WorldWideScience

Sample records for enhances wound healing

  1. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Science.gov (United States)

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  2. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  3. Dendritic cells modulate burn wound healing by enhancing early proliferation.

    Science.gov (United States)

    Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy

    2016-01-01

    Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.

  4. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan Me

    2017-09-01

    Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

  5. Fibroblast implantation enhances wound healing as indicated by breaking strength determinations

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W W; Goepfert, H; Romsdahl, M; Hersen, J; Withers, R H; Jesse, R H

    1978-09-01

    Irradiation of normal tissues at the dose/time factor employed in the treatment of solid tumors impairs the subsequent healing of surgical wounds made in those tissues. Irreversible radiation damage to regional fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts is one cause of impared healing. This study was conducted to determine whether syngeneic guinea pig fibroblasts, harvested from tissue culture when injected into irradiated guinea pig skin at the time of wound closure, could improve wound healing. Breaking strength determinations indicate that irradiated wounds demonstrate enhanced wound healing if implanted with fibroblasts.

  6. Aloe Gel Enhances Angiogenesis in Healing of Diabetic Wound

    Directory of Open Access Journals (Sweden)

    Djanggan Sargowo

    2011-12-01

    Full Text Available BACKGROUND: Diabetic micro and macroangiophathy lead to the incident of diabetic foot ulcers characterized by an increased number of circulating endothelial cells (CECs and decreased function of endothelial progenitor cells (EPCs. This fact is correlated with ischemia and diabetic wound healing failure. Aloe vera gel is known to be able to stimulate vascular endothelial growth factor (VEGF expression and activity by enhancing nitric oxide (NO production as a result of nitric oxide synthase (NOS enzyme activity. Aloe vera is a potential target to enhancing angiogenesis in wound healing. OBJECTIVE: The objective of this study was to explore the major role of Aloe vera gel in wound healing of diabetic ulcers by increasing the level of EPCs, VEGF, and endothelial nitric oxide synthase (eNOS, as well as by reducing the level of CECs involved in angiogenesis process of diabetic ulcers healing. METHODS: The experimental groups was divided into five subgroups consisting of non diabetic wistar rats, diabetic rats without oral administration of aloe gel, and treatment subgroup (diabetic rats with 30, 60 and 120 mg/day of aloe gel doses for 14 days. All subgroups were wounded and daily observation was done on the wounds areas. Measurement of the number of EPCs (CD34, and CECs (CD45 and CD146 was done by flow cytometry, followed by measurement of VEGF and eNOS expression on dermal tissue by immunohistochemical method on day 0 and day 14 after treatment. The quantitative data were analyzed by One-Way ANOVA and Linear Regression, with a confidence interval 5% and significance level (p<0.05 using SPSS 16 software to compare the difference and correlation between wound diameters, number of EPCs and CECs as well as the levels of VEGF and eNOS. RESULTS: The results of this study showed that aloe gel oral treatment in diabetic wistar rats was able to accelerate the wound healing process. It was shown by significant reduction of wound diameter (0.27±0.02; the

  7. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

    Science.gov (United States)

    Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama

    2017-09-01

    Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Heat enhances radiation inhibition of wound healing

    International Nuclear Information System (INIS)

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.

    1987-01-01

    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  9. PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.

    Science.gov (United States)

    Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T

    2018-01-01

    Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p cells (p cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.

  10. Saliva and wound healing.

    Science.gov (United States)

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  11. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK signaling pathways. Valproic acid (VPA is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. METHODS AND FINDINGS: We created full-thickness wounds on the backs of C3H mice and then applied VPA. After 7 d, we observed marked healing and reduced wound size in VPA-treated mice. In the neo-epidermis of the wounds, β-catenin and markers for keratinocyte terminal differentiation were increased after VPA treatment. In addition, α-smooth muscle actin (α-SMA, collagen I and collagen III in the wounds were significantly increased. VPA induced proliferation and suppressed apoptosis of cells in the wounds, as determined by Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining analyses, respectively. In vitro, VPA enhanced the motility of HaCaT keratinocytes by activating Wnt/β-catenin, ERK and phosphatidylinositol 3-kinase (PI3-kinase/Akt signaling pathways. CONCLUSIONS: VPA enhances cutaneous wound healing in a murine model and induces migration of HaCaT keratinocytes.

  12. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  13. The molecular biology in wound healing & non-healing wound.

    Science.gov (United States)

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  14. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    Science.gov (United States)

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  15. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-02-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  16. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X

    2016-02-02

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  17. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  18. Removal of the basement membrane enhances corneal wound healing.

    Science.gov (United States)

    Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri; Stepp, Mary Ann

    2011-12-01

    Recurrent corneal erosions are painful and put patients' vision at risk. Treatment typically begins with debridement of the area around the erosion site followed by more aggressive treatments. An in vivo mouse model has been developed that reproducibly induces recurrent epithelial erosions in wild-type mice spontaneously within two weeks after a single 1.5 mm corneal debridement wound created using a dulled-blade. This study was conducted to determine whether 1) inhibiting MMP9 function during healing after dulled-blade wounding impacts erosion development and 2) wounds made with a rotating-burr heal without erosions. Oral or topical inhibition of MMPs after dulled-blade wounding does not improve healing. Wounds made by rotating-burr heal with significantly fewer erosions than dulled-blade wounds. The localization of MMP9, β4 integrin and basement membrane proteins (LN332 and type VII collagen), immune cell influx, and reinnervation of the corneal nerves were compared after both wound types. Rotating-burr wounds remove the anterior basement membrane centrally but not at the periphery near the wound margin, induce more apoptosis of corneal stromal cells, and damage more stromal nerve fibers. Despite the fact that rotating-burr wounds do more damage to the cornea, fewer immune cells are recruited and significantly more wounds resolve completely. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Identification of a transcriptional signature for the wound healing continuum

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

  20. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.

    Science.gov (United States)

    Hussan, F; Teoh, S Lin; Muhamad, N; Mazlan, M; Latiff, A A

    2014-08-01

    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract. Fifty-six male Sprague-Dawley rats were divided into a normal control group and five diabetic groups of ten rats each. Intravenous streptozotocin (50mg/kg) was given to induce diabetes in the diabetic groups. Full thickness excision wounds were created on the thoracodorsal region of the animals, and these wounds were then treated with vehicle, MC powder, MC ointment and povidone ointment or ointment base for ten days. Wound healing was determined by the rate of wound closure, total protein content and TGF-β expression in the wounds, and histological observation. Diabetic groups showed delayed wound closure rates compared to the control group. The wound closure rate in the MC ointment group was significantly faster than that of the untreated diabetic group (p<0.05). The MC ointment group also showed intense TGF-β expression and a high level of total protein content. MC ointment has a promising potential for use as an alternative topical medication for diabetic wounds. This work has shown that it accelerates wound healing in diabetic rats, and it is suggested here that this occurs by enhancing TGF-β expression. Further work is recommended to explore this effect.

  1. How wounds heal

    Science.gov (United States)

    ... How puncture wounds heal; How burns heal; How pressure sores heal; How lacerations heal ... bleed. For example, burns, some puncture wounds, and pressure sores do not bleed. Once the scab forms, your ...

  2. The Extract of Lycium depressum Stocks Enhances Wound Healing in Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Naji, Siamak; Zarei, Leila; Pourjabali, Masoumeh; Mohammadi, Rahim

    2017-06-01

    In diabetes, impaired wound healing and other tissue abnormalities are considered major concerns. The aim of the present study was to assess the wound-healing activity of methanolic extracts of the extract of Lycium depressum leaves. A total of 60 healthy male Wistar diabetic rats weighing approximately 160 to 180 g and 7 weeks of age were randomized into 10 groups for incision and excision wound models: sham surgery group (SHAM), including creation of wounds and no treatment; base formulation group (FG) with creation of wounds and application of base formulation ointment; treatment group 1 (TG1) with 1 g of powder extract of the plant material in ointment; treatment group 2 (TG2) with 2 g; and treatment group 4 (TG3) with 4 g of powder extract of the plant material in ointment. A wound was induced by an excision- and incision-based wound model in male rats. The mature green leaves of L depressum were collected and authenticated. Extractions of dried leaves were carried out. For wound-healing activity, the extracts were applied topically in the form of ointment and compared with control groups. The healing of the wound was assessed based on excision, incision, hydroxyproline estimation, and biomechanical and biochemical studies. The extract of L depressum leaves enhanced wound contraction, decreased epithelialization time, increased hydroxyproline content, and improved mechanical indices and histological characteristics in treatment groups compared with SHAM and FG ( P healing in a diabetes induced model.

  3. Leptin promotes wound healing in the skin.

    Directory of Open Access Journals (Sweden)

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  4. Essential oil-loaded lipid nanoparticles for wound healing.

    Science.gov (United States)

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  5. Development of honey hydrogel dressing for enhanced wound healing

    International Nuclear Information System (INIS)

    Yusof, Norimah; Ainul Hafiza, A.H.; Zohdi, Rozaini M.; Bakar, Md Zuki A.

    2007-01-01

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance

  6. Effects of isoniazid and niacin on experimental wound-healing

    DEFF Research Database (Denmark)

    Weinreich, Jürgen; Ågren, Sven Per Magnus; Bilali, Erol

    2010-01-01

    There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues.......There is a need for effective treatments of ischemic wounds. Our aim was to test the hypothesis that systemic administration of isoniazid or niacin can enhance wound healing in ischemic as well as nonischemic tissues....

  7. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Science.gov (United States)

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  8. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyu; Niu, Yuqing [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China); Chen, Kevin C. [Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063 (China); Chen, Shiguo, E-mail: csg@szu.edu.cn [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China)

    2017-02-01

    A novel rapid hemostatic and mild polyurethane-urea foam (PUUF) wound dressing was prepared by the particle leaching method and vacuum freeze-drying method using 4, 4-Methylenebis(cyclohexyl isocyanate), 4,4-diaminodicyclohexylmethane and poly (ethylene glycol) as raw materials. And X-ray diffraction (XRD), tensile test, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to its crystallinity, stress and strain behavior, and thermal properties, respectively. Platelet adhesion, fibrinogen adhesion and blood clotting were performed to evaluate its hemostatic effect. And H&E staining and Masson Trichrome staining were used to its wound healing efficacy. The results revealed the pore size of PUUF is 50–130 μm, and its porosity is 71.01%. Porous PUUF exhibited good water uptake that was benefit to adsorb abundant wound exudates to build a regional moist environment beneficial for wound healing. The PUUF wound dressing exhibit better blood coagulation effect than commercial polyurethane dressing (CaduMedi). Though both PUUF and CaduMedi facilitated wound healing generating full re-epithelialization within 13 days, PUUF was milder and lead to more slight inflammatory response than CaduMedi. In addition, PUUF wound dressing exhibited lower cytotoxicity than CaduMedi against NIH3T3 cells. Overall, porous PUUF represents a novel mild wound dressing with excellent water uptake, hemostatic effect and low toxicity, and it can promote wound healing and enhance re-epithelialization. - Highlights: • Rapid hemostatic and mild PUUF wound dressing was fabricated. • Low-toxic PUUF exhibited good water uptake that could build a regional moist environment beneficial for wound healing. • PUUF could promote wound healing and enhance re-epithelialization.

  9. Instillation of Sericin Enhances Corneal Wound Healing through the ERK Pathway in Rat Debrided Corneal Epithelium

    Directory of Open Access Journals (Sweden)

    Noriaki Nagai

    2018-04-01

    Full Text Available Sericin is a major constituent of silk produced by silkworms. We previously found that the instillation of sericin enhanced the proliferation of corneal epithelial cells, and acted to promote corneal wound healing in both normal and diabetic model rats. However, the mechanisms by which sericin promotes the proliferation of corneal cells have not been established. In this study, we investigated the effects of sericin on Akt and ERK activation in a human corneal epithelial cell line (HCE-T cells and rat debrided corneal epithelium. Although Akt phosphorylation was not detected following the treatment of HCE-T cells with sericin, ERK1/2 phosphorylation was enhanced. The growth of HCE-T cells treated with sericin was significantly increased, with the cell growth of sericin-treated HCE-T cells being 1.7-fold higher in comparison with vehicle-treated HCE-T cells. On the other hand, both of an ERK inhibitor U0126 (non-specific specific inhibitor and SCH772984 (specific inhibitor attenuated the enhanced cell growth by sericin, and the growth level in the case of co-treatment with sericin and ERK1/2 inhibitor was similar to that of cells treated with ERK1/2 inhibitor alone. In an in vivo study using rat debrided corneal epithelium, the corneal wound healing rate was enhanced by the instillation of sericin, and this enhancement was also attenuated by the instillation of U0126. In addition, the corneal wound healing rate in rats co-instilled with sericin and U0126 was similar to that following the instillation of U0126 alone. In conclusion, we found that the instillation of sericin enhanced cell proliferation via the activation of the MAPK/ERK pathway, resulting in the promotion of corneal wound healing in rat eyes. These findings provide significant information for designing further studies to develop potent corneal wound-healing drugs.

  10. Pearl extract enhances the migratory ability of fibroblasts in a wound healing model.

    Science.gov (United States)

    Li, Yi-Chen; Chen, Chi-Ruei; Young, Tai-Horng

    2013-03-01

    For 2000 years, traditional Chinese medicine has been used as a remedy for general health improvement, including the fight against aging. Pearl powder has recently been used as a health food that has antioxidant, antiaging, antiradioactive, and tonic activities for cells; it is also applied to cure aphthous ulcer, gastric ulcer, and duodenal ulcer on clinical therapy. In addition, the mother of pearl, nacre, could enhance the cell adhesion and tissue regeneration of skin fibroblasts. Fibroblast is regarded as indispensable in the processes of wound healing. Therefore, the effect of pearl extract (PL) on fibroblasts is investigated in this study. PL is produced by a room temperature super extraction system (Taiwan patent no. I271 220). DMEM medium containing PL (300 μg/mL) was used to examine the effect of migration-promoting potential on human fibroblast cell line or human primary fibroblast cells in a wound healing model in vitro. Medium containing PL (300 μg/mL) demonstrated that the migratory cell numbers of fibroblasts were three times more than that without PL, and mRNA expression of collagen type III was higher than in collagen type I in fibroblasts. It revealed a migration-promoting potential of human fibroblasts in a wound healing model in vitro. The present study found that the migration-promoting effect in PL, which could be a supplement in cell culture. These data suggest PL could be useful for enhancing the wound healing of fibroblasts.

  11. Neutrophil Interactions with Epithelial Expressed ICAM-1 Enhances Intestinal Mucosal Wound Healing

    Science.gov (United States)

    Sumagin, R; Brazil, JC; Nava, P; Nishio, H; Alam, A; Luissint, AC; Weber, DA; Neish, AS; Nusrat, A; Parkos, CA

    2015-01-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. While epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 plays an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing. PMID:26732677

  12. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.

    Science.gov (United States)

    Sumagin, R; Brazil, J C; Nava, P; Nishio, H; Alam, A; Luissint, A C; Weber, D A; Neish, A S; Nusrat, A; Parkos, C A

    2016-09-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.

  13. Wound Healing and Care

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Wound Healing and Care KidsHealth / For Teens / Wound Healing and ... open to heal through natural scar formation. The Healing Process Before healing begins, the body gears up ...

  14. Wound healing potential of adipose tissue stem cell extract

    International Nuclear Information System (INIS)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-01-01

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.

  15. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity.

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-03-01

    Two natural extracts were loaded within fabricated honey, poly(vinyl alcohol), chitosan nanofibers (HPCS) to develop biocompatible antimicrobial nanofibrous wound dressing. The dried aqueous extract of Cleome droserifolia (CE) and Allium sativum aqueous extract (AE) and their combination were loaded within the HPCS nanofibers in the HPCS-CE, HPCS-AE, and HPCS-AE/CE nanofiber mats, respectively. It was observed that the addition of AE resulted in the least fiber diameter (145 nm), whereas the addition of the AE and CE combination resulted in the least swelling ability and the highest weight loss. In vitro antibacterial testing against Staphylococcus aureus, Escherichia coli, Methicillin-resistant S. aureus (MRSA), and multidrug-resistant Pseudomonas aeruginosa was performed in comparison with the commercial dressing AquacelAg and revealed that the HPCS-AE and HPCS-AE/CE nanofiber mats allowed complete inhibition of S. aureus and the HPCS-AE/CE exhibited mild antibacterial activity against MRSA. A preliminary in vivo study revealed that the developed nanofiber mats enhanced the wound healing process as compared to the untreated control as proved by the enhanced wound closure rates in mice and by the histological examination of the wounds. Moreover, comparison with the commercial dressing Aquacel Ag, the HPCS, and HPCS-AE/CE demonstrated similar effects on the wound healing process, whereas the HPCS/AE allowed an enhanced wound closure rate. Cell culture studies proved the biocompatibility of the developed nanofiber mats in comparison with the commercial Aquacel Ag, which exhibited noticeable cytotoxicity. The developed natural nanofiber mats hold potential as promising biocompatible antibacterial wound dressing.

  16. Factors Affecting Wound Healing

    Science.gov (United States)

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  17. Treatment with solubilized Silk-Derived Protein (SDP enhances rabbit corneal epithelial wound healing.

    Directory of Open Access Journals (Sweden)

    Waleed Abdel-Naby

    Full Text Available There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.

  18. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. EPDIM peptide-immobilized porous chitosan beads for enhanced wound healing: Preparation, characterizations and in vitro evaluation

    International Nuclear Information System (INIS)

    Bae, Jin Woo; Lee, Joon Hye; Choi, Won Sup; Lee, Dong Sin; Bae, Eun Hee; Park, Ki Dong

    2009-01-01

    EPDIM peptide is known to regulate cellular activities by interacting with α 3 β 1 integrin, which can be contributed to wound healing process. In this study, EPDIM was immobilized onto three-dimensional porous chitosan beads (χtopore) as a scaffold for enhanced wound healing. The significant decrease in contact angle indicates that EPDIM immobilization could lead to the enhanced surface wettability after its immobilization. The immobilized EPDIM was fairly distributed along its surface and the morphology was maintained even after the reaction. The immobilized amount of EPDIM was found to be about 5.68 nmol/mg of χtopore by amino acid analysis. To verify the complete removal of coupling agents after EPDIM immobilization, each coupling agent was quantitatively analyzed by LC-MS. In vitro proliferation rates of both NIH 3T3 and HaCaT showed that EPDIM immobilization onto χtopore could significantly enhance the growth rate of both cells, while the unmodified χtopore did not increase in cell number even after 15 days of culture. Therefore, these results demonstrate that EPDIM peptide-immobilized χtopore can be utilized as an attractive scaffold for enhanced wound healing.

  20. Identification of a transcriptional signature for the wound healing continuum

    OpenAIRE

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  1. MiR-21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement.

    Science.gov (United States)

    Han, Zhaofeng; Chen, Ya; Zhang, Yile; Wei, Aizhou; Zhou, Jian; Li, Qian; Guo, Lili

    2017-10-01

    A number of miRNAs associated with wound repair have been identified and characterized, but the mechanism has not been fully clarified. MiR-21 is one of wound-related lncRNAs, and the study aimed to explore the functional involvement of miR-21 and its concrete mechanism in wound healing. In this study, the rat model of skin wounds was established. The expression of miR-21, PTEN and related molecules of wound tissues or cells was determined by quantitative real-time PCR and Western blot, respectively. The regulatory role of miR-21 on PTEN was examined by luciferase reporter gene assay. Flow cytometry assay was applied to measure cell number changes. MiR-21 was upregulated at 6, 24, 48, 72 h after model establishment, and the increase reached a maximum at 24 h in wound tissues. MMP-9 expression presented the same tread as miR-21 and was significantly enhanced within 6 h of wound formation, and then remained to be increased to the maximum at 24 h. The increase of miR-21 was accompanied by the increase of cell total number and DCs ratio in wound fluids. MiR-21 overexpression significantly improved the healing of skin wounds and increased the ratio of DCs in rats. The results of using FL confirmed that miR-21 overexpression obviously promoted DCs differentiation. Additionally, miR-21 could activate AKT/PI3K signaling pathway via inhibition of PTEN. MiR-21 contributes to wound healing via inhibition of PTEN that activated AKT/PI3K signaling pathway to increase DCs. J. Cell. Biochem. 118: 3511-3519, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Leptin promotes wound healing in the oral mucosa.

    Science.gov (United States)

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  3. Hypoperfusion and Wound Healing: Another Dimension of Wound Assessment.

    Science.gov (United States)

    Smollock, Wendy; Montenegro, Paul; Czenis, Amy; He, Yuan

    2018-02-01

    To examine the correlation between mean arterial pressure (MAP) and wound healing indices and describe an analytical process that can be used accurately and prospectively when evaluating all types of skin ulcerations. A correlational study in a long-term-care facility.Participants (N = 230) were adults residing in a long-term-care facility with an average age of 77.8 years (range, 35-105). Assessment through both an index of wound healing and wound surface area. Signs of wound healing included a reduction of surface area and surface necrosis and increased granulation or epithelialization. Aggregate analyses for all wound locations revealed a positive correlation between the MAP and index of wound healing (r = 0.86, n = 501, P wound healing was noted for all wound locations in this data set when MAP values were 80 mm Hg or less (r = 0.95, n = 141, P wounds and MAP of less than 80 mm Hg yielded a very strong positive correlation. The data indicated that as perfusion decreased, wounds within the sample population declined (r = 0.93, n = 102, P wound healing or worsened wounds. A predictability of wounds stalling or declining related to the MAP was observed, regardless of topical treatment or standard-of-care interventions. Therefore, the data also suggest that remediating states of low perfusion should take precedence in making treatment decisions.

  4. Effects of genistein on early-stage cutaneous wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  5. Enhanced electroscalpel incisional wound healing potential of honey in wistar rats

    Directory of Open Access Journals (Sweden)

    David O. Eyarefe

    2017-12-01

    Full Text Available Electrosurgery reduces surgical bleeding, and delayed wound healing. This study evaluated comparative incisional wound healing potential of honey in wound created with electroscalpel and cold scalpel. The study used twelve (12 adult male albino rats (130 ± 20 g, randomly grouped into Electro-cautery (n = 6 and Cold scalpel (n = 6. Each rat had three full thickness (6 mm diameter skin wounds (a, b and c created on its dorsum with either Electroscalpel (ES or Cold blade scalpel (CS, and treated topically with Silver sulphadiazine (SSD, wound a, untreated (control, wound b and Bee honey (H, wound c. The wounds were evaluated for gross (exudation, edema, hyperemia, contraction, histologic (granulation, angiogenesis, fibroplasia, epithelialization and immunologic healing indices using standard techniques. Data were analyzed with Chi-square, Two-way Analysis of Variance (ANOVA and Duncan Multiple Range tests (DMRT at α = 0.05. Wound hyperemia and edge edema were prominent in the ES group from day 4 to 6 (P = .000. Percentage wound contraction was higher in the CS than ES group from days 5 to 7 (P = .006 and in the CS treated with honey than ES treated with honey from days 7 to 14 (P = .000. Granulation tissue reduced in ES group treated with SSD than in honey and control wounds. Fibroelastic tissue increased in SSD and honey treated wounds of ES group, and higher in honey treated wounds of CS group (P < .05. Fibroplasia was sustained in honey and SSD treated wounds than control. Honey can be applied to electroscalpel surgical wound to facilitate rapid healing during surgical management of tumours having vascular network. Keywords: Incisional methods, Honey, Silver sulphadiazide, Wound management

  6. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  7. Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa.

    Directory of Open Access Journals (Sweden)

    Fernanda Giacomini Bueno

    Full Text Available Wound healing is a complex process that involves several biological events, and a delay in this process may cause economic and social problems for the patient. The search continues for new alternative treatments to aid healing, including the use of herbal medicines. Members of the genus Caesalpinia are used in traditional medicine to treat wounds. The related species Poincianella pluviosa (DC. L.P. Queiroz increases the cell viability of keratinocytes and fibroblasts and stimulates the proliferation of keratinocytes in vitro. The crude extract (CE from bark of P. pluviosa was evaluated in the wound-healing process in vivo, to validate the traditional use and the in vitro activity. Standardized CE was incorporated into a gel and applied on cutaneous wounds (TCEG and compared with the formulation without CE (Control for 4, 7, 10, or 14 days of treatment. The effects of the CE on wound re-epithelialization; cell proliferation; permeation, using photoacoustic spectroscopy (PAS; and proteins, including vascular endothelial growth factor (VEGF, superoxide dismutase 2 (SOD-2 and cyclooxygenase 2 (COX-2 were evaluated. The TCEG stimulated the migration of keratinocytes at day 4 and proliferation on the following days, with a high concentration of cells in metaphase at 7 days. Type I collagen formed more rapidly in the TCEG. PAS showed that the CE had permeated through the skin. TCEG stimulated VEGF at day 4 and SOD-2 and COX-2 at day 7. The results suggest that the CE promoted the regulation of proteins and helped to accelerate the processes involved in healing, promoting early angiogenesis. This led to an increase in the re-epithelialized surface, with significant mitotic activity. Maturation of collagen fibers was also enhanced, which may affect the resistance of the extracellular matrix. PAS indicated a correlation between the rate of diffusion and biological events during the healing process. The CE from P. pluviosa appears promising as an aid in

  8. Far infrared promotes wound healing through activation of Notch1 signaling.

    Science.gov (United States)

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  9. Factors Affecting Wound Healing

    OpenAIRE

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  10. Wound healing potential of adipose tissue stem cell extract.

    Science.gov (United States)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tissue-Engineered Skin Substitute Enhances Wound Healing after Radiation Therapy.

    Science.gov (United States)

    Busra, Mohd Fauzi bin Mh; Chowdhury, Shiplu Roy; bin Ismail, Fuad; bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2016-03-01

    When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. These results indicate that BTESS is the preferred treatment for

  12. Platelet-rich plasma: a biomimetic approach to enhancement of surgical wound healing.

    Science.gov (United States)

    Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Cabrera, Fernando J; Barbosa, Zonia; Medrano Del Rosal, Guillermo; Weiner, Bradley K; Ellsworth, Warren A; Tasciotti, Ennio

    2017-01-01

    Platelets are small anucleate cytoplasmic cell bodies released by megakaryocytes in response to various physiologic triggers. Traditionally thought to be solely involved in the mechanisms of hemostasis, platelets have gained much attention due to their involvement wound healing, immunomodulation, and antiseptic properties. As the field of surgery continues to evolve so does the need for therapies to aid in treating the increasingly complex patients seen. With over 14 million obstetric, musculoskeletal, and urological and gastrointestinal surgeries performed annually, the healing of surgical wounds continues to be of upmost importance to the surgeon and patient. Platelet-rich plasma, or platelet concentrate, has emerged as a possible adjuvant therapy to aid in the healing of surgical wounds and injuries. In this review, we will discuss the wound healing properties of platelet-rich plasma and various surgical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development of a wound healing index for patients with chronic wounds.

    Science.gov (United States)

    Horn, Susan D; Fife, Caroline E; Smout, Randall J; Barrett, Ryan S; Thomson, Brett

    2013-01-01

    Randomized controlled trials in wound care generalize poorly because they exclude patients with significant comorbid conditions. Research using real-world wound care patients is hindered by lack of validated methods to stratify patients according to severity of underlying illnesses. We developed a comprehensive stratification system for patients with wounds that predicts healing likelihood. Complete medical record data on 50,967 wounds from the United States Wound Registry were assigned a clear outcome (healed, amputated, etc.). Factors known to be associated with healing were evaluated using logistic regression models. Significant variables (p healing for each wound type. Some variables predicted significantly in nearly all models: wound size, wound age, number of wounds, evidence of bioburden, tissue type exposed (Wagner grade or stage), being nonambulatory, and requiring hospitalization during the course of care. Variables significant in some models included renal failure, renal transplant, malnutrition, autoimmune disease, and cardiovascular disease. All models validated well when applied to the holdout sample. The "Wound Healing Index" can validly predict likelihood of wound healing among real-world patients and can facilitate comparative effectiveness research to identify patients needing advanced therapeutics. © 2013 by the Wound Healing Society.

  14. Wound Healing in Older Adults.

    Science.gov (United States)

    Gould, Lisa J; Fulton, Ana Tuya

    2016-02-01

    Impaired wound healing in the elderly represents a major clinical problem that is growing as our population ages. Wound healing is affected by age and by co-morbid conditions, particularly diabetes and obesity. This is particularly important in Rhode Island as the state has a very high percentage of vulnerable older adults. A multi- disciplinary approach that incorporates the skills of a comprehensive wound center with specialized nursing, geriatric medicine and palliative care will facilitate rapid wound healing, reduce costs and improve outcomes for our older adults that suffer from 'problem wounds'.

  15. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.

    Science.gov (United States)

    Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.

  16. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications.

    Science.gov (United States)

    Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2016-01-13

    The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.

  17. Molecular pathology of wound healing.

    Science.gov (United States)

    Kondo, Toshikazu; Ishida, Yuko

    2010-12-15

    Skin-wound healing is an orchestrated biological phenomena consisting of three sequential phases, inflammation, proliferation, and maturation. Many biological substances are involved in the process of wound repair, and this short and simplified overview of wound healing can be adopted to determine wound vitality or wound age in forensic medicine. With the development of genetically engineered animals, essential molecules for skin-wound healing have been identified. Especially, cytokines, and growth factors are useful candidates and markers for the determination of wound vitality or age. Moreover, bone marrow-derived progenitor cells would give significant information to wound age determination. In this review article, some interesting observations are presented, possibly contributing to the future practice of forensic pathologists. Copyright © 2010. Published by Elsevier Ireland Ltd.

  18. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  19. PRFM enhance wound healing process in skin graft.

    Science.gov (United States)

    Reksodiputro, Mirta; Widodo, Dini; Bashiruddin, Jenny; Siregar, Nurjati; Malik, Safarina

    2014-12-01

    Facial plastic and reconstructive surgery often used skin graft on defects that cannot be covered primarily by a local flap. However, wound healing using skin graft is slow, most of the time the graft is contractured and the take of graft is not optimal. Platelet rich fibrin matrix (PRFM) is a new generation of concentrated platelets that produce natural fibrin and reported to speed up the healing process. Application of PRFM in the skin graft implants is expected to increase the survival of the graft. We used porcine as animal models to elucidate the effect of autologous PRFM on wound healing in full-thickness (FTSG) and split-thickness (STSG) skin grafts. Survival level of the skin graft was determined by using ImageJ software based on the formation of collagen type 1 and graft take. We observed that the use of PRFM in FTSG and STSG increased type 1 collagen formation. We also found that PRFM addition in STSG gave the best skin graft take. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Three-dimensional wound measurements for monitoring wound healing

    DEFF Research Database (Denmark)

    Bisgaard Jørgensen, Line; Møller Jeppesen, Sune; Halekoh, Ulrich

    Telemedicine is increasingly used for monitoring wound healing. Three-dimensional (3D) measurement methods enable clinicians to assess wound healing with respect to all dimensions. However, the currently available methods are inaccurate, costly or complicated to use. To address these issues, a 3D......-WAM camera was developed. This camera is able to measure wound size (2D area, 3D area, perimeter and volume) and to assess wound characteristics....

  1. Sex hormones and mucosal wound healing.

    Science.gov (United States)

    Engeland, Christopher G; Sabzehei, Bahareh; Marucha, Phillip T

    2009-07-01

    Wound healing studies, which have chiefly examined dermal tissues, have reported a female advantage in healing rates. In contrast, our laboratory recently demonstrated women heal mucosal wounds more slowly than men. We hypothesized sex hormones influence wound healing rates, possibly through their modulating effects on inflammation. This study involved 329 younger subjects aged 18-43 (165 women, 164 men) and 93 older subjects aged 50-88 (60 women, 33 men). A 3.5mm diameter wound was created on the hard oral palate and videographed daily to assess wound closure. Blood collected at the time of wounding was used to assess circulating testosterone, progesterone and estradiol levels, and in vitro cytokine production in response to LPS. No strong associations were observed between healing times and estradiol or progesterone levels. However, in younger subjects, lower testosterone levels related to faster wound closure. Conversely, in older women higher testosterone levels related to (1) lower inflammatory responses; and (2) faster healing times. No such relationships were seen in older men, or in women taking oral contraceptives or hormone replacement therapy [HRT]. Older women (50-54 years) not yet experiencing menopause healed similarly to younger women and dissimilarly from age-matched post-menopausal women. This suggests that the deleterious effects of aging on wound healing occur secondary to the effects of menopause. Supporting this, there was evidence in post-menopausal women that HRT augmented wound closure. Overall, this study suggests that human mucosal healing rates are modulated by testosterone levels. Based upon when between-group differences were observed, testosterone may impact upon the proliferative phase of healing which involves immune processes such as re-epithelialization and angiogenesis.

  2. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  3. Wound healing in animal models: review article

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2017-10-01

    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  4. A Chitosan—Based Liposome Formulation Enhances the In Vitro Wound Healing Efficacy of Substance P Neuropeptide

    Directory of Open Access Journals (Sweden)

    Tamara Mengoni

    2017-12-01

    Full Text Available Currently, there is considerable interest in developing innovative biodegradable nanoformulations for controlled administration of therapeutic proteins and peptides. Substance P (SP is a neuropeptide of 11 amino acids that belongs to the tachykinins family and it plays an important role in wound healing. However, SP is easily degradable in vivo and has a very short half-life, so the use of chitosan-based nanocarriers could enhance its pharmaceutical properties. In light of the above, the aim of this work was to produce and characterize chitosan-coated liposomes loaded with SP (SP-CH-LP as novel biomaterials with potential application in mucosal wound healing. The loaded system’s biophysical properties were characterized by dynamic light scattering with non-invasive back scattering (DLS-NIBS, mixed mode measurements and phase analysis light scattering (M3-PALS and high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS. Then, the efficacy of the obtained nanoformulations was examined via proof-of-principle experiments using in vitro cell assays. These assays showed an increment on cell motility and proliferation after treatment with free and encapsulated neuropeptides. Additionally, the effect of SP on wound healing was enhanced by the entrapment on CH-LP. Overall, the amenability of chitosan-based nanomaterials to encapsulate peptides and proteins constitutes a promising approach towards potential novel therapies to treat difficult wounds.

  5. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model

    Directory of Open Access Journals (Sweden)

    Mingliang Sun

    2017-01-01

    Full Text Available Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and monocyte chemotactic protein-1 (MCP-1 in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  6. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  7. General concept of wound healing, revisited

    Directory of Open Access Journals (Sweden)

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  8. Beta-Glucan induced immune modulation of wound healing in common carp (Cyprinus carpio)

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera

    by hydrogen peroxide. To determine the effect of hydrogen peroxide release in fibroblast proliferation during wound healing, scratch-wounded CCB fibroblasts were stimulated with different doses of hydrogen peroxide and the wound closure was followed by image analysis. Fibroblast stimulation with low doses...... suitable for tissue regeneration or oxidative stress. To conclude, β-glucan treatment enhanced wound closure in carp, probably due to the enhancement of a localized inflammatory response. The wound healing modulatory effect of β-glucan seems to be orchestrated by the immune system, since no direct effect...

  9. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    Science.gov (United States)

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  10. Exercise accelerates wound healing among healthy older adults: a preliminary investigation.

    Science.gov (United States)

    Emery, Charles F; Kiecolt-Glaser, Janice K; Glaser, Ronald; Malarkey, William B; Frid, David J

    2005-11-01

    Older adults are likely to experience delayed rates of wound healing, impaired neuroendocrine responsiveness, and increased daily stress. Exercise activity has been shown to have a positive effect on physiological functioning and psychological functioning among older adults. This study evaluated the effect of a 3-month exercise program on wound healing, neuroendocrine function, and perceived stress among healthy older adults. Twenty-eight healthy older adults (mean age 61.0 +/- 5.5 years) were assigned randomly to an exercise activity group (n = 13) or to a nonexercise control group (n = 15). One month following baseline randomization, after exercise participants had acclimated to the exercise routine, all participants underwent an experimental wound procedure. Wounds were measured 3 times per week until healed to calculate rate of wound healing. All participants completed assessments of exercise endurance, salivary cortisol, and self-reported stress prior to randomization and at the conclusion of the intervention. Exercise participants achieved significant improvements in cardiorespiratory fitness, as reflected by increased oxygen consumption (VO(2)max) and exercise duration. Wound healing occurred at a significantly faster rate in the exercise group [mean = 29.2 (9.0) days] than in the nonexercise group [38.9 (7.4) days; p =.012]. Exercise participants also experienced increased cortisol secretion during stress testing following the intervention. Group differences in wound healing and neuroendocrine responsiveness were found despite low levels of self-reported stress. A relatively short-term exercise intervention is associated with enhanced rates of wound healing among healthy older adults. Thus, exercise activity may be an important component of health care to promote wound healing.

  11. Axolotl cells and tissues enhances cutaneous wound healing in mice

    OpenAIRE

    DEMIRCAN, Turan; KESKIN, Ilknur; GUNAL, Yalcin; ILHAN, Ayse Elif; KOLBASI, Bircan; OZTURK, Gurkan

    2017-01-01

    Adult mammalian skin wound repair is defective due to loss of the regulation in balancing the complete epithelial regeneration and excessive connective tissue production, and this repair process commonly results in scar tissue formation. However, unlike mammals, adult salamanders repair the wounds by regeneration compared to scarring. To elucidate the healing capability of a salamander, Axolotl, in a different species, here we addressed this question by treating the wounds in mice with Axolot...

  12. Progress in corneal wound healing

    Science.gov (United States)

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  13. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Directory of Open Access Journals (Sweden)

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  14. Effect of astaxanthin on cutaneous wound healing.

    Science.gov (United States)

    Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo

    2017-01-01

    Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.

  15. Bioimpedance measurement based evaluation of wound healing.

    Science.gov (United States)

    Kekonen, Atte; Bergelin, Mikael; Eriksson, Jan-Erik; Vaalasti, Annikki; Ylänen, Heimo; Viik, Jari

    2017-06-22

    Our group has developed a bipolar bioimpedance measurement-based method for determining the state of wound healing. The objective of this study was to assess the capability of the method. To assess the performance of the method, we arranged a follow-up study of four acute wounds. The wounds were measured using the method and photographed throughout the healing process. Initially the bioimpedance of the wounds was significantly lower than the impedance of the undamaged skin, used as a baseline. Gradually, as healing progressed, the wound impedance increased and finally reached the impedance of the undamaged skin. The clinical appearance of the wounds examined in this study corresponded well with the parameters derived from the bioimpedance data. Hard-to-heal wounds are a significant and growing socioeconomic burden, especially in the developed countries, due to aging populations and to the increasing prevalence of various lifestyle related diseases. The assessment and the monitoring of chronic wounds are mainly based on visual inspection by medical professionals. The dressings covering the wound must be removed before assessment; this may disturb the wound healing process and significantly increases the work effort of the medical staff. There is a need for an objective and quantitative method for determining the status of a wound without removing the wound dressings. This study provided evidence of the capability of the bioimpedance based method for assessing the wound status. In the future measurements with the method should be extended to concern hard-to-heal wounds.

  16. Stem Cells for Cutaneous Wound Healing.

    Science.gov (United States)

    Kirby, Giles T S; Mills, Stuart J; Cowin, Allison J; Smith, Louise E

    2015-01-01

    Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  17. Stem Cells for Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Giles T. S. Kirby

    2015-01-01

    Full Text Available Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  18. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

    Directory of Open Access Journals (Sweden)

    Paulina Krzyszczyk

    2018-05-01

    Full Text Available Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes to anti-inflammatory (M2-like phenotypes. Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1 expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds.

