG, but not ESG decreased 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced reactive oxygen species (ROS). Knockdown of Nrf2 inhibited RG-induced HO-1 expression and negated the decrease in AAPH-induced ROS brought about by RG. RG up-regulated the protein stability of Nrf2 to decrease the formation of Nrf2-Keap1 complexes. RG-induced phosphorylation of Nrf2 at Ser40 was suppressed by ERK1/2 and JNK inhibitors. Our data indicate that ESG, digested with α-amylase to RG, suppresses DSS- and TNBS-induced colitis by increasing the expression of HO-1 in the large intestine of mice. Furthermore, we demonstrate that RG induces HO-1 expression by promoting phosphorylation of Nrf2 at Ser40 through activation of the ERK1/2 and JNK cascade in macrophages. Copyright © 2017. Published by Elsevier Inc.

  20. Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation. (United States)

    Chiva, Cristina; Ortega, Mireia; Sabidó, Eduard


    Quantitative determination of absolute and relative protein amounts is an essential requirement for most current bottom-up proteomics applications, but protein quantitation estimates are affected by several sources of variability such as sample preparation, mass spectrometric acquisition, and data analysis. Among them, sample digestion has attracted much attention from the proteomics community, as protein quantitation by bottom-up proteomics relies on the efficiency and reproducibility of protein enzymatic digestion, with the presence of missed cleavages, nonspecific cleavages, or even the use of different proteases having been postulated as important sources of variation in protein quantitation. Here we evaluated both in-solution and filter-aided digestion protocols and assessed their influence in the estimation of protein abundances using five E. coli mixtures with known amounts of spiked proteins. We observed that replicates of trypsin specificity digestion protocols are highly reproducible in terms of peptide quantitation, with digestion technique and the chosen proteolytic enzyme being the major sources of variability in peptide quantitation. Finally, we also evaluated the result of including peptides with missed cleavages in protein quantitation and observed no significant differences in precision, accuracy, specificity, and sensitivity compared with the use of fully tryptic peptides.