  19. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes

    Science.gov (United States)

    Krzyszczyk, Paulina; Schloss, Rene; Palmer, Andre; Berthiaume, François

    2018-01-01

    Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds. PMID:29765329

  20. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    Science.gov (United States)

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Effect of astaxanthin on cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Meephansan J

    2017-07-01

    Full Text Available Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing. Keywords: astaxanthin, wound healing, reactive oxygen species, antioxidant 

  2. News in wound healing and management

    DEFF Research Database (Denmark)

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    -TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...... is still at an exploratory level. Organizing models for optimal wound management are constantly being developed and refined. SUMMARY: Recent knowledge on the importance of new dressing materials containing active substances, new treatments for atypical wounds, influencing factors on the healing process...

  3. Conducted healing to treat large skin wounds.

    Science.gov (United States)

    Salgado, M I; Petroianu, A; Alberti, L R; Burgarelli, G L; Barbosa, A J A

    2013-01-01

    Improvement of the healing process to provide better aesthetical and functional results continues to be a surgical challenge. This study compared the treatment of skin wounds by means of conducted healing (an original method of treatment by secondary healing) and by the use of autogenous skin grafts. Two skin segments, one on each side of the dorsum,were removed from 17 rabbits. The side that served as a graft donor site was left open as to undergo conducted healing (A)and was submitted only to debridement and local care with dressings. The skin removed from the side mentioned above was implanted as a graft (B) to cover the wound on the other side. Thus, each animal received the two types of treatment on its dorsum (A and B). The rabbits were divided into two groups according to the size of the wounds: Group 1 - A and B (4 cm2)and Group 2 - A and B (25 cm2). The healing time was 19 days for Group 1 and 35 days for Group 2. The final macro- and microscopic aspects of the healing process were analysed comparatively among all subgroups. The presence of inflammatory cells, epidermal cysts and of giant cells was evaluated. No macro- or microscopic differences were observed while comparing the wounds that underwent conducted healing and those in which grafting was employed, although the wounds submitted to conducted healing healed more rapidly. Conducted wound healing was effective for the treatment of skin wounds. Celsius.

  4. Dual function of active constituents from bark of Ficus racemosa L in wound healing.

    Science.gov (United States)

    Bopage, Nisansala Swarnamali; Kamal Bandara Gunaherath, G M; Jayawardena, Kithsiri Hector; Wijeyaratne, Sushila Chandrani; Abeysekera, Ajita Mahendra; Somaratne, Seneviratne

    2018-01-25

    Different parts including the latex of Ficus racemosa L. has been used as a medicine for wound healing in the Ayurveda and in the indigenous system of medicine in Sri Lanka. This plant has been evaluated for its wound healing potential using animal models. The aim of this study was to obtain an insight into the wound healing process and identify the potential wound healing active substance/s present in F. racemosa L. bark using scratch wound assay (SWA) as the in-vitro assay method. Stem bark extracts of F. racemosa were evaluated using scratch wound assay (SWA) on Baby Hamster Kidney (BHK 21) and Madin-Darby Canine Kidney (MDCK) cell lines and Kirby Bauer disc diffusion assay on common bacteria and fungi for cell migration enhancing ability and antimicrobial activity respectively. Dichloromethane and hexanes extracts which showed cell migration enhancement activity on SWA were subjected to bioactivity directed fractionation using column chromatography followed by preparative thin layer chromatography to identify the compounds responsible for the cell migration enhancement activity. Dichloromethane and hexanes extracts showed cell migration enhancement activity on both cell lines, while EtOAc and MeOH extracts showed antibacterial activity against Staphylococcus and Bacillus species and antifungal activity against Saccharomyces spp. and Candida albicans. Lupeol (1) and β-sitosterol (2) were isolated as the potential wound healing active compounds which exhibited significant cell migration enhancement activity on BHK 21 and MDCK cell lines (> 80%) in par with the positive control, asiaticoside at a concentration of 25 μM. The optimum concentration of each compound required for the maximum wound healing has been determined as 30 μM and 35 μM for 1 and 2 respectively on both cell lines. It is also established that lupeol acetate (3) isolated from the hexanes extract act as a pro-drug by undergoing hydrolysis into lupeol in the vicinity of cells. Different

  5. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds

    Science.gov (United States)

    Shao, Pei-Lin; Liao, Jiunn-Der; Wong, Tak-Wah; Wang, Yi-Cheng; Leu, Steve; Yip, Hon-Kan

    2016-01-01

    Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically. PMID:27248979

  6. Effect of Andrographis paniculata leaf extract on wound healing in rats.

    Science.gov (United States)

    Al-Bayaty, Fouad Hussain; Abdulla, Mahmood Ameen; Abu Hassan, Mohamed Ibrahim; Ali, Hapipah Mohd

    2012-01-01

    This work was carried out to study the effect of topical application of Andrographis paniculata on the rate of wound enclosure and its histological features. A wound was created in four groups of rat in posterior neck region. Blank placebo was applied topically to the wounds of Group 1. Groups 2 and 3 were dressed with placebo containing 5% and 10% extracts of A. paniculata, respectively. Intrasite gel was applied topically to the wounds of Group 4. Macroscopical examination revealed that the rate of wound healing was significantly accelerated in the wound dressed with A. paniculata extract compared to the blank placebo. The wounds dressed with 10% extract or Intrasite gel healed earlier compared to the wounds dressed with placebo containing 5% A. paniculata extract. Histologically, wounds dressed with A. paniculata extracts showed markedly less scar width and contained large amounts of fibroblast proliferation. More collagen and less angiogenesis with absence of inflammatory cells were seen for wounds dressed with 10% A. paniculata compared to the blank placebo. Conclusion, A. paniculata extracts significantly enhanced rate of wound healing in rats.

  7. Modeling of anisotropic wound healing

    Science.gov (United States)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  8. Lumican as a multivalent effector in wound healing.

    Science.gov (United States)

    Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane

    2018-03-01

    Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.

  9. Multifunctional activities of KSLW synthetic antimicrobial decapeptide: Implications for wound healing

    Science.gov (United States)

    Williams, Richard Leroy

    migration and oxidative burst. These data suggest KSLW enhances bacterial clearance and promotes proinflammatory activity during early wound healing in stressed mice. Peptide delivery in Pluronic-F68 demonstrated increased substantivity, with faster wound closure, compared to other delivery systems. In addition to its antimicrobial activity, KSLW was shown to enhance neutrophil chemotaxis and sustain cell viability by inhibition of oxidative burst responses. Taken together, the cationic peptide may be implicated in the management of infection in different systems demonstrating impaired healing, including diabetes, age, hormone-imbalance, and bum models.

  10. Honey: an immunomodulator in wound healing.

    Science.gov (United States)

    Majtan, Juraj

    2014-01-01

    Honey is a popular natural product that is used in the treatment of burns and a broad spectrum of injuries, in particular chronic wounds. The antibacterial potential of honey has been considered the exclusive criterion for its wound healing properties. The antibacterial activity of honey has recently been fully characterized in medical-grade honeys. Recently, the multifunctional immunomodulatory properties of honey have attracted much attention. The aim of this review is to provide closer insight into the potential immunomodulatory effects of honey in wound healing. Honey and its components are able to either stimulate or inhibit the release of certain cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) from human monocytes and macrophages, depending on wound condition. Similarly, honey seems to either reduce or activate the production of reactive oxygen species from neutrophils, also depending on the wound microenvironment. The honey-induced activation of both types of immune cells could promote debridement of a wound and speed up the repair process. Similarly, human keratinocytes, fibroblasts, and endothelial cell responses (e.g., cell migration and proliferation, collagen matrix production, chemotaxis) are positively affected in the presence of honey; thus, honey may accelerate reepithelization and wound closure. The immunomodulatory activity of honey is highly complex because of the involvement of multiple quantitatively variable compounds among honeys of different origins. The identification of these individual compounds and their contributions to wound healing is crucial for a better understanding of the mechanisms behind honey-mediated healing of chronic wounds. © 2014 by the Wound Healing Society.

  11. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model.

    Science.gov (United States)

    Yu, Mi; Lee, Jun Young

    2017-02-01

    Polydeoxyribonucleotide (PDRN) is an active compound that can promote wound healing. PDRN stimulates wound healing by enhancing angiogenesis and increasing fibroblast growth rates. Laser skin resurfacing is a popular cosmetic procedure for skin rejuvenation. Despite excellent improvement of photo-damaged skin and acne scarring, it is accompanied with drawbacks, such as prolonged erythema and crusting. This study was designed to assess the effect of PDRN on wounds induced by fractional laser resurfacing. Twelve male rats aged 8 weeks were randomly assigned to the PDRN treatment group and the control group. Wounds were induced using a fractional ablative CO 2 laser. The treatment group received daily injections of PDRN and the control group received injections of the vehicle. Wound healing assessed by clinical features and histopathologic findings. The process of wound healing was faster in the treatment group than in the control group. In the histopathological examination, the granulation tissue thickness score of the treatment group was significantly higher than that of the control group. Results of immunohistochemical staining showed a marked increase of VEGF-positive cells and PECAM-1/CD31-positive microvessels in the treatment group. PDRN may be a beneficial option to promote wound healing after laser treatment.

  12. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Schmidt, Jacob Günther; Andersen, Elisabeth Wreford; Ersbøll, Bjarne Kjær

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addit......We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post......-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3......, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least...

  13. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (phealing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (pdiabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  14. Wound healing properties of ointment formulations of Ocimum ...

    African Journals Online (AJOL)

    present work evaluated the phyto-constituents and wound healing properties of ointments formulated with the n-hexane crude bark extract of a plant used folklorically in wound healing, Ocimum gratissimum. The excision wound model was employed in the wound healing studies. The air-dried, size-reduced barks were ...

  15. Antioxidant Sol-Gel Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Lee, Yen-Hsien; Chang, Jung-Jhih; Chien, Chiang-Ting; Yang, Ming-Chien; Chien, Hsiung-Fei

    2012-01-01

    We examined the effects of vitamin C in Pluronic F127 on diabetic wound healing. Full-thickness excision skin wounds were made in normal and diabetic Wistar rats to evaluate the effect of saline, saline plus vitamin C (antioxidant sol), Pluronic F127, or Pluronic F127 plus vitamin C (antioxidant sol-gel). The rate of wound contraction, the levels of epidermal and dermal maturation, collagen synthesis, and apoptosis production in the wound tissue were determined. In vitro data showed that after 6 hours of air exposure, the order of the scavenging abilities for HOCl, H2O2, and O2  − was antioxidant sol-gel > antioxidant saline > Pluronic F127 = saline. After 7 and 14 days of wound injury, the antioxidant sol-gel improved wound healing significantly by accelerated epidermal and dermal maturation, an increase in collagen content, and a decrease in apoptosis formation. However, the wounds of all treatments healed mostly at 3 weeks. Vitamin C in Pluronic F127 hastened cutaneous wound healing by its antioxidant and antiapoptotic mechanisms through a good drug delivery system. This study showed that Pluronic F127 plus vitamin C could potentially be employed as a novel wound-healing enhancer. PMID:22919368

  16. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Elements affecting wound healing time: An evidence based analysis.

    Science.gov (United States)

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society. © 2015 by the Wound Healing Society.

  18. [Specificities in children wound healing].

    Science.gov (United States)

    Sanchez, J; Antonicelli, F; Tuton, D; Mazouz Dorval, S; François, C

    2016-10-01

    Children have specific characteristics of wound healing. The aim of this study was to describe the specific clinical characteristics of wounds healing in children and to present the current knowledge on the specific mechanisms with regard to infant age. The tissue insult or injury in fetus can heal without scar, mainly due to reduced granulation tissue associated to diminished or even no inflammatory phase, modified extracellular matrix such as the concentration of hyaluronic acid in amniotic liquid, expression and arrangement of collagen and tenascin. Thickness of children skin is a serious negative factor in case of trauma, whereas poor co-morbidities and efficient growth tissue mechanisms are beneficial to good evolution, even in cases of extensive damage and loss of tissue. The subsequent tissue mechanical forces, wound healing during childhood, spanning from the age of 2 until the end of puberty, is associated with more hypertrophic scars, both in duration and in intensity. Consequently, unnecessary surgery has to be avoided during this period when possible, and children with abnormal or pathologic wound healing should benefit from complementary treatments (hydration, massage, brace, silicone, hydrotherapy…), which represent efficient factors to minimize tissue scarring. After wound healing, the growth body rate can be responsible for specific complications, such as contractures, alopecia, and scar intussusceptions. Its evolutionary character implies the need of an attentive follow-up until adult age. Psychologic repercussions, as a consequence of pathologic scars, must be prevented and investigated by the surgeon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  20. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  1. Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing

    Science.gov (United States)

    Felgueiras, H. P.; Amorim, M. T. P.

    2017-10-01

    Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.

  2. Effect of aging on wound healing: current concepts.

    Science.gov (United States)

    Pittman, Joyce

    2007-01-01

    The population is aging, and advanced age is commonly identified as a risk factor for delayed wound healing. Therefore, it is important for WOC nurses to be knowledgeable about how aging affects the wound healing and repair process, and strategies they can use to promote healing in the elderly population. Impaired wound healing in the aged is due partly to comorbidities common among the elderly, but evidence also suggests that inherent differences in cellular structure and function may impair tissue repair and regeneration as well. This article will address the effect of aging on wound healing, with a particular focus on processes of cellular senescence and related factors hypothesized to result in slowed or impaired wound healing in the elderly.

  3. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Science.gov (United States)

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  4. Low level diode laser accelerates wound healing.

    Science.gov (United States)

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  5. Effects of hyperbaric oxygen therapy in enhancing expressions of e-NOS, TNF-α and VEGF in wound healing

    Science.gov (United States)

    Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo

    2017-05-01

    Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO

  6. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  7. Effect of calorie restriction and refeeding on skin wound healing in the rat.

    Science.gov (United States)

    Hunt, Nicole D; Li, Garrick D; Zhu, Min; Miller, Marshall; Levette, Andrew; Chachich, Mark E; Spangler, Edward L; Allard, Joanne S; Hyun, Dong-Hoon; Ingram, Donald K; de Cabo, Rafael

    2012-12-01

    Calorie restriction (CR) is a reliable anti-aging intervention that attenuates the onset of a number of age-related diseases, reduces oxidative damage, and maintains function during aging. In the current study, we assessed the effects of CR and other feeding regimens on wound healing in 7-month-old Fischer-344 rats from a larger cohort of rats that had been fed either ad libitum (AL) or 40% calorie restricted based on AL consumption. Rats were assigned to one of three diet groups that received three skin punch wounds along the dorsal interscapular region (12-mm diameter near the front limbs) of the back as follows: (1) CR (n = 8) were wounded and maintained on CR until they healed, (2) AL (n = 5) were wounded and maintained on AL until wound closure was completed, and (3) CR rats were refed (RF, n = 9) AL for 48 h prior to wounding and maintained on AL until they healed. We observed that young rats on CR healed more slowly while CR rats refed for 48 h prior to wounding healed as fast as AL fed rats, similar to a study reported in aged CR and RF mice (Reed et al. 1996). Our data suggest that CR subjects, regardless of age, fail to heal well and that provision of increased nutrition to CR subjects prior to wounding enhances the healing process.

  8. Review of animal models used to study effects of bee products on wound healing: findings and applications

    Directory of Open Access Journals (Sweden)

    Hananeh Wael M.

    2015-09-01

    Full Text Available Non-healing wounds are associated with high morbidity and might greatly impact a patient’s well-being and economic status. For many years, scientific research has focused on developing and testing several natural and synthetic materials that enhance the rate of wound healing or eliminate healing complications. Honey has been used for thousands of years as a traditional remedy for many ailments. Recently, honey has reemerged as a promising wound care product especially for infected wounds and for wounds in diabetic patients. In addition to its proposed potent broad-spectrum antibacterial properties, honey has been claimed to promote wound healing by reducing wound hyperaemia, oedema, and exudate, and by stimulating angiogenesis, granulation tissue formation and epithelialisation. Several animal models, including large animals, dogs and cats, and different species of laboratory animals have been used to investigate the efficacy and safety of various natural and synthetic agents for wound healing enhancement. Interpreting the results obtained by these studies is, however, rather difficult and usually hampered by many limiting factors including great variation in types and origins of honey, the type of animal species used as models, the type of wounds, the number of animals, the number and type of controls, and variation in treatment protocols. In this article, we provide a comprehensive review of the most recent findings and applications of published experimental and clinical trials using honey as an agent for wound healing enhancement in different animal models.

  9. Loss of the Desmosomal Component Perp Impairs Wound Healing In Vivo

    Directory of Open Access Journals (Sweden)

    Veronica G. Beaudry

    2010-01-01

    Full Text Available Epithelial wound closure is a complex biological process that relies on the concerted action of activated keratinocytes and dermal fibroblasts to resurface and close the exposed wound. Modulation of cell-cell adhesion junctions is thought to facilitate cellular proliferation and migration of keratinocytes across the wound. In particular, desmosomes, adhesion complexes critical for maintaining epithelial integrity, are downregulated at the wound edge. It is unclear, however, how compromised desmosomal adhesion would affect wound reepithelialization, given the need for a delicate balance between downmodulating adhesive strength to permit changes in cellular morphology and maintaining adhesion to allow coordinated migration of keratinocyte sheets. Here, we explore the contribution of desmosomal adhesion to wound healing using mice deficient for the desmosomal component Perp. We find that Perp conditional knockout mice display delayed wound healing relative to controls. Furthermore, we determine that while loss of Perp compromises cell-cell adhesion, it does not impair keratinocyte proliferation and actually enhances keratinocyte migration in in vitro assays. Thus, Perp's role in promoting cell adhesion is essential for wound closure. Together, these studies suggest a role for desmosomal adhesion in efficient wound healing.

  10. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria.

    Science.gov (United States)

    Vågesjö, Evelina; Öhnstedt, Emelie; Mortier, Anneleen; Lofton, Hava; Huss, Fredrik; Proost, Paul; Roos, Stefan; Phillipson, Mia

    2018-02-20

    Impaired wound closure is a growing medical problem associated with metabolic diseases and aging. Immune cells play important roles in wound healing by following instructions from the microenvironment. Here, we developed a technology to bioengineer the wound microenvironment and enhance healing abilities of the immune cells. This resulted in strongly accelerated wound healing and was achieved by transforming Lactobacilli with a plasmid encoding CXCL12. CXCL12-delivering bacteria administrated topically to wounds in mice efficiently enhanced wound closure by increasing proliferation of dermal cells and macrophages, and led to increased TGF-β expression in macrophages. Bacteria-produced lactic acid reduced the local pH, which inhibited the peptidase CD26 and consequently enhanced the availability of bioactive CXCL12. Importantly, treatment with CXCL12-delivering Lactobacilli also improved wound closure in mice with hyperglycemia or peripheral ischemia, conditions associated with chronic wounds, and in a human skin wound model. Further, initial safety studies demonstrated that the topically applied transformed bacteria exerted effects restricted to the wound, as neither bacteria nor the chemokine produced could be detected in systemic circulation. Development of drugs accelerating wound healing is limited by the proteolytic nature of wounds. Our technology overcomes this by on-site chemokine production and reduced degradation, which together ensure prolonged chemokine bioavailability that instructed local immune cells and enhanced wound healing. Copyright © 2018 the Author(s). Published by PNAS.

  11. Atrial Natriuretic Peptide Accelerates Human Endothelial Progenitor Cell-Stimulated Cutaneous Wound Healing and Angiogenesis.

    Science.gov (United States)

    Lee, Tae Wook; Kwon, Yang Woo; Park, Gyu Tae; Do, Eun Kyoung; Yoon, Jung Won; Kim, Seung-Chul; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jae Ho

    2018-05-26

    Atrial natriuretic peptide (ANP) is a powerful vasodilating peptide secreted by cardiac muscle cells, and endothelial progenitor cells (EPCs) have been reported to stimulate cutaneous wound healing by mediating angiogenesis. To determine whether ANP can promote the EPC-mediated repair of injured tissues, we examined the effects of ANP on the angiogenic properties of EPCs and on cutaneous wound healing. In vitro, ANP treatment enhanced the migration, proliferation, and endothelial tube-forming abilities of EPCs. Furthermore, small interfering RNA-mediated silencing of natriuretic peptide receptor-1, which is a receptor for ANP, abrogated ANP-induced migration, tube formation, and proliferation of EPCs. In a murine cutaneous wound model, administration of either ANP or EPCs had no significant effect on cutaneous wound healing or angiogenesis in vivo, whereas the co-administration of ANP and EPCs synergistically potentiated wound healing and angiogenesis. In addition, ANP promoted the survival and incorporation of transplanted EPCs into newly formed blood vessels in wounds. These results suggest ANP accelerates EPC-mediated cutaneous wound healing by promoting the angiogenic properties and survival of transplanted EPCs. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  12. Adenosine Receptors and Wound Healing

    Directory of Open Access Journals (Sweden)

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  13. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  14. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; phealing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  15. Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film.

    Science.gov (United States)

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2017-05-01

    Curcumin is one of promising agents to accelerate the wound-healing process. However, the efficacy of curcumin is limited due to its poor water solubility and stability. To enhance the properties of curcumin, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CyD) can be used through complexation. Recently, we revealed that sacran has the potential to form a hydrogel film (HGF) as a wound dressing material. Therefore, in the present study, we investigated the wound healing ability of curcumin/HP-γ-CyD (Cur/HP-γ-CyD) complex in sacran-based HGF (Sac-HGF). We prepared the Cur/HP-γ-CyD complex in Sac-HGF without surface roughness. Additionally, the amorphous form in the Cur/HP-γ-CyD complex in Sac-HGF were observed. In contrast, the curcumin in Sac-HGF and curcumin/HP-γ-CyD physical mixture in Sac-HGF formed inhomogeneous films due to crystallization of curcumin. Furthermore, HP-γ-CyD played an important role to increase the elastic modulus of the Sac-HGF with high re-swelling ability. The Cur/HP-γ-CyD complex in Sac-HGF maintained antioxidant properties of curcumin. Curcumin was gradually released from the HP-γ-CyD complex in Sac-HGF. Notably, the Cur/HP-γ-CyD complex in Sac-HGF provided the highest wound healing ability in hairless mice. These results suggest that the Cur/HP-γ-CyD complex in Sac-HGF has the potential for use as a new transdermal therapeutic system to promote the wound-healing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Wound healing in pre-tibial injuries--an observation study.

    Science.gov (United States)

    McClelland, Heather M; Stephenson, John; Ousey, Karen J; Gillibrand, Warren P; Underwood, Paul

    2012-06-01

    Pre-tibial lacerations are complex wounds affecting a primarily aged population, with poor healing and a potentially significant impact on social well-being. Management of these wounds has changed little in 20 years, despite significant advances in wound care. A retrospective observational study was undertaken to observe current wound care practice and to assess the effect of various medical factors on wound healing time on 24 elderly patients throughout their wound journey. Wound length was found to be substantively and significantly associated with wound healing time, with a reduction in instantaneous healing rate of about 30% for every increase of 1 cm in wound length. Hence, longer wounds are associated with longer wound healing times. Prescription of several categories of drugs, including those for ischaemic heart disease (IHD), hypertension, respiratory disease or asthma; and the age of the patient were not significantly associated with wound healing times, although substantive significance could be inferred in the case of prescription for IHD and asthma. Despite the small sample size, this study identified a clear association between healing and length of wound. Neither the comorbidities nor prescriptions explored showed any significant association although some seem to be more prevalent in this patient group. The study also highlighted other issues that require further exploration including the social and economic impact of these wounds. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  17. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing.

    Science.gov (United States)

    Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong

    2018-03-15

    Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of

  18. Mast Cells Regulate Wound Healing in Diabetes.

    Science.gov (United States)

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Evaluation of Cynodon dactylon for wound healing activity.

    Science.gov (United States)

    Biswas, Tuhin Kanti; Pandit, Srikanta; Chakrabarti, Shrabana; Banerjee, Saheli; Poyra, Nandini; Seal, Tapan

    2017-02-02

    Research in the field of wound healing is very recent. The concept of wound healing is changing from day to day. Ayurveda is the richest source of plant drugs for management of wounds and Cynodon dactylon L. is one such. The plant is used as hemostatic and wound healing agent from ethnopharmacological point of view. Aim of the present study is scientific validation of the plant for wound healing activity in detail. Aqueous extract of the plant was prepared and phytochemical constituents were detected by HPLC analysis. Acute and dermatological toxicity study of the extract was performed. Pharmacological testing of 15% ointment (w/w) of the extract with respect to placebo control and standard comparator framycetin were done on full thickness punch wound in Wister rats and effects were evaluated based on parameters like wound contraction size (mm 2 ), tensile strength (g); tissue DNA, RNA, protein, hydroxyproline and histological examination. The ointment was applied on selected clinical cases of chronic and complicated wounds and efficacy was evaluated on basis of scoring on granulation, epithelialization, vascularity as well as routine hematological investigations. Significant results (pCynodon dactylon explores its potential wound healing activity in animal model and subsequent feasibility in human subjects. Phenolic acids and flavonoids present in c. dactylon supports its wound healing property for its anti-oxidative activity that are responsible for collagenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. [Wound healing in the elderly].

    Science.gov (United States)

    Eming, S A; Wlaschek, M; Scharffetter-Kochanek, K

    2016-02-01

    Restoration of tissue integrity is essential for host defense and protection of the organism. The efficacy and quality of skin repair varies significantly over a person's lifetime. Whereas prenatal wound healing is characterized by regeneration and scarless healing, scarring, fibrosis, and loss of function are features of postnatal repair. In fact, aging is the prominent risk factor for chronic wounds, skin fragility, infections, comorbidities, and decreased quality of life. Current strategies for restoration of tissue integrity and wound therapy are not sufficient and require further investigation of the underlying pathomechanisms and the development of causal-based concepts.

  1. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cutaneous wound healing: Current concepts and advances in wound care

    Directory of Open Access Journals (Sweden)

    Kenneth C Klein

    2014-01-01

    Full Text Available A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT, as used at our institution (CAMC, and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society may vary widely from country to country and payment system. [3] In the USA, CMS (Centers for Medicare and Medicaid Services approved indications for HBOT vary from that of the UHMS for logistical reasons. [1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise.

  3. Cutaneous wound healing: Current concepts and advances in wound care

    Science.gov (United States)

    Klein, Kenneth C; Guha, Somes Chandra

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care.[1] It is a snapshot of a patient's total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors.[2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT), as used at our institution (CAMC), and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society) may vary widely from country to country and payment system.[3] In the USA, CMS (Centers for Medicare and Medicaid Services) approved indications for HBOT vary from that of the UHMS for logistical reasons.[1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise. PMID:25593414

  4. Complements and the Wound Healing Cascade: An Updated Review

    Directory of Open Access Journals (Sweden)

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  5. Preclinical Evaluation of Tegaderm™ Supported Nanofibrous Wound Matrix Dressing on Porcine Wound Healing Model.

    Science.gov (United States)

    Ong, Chee Tian; Zhang, Yanzhong; Lim, Raymond; Samsonraj, Rebekah; Masilamani, Jeyakumar; Phan, Tran Hong Ha; Ramakrishna, Seeram; Lim, Ivor; Kee, Irene; Fahamy, Mohammad; Templonuevo, Vilma; Lim, Chwee Teck; Phan, Toan Thang

    2015-02-01

    Objective: Nanofibers for tissue scaffolding and wound dressings hold great potential in realizing enhanced healing of wounds in comparison with conventional counterparts. Previously, we demonstrated good fibroblast adherence and growth on a newly developed scaffold, Tegaderm™-Nanofiber (TG-NF), made from poly ɛ-caprolactone (PCL)/gelatin nanofibers electrospun onto Tegaderm (TG). The purpose of this study is to evaluate the performance and safety of TG-NF dressings in partial-thickness wound in a pig healing model. Approach: To evaluate the rate of reepithelialization, control TG, human dermal fibroblast-seeded TG-NF(+) and -unseeded TG-NF(-) were randomly dressed onto 80 partial-thickness burns created on four female and four male pigs. Wound inspections and dressings were done after burns on day 7, 14, 21, and 28. On day 28, full-thickness biopsies were taken for histopathological evaluation by Masson-Trichrome staining for collagen and hematoxylin-eosin staining for cell counting. Results: No infection and severe inflammation were recorded. Wounds treated with TG-NF(+) reepithelialized significantly faster than TG-NF(-) and control. Wound site inflammatory responses to study groups were similar as total cell counts on granulation tissues show no significant differences. Most of the wounds completely reepithelialized by day 28, except for two wounds in control and TG-NF(-). A higher collagen coverage was also recorded in the granulation tissues treated with TG-NF(+). Innovation and Conclusion: With better reepithelialization achieved by TG-NF(+) and similar rates of wound closure by TG-NF(-) and control, and the absence of elevated inflammatory responses to TG-NF constructs, TG-NF constructs are safe and demonstrated good healing potentials that are comparable to Tegaderm.

  6. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  7. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  8. Nanotoxicity in Systemic Circulation and Wound Healing.

    Science.gov (United States)

    Bakshi, Mandeep Singh

    2017-06-19

    Nanotoxicity of nanomaterials is an important issue in view of their potential applications in systemic circulation and wound healing dressing. This account specifically deals with several characteristic features of different nanomaterials which induce hemolysis and how to make them hemocompatible. The shape, size, and surface functionalities of naked metallic as well as nonmetallic nanoparticles surfaces are responsible for the hemolysis. An appropriate coating of biocompatible molecules dramatically reduces hemolysis and promotes their ability as safe drug delivery vehicles. The use of coated nanomaterials in wound healing dressing opens several new strategies for rapid wound healing processes. Properly designed nanomaterials should be selected to minimize the nanotoxicity in the wound healing process. Future directions need new synthetic methods for engineered nanomaterials for their best use in nanomedicine and nanobiotechnology.

  9. Skin-resident stem cells and wound healing.

    Science.gov (United States)

    Iwata, Yohei; Akamatsu, Hirohiko; Hasebe, Yuichi; Hasegawa, Seiji; Sugiura, Kazumitsu

    2017-01-01

    CD271 is common stem cell marker for the epidermis and dermis. We assessed a kinetic movement of epidermal and dermal CD271 + cells in the wound healing process to elucidate the possible involvement with chronic skin ulcers. Epidermal CD271 + cells were proliferated and migrated from 3 days after wounding. Purified epidermal CD271 + cells expressed higher TGFβ2 and VEGFα transcripts than CD271 - cells. Delayed wound healing was observed in the aged mice compared with young mice. During the wound healing process, the peak of dermal CD271 + cell accumulation was delayed in aged mice compared with young mice. The expression levels of collagen-1, -3, -5, F4-80, EGF, FGF2, TGFβ1, and IL-1α were significantly increased in young mice compared with aged mice. Furthermore, purified dermal CD271 + cells expressed higher FGF2, EGF, PDGFB, and TGFβ1 gene transcripts than CD271 - cells. These results suggested that epidermal and dermal CD271 + cells were closely associated with wound healing process by producing various growth factors. Epidermal and dermal CD271 + cells in chronic skin ulcer patients were significantly reduced compared with healthy controls. Thus, both epidermal and dermal stem cells can play an important role in wound healing process.

  10. Biology and Biomarkers for Wound Healing

    Science.gov (United States)

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  11. Wound Healing in Patients With Impaired Kidney Function.

    Science.gov (United States)

    Maroz, Natallia; Simman, Richard

    2013-04-01

    Renal impairment has long been known to affect wound healing. However, information on differences in the spectrum of wound healing depending on the type of renal insufficiency is limited. Acute kidney injury (AKI) may be observed with different wound types. On one hand, it follows acute traumatic conditions such as crush injury, burns, and post-surgical wounds, and on the other hand, it arises as simultaneous targeting of skin and kidneys by autoimmune-mediated vasculitis. Chronic kidney disease (CKD) and end-stage renal disease (ESRD) often occur in older people, who have limited physical mobility and predisposition for developing pressure-related wounds. The common risk factors for poor wound healing, generally observed in patients with CKD and ESRD, include poorly controlled diabetes mellitus, neuropathy, peripheral vascular disease, chronic venous insufficiency, and aging. ESRD patients have a unique spectrum of wounds related to impaired calcium-phosphorus metabolism, including calciphylaxis, in addition to having the risk factors presented by CKD patients. Overall, there is a wide range of uremic toxins: they may affect local mechanisms of wound healing and also adversely affect the functioning of multiple systems. In the present literature review, we discuss the association between different types of renal impairments and their effects on wound healing and examine this association from different aspects related to the management of wounds in renal impairment patients.

  12. Wound Healing Effects of Rose Placenta in a Mouse Model of Full-Thickness Wounds

    Directory of Open Access Journals (Sweden)

    Yang Woo Kim

    2015-11-01

    Full Text Available BackgroundRosa damascena, a type of herb, has been used for wound healing in Eastern folk medicine. The goal of this study was to evaluate the effectiveness of rose placenta from R. damascena in a full-thickness wound model in mice.MethodsSixty six-week-old C57BL/6N mice were used. Full-thickness wounds were made with an 8-mm diameter punch. Two wounds were made on each side of the back, and wounds were assigned randomly to the control and experimental groups. Rose placenta (250 µg was injected in the experimental group, and normal saline was injected in the control group. Wound sizes were measured with digital photography, and specimens were harvested. Immunohistochemical staining was performed to assess the expression of epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and CD31. Vessel density was measured. Quantitative analysis using an enzyme-linked immunosorbent assay (ELISA for EGF was performed. All evaluations were performed on postoperative days 0, 2, 4, 7, and 10. Statistical analyses were performed using the paired t-test.Results On days 4, 7, and 10, the wounds treated with rose placenta were significantly smaller. On day 2, VEGF and EGF expression increased in the experimental group. On days 7 and 10, TGF-β1 expression decreased in the experimental group. On day 10, vessel density increased in the experimental group. The increase in EGF on day 2 was confirmed with ELISA.ConclusionsRose placenta was found to be associated with improved wound healing in a mouse full-thickness wound model via increased EGF release. Rose placenta may potentially be a novel drug candidate for enhancing wound healing.

  13. Wound Healing Activity of a New Formulation from Platelet Lysate

    Directory of Open Access Journals (Sweden)

    Akram Jamshidzadeh

    2016-03-01

    Full Text Available Platelet-rich plasma (PRP is an attractive preparation in regenerative medicine due to its potential role in the healing process in different experimental models. This study was designed to investigate the wound healing activity of a new formulation of PRP. Different gel-based formulations of PRP were prepared. Open excision wounds were made on the back of male Sprague-Dawley rats, and PRP gel was administered topically once daily until the wounds healed completely (12 days. The results revealed that the tested PRP formulation significantly accelerated the wound healing process by increasing the wound contraction, tissue granulization, vascularization, and collagen regeneration. Interestingly, this study showed that there were no significant differences between the PRP and its gel-based formulation in all the above mentioned parameters. Although this investigation showed that PRP formulation had significant wound healing effects, the PRP gel-based formulation also had significant wound healing properties. This might indicate the wound healing properties of the PRP gel ingredients in the current investigation.

  14. Wound healing and infection in surgery

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  15. [Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment].

    Science.gov (United States)

    Sedlarik, K M; Schoots, C; Oosterbaan, J A; Klopper, J P

    1992-10-01

    The high number of available wound dressing materials as well as the scientific reports about the topic indicates that the problem of an ideal wound dressing is not jet solved. In the last thirty years lot of scientific reports about collagen as wound covering has been published. The positive effect of collagen by his application on a wound ist well known. We investigated the effect of a collagen sponge on healing of full thickness skin wound in guinea pig. The animals were divided in two control groups and two experimental groups. In the control group there were air exposed wounds and another wounds covered with paraffin gauze. In the experimental groups were such wounds covered with natural reconstituted collagen sponge as well as wounds covered with chemically prepared collagen sponge with hexamethyldiisocyanat. The results were compared. The air exposed wounds healed in 50 days, the wounds covered with paraffin gauze healed in 48 days. By covering the wounds with collagen sponge the healing was shortened in 24 or 27 days respectively. Not only the healing time was shortened but also the quality of the wound repair by dressing the wounds with collagen sponge was enhanced.

  16. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  17. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing

    Directory of Open Access Journals (Sweden)

    Biraja C. Dash

    2018-03-01

    Full Text Available The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.

  18. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing.

    Science.gov (United States)

    Dash, Biraja C; Xu, Zhenzhen; Lin, Lawrence; Koo, Andrew; Ndon, Sifon; Berthiaume, Francois; Dardik, Alan; Hsia, Henry

    2018-03-09

    The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little success in the clinic. Current research has been focused on using polymeric biomaterial systems that can act as a niche for these stem cells to improve their survival and paracrine activity that would eventually promote wound healing. Furthermore, different modification strategies have been developed to improve stem cell survival and differentiation, ultimately promoting regenerative wound healing. This review focuses on advanced polymeric scaffolds that have been used to deliver stem cells and have been tested for their efficiency in preclinical animal models of wounds.

  19. The effects of psychological interventions on wound healing: A systematic review of randomized trials.

    Science.gov (United States)

    Robinson, Hayley; Norton, Sam; Jarrett, Paul; Broadbent, Elizabeth

    2017-11-01

    Psychological stress has been shown to delay wound healing. Several trials have investigated whether psychological interventions can improve wound healing, but to date, this evidence base has not been systematically synthesized. The objective was to conduct a systematic review of randomized controlled trials in humans investigating whether psychological interventions can enhance wound healing. A systematic review was performed using PsychINFO, CINAHL, Web of Science, and MEDLINE. The searches included all papers published in English up until September 2016. The reference lists of relevant papers were screened manually to identify further review articles or relevant studies. Nineteen studies met inclusion criteria and were included in the review. Fifteen of nineteen studies were of high methodological quality. Six studies were conducted with acute experimentally created wounds, five studies with surgical patients, two studies with burn wounds, two studies with fracture wounds, and four studies were conducted with ulcer wounds. Post-intervention standardized mean differences (SMD) between groups across all intervention types ranged from 0.13 to 3.21, favouring improved healing, particularly for surgical patients and for relaxation interventions. However, there was some evidence for publication bias suggesting negative studies may not have been reported. Due to the heterogeneity of wound types, population types, and intervention types, it is difficult to pool effect sizes across studies. Current evidence suggests that psychological interventions may aid wound healing. Although promising, more research is needed to assess the efficacy of each intervention on different wound types. Statement of contribution What is already known on this subject? Psychological stress negatively affects wound healing. A number of studies have investigated whether psychological interventions can improve healing. However, no systematic reviews have been conducted. What does this study add

  20. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis.

    Science.gov (United States)

    Chong, Diana C; Yu, Zhixian; Brighton, Hailey E; Bear, James E; Bautch, Victoria L

    2017-10-01

    Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention. © 2017 The Authors.

  1. Wound healing and all-cause mortality in 958 wound patients treated in home care

    DEFF Research Database (Denmark)

    Zarchi, Kian; Martinussen, Torben; Jemec, Gregor B. E.

    2015-01-01

    to investigate wound healing and all-cause mortality associated with different types of skin wounds. Consecutive skin wound patients who received wound care by home-care nurses from January 2010 to December 2011 in a district in Eastern Denmark were included in this study. Patients were followed until wound...... healing, death, or the end of follow-up on December 2012. In total, 958 consecutive patients received wound care by home-care nurses, corresponding to a 1-year prevalence of 1.2% of the total population in the district. During the study, wound healing was achieved in 511 (53.3%), whereas 90 (9.4%) died...

  2. Inflammation and wound healing: The role of the macrophage

    Science.gov (United States)

    Koh, Timothy J.; DiPietro, Luisa Ann

    2013-01-01

    The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602

  3. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K

    2015-11-01

    Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing. © 2015 Anatomical Society.

  4. Acceleration of wound healing with stem cell-derived growth factors.

    Science.gov (United States)

    Tamari, Masayuki; Nishino, Yudai; Yamamoto, Noriyuki; Ueda, Minoru

    2013-01-01

    Recently, it has been revealed that bone marrow-derived mesenchymal stem cells (MSCs) accelerate the healing of skin wounds. Although the proliferative capacity of MSCs decreases with age, MSCs secrete many growth factors. The present study examined the effect of mesenchymal stem cell-conditioned medium (MSC-CM) on wound healing. The wound-healing process was observed macroscopically and histologically using an excisional wound-splinting mouse model, and the expression level of hyaluronic acid related to the wound healing process was observed to evaluate the wound-healing effects of MSC, MSC-CM, and control (phosphate-buffered saline). The MSC and MSC-CM treatments accelerated wound healing versus the control group. At 7 days after administration, epithelialization was accelerated, thick connective tissue had formed in the skin defect area, and the wound area was reduced in the MSC and MSC-CM groups versus the control group. At 14 days, infiltration of inflammatory cells was decreased versus 7 days, and the wounds were closed in the MSC and MSC-CM groups, while a portion of epithelium was observed in the control group. At 7 and 14 days, the MSC and MSC-CM groups expressed significantly higher levels of hyaluronic acid versus the control group (P wound healing versus the control group to a similar degree. Accordingly, it is suggested that the MSC-CM contains growth factor derived from stem cells, is able to accelerate wound healing as well as stem cell transplantation, and may become a new therapeutic method for wound healing in the future.

  5. Cutaneous wound healing in aging small mammals: a systematic review.

    Science.gov (United States)

    Kim, Dong Joo; Mustoe, Thomas; Clark, Richard A F

    2015-01-01

    As the elderly population grows, so do the clinical and socioeconomic burdens of nonhealing cutaneous wounds, the majority of which are seen among persons over 60 years of age. Human studies on how aging effects wound healing will always be the gold standard, but studies have ethical and practical hurdles. Choosing an animal model is dictated by costs and animal lifespan that preclude large animal use. Here, we review the current literature on how aging effects cutaneous wound healing in small animal models and, when possible, compare healing across studies. Using a literature search of MEDLINE/PubMed databases, studies were limited to those that utilized full-thickness wounds and compared the wound-healing parameters of wound closure, reepithelialization, granulation tissue fill, and tensile strength between young and aged cohorts. Overall, wound closure, reepithelialization, and granulation tissue fill were delayed or decreased with aging across different strains of mice and rats. Aging in mice was associated with lower tensile strength early in the wound healing process, but greater tensile strength later in the wound healing process. Similarly, aging in rats was associated with lower tensile strength early in the wound healing process, but no significant tensile strength difference between young and old rats later in healing wounds. From studies in New Zealand White rabbits, we found that reepithelialization and granulation tissue fill were delayed or decreased overall with aging. While similarities and differences in key wound healing parameters were noted between different strains and species, the comparability across the studies was highly questionable, highlighted by wide variability in experimental design and reporting. In future studies, standardized experimental design and reporting would help to establish comparable study groups, and advance the overall knowledge base, facilitating the translatability of animal data to the human clinical condition.

  6. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  7. Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized Wound Care Center.

    Science.gov (United States)

    Wicke, Corinna; Bachinger, Andreas; Coerper, Stephan; Beckert, Stefan; Witte, Maria B; Königsrainer, Alfred

    2009-01-01

    With the dramatic increase in the aging population, the study and care of wounds in the elderly have become priority topics for both researchers and clinicians. The effects of aging on wound healing in humans have remained controversial. The study was a 5-year epidemiological evaluation of standardized data collected regularly during patients' visits at a specialized Wound Care Center with the aim to determine the key factors influencing the healing of chronic lower extremity wounds. In this analysis of 1,158 chronic wounds, the frequency of wound closure was statistically significantly lower in older patients compared with younger patients. The share of closed wounds decreased by nearly 25% in the elderly patients (>or=70 years). The relationship between the patient's age and the proportion of wound closure was nonlinear. The effect of aging on the frequency of wound closure of chronic wounds became clinically apparent after age 60. The chronicity of the wounds was illustrated by their recurrent nature, their long duration, the presence of multiple wounds, and the frequency of concurrent infection. Comorbidity was documented by the coprevalence of up to three underlying diseases related to impaired wound healing. The present study clearly showed that aging affects chronic wound healing negatively.

  8. miRNA delivery for skin wound healing.

    Science.gov (United States)

    Meng, Zhao; Zhou, Dezhong; Gao, Yongsheng; Zeng, Ming; Wang, Wenxin

    2017-12-19

    The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. Copyright © 2017. Published by Elsevier B.V.

  9. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  10. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  11. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    Science.gov (United States)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  12. A small peptide with potential ability to promote wound healing.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  13. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management

    Directory of Open Access Journals (Sweden)

    Deborah Chicharro-Alcántara

    2018-01-01

    Full Text Available The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process.

  14. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management

    Science.gov (United States)

    Chicharro-Alcántara, Deborah; Damiá-Giménez, Elena; Carrillo-Poveda, José M.; Peláez-Gorrea, Pau

    2018-01-01

    The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process. PMID:29346333

  15. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound.

    Science.gov (United States)

    M C Chung, Ezra; Dean, Scott N; Propst, Crystal N; Bishop, Barney M; van Hoek, Monique L

    2017-01-01

    Cationic antimicrobial peptides are multifunctional molecules that have a high potential as therapeutic agents. We have identified a histone H1-derived peptide from the Komodo dragon ( Varanus komodoensis) , called VK25. Using this peptide as inspiration, we designed a synthetic peptide called DRGN-1. We evaluated the antimicrobial and anti-biofilm activity of both peptides against Pseudomonas aeruginosa and Staphylococcus aureus . DRGN-1, more than VK25, exhibited potent antimicrobial and anti-biofilm activity, and permeabilized bacterial membranes. Wound healing was significantly enhanced by DRGN-1 in both uninfected and mixed biofilm ( Pseudomonas aeruginosa and Staphylococcus aureus )-infected murine wounds. In a scratch wound closure assay used to elucidate the wound healing mechanism, the peptide promoted the migration of HEKa keratinocyte cells, which was inhibited by mitomycin C (proliferation inhibitor) and AG1478 (epidermal growth factor receptor inhibitor). DRGN-1 also activated the EGFR-STAT1/3 pathway. Thus, DRGN-1 is a candidate for use as a topical wound treatment. Wound infections are a major concern; made increasingly complicated by the emerging, rapid spread of bacterial resistance. The novel synthetic peptide DRGN-1 (inspired by a peptide identified from Komodo dragon) exhibits pathogen-directed and host-directed activities in promoting the clearance and healing of polymicrobial ( Pseudomonas aeruginosa & Staphylococcus aureus ) biofilm infected wounds. The effectiveness of this peptide cannot be attributed solely to its ability to act upon the bacteria and disrupt the biofilm, but also reflects the peptide's ability to promsote keratinocyte migration. When applied in a murine model, infected wounds treated with DRGN-1 healed significantly faster than did untreated wounds, or wounds treated with other peptides. The host-directed mechanism of action was determined to be via the EGFR-STAT1/3 pathway. The pathogen-directed mechanism of action was

  16. Wound healing properties of Artocarpus heterophyllus Lam.

    Science.gov (United States)

    Gupta, Nilesh; Jain, U K; Pathak, A K

    2009-04-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of "Artocarpus heterophyllus" ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16(th) post wounding day.

  17. Evaluation of the Wound-Healing Activity of Ethanolic Extract of Morinda citrifolia L. Leaf

    Directory of Open Access Journals (Sweden)

    B. Shivananda Nayak

    2009-01-01

    Full Text Available Morinda citrifolia L. (noni is one of the most important traditional Polynesian medicinal plants. The primary indigenous use of this plant appears to be of the leaves, as a topical treatment for wound healing. The ethanol extract of noni leaves (150 mg kg−1 day−1 was used to evaluate the wound-healing activity on rats, using excision and dead space wound models. Animals were randomly divided into two groups of six for each model. Test group animals in each model were treated with the ethanol extract of noni orally by mixing in drinking water and the control group animals were maintained with plain drinking water. Healing was assessed by the rate of wound contraction, time until complete epithelialization, granulation tissue weight and hydoxyproline content. On day 11, the extract-treated animals exhibited 71% reduction in the wound area when compared with controls which exhibited 57%. The granulation tissue weight and hydroxyproline content in the dead space wounds were also increased significantly in noni-treated animals compared with controls (P < 0.002. Enhanced wound contraction, decreased epithelialization time, increased hydroxyproline content and histological characteristics suggest that noni leaf extract may have therapeutic benefits in wound healing.

  18. Effect of systemic insulin treatment on diabetic wound healing.

    Science.gov (United States)

    Vatankhah, Nasibeh; Jahangiri, Younes; Landry, Gregory J; Moneta, Gregory L; Azarbal, Amir F

    2017-04-01

    This study investigates if different diabetic treatment regimens affect diabetic foot ulcer healing. From January 2013 to December 2014, 107 diabetic foot ulcers in 85 patients were followed until wound healing, amputation or development of a nonhealing ulcer at the last follow-up visit. Demographic data, diabetic treatment regimens, presence of peripheral vascular disease, wound characteristics, and outcome were collected. Nonhealing wound was defined as major or minor amputation or those who did not have complete healing until the last observation. Median age was 60.0 years (range: 31.1-90.1 years) and 58 cases (68.2%) were males. Twenty-four cases reached a complete healing (healing rate: 22.4%). The median follow-up period in subjects with classified as having chronic wounds was 6.0 months (range: 0.7-21.8 months). Insulin treatment was a part of diabetes management in 52 (61.2%) cases. Insulin therapy significantly increased the wound healing rate (30.3% [20/66 ulcers] vs. 9.8% [4/41 ulcers]) (p = 0.013). In multivariate random-effect logistic regression model, adjusting for age, gender, smoking status, type of diabetes, hypertension, chronic kidney disease, peripheral arterial disease, oral hypoglycemic use, wound infection, involved side, presence of Charcot's deformity, gangrene, osteomyelitis on x-ray, and serum hemoglobin A1C levels, insulin treatment was associated with a higher chance of complete healing (beta ± SE: 15.2 ± 6.1, p = 0.013). Systemic insulin treatment can improve wound healing in diabetic ulcers after adjusting for multiple confounding covariates. © 2017 by the Wound Healing Society.

  19. Androgen receptor–mediated inhibition of cutaneous wound healing

    OpenAIRE

    Ashcroft, Gillian S.; Mills, Stuart J.

    2002-01-01

    Impaired wound healing states in the elderly lead to substantial morbidity, mortality, and a cost to the USHealth Services of over $9 billion per annum. In addition to intrinsic aging per se causing delayed healing, studies have suggested marked sex-differences in wound repair. We report that castration of male mice results in a striking acceleration of local cutaneous wound healing, and is associated with a reduced inflammatory response and increased hair growth. Using a hairless mouse model...

  20. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  1. Antioxidant and wound healing activity of Lavandula aspic L. ointment.

    Science.gov (United States)

    Ben Djemaa, Ferdaous Ghrab; Bellassoued, Khaled; Zouari, Sami; El Feki, Abdelfatteh; Ammar, Emna

    2016-11-01

    Lavandula aspic L. is a strongly aromatic shrub plant of the Lamiaceae family and traditionally used in herbal medicine for the treatment of several skin disorders, including wounds, burns, and ulcers. The present study aimed to investigate the composition and in vitro antioxidant activity of lavender essential oil. In addition, it aimed to evaluate the excision wound healing activity and antioxidant property of a Lavandula aspic L. essential oil formulated in ointment using a rat model. The rats were divided into five groups of six animals each. The test groups were topically treated with the vehicle, lavender ointment (4%) and a reference drug, while the control group was left untreated. Wound healing efficiency was determined by monitoring morphological and biochemical parameters and skin histological analysis. Wound contraction and protein synthesis were also determined. Antioxidant activity was assessed by the determination of MDA rates and antioxidant enzymes (GPx, catalase and superoxide dismutase). The treatment with lavender ointment was noted to significantly enhance wound contraction rate (98%) and protein synthesis. Overall, the results provided strong support for the effective wound healing activity of lavender ointment, making it a promising candidate for future application as a therapeutic agent in tissue repairing processes associated with skin injuries. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  2. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study

    OpenAIRE

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we ...

  3. Wound-healing activity of the skin of the common grape (Vitis Vinifera) variant, Cabernet Sauvignon.

    Science.gov (United States)

    Nayak, B Shivananda; Ramdath, D Dan; Marshall, Julien R; Isitor, Godwin N; Eversley, Mathew; Xue, Sophia; Shi, John

    2010-08-01

    The common Grape L. (Vitaceae) is regarded as an important medicinal plant. European healers have suggested the use of grapevine sap, juice, and whole grape in the treatment of pain, allergic reactions, inflammation, and to promote wound healing. We evaluated grape-skin powder for its wound-healing activity using an excision wound model in rats. Animals were randomly divided into three groups of six (n = 6) each. The test group animals were treated topically with the grape-skin powder (100 mg/kg/day). The controls and standard group animals were treated with petroleum jelly and mupirocin ointment respectively. Healing was assessed by the rate of wound contraction, period of epithelialization, and hydroxyproline content. On day 13, treatment of the wounds with grape-skin powder enhanced significantly the rate of wound contraction (100 %). Treated animals showed significant decrease in the epithelialization period (p < 0.000) and increase in the hydroxyproline content (p < 0.05) when compared to control and the standard. Histological analysis was also consistent with the proposal that grape-skin powder exhibits significant wound-healing potential. Increased rate of wound contraction, hydroxyproline content, and decrease in epithelialization time in the treated animals support the use of grape-skin powder in the management of wound healing. Copyright (c) 2010 John Wiley & Sons, Ltd.

  4. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  5. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Science.gov (United States)

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  6. The external microenvironment of healing skin wounds

    DEFF Research Database (Denmark)

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...

  7. Wound healing properties of Artocarpus heterophyllus Lam

    Science.gov (United States)

    Gupta, Nilesh; Jain, U.K.; Pathak, A.K.

    2009-01-01

    The studies on excision wound healing model reveals significant wound healing activity of the methanolic leaf extract (simple ointment 5%) of “Artocarpus heterophyllus” ham which is comparable with standard (Betadine). In the excision model, the period of epithelization, of the extract treated group was found to be higher than the controlgroup and slightly lesser than standard treated group of animals on the up to 16th post wounding day. PMID:22557331

  8. Enhanced tracheostomy wound healing using maltodextrin and silver alginate compounds in pediatrics: a pilot study.

    Science.gov (United States)

    Hartzell, Larry D; Havens, Tara N; Odom, Brian H; Stillman, Tanya G; Boswell, Jessica L; Bower, Charles M; Richter, Gresham T

    2014-12-01

    Tracheostomy wounds are commonly encountered in children but rarely reported. Relatively few treatments are available or have been investigated to manage this problem. Healing times for pediatric tracheostomy wounds are often unpredictable and protracted. Recent use of maltodextrin gel (MD) and a silver alginate sponge (AG) at our institution has demonstrated expedited healing and interest in this novel treatment for tracheostomy wounds. We conducted an 11-month retrospective review of children with wound complications following tracheostomy placement at a tertiary care facility. Wounds were evaluated and rated based upon the National Pressure Ulcer Advisory Panel staging system. Subjects identified with stage 2 or greater tracheostomy-related ulcers treated with MD and/or AG were included. Subject characteristics and wound healing rates were tabulated in a database that included age, wound site, initial and final wound stage, type of treatment, length of treatment, and complications. Tracheostomy wounds treated as an out-patient were excluded from the study. Eighteen subjects, which included both in-patients and out-patients, were treated with AG and/or MD during the study period for tracheostomy-related wounds. Of the 26 subjects with tracheostomies performed during the study period, 10 (38.5%) were treated for postoperative wounds. A total of 11 subjects completed their in-patient wound treatment and were thus included in the study. Average subject age was 5.3 y (range 0.25-15.6 y). Wound locations were as follows: infrastomal region (n = 8), stoma (n = 2), and lateral neck (n = 1). Six subjects had stage 2 wounds, 4 had stage 3 wounds, and 1 had a stage 4 ulcer. All wounds achieved complete epithelialization following treatment with MD and/or AG. The average length of treatment was 12.8 d (range 6-28 d). No adverse effects were identified. Postoperative tracheostomy wounds are common. The use of MD and AG provides an effective and safe treatment for

  9. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats.

    Science.gov (United States)

    Zhang, Zhaofeng; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2011-09-01

    A wound is a clinical entity which often poses problems in clinical practice. The present study was aimed to investigate the wound healing potential of administering marine collagen peptides (MCP) from Chum Salmon skin by using two wound models (incision and excision) in rats. Ninety-six animals were equally divided into the two wound models and then within each model animals were randomly divided into two groups: vehicle-treated group and 2 g kg(-1) MCP-treated group. Wound closure and tensile strength were calculated. Collagen deposition was assessed by Masson staining and hydroxyproline measurement. Angiogenesis was assessed by immunohistological methods. MCP-treated rats showed faster wound closure and improved tissue regeneration at the wound site, which was supported by histopathological parameters pertaining to wound healing. MCP treatment improved angiogenesis and helped form thicker and better organised collagen fibre deposition compared to vehicle-treated group. The results show the efficacy of oral MCP treatment on wound healing in animals. Copyright © 2011 Society of Chemical Industry.

  10. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing.

    Science.gov (United States)

    Dong, Jian-Li; Dong, Hai-Cao; Yang, Liang; Qiu, Zhe-Wen; Liu, Jia; Li, Hong; Zhong, Li-Xia; Song, Xue; Zhang, Peng; Li, Pei-Nan; Zheng, Lian-Jie

    2018-03-01

    Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.

  11. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds.

    Science.gov (United States)

    Galeano, Mariarosaria; Altavilla, Domenica; Bitto, Alessandra; Minutoli, Letteria; Calò, Margherita; Lo Cascio, Patrizia; Polito, Francesca; Giugliano, Giovanni; Squadrito, Giovanni; Mioni, Chiara; Giuliani, Daniela; Venuti, Francesco S; Squadrito, Francesco

    2006-04-01

    Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. Randomized experiment. Research laboratory. C57BL/6 male mice weighing 25-30 g. Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.

  12. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    Science.gov (United States)

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  13. Potential dermal wound healing agent in Blechnum orientale Linn

    Directory of Open Access Journals (Sweden)

    Lim Yau

    2011-08-01

    Full Text Available Abstract Background Blechnum orientale Linn. (Blechnaceae is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity. Methods Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control and 10% povidone-iodine (positive control respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test. Results Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group. Conclusions The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

  14. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with PRP-containing fragmin/protamine microparticles (PRP&F/P MPs).

    Science.gov (United States)

    Takikawa, Megumi; Ishihara, Masayuki; Takabayashi, Yuki; Sumi, Yuki; Takikawa, Makoto; Yoshida, Ryuichi; Nakamura, Shingo; Hattori, Hidemi; Yanagibayashi, Satoshi; Yamamoto, Naoto; Kiyosawa, Tomoharu

    2015-04-13

    The purpose of this study was to evaluate the accelerating effects of platelet-rich plasma-containing (PRP&) fragmin/protamine microparticles (F/P MPs) for repairing mitomycin C-treated healing-impaired wounds. Staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL-staining) showed that apoptosis of dermal fibroblast cells (DFCs) and epidermal keratinocyte cells (EKCs) were significantly induced in the skin of the mitomycin C-treated rats. Full-thickness skin defects were made on the back of rats and mitomycin C was applied on the wounds to prepare a healing-impaired wound. After washing out the mitomycin C, saline (control), F/P MPs alone, PRP alone, and PRP&F/P MPs were injected around the wounds. The rats were later euthanised and histological sections of the wounds were then prepared at indicated time periods after the treatment. These results indicated the numbers of large, medium, and small capillary lumens 7 days after injection of PRP&F/P MPs were significantly higher than those after injection of PRP or F/P MPs alone. Furthermore, epithelium and granulation tissue formations were significantly stimulated in the healing-impaired wounds treated with PRP&F/P MPs 3, 7 and 14 days after injection of PRP&F/P MPs.

  15. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  16. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    Directory of Open Access Journals (Sweden)

    Ayesha Bhatia

    2016-01-01

    Full Text Available Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  17. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  18. Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    Science.gov (United States)

    Shrestha, Chandrama; Zhao, Liling; Chen, Ke; He, Honghui; Mo, Zhaohui

    2013-01-01

    Objective. Mesenchymal stem cells (MSCs) isolated from the umbilical cord and their conditioned media (CM) can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n = 6; P UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing. PMID:24089612

  19. Wounding the cornea to learn how it heals.

    Science.gov (United States)

    Stepp, Mary Ann; Zieske, James D; Trinkaus-Randall, Vickery; Kyne, Briana M; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Pajoohesh-Ganji, Ahdeah

    2014-04-01

    Corneal wound healing studies have a long history and rich literature that describes the data obtained over the past 70 years using many different species of animals and methods of injury. These studies have lead to reduced suffering and provided clues to treatments that are now helping patients live more productive lives. In spite of the progress made, further research is required since blindness and reduced quality of life due to corneal scarring still happens. The purpose of this review is to summarize what is known about different types of wound and animal models used to study corneal wound healing. The subject of corneal wound healing is broad and includes chemical and mechanical wound models. This review focuses on mechanical injury models involving debridement and keratectomy wounds to reflect the authors' expertise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study.

    Science.gov (United States)

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-10-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Effects of tretinoin on wound healing in aged skin.

    Science.gov (United States)

    de Campos Peseto, Danielle; Carmona, Erica Vilaça; Silva, Kellyn Cristina da; Guedes, Flavia Roberta Valente; Hummel Filho, Fernando; Martinez, Natalia Peres; Pereira, José Aires; Rocha, Thalita; Priolli, Denise Gonçalves

    2016-03-01

    Aged and adult populations have differences in the structural, biological, and healing properties of skin. Comparative studies of healing under the influence of retinoids in both these populations are very important and, to the best of our knowledge, have not been performed to date. The purpose of this study was to compare the activities of topical tretinoin in aged and adult animal models of wound healing by secondary intention. Male aged rats (24 months old, n = 7) and adult rats (6 months old, n = 8) were used. The rats were assigned to the following groups according to the dates on which wound samples were excised (day 14 or 21 after model creation): treated group, control group, and naive group. Topical application of tretinoin cream was used only on the proximal wound and was applied daily for 7 days. Wound healing areas were measured using metal calipers, and morphological analysis was performed. Slides were stained with Hematoxylin and Eosin, Masson's trichrome, and periodic acid-Schiff stains. Statistical analysis adopted a 5% coefficient for rejection of the null hypothesis. Although aged animals showed skin repair, complete reepithelialization was found on day 21 in some animals of both groups (treated and control). In aged rats, the wound area was significantly smaller in treated wounds than in untreated wounds, resulting in a larger scar area compared with the adult group. When treated wounds were compared, no differences were found between the wound areas in adult and aged rats. As expected, the collagen concentration was higher in normal skin from adult rats than in normal skin from aged animals, but there was no difference when aged skin was treated with tretinoin. These results indicate that tretinoin increases collagen synthesis in aged skin and returns the healing process to a normal state of skin healing. © 2016 by the Wound Healing Society.

  2. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application

    Directory of Open Access Journals (Sweden)

    Hilal Ahmad Rather

    2018-06-01

    Full Text Available Skin wound healing involves a coordinated cellular response to achieve complete reepithelialisation. Elevated levels of reactive oxygen species (ROS in the wound environment often pose a hindrance in wound healing resulting in impaired wound healing process. Cerium oxide nanoparticles (CeNPs have the ability to protect the cells from oxidative damage by actively scavenging the ROS. Furthermore, matrices like nanofibers have also been explored for enhancing wound healing. In the current study CeNP functionalised polycaprolactone (PCL-gelatin nanofiber (PGNPNF mesh was fabricated by electrospinning and evaluated for its antioxidative potential. Wide angle XRD analysis of randomly oriented nanofibers revealed ∼2.6 times reduced crystallinity than pristine PCL which aided in rapid degradation of nanofibers and release of CeNP. However, bioactive composite made between nanoparticles and PCL-gelatin maintained the fibrous morphology of PGNPNF upto 14 days. The PGNPNF mesh exhibited a superoxide dismutase (SOD mimetic activity due to the incorporated CeNPs. The PGNPNF mesh enhanced proliferation of 3T3-L1 cells by ∼48% as confirmed by alamar blue assay and SEM micrographs of cells grown on the nanofibrous mesh. Furthermore, the PGNPNF mesh scavenged ROS, which was measured by relative DCF intensity and fluorescence microscopy; and subsequently increased the viability and proliferation of cells by three folds as it alleviated the oxidative stress. Overall, the results of this study suggest the potential of CeNP functionalised PCL-gelatin nanofibrous mesh for wound healing applications.

  3. Clinical evaluation of ethanolic extract of curcumin (Curcuma longa on wound healing in Black Bengal goats

    Directory of Open Access Journals (Sweden)

    Md Abu Haris Miah

    2017-06-01

    Conclusion: Ethanol treated turmeric enhances wound healing process in goats. This result could help the veterinarian and the researchers to consider herbal product especially ethanolic extract of turmeric for the treatment and better healing of surgical wounds with minimal complications. [J Adv Vet Anim Res 2017; 4(2.000: 181-186

  4. Traditional Therapies for Skin Wound Healing.

    Science.gov (United States)

    Pereira, Rúben F; Bártolo, Paulo J

    2016-05-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  5. Publicly Reported Wound Healing Rates: The Fantasy and the Reality

    Science.gov (United States)

    Fife, Caroline E.; Eckert, Kristen A.; Carter, Marissa J.

    2018-01-01

    Significance: We compare real-world data from the U.S. Wound Registry (USWR) with randomized controlled trials and publicly reported wound outcomes and develop criteria for honest reporting of wound outcomes, a requirement of the new Quality Payment Program (QPP). Recent Advances: Because no method has existed by which wounds could be stratified according to their likelihood of healing among real-world patients, practitioners have reported fantastically high healing rates. The USWR has developed several risk-stratified wound healing quality measures for diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) as part of its Qualified Clinical Data Registry (QCDR). This allows practitioners to report DFU and VLU healing rates in comparison to the likelihood of whether the wound would have healed. Critical Issues: Under the new QPP, practitioners must report at least one practice-relevant outcome measure, and it must be risk adjusted so that clinicians caring for the sickest patients do not appear to have worse outcomes than their peers. The Wound Healing Index is a validated risk-stratification method that can predict whether a DFU or VLU will heal, leveling the playing field for outcome reporting and removing the need to artificially inflate healing rates. Wound care practitioners can report the USWR DFU and VLU risk-stratified outcome measure to satisfy the quality reporting requirements of the QPP. Future Directions: Per the requirements of the QPP, the USWR will begin publicly reporting of risk-stratified healing rates once quality measure data have met the reporting standards of the Centers for Medicare and Medicaid Services. Some basic rules for data censoring are proposed for public reporting of healing rates, and others are needed, which should be decided by consensus among the wound care community. PMID:29644145

  6. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    Science.gov (United States)

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.

    2016-01-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  7. Dynamic protein expression patterns during intraoral wound healing in the rat.

    Science.gov (United States)

    van Beurden, Hugo E; Snoek, Patricia A M; Von den Hoff, Johannes W; Torensma, Ruurd; Maltha, Jaap C; Kuijpers-Jagtman, Anne M

    2005-04-01

    Wound healing after cleft palate surgery is often associated with impairment of maxillary growth and dento-alveolar development. Wound contraction and scar tissue formation contribute strongly to these effects. In vitro studies have revealed that fibroblasts isolated during different phases of palatal wound healing show phenotypical differences. They change from a quiescent to an activated state and then partly back to a quiescent state. In this study, we evaluated the existence of fibroblast phenotypes at several time-points during palatal wound healing in the rat. Based on cytoskeletal changes (alpha-sma, vimentin, vinculin), integrin expression (alpha1, alpha2, alpha(v) and beta1) and changes in cellularity, we conclude that phenotypically different fibroblast populations are also present during in vivo wound healing. Alpha-sma and the integrin subunits alpha1 and alpha(v) were significantly up-regulated, and vinculin was significantly down-regulated, at early time-points compared to late time-points in wound healing. These changes point to an activated fibroblast state early in wound healing. Later in wound healing, these activated fibroblasts return only partially to the unwounded situation. These results strongly support the idea that different fibroblast populations with specific phenotypes occur in the course of palatal wound healing.

  8. Topical Application of Propolis Enhances Cutaneous Wound Healing by Promoting TGF-Beta/Smad-Mediated Collagen Production in a Streptozotocin-Induced Type I Diabetic Mouse Model

    Directory of Open Access Journals (Sweden)

    Wael N. Hozzein

    2015-09-01

    Full Text Available Background/Aims: Impaired wound healing is considered to be one of the most serious complications associated with diabetes as it significantly increases the susceptibility of patients to infection. Propolis is a natural bee product used extensively in foods and beverages that has significant benefits to human health. In particular, propolis has antioxidant, anti-inflammatory and analgesic effects that could be useful for improving wound healing. In this study, we investigated the effects of topical application of propolis on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Methods: Sixty male mice were distributed equally into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated daily with a topical application of propolis. Results: We found that diabetic mice exhibited delayed wound closure characterized by a significant decrease in the levels of TGF-β1 and a prolonged elevation of the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α and MMP9 in wound tissues compared with control non-diabetic mice. Moreover, the wound tissues of diabetic mice showed a marked reduction in the phosphorylation of Smad2 and Smad3 as well as a marked reduction in collagen production. Interestingly, compared with untreated diabetic mice, topical application of propolis significantly enhanced the closure of diabetic wounds and decreased the levels of IL-1β, IL-6, TNF-α and MMP9 to near normal levels. Most importantly, compared with untreated diabetic mice, the treatment of diabetic mice with propolis significantly enhanced the production of collagen via the TGF-β1/Smad2,3 signaling axis in wounded tissues. Conclusion: Our findings reveal the molecular mechanisms underlying the improved healing and closure of diabetic wounds following topical propolis application.

  9. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: preparation optimization, in vitro dermal permeation, and in vivo bioevaluation.

    Science.gov (United States)

    Li, Zehao; Liu, Meifeng; Wang, Huijuan; Du, Song

    2016-01-01

    Madecassoside (MA) is highly potent in treating skin disorders such as wounds and psoriasis. However, the topical wound healing effect of MA was hampered by its poor membrane permeability. In order to overcome this shortcoming, MA liposomes were designed and prepared by a double-emulsion method to enhance transdermal and wound healing effects. In this study, response surface methodology was adopted to yield the optimal preparation conditions of MA double-emulsion liposomes with average particle size of 151 nm and encapsulation efficiency of 70.14%. Moreover, MA double-emulsion liposomes demonstrated superior stability and homogeneous appearance in 5 months; their leakage rate was healing of MA liposomal formulations were conducted for the first time to evaluate MA delivery efficiency and wound healing effect. The transdermal property and wound cure effect of MA double-emulsion liposomes were superior to those of MA film dispersion liposomes, and both the methods were endowed with an excellent performance by polyethylene glycol modification. In conclusion, double-emulsion liposome formulation was an applicable and promising pharmaceutical preparation for enhancing MA delivery toward wound healing effect and improving wound-healing progress.

  10. Reactive carbonyl compounds impair wound healing by vimentin collapse and loss of the primary cilium.

    Science.gov (United States)

    Rodríguez-Ribera, Lara; Slattery, Craig; Mc Morrow, Tara; Marcos, Ricard; Pastor, Susana

    2017-10-01

    In renal pathologies tubulo-interstitial fibrosis results from an aberrant wound-healing ability where the normal epithelial tissue is substituted for scar tissue caused by accumulation of extracellular matrix proteins (ECM). During the wound-healing process, epithelial cells may undergo epithelial-mesenchymal transition (EMT) acquiring a mesenchymal-like phenotype that allows cells to migrate and re-epithelialize the wound site. It has been reported that chronic inflammation and uremic milieu are involved in wound-healing and enhanced kidney damage in chronic kidney disease (CKD) patients. In this study we evaluated reactive carbonyl compounds (RCC) effects on renal wound healing. The compounds resulting from carbonyl stress evaluated in this study were glyoxal (GO), methylglyoxal (MGO), malondialdehyde (MDA) and 4-hydroxy-hexenal (HHE). Wound repair ability was evaluated by the wound healing assay using HK-2 cells. EMT was evaluated by morphological, protein and transcriptional changes using microscopy, western blot, zymography and RT-qPCR. Changes in the vimentin network and primary cilia were assessed by immunofluorescence. Our data demonstrated that MDA and GO delay wound closure mediated by vimentin disruption, which caused collagen I mRNA decrease, and deciliation. In contrast, HHE treatment (and MGO to a minor degree) induced morphological changes and increased mesenchymal marker expression and gelatinase activity in HK-2 cells. In this study, we have demonstrated for the first time that exposure to RCC differentially affects wound healing in proximal tubular epithelia. A better comprehension of effects of uremic toxins on wound healing and fibrosis and migration is necessary to seek mechanisms to slow down renal fibrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Noori Al-Waili

    2011-01-01

    Full Text Available The widespread existence of unhealed wounds, ulcers, and burns has a great impact on public health and economy. Many interventions, including new medications and technologies, are being used to help achieve significant wound healing and to eliminate infections. Therefore, to find an intervention that has both therapeutic effect on the healing process and the ability to kill microbes is of great value. Honey is a natural product that has been recently introduced in modern medical practice. Honey's antibacterial properties and its effects on wound healing have been thoroughly investigated. Laboratory studies and clinical trials have shown that honey is an effective broad-spectrum antibacterial agent. This paper reviews data that support the effectiveness of natural honey in wound healing and its ability to sterilize infected wounds. Studies on the therapeutic effects of honey collected in different geographical areas on skin wounds, skin and gastric ulcers, and burns are reviewed and mechanisms of action are discussed. (Ulcers and burns are included as an example of challenging wounds. The data show that the wound healing properties of honey include stimulation of tissue growth, enhanced epithelialization, and minimized scar formation. These effects are ascribed to honey's acidity, hydrogen peroxide content, osmotic effect, nutritional and antioxidant contents, stimulation of immunity, and to unidentified compounds. Prostaglandins and nitric oxide play a major role in inflammation, microbial killing, and the healing process. Honey was found to lower prostaglandin levels and elevate nitric oxide end products. These properties might help to explain some biological and therapeutic properties of honey, particularly as an antibacterial agent or wound healer. The data presented here demonstrate that honeys from different geographical areas have considerable therapeutic effects on chronic wounds, ulcers, and burns. The results encourage the use of honey

  12. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  13. Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: An effect size meta-analysis.

    Science.gov (United States)

    Khouri, Charles; Kotzki, Sylvain; Roustit, Matthieu; Blaise, Sophie; Gueyffier, Francois; Cracowski, Jean-Luc

    2017-09-01

    Electrical stimulation (ES) has been tested for decades to improve chronic wound healing. However, uncertainty remains on the magnitude of the efficacy and on the best applicable protocol. We conducted an effect size meta-analysis to assess the overall efficacy of ES on wound healing, to compare the efficacy of the different modalities of electrical stimulation, and to determine whether efficacy differs depending on the wound etiology, size, and age of the chronic wound. Twenty-nine randomized clinical trials with 1,510 patients and 1,753 ulcers were selected. Overall efficacy of ES on would healing was a 0.72 SMD (95% CI: 0.48, 1) corresponding to a moderate to large effect size. We found that unidirectional high voltage pulsed current (HVPC) with the active electrode over the wound was the best evidence-based protocol to improve wound healing with a 0.8 SMD (95% CI: 0.38, 1.21), while evaluation of the efficacy of direct current was limited by the small number of studies. ES was more effective on pressure ulcers compared to venous and diabetic ulcers, and efficacy trended to be inversely associated with the wound size and duration. This study confirms the overall efficacy of ES to enhance healing of chronic wounds and highlights the superiority of HVPC over other type of currents, which is more effective on pressure ulcers, and inversely associated with the wound size and duration. This will enable to standardize future ES practices. © 2017 by the Wound Healing Society.

  14. Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    Directory of Open Access Journals (Sweden)

    Chandrama Shrestha

    2013-01-01

    Full Text Available Objective. Mesenchymal stem cells (MSCs isolated from the umbilical cord and their conditioned media (CM can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n=6; P<0.05, and higher levels of VEGF, PDGF, and KGF expression in the CM- and UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing.

  15. Fibromodulin Is Essential for Fetal-Type Scarless Cutaneous Wound Healing.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Xinli; Dang, Catherine; Beanes, Steven; Chang, Grace X; Chen, Yao; Li, Chen-Shuang; Lee, Kevin S; Ting, Kang; Soo, Chia

    2016-11-01

    In contrast to adult and late-gestation fetal skin wounds, which heal with scar, early-gestation fetal skin wounds display a remarkable capacity to heal scarlessly. Although the underlying mechanism of this transition from fetal-type scarless healing to adult-type healing with scar has been actively investigated for decades, in utero restoration of scarless healing in late-gestation fetal wounds has not been reported. In this study, using loss- and gain-of-function rodent fetal wound models, we identified that fibromodulin (Fm) is essential for fetal-type scarless wound healing. In particular, we found that loss of Fm can eliminate the ability of early-gestation fetal rodents to heal without scar. Meanwhile, administration of fibromodulin protein (FM) alone was capable of restoring scarless healing in late-gestation rat fetal wounds, which naturally heal with scar, as characterized by dermal appendage restoration and organized collagen architectures that were virtually indistinguishable from those in age-matched unwounded skin. High Fm levels correlated with decreased transforming growth factor (TGF)-β1 expression and scarless repair, while low Fm levels correlated with increased TGF-β1 expression and scar formation. This study represents the first successful in utero attempt to induce scarless repair in late-gestation fetal wounds by using a single protein, Fm, and highlights the crucial role that the FM-TGF-β1 nexus plays in fetal-type scarless skin repair. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Healing of corneal epithelial wounds in marine and freshwater fish.

    Science.gov (United States)

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  17. Heterotopic epithelialization presenting as a non-healing scalp wound after surgery

    DEFF Research Database (Denmark)

    Askaner, Gustav; Rasmussen, Rune; Schmidt, Grethe

    2017-01-01

    Patients undergoing cerebral revascularization surgery have a relatively high incidence of wound complications. We report a case of heterotopic epithelialization of the dura presenting as a non-healing scalp wound after an extracranial-intracranial (EC-IC) arterial bypass. The scalp wound...... was revised twice without healing. During the third revision, epithelial tissue was found growing on the dura and was removed. After the epithelial tissue was removed, the wound healed without further complications. This case illustrates the importance of thoroughly examining a non-healing wound to find...

  18. Longitudinal Evaluation of Wound Healing after Penetrating Corneal Injury: Anterior Segment Optical Coherence Tomography Study.

    Science.gov (United States)

    Zheng, Kang Keng; Cai, Jianhao; Rong, Shi Song; Peng, Kun; Xia, Honghe; Jin, Chuan; Lu, Xuehui; Liu, Xinyu; Chen, Haoyu; Jhanji, Vishal

    2017-07-01

    Ocular imaging can enhance our understanding of wound healing. We report anterior segment optical coherence tomography (ASOCT) findings in penetrating corneal injury. Serial ASOCT was performed after repair of penetrating corneal injury. Internal aberrations of wound edges were labeled as "steps" or "gaps" on ASOCT images. The wound type was characterized as: type 1: continuous inner wound edge or step height ≤ 80 µm; type 2: step height > 80 µm; type 3: gap between wound edges; and type 4: intraocular tissue adherent to wound. Surgical outcomes of different wound types were compared. 50 consecutive patients were included (6 females, 44 males; mean age 33 ± 12 years). The average size of wound was 4.2 ± 2.6 mm (type 1, 8 eyes; type 2, 27 eyes; type 3, 12 eyes; type 4, 3 eyes). At the end of 3 months, 70% (n = 35) of the wounds were type 1. At the end of 6 months, all type 1 wounds had healed completely, whereas about half of type 2 (48.1%) and type 3 (50%) wounds had recovered to type 1 configuration. The wound type at baseline affected the height of step (p = 0.047) and corneal thickness at 6 months (p = 0.035). ASOCT is a useful tool for monitoring wound healing in cases with penetrating corneal injury. Majority of the wound edges appose between 3 and 6 months after trauma. In our study, baseline wound configuration affected the healing pattern.

  19. Predicting complex acute wound healing in patients from a wound expertise centre registry: a prognostic study

    NARCIS (Netherlands)

    Ubbink, Dirk T.; Lindeboom, Robert; Eskes, Anne M.; Brull, Huub; Legemate, Dink A.; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We

  20. Predicting complex acute wound healing in patients from a wound expertise centre registry : a prognostic study

    NARCIS (Netherlands)

    Ubbink, Dirk T; Lindeboom, Robert; Eskes, Anne M; Brull, Huub; Legemate, Dink A; Vermeulen, Hester

    2015-01-01

    It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We

  1. A phytomodulatory hydrogel with enhanced healing effects.

    Science.gov (United States)

    Vasconcelos, Mirele S; Souza, Tamiris F G; Figueiredo, Ingrid S; Sousa, Emília T; Sousa, Felipe D; Moreira, Renato A; Alencar, Nylane M N; Lima-Filho, José V; Ramos, Márcio V

    2018-04-01

    The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1β, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  3. Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx

    Science.gov (United States)

    Builders, P. F.; Kabele-Toge, B.; Builders, M.; Chindo, B. A.; Anwunobi, Patricia A.; Isimi, Yetunde C.

    2013-01-01

    Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae) was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chromatographic fingerprints of the extract were also evaluated. The extract demonstrated antioxidant properties with a total flavonoid content of 12.30±0.09 mg/g. Six reproducible spots were obtained using methanol:water (95:5) as the mobile phase. The extract showed no antimicrobial activity on the selected microorganisms, which are known to infect and retard wound healing. Creams containing H. sabdariffa extract showed significant (Psabdariffa extract. This study, thus, provides evidence of the wound healing potentials of the formulated extract of the calyces of H. sabdariffa and synergism when co-formulated with gentamicin. PMID:23901160

  4. Evaluation of Borrago topical effects on wound healing of cutting wounds in mice

    Directory of Open Access Journals (Sweden)

    Hossein kaboli

    2017-07-01

    Conclusion: The results show the positive effect of Borrago Officinalis extract on wound healing. In comparison, this effect is less than the phenytoin and more than iodine. More studies are needed on different doses of this plant and its comparative effect with other common treatments for wound healing.

  5. Application of laser scan microscopy in vivo for wound healing characterization

    International Nuclear Information System (INIS)

    Czaika, V; Koch, S; Alborova, A; Sterry, W; Lademann, J

    2010-01-01

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control

  6. Application of laser scan microscopy in vivo for wound healing characterization

    Science.gov (United States)

    Czaika, V.; Alborova, A.; Sterry, W.; Lademann, J.; Koch, S.

    2010-09-01

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control.

  7. Development of a Porcine Delayed Wound-Healing Model and Its Use in Testing a Novel Cell-Based Therapy

    International Nuclear Information System (INIS)

    Hadad, Ivan; Johnstone, Brian H.; Brabham, Jeffrey G.; Blanton, Matthew W.; Rogers, Pamela I.; Fellers, Cory; Solomon, James L.; Merfeld-Clauss, Stephanie; DesRosiers, Colleen M.; Dynlacht, Joseph R.; Coleman, John J.; March, Keith L.

    2010-01-01

    Purpose: A delayed full-thickness wound-healing model was developed and used for examining the capacity of adipose-derived stem cells (ASCs), either alone or in platelet-rich fibrin gels, to promote healing. Methods and Materials: Four pigs received electron beam radiation to the dorsal skin surface. Five weeks after radiation, subcutaneous fat was harvested from nonirradiated areas and processed to yield ASCs. Two weeks later, 28 to 30 full-thickness 1.5-cm 2 wounds were made in irradiated and nonirradiated skin. Wounds were treated with either saline solution, ASCs in saline solution, platelet-rich plasma (PRP) fibrin gel, ASCs in PRP, or non-autologous green fluorescence protein-labeled ASCs. Results: The single radiation dose produced a significant loss of dermal microvasculature density (75%) by 7 weeks. There was a significant difference in the rate of healing between irradiated and nonirradiated skin treated with saline solution. The ASCs in PRP-treated wounds exhibited a significant 11.2% improvement in wound healing compared with saline solution. Enhancement was dependent on the combination of ASCs and PRP, because neither ASCs nor PRP alone had an effect. Conclusions: We have created a model that simulates the clinically relevant late radiation effects of delayed wound healing. Using this model, we showed that a combination of ASCs and PRP improves the healing rates of perfusion-depleted tissues, possibly through enhancing local levels of growth factors.

  8. Growth/differentiation factor-5 significantly enhances periodontal wound healing/regeneration compared with platelet-derived growth factor-BB in dogs.

    Science.gov (United States)

    Kwon, Hyuk-Rak; Wikesjö, Ulf M E; Park, Jung-Chul; Kim, Young-Taek; Bastone, Patrizia; Pippig, Susanne D; Kim, Chong-Kwan

    2010-08-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) in a particulate beta-tricalcium phosphate (beta-TCP) carrier is being evaluated to support periodontal regeneration. The objective of this study was to evaluate periodontal wound healing/regeneration following an established clinical (benchmark) protocol including surgical implantation of rhGDF-5/beta-TCP in comparison with that following implantation of recombinant human platelet-derived growth factor-BB (rhPDGF) combined with a particulate beta-TCP biomaterial using an established canine defect model. Bilateral, 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in five adult Beagle dogs. Defect sites were randomized to receive rhGDF-5/beta-TCP or the rhPDGF construct followed by wound closure for primary intention healing. The animals were sacrificed following an 8-week healing interval for histological and histometric examination. Clinical healing was generally uneventful. Sites receiving rhGDF-5/beta-TCP exhibited a significantly enhanced cementum formation compared with sites receiving the rhPDGF construct, averaging (+/-SD) 4.49+/-0.48 versus 2.72+/-0.91 mm (palveolar bone. Both protocols displayed beta-TCP residues apparently undergoing resorption. Application of both materials appears safe, as they were associated with limited, if any, adverse events. rhGDF-5/beta-TCP shows a significant potential to support/accelerate periodontal wound healing/regeneration. Application of rhGDF-5/beta-TCP appears safe and should be further evaluated in human clinical trials.

  9. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  10. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    International Nuclear Information System (INIS)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-01-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  11. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    Energy Technology Data Exchange (ETDEWEB)

    Phaechamud, Thawatchai, E-mail: thawatchaienator@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Yodkhum, Kotchamon, E-mail: marskotchamon@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Charoenteeraboon, Juree, E-mail: juree@su.ac.th [Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Field of tissue engineering, Institute for Frontier Medical Science, Kyoto University, Kyoto 606-8507 (Japan)

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  12. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes.

    Science.gov (United States)

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A

    2017-01-05

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.

  13. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Science.gov (United States)

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material.

    Science.gov (United States)

    Golafshan, Nasim; Rezahasani, R; Tarkesh Esfahani, M; Kharaziha, M; Khorasani, S N

    2017-11-15

    The aim of this study was to develop a novel nanohybrid interpenetrating network hydrogel composed of laponite:polyvinyl alcohol (PVA)-alginate (LAP:PVA-Alginate) with adjustable mechanical, physical and biological properties for wound healing application. Results demonstrated that compared to PVA-Alginate, mechanical strength of LAP:PVA-Alginate significantly enhanced (upon 2 times). Moreover, incorporation of 2wt.% laponite reduced swelling ability (3 times) and degradation ratio (1.2 times) originating from effective enhancement of crosslinking density in the nanohybrid hydrogels. Furthermore, nanohybrid hydrogels revealed admirable biocompatibility against MG63 and fibroblast cells. Noticeably, MTT assay demonstrated that fibroblast proliferation significantly enhanced on 0.5wt.% LAP:PVA-alginate compared to PVA-alginate. Moreover, hemolysis and clotting tests indicated that the nanohybrid hydrogels promoted hemostasis which could be helpful in the wound dressing. Therefore, the synergistic effects of the nanohybrid hydrogels such as superior mechanical properties, adjustable degradation rate and admirable biocompatibility and hemolysis make them a desirable candidate for wound healing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Protocol for a systematic review of the efficacy of fat grafting and platelet-rich plasma for wound healing.

    Science.gov (United States)

    Smith, Oliver J; Kanapathy, Muholan; Khajuria, Ankur; Prokopenko, Max; Hachach-Haram, Nadine; Mann, Haroon; Mosahebi, Ash

    2017-06-06

    The use of fat grafting as a reconstructive surgical option is becoming much more common. Adipose-derived stem cells found in fat grafts are believed to facilitate wound healing via differentiation into fibroblasts and keratinocytes and the release of pro-healing growth factors. Several small studies have shown a positive effect of fat grafting in healing of wounds of a variety of aetiologies. When fat is combined with autologous platelet-rich plasma (PRP), there may be enhanced healing effects. This may be due to the pro-angiogenic and anti-inflammatory effects of PRP. We aim to synthesise the current evidence on combination fat grafting and PRP for wound healing to establish the efficacy of this technique. We will conduct a comprehensive literature search in the MEDLINE, EMBASE, CENTRAL, Science Citation Index, and Google Scholar databases (up to July 2017) to identify studies on fat grafting and PRP for wound healing. All primary studies and systematic reviews of these studies will be included, except case reports and case series with fewer than three patients, to evaluate the outcome of fat grafting and PRP on wound healing either on its own or when compared to other studies. Primary outcome measures are expected to be the proportion of total wounds healed at 12 weeks and the average wound healing time (time for 100% re-epithelialisation). Expected secondary outcome measures are the proportion of wounds achieving 50% wound healing, the type of wound benefitting most from fat grafting, economic evaluation, health-related quality of life, and adverse events. Subgroup analysis will be performed for the proportions of wounds healed based on wound aetiology. This review will provide robust evidence of the efficacy of fat grafting and PRP for wound healing. This is an emerging technique, and this review is expected to guide clinical practice and ongoing research aimed at improving wound care. PROSPERO CRD42016049881.

  16. Tight glycaemic control is a key factor in wound healing enhancement strategies in an experimental diabetes mellitus model.

    LENUS (Irish Health Repository)

    O'Sullivan, J B

    2012-02-01

    BACKGROUND: Diabetes mellitus is a leading cause of impaired wound healing. The aim of this study was to establish a glucose-controlled diabetic wound healing model. METHOD: Sprague-Dawley rats were divided into three groups: Control group (C), Diabetic Non-glucose Controlled group (DNC) and Diabetic glucose Controlled group (DC). RESULTS: Glucose control was achieved using Insulman Rapid (average daily glucose level <10 mmol\\/L). 18 Sprague-Dawley rats underwent a dorsal skin wound incision and 10 days later were killed. Fresh and fixed wound tensile strength, hydroxyproline and transforming growth factor beta-1 levels were improved in the DC group when compared to the DNC group. The quantity of fibroblasts present was similar in each group. CONCLUSION: This study demonstrates the impact that diabetes has on acute wound healing and suggests that wound modulating agents must be tested in both the tightly glucose-controlled as well as the poorly glucose-controlled diabetic animal models prior to proceeding with translational clinical studies.

  17. Hypoandrogenism related to early skin wound healing resistance in rats.

    Science.gov (United States)

    Petroianu, A; Veloso, D F M; Alberti, L R; Figueiredo, J A; Rodrigues, F H O Carmo; Carneiro, B G M Carvalho E

    2010-04-01

    The purpose of this study was to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and post-operative periods. Forty-four Wistar male rats were divided into four groups: Group 1Y (n = 11) - young control, sham-operated rats (30-day old); Group 1A (n = 10) - adult control, sham-operated rats (3 to 4-month old); Group 2Y (n = 10) - young rats after bilateral orchiectomy; and Group 2A (n = 11) - adult rats after bilateral orchiectomy. After 6 months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment using a tensiometer, on the 7th and 21st post-operative days. The wound healing resistance was higher in Group 1Y than in Group 2Y after 7 days (P Wound healing resistance at 21 days was higher than at 7 days in all groups (P wound healing resistance was not different between young and adult rats. It is concluded that bilateral orchiectomy diminished the wound healing resistance only in young animals at the 7th post-operative day.

  18. [ROLE OF microRNA IN SKIN DEVELOPMENT AND WOUND HEALING].

    Science.gov (United States)

    Song, Zhifang; Liu, Dewu

    2014-07-01

    To review the role of microRNA (miRNA) in skin development and wound healing. The recent literature about miRNA in skin development and wound healing was reviewed and analyzed. miRNA extensively involved in the development of the skin, including epidermal cell proliferation, differentiation, aging and hair follicle development; miR-203 known as the "skin-specific miRNA" can directly inhibit the expression of p63 and promote the differentiation of the epidermis. Meanwhile, miRNA also involved in various stages of skin regeneration and wound healing. Abnormal expression of miRNA is closely related with abnormal wound healing. miRNA play an important role in maintaining normal skin physiology and skin regeneration. To explore their roles in the healing of skin wounds and their regulatory mechanism can provide a new target for the treatment, which has a potential value and broad prospects.

  19. Molecular biology of wound healing

    Directory of Open Access Journals (Sweden)

    Nalliappan Ganapathy

    2012-01-01

    Full Text Available Wound healing is a dynamic process that involves the integrated action of a number of cell types, the extra cellular matrix, and soluble mediators termed cytokines.In recent years considerable advances have been made in the research, knowledge, and understanding of growth factors. Growth factors are, in essence, proteins that communicate activities to cells. Their function is dependent on the receptor site they attach to. Growth factors were initially named for the type of response generated by them, but newer research has shown that many of these cells may accomplish many different types of response. A growth factor′s role in wound repair is a critical component of the successful resolution of a wound. Growth factors help regulate many of the activities involved in healing. The role and function of growth factor is an evolving area of science and offers the potential for treatment alternatives in the future.

  20. [Relationship between FoxO1 Expression and Wound Age during Skin Incised Wound Healing].

    Science.gov (United States)

    Chen, Y; Ji, X Y; Fan, Y Y; Yu, L S

    2018-02-01

    To investigate FoxO1 expression and its time-dependent changes during the skin incised wound healing. After the establishment of the skin incised wound model in mice, the FoxO1 expression of skin in different time periods was detected by immunohistochemistry and Western blotting. Immunohistochemistry staining showed that FoxO1 was weakly expressed in a few fibroblasts of epidermis, hair follicles, sebaceous glands, vessel endothelium and dermis in the control group. The FoxO1 expression was enhanced in the epidermis and skin appendages around the wound during 6-12 h after injury, which could be detected in the infiltrating neutrophils and a small number of monocytes. FoxO1 was mainly expressed in monocytes during 1-3 d after injury, and in neovascular endothelial cells and fibroblasts during 5-10 d. On the 14th day after injury, the FoxO1 expression still could be detected in a few fibroblasts. The Western blotting results showed that the FoxO1 expression quantity of the tissue samples in injury group was higher than in control group. The FoxO1 expression peaked at 12 h and 7 d after injury. FoxO1 is time-dependently expressed in skin wound healing, which can be a useful marker for wound age determination. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  1. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain.

    Science.gov (United States)

    Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei

    2017-09-01

    Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.

  2. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing.

    Science.gov (United States)

    Xian, Law Jia; Chowdhury, Shiplu Roy; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2015-03-01

    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing. Human keratinocytes and fibroblasts were harvested via co-isolation technique and separated via differential trypsinization. These cells were then indirectly co-cultured in medium supplemented with 10% or 20% PRP for 3 days without medium change for analysis of wound-healing potential. The wound-healing potential of keratinocytes and fibroblasts was evaluated in terms of growth property, migratory property, extracellular matrix gene expression and soluble factor secretion. The co-isolation technique yielded a skin cell population dominated by fibroblasts and keratinocytes, with a small amount of melanocytes. Comparison between the 10% and 20% PRP cultures showed that the 10% PRP culture exhibited higher keratinocyte apparent specific growth rate, and secretion of hepatocyte growth factor, monocyte chemoattractant protein-1, epithelial-derived neutrophil-activating protein 78 and vascular endothelial growth factor A, whereas the 20% PRP culture has significantly higher collagen type 1 and collagen type 3 expressions and produced more granulocyte-macrophage colony-stimulating factor. PRP concentration modulates keratinocyte and fibroblast wound healing potential, whereby the 10% PRP promotes wound remodeling, whereas the 20% PRP enhances inflammation and collagen deposition. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  4. Healing incisional surgical wounds using Rose Hip oil in rats

    Directory of Open Access Journals (Sweden)

    Lainy Carollyne da Costa Cavalcante

    2017-03-01

    Full Text Available Purpose: To evaluate incisional surgical wound healing in rats by using Rose Hip (Rosa rubiginosa L. oil. Methods: Twenty-one days after the oophorectomy procedure, twenty-seven female, adult, Wistar rats were distributed into three groups: Control group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Rose Hip group (wound treatment with Rose Hip oil. Each group was distributed according to the date of euthanasia: 7, 14 and 21 days. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Rose Hip oil in comparison to the control and collagenase, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Rose Hip oil on incisional surgical wound healing.

  5. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  6. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  7. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  8. Validation of a laser-assisted wound measurement device in a wound healing model.

    Science.gov (United States)

    Constantine, Ryan S; Bills, Jessica D; Lavery, Lawrence A; Davis, Kathryn E

    2016-10-01

    In the treatment and monitoring of a diabetic or chronic wound, accurate and repeatable measurement of the wound provides indispensable data for the patient's medical record. This study aims to measure the accuracy of the laser-assisted wound measurement (LAWM) device against traditional methods in the measurement of area, depth and volume. We measured four 'healing' wounds in a Play-Doh(®) -based model over five subsequent states of wound healing progression in which the model was irregularly filled in to replicate the healing process. We evaluated the LAWM device against traditional methods including digital photograph assessment with National Institutes of Health ImageJ software, measurements of depth with a ruler and weight-to-volume assessment with dental paste. Statistical analyses included analysis of variance (ANOVA) and paired t-tests. We demonstrate that there are significantly different and nearly statistically significant differences between traditional ruler depth measurement and LAWM device measurement, but there are no statistically significant differences in area measurement. Volume measurements were found to be significantly different in two of the wounds. Rate of percentage change was analysed for volume and depth in the wound healing model, and the LAWM device was not significantly different than the traditional measurement technique. While occasionally inaccurate in its absolute measurement, the LAWM device is a useful tool in the clinician's arsenal as it reliably measures rate of percentage change in depth and volume and offers a potentially aseptic alternative to traditional measurement techniques. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  9. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  11. Wound Healing Properties of Selected Plants Used in Ethnoveterinary Medicine

    Directory of Open Access Journals (Sweden)

    Amos Marume

    2017-09-01

    Full Text Available Plants have arrays of phytoconstituents that have wide ranging biological effects like antioxidant, anti-inflammatory and antimicrobial properties key in wound management. In vivo wound healing properties of ointments made of crude methanolic extracts (10% extract w/w in white soft paraffin of three plant species, Cissus quadrangularis L. (whole aerial plant parts, Adenium multiflorum Klotzsch (whole aerial plant parts and Erythrina abyssinica Lam. Ex DC. (leaves and bark used in ethnoveterinary medicine were evaluated on BALB/c female mice based on wound area changes, regular observations, healing skin's percentage crude protein content and histological examinations. White soft paraffin and 3% oxytetracycline ointment were used as negative and positive controls, respectively. Wound area changes over a 15 day period for mice treated with C. quadrangularis and A. multiflorum extract ointments were comparable to those of the positive control (oxytetracycline ointment. Wounds managed with the same extract ointments exhibited high crude protein contents, similar to what was observed on animals treated with the positive control. Histological evaluations revealed that C. quadrangularis had superior wound healing properties with the wound area completely returning to normal skin structure by day 15 of the experiment. E. abyssinica leaf and bark extract ointments exhibited lower wound healing properties though the leaf extract exhibited some modest healing properties.

  12. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies.

    Science.gov (United States)

    Pence, Brandt D; Woods, Jeffrey A

    2014-01-01

    Significance: Impaired cutaneous wound healing is a major health concern. Obesity has been shown in a number of studies to impair wound healing, and chronic nonhealing wounds in obesity and diabetes are a major cause of limb amputations in the United States. Recent Advances: Recent evidence indicates that aberrant wound site inflammation may be an underlying cause for delayed healing. Obesity, diabetes, and other conditions such as stress and aging can result in a chronic low-level inflammatory state, thereby potentially affecting wound healing negatively. Critical Issues: Interventions which can speed the healing rate in individuals with slowly healing or nonhealing wounds are of critical importance. Recently, physical exercise training has been shown to speed healing in both aged and obese mice and in older adults. Exercise is a relatively low-cost intervention strategy which may be able to be used clinically to prevent or treat impairments in the wound-healing process. Future Directions: Little is known about the mechanisms by which exercise speeds healing. Future translational studies should address potential mechanisms for these exercise effects. Additionally, clinical studies in obese humans are necessary to determine if findings in obese rodent models translate to the human population.

  13. A unique combination of infrared and microwave radiation accelerates wound healing.

    Science.gov (United States)

    Schramm, J Mark; Warner, Dave; Hardesty, Robert A; Oberg, Kerby C

    2003-01-01

    Light or electromagnetic radiation has been reported to enhance wound healing. The use of selected spectra, including infrared and microwave, has been described; however, no studies to date have examined the potential benefit of combining these spectra. In this study, a device that emits electromagnetic radiation across both the infrared and microwave ranges was used. To test the effects of this unique electromagnetic radiation spectrum on wound healing, two clinically relevant wound-healing models (i.e., tensile strength of simple incisions and survival of McFarlane flaps) were selected. After the creation of a simple full-thickness incision (n = 35 rats) or a caudally based McFarlane flap (n = 33 rats), animals were randomly assigned to one of three treatment groups: untreated control, infrared, or combined electromagnetic radiation. Treatment was administered for 30 minutes, twice daily for 18 days in animals with simple incisions, and 15 days in animals with McFarlane flaps. The wound area or flap was harvested and analyzed, blinded to the treatment regimens. A p value of less than 0.05 obtained by analysis of variance was considered to be statistically significant. Animals receiving combined electromagnetic radiation demonstrated increased tensile strength (2.62 N/mm2) compared with animals receiving infrared radiation (2.36 N/mm2) or untreated controls (1.73 N/mm2, p radiation had increased flap survival (78.0 percent) compared with animals receiving infrared radiation (69.7 percent) and untreated controls (63.1 percent, p radiation provided a distinct advantage in wound healing that might augment current treatment regimens.

  14. Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans - Study of delayed wound healing mechanism.

    Science.gov (United States)

    Yamauchi, Makoto; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Matsumoto, Yoshitaka; Yamashita, Ken; Kayama, Musashi; Sato, Noriyuki; Yotsuyanagi, Takatoshi

    2016-05-13

    Skin atrophy and delayed wound healing are observed in aged humans; however, the molecular mechanism are still elusive. The aim of this study was to analyze the molecular mechanisms of delayed wound healing by aging using α-Klotho-deficient (kl/kl) mice, which have phenotypes similar to those of aged humans. The kl/kl mice showed delayed wound healing and impaired granulation formation compared with those in wild-type (WT) mice. The skin graft experiments revealed that delayed wound healing depends on humoral factors, but not on kl/kl skin tissue. The mRNA expression levels of cytokines related to acute inflammation including IL-1β, IL-6 and TNF-α were higher in wound lesions of kl/kl mice compared with the levels in WT mice by RT-PCR analysis. LPS-induced TNF-α production model using spleen cells revealed that TNF-α production was significantly increased in the presence of FGF23. Thus, higher levels of FGF23 in kl/kl mouse may have a role to increase TNF-α production in would lesion independently of α-Klotho protein, and impair granulation formation and delay wound healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Skin Wound Healing: An Update on the Current Knowledge and Concepts.

    Science.gov (United States)

    Sorg, Heiko; Tilkorn, Daniel J; Hager, Stephan; Hauser, Jörg; Mirastschijski, Ursula

    2017-01-01

    The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. Although wound healing mechanisms and specific cell functions in wound

  16. Influence of phytochemicals in piper betle linn leaf extract on wound healing.

    Science.gov (United States)

    Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh

    2015-01-01

    Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.

  17. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing.

    Science.gov (United States)

    Duscher, Dominik; Januszyk, Michael; Maan, Zeshaan N; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Dong, Yixiao; Khong, Sacha M; Longaker, Michael T; Gurtner, Geoffrey C

    2017-03-01

    A hallmark of diabetes mellitus is the breakdown of almost every reparative process in the human body, leading to critical impairments of wound healing. Stabilization and activity of the transcription factor hypoxia-inducible factor (HIF)-1α is impaired in diabetes, leading to deficits in new blood vessel formation in response to injury. In this article, the authors compare the effectiveness of two promising small-molecule therapeutics, the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine, for attenuating diabetes-associated deficits in cutaneous wound healing by enhancing HIF-1α activation. HIF-1α stabilization, phosphorylation, and transactivation were measured in murine fibroblasts cultured under normoxic or hypoxic and low-glucose or high-glucose conditions following treatment with deferoxamine or dimethyloxalylglycine. In addition, diabetic wound healing and neovascularization were evaluated in db/db mice treated with topical solutions of either deferoxamine or dimethyloxalylglycine, and the efficacy of these molecules was also compared in aged mice. The authors show that deferoxamine stabilizes HIF-1α expression and improves HIF-1α transactivity in hypoxic and hyperglycemic states in vitro, whereas the effects of dimethyloxalylglycine are significantly blunted under hyperglycemic hypoxic conditions. In vivo, both dimethyloxalylglycine and deferoxamine enhance wound healing and vascularity in aged mice, but only deferoxamine universally augmented wound healing and neovascularization in the setting of both advanced age and diabetes. This first direct comparison of deferoxamine and dimethyloxalylglycine in the treatment of impaired wound healing suggests significant therapeutic potential for topical deferoxamine treatment in ischemic and diabetic disease.

  18. Wound healing stimulation in mice by low-level light

    Science.gov (United States)

    Demidova, Tatiana N.; Herman, Ira M.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Hamblin, Michael R.

    2006-02-01

    It has been known for many years that low levels of laser or non-coherent light (LLLT) accelerate some phases of wound healing. LLLT can stimulate fibroblast and keratinocyte proliferation and migration. It is thought to work via light absorption by mitochondrial chromophores leading to an increase in ATP, reactive oxygen species and consequent gene transcription. However, despite many reports about the positive effects of LLLT on wound healing, its use remains controversial. Our laboratory has developed a model of a full thickness excisional wound in mice that allows quantitative and reproducible light dose healing response curves to be generated. We have found a biphasic dose response curve with a maximum positive effect at 2 J/cm2 of 635-nm light and successively lower beneficial effects from 3-25 J/cm2, the effect is diminished at doses below 2J/cm2 and gradually reaches control healing levels. At light doses above 25 J/cm2 healing is actually worse than controls. The two most effective wavelengths of light were found to be 635 and 820-nm. We found no difference between filtered 635+/-15-nm light from a lamp and 633-nm light from a HeNe laser. The strain and age of the mouse affected the magnitude of the effect. Light treated wounds start to contract after illumination while control wounds initially expand for the first 24 hours. Our hypothesis is that a single brief light exposure soon after wounding affects fibroblast cells in the margins of the wound. Cells may be induced to proliferate, migrate and assume a myofibroblast phenotype. Our future work will be focused on understanding the mechanisms underlying effects of light on wound healing processes.

  19. Aging-dependent reduction in glyoxalase 1 delays wound healing.

    Science.gov (United States)

    Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P

    2013-01-01

    Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.

  20. Naturally Occurring Wound Healing Agents: An Evidence-Based Review.

    Science.gov (United States)

    Karapanagioti, E G; Assimopoulou, A N

    2016-01-01

    Nature constitutes a pool of medicines for thousands of years. Nowadays, trust in nature is increasingly growing, as many effective medicines are naturally derived. Over the last decades, the potential of plants as wound healing agents is being investigated. Wounds and ulcers affect the patients' life quality and often lead to amputations. Approximately 43,000,000 patients suffer from diabetic foot ulcers worldwide. Annually, $25 billion are expended for the treatment of chronic wounds, with the number growing due to aging population and increased incidents of diabetes and obesity. Therefore a timely, orderly and effective wound management and treatment is crucial. This paper aims to systematically review natural products, mainly plants, with scientifically well documented wound healing activity, focusing on articles based on animal and clinical studies performed worldwide and approved medicinal products. Moreover, a brief description of the wound healing mechanism is presented, to provide a better understanding. Although a plethora of natural products are in vitro and in vivo evaluated for wound healing activity, only a few go through clinical trials and even fewer launch the market as approved medicines. Most of them rely on traditional medicine, indicating that ethnopharmacology is a successful strategy for drug development. Since only 6% of plants have been systematically investigated pharmacologically, more intensified efforts and emerging advancements are needed to exploit the potentials of nature for the development of novel medicines. This paper aims to provide a reliable database and matrix for thorough further investigation towards the discovery of wound healing agents.

  1. Efficacy of Carbazole Alkaloids, Essential Oil and Extract of Murraya koenigii in Enhancing Subcutaneous Wound Healing in Rats

    Directory of Open Access Journals (Sweden)

    Thilahgavani Nagappan

    2012-12-01

    Full Text Available The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1, mahanimbicine (2, mahanimbine (3, essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25% and the group treated with mahanimbicine (2 (12.60%, while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2 (88.54% and extract of M. koenigii (91.78% showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1, mahanimbine (3 and essential oil. The study revealed the potential of mahanimbicine (2 and crude extract of M. koenigii in facilitation and acceleration of wound healing.

  2. Dressings and topical agents for surgical wounds healing by secondary intention

    NARCIS (Netherlands)

    Vermeulen, H.; Ubbink, D.; Goossens, A.; de Vos, R.; Legemate, D.

    2004-01-01

    BACKGROUND: Many different wound dressings and topical applications are used to cover surgical wounds healing by secondary intention. It is not known whether these dressings heal wounds at different rates. OBJECTIVES: To assess the effectiveness of dressings and topical agents on surgical wounds

  3. Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds.

    Science.gov (United States)

    Law, Jia Xian; Chowdhury, Shiplu Roy; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2017-08-01

    Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds. To achieve this, full-thickness wounds of size 1.767 cm 2 were created at the dorsum part of nude mice and treated with keratinocytes (2 × 10 4  cells/cm 2 ) and fibroblasts (3 × 10 4  cells/cm 2 ) suspended in 10% PRP-enriched medium. Wound examination was conducted weekly and the animals were euthanized after 2 weeks. Gross examination showed that re-epithelialization was fastest in the PRP+cells group at both day 7 and 14, followed by the PRP group and NT group receiving no treatment. Only the PRP+cells group achieved complete wound closure by 2 weeks. Epidermal layer was presence in the central region of the wound of the PRP+cells and PRP groups but absence in the NT group. Comparison between the PRP+cells and PRP groups showed that the PRP+cells-treated wound was more mature as indicated by the presence of thinner epidermis with single cell layer thick basal keratinocytes and less cellular dermis. In summary, the combination of low cell density and diluted PRP creates a synergistic effect which expedites the healing of full-thickness wounds. This combination has the potential to be developed as a rapid wound therapy via the direct application of freshly harvested skin cells in diluted PRP. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  4. Influence of hypoandrogenism in skin wound healing resistance in rats

    Directory of Open Access Journals (Sweden)

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  5. Stem Cell Therapy for Healing Wounded Skin and Soft Tissues

    Science.gov (United States)

    2014-03-01

    healing process. We selected fibrin and hydrogel as delivery vehicles for our test. The rationale is that fibrin, which is a natural biopolymer of blood...E.U. Alt, IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin- chitosan scaffold enhance wound repair in a murine soft

  6. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Science.gov (United States)

    Funari, Vincent A; Winkler, Michael; Brown, Jordan; Dimitrijevich, Slobodan D; Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2013-01-01

    MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  7. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  8. [Wound healing is still a game of " blind men and an elephant"].

    Science.gov (United States)

    Han, C M

    2016-10-20

    The wound healing includes non-healing and overhealing of the wounds. The results of wound healing are well known by people such as non-healing of the diabetic ulcer or hypertrophic scar after deep burn. In this issue, three papers involve in wound healing, one about autologous adipose-derived mesenchymal stem cells injected into wound or scar of rabbit ear, one about severe hypoxia and hypoalbuminemia inducing human hypertrophic scar derived fibroblast apoptosis in vitro, and another about the dysfunction of protein kinase B/mammalian target of rapamycin signaling pathway contributing to the pathophysiological characteristics of diabetic skin and non-healing wound. The basic problem of hypertrophic scar study is lacking an ideal animal model. Although rabbit ear model or red Duroc pig model has been used widely for study on hypertrophic scar, they can not fully represent human dermal fibrosis after deep trauma on the skin. I recommend A novel nude mouse model of hypertrophic scarring using scratched full thickness human skin grafts recently published in Advances in Wound Care to the readers. The author emphasizes that the wound healing study is still in the situation like the game of " blind men and an elephant" .

  9. Tissue transglutaminase in normal and abnormal wound healing: review article

    OpenAIRE

    Verderio, EAM; Johnson, T; Griffin, M

    2004-01-01

    A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may al...

  10. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  11. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats.

    Science.gov (United States)

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, Av; Maharaj, Sandeep

    2014-07-01

    The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group animals were treated with mupirocin and petroleum jelly, respectively. Treatment was given for 13 days and the wound area was measured on alternate days. Parameters of healing assessed were the rate of wound contraction, period of epithelialization and hydroxyproline content. Antimicrobial activity of the extract was observed against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Phytochemical analysis of the extract showed the presence of saponins, tannins, alkaloids and flavanoids. Extract-treated animals exhibited 87% reduction in the wound area over 13 days when compared with the control (78%) and standard (83%) groups (P lobata as a pharmacotherapy for wound healing.

  12. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis

    Science.gov (United States)

    Zhao, Yan; Bao, Lei; Chan, Lawrence S.; DiPietro, Luisa A.; Chen, Lin

    2016-01-01

    Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies. PMID:26752054

  13. Effect of using Falcaria vulgaris on skin wound healing and immune response of common carp (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    nasrin Choobkar

    2015-05-01

    Full Text Available Antibiotics are generally used to increase the immune response and wound healing of aquatic animals but due to the residual effects of these drugs, researchers are looking to replace them with natural materials such as medicinal plant extract. The aim of this study was to evaluate the effect of different concentrations of Falcaria vulgaris on wound healing and enhancement of immune system in common carp (Cyprinus carpio.The effect of Falcaria vulgaris at concentrations of 0, 2 and 10% with Lofag foods used on wound healing, immune response, and weight gain and survival of common carp was investigated during a 21 day period with twice per day feeding on the basis of body weight. The results showed that using Falcaria vulgaris at the 10% concentration had the greatest effect on wound healing, stimulation of the immune system by increasing white blood cells, weight gain and survival of carp in comparison with the control group. This herb can be used in wound healing, increasing resistance to disease and weight gain of common carp.

  14. Wound healing activity of Curcuma zedoaroides

    Directory of Open Access Journals (Sweden)

    Pattreeya Tungcharoen

    2016-12-01

    Full Text Available Curcuma zedoaroides rhizomes have been used in Thai folk medicine as antidote and wound care for king cobra bite wound. The inhibitory effect of C. zedoaroides extract and its fractions on inflammation were detected by reduction of nitric oxide release using RAW264.7 cells. The improvement capabilities on wound healing were determined on fibroblast L929 cells proliferation and migration assays. The results showed that crude EtOH extract, CHCl3 and hexane fractions inhibited NO release with IC50 values of 14.0, 12.4 and 14.6 μg/ml, respectively. The CHCl3 and EtOAc fractions significantly increased L929 cells proliferation, enhanced fibroblast cells migration (100% on day 3 and scavenged DPPH with IC50 of 40.9 and 7.2 μg/ml, respectively. Only the CHCl3 fraction showed marked effect against carrageenan-induced rat paw edema (IC50 = 272.4 mg/kg. From the present study, both in vitro and in vivo models support the traditional use of C. zedoaroides

  15. Study of wound healing potential of Stevia rebaudiana ethanol extract in male rats

    Directory of Open Access Journals (Sweden)

    S. Goorani

    2018-01-01

    Full Text Available Background and objectives: Stevia rebaudiana has been used in medicine as anti-inflammatory, antioxidant, antipyretic, anti-fungal, and antibacterial agent. The present study was conducted to investigate the healing effects of S. rebaudiana ethanol extracts on cutaneous wounds in rats. Methods: Full-thickness excisional wounds (2×2 cm were induced on the back of 32 rats. The rats were divided into four groups as follows; untreated (control and treated with 1 mL basal cream, 1 mL S. rebaudiana ethanol extract 10%, and 1 mL tetracycline (3% for 20 days (short term. Animals of each group were euthanized at 20 day post-injury and wounds were assessed through macroscopic and microscopic analyses. Results: During the experiment, S. rebaudiana indicated a significant reduction in the wound area compared to other groups. Parameters such as arrangement of the healing tissue, re-epithelilization and epithelial formation demonstrated considerable changes when compared to the control. In addition, treatment with S. rebaudiana decreased the total number of cells, fibrocytes/fibroblasts ratio, neutrophils, and lymphocytes and enhanced the number of blood vessels and fibroblasts at 20 day. Conclusion: The present study demonstrated the wound healing activity of S. rebaudiana, lending credence to the folkloric use in the treatment of cutaneous wounds.

  16. A human model of small fiber neuropathy to study wound healing.

    Science.gov (United States)

    Illigens, Ben M W; Gibbons, Christopher H

    2013-01-01

    The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (PDeep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (Pshallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  17. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation.

    Science.gov (United States)

    Ayuk, Sandra Matabi; Abrahamse, Heidi; Houreld, Nicolette Nadene

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  18. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Directory of Open Access Journals (Sweden)

    Sandra Matabi Ayuk

    2016-01-01

    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  19. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model.

    Science.gov (United States)

    Suzuki, Ryoichi; Takakuda, Kazuo

    2016-11-01

    This study aimed to elucidate the optimum usage parameters of low reactive-level laser therapy (LLLT) in a rat incisional wound model. In Sprague-Dawley rats, surgical wounds of 15-mm length were made in the dorsal thoracic region. They were divided into groups to receive 660-nm diode laser irradiation 24 h after surgery at an energy density of 0 (control), 1, 5, or 10 J/cm 2 . Tissue sections collected on postoperative day 3 were stained with hematoxylin-eosin and an antibody for ED1 to determine the number of macrophages around the wound. Samples collected on day 7 were stained with hematoxylin-eosin and observed via polarized light microscopy to measure the area occupied by collagen fibers around the wound; day 7 skin specimens were also subjected to mechanical testing to evaluate tensile strength. On postoperative day 3, the numbers of macrophages around the wound were significantly lower in the groups receiving 1 and 5 J/cm 2 irradiation, compared to the control and 10 J/cm 2 irradiation groups (p diode laser with energy density of 1 and 5 J/cm 2 enhanced wound healing in a rat incisional wound model. However, a higher radiation energy density yielded no significant enhancement.

  20. Delayed wound healing after forefoot surgery in patients with rheumatoid arthritis.

    Science.gov (United States)

    Ishie, Shinichiro; Ito, Hiromu; Azukizawa, Masayuki; Furu, Moritoshi; Ishikawa, Masahiro; Ogino, Hiroko; Hamamoto, Yosuke; Matsuda, Shuichi

    2015-05-01

    To elucidate the systemic and local risk factors and the effect of surgical procedures for delayed wound healing after forefoot surgery in patients with rheumatoid arthritis (RA). Fifty forefoot surgeries were performed in 39 patients using resection arthroplasty or a joint-preserving procedure (25 feet for each procedure). The associations between the occurrence of delayed wound healing and clinical variables, radiological assessment, or surgical procedures were analyzed. Delayed wound healing was recorded in nine feet of eight patients. The duration of RA was significantly longer in the delayed healing group than that in the healed group. Age, sex, smoking history, concomitant diabetes, and RA medication did not differ between the groups. Radiological evaluation showed significant differences between groups in metatarsophalangeal dorsal flexion angle. The shortened length of the fourth and the fifth metatarsal bones affected the occurrence of the complication. The joint-preserving procedure had significantly less delayed wound healing compared with resection arthroplasty. Preoperative dorsoplantar deformity and perioperative tissue damage can cause delayed wound healing after forefoot surgery in RA patients.

  1. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    Science.gov (United States)

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  2. The heme-heme oxygenase system in wound healing; implications for scar formation.

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Scharstuhl, A.; Tyrrell, R.M.; Hoff, J.W. Von den; Jozkowicz, A.; Dulak, J.; Russel, F.G.M.; Kuijpers-Jagtman, A.M.

    2010-01-01

    Wound healing is an intricate process requiring the concerted action of keratinocytes, fibroblasts, endothelial cells, and macrophages. Here, we review the literature on normal wound healing and the pathological forms of wound healing, such as hypertrophic or excessive scar formation, with special

  3. Age-related aspects of cutaneous wound healing: a mini-review.

    Science.gov (United States)

    Sgonc, Roswitha; Gruber, Johann

    2013-01-01

    As the aging population in developed countries is growing in both numbers and percentage, the medical, social, and economic burdens posed by nonhealing wounds are increasing. Hence, it is all the more important to understand the mechanisms underlying age-related impairments in wound healing. The purpose of this article is to give a concise overview of (1) normal wound healing, (2) alterations in aging skin that have an impact on wound repair, (3) alterations in the repair process of aged skin, and (4) general factors associated with old age that might impair wound healing, with a focus on the literature of the last 10 years. Copyright © 2012 S. Karger AG, Basel.

  4. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    DEFF Research Database (Denmark)

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias

    2012-01-01

    -37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However...

  5. The use of wound healing assessment methods in psychological studies: a review and recommendations.

    Science.gov (United States)

    Koschwanez, Heidi E; Broadbent, Elizabeth

    2011-02-01

    To provide a critical review of methods used to assess human wound healing in psychological research and related disciplines, in order to guide future research into psychological influences on wound healing. Acute wound models (skin blister, tape stripping, skin biopsy, oral palate biopsy, expanded polytetrafluoroethylene tubing), surgical wound healing assessment methods (wound drains, wound scoring), and chronic wound assessment techniques (surface area, volumetric measurements, wound composition, and assessment tools/scoring systems) are summarized, including merits, limitations, and recommendations. Several dermal and mucosal tissue acute wound models have been established to assess the effects of psychological stress on the inflammatory, proliferative, and repair phases of wound healing in humans, including material-based models developed to evaluate factors influencing post-surgical recovery. There is a paucity of research published on psychological factors influencing chronic wound healing. There are many assessment techniques available to study the progression of chronic wound healing but many difficulties inherent to long-term clinical studies. Researchers need to consider several design-related issues when conducting studies into the effects of psychological stress on wound healing, including the study aims, type of wound, tissue type, setting, sample characteristics and accessibility, costs, timeframe, and facilities available. Researchers should consider combining multiple wound assessment methods to increase the reliability and validity of results and to further understand mechanisms that link stress and wound healing. ©2010 The British Psychological Society.

  6. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam

    Directory of Open Access Journals (Sweden)

    Abubakar Amali Muhammad

    2013-01-01

    Full Text Available Moringa oleifera Lam. (M. oleifera from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.

  7. Application of Three - dimensional Wound Analyzer in the Small Wound Area Measurement during the Process of Wound Healing.

    Science.gov (United States)

    Sheng, Jiajun; Li, Haihang; Jin, Jian; Liu, Tong; Ma, Bing; Liu, Gongcheng; Zhu, Shihui

    2018-02-20

    The objective of this study was to determinate the reliability of 3-dimensional wound analyzer (3-DWMD) in the wound area measurement for animal small area in the process of wound healing. Seven Sprague-Dawley rats were used to establish the skin defect model. And the wound area and time consumption were measured on days 0, 5, 10, 15 using 3-DWMD, investigators, and planimetry method. The measurement results using 3-DWMD and investigators were analyzed comparative with that using planimetry method separately. A total 46 wounds, including 32 irregular wounds and regular 14 wounds, were measured. No matter calculating the irregular wounds or the regular wounds, there was no significant difference between 3-DWMD group and planimetry group in measuring wound area (P > 0.05). However, a statistically significant difference was found in time-consuming for measuring wound area between 3-DWMD group and planimetry group (P area, and its measurement results were consistent with planimetry method. Therefore, such measuring equipment has clinical reference value for measuring precision area of the wound in the process of wound healing.

  8. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro

    Science.gov (United States)

    Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei

    2015-01-01

    Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620

  9. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.

    Science.gov (United States)

    Lv, Fang; Wang, Jie; Xu, Peng; Han, Yiming; Ma, Hongshi; Xu, He; Chen, Shijie; Chang, Jiang; Ke, Qinfei; Liu, Mingyao; Yi, Zhengfang; Wu, Chengtie

    2017-09-15

    Diabetic wound is a common complication of diabetes. Biomaterials offer great promise in inducing tissue regeneration for chronic wound healing. Herein, we reported a conducive Poly (caprolactone) (PCL)/gelatin nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) for diabetic wound healing. NAGEL bioceramic particles were well distributed in the inner of PCL/gelatin nanofibers via co-electrospinning process and the Si ions maintained a sustained release from the composite scaffolds during the degradation process. The nanofibrous scaffolds significantly promoted the adhesion, proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human keratinocytes (HaCaTs) in vitro. The in vivo study demonstrated that the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization in the wound sites of diabetic mice model, as well as inhibited inflammation reaction. The mechanism for nanofibrous composite scaffolds accelerating diabetic wound healing is related to the activation of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vivo and in vitro. Our results suggest that the released Si ions and nanofibrous structure of scaffolds have a synergetic effect on the improved efficiency of diabetic wound healing, paving the way to design functional biomaterials for tissue engineering and wound healing applications. In order to stimulate tissue regeneration for chronic wound healing, a new kind of conducive nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) were prepared via co-electrospinning process. Biological assessments revealed that the NAGEL bioceramic particles could active epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vitro and in vivo. The new composite scaffold

  10. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  11. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    Science.gov (United States)

    Felder, Marcel; Sallin, Pauline; Barbe, Laurent; Haenni, Beat; Gazdhar, Amiq; Geiser, Thomas; Guenat, Olivier

    2012-02-07

    We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).

  12. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing.

    Science.gov (United States)

    Shen, Xian-Rong; Chen, Xiu-Li; Xie, Hai-Xia; He, Ying; Chen, Wei; Luo, Qun; Yuan, Wei-Hong; Tang, Xue; Hou, Deng-Yong; Jiang, Ding-Wen; Wang, Qing-Rong

    2017-10-27

    , sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200 μm, porosity rate of 83.57% ± 2.64%, water vapor transmission ratio (WVTR) of 4500 g/m 2 , tensile strength of 1.79 ± 0.41 N/mm, and elongation at break of 4.52% ± 0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94% ± 5.50%, 29.40% ± 1.10% and 47.24% ± 8.40%, respectively. SSCS also enhanced TGF-β and CD31 expression in the initial stage of the healing period. The SSCS + PU dressing effectively protected wounds from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS + PU dressing also enhanced expression of TGF-β and CD31. The effects of SSCS and SSCS + PU were superior to those of both the chitosan and gauze dressings. SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS + PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.

  13. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Peilang Yang

    Full Text Available Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD feeding regimen followed by multiple injections of streptozotocin (STZ at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  14. Wound-healing potential of the fruit extract of Phaleria macrocarpa

    Directory of Open Access Journals (Sweden)

    Walaa Najm Abood

    2015-05-01

    Full Text Available The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson’s trichrome stain. Superoxide dismutase (SOD and catalase (CAT activities, along with malondialdehyde (MDA level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1 and tumor necrosis factor alpha (TNF-α were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.

  15. Exploring the Urtica dioica Leaves Hemostatic and Wound-Healing Potential.

    Science.gov (United States)

    Zouari Bouassida, Karama; Bardaa, Sana; Khimiri, Meriem; Rebaii, Tarek; Tounsi, Slim; Jlaiel, Lobna; Trigui, Mohamed

    2017-01-01

    The present paper investigated the efficiency of Urtica dioica (U. dioica) on hemostatic and wound healing activities. U. dioica leaf extracts were evaluated for their antibacterial and antioxidant effects as well as their flavonoid and polyphenol content. The hydroethanolic extract (EtOH-H 2 OE), showing the most potent antibacterial and antioxidant activities in vitro , thanks to its flavonoid and polyphenol richness, was selected for hemostatic and wound healing evaluation. Twenty-four rats completing full-thickness wounds were split into four groups. The wounds were topically treated with saline solution, glycerol, "CICAFLORA," and U. dioica EtOH-H 2 OE (50  µ L/mm 2 ) until day 11. The wound healing effect was assessed by macroscopic, histological, and biochemical parameters. Rats treated with EtOH-H 2 OE showed fast wound closure (92.39%) compared to the control animals (60.91%) on the 11th day of wounding ( P dioica EtOH-H 2 OE treated rats. Analysis of fatty acids and sterols by GC-MS showed the presence of unsaturated fatty acids and a high concentration of lupeol known for their involvement in reepithelialization. These results prove the efficiency of U. dioica EtOH-H 2 OE in wound healing and supported its traditional use.

  16. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation. Copyright © 2013 Wiley Periodicals, Inc.

  17. Wound healing in a fetal, adult, and scar tissue model: a comparative study

    NARCIS (Netherlands)

    Coolen, N.A.; Schouten, K.C.; Boekema, B.K.; Middelkoop, E.; Ulrich, M.

    2010-01-01

    Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to

  18. Methylisothiazolinone toxicity and inhibition of wound healing and regeneration in planaria.

    Science.gov (United States)

    Van Huizen, Alanna V; Tseng, Ai-Sun; Beane, Wendy S

    2017-10-01

    Methylisothiazolinone (MIT) is a common biocide used in cosmetic and industrial settings. Studies have demonstrated that MIT is a human sensitizer, to the extent that in 2013 MIT was named allergen of the year. Recently, we showed that MIT exposure in Xenopus laevis (the African clawed frog) inhibits wound healing and tail regeneration. However, it is unknown whether MIT affects these processes in other animals. Here, we investigated the effects of MIT exposure in planaria-non-parasitic freshwater flatworms able to regenerate all tissues after injury. Using a common research strain of Dugesia japonica, we determined that intact planarians exposed to 15μM MIT displayed both neuromuscular and epithelial-integrity defects. Furthermore, regenerating (head and tail) fragments exposed to 15μM MIT failed to close wounds or had significantly delayed wound healing. Planarian wounds normally close within 1h after injury. However, most MIT-exposed animals retained open wounds at 24h and subsequently died, and those few animals that were able to undergo delayed wound healing without dying exhibited abnormal regeneration. For instance, head regeneration was severely delayed or inhibited, with anterior structures such as eyes failing to form in newly produced tissues. These data suggest that MIT directly affects both wound healing and regeneration in planarians. Next, we investigated the ability of thiol-containing antioxidants to rescue planarian wound closure during MIT exposure. The data reveal both n-acetyl cysteine and glutathione were each able to fully rescue MIT inhibition of wound healing. Lastly, we established MIT toxicity levels by determining the LC 50 of 5 different planarian species: D. japonica, Schmidtea mediterranea, Girardia tigrina, Girardia dorotocephala, and Phagocata gracilis. Our LC 50 data revealed that concentrations as low as 39μM (4.5ppm) are lethal to planarians, with concentrations of just 5μM inhibiting wound healing, and suggest that phylogeny

  19. Effects of Andiroba oil (Carapa guianensis on wound healing in alloxan-diabetic rats

    Directory of Open Access Journals (Sweden)

    Bruna Angelina Alves de Souza

    2017-10-01

    Full Text Available Purpose: To evaluate wound healing in diabetic rats by using topic Andiroba oil (Carapa guianensis. Methods: Six male, adult, Wistar rats were distributed into three groups: Sham group (wound treatment with distilled water; Collagenase group (treatment with collagenase ointment; and Andiroba group (wound treatment with Andiroba oil. The wound was evaluated considering the macroscopic and microscopic parameters. Results: The results indicated differences in the healing of incisional wounds between treatments when compared to control group. Accelerated wound healing was observed in the group treated with Andiroba oil and Collagenase in comparison to control group, especially after the 14th day. Morphometric data confirmed the structural findings. Conclusion: There was significant effect in topical application of Andiroba oil on wound healing in rats with induced diabetes.   Keywords: Medicinal plants. Diabetes Mellitus. Wound healing. Rats.

  20. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing.

    Science.gov (United States)

    Kaisang, Lin; Siyu, Wang; Lijun, Fan; Daoyan, Pan; Xian, Cory J; Jie, Shen

    2017-09-01

    Chronic nonhealing wound is a multifactorial complication of diabetes that results specifically as a consequence of impaired angiogenesis and currently lacks in effective treatments. Although a stem cell-based therapy may provide a novel treatment to augment diabetic wound healing, inferior cell survival at the diabetic skin wound is one of the key causes that are responsible for the low efficacy of the stem cell therapy. In this work, we used an injectable, biocompatible, and thermosensitive hydrogel Pluronic F-127 to encapsulate allogeneic nondiabetic adipose-derived stem cells (ADSCs) and topically applied the cells to a full-thickness cutaneous wound in the streptozotocin-induced diabetic model in rats. The cells seeded in the hydrogel enhanced angiogenesis (CD31 marker) and promoted the cell proliferation (Ki67 marker) at the wound site and significantly accelerated wound closure, which was accompanied by facilitated regeneration of granulation tissue. Consistently, levels of the messenger RNA expression of key angiogenesis growth factor, vascular endothelial growth factor, and key wound healing growth factor, transforming growth factor beta 1, were also upregulated in the cell-treated wounds when compared with untreated wounds. The results indicated that the transplantation of allogeneic ADSCs via the hydrogel improves the efficiency of cell delivery and optimizes the performance of ADSCs for augmenting diabetic wound healing. In conclusion, this ADSC-based therapy may provide a novel therapeutic strategy for the treatment of nonhealing diabetic foot ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Relationship between Post-kidney Transplantation Antithymocyte Globulin Therapy and Wound Healing Complications

    OpenAIRE

    Pourmand, G. R.; Dehghani, S.; Saraji, A.; Khaki, S.; Mortazavi, S. H.; Mehrsai, A.; Sajadi, H.

    2012-01-01

    Background: Wound healing disorders are probably the most common post-transplantation surgical complications. It is thought that wound healing disturbance occurs due to antiproliferative effects of immunosuppressive drugs. On the other hand, success of transplantation is dependent on immunosuppressive therapies. Antihuman thymocyte globulin (ATG) has been widely used as induction therapy but the impact of this treatment on wound healing is not fully understood. Objective: To investigate wound...

  2. Targeting connexin 43 in diabetic wound healing: Future perspectives

    Directory of Open Access Journals (Sweden)

    Bajpai S

    2009-01-01

    Full Text Available The unknown mechanisms of impaired tissue repair in diabetes mellitus are making this disease a serious clinical problem for the physicians worldwide. The lacuna in the knowledge of the etiology of diabetic wounds necessitates more focused research in order to develop new targeting tools with higher efficacy for their effective management. Gap-junction proteins, connexins, have shown some promising results in the process of diabetic wound healing. Till now the role of connexins has been implicated in peripheral neuropathy, deafness, skin disorders, cataract, germ cell development and treatment of cancer. Recent findings have revealed that gap junctions play a key role in normal as well as diabetic wound healing. The purpose of this review is to provide the information related to etiology, epidemiology, clinical presentation of diabetic wounds and to analyze the role of connexin 43 (Cx43 in the diabetic wound healing process. The current control strategies and the future research challenges have also been discussed briefly in this review.

  3. Chronic wound repair and healing in older adults: current status and future research.

    Science.gov (United States)

    Gould, Lisa; Abadir, Peter; Brem, Harold; Carter, Marissa; Conner-Kerr, Teresa; Davidson, Jeff; DiPietro, Luisa; Falanga, Vincent; Fife, Caroline; Gardner, Sue; Grice, Elizabeth; Harmon, John; Hazzard, William R; High, Kevin P; Houghton, Pamela; Jacobson, Nasreen; Kirsner, Robert S; Kovacs, Elizabeth J; Margolis, David; McFarland Horne, Frances; Reed, May J; Sullivan, Dennis H; Thom, Stephen; Tomic-Canic, Marjana; Walston, Jeremy; Whitney, Jo Anne; Williams, John; Zieman, Susan; Schmader, Kenneth

    2015-03-01

    Older adults are more likely to have chronic wounds than younger people, and the effect of chronic wounds on quality of life is particularly profound in this population. Wound healing slows with age, but the basic biology underlying chronic wounds and the influence of age-associated changes on wound healing are poorly understood. Most studies have used in vitro approaches and various animal models, but observed changes translate poorly to human healing conditions. The effect of age and accompanying multimorbidity on the effectiveness of existing and emerging treatment approaches for chronic wounds is also unknown, and older adults tend to be excluded from randomized clinical trials. Poorly defined outcomes and variables; lack of standardization in data collection; and variations in the definition, measurement, and treatment of wounds also hamper clinical studies. The Association of Specialty Professors, in conjunction with the National Institute on Aging and the Wound Healing Society, held a workshop, summarized in this article, to explore the current state of knowledge and research challenges, engage investigators across disciplines, and identify research questions to guide future study of age-associated changes in chronic wound healing. © 2015 by the American Geriatrics Society and the Wound Healing Society.

  4. Delayed cutaneous wound healing in aged rats compared to younger ones.

    Science.gov (United States)

    Soybir, Onur C; Gürdal, Sibel Ö; Oran, Ebru Ş; Tülübaş, Feti; Yüksel, Meral; Akyıldız, Ayşenur İ; Bilir, Ayhan; Soybir, Gürsel R

    2012-10-01

    Delayed wound healing in elderly males is a complex process in which the factors responsible are not fully understood. This study investigated the hormonal, oxidative and angiogenic factors affecting wound healing in aged rats. Two groups consisting of eight healthy male Wistar Albino rats [young (30 ± 7 days) and aged (360 ± 30 days)], and a cutaneous incision wound healing model were used. Scar tissue samples from wounds on the 7th, 14th and 21st days of healing were evaluated for hydroxyproline and vascular endothelial growth factor content. Macrophage, lymphocyte, fibroblast and polymorphonuclear cell infiltration; collagen formation and vascularization were assessed by light and electron microscopy. The free oxygen radical content of the wounds was measured by a chemiluminescence method. Blood sample analysis showed that the hydroxyproline and total testosterone levels were significantly higher, and the oxygen radical content was significantly lower in young rats. Histopathological, immunohistochemical and ultrastructural evaluations revealed higher amounts of fibroblasts and collagen fibers, and more vascularization in young rats. These results are indicative of the delayed wound healing in aged rats. A combination of multiple factors including hormonal regulation, free oxygen radicals and impaired angiogenesis appears to be the cause of delayed cutaneous healing. © 2011 The Authors. International Wound Journal © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  5. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  6. Wound healing of critical limb ischemia with tissue loss in patients on hemodialysis.

    Science.gov (United States)

    Honda, Yohsuke; Hirano, Keisuke; Yamawaki, Masahiro; Mori, Shinsuke; Shirai, Shigemitsu; Makino, Kenji; Tokuda, Takahiro; Takama, Takuro; Tsutumi, Masakazu; Sakamoto, Yasunari; Takimura, Hideyuki; Kobayashi, Norihiro; Araki, Motoharu; Ito, Yoshiaki

    2017-06-01

    We assessed wound healing in patients on hemodialysis (HD) with critical limb ischemia (CLI). This study enrolled 267 patients (including 120 patients on HD and 147 patients not on HD) who underwent endovascular therapy (EVT) for CLI. The primary endpoint was wound-healing rate at two years. Secondary endpoints were time to wound healing, wound recurrence rate, and limb salvage at two years. The percentage of male and young patients was higher in the HD patients ( p healing rate was significantly lower in HD patients (79.5% vs. 92.4%, p healing was significantly longer in HD patients (median 132 days vs. 82 days, p = 0.005). Wound recurrence was observed more frequently in HD patients (25.0% vs. 10.2%, p = 0.007). Limb salvage (72.8% vs. 86.4%, p = 0.002) was significantly lower in HD patients. In a cox proportional hazard model, HD was an independent predictor of wound healing (risk ratio (RR), 0.46; 95% confidence interval (CI), 0.33-0.62; p healing, and wound recurrence.

  7. Defective Wound-healing in Aging Gingival Tissue.

    Science.gov (United States)

    Cáceres, M; Oyarzun, A; Smith, P C

    2014-07-01

    Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.

  8. Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice.

    Science.gov (United States)

    Asai, Jun; Takenaka, Hideya; Ii, Masaaki; Asahi, Michio; Kishimoto, Saburo; Katoh, Norito; Losordo, Douglas W

    2013-10-01

    Impaired wound healing leading to skin ulceration is a serious complication of diabetes and may be caused by defective angiogenesis. Endothelial progenitor cells (EPCs) can augment neovascularisation in the ischaemic tissue. Experiments were performed to test the hypothesis that locally administered EPCs can promote wound healing in diabetes. Full-thickness skin wounds were created on the dorsum of diabetic mice. EPCs were obtained from bone marrow mononuclear cells (BMMNCs) and applied topically to the wound immediately after surgery. Vehicle and non-selective BMMNCs were used as controls. Wound size was measured on days 5, 10 and 14 after treatment, followed by resection, histological analysis and quantification of vascularity. Topical application of EPCs significantly promoted wound healing, as assessed by closure rate and wound vascularity. Immunostaining revealed that transplanted EPCs induced increased expression of vascular endothelial growth factor and basic fibroblast growth factor. Few EPCs were observed in the neovasculature based on in vivo staining of the functional vasculature. Ex vivo expanded EPCs promote wound healing in diabetic mice via mechanisms involving increased local cytokine expression and enhanced neovascularisation of the wound. This strategy exploiting the therapeutic capacity of autologously derived EPCs may be a novel approach to skin repair in diabetes. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  9. The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds.

    Science.gov (United States)

    Shen, Hui-Min; Chen, Chun; Jiang, Ji-Yang; Zheng, Yi-Lin; Cai, Wen-Feng; Wang, Bin; Ling, Zhen; Tang, Liu; Wang, Yuan-Hang; Shi, Gang-Gang

    2017-02-23

    Hibiscus rosa-sinensis L. (HRS), a folk medicine named Zhujin in China, possess anti-tumor, antioxidant, antibacterial, low density lipoprotein oxidation prevention and macrophage death prevention effects. The leaves and red flowers of HRS have been traditionally used to treat with furuncle and ulceration. To investigate the efficacy and possible mechanism of the N-butyl alcohol extract of HRS (NHRS) red flowers in wound healing by analyzing the collagen fiber deposition, angiogenic activity and macrophages action of the NHRS. In an excisional wound healing model in rats, different concentrations of NHRS, or recombinant bovine basic fibroblast growth factor (rbFGF), were respectively applied twice daily for 9 days. Histopathology was assessed on day 9 via hematoxylin and eosin (HE) and Masson's trichrome (MT) staining, and immunohistochemistry for vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1) and CD68. Immunomodulation by NHRS was evaluated by a carbon clearance test in mice. Wound healing post-surgery was greater in the rbFGF-control, NHRS-M and MHRS-H groups than in the model and 5% dimethylsulfoxide (DMSO)-control groups after the third day. By the sixth day the wound contraction of NHRS-M and MHRS-H groups was much higher than the rbFGF-control group. HE and MT staining revealed that epithelialization, fibroblast distribution, collagen deposition of NHRS-M- and NHRS-H-control groups were significantly higher than the model group. Moreover, immunohistochemistry showed more intense staining of VEGF, TGF-β1 and CD68 in the rbFGF- and NHRS-control groups, compared to that in model and 5% DMSO-control groups. The clearance and phagocytic indices of NHRS-M- and NHRS-H-control groups were significantly higher than that of the carboxyl methyl cellulose (CMC) group in mice. NHRS accelerates wound repair via enhancing the macrophages activity, accelerating angiogenesis and collagen fiber deposition response mediated by VEGF and TGF

  10. Mathematical modeling in wound healing, bone regeneration and tissue engineering.

    Science.gov (United States)

    Geris, Liesbet; Gerisch, Alf; Schugart, Richard C

    2010-12-01

    The processes of wound healing and bone regeneration and problems in tissue engineering have been an active area for mathematical modeling in the last decade. Here we review a selection of recent models which aim at deriving strategies for improved healing. In wound healing, the models have particularly focused on the inflammatory response in order to improve the healing of chronic wound. For bone regeneration, the mathematical models have been applied to design optimal and new treatment strategies for normal and specific cases of impaired fracture healing. For the field of tissue engineering, we focus on mathematical models that analyze the interplay between cells and their biochemical cues within the scaffold to ensure optimal nutrient transport and maximal tissue production. Finally, we briefly comment on numerical issues arising from simulations of these mathematical models.

  11. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    Science.gov (United States)

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    Science.gov (United States)

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats.

    Science.gov (United States)

    Reddy, J Suresh; Rao, P Rajeswara; Reddy, Mada S

    2002-02-01

    The ethanolic extracts of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica were evaluated for their wound healing activity in rats. Wound healing activity was studied using excision and incision wound models in rats following topical application. Animals were divided into four groups with six in each group. Ten percent w/v extract of each plant was prepared in saline for topical application. H. indicum possesses better wound healing activity than P. zeylanicum and A. indica. Tensile strength results indicate better activity of H. indicum on remodeling phase of wound healing.

  14. Wound healing complications in brain tumor patients on Bevacizumab.

    Science.gov (United States)

    Ladha, Harshad; Pawar, Tushar; Gilbert, Mark R; Mandel, Jacob; O-Brien, Barbara; Conrad, Charles; Fields, Margaret; Hanna, Teresa; Loch, Carolyn; Armstrong, Terri S

    2015-09-01

    Bevacizumab (BEV) is commonly used for treating recurrent glioblastoma (GBM), and wound healing is a well-established adverse event. Retrospective analysis of GBM patients with and without wound healing complications while on BEV treatment is reported. 287 patients identified, majority were males (60 %) with median age of 52.5 years. 14 cases identified with wound healing problems, related to either craniotomy (n = 8) or other soft tissue wounds (n = 6). Median duration of BEV treatment to complication was 62 days (range 6-559). Majority received 10 mg/kg (n = 11) and nine (64.3 %) were on corticosteroids, with median daily dose of 6 mg (range 1-16 mg) for median of 473 days before starting BEV. For dehisced craniotomy wounds, median time for starting BEV from last surgery was 29 days (range 27-345). Median time from starting BEV to developing wound complication was 47 days (range 16-173). Seven (87.5 %) had infected wounds requiring antibiotics, hospitalization. Four (50 %) required plastic surgery. BEV stopped and safely resumed in 6 (75 %) patients; median delay was 70 days (range 34-346). Soft tissue wounds included decubitus ulcer, dehisced striae, herpes simplex, trauma to hand and back, and abscess. Median time from starting BEV to wound issues was 72 days (range 6-559). Five (83.3 %) were infected, requiring antibiotics. While three (50 %) required hospitalization, none required plastic surgery. Treatment stopped in five (83.3 %) and restarted in two (median delay 48 days, range 26-69). Wound healing complications are uncommon but associated with significant morbidity. Identifying those at risk and contributing factors warrants further investigation.

  15. Gingival wound healing: an essential response disturbed by aging?

    Science.gov (United States)

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J

    2015-03-01

    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.

  16. Use of Oxygen Therapies in Wound Healing

    DEFF Research Database (Denmark)

    Gottrup, Finn; Dissemond, Joachim; Baines, Carol

    2017-01-01

    Among other things wound healing requires restoration of macro-And microcirculation as essential conditions for healing.1,2 One of the most 'immediate' requirements is oxygen, which is critically important for reconstruction of new vessels and connective tissue and to enable competent resistance...

  17. A predictive model for pressure ulcer outcome: the Wound Healing Index.

    Science.gov (United States)

    Horn, Susan D; Barrett, Ryan S; Fife, Caroline E; Thomson, Brett

    2015-12-01

    The purpose of this learning activity is to provide information regarding the creation of a risk-stratification system to predict the likelihood of the healing of body and heel pressure ulcers (PrUs). This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Explain the need for a PrU risk stratification tool.2. Describe the purpose and methodology of the study.3. Delineate the results of the study and development of the Wound Healing Index. : To create a validated system to predict the healing likelihood of patients with body and heel pressure ulcers (PrUs), incorporating only patient- and wound-specific variables. The US Wound Registry data were examined retrospectively and assigned a clear outcome (healed, amputated, and so on). Significant variables were identified with bivariate analyses. Multivariable logistic regression models were created based on significant factors (P wound clinics in 24 states : A total of 7973 body PrUs and 2350 heel PrUs were eligible for analysis. Not applicable : Healed PrU MAIN RESULTS:: Because of missing data elements, the logistic regression development model included 6640 body PrUs, of which 4300 healed (64.8%), and the 10% validation sample included 709 PrUs, of which 477 healed (67.3%). For heel PrUs, the logistic regression development model included 1909 heel PrUs, of which 1240 healed (65.0%), and the 10% validation sample included 203 PrUs, of which 133 healed (65.5%). Variables significantly predicting healing were PrU size, PrU age, number of concurrent wounds of any etiology, PrU Stage III or IV, evidence of bioburden/infection, patient age, being nonambulatory, having renal transplant, paralysis, malnutrition, and/or patient hospitalization for any reason. Body and heel PrU Wound Healing Indices are comprehensive, user-friendly, and validated predictive models for

  18. Wound repair and factors influencing healing in veterinary clinical medicine I.

    OpenAIRE

    Kudrnová, Adéla

    2010-01-01

    Wound healing in both human and veterinary medicine is essential physological process important for the survival of any species. Not only the internal (nutritional status, age, tissue hypoxia, etc.) and external (infections, medication, physical - chemical external influences, etc.) factors affect each stage of wound healing and its success, but also the overall treatment and choice of covering material. Wound healing is a natural process and sometimes takes place without any problems, themse...

  19. Wound healing activity of Ipomoea batatas tubers (sweet potato

    Directory of Open Access Journals (Sweden)

    Madhav Sonkamble

    2011-10-01

    Full Text Available Background: Ipomoea batatas (L. Lam. from the family Convolvulaceae is the world’s sixth largest food crop. The tubers of Ipomoea batatas commonly known as sweet potato are consumed as a vegetable globally. The tubers contain high levels of polyphenols such as anthocyanins and phenolic acids and vitamins A, B and C, which impart a potent antioxidant activity that can translate well to show wound healing effects. To check their effects on wound healing, the peels and peel bandage were tested on various injury models in rats in the present study.Methods: The methanolic extracts of the peels and peel bandage of Ipomoea batatas tubers (sweet potato were screened for wound healing by excision and incision wound models on Wistar rats. Three types of gel formulations were prepared, viz., gel containing 3.0% (w/w peel extract, gel containing 6.0% (w/w peel extract and gel containing 10% (w/w peel extract. Betadine (5% w/w povidone iodine cream was used as a reference standard. In the incision wound model, Tensile strength of the skin was measured. Epithelization time, wound contraction, hydroxyproline content of the scab, and ascorbic acid and malondialdehyde content of the plasma were determined in the excision wound model.Results: In the incision wound model, high tensile strength of the wounded skin was observed in animals treated with the peel extract gels and the peel bandage when compared with wounded control animals. The increase in tensile strength indicates the promotion of collagen fibers and that the disrupted wound surfaces are being firmly knit by collagen. In the excision wound model, significant wound closure was observed on the 4th day in rats treated with all three gel formulations when compared with the wounded control rats. A significant increase inFunctional Foods in Health and Disease 2011; 10:403-415hydroxyproline and ascorbic acid content in the gel-treated animals and a significant decrease in malondialdehyde content in the

  20. Evaluation of wound healing properties of Arrabidaea chica Verlot extract.

    Science.gov (United States)

    Jorge, Michelle Pedroza; Madjarof, Cristiana; Gois Ruiz, Ana Lúcia Tasca; Fernandes, Alik Teixeira; Ferreira Rodrigues, Rodney Alexandre; de Oliveira Sousa, Ilza Maria; Foglio, Mary Ann; de Carvalho, João Ernesto

    2008-08-13

    Arrabidaea chica Verlot. (Bignoniaceae), popularly known as Crajiru, has been traditionally used as wound healing agent. Investigate in vitro and in vivo healing properties of Arrabidaea chica leaves extract (AC). AC was evaluated in vitro in fibroblast growth stimulation (0.25-250 microg/mL) and collagen production stimulation (250 microg/mL) assays. Allantoin (0.25-250 microg/mL) and vitamin C (25 microg/mL) were used as controls respectively. DPPH and Folin-Ciocalteau assays were used for antioxidant evaluation, using trolox (0.25-250 microg/mL) as reference antioxidant. To study wound healing properties in rats, AC (100mg/mL, 200 microL/wound/day) was topically administered during 10 days and wound area was evaluated every day. Allantoin (100mg/mL, 200 microL/wound/day) was used as standard drug. After treatment, wound sites were removed for histopathological analysis and total collagen determination. AC stimulated fibroblast growth in a concentration dependent way (EC50=30 microg/mL), increased in vitro collagen production and demonstrated moderate antioxidant capacity. In vivo, AC reduced wound size in 96%, whereas saline group showed only 36% wound healing. AC efficiency seems to involve fibroblast growing stimulus and collagen synthesis both in vitro and in vivo, beyond moderate scavenging activity, corroborating Crajiru folk use.

  1. Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection

    Directory of Open Access Journals (Sweden)

    Sanjay Chhibber

    2018-03-01

    Full Text Available Diabetic populations are more prone to developing wound infections which results in poor and delayed wound healing. Infection with drug resistant organisms further worsen the situation, driving searches for alternative treatment approaches such as phage therapy. Major drawback of phage therapy, however, is low phage persistence in situ, suggesting further refinement of the approach. In the present work we address this issue by employing liposomes as delivery vehicles. A liposome entrapped phage cocktail was evaluated for its ability to resolve a Staphylococcus aureus-induced diabetic excission wound infection. Two characterized S. aureus specific lytic phages, MR-5 and MR-10 alone, in combination (cocktail, or entrapped in liposomes (versus as free phages were assesed for their therapeutic efficacy in resolving diabetic wound infection. Mice treated with free phage cocktail showed significant reduction in wound bioburden, greater wound contraction and faster tissue healing than with free monophage therapy. However, to further enhance the availability of viable phages the encapsulation of phage cocktail in the liposomes was done. Results of in vitro stability studies and in vivo phage titer determination, suggests that liposomal entrapment of phage cocktail can lead to better phage persistence at the wound site. A 2 log increase in phage titre, however, was observed at the wound site with liposome entrapped as compared to the free phage cocktail, and this was associaed with increased rates of infection resolution and wound healing. Entrapment of phage cocktails within liposomes thus could represent an attractive approach for treatment of bacterial infections, not responding to antibiotis as increased phage persistence in vitro and in vivo at the wound site was observed.

  2. A human model of small fiber neuropathy to study wound healing.

    Directory of Open Access Journals (Sweden)

    Ben M W Illigens

    Full Text Available The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter and deep (>3 millimeter punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001 and day 14 (P<0.001. Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01. In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.

  3. [Wound healing complications in smokers, non-smokers and after abstinence from smoking].

    Science.gov (United States)

    Goertz, O; Kapalschinski, N; Skorzinski, T; Kolbenschlag, J; Daigeler, A; Hirsch, T; Homann, H H; Muehlberger, T

    2012-07-01

    The pulmonary and cardiovascular ramifications of smoking are well documented and this also applies to increased wound healing complications in smokers. The aim of this study was to ascertain whether preoperatively refraining from smoking would affect the incidence of wound healing disorders. Between 2006 and 2008 a total of 295 patients underwent aesthetic (n = 167) or reconstructive surgery (n = 128). They were divided into three groups: A (n = 98) non-smokers for at least 2 years, B (n = 99) patients who refrained from smoking 6 weeks prior to surgery and C (n = 98) smokers. Smoking abstinence was verified by cotinine tests. Wound healing complications were defined as dehiscent wounds, wound infections, atypical scar formation and adiponecrosis. Smokers developed wound healing complications in 48.2% of cases, non-smokers in 21.0% and patients who had stopped smoking for 6 weeks in 30.8% of cases (p = 0.006). Elective surgery should only be performed on non-smokers and smokers who had refrained from smoking for at least 6 weeks to reduce wound healing complications as far as possible.

  4. Stem Cell Therapy to Improve Burn Wound Healing

    Science.gov (United States)

    2017-03-01

    Award Number: W81XWH-13-2-0024 TITLE: Stem Cell Therapy to Improve Burn Wound Healing PRINCIPAL INVESTIGATOR: Carl Schulman, MD, PhD, MSPH...NUMBER Stem Cell Therapy to Improve Burn Wound Healing 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Carl Schulman, MD, PhD, MSPH...treatments, steroid injections, and compression garments. Mesenchymal stem cells (MSC’s) have been used in a variety of clinical applications to repair

  5. Does Physiological Stress Slow Down Wound Healing in Patients With Diabetes?

    Science.gov (United States)

    Razjouyan, Javad; Grewal, Gurtej Singh; Talal, Talal K; Armstrong, David G; Mills, Joseph L; Najafi, Bijan

    2017-07-01

    Poor healing is an important contributing factor to amputation among patients with diabetic foot ulcers (DFUs). Physiological stress may slow wound healing and increase susceptibility to infection. The objective was to examine the association between heart rate variability (HRV) as an indicator of physiological stress response and healing speed (Heal Speed ) among outpatients with active DFUs. Ambulatory patients with diabetes with DFUs (n = 25, age: 59.3 ± 8.3 years) were recruited. HRV during pre-wound dressing was measured using a wearable sensor attached to participants' chest. HRVs were quantified in both time and frequency domains to assess physiological stress response and vagal tone (relaxation). Change in wound size between two consecutive visits was used to estimate Heal Speed . Participants were then categorized into slow healing and fast healing groups. Between the two groups, comparisons were performed for demographic, clinical, and HRV derived parameters. Associations between different descriptors of HRV and Heal Speed were also assessed. Heal Speed was significantly correlated with both vagal tone ( r = -.705, P = .001) and stress response ( r = .713, P = .001) extracted from frequency domain. No between-group differences were observed except those from HRV-derived parameters. Models based on HRVs were the highest predictors of slow/fast Heal Speed (AUC > 0.90), while models based on demographic and clinical information had poor classification performance (AUC = 0.44). This study confirms an association between stress/vagal tone and wound healing in patients with DFUs. In particular, it highlights the importance of vagal tone (relaxation) in expediting wound healing. It also demonstrates the feasibility of assessing physiological stress responses using wearable technology in outpatient clinic during routine clinic visits.

  6. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  7. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.

    Science.gov (United States)

    Kunkemoeller, Britta; Kyriakides, Themis R

    2017-10-20

    Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.

  8. Topical flurbiprofen or prednisolone. Effect on corneal wound healing in rabbits.

    Science.gov (United States)

    Miller, D; Gruenberg, P; Miller, R; Bergamini, M V

    1981-04-01

    Flurbiprofen is a nonsteroidal anti-inflammatory (NSAI) agent currently undergoing clinical investigation. Anti-inflammatory steroids have long been known to delay the healing of corneal stromal wounds. This was designed to compare the effects of equipotent anti-inflammatory doses of flurbiprofen and of prednisolone acetate on the inflammation and the healing (as measured by the wound bursting pressure) or 4-mm through-and-through incisions treated four times a day for ten postoperative days. The results suggest that flurbiprofen and prednisolone are not different in their effect on both postoperative inflammation and postoperative wound healing. Since NSAI agents and steroids inhibit prostaglandin formation at different enzymatic steps, it is possible that prostaglandins not only are responsible for postoperative inflammation but also are required for postoperative wound healing.

  9. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids.

    Science.gov (United States)

    Murphy, Kaitlin C; Whitehead, Jacklyn; Zhou, Dejie; Ho, Steve S; Leach, J Kent

    2017-12-01

    Mesenchymal stem cells (MSCs) secrete endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE 2 ) that promote angiogenesis, modulate the inflammatory microenvironment, and stimulate wound repair, and MSC spheroids secrete more trophic factors than dissociated, individual MSCs. Compared to injection of cells alone, transplantation of MSCs in a biomaterial can enhance their wound healing potential by localizing cells at the defect site and upregulating trophic factor secretion. To capitalize on the therapeutic potential of spheroids, we engineered a fibrin gel delivery vehicle to simultaneously enhance the proangiogenic and anti-inflammatory potential of entrapped human MSC spheroids. We used multifactorial statistical analysis to determine the interaction between four input variables derived from fibrin gel synthesis on four output variables (gel stiffness, gel contraction, and secretion of VEGF and PGE 2 ). Manipulation of the four input variables tuned fibrin gel biophysical properties to promote the simultaneous secretion of VEGF and PGE 2 by entrapped MSC spheroids while maintaining overall gel integrity. MSC spheroids in stiffer gels secreted the most VEGF, while PGE 2 secretion was highest in more compliant gels. Simultaneous VEGF and PGE 2 secretion was greatest using hydrogels with intermediate mechanical properties, as small increases in stiffness increased VEGF secretion while maintaining PGE 2 secretion by entrapped spheroids. The fibrin gel formulation predicted to simultaneously increase VEGF and PGE 2 secretion stimulated endothelial cell proliferation, enhanced macrophage polarization, and promoted angiogenesis when used to treat a wounded three-dimensional human skin equivalent. These data demonstrate that a statistical approach is an effective strategy to formulate fibrin gel formulations that enhance the wound healing potential of human MSCs. Mesenchymal stem cells (MSCs) are under investigation for wound

  10. Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Turner, Christopher T; McInnes, Steven J P; Melville, Elizabeth; Cowin, Allison J; Voelcker, Nicolas H

    2017-01-01

    Flightless I (Flii) is elevated in human chronic wounds and is a negative regulator of wound repair. Decreasing its activity improves healing responses. Flii neutralizing antibodies (FnAbs) decrease Flii activity in vivo and hold significant promise as healing agents. However, to avoid the need for repeated application in a clinical setting and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required. In this study, the use of porous silicon nanoparticles (pSi NPs) is demonstrated for the controlled release of FnAb to diabetic wounds. We achieve FnAb loading regimens exceeding 250 µg antibody per mg of vehicle. FnAb-loaded pSi NPs increase keratinocyte proliferation and enhance migration in scratch wound assays. Release studies confirm the functionality of the FnAb in terms of Flii binding. Using a streptozotocin-induced model of diabetic wound healing, a significant improvement in healing is observed for mice treated with FnAb-loaded pSi NPs compared to controls, including FnAb alone. FnAb-loaded pSi NPs treated with proteases show intact and functional antibody for up to 7 d post-treatment, suggesting protection of the antibodies from proteolytic degradation in wound fluid. pSi NPs may therefore enable new therapeutic approaches for the treatment of diabetic ulcers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Regularity of wound healing in rats irradiated locally with different doses of soft X-rays

    International Nuclear Information System (INIS)

    Liu Jianzhong; Zhou Yuanguo; Cheng Tianmin; Zhou Ping; Liu Xia; Li Ping

    2002-01-01

    Objective: To study the regular patter of wound healing in rats irradiated locally with different doses of soft X-rays. Methods: Rats were locally irradiated, and wounded immediately thereafter. Gross observation, histopathology and immunohistochemistry examinations, and image analysis were used to study the wound healing process. Results: The authors found that the delayed time of wound healing induced by soft X-ray irradiation of 0.50, 1.01, 1.96, 3,26, 4.00, 5.21 Gy was 1.6, 4.2, 5.4, 6.6, 8.2 and 9.4 days, respectively. Irradiation with 7.0 and 10.0 Gy caused failure of wound healing (up to 40 days). Compared to the non-irradiated wounds, the healing rates of irradiation-impaired wounds were lower during the whole healing process. From day 3 to day 9 after irradiation, the healing rates decreased along with increasing of the radiation dose, indicating the key phase of wound healing was delayed. After irradiation, the collagen synthesis was decreased, its arrangement was disordered, and the structure of granulation tissue was irregular. Conclusion: Soft X-rays irradiation may cause a delay of wound healing in a dose-dependent manner, and irradiation with 7.0 and 10.0 Gy cause failure of wound healing

  12. Studies on Wound Healing Activity of Heliotropium indicum Linn. Leaves on Rats.

    Science.gov (United States)

    Dash, G K; Murthy, P N

    2011-01-01

    The petroleum ether, chloroform, methanol, and aqueous extracts of Heliotropium indicum Linn. (Family: Boraginaceae) were separately evaluated for their wound healing activity in rats using excision (normal and infected), incision, and dead space wound models. The effects of test samples on the rate of wound healing were assessed by the rate of wound closure, period of epithelialisation, wound breaking strength, weights of the granulation tissue, determination of hydroxyproline, super oxide dismutase (SOD), catalase, and histopathology of the granulation tissues. Nitrofurazone (0.2% w/w) in simple ointment I. P. was used as reference standard for the activity comparison. The results revealed significant promotion of wound healing with both methanol and aqueous extracts with more promising activity with the methanol extract compared to other extracts under study. In the wound infection model (with S. aureus and P. aeruginosa), the methanol extract showed significant healing activity similar to the reference standard nitrofurazone. Significant increase in the granulation tissue weight, increased hydroxyproline content, and increased activity of SOD and catalase level with the animals treated with methanol extract in dead space wound model further augmented the wound healing potential of H. indicum. The present work substantiates its validity of the folklore use.

  13. Effects of topical topiramate in wound healing in mice.

    Science.gov (United States)

    Jara, Carlos Poblete; Bóbbo, Vanessa Cristina Dias; Carraro, Rodrigo Scarpari; de Araujo, Thiago Matos Ferreira; Lima, Maria H M; Velloso, Licio A; Araújo, Eliana P

    2018-02-23

    Recent studies have indicated that systemic topiramate can induce an improvement on the aesthetic appearance of skin scars. Here, we evaluated topical topiramate as an agent to improve wound healing in C57/BL6 mice. Mice were inflicted with a 6.0 mm punch to create two wounds in the skin of the dorsal region. Thereafter, mice were randomly assigned to either vehicle or topical topiramate (20 µl of 2% cream) once a day for 14 days, beginning on the same day as wound generation. We analyzed the wound samples over real-time PCR, Western blotting, and microscopy. There was no effect of the topiramate treatment on the time for complete reepithelization of the wound. However, on microscopic analysis, topiramate treatment resulted in increased granulation tissue, thicker epidermal repair, and improved deposition of type I collagen fibers. During wound healing, there were increased expressions of anti-inflammatory markers, such as IL-10, TGF-β1, and reduced expression of the active form of JNK. In addition, topiramate treatment increased the expression of active forms of two intermediaries in the insulin-signaling pathway, IRS-1 and Akt. Finally, at the end of the wound-healing process, topiramate treatment resulted in increased expression of SOX-2, a transcription factor that is essential to maintain cell self-renewal of undifferentiated embryonic stem cells. We conclude that topical topiramate can improve the overall quality of wound healing in the healthy skin of mice. This improvement is accompanied by reduced expression of markers involved in inflammation and increased expression of proteins of the insulin-signaling pathway.

  14. The Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification independently predicts wound healing in diabetic foot ulcers.

    Science.gov (United States)

    Hicks, Caitlin W; Canner, Joseph K; Mathioudakis, Nestoras; Sherman, Ronald; Malas, Mahmoud B; Black, James H; Abularrage, Christopher J

    2018-04-02

    Previous studies have reported correlation between the Wound, Ischemia, and foot Infection (WIfI) classification system and wound healing time on unadjusted analyses. However, in the only multivariable analysis to date, WIfI stage was not predictive of wound healing. Our aim was to examine the association between WIfI classification and wound healing after risk adjustment in patients with diabetic foot ulcers (DFUs) treated in a multidisciplinary setting. All patients presenting to our multidisciplinary DFU clinic from June 2012 to July 2017 were enrolled in a prospective database. A Cox proportional hazards model accounting for patients' sociodemographics, comorbidities, medication profiles, and wound characteristics was used to assess the association between WIfI classification and likelihood of wound healing at 1 year. There were 310 DFU patients enrolled (mean age, 59.0 ± 0.7 years; 60.3% male; 60.0% black) with 709 wounds, including 32.4% WIfI stage 1, 19.9% stage 2, 25.2% stage 3, and 22.4% stage 4. Mean wound healing time increased with increasing WIfI stage (stage 1, 96.9 ± 8.3 days; stage 4, 195.1 ± 10.6 days; P healing at 1 year was 94.1% ± 2.0% for stage 1 wounds vs 67.4% ± 4.4% for stage 4 (P healing (stage 4 vs stage 1: hazard ratio, [HR] 0.44; 95% confidence interval, 0.33-0.59). Peripheral artery disease (HR, 0.73), increasing wound area (HR, 0.99 per square centimeter), and longer time from wound onset to first assessment (HR, 0.97 per month) also decreased the likelihood of wound healing, whereas use of clopidogrel was protective (HR, 1.39; all, P ≤ .04). The top three predictors of poor wound healing were WIfI stage 4 (z score, -5.40), increasing wound area (z score, -3.14), and WIfI stage 3 (z score, -3.11), respectively. Among patients with DFU, the WIfI classification system predicts wound healing at 1 year in both crude and risk-adjusted analyses. This is the first study to validate the WIfI score as an independent

  15. Effect of opium dependency on secondary intention wound healing in a rat model: an experimental study.

    Science.gov (United States)

    Vahedian, Jalal; Mirshekari, Tooraj-Reza; Nabavizadeh, Fatemeh

    2013-06-01

    Opium dependency is a social and health problem in some middle eastern countries like Iran. Many of these people may require surgery. This study investigates the effects of opium dependency on histological parameters of secondary intention wound healing in rat. A full-thickness wound (2 × 2 cm in diameters) was created on the dorsum of two groups of rats, a normal control group and a second group of rat depended to opium (Badawy's method). Several times during 14 days postwounding, the wound was excised with peripheral margins of normal skin and was evaluated for cellular population, reepithelialisation and revascularisation. Results are presented as the mean ± standard error. Data were compared by an unpaired t-test or analysis of variance. Histological examination of the wound tissue showed evidence of increased population of fibroblasts, decreased recruitment of neutrophile and plateau of macrophage cells in opium depended animals comparing with control group. In the depended animals, reepithelialisation was seen to be enhanced significantly, while prohibiting progression of revascularisation. This study shows that opium dependency enhances reepitheliazation as well as tissue recruitment of fibroblasts; thereby probable enhancement of secondary intention wound healing. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  16. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro

    Directory of Open Access Journals (Sweden)

    Huang T

    2015-04-01

    Full Text Available Tonglie Huang,1,* Kuo Zhang,2,* Lijuan Sun,3 Xiaochang Xue,1 Cun Zhang,1 Zhen Shu,1 Nan Mu,1 Jintao Gu,1 Wangqian Zhang,1 Yukun Wang,1 Yingqi Zhang,1 Wei Zhang1 1State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, 2National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, 3Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs. Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of

  17. Wound healing properties and mucilage content of Pereskia aculeata from different substrates

    Directory of Open Access Journals (Sweden)

    Eber Goulart Carvalho

    Full Text Available Physiologic growth parameters Wound healing Pereskia aculeata Mill., Cactaceae, is a cactus with high mucilage production, well-known for its nutritional properties. Folk use consists on skin injuries, and mucilage is probably involved in the wound healing activity. This work studied some aspects of its cultivation, specifically regarding soil (substrate, to correlate the effects of nutritional content to mucilage production and to the wound-healing property. Plants were grown under five different soil treatment (sand, crude soil, sand and soil, sand and cattle manure, soil and cattle manure, and after eight months extracts were prepared by turbo-extraction to obtain a crude hydroethanolic extract. We evaluated the effects of these extracts on swelling index, cytotoxicity, and in vitro wound healing property. The results show that the substrate used in cultivation may interfere with mucilage production, but not with cytotoxicity and wound healing, this shows the safety of its use, despite the soil treatment received along the various biomes where P. aculeata is cultivated. Furthermore, morphological studies demonstrated the beneficial effect of the mucilage-containing extract on the fibroblast cell culture, corroborating its folk use for wound healing.

  18. Simulation of lung alveolar epithelial wound healing in vitro.

    Science.gov (United States)

    Kim, Sean H J; Matthay, Michael A; Mostov, Keith; Hunt, C Anthony

    2010-08-06

    The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.

  19. Potato tuber wounding induces responses associated with various healing processes

    Science.gov (United States)

    Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...

  20. Photo-stimulatory effect of low energy helium-neon laser irradiation on excisional diabetic wound healing dynamics in wistar rats

    Directory of Open Access Journals (Sweden)

    Maiya Arun

    2009-01-01

    Full Text Available Background: Generally, the significances of laser photo stimulation are now accepted, but the laser light facilitates wound healing and tissue repair remains poorly understood. Aims: We have examined the hypothesis that the laser photo stimulation can enhance the collagen production in diabetic wounds using the excision wound model in the Wistar rat model. Methods: The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The study group (N = 24 wound was treated with 632.8 nm He-Ne laser at a dose of 3-9J/cm 2 for 5 days a week until the wounds healed completely. The control group was sham irradiated. Result: A significant increase in the hydroxyproline content and reduction in the wound size were observed in the study group. The pro-healing actions seem to be due to increased collagen deposition as well as better alignment and maturation. Conclusion: The biochemical analysis and clinical observation suggested that 3-6 J/cm 2 laser photo stimulation facilitates the tissue repair process by accelerating collagen production in diabetic wound healing.

  1. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  2. Exploring the Urtica dioica Leaves Hemostatic and Wound-Healing Potential

    Directory of Open Access Journals (Sweden)

    Karama Zouari Bouassida

    2017-01-01

    Full Text Available The present paper investigated the efficiency of Urtica dioica (U. dioica on hemostatic and wound healing activities. U. dioica leaf extracts were evaluated for their antibacterial and antioxidant effects as well as their flavonoid and polyphenol content. The hydroethanolic extract (EtOH-H2OE, showing the most potent antibacterial and antioxidant activities in vitro, thanks to its flavonoid and polyphenol richness, was selected for hemostatic and wound healing evaluation. Twenty-four rats completing full-thickness wounds were split into four groups. The wounds were topically treated with saline solution, glycerol, “CICAFLORA,” and U. dioica EtOH-H2OE (50 µL/mm2 until day 11. The wound healing effect was assessed by macroscopic, histological, and biochemical parameters. Rats treated with EtOH-H2OE showed fast wound closure (92.39% compared to the control animals (60.91% on the 11th day of wounding (P<0.01. Histopathological and biochemical explorations showed full epidermal regeneration and an improvement of the hydroxyproline content in the U. dioica EtOH-H2OE treated rats. Analysis of fatty acids and sterols by GC-MS showed the presence of unsaturated fatty acids and a high concentration of lupeol known for their involvement in reepithelialization. These results prove the efficiency of U. dioica EtOH-H2OE in wound healing and supported its traditional use.

  3. Profiling wound healing with wound effluent: Raman spectroscopic indicators of infection

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    The care of modern traumatic war wounds remains a significant challenge for clinicians. Many of the extremity wounds inflicted during Operation Enduring Freedom and Operation Iraqi Freedom are colonized or infected with multi-drug resistant organisms, particularly Acinetobacter baumannii. Biofilm formation and resistance to current treatments can significantly confound the wound healing process. Accurate strain identification and targeted drug administration for the treatment of wound bioburden has become a priority for combat casualty care. In this study, we use vibrational spectroscopy to examine wound exudates for bacterial load. Inherent chemical differences in different bacterial species and strains make possible the high specificity of vibrational spectroscopy.

  4. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Directory of Open Access Journals (Sweden)

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  5. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats.

    Science.gov (United States)

    Tam, Jacqueline Chor-Wing; Ko, Chun-Hay; Lau, Kit-Man; To, Ming-Ho; Kwok, Hin-Fai; Chan, Yuet-Wa; Siu, Wing-Sum; Etienne-Selloum, Nelly; Lau, Ching-Po; Chan, Wai-Yee; Leung, Ping-Chung; Fung, Kwok-Pui; Schini-Kerth, Valérie B; Lau, Clara Bik-San

    2014-01-01

    Diabetic foot ulcer is closely associated with peripheral vascular disease. Enhancement of tissue oxidative stress, reduction of nitric oxide (NO) and angiogenic growth factors, and abnormal matrix metalloproteinase (MMP) activity are pathophysiological factors in post-ischemic neovascularization and diabetic wound healing. Our previous study demonstrated that the Chinese 2-herb formula, NF3, showed significant wound healing effects on diabetic foot ulcer rats. A novel rat diabetic foot ulcer with hindlimb ischemia model was established in order to strengthen our claims on the diabetic wound healing and post-ischemic neovascularization effects of NF3. Our results demonstrate that NF3 can significantly reduce the wound area of the diabetic foot ulcer rat with hindlimb ischemia by 21.6% (phealing and post-ischemic neovascularization in diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The importance of hydration in wound healing: reinvigorating the clinical perspective.

    Science.gov (United States)

    Ousey, K; Cutting, K F; Rogers, A A; Rippon, M G

    2016-03-01

    Balancing skin hydration levels is important as any disruption in skin integrity will result in disturbance of the dermal water balance. The discovery that a moist environment actively supports the healing response when compared with a dry environment highlights the importance of water and good hydration levels for optimal healing. The benefits of 'wet' or 'hyper-hydrated' wound healing appear similar to those offered by moist over a dry environment. This suggests that the presence of free water may not be detrimental to healing, but any adverse effects of wound fluid on tissues is more likely related to the biological components contained within chronic wound exudate, for example elevated protease levels. Appropriate dressings applied to wounds must not only be able to absorb the exudate, but also retain this excess fluid together with its protease solutes, while concurrently preventing desiccation. This is particularly important in the case of chronic wounds where peri-wound skin barrier properties are compromised and there is increased permeation across the injured skin. This review discusses the importance of appropriate levels of hydration in skin, with a particular focus on the need for optimal hydration levels for effective healing. Declaration of interest: This paper was supported by Paul Hartmann Ltd. The authors have provided consultative services to Paul Hartmann Ltd.

  7. Wound healing and antioxidant capacity of Musa paradisiaca Linn. peel extracts

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2016-10-01

    Full Text Available Context: Musa paradisiaca has several biological activities within them wound healing, hypoglycemic, hepatoprotective, antimicrobial, antioxidant, among others. However, these properties in peel have been poorly explored. Aims: Evaluate the wound healing activity induced by an incision wound model using methanolic, hexanoic and chloroformic extracts from M. paradisiaca peel. Methods: Dehydrated M. paradisíaca peel was mixed with methanol, hexane, and chloroform. The presence of bioactive substances of the M. paradisiaca peel extracts was carried out by the Trease and Evans methods. Antioxidant capacity was evaluated by the 2,2-diphenyl-2-picrylhydrazyl (DPPH method. Acute toxicity was realized according to up and down OECD procedure in BALB/c mice. Wound healing activity was evaluated in male Wistar rats. Histological analyses of tissues were made by microscopy using staining methods of hematoxylin and eosin and Masson-trichrome. Results: Treated groups with methanolic and hexanoic extracts of M. paradisiaca peel showed better wound healing activity in comparison with the group treated with chloroformic extract, with an inhibition of DPPH radical bleaching of 89-90%. It may be due to the presence of alkaloids, tannins, saponins and phenols as principal constituents by conferring antioxidant capacity. The extract did not induce any toxicity. Conclusions: The findings showed the wound healing and antioxidant capacity of M. paradisiaca peel extract. It was observed that depending on the extraction solvent; there is a variation in the antioxidant capacity that also affects the effectiveness of the restoration of tissue, suggesting that the antioxidant capacity could play a major role in the process of wound healing.

  8. The Proteolytic Fraction from Latex of Vasconcellea cundinamarcensis (P1G10) Enhances Wound Healing of Diabetic Foot Ulcers: A Double-Blind Randomized Pilot Study.

    Science.gov (United States)

    Tonaco, Luís A B; Gomes, Flavia L; Velasquez-Melendez, Gustavo; Lopes, Miriam T P; Salas, Carlos E

    2018-04-01

    The aim of the study was to investigate the role of the proteolytic fraction from Vasconcellea cundinamarcensis, designated as P1G10, on the healing of chronic foot ulcers in neuropathic patients with diabetes 2. Fifty patients were enrolled in a prospective, randomized, double-blind trial, to verify the efficacy and safety of a topical dressing formulated with 0.1% P1G10, intended for wound healing, versus a hydrogel (control) protocol. Upon completion of the intervention, the outcome evaluated the number of patients attaining full epithelization (100%), or at least 80% healing. Statistical analysis compared the data on each group for the significance of the differences. Collection of data was finished in week 16, and the results were analyzed by intention to treat. The results showed that, in the control group, 5 patients attained 100% ulcer healing, 3 patients ≥ 80% healing and 11 experienced ulcer changes ≤ 80%, and the remainder showed no changes or their wounds became worse. Meanwhile, in the P1G10 group, 11 patients experienced full healing, 4 had healing ≥ 80% and 5 had ulcer changes ≤ lower than 80%, and the remainder showed no changes or their wounds became worse. The healing incidence for the first endpoint (100% healing) showed that the P1G10 group was 2.95-fold more efficacious than the control group (CI 95%) and 2.52-fold (CI, 95%) higher than its control for the second endpoint (80% healing). These data support the hypothesis that topical application of the proteolytic fraction identified as P1G10 significantly enhances foot ulcer healing compared to hydrogel treatment.

  9. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    Science.gov (United States)

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao

    2017-09-01

    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of topical negative pressure therapy on tissue oxygenation and wound healing in vascular foot wounds.

    Science.gov (United States)

    Chiang, Nathaniel; Rodda, Odette A; Sleigh, Jamie; Vasudevan, Thodur

    2017-08-01

    in hydroxyproline levels (58.0% TNP vs 94.5% control; P = .32) or tissue perfusion by tissue oxyhemoglobin saturation (19.4% TNP vs 12.0% control; P = .07) at day 14. At 1 year of follow-up, there were no significant outcomes in the analysis of wound failure, major amputation, and overall survival rates between the two groups. In this pilot study, applying TNP to acute high-risk foot wounds in patients with diabetes or end-stage renal failure improved the wound healing rate in reference to wound depth. This suggests that TNP may play a role in enhancing wound healing. This study sets the foundation for larger studies to evaluate the superiority of TNP over traditional dressings in high-risk foot wounds. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  11. Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research

    Science.gov (United States)

    Gould, Lisa; Abadir, Peter; Brem, Harold; Carter, Marissa; Conner-Kerr, Teresa; Davidson, Jeff; DiPietro, Luisa; Falanga, Vincent; Fife, Caroline; Gardner, Sue; Grice, Elizabeth; Harmon, John; Hazzard, William R.; High, Kevin P.; Houghton, Pamela; Jacobson, Nasreen; Kirsner, Robert S.; Kovacs, Elizabeth J.; Margolis, David; Horne, Frances McFarland; Reed, May J.; Sullivan, Dennis H.; Thom, Stephen; Tomic-Canic, Marjana; Walston, Jeremy; Whitney, Jo Anne; Williams, John; Zieman, Susan; Schmader, Kenneth

    2015-01-01

    Older adults are more likely to have chronic wounds than younger people, and the effect of chronic wounds on quality of life is particularly profound in this population. Wound healing slows with age, but the basic biology underlying chronic wounds and the influence of age-associated changes on wound healing are poorly understood. Most studies have used in vitro approaches and various animal models, but observed changes translate poorly to human healing conditions. The effect of age and accompanying multimorbidity on the effectiveness of existing and emerging treatment approaches for chronic wounds is also unknown, and older adults tend to be excluded from randomized clinical trials. Poorly defined outcomes and variables; lack of standardization in data collection; and variations in the definition, measurement, and treatment of wounds also hamper clinical studies. The Association of Specialty Professors, in conjunction with the National Institute on Aging and the Wound Healing Society, held a workshop, summarized in this article, to explore the current state of knowledge and research challenges, engage investigators across disciplines, and identify research questions to guide future study of age-associated changes in chronic wound healing. PMID:25753048

  12. Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Van Cuong Nguyen

    2013-01-01

    Full Text Available Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin.

  13. MicroRNA-155 Inhibition Promoted Wound Healing in Diabetic Rats.

    Science.gov (United States)

    Ye, Junna; Kang, Yutian; Sun, Xiaofang; Ni, Pengwen; Wu, Minjie; Lu, Shuliang

    2017-06-01

    Diabetes leads to amputation in approximately 15% to 20% of patients and is associated with high morbidity and mortality. Thus, improving the quality of wound healing in this condition is essential. Diabetes is associated with acute/chronic inflammation affecting all organs especially the foot, while, inhibition of microRNA-155 (miR-155) has been reported to improve or reduce inflammatory situation. However, the role of miR-155 inhibition in promoting diabetic wound healing is not clear. To further study the potential benefit of miR-155 inhibition, a study of male Sprague-Dawley rats was conducted and diabetes was induced by injection of streptozotocin. Real-time polymerase chain reaction (PCR), hematoxylin and eosin staining and immunohistochemistry were then performed. The PCR results confirmed that miR-155 expression was lower after miR-155 inhibition on days 3, 7, and 13 (all Ps healing rate between the normal glucose group (N group), diabetic PBS group (PBS group) and the topical miR-155 inhibitor group was compared. Faster healing of cutaneous wounds was observed in the miR-155 inhibitor group than in the PBS group and normal glucose group ( P healing of diabetic foot wounds.

  14. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  15. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker.

    Science.gov (United States)

    Fadini, Gian Paolo; Albiero, Mattia; Millioni, Renato; Poncina, Nicol; Rigato, Mauro; Scotton, Rachele; Boscari, Federico; Brocco, Enrico; Arrigoni, Giorgio; Villano, Gianmarco; Turato, Cristian; Biasiolo, Alessandra; Pontisso, Patrizia; Avogaro, Angelo

    2014-09-01

    Chronic foot ulceration is a severe complication of diabetes, driving morbidity and mortality. The mechanisms underlying delaying wound healing in diabetes are incompletely understood and tools to identify such pathways are eagerly awaited. Wound biopsies were obtained from 75 patients with diabetic foot ulcers. Matched subgroups of rapidly healing (RH, n = 17) and non-healing (NH, n = 11) patients were selected. Proteomic analysis was performed by labelling with isobaric tag for relative and absolute quantification and mass spectrometry. Differentially expressed proteins were analysed in NH vs RH for identification of pathogenic pathways. Individual sample gene/protein validation and in vivo validation of candidate pathways in mouse models were carried out. Pathway analyses were conducted on 92/286 proteins that were differentially expressed in NH vs RH. The following pathways were enriched in NH vs RH patients: apoptosis, protease inhibitors, epithelial differentiation, serine endopeptidase activity, coagulation and regulation of defence response. SerpinB3 was strongly upregulated in RH vs NH wounds, validated as protein and mRNA in individual samples. To test the relevance of serpinB3 in vivo, we used a transgenic mouse model with α1-antitrypsin promoter-driven overexpression of human SERPINB3. In this model, wound healing was unaffected by SERPINB3 overexpression in non-diabetic or diabetic mice with or without hindlimb ischaemia. In an independent validation cohort of 47 patients, high serpinB3 protein content was confirmed as a biomarker of healing improvement. We provide a benchmark for the unbiased discovery of novel molecular targets and biomarkers of impaired diabetic wound healing. High serpinB3 protein content was found to be a biomarker of successful healing in diabetic patients.

  16. Wound Healing: Concepts and Updates in Herbal Medicine

    Directory of Open Access Journals (Sweden)

    Meria M Dan

    2018-01-01

    Full Text Available Wound is a common injury due to internal and or external factors, which are subsequently associated with many immunological events, including necrosis, inflammation, etc. Significant amounts of tissue damage and infection are two silent features of wound along with other co-morbidities. Wound healing is a complex process where immunohistochemistry, tissue regeneration, and remodeling are predominant events. Since early human life, there are many traditional procedures are in use to treat wounds of various kind. However, the modern medical practices are rapidly growing in wound healing, traditional herbal medicine and use of medicinal plant products are showing equal ability and drawing the attention of medical practitioners. Herbal/traditional medicine is one of the oldest procedures in countries like India and China. In recent days, it has become reliable option in developed nations such as USA, UK, and other European nations for treatment of many deadly diseases including cancer. India is one of the biggest biodiversity reservoirs in the world with vast range of plant species and high access to the ancient medical practices. According to the WHO data and available sources, there more than 80% world population depends on herbal medical products. This indicates that despite the lack of clinical and scientific evidences, the herbal or traditional market is growing at rapid pace. In this literature review, we presented the role of herbal medicine in wound healing, some of the common medicinal plants, the quality, safety, and efficacy concerns of herbal medical products.

  17. Wound healing activity of Sida cordifolia Linn. in rats.

    Science.gov (United States)

    Pawar, Rajesh S; Chaurasiya, Pradeep K; Rajak, Harish; Singour, Pradeep K; Toppo, Fedelic Ashish; Jain, Ankit

    2013-01-01

    The present study provides a scientific evaluation for the wound healing potential of ethanolic (EtOH) extract of Sida cordifolia Linn. (SCL) plant. Excision, incision and burn wounds were inflicted upon three groups of six rats each. Group I was assigned as control (ointment base). Group II was treated with 10% EtOH extract ointment. Group III was treated with standard silver sulfadiazine (0.01%) cream. The parameters observed were percentage of wound contraction, epithelialization period, hydroxyproline content, tensile strength including histopathological studies. It was noted that the effect produced by the ethanolic extract of SCL ointment showed significant (P < 0.01) healing in all wound models when compared with the control group. All parameters such as wound contraction, epithelialization period, hydroxyproline content, tensile strength and histopathological studies showed significant (P < 0.01) changes when compared with the control. The ethanolic extract ointment of SCL effectively stimulates wound contraction; increases tensile strength of excision, incision and burn wounds.

  18. Studies on Wound Healing Activity of Heliotropium indicum Linn. Leaves on Rats

    OpenAIRE

    Dash, G. K.; Murthy, P. N.

    2011-01-01

    The petroleum ether, chloroform, methanol, and aqueous extracts of Heliotropium indicum Linn. (Family: Boraginaceae) were separately evaluated for their wound healing activity in rats using excision (normal and infected), incision, and dead space wound models. The effects of test samples on the rate of wound healing were assessed by the rate of wound closure, period of epithelialisation, wound breaking strength, weights of the granulation tissue, determination of hydroxyproline, super oxide d...

  19. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  20. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro.

    Science.gov (United States)

    Bussche, Leen; Harman, Rebecca M; Syracuse, Bethany A; Plante, Eric L; Lu, Yen-Chun; Curtis, Theresa M; Ma, Minglin; Van de Walle, Gerlinde R

    2015-04-11

    The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to provide paracrine signals that promote wound healing, but (i) how they exert their effects on target cells is unclear and (ii) a suitable delivery system to supply these MSC-derived secreted factors in a controlled and safe way is unavailable. The present study was designed to provide answers to these questions by using the horse as a translational model. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC-derived conditioned medium (CM), containing all factors secreted by MSCs, on equine dermal fibroblasts, a cell type critical for successful wound healing, and (ii) explore the potential of microencapsulated equine MSCs to deliver CM to wounded cells in vitro. MSCs were isolated from the peripheral blood of healthy horses. Equine dermal fibroblasts from the NBL-6 (horse dermal fibroblast cell) line were wounded in vitro, and cell migration and expression levels of genes involved in wound healing were evaluated after treatment with MSC-CM or NBL-6-CM. These assays were repeated by using the CM collected from MSCs encapsulated in core-shell hydrogel microcapsules. Our salient findings were that equine MSC-derived CM stimulated the migration of equine dermal fibroblasts and increased their expression level of genes that positively contribute to wound healing. In addition, we found that equine MSCs packaged in core-shell hydrogel microcapsules had similar effects on equine dermal fibroblast migration and gene expression, indicating that microencapsulation of MSCs does not interfere with the release of bioactive factors. Our results demonstrate that the use of CM from MSCs might be a promising

  1. Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling.

    Science.gov (United States)

    Zhao, Ruizhe; Wang, Xingjie; Jiang, Chenyi; Shi, Fei; Zhu, Yiping; Yang, Boyu; Zhuo, Jian; Jing, Yifeng; Luo, Guangheng; Xia, Shujie; Han, Bangmin

    2018-06-01

    Urinary tract infection, urinary frequency, urgency, urodynia and haemorrhage are common post-operative complications of thulium laser resection of the prostate (TmLRP). Our study mainly focuses on the role of finasteride in prostate wound healing through AR signalling. TmLRP beagles were randomly distributed into different treatment groups. Serum and intra-prostatic testosterone and DHT level were determined. Histological analysis was conducted to study the re-epithelialization and inflammatory response of the prostatic urethra in each group. We investigated the role of androgen in proliferation and inflammatory response in prostate. In addition, the effects of TNF-α on prostate epithelium and stromal cells were also investigated. Testosterone and DHT level increased in testosterone group and DHT decreased in finasteride group. Accelerated wound healing of prostatic urethra was observed in the finasteride group. DHT suppressed proliferation of prostate epithelium and enhanced inflammatory response in prostate. We confirmed that DHT enhanced macrophages TNF-α secretion through AR signalling. TNF-α suppressed proliferation of prostate epithelial cells and retarded cell migration. TNF-α also played a pivotal role in suppressing fibroblasts activation and contraction. Testosterone treatment repressed re-epithelialization and wound healing of prostatic urethra. Finasteride treatment may be an effective way to promote prostate re-epithelialization. © 2017 John Wiley & Sons Ltd.

  2. Effect of Omegaven on mast cell concentration in diabetic wound healing.

    Science.gov (United States)

    Babaei, Saeid; Ansarihadipour, Hadi; Nakhaei, Mahmoodreza; Darabi, Mohammadreza; Bayat, Parvindokht; Sakhaei, Mohammadhassan; Baazm, Maryam; Mohammadhoseiny, Atefe

    2017-05-01

    Diabetic wound healing is a complicated process. In all over the world 15% of 200 million diabetic people suffer from diabetic foot problems. Mast cells are known to participate in three phases of wound healing: the inflammatory reaction, angiogenesis and extracellular-matrix reabsorption. The inflammatory reaction is mediated by released histamine and arachidonic acid metabolites. Omega-3 fatty acids alter proinflammatory cytokine production during wound healing which affects the presence of inflammatory cells in wound area as well, but how this events specifically influences the presence of mast cells in wound healing is not clearly understood. This study is conducted to determine the effect of Omegaven, eicosapentaenoic (EPA) and docosahexaenoic (DHA) on pattern of presence of mast cells in diabetic wound area. Diabetic male wistar rats were euthanized at 1, 3, 5, 7 and 15 days after the excision was made. To estimate the number of mast cells histological sections were provided from wound area and stained with toluidine blue. In this relation wound area (8400 microscopic field, 45.69 mm 2 ) were examined by stereological methods by light microscope. We found that comparing experimental and control group, omega-3 fatty acids significantly decreased wound area in day 7 and also the number of grade three mast cells in day 3 and 5. We also found that wound strength has significantly increased in experimental group at day 15. Copyright © 2016. Published by Elsevier Ltd.

  3. A Clinicoepidemiological Profile of Chronic Wounds in Wound Healing Department in Shanghai.

    Science.gov (United States)

    Sun, Xiaofang; Ni, Pengwen; Wu, Minjie; Huang, Yao; Ye, Junna; Xie, Ting

    2017-03-01

    The aim of the study was to update the clinical database of chronic wounds in order to derive an evidence based understanding of the condition and hence to guide future clinical management in China. A total of 241 patients from January 1, 2011 to April 30, 2016 with chronic wounds of more than 2 weeks' duration were studied in wound healing department in Shanghai. Results revealed that among all the patients the mean age was 52.5 ± 20.2 years (range 2-92 years). The mean initial area of wounds was 30.3 ± 63.0 cm 2 (range 0.25-468 cm 2 ). The mean duration of wounds was 68.5 ± 175.2 months (range 0.5-840 months). The previously reported causes of chronic wounds were traumatic or surgical wounds (n = 82, 34.0%), followed by pressure ulcers (n = 59, 24.5%). To study the effects of age, patients were divided into 2 groups: less than 60 years (wounds etiology between the 2 age groups was analyzed, and there was significant statistical difference ( P wounds, chi-square test was used. There were significant differences in the factor of wound infection. ( P = .035, 95% CI = 0.031-0.038) Regarding therapies, 72.6% (n = 175) of the patients were treated with negative pressure wound therapy. Among all the patients, 29.9% (n = 72) of them were completely healed when discharged while 62.7% (n = 150) of them improved. The mean treatment cost was 12055.4 ± 9206.3 Chinese Yuan (range 891-63626 Chinese Yuan). In conclusion, traumatic or surgical wounds have recently become the leading cause of chronic wounds in Shanghai, China. Etiology of the 2 age groups was different. Infection could significantly influence the wound outcome.

  4. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    Science.gov (United States)

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  5. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Science.gov (United States)

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  6. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse.

    Science.gov (United States)

    Galeano, Mariarosaria; Bitto, Alessandra; Altavilla, Domenica; Minutoli, Letteria; Polito, Francesca; Calò, Margherita; Lo Cascio, Patrizia; Stagno d'Alcontres, Francesco; Squadrito, Francesco

    2008-01-01

    Healing of diabetic wounds still remains a critical medical problem. Polydeoxyribonucleotide (PDRN), a compound having a mixture of deoxyribonucleotide polymers, stimulates the A2 purinergic receptor with no toxic or adverse effect. We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of female diabetic mice (db+/db+) and their normal littermates (db+/+m). Animals were treated daily for 12 days with PDRN (8 mg/kg/ip) or its vehicle (100 muL 0.9%NaCl). Mice were killed 3, 6, and 12 days after skin injury to measure vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, to assay angiogenesis and tissue remodeling through histological evaluation, and to study CD31, Angiopoietin-1 and Transglutaminase-II. Furthermore, we measured wound breaking strength at day 12. PDRN injection in diabetic mice resulted in an increased VEGF message (vehicle=1.0+/-0.2 n-fold vs. beta-actin; PDRN=1.5+/-0.09 n-fold vs. beta-actin) and protein wound content on day 6 (vehicle=0.3+/-0.07 pg/wound; PDRN=0.9+/-0.1 pg/wound). PDRN injection improved the impaired wound healing and increased the wound-breaking strength in diabetic mice. PDRN also caused a marked increase in CD31 immunostaining and induced Transglutaminase-II and Angiopoietin-1 expression. Furthermore, the concomitant administration of 3,7-dimethyl-1-propargilxanthine, a selective adenosine A2A receptor antagonist, abolished PDRN positive effects on healing. However, 3,7-dimethyl-1-propargilxanthine alone did not affect wound healing in both diabetic mice and normal littermates. These results suggest that PDRN might be useful in wound disorders associated with diabetes.

  7. Knee disarticulation : Survival, wound healing and ambulation. A historic cohort study

    NARCIS (Netherlands)

    Ten Duis, K.; Bosmans, J. C.; Voesten, H. G. J.; Geertzen, J. H. B.; Dijkstra, P. U.

    2009-01-01

    The aim of this study was to analyze survival, wound healing and ambulation after knee disarticulation (KD). A historic cohort study using medical records and nursing home records was performed. Data included demographics, reason for amputation, concomitant diseases, survival, wound healing,

  8. Wound healing angiogenesis: The clinical implications of a simple mathematical model

    KAUST Repository

    Flegg, Jennifer A.

    2012-05-01

    Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds. © 2012 Elsevier Ltd.

  9. Assessment of skin wound healing with a multi-aperture camera

    Science.gov (United States)

    Nabili, Marjan; Libin, Alex; Kim, Loan; Groah, Susan; Ramella-Roman, Jessica C.

    2009-02-01

    A clinical trial was conducted at the National Rehabilitation Hospital on 15 individuals to assess whether Rheparan Skin, a bio-engineered component of the extracellular matrix of the skin, is effective at promoting healing of a variety of wounds. Along with standard clinical outcome measures, a spectroscopic camera was used to assess the efficacy of Rheparan skin. Gauzes soaked with Rheparan skin were placed on volunteers wounds for 5 minutes twice weekly for four weeks. Images of the wounds were taken using a multi spectral camera and a digital camera at baseline and weekly thereafter. Spectral images collected at different wavelengths were used combined with optical skin models to quantify parameters of interest such as oxygen saturation (SO2), water content, and melanin concentration. A digital wound measurement system (VERG) was also used to measure the size of the wound. 9 of the 15 measured subjects showed a definitive improvement post treatment in the form of a decrease in wound area. 7 of these 9 individuals also showed an increase in oxygen saturation in the ulcerated area during the trial. A similar trend was seen in other metrics. Spectral imaging of skin wound can be a valuable tool to establish wound-healing trends and to clarify healing mechanisms.

  10. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Science.gov (United States)

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  11. Expression of Neuropeptides and Cytokines in a Rabbit Model of Diabetic Neuroischemic Wound-Healing

    Science.gov (United States)

    Nabzdyk, Leena Pradhan; Kuchibhotla, Sarada; Guthrie, Patrick; Chun, Maggie; Auster, Michael E; Nabzdyk, Christoph; Deso, Steven; Andersen, Nicholas; LoGerfo, Frank W.; Veves, Aristidis

    2013-01-01

    Objective The present study is designed to understand the contribution of peripheral vascular disease and peripheral neuropathy to the wound-healing impairment associated with diabetes. Using a rabbit model of diabetic neuroischemic wound-healing we investigated rate of healing, leukocyte infiltration and expression of cytokines, Interleukin (IL)-8 and IL-6, and, neuropeptides, Substance P (SP) and Neuropeptide Y (NPY). Design of study Diabetes was induced in White New Zealand rabbits by administering alloxan while control rabbits received saline. Ten days later animals in both groups underwent surgery. One ear served as a sham and the other was made ischemic (ligation of central+rostral arteries), or neuroischemic (ischemia+ resection of central+rostral nerves). Four, 6mm punch biopsy wounds were created in both ears and wound-healing was followed for ten days using computerized planimetry. Results Non-diabetic sham and ischemic wounds healed significantly more rapidly than diabetic sham and ischemic wounds. Healing was slowest in neuroischemic wounds, irrespective of diabetic status. A high M1/M2 macrophage ratio and a high pro-inflammatory cytokine expression, both indicators of chronic-proinflammatory state, and low neuropeptide expression were seen in pre-injury diabetic skin. Post-injury, in diabetic wounds M1/M2 ratio remained high, the reactive increase in cytokine expression was low and neuropeptide expression was further decreased in neuroischemic wounds. Conclusion This rabbit model illustrates how a combination of a high M1/M2 ratio, a failure to mount post-injury cytokine response as well as a diminished neuropeptide expression contribute to wound-healing impairment in diabetes. The addition of neuropathy to ischemia leads to equivalently severe impaired wound-healing irrespective of diabetes status, suggesting that in the presence of ischemia, loss of neuropeptide function contributes to the impaired healing associated with diabetes. PMID:23755976

  12. Scientific production on the applicability of phenytoin in wound healing

    Directory of Open Access Journals (Sweden)

    Flávia Firmino

    2014-02-01

    Full Text Available Phenytoin is an anticonvulsant that has been used in wound healing. The objectives of this study were to describe how the scientific production presents the use ofphenytoinas a healing agent and to discuss its applicability in wounds. A literature review and hierarchy analysis of evidence-based practices was performed. Eighteen articles were analyzed that tested the intervention in wounds such as leprosy ulcers, leg ulcers, diabetic foot ulcers, pressure ulcers, trophic ulcers, war wounds, burns, preparation of recipient graft area, radiodermatitis and post-extraction of melanocytic nevi. Systemic use ofphenytoinin the treatment of fistulas and the hypothesis of topical use in the treatment of vitiligo were found. In conclusion, topical use ofphenytoinis scientifically evidenced. However robust research is needed that supports a protocol for the use ofphenytoinas another option of a healing agent in clinical practice.

  13. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review.

    Science.gov (United States)

    Miron, Richard J; Fujioka-Kobayashi, Masako; Bishara, Mark; Zhang, Yufeng; Hernandez, Maria; Choukroun, Joseph

    2017-02-01

    The growing multidisciplinary field of tissue engineering aims at predictably regenerating, enhancing, or replacing damaged or missing tissues for a variety of conditions caused by trauma, disease, and old age. One area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. This systematic review gathered all the currently available in vitro, in vivo, and clinical literature utilizing PRF for soft tissue regeneration, augmentation, and/or wound healing. In total, 164 publications met the original search criteria, with a total of 48 publications meeting inclusion criteria (kappa score = 94%). These studies were divided into 7 in vitro, 11 in vivo, and 31 clinical studies. In summary, 6 out of 7 (85.7%) and 11 out of 11 (100%) of the in vitro and in vivo studies, respectively, demonstrated a statistically significant advantage for combining PRF to their regenerative therapies. Out of the remaining 31 clinical studies, a total of 8 reported the effects of PRF in a randomized clinical trial, with 5 additional studies (13 total) reporting appropriate controls. In those clinical studies, 9 out of the 13 studies (69.2%) demonstrated a statistically relevant positive outcome for the primary endpoints measured. In total, 18 studies (58% of clinical studies) reported positive wound-healing events associated with the use of PRF, despite using controls. Furthermore, 27 of the 31 clinical studies (87%) supported the use of PRF for soft tissue regeneration and wound healing for a variety of procedures in medicine and dentistry. In conclusion, the results from the present systematic review highlight the positive effects of PRF on wound healing after regenerative therapy for the management of various soft tissue defects found in medicine and dentistry.

  14. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  15. The effects of cancer and cancer therapies on wound healing

    International Nuclear Information System (INIS)

    McCaw, D.L.

    1989-01-01

    Based on experimental evidence in rodents, most of the antineoplastic agents will affect wound healing. With most of the agents, this impairment is not sufficient to produce increased morbidity based on the clinical reports in humans. Radiation therapy appears to inhibit healing in both experimental animals and during clinical trials. In spite of this, it is reported that wounds in animals will heal when they are receiving radiation therapy after surgery. Based on the information presented here and experience at the University of Missouri, the decision to use adjuvant therapy should depend on the surgery performed. With a single incision that had no increased tension, there should be no hesitation to use adjuvant therapy. If removal of the tumor required reconstructive surgery, no radiation or chemotherapy should be used until the wound has healed. 30 references

  16. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    Science.gov (United States)

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. © 2015 by the Wound Healing Society.

  17. Wound healing activity of an aqueous extract of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes).

    Science.gov (United States)

    Gupta, Asheesh; Kirar, Vandana; Keshri, Gaurav Kr; Gola, Shefali; Yadav, Anju; Negi, Prem Singh; Misra, Kshipra

    2014-01-01

    The Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes) is popular because of its health-promoting properties. The effects of G. lucidum extract on cancer, hypertension, hypercholesterolemia, and hepatitis have been reported by many researchers. This investigation was undertaken to evaluate the healing efficacy of an aqueous lyophilized extract of G. lucidum from the Indian Himalayan region on dermal excision wound in experimental rats. The extract used in the study was found to be rich in total polyphenol and flavonoid contents. The healing efficacy was comparatively assessed with a reference povidone-iodine ointment. The G. lucidum extract showed significant enhanced healing activity, evidenced by an increase in wound contraction, collagen accumulation (hydroxyproline), hexosamine, and total protein contents. Histopathological findings further supported the biochemical indices. The results suggest that aqueous lyophilized extract of G. lucidum possesses significant wound-healing activity.

  18. Cost-effectiveness of becaplermin gel on wound healing of diabetic foot ulcers.

    Science.gov (United States)

    Gilligan, Adrienne M; Waycaster, Curtis R; Motley, Travis A

    2015-01-01

    We sought to determine the long-term cost effectiveness (payer's perspective) of becaplermin gel plus good wound care (BGWC) vs. good wound care (GWC) alone in terms of wound healing and risk of amputation in patients with diabetic foot ulcers (DFUs). Outcomes data were derived from a propensity score-matched cohort from the Curative Health Services database between 1998 and 2004, which was followed for 20 weeks. A four-state Markov model was used to predict costs and outcomes of wound healing and risk of amputation for BGWC vs. GWC alone over 1 year in patients with DFU. The primary outcome was closed-wound weeks. Transition probabilities for healing and amputation were derived from the aforementioned propensity score-matched cohorts. Ulcer recurrence was estimated from the medical literature. Utilization for becaplermin was calculated using the dosing algorithm in the product labeling. Of 24,898 eligible patients, 9.6% received BGWC. Based on the model, patients treated with BGWC had substantially more closed-wound weeks compared with GWC (16.1 vs. 12.5 weeks, respectively). More patients receiving BGWC had healed wounds at 1 year compared with those receiving GWC (48.1% vs. 38.3%). Risk of amputation was lower in the BGWC cohort (6.8% vs. 9.8%). Expected annual direct costs for DFU were $21,920 for BGWC and $24,640 for GWC. BGWC was economically dominant over GWC, providing better outcomes at a lower cost in patients with DFU. Compared with GWC alone, BGWC is more effective in healing wounds and lowering amputation risk, thereby decreasing long-term costs for DFU. © 2015 by the Wound Healing Society.

  19. Wound-healing Activity of Zanthoxylum bungeanum Maxim Seed Oil on Experimentally Burned Rats.

    Science.gov (United States)

    Li, Xiao-Qiang; Kang, Rong; Huo, Jun-Cheng; Xie, Yan-Hua; Wang, Si-Wang; Cao, Wei

    2017-01-01

    The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is considered to be rich source of fatty acids, mainly oleic and linoleic acids, and has been used for the treatment of burns in Chinese medicine. We evaluated the healing efficacy of ZBSO and explored its possible mechanism on scalded rats. Sprague-Dawley rat models with deep second-degree burns were set up, and ZBSO (500 and 1000 μl/wound) was topically applied twice daily for 7 days and then once daily until wound healing. The therapeutic effects of ZBSO were evaluated by observing wound closure time, decrustation time, wound-healing ratio, and pathological changes. Collagen type-III, matrix metalloproteinase-2 (MMP-2), MMP-9, phospho-nuclear factor-κB (p-NF-κB) p65, inhibitor of NF-κB subunit α p-IκBα, and inhibitor of NF-κB subunit α (IκBα) expression were determined using Western blotting. The ZBSO-treated group showed a higher wound-healing ratio and shorter decrustation and wound closure times than the untreated group. The topical application of ZBSO increased collagen synthesis as evidenced by an increase in hydroxyproline level and upregulated expression of collagen type-III on days 7, 14, and 21 posttreatment. A reduction in MMP-2 and MMP-9 expressions also confirmed the collagen formation efficacy of ZBSO. Furthermore, there was a significant increase in superoxide dismutase levels and a decrease in malondialdehyde levels in ZBSO-treated wounds. ZBSO also decreased tumor necrosis factor alpha, interleukin-1 (IL-1) β, and IL-6 levels in serum, upregulated IκBα, and downregulated p-NF-κB p65 and p-IκBα expression in vivo , indicating the anti-inflammatory action of ZBSO. ZBSO has significant potential to treat burn wounds by accelerating collagen synthesis and the anti-inflammatory cascade of the healing process. The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is rich of fatty acidsThe healing efficacy of ZBSO on experimentally scalded rats was evaluatedZBSO has significant potential

  20. Evaluation of wound healing activity of Ammannia baccifera and Blepharis maderaspatensis leaf extracts on rats

    Directory of Open Access Journals (Sweden)

    Aiyalu Rajasekaran

    2012-04-01

    Full Text Available Wound healing activity of the leaf extracts of Ammannia baccifera L., Lythraceae, and Blepharis maderaspatensis (L. B.Heyne ex Roth., Acanthaceae, was investigated by excision and incision wound healing models in rats. A phytochemical screening was done to determine the major constituents of the chloroform, ethyl acetate and ethanolic fractions of ethanolic leaf extracts. The excision and incision models were used to assess the effect of the plant extracts on wound healing in rats. Phytochemical screening reveals the presence of tannins, saponins, steroids, terpenoids, and flavonoids in the extract. The wound healing effect was comparatively evaluated with a standard drug Framycetin cream. Significant wound healing activity was observed for the creams prepared with 5% ethanol fraction of B. maderaspatensis and 5% chloroform fraction of A. baccifera ethanolic leaf extracts. The results of histopathological evaluation supported the outcome of both incision and excision wound models. Ethanolic fraction of B. maderaspatensis and chloroform fraction of A. baccifera exhibited marked wound healing activity. B. maderaspatensis extract displayed a remarkable wound healing activity compared to A. baccifera.

  1. Neurolaena lobata L. promotes wound healing in Sprague Dawley rats

    OpenAIRE

    Nayak, Bijoor Shivananda; Ramlogan, Surrin; Chalapathi Rao, AV; Maharaj, Sandeep

    2014-01-01

    Background: The leaves of the Neurolaena lobata (Asteraceae) plant are used to control diabetes and heal wounds and infections. Aim: The ethanolic extract of N. lobata leaf was evaluated for its ability to heal inflicted wounds in rats using the excision wound model. Materials and Methods: Animals were divided into three groups of six each. Test group animals were treated topically with an ethanolic extract of N. lobata (1:1 with petroleum jelly, 100 mg/kg/day). Standard and control group ani...

  2. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    Science.gov (United States)

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  3. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    International Nuclear Information System (INIS)

    Bellotti, Mariela I; Giana, Fabián E; Bonetto, Fabián J

    2015-01-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities. (paper)

  4. The phagocytic fitness of leucopatches may impact the healing of chronic wounds

    DEFF Research Database (Denmark)

    Thomsen, K; Trøstrup, H; Christophersen, L.

    2016-01-01

    Chronic non-healing wounds are significantly bothersome to patients and can result in severe complications. In addition, they are increasing in numbers, and a challenging problem to the health-care system. Handling of chronic, non-healing wounds can be discouraging due to lack of improvement......, and a recent explanation can be the involvement of biofilm infections in the pathogenesis of non-healing wounds. Therefore, new treatment alternatives to improve outcome are continuously sought-after. Autologous leucopatches are such a new, adjunctive treatment option, showing promising clinical effects...... wounds by leucopatches is attributed to the activity of the PMNs in the leucopatch....

  5. Effect of animal products and extracts on wound healing promotion in topical applications: a review.

    Science.gov (United States)

    Napavichayanun, Supamas; Aramwit, Pornanong

    2017-06-01

    Wound healing is a natural process of body reaction to repair itself after injury. Nonetheless, many internal and external factors such as aging, comorbidity, stress, smoking, alcohol drinking, infections, malnutrition, or wound environment significantly affect the quality and speed of wound healing. The unsuitable conditions may delay wound healing process and cause chronic wound or scar formation. Therefore, many researches have attempted to search for agents that can accelerate wound healing with safety and biocompatibility to human body. Widely studied wound healing agents are those derived from either natural sources including plants and animals or chemical synthesis. The natural products seem to be safer and more biocompatible to human tissue. This review paper demonstrated various kinds of the animal-derived products including chitosan, collagen, honey, anabolic steroids, silk sericin, peptides, and proteoglycan in term of mechanisms of action, advantages, and disadvantages when applied as wound healing accelerator. The benefits of these animal-derived products are wound healing promotion, anti-inflammatory, antimicrobial activity, moisturizing effect, biocompatibility, and safety. However, the drawbacks such as allergy, low stability, batch-to-batch variability, and high extraction and purification costs could not be avoided in some products.

  6. Optical coherence tomography angiography monitors human cutaneous wound healing over time.

    Science.gov (United States)

    Deegan, Anthony J; Wang, Wendy; Men, Shaojie; Li, Yuandong; Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2018-03-01

    In vivo imaging of the complex cascade of events known to be pivotal elements in the healing of cutaneous wounds is a difficult but essential task. Current techniques are highly invasive, or lack the level of vascular and structural detail required for accurate evaluation, monitoring and treatment. We aimed to use an advanced optical coherence tomography (OCT)-based angiography (OCTA) technique for the non-invasive, high resolution imaging of cutaneous wound healing. We used a clinical prototype OCTA to image, identify and track key vascular and structural adaptations known to occur throughout the healing process. Specific vascular parameters, such as diameter and density, were measured to aid our interpretations under a spatiotemporal framework. We identified multiple distinct, yet overlapping stages, hemostasis, inflammation, proliferation, and remodeling, and demonstrated the detailed vascularization and anatomical attributes underlying the multifactorial processes of dermatologic wound healing. OCTA provides an opportunity to both qualitatively and quantitatively assess the vascular response to acute cutaneous damage and in the future, may help to ascertain wound severity and possible healing outcomes; thus, enabling more effective treatment options.

  7. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  8. Curcumin and its topical formulations for wound healing applications.

    Science.gov (United States)

    Mohanty, Chandana; Sahoo, Sanjeeb K

    2017-10-01

    Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Association of Hemoglobin A1c and Wound Healing in Diabetic Foot Ulcers.

    Science.gov (United States)

    Fesseha, Betiel K; Abularrage, Christopher J; Hines, Kathryn F; Sherman, Ronald; Frost, Priscilla; Langan, Susan; Canner, Joseph; Likes, Kendall C; Hosseini, Sayed M; Jack, Gwendolyne; Hicks, Caitlin W; Yalamanchi, Swaytha; Mathioudakis, Nestoras

    2018-04-16

    This study evaluated the association between hemoglobin A 1c (A1C) and wound outcomes in patients with diabetic foot ulcers (DFUs). We conducted a retrospective analysis of an ongoing prospective, clinic-based study of patients with DFUs treated at an academic institution during a 4.7-year period. Data from 270 participants and 584 wounds were included in the analysis. Cox proportional hazards regression was used to assess the incidence of wound healing at any follow-up time in relation to categories of baseline A1C and the incidence of long-term (≥90 days) wound healing in relation to tertiles of nadir A1C change and mean A1C change from baseline, adjusted for potential confounders. Baseline A1C was not associated with wound healing in univariate or fully adjusted models. Compared with a nadir A1C change from baseline of -0.29 to 0.0 (tertile 2), a nadir A1C change of 0.09 to 2.4 (tertile 3) was positively associated with long-term wound healing in the subset of participants with baseline A1C healing was seen with the mean A1C change from baseline in this group. Neither nadir A1C change nor mean A1C change were associated with long-term wound healing in participants with baseline A1C ≥7.5%. There does not appear to be a clinically meaningful association between baseline or prospective A1C and wound healing in patients with DFUs. The paradoxical finding of accelerated wound healing and increase in A1C in participants with better baseline glycemic control requires confirmation in further studies. © 2018 by the American Diabetes Association.

  10. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.

    Science.gov (United States)

    Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K

    2017-10-24

    Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Psoriasis and wound healing outcomes: A retrospective cohort study examining wound complications and antibiotic use.

    Science.gov (United States)

    Young, Paulina M; Parsi, Kory K; Schupp, Clayton W; Armstrong, April W

    2017-11-15

    Little is known about wound healing in psoriasis. We performed a cohort study examining differences in wound healing complications between patients with and without psoriasis. Psoriasis patients with traumatic wounds were matched 1:3 to non-psoriasis patients with traumatic wounds based on age, gender, and body mass index (BMI). We examined theincidence of wound complications including infection, necrosis, and hematoma as well as incident antibiotic use within three months following diagnosis of a traumatic wound. The study included 164 patients with traumatic wounds, comprised of 41 patients with psoriasis matched to 123 patients without psoriasis. No statistically significant differences were detected in the incidence of overall wound complications between wound patients with psoriasis and wound patients without psoriasis (14.6% versus. 13.0%, HR 1.18, CI 0.39-3.56). After adjustment for diabetes, peripheral vascular disease, and smoking, no statistically significant differences were detected in the incidence of overall wound complications between patients with and without psoriasis (HR 1.11, CI 0.34-3.58). Specifically, the adjusted rates of antibiotic use were not significantly different between those with and without psoriasis (HR 0.65, CI 0.29-1.46). The incidence of wound complications following traumatic wounds of the skin was found to be similar between patients with and without psoriasis.

  12. [Delayed wound healing post molar extraction].

    Science.gov (United States)

    Schepers, R H; De Visscher, J G A M

    2009-02-01

    One month post extraction of the second left maxillary molar the alveolar extraction site showed no signs of healing and was painful. The patient had been using an oral bisphosphonate during 3 years. Therefore, the lesion was diagnosed as bisphosphonate-induced maxillary osteonecrosis. Treatment was conservative. Since one month later the pain had increased and the wound healing had decreased, a biopsy was carried out. Histopathologic examination revealed a non-Hodgkin lymphoma.

  13. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  14. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review.

    Science.gov (United States)

    Duscher, Dominik; Barrera, Janos; Wong, Victor W; Maan, Zeshaan N; Whittam, Alexander J; Januszyk, Michael; Gurtner, Geoffrey C

    2016-01-01

    The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption. © 2015 S. Karger AG, Basel.

  15. Fabrication of Hyaluronan-Poly(vinylphosphonic acid-Chitosan Hydrogel for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Dang Hoang Phuc

    2016-01-01

    Full Text Available A new hydrogel made of hyaluronan, poly(vinylphosphonic acid, and chitosan (HA/PVPA/CS hydrogel was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally, in vivo study was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity against E. coli. Finally, in vivo study indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.

  16. Age-associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing.

    Science.gov (United States)

    Fujiwara, Toshihiro; Dohi, Teruyuki; Maan, Zeshaan N; Rustad, Kristine C; Kwon, Sun Hyung; Padmanabhan, Jagannath; Whittam, Alexander J; Suga, Hirotaka; Duscher, Dominik; Rodrigues, Melanie; Gurtner, Geoffrey C

    2017-07-04

    Reactive oxygen species (ROS) impair wound healing through destructive oxidation of intracellular proteins, lipids and nucleic acids. Intracellular superoxide dismutase (SOD1) regulates ROS levels and plays a critical role in tissue homoeostasis. Recent evidence suggests that age-associated wound healing impairments may partially result from decreased SOD1 expression. We investigated the mechanistic basis by which increased oxidative stress links to age-associated impaired wound healing. Fibroblasts were isolated from unwounded skin of young and aged mice, and myofibroblast differentiation was assessed by measuring α-smooth muscle actin and collagen gel contraction. Excisional wounds were created on young and aged mice to study the healing rate, ROS levels and SOD1 expression. A mechanistic link between oxidative stress and fibroblast function was explored by assessing the TGF-β1 signalling pathway components in young and aged mice. Age-related wounds displayed reduced myofibroblast differentiation and delayed wound healing, consistent with a decrease in the in vitro capacity for fibroblast-myofibroblast transition following oxidative stress. Young fibroblasts with normal SOD1 expression exhibited increased phosphorylation of ERK in response to elevated ROS. In contrast, aged fibroblasts with reduced SOD1 expression displayed a reduced capacity to modulate intracellular ROS. Collectively, age-associated wound healing impairments are associated with fibroblast dysfunction that is likely the result of decreased SOD1 expression and subsequent dysregulation of intracellular ROS. Strategies targeting these mechanisms may suggest a new therapeutic approach in the treatment of chronic non-healing wounds in the aged population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.

    Science.gov (United States)

    Uchinaka, Ayako; Kawaguchi, Naomasa; Ban, Tsuyoshi; Hamada, Yoshinosuke; Mori, Seiji; Maeno, Yoshitaka; Sawa, Yoshiki; Nagata, Kohzo; Yamamoto, Hirofumi

    2017-09-23

    SVVYGLR peptide (SV peptide) is a 7-amino-acid sequence with angiogenic properties that is derived from osteopontin in the extracellular matrix and promotes differentiation of fibroblasts to myofibroblast-like cells and the production of collagen type Ⅲ by cardiac fibroblasts. However, the effects of SV peptide on dermal cells and tissue are unknown. In this study, we evaluated the effects of this peptide in a rat model of dermal wound healing. The synthetic SV peptide was added to dermal fibroblasts or keratinocytes, and their cellular motility was evaluated. In an in vivo wound healing exeriment, male rats aged 8 weeks were randomly assigned to the SV peptide treatment, non-treated control, or phosphate-buffered saline (PBS) groups. Wound healing was assessed by its repair rate and histological features. Scratch assay and cell migration assays using the Chemotaxicell method showed that SV peptide significantly promoted the cell migration in both fibroblasts and keratinocytes. In contrast the proliferation potency of these cells was not affected by SV peptide. In the rat model, wound healing progressed faster in the SV peptide-treated group than in the control and PBS groups. The histopathological analyses showed that the SV peptide treatment stimulated the migration of fibroblasts to the wound area and increased the number of myofibroblasts. Immunohistochemical staining showed a marked increase of von Willebland factor-positive neomicrovessels in the SV peptide-treated group. In conclusion, SV peptide has a beneficial function to promote wound healing by stimulating granulation via stimulating angiogenesis, cell migration, and the myofibroblastic differentiation of fibroblasts. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  19. Hyper-hydration: a new perspective on wound cleansing, debridement and healing.

    Science.gov (United States)

    2016-06-01

    In a recent symposium organised by Hartmann, the involvement of moisture and hydration in healing was re-evaluated and the use of hyper-hydration in promoting healing was examined. The distinction between hyperhydration and maceration was also discussed. Clinical studies were presented to give an overview of the clinical evidence to how Hydro-Responsive Wound Dressings can aid in healing via cleansing, debridement and desloughing of several wound types.

  20. Effects of Foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing.

    Science.gov (United States)

    Keskin, I; Gunal, Y; Ayla, S; Kolbasi, B; Sakul, A; Kilic, U; Gok, O; Koroglu, K; Ozbek, H

    2017-01-01

    We investigated the wound healing efficacy of the Foeniculum vulgare compounds, fenchone and limonene, using an excisional cutaneous wound model in rats. An excision wound was made on the back of the rat and fenchone and limonene were applied topically to the wounds once daily, separately or together, for 10 days. Tissue sections from the wounds were evaluated for histopathology. The healing potential was assessed by comparison to an untreated control group and an olive oil treated sham group. We scored wound healing based on epidermal regeneration, granulation tissue thickness and angiogenesis. After day 6, wound contraction with limonene was significantly better than for the control group. Ten days after treatment, a significant increase was observed in wound contraction and re-epithelialization in both fenchone and limonene oil treated groups compared to the sham group. Groups treated with fenchone and with fenchone + limonene scored significantly higher than the control group, but the difference was not statistically significant compared to the olive oil treated group. Our findings support the beneficial effects of fenchone and limonene for augmenting wound healing. The anti-inflammatory and antimicrobial activities of fenchone and limonene oil increased collagen synthesis and decreased the number of inflammatory cells during wound healing and may be useful for treating skin wounds.

  1. [Expression of cannabinoid receptor I during mice skin incised wound healing course].

    Science.gov (United States)

    Zhao, Zhen-bin; Guan, Da-wei; Liu, Wei-wei; Wang, Tao; Fan, Yan-yan; Cheng, Zi-hui; Zheng, Ji-long; Hu, Geng-yi

    2010-08-01

    To investigate the expression of cannabinoid receptor I (CB1R) during mice skin incised wound healing course and time-dependent changes of CB1R in wound age determination. The changes of CBIR expression in skin incised wound were detected by immunohistochemistry and Western blotting. The control group showed a low expression of CB1R detected mainly in epidermis, hair follicles, sebaceous gland and dermomuscular layer. CB1R expression was undetectable in neutrophils in the wound specimens from 6h to 12h post-injury. CB1R positive cells were mostly mononuclear cells (MNCs) and fibroblastic cells (FBCs) from 1 d to 5 d post-injury. CB1R positive cells were mostly FBCs from 7 d to 14d post-injury. The ratio of the CB1R positive cells increased gradually in the wound specimens from 6 h to 3 d post-injury, reached peak level at 5 d, and then decreased gradually from 7d to 14 d post-injury. The positive bands of CB1R were observed in all time points of the wound healing course by Western blotting. The expression peak showed at 5 d post-injury. CB1R is activated during the wound healing course. The expression of CB1R is found in mononuclear cells, which could be involved in inflammation reaction. CBIR is observed in fibroblastic cells, which could participate in the wound healing. CB1R may be a potentially useful marker for determination of wound healing age.

  2. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  3. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing.

    Science.gov (United States)

    Albaugh, Vance L; Mukherjee, Kaushik; Barbul, Adrian

    2017-11-01

    Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed. © 2017 American Society for Nutrition.

  4. Measurement of pH, exudate composition and temperature in wound healing: a systematic review.

    Science.gov (United States)

    Power, G; Moore, Z; O'Connor, T

    2017-07-02

    To assess the potential of measurements of pH, exudate composition and temperature in wounds to predict healing outcomes and to identify the methods that are employed to measure them. A systematic review based on the outcomes of a search strategy of quantitative primary research published in the English language was conducted. Inclusion criteria limited studies to those involving in vivo and human participants with an existing or intentionally provoked wound, defined as 'a break in the epithelial integrity of the skin', and excluded in vitro and animal studies. Data synthesis and analysis was performed using structured narrative summaries of each included study arranged by concept, pH, exudate composition and temperature. The Evidence Based Literature (EBL) Critical Appraisal Checklist was implemented to appraise the quality of the included studies. A total of 23 studies, three for pH (mean quality score 54.48%), 12 for exudate composition (mean quality score 46.54%) and eight for temperature (mean quality score 36.66%), were assessed as eligible for inclusion in this review. Findings suggest that reduced pH levels in wounds, from alkaline towards acidic, are associated with improvements in wound condition. Metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase (TIMP), neutrophil elastase (NE) and albumin, in descending order, were the most frequently measured analytes in wounds. MMP-9 emerged as the analyte which offers the most potential as a biomarker of wound healing, with elevated levels observed in acute or non-healing wounds and decreasing levels in wounds progressing in healing. Combined measures of different exudate components, such as MMP/TIMP ratios, also appeared to offer substantial potential to indicate wound healing. Finally, temperature measurements are highest in non-healing, worsening or acute wounds and decrease as wounds progress towards healing. Methods used to measure pH, exudate composition and

  5. Clinical Evaluation of Wound Healing in Split-Skin Graft Donor Sites Using Microscopic Quantification of Reepithelialization.

    Science.gov (United States)

    Wehrens, Kim Marlou Emiele; Arnoldussen, Carsten W K P; Booi, Darren Ivar; van der Hulst, Rene R W J

    2016-06-01

    Impaired or delayed wound healing is a common health problem. However, it remains challenging to predict whether wounds in patients will heal without complication or will have a prolonged healing time. In this study, the authors developed an objective screening tool to assess wound healing using microscopic quantification of reepithelialization in a split-thickness skin graft wound model and used this tool to identify risk factors for defective wound healing. Thirty patients (16 male and 14 female) were included in this prospective study. Anterior thigh skin biopsies from the donor site region of partial-thickness skin grafts were dressed with moisture-retentive dressings, and biopsies were examined on days 0, 2, 5, and 10 postoperatively by microscopy. Images were then transferred to a computer for image analysis and epithelial measurements (epithelial thickness and total reepithelialized surface). The effects of gender, age, body mass index, and smoking behavior on these wound healing parameters were determined. The authors found comparable results for the computer and traditional measure methods. However, the time required to perform the measurements using the semiautomated computer method was less than half the time of the traditional method. Image capturing, enhancing, and analysis with the new method required approximately 2 minutes 30 seconds, whereas the traditional methods took up to 7 minutes per image. The total size of the reepithelialized surface (P = .047) and percentage of the biopsy resurfaced with epithelia (P = .011) at day 10 were both significantly higher in male patients compared with female patients. In patients younger than 55 years, reepithelialized areas were significantly thicker than in patients older than 55 years (P = .008), whereas the size of the reepithelialized surface showed no differences. No significant differences in reepithelialization parameters were found concerning body mass index and smoking behavior. Both male gender and

  6. The Mechanisms of Centalla asiatica's Wound Healing Molecule ...

    African Journals Online (AJOL)

    Asiaticoside is a triterpene obtained from Centella asiatica and demonstrated to have healing potential against various wound models. Wounds are inflicted for constructive reasons even though more often they are results of accidents. This work aims at identifying molecular targets which account for the therapeutic results ...

  7. Phototherapy — a treatment modality for wound healing and pain relief

    African Journals Online (AJOL)

    Phototherapy — a treatment modality for wound healing and pain relief. D Hawkins, H Abrahamse. Abstract. When applied properly, phototherapy or Low Level Laser Therapy (LLLT) has proved to be very efficient in relieving pain and improving wound healing. However, until recently there has been a lack of scientific

  8. Wound healing trajectories in burn patients and their impact on mortality.

    Science.gov (United States)

    Nitzschke, Stephanie L; Aden, James K; Serio-Melvin, Maria L; Shingleton, Sarah K; Chung, Kevin K; Waters, J A; King, Booker T; Burns, Christopher J; Lundy, Jonathan B; Salinas, José; Wolf, Steven E; Cancio, Leopoldo C

    2014-01-01

    The rate of wound healing and its effect on mortality has not been well described. The objective of this article is to report wound healing trajectories in burn patients and analyze their effects on in-hospital mortality. The authors used software (WoundFlow) to depict burn wounds, surgical results, and healing progression at multiple time points throughout admission. Data for all patients admitted to the intensive care unit with ≥ 20% TBSA burned were collected retrospectively. The open wound size (OWS), which includes both unhealed burns and unhealed donor sites, was measured. We calculated the rate of wound closure (healing rate), which we defined as the change in OWS/time. We also determined the time delay (DAYS) from day of burn until day on which there was a reduction in OWS healing (H), and 13 did not (NH). H differed from NH on age (38 years [32-57] vs 63 [51-74]), body mass index (27 [21-28] vs 32 [19-52]), 24-hour fluid resuscitation (12 L [10-16] vs 18 [15-20]), pressors during first 48 hours (72% vs 100%), use of renal replacement therapy (32% vs 92%), and mortality (4% vs 100%). Repeated measures analysis of covariance showed a significant difference between survivors and nonsurvivors on OWS as a function of time (Phealing rate (+2%/day) after postburn day 20 had 100% survival whereas those with a negative healing rate (-2%/day) had 100% mortality. For H patients, median DAYS was 41 (28-54); median DAYS/TBSA was 1.3 (1.0-1.9). Survivors had a 0.62% drop in OWS/day, or 4.3%/week. In this cohort of patients with ≥ 20% TBSA, there was a difference in mortality after postburn day 20, between patients with a positive healing rate (+2%/day, 100% survival) and those with a negative healing rate (-2%/day, 100% mortality, P < .05).

  9. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats

    Directory of Open Access Journals (Sweden)

    Deepak Dwivedi

    2017-01-01

    Conclusion: Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata. Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

  10. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review

    OpenAIRE

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an...

  11. The genomics of oral cancer and wound healing.

    Science.gov (United States)

    Aswini, Y B

    2009-01-01

    Oral cancer is the most common malignancy in India, where it is epidemiologically linked to the chewing of betel quid and other carcinogens. But various point mutations were detectable in the p53 and p15 genes. Hence, this review was conducted with the aim to find out genetic risks as well as markers for oral cancers and wound healing. Tobacco-related cancers are associated with polymorphisms of the CYP1A1 and GSTM1 genes in terms of genotype frequencies and cigarette smoking dose. Expression of E6/E7 were also found in tumors, most of which were derived from the oropharynx. Presence of homozygous arginine at codon 72 renders p53 about seven times more susceptible to E6-mediated proteolytic degradation. Erythropoietin, vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF), and PDGF has been implicated as one of the principal mitogens involved in cutaneous wound healing. Activation of NF-kB is associated with enhanced cell survival. Human papilloma virus status is a significantly favorable prognostic factor in tonsilar cancer and may be used as a marker in order to optimize the treatment of patients with this type of cancer.

  12. The genomics of oral cancer and wound healing

    Directory of Open Access Journals (Sweden)

    Aswini Y

    2009-03-01

    Full Text Available Oral cancer is the most common malignancy in India, where it is epidemiologically linked to the chewing of betel quid and other carcinogens. But various point mutations were detectable in the p53 and p15 genes. Hence, this review was conducted with the aim to find out genetic risks as well as markers for oral cancers and wound healing. Tobacco-related cancers are associated with polymorphisms of the CYP1A1 and GSTM1 genes in terms of genotype frequencies and cigarette smoking dose. Expression of E6/E7 were also found in tumors, most of which were derived from the oropharynx. Presence of homozygous arginine at codon 72 renders p53 about seven times more susceptible to E6-mediated proteolytic degradation. Erythropoietin, vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF, and PDGF has been implicated as one of the principal mitogens involved in cutaneous wound healing. Activation of NF-kB is associated with enhanced cell survival. Human papilloma virus status is a significantly favorable prognostic factor in tonsilar cancer and may be used as a marker in order to optimize the treatment of patients with this type of cancer.

  13. Effect of Robusta coffee beans ointment on full thickness wound healing

    Directory of Open Access Journals (Sweden)

    Yorinta Putri Kenisa

    2012-03-01

    Full Text Available Background: Traumatic lesions, whether chemical, physical, or thermal in nature, are among the most common lesion in the mouth. Wound healing is essential for the maintenance of normal structure, function, and survival of organisms. Experiments of Robusta coffee powder on rat-induced alloxan incision wound, clinically demonstrated similar healing rate with the povidone iodine 10%. No studies that look directly the effect of coffee extract in ointment form when viewed in terms of histopathology. Robusta coffee bean (Coffea canephora consists of chlorogenic acid (CGA and caffeic acid which are belived to act as antioxidant and take part in wound healing process. Purpose: The aim of this study was to identify the enhancement of healing process of full-thickness skin wound after Robusta coffee beans extract ointment application. Methods: Sample consisted of 20 Cavia cabaya treated with full-thickness with wounds and was given Robusta coffee beans extract ointment concentration range of 22.5%, 45%, and 90% except the control group which was given ointment base material. Animals were then harvested on the fourth day and made for histopathological preparations. Data were calculated and compared by one-way ANOVA test and LSD test. Results: The study showed that Robusta coffee bean extract ointment can increase the number of lymphocytes, plasma cells, macrophages, fibroblasts, and blood vessels by the presence of chlorogenic acid (CGA and Caffeic acid. Conclusion: In conclusion Robusta coffee bean extract ointment enhance the healing process of fullthickness skin wound of Cavia cabaya.Latar belakang: Lesi traumatik, baik akibat rangsang kimia, fisik, atau termal, merupakan lesi yang paling umum terjadi di dalam rongga mulut. Penyembuhan luka yang terjadi ini penting untuk pemeliharaan struktur normal, fungsi, dan kelangsungan hidup organisme. Percobaan pemberian bubuk kopi Robusta terhadap luka sayatan pada tikus yang diinduksi aloksan, secara klinis

  14. Effects on Glycemic Control in Impaired Wound Healing in Spontaneously Diabetic Torii (SDT) Fatty Rats.

    Science.gov (United States)

    Katsuhiro, Miyajima; Hui Teoh, Soon; Yamashiro, Hideaki; Shinohara, Masami; Fatchiyah, Fatchiyah; Ohta, Takeshi; Yamada, Takahisa

    2018-02-01

    Impaired diabetic wound healing is an important issue in diabetic complications. The present study aims to evaluate the protective effect on glycemic control against impaired diabetic wound healing using a diabetic rat model. We investigated the wound healing process and effect on the impaired wound repair by glycemic control in the Spontaneously Diabetic Torii (SDT) fatty rat, which is a new animal model of obese type 2 diabetes and may be a good model for study impaired wound healing. Male SDT fatty rats at 15 weeks of age were administered orally with sodium glucose co-transporter (SGLT) 2 inhibitor for 3 weeks. Wounds were induced at 2 weeks after SGLT 2 inhibitor treatment, and the wound areas were periodically examined in morphological and histological analyses. The SDT fatty rats showed a delayed wound healing as compared with the normal rats, but a glycemic control improved the impaired wound healing. In histological analysis in the skin of SDT fatty rats showed severe infiltration of inflammatory cell, hemorrhage and many bacterial masses in the remaining and slight fibrosis of crust on skin tissue . Thought that this results skin performance to be a delay of crust formation and regeneration of epithelium; however, these findings were ameliorated in the SGLT 2 inhibitor treated group. Glycemic control is effective for treatment in diabetic wounds and the SDT fatty rat may be useful to investigate pathophysiological changes in impaired diabetic wound healing.

  15. Myofibroblasts in palatal wound healing: prospects for the reduction of wound contraction after cleft palate repair.

    NARCIS (Netherlands)

    Beurden, H.E. van; Hoff, J.W. Von den; Torensma, R.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The surgical closure of orofacial clefts is considered to impair maxillary growth and dento-alveolar development. Wound contraction and subsequent scar tissue formation, during healing of these surgical wounds, contribute largely to these growth disturbances. The potential to minimize wound

  16. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.

    Science.gov (United States)

    Zhao, Lingling; Niu, Lijing; Liang, Hongze; Tan, Hui; Liu, Chaozong; Zhu, Feiyan

    2017-11-01

    pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.

  17. Blood-derived small Dot cells reduce scar in wound healing

    International Nuclear Information System (INIS)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.; Lorenz, H. Peter

    2008-01-01

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin β1, CD184, CD34, CD13 low and Sca1 low , but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 μm diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherin and integrin β1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells

  18. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu

    2017-11-18

    Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Shedding Light on a New Treatment for Diabetic Wound Healing: A Review on Phototherapy

    Directory of Open Access Journals (Sweden)

    Nicolette N. Houreld

    2014-01-01

    Full Text Available Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cells in vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP. In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation both in vitro and in vivo in diabetic wound healing.

  20. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Science.gov (United States)

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  1. Clinically relevant doses of lidocaine and bupivacaine do not impair cutaneous wound healing in mice.

    Science.gov (United States)

    Waite, A; Gilliver, S C; Masterson, G R; Hardman, M J; Ashcroft, G S

    2010-06-01

    Lidocaine and bupivacaine are commonly infiltrated into surgical cutaneous wounds to provide local anaesthesia after surgical procedures. However, very little is known about their effects on cutaneous wound healing. If an inhibitory effect is demonstrated, then the balance between the benefits of postoperative local anaesthesia and the negatives of impaired cutaneous wound healing may affect the decision to use local anaesthesia or not. Furthermore, if a difference in the rate of healing of lidocaine- and bupivacaine-treated cutaneous wounds is revealed, or if an inhibitory effect is found to be dose-dependent, then this may well influence the choice of agent and its concentration for clinical use. Immediately before incisional wounding, we administered lidocaine and bupivacaine intradermally to adult female mice, some of which had been ovariectomized to act as a model of post-menopausal women (like post-menopausal women, ovariectomized mice heal wounds poorly, with increased proteolysis and inflammation). Day 3 wound tissue was analysed histologically and tested for expression of inflammatory and proteolytic factors. On day 3 post-wounding, wound areas and extent of re-epithelialization were comparable between the control and local anaesthetic-treated animals, in both intact and ovariectomized groups. Both tested drugs significantly increased wound activity of the degradative enzyme matrix metalloproteinase-2 relative to controls, while lidocaine also increased wound neutrophil numbers. Although lidocaine and bupivacaine influenced local inflammatory and proteolytic factors, they did not impair the rate of healing in either of two well-established models (mimicking normal human wound healing and impaired age-related healing).

  2. Healing of excisional wound in alloxan induced diabetic sheep: A planimetric and histopathologic study

    Directory of Open Access Journals (Sweden)

    Farshid Sarrafzadeh-Rezaei

    2013-09-01

    Full Text Available Healing of skin wound is a multi-factorial and complex process. Proper treatment of diabetic wounds is still a major clinical challenge. Although diabetes mellitus can occur in ruminants, healing of wounds in diabetic ruminants has not yet been investigated. The aim of this study was to evaluate healing of ovine excisional diabetic wound model. Eight 4-month-old Iranian Makoui wethers were equally divided to diabetic and nondiabetic groups. Alloxan monohydrate (60 mg kg-1, IV was used for diabetes induction. In each wether, an excisional wound was created on the dorsum of the animal. Photographs were taken in distinct times for planimetric evaluation. Wound samples were taken on day 21 post-wounding for histopathologic evaluations of epidermal thickness, number of fibroblasts and number of new blood vessels. The planimetric study showed slightly delay in wound closure of diabetic animals, however, it was not significantly different from nondiabetic wounds (p ≥ 0.05. Furthermore, epidermal thickness, number of fibroblasts and number of blood vessels were significantly lower in diabetic group (p < 0.05. We concluded that healing of excisional diabetic wounds in sheep may be compromised, as seen in other species. However, contraction rate of these wounds may not be delayed due to metabolic features of ruminants and these animals might go under surgeries without any serious concern. However, healing quality of these wounds may be lower than normal wounds.

  3. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As Augments Dermal Wound Healing in Immunosuppressed Rats.

    Directory of Open Access Journals (Sweden)

    Gaurav K Keshri

    Full Text Available Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM or low-level laser (light therapy (LLLT emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2 with pulsed (10 and 100 Hz, 50% duty cycle and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α, augmenting wound contraction (α-SM actin, enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF, re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz for promoting dermal wound healing in immunosuppressed subjects.

  4. In vivo Antibacterial and Wound Healing Activities of Roman Chamomile (Chamaemelum nobile).

    Science.gov (United States)

    Kazemian, Hossein; Ghafourian, Sobhan; Sadeghifard, Nourkhoda; Houshmandfar, Reza; Badakhsh, Behzad; Taji, Asieh; Shavalipour, Aref; Mohebi, Reza; Ebrahim-Saraie, Hadi Sedigh; Houri, Hamidreza; Heidari, Hamid

    2018-01-01

    Today considerable number of drugs are produced from plants. Several plants with antibacterial and healing applications are used in medicine such as Roman chamomile (Chamaemelum nobile L.). Wound infection is one of the most prevalent infections among infectious diseases around the world. Due to appearance of drug resistance, researchers are now paying attention to medicinal plants. Therefore, this study was designed to investigate the antimicrobial and wound healing properties of C. nobile against Pseudomonas aeruginosa using in vivo conditions. Ethanolic extract of C. nobile was provided using standard method. The 5% C. nobile ointment was prepared by dissolving lyophilized extract in eucerin. Forty five male rats were obtained from Ilam university. After anesthetization and wound creation, wounds were infected by P. aeruginosa. The rats were divided into three groups, group I was treated with C. nobile ointment, group II was treated with tetracycline ointment and the third group was treated with base gel as control group. Antibacterial and wound healing activities of C. nobile ointment were more than tetracycline ointment significantly. Our results indicated that extract of C. nobile had effective antibacterial activity and accelerated the progression of wound healing. Our study indicated that antibacterial and wound healing activities of C. nobile ointment were notable. C. nobile therapy in combination with antibiotics can also be useful because medicinal plants contents operate in synergy with antibiotics. These results revealed the value of plant extracts to control antibiotic resistant bacteria in wound infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. The impact of virulence factors of Porphyromonas gingivalis on wound healing in vitro

    Directory of Open Access Journals (Sweden)

    Alexa M. G. A. Laheij

    2015-07-01

    Full Text Available Background: Porphyromonas gingivalis inhibits oral epithelial wound healing in vitro more strongly than other oral bacteria, but it is unknown why P. gingivalis is such a potent inhibitor of wound healing. Objective: Therefore, the aim of this study was to investigate the influence of major virulence factors of P. gingivalis on wound healing in an in vitro wound-healing model. The influence of the capsular polysaccharide, the Arg- and Lys- gingipains, the major fimbriae and lipopolysaccharide (LPS was investigated. Design: A standardized scratch was made in a confluent layer of human oral epithelial cells HO-1-N-1. The epithelial cells were then challenged with different concentrations of several P. gingivalis wild-type strains and knockout mutants. Closure of the scratch was determined after 17 h and compared to control conditions without bacteria. Results: The P. gingivalis strains ATCC 33277, W83, and W50 significantly inhibited wound healing. The presence of a capsular polysaccharide lowered significantly the inhibition of epithelial cell migration, while gingipain activity significantly increased the inhibition of cell migration. LPS and the major fimbriae did not influence epithelial cell migration. None of the tested P. gingivalis strains completely prevented the inhibition of cell migration, suggesting that other characteristics of P. gingivalis also play a role in the inhibition of wound healing, and that further research is needed. Conclusions: The capsular polysaccharide and the Arg- and Lys- gingipains of P. gingivalis influenced the capacity of P. gingivalis to hinder wound healing, while LPS and the major fimbriae had no effect.

  6. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  7. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention

    DEFF Research Database (Denmark)

    Jørgensen, Elin Lisby Kastbjerg; Bay, Lene; Bjarnsholt, Thomas

    2017-01-01

    impaired healing. Presence of biofilm in tissue biopsies was assessed by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) and confocal laser scanning microscopy (CLSM). Bandaged limb wounds developed EGT and displayed delayed healing, while shoulder and un-bandaged limb wounds healed.......009). The finding that biofilm was most prevalent in bandaged limb wounds with EGT formation suggests that biofilm may be linked to delayed wound healing in horses, as has been observed in humans. The inability to clear bacteria could be related to hypoxia and low-grade inflammation in the EGT, but the interaction......In humans, biofilm is a well-known cause of delayed healing and low-grade inflammation of chronic wounds. In horses, biofilm formation in wounds has been studied to a very limited degree. The objective of this study was thus to investigate the occurrence of biofilm in equine experimental wounds...

  8. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.

    Science.gov (United States)

    Aijima, Reona; Wang, Bing; Takao, Tomoka; Mihara, Hiroshi; Kashio, Makiko; Ohsaki, Yasuyoshi; Zhang, Jing-Qi; Mizuno, Atsuko; Suzuki, Makoto; Yamashita, Yoshio; Masuko, Sadahiko; Goto, Masaaki; Tominaga, Makoto; Kido, Mizuho A

    2015-01-01

    The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa. © FASEB.

  9. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. © 2013 Elsevier Inc. All rights reserved.

  10. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Science.gov (United States)

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng

    2018-01-01

    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  11. Radiotherapy and wound healing: principles, management and prospects (review).

    Science.gov (United States)

    Gieringer, Matthias; Gosepath, Jan; Naim, Ramin

    2011-08-01

    Radiation therapy is a major therapeutic modality in the management of cancer patients. Over 60% of these patients receive radiotherapy at some point during their course of treatment and over 90% will develop skin reactions after therapy. Problematic wound healing in radiation-damaged tissue constitutes a major surgical difficulty and despite all efforts, irradiated skin remains a therapeutic challenge. This review provides an overview of the fundamental principles of radiation therapy with regards to the wound healing in normal and irradiated skin. Furthermore, it presents techniques that describe how to prevent and manage skin side effects as well as prospects that may improve cutaneous wound repair in general and in irradiated skin.

  12. Pigment epithelium-derived factor as a multifunctional regulator of wound healing

    Science.gov (United States)

    Wietecha, Mateusz S.; Król, Mateusz J.; Michalczyk, Elizabeth R.; Chen, Lin; Gettins, Peter G.

    2015-01-01

    During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury. PMID:26163443

  13. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Herrero-Fresneda, Inmaculada [Nephrology Unit, IDIBELL, Hospital de Bellvitge, Barcelona (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Garcia del Moral, Raimundo [Department of Pathology, University of Granada (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Dedhar, Shoukat [Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC (Canada); Ruiz-Torres, Maria P., E-mail: mpiedad.ruiz@uah.es [Department of Physiology, University of Alcala, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain); Rodriguez-Puyol, Diego [Nephrology Unit, Hospital Universitario Principe de Asturias, Alcala de Henares, Madrid (Spain); Red de Investigacion Renal Cooperativa (RedinRen) (Spain); Instituto Reina Sofia de Investigacion Nefrologica (Spain)

    2012-11-15

    Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILK resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.

  14. Efficacy Study of Broken Rice Maltodextrin in In Vitro Wound Healing Assay

    Directory of Open Access Journals (Sweden)

    Zahiah Mohamed Amin

    2015-01-01

    Full Text Available Maltodextrins that contain both simple sugars and polymers of saccharides have been widely used as ingredients in food products and pharmaceutical delivery systems. To date, no much work has been reported on the applications of maltodextrin from broken rice (RB sources. Therefore, the objective of this work was to investigate the in vitro wound healing efficacy of RB maltodextrin at different conditions. Wounds treated with lower dextrose equivalent (DE range (DE 10–14 of maltodextrins at a concentration of 10% obtained from RB were found to be able to heal the wounds significantly faster (p<0.01 than maltodextrin with higher DE ranges (DE 15–19 and DE 20–24 and concentrations of 5% and 20%. The findings from both BrdU and MTT assay further confirmed its wound healing properties as the NIH 3T3 fibroblast wounded cells were able to proliferate without causing cytotoxic effect when wounded cell was treated with maltodextrin. All these findings indicated that the RB maltodextrin could perform better than the commercial maltodextrin at the same DE range. This study showed that RB maltodextrins had better functionality properties than other maltodextrin sources and played a beneficial role in wound healing application.

  15. Efficacy Study of Broken Rice Maltodextrin in In Vitro Wound Healing Assay

    Science.gov (United States)

    Mohamed Amin, Zahiah; Koh, Soo Peng; Abdul Hamid, Nur Syazwani

    2015-01-01

    Maltodextrins that contain both simple sugars and polymers of saccharides have been widely used as ingredients in food products and pharmaceutical delivery systems. To date, no much work has been reported on the applications of maltodextrin from broken rice (RB) sources. Therefore, the objective of this work was to investigate the in vitro wound healing efficacy of RB maltodextrin at different conditions. Wounds treated with lower dextrose equivalent (DE) range (DE 10–14) of maltodextrins at a concentration of 10% obtained from RB were found to be able to heal the wounds significantly faster (p < 0.01) than maltodextrin with higher DE ranges (DE 15–19 and DE 20–24) and concentrations of 5% and 20%. The findings from both BrdU and MTT assay further confirmed its wound healing properties as the NIH 3T3 fibroblast wounded cells were able to proliferate without causing cytotoxic effect when wounded cell was treated with maltodextrin. All these findings indicated that the RB maltodextrin could perform better than the commercial maltodextrin at the same DE range. This study showed that RB maltodextrins had better functionality properties than other maltodextrin sources and played a beneficial role in wound healing application. PMID:26436094

  16. SDF-1 alpha expression during wound healing in the aged is HIF dependent.

    Science.gov (United States)

    Loh, Shang A; Chang, Edward I; Galvez, Michael G; Thangarajah, Hariharan; El-ftesi, Samyra; Vial, Ivan N; Lin, Darius A; Gurtner, Geoffrey C

    2009-02-01

    Age-related impairments in wound healing are associated with decreased neovascularization, a process that is regulated by hypoxia-responsive cytokines, including stromal cell-derived factor (SDF)-1 alpha. Interleukin-1 beta is an important inflammatory cytokine involved in wound healing and is believed to regulate SDF-1 alpha expression independent of hypoxia signaling. Thus, the authors examined the relative importance of interleukin (IL)-1 beta and hypoxia-inducible factor (HIF)-1 alpha on SDF-1 alpha expression in aged wound healing. Young and aged mice (n = 4 per group) were examined for wound healing using a murine excisional wound model. Wounds were harvested at days 0, 1, 3, 5, and 7 for histologic analysis, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot. An engineered wild-type and mutated SDF luciferase reporter construct were used to determine HIF transactivation. Aged mice demonstrated significantly impaired wound healing, reduced granulation tissue, and increased epithelial gap compared with young controls. Real-time polymerase chain reaction demonstrated reduced SDF-1 alpha levels in aged wounds that correlated with reduced CD31+ neovessels. Western blots revealed decreased HIF-1 alpha protein in aged wounds. However, both IL-1 beta and macrophage infiltrate were unchanged between young and aged animals. Using the wild-type and mutated SDF luciferase reporter construct in which the hypoxia response element was deleted, only young fibroblasts were able to respond to IL-1 beta stimulation, and this response was abrogated by mutating the HIF-binding sites. This suggests that HIF binding is essential for SDF-1 transactivation in response to both inflammatory and hypoxic stimuli. SDF-1 alpha deficiency observed during aged wound healing is attributable predominantly to decreased HIF-1 alpha levels rather than impaired IL-1 beta expression.

  17. Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study.

    Science.gov (United States)

    Partlow, Jessica; Blikslager, Anthony; Matthews, Charles; Law, Mac; Daniels, Joshua; Baker, Rose; Labens, Raphael

    2016-04-11

    Normal wound healing progresses through a series of interdependent physiological events: inflammation, angiogenesis, re-epithelialization, granulation tissue formation and extracellular matrix remodeling. Alterations in this process as well as the bacterial type and load on a wound may alter the wound healing rate. The purpose of this study was to evaluate the effect of topical Saccharomyces boulardii on the healing of acute cutaneous wounds, using a prospective, controlled, experimental study, with six purpose bred landrace pigs. All wounds healed without apparent complications. Comparison of the mean 3D and 2D wound surface area measurements showed no significant difference between treatment groups as wounds decreased similarly in size over the duration of the study. A significant reduction in wound surface area was identified sooner using 3D assessments (by day 9) compared to 2D assessments (by day 12) (P Saccharomyces boulardii does not hasten wound healing or change the wounds' microbiome under the conditions reported in this study.

  18. Providing cost-effective treatment of hard-to-heal wounds in the community through use of NPWT.

    Science.gov (United States)

    Hampton, Jane

    2015-06-01

    The treatment of non-healing wounds accounts for a high proportion of wound care costs. Advanced technology treatments, such as negative pressure wound therapy (NPWT), could be cost-effective if they result in faster healing. The objective of this study is to assess the effect on healing and the cost-effectiveness of a single-use NPWT (i.e PICO by Smith & Nephew) when used on hard-to-heal wounds in a community setting. This was a cohort case study in which wounds were treated with NWPT for 2 weeks. Wounds were assessed every 2-4 weeks to a healed state. The weekly cost of treatment prior to intervention, that is, the products used and nurse time, were compared with treatment costs associated with NWPT and after a return to standard treatment. The study included 9 patients with leg ulcers or pressure ulcers that had been slow healing or non-healing for at least 6 weeks. While treated with NPWT, the average weekly reduction in wound size was 21%. The wound size achieved with NPWT was reached on average 10 weeks earlier than predicted. The increased healing rate continued after PICO stopped and 5 wounds healed on average 8 weeks later. Frequency of dressing changes fell from 4 times weekly at baseline to 2 times a week with NPWT and to 1.8 after NPWT stopped. Weekly cost of treatment with NPWT was, on average, 1.6 times higher than the baseline, but fell to 3 times less when NPWT stopped owing to the reduction in dressing changes. The amount of change in healing rate was considerably higher than the increase in costs associated with NPWT. NWPT is a cost-effective treatment for hard-to-heal wounds. Wounds decreased in size and healed more quickly under NWPT treatment than under standard treatment. Additional NPWT costs can be quickly offset by faster healing and a shortened treatment period.

  19. Preparation and characterisation of Punica granatum pericarp aqueous extract loaded chitosan-collagen-starch membrane: role in wound healing process.

    Science.gov (United States)

    Amal, B; Veena, B; Jayachandran, V P; Shilpa, Joy

    2015-05-01

    Engineered scaffolds made from natural biomaterials are crucial elements in tissue engineering strategies. In this study, biological scaffold like chitosan-collagen-starch membrane (CCSM) loaded with the antibacterial agent, Punica granatum pericarp aqueous extract was explored for enhanced regeneration of epithelial tissue during wound healing. Collagen was extracted from Rachycentron canadum fish skin. Membranous scaffold was prepared by mixing collagen, starch and chitosan in a fixed proportion, loaded with aqueous extract of P. granatum and its anti-pseudomonal activity was studied. Morphological characterization by SEM and mechanical property like tensile strength of the membrane were studied. Excision wound of 2 cm(2) size was induced in Guinea pig and the effect of P. granatum extract loaded CCSM in wound healing was studied. The SEM image showed deep pores in the membrane and also possessed good tensile strength. Wound surface area was reduced prominently in the experimental group with P. granatum extract loaded CCSM when compared to the group with unloaded membrane and the one with no membrane. Punica granatum extract loaded CCSM has antipseudomonal property and supported enhanced epithelial cell proliferation without leaving a scar after wound healing. This has significant therapeutic application in membranous scaffold mediated skin repair and regeneration.

  20. The bio-positive effects of burned radioactive lantern mantle powder on the wound healing in rats

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S.M.J.; Rahmani, M.R.; Rahnama, A.; Rashidi-Nejad, H.R.; Ahmadi, J.; Aghaiee, M.M.; Behnejad, B. [Rafsanjan Univ. of Medical Sciences, (Iran, Islamic Republic of)

    2006-07-01

    Objective: Poor educated people in some parts of Iran use burned mantles as a wound healing powder to prevent the two main threats with the injuries, bleeding and the infection. Some lantern mantles contain low levels of radioactive thorium for maximizing the light output, while non-radioactive mantles contain yttrium. Although radioactive lantern mantles present a minimal radiation health hazard, it is generally believed when inhaled or ingested, thorium containing mantle powder, will be dangerous. To evaluate the effect of burned radioactive lantern mantles on wound healing this study was conducted. Materials and Methods: Twenty rats were divided randomly into two groups of 10 animals each. After inducing general anesthesia, full thickness excision wound was made on the dorsal neck in all animals. The 1. group received topical burned radioactive lantern mantle powder at 1-3 day after making excision wounds. The 2. group received non-radioactive lantern mantle powder at the same days. Accurate blind surface measurement of the wounds by transparency tracing was used for assessment of the wound healing at 1, 3, 7, 10 and 15 days after making wounds. Results: Surface area measurement of the wounds showed a progressive surface reduction in both groups. However, for thorium treated group, the rate of recovery was significantly enhanced compared to that of the control group. Although the wound area in the thorium group was not significantly different from that of the control group at the 3. and 5. days after wounding, a statistically significant difference was observed between the thorium and the control groups at the day 7, day 10 and day 15. The mean wound surface in thorium and control groups were 150.20{+-}15.87 and 186.37{+-}12.68 mm{sup 2} at day 7 (P<0.001), 92.90{+-}15.97 and 134.12{+-}14.19 mm{sup 2} at day 10 (P<0.001), 1.4{+-}0.41 and 8.56{+-}2.04 mm{sup 2} at day 15 after wounding, respectively (P<0.01) Conclusions: These findings suggest that low

  1. Hydrogen sulfide accelerates wound healing in diabetic rats.

    Science.gov (United States)

    Wang, Guoguang; Li, Wei; Chen, Qingying; Jiang, Yuxin; Lu, Xiaohua; Zhao, Xue

    2015-01-01

    The aim of this study was to explore the role of hydrogen sulfide on wound healing in diabetic rats. Experimental diabetes in rats was induced by intraperitoneal injection of streptozotocin (STZ) (in 0.1 mol/L citrate buffer, Ph 4.5) at dose of 70 mg/kg. Diabetic and age-matched non-diabetic rats were randomly assigned to three groups: untreated diabetic controls (UDC), treated diabetic administrations (TDA), and non-diabetic controls (NDC). Wound Healing Model was prepared by making a round incision (2.0 cm in diameter) in full thickness. Rats from TDA receive 2% sodium bisulfide ointment on wound, and animals from UDC and NDC receive control cream. After treatment of 21 days with sodium bisulfide, blood samples were collected for determination of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), antioxidant effects. Granulation tissues from the wound were processed for histological examination and analysis of western blot. The study indicated a significant increase in levels of VEGF and ICAM-1 and a decline in activity of coagulation in diabetic rats treated with sodium bisulfide. Sodium bisulfide treatment raised the activity of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) protein expression, and decreased tumor necrosis factor α (TNF-α) protein expression in diabetic rats. The findings in present study suggested that hydrogen sulfide accelerates the wound healing in rats with diabetes. The beneficial effect of H2S may be associated with formation of granulation, anti-inflammation, antioxidant, and the increased level of vascular endothelial growth factor (VEGF).

  2. Predictive value of neutrophil-to-lymphocyte ratio in diabetic wound healing.

    Science.gov (United States)

    Vatankhah, Nasibeh; Jahangiri, Younes; Landry, Gregory J; McLafferty, Robert B; Alkayed, Nabil J; Moneta, Gregory L; Azarbal, Amir F

    2017-02-01

    The neutrophil-to-lymphocyte ratio (NLR) has been used as a surrogate marker of systemic inflammation. We sought to investigate the association between NLR and wound healing in diabetic wounds. The outcomes of 120 diabetic foot ulcers in 101 patients referred from August 2011 to December 2014 were examined retrospectively. Demographic, patient-specific, and wound-specific variables as well as NLR at baseline visit were assessed. Outcomes were classified as ulcer healing, minor amputation, major amputation, and chronic ulcer. The subjects' mean age was 59.4 ± 13.0 years, and 67 (66%) were male. Final outcome was complete healing in 24 ulcers (20%), minor amputation in 58 (48%) and major amputation in 16 (13%), and 22 chronic ulcers (18%) at the last follow-up (median follow-up time, 6.8 months). In multivariate analysis, higher NLR (odds ratio, 13.61; P = .01) was associated with higher odds of nonhealing. NLR can predict odds of complete healing in diabetic foot ulcers independent of wound infection and other factors. Copyright © 2016 Society for Vascular Surgery. All rights reserved.

  3. Enhancing the healing processes of chemical burns with He-Ne radiation

    International Nuclear Information System (INIS)

    Kakai, S.F.K.; Albarwari, S.E.; Alsenawi, T.A.

    1988-02-01

    The process by which He-Ne laser radiation (λ = 632.8 nm) enhances the healing of cutaneous wounds, made by concentrated nitric acid on mice has been studied. The dose used was of the order of 2.7 Joule per day, till the day of complete wound closure. The wounds were irradiated at three points on its periphery so that to form a semitriangular pattern this method was adopted, because chemical burns involve the killing of both the epidermis and dermis. The influence of the laser on the healing was estimated quantitatively and statistically, with a significance of p<0.001 over the control (the unirradiated). (author). 8 refs, 2 figs, 2 tabs

  4. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  5. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing.

    Science.gov (United States)

    Nuccitelli, Richard; Nuccitelli, Pamela; Li, Changyi; Narsing, Suman; Pariser, David M; Lui, Kaying

    2011-01-01

    Due to the transepidermal potential of 15-50 mV, inside positive, an injury current is driven out of all human skin wounds. The flow of this current generates a lateral electric field within the epidermis that is more negative at the wound edge than at regions more lateral from the wound edge. Electric fields in this region could be as large as 40 mV/mm, and electric fields of this magnitude have been shown to stimulate human keratinocyte migration toward the wounded region. After flowing out of the wound, the current returns through the space between the epidermis and stratum corneum, generating a lateral field above the epidermis in the opposite direction. Here, we report the results from the first clinical trial designed to measure this lateral electric field adjacent to human skin wounds noninvasively. Using a new instrument, the Dermacorder®, we found that the mean lateral electric field in the space between the epidermis and stratum corneum adjacent to a lancet wound in 18-25-year-olds is 107-148 mV/mm, 48% larger on average than that in 65-80-year-olds. We also conducted extensive measurements of the lateral electric field adjacent to mouse wounds as they healed and compared this field with histological sections through the wound to determine the correlation between the electric field and the rate of epithelial wound closure. Immediately after wounding, the average lateral electric field was 122 ± 9 mV/mm. When the wound is filled in with a thick, disorganized epidermal layer, the mean field falls to 79 ± 4 mV/mm. Once this epidermis forms a compact structure with only three cell layers, the mean field is 59 ± 5 mV/mm. Thus, the peak-to-peak spatial variation in surface potential is largest in fresh wounds and slowly declines as the wound closes. The rate of wound healing is slightly greater when wounds are kept moist as expected, but we could find no correlation between the amplitude of the electric field and the rate of wound

  6. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    Science.gov (United States)

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non-healing

  7. Relationship between maceration and wound healing on diabetic foot ulcers in Indonesia: a prospective study.

    Science.gov (United States)

    Haryanto, Haryanto; Arisandi, Defa; Suriadi, Suriadi; Imran, Imran; Ogai, Kazuhiro; Sanada, Hiromi; Okuwa, Mayumi; Sugama, Junko

    2017-06-01

    The aim of this study was to clarify the relationship between maceration and wound healing. A prospective longitudinal design was used in this study. The wound condition determined the type of dressings used and the dressing change frequency. A total of 62 participants with diabetic foot ulcers (70 wounds) were divided into two groups: non-macerated (n = 52) and macerated wounds (n = 18). Each group was evaluated weekly using the Bates-Jensen Wound Assessment Tool, with follow-ups until week 4. The Mann-Whitney U test showed that the changes in the wound area in week 1 were faster in the non-macerated group than the macerated group (P = 0·02). The Pearson correlation analysis showed a moderate correlation between maceration and wound healing from enrolment until week 4 (P = 0·002). After week 4, the Kaplan-Meier analysis showed that the non-macerated wounds healed significantly faster than the macerated wounds (log-rank test = 19·378, P = 0·000). The Cox regression analysis confirmed that maceration was a significant and independent predictor of wound healing in this study (adjusted hazard ratio, 0·324; 95% CI, 0·131-0·799; P = 0·014). The results of this study demonstrated that there is a relationship between maceration and wound healing. Changes in the wound area can help predict the healing of wounds with maceration in clinical settings. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications.

    Science.gov (United States)

    Thangavel, Ponrasu; Ramachandran, Balaji; Kannan, Ramya; Muthuvijayan, Vignesh

    2017-08-01

    The aim of this article was to develop silk protein (SF) and l-proline (LP) loaded chitosan-(CS) based hydrogels via physical cross linking for tissue engineering and wound healing applications. Silk fibroin, a biodegradable and biocompatible protein, and l-proline, an important imino acid that is required for collagen synthesis, were added to chitosan to improve the wound healing properties of the hydrogel. Characterization of these hydrogels revealed that CS/SF/LP hydrogels were blended properly and LP incorporated hydrogels showed excellent thermal stability and good surface morphology. Swelling study showed the water holding efficiency of the hydrogels to provide enough moisture at the wound surface. In vitro biodegradation results demonstrated that the hydrogels had good degradation rate in PBS with lysozyme. LP loaded hydrogels showed approximately a twofold increase in antioxidant activity. In vitro cytocompatibility studies using NIH 3T3 L1 cells showed increased cell viability (p Cell adhesion on SF and LP hydrogels were observed using SEM and compared to CS hydrogel. LP incorporation showed 74-78% of wound closure compared to 35% for CS/SF and 3% for CS hydrogels at 48 h. These results suggest that incorporation of LP can significantly accelerate wound healing process compared to pure CS and SF-loaded CS hydrogels. Hence, CS/LP hydrogels could be a potential wound dressing material for the enhanced wound tissue regeneration and repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1401-1408, 2017. © 2016 Wiley Periodicals, Inc.

  9. Ascorbic acid for the healing of skin wounds in rats

    Directory of Open Access Journals (Sweden)

    CC. Lima

    Full Text Available BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 ± 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12 - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12 - skin wound cleaned daily and treated with ascorbic acid cream (10%. Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.

  10. Medicinal Plants for Healing Sores and Wounds among the ...

    African Journals Online (AJOL)

    Medicinal Plants for Healing Sores and Wounds among the Communities Surrounding Ungoye Forest, Kwazulu-Natal, South Africa. ... The focus was on the medicinal plants that grow in the Ungoye forest and around the homesteads. The survey ... Keywords: Traditional medicine, documentation, Ethno-survey, wounds.

  11. Barbatiman and chitosan creams as adjuvants in rabbit skin wound healing

    Directory of Open Access Journals (Sweden)

    Caroline Rocha de Oliveira Lima

    2016-06-01

    Full Text Available In this study, 5% barbatiman and 5% chitosan creams were evaluated as adjuvants in the tissue repair process by secondary intention of rabbit’s skin wounds. Four equidistant wounds were induced in the dorsal skin of 20 adult male rabbits, which were submitted to healing by secondary intention and treated with 5% chitosan cream (QC, n=5, 5% barbatiman cream (BC, n=5, 2% allantoin cream (n=5, and base cream (n=5. The creams were applied with the aid of disposable spatulas after washing the wounds. The wounds were daily analyzed by clinical examination for 21 days and histological analyses were performed on the 3rd, 14th, and 21st day after induction. The microscopic evaluation of the wounds of all groups showed macroscopic features of the healing process at different time intervals. The QC and BC treatments helped in the skin repair process in rabbits when compared to the other two treatments. They induced fibroblast activation and early collagen deposition, and modulated re-epithelialization and neovascularization. Thus, it was concluded that BC and QC are efficient and economically feasible as adjuvants in the healing process of skin wounds in rabbits.

  12. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications.

    Science.gov (United States)

    Ojeh, Nkemcho; Pastar, Irena; Tomic-Canic, Marjana; Stojadinovic, Olivera

    2015-10-23

    The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.

  13. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Directory of Open Access Journals (Sweden)

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  14. Anti-ulcer and wound healing activities of Sida corymbosa in rats.

    Science.gov (United States)

    John-Africa, Lucy Binda; Yahaya, Tijani Adeniyi; Isimi, Christianah Yetunde

    2014-01-01

    There are strong beliefs in the efficacy of traditional medical systems worldwide. Many herbs have been acclaimed to possess antiulcer effects and could be unexplored sources of new lead compounds. Sida corymbosa R. E. Fries (Malvaceae) is used in Northern Nigeria to treat ulcers and wounds. This work aimed to investigate the usefulness of Sida corymbosa in treatments of stomach ulcers and wounds in traditional medicine. Effect of the aqueous extract was determined on gastric ulceration, rate of wound healing and inflammation using ethanol-induced and diclofenac-induced ulceration, wound excision model and albumin-induced inflammation respectively in rats. The study demonstrated the anti-ulcer activity of Sida corymbosa as the extract (250, 500 and 1000 mg/kg) showed a dose-dependent, significant (PSida corymbosa on surgically created incisions produced an increase in the rate of healing of the wounds. The extract of Sida corymbosa exhibited a significant (P Sida corymbosa has constituents with the ability to reduce the severity of haemorrhagic gastric lesions, promote wound healing and reduce inflammation. These actions may be attributed to any one of the active constituents or as a result of synergistic effects of these phytoconstituents. This study validates the use of the plant in traditional medicine for the treatment of stomach ulcers and wounds.

  15. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing.

    Science.gov (United States)

    Li, Jing; Zheng, Chun-Quan; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-08-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.

  16. The effect of chrysin-loaded nanofiber on wound healing process in male rat.

    Science.gov (United States)

    Mohammadi, Zoheyr; Sharif Zak, Mohsen; Majdi, Hasan; Seidi, Khaled; Barati, Meisam; Akbarzadeh, Abolfazl; Latifi, Ali Mohammad

    2017-12-01

    Wound healing is an inflammatory process. Chrysin, a natural flavonoid found in honey, has been recently investigated to have anti-inflammatory and antioxidant effects. In this work, the effects of chrysin-loaded nanofiber on the expressions of genes that are related to wound healing process such as P53, TIMPs, MMPs, iNOS, and IL-6 in an animal model study were evaluated. The electrospinning method was used for preparation the different concentrations of chrysin-loaded PCL-PEG nanofiber (5%, 10%, and 20% [w/w]) and characterized by FTIR and SEM. The wound healing effects of chrysin-loaded PCL-PEG nanofiber were in vivo investigated in rats, and the expressions of genes related to wound healing process were evaluated by real-time PCR. The study results showed chrysin-loaded PLC-PEG compared to chrysin ointment and control groups significantly increase IL-6, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 (p healing. © 2017 John Wiley & Sons A/S.

  17. Personalized prediction of chronic wound healing: an exponential mixed effects model using stereophotogrammetric measurement.

    Science.gov (United States)

    Xu, Yifan; Sun, Jiayang; Carter, Rebecca R; Bogie, Kath M

    2014-05-01

    Stereophotogrammetric digital imaging enables rapid and accurate detailed 3D wound monitoring. This rich data source was used to develop a statistically validated model to provide personalized predictive healing information for chronic wounds. 147 valid wound images were obtained from a sample of 13 category III/IV pressure ulcers from 10 individuals with spinal cord injury. Statistical comparison of several models indicated the best fit for the clinical data was a personalized mixed-effects exponential model (pMEE), with initial wound size and time as predictors and observed wound size as the response variable. Random effects capture personalized differences. Other models are only valid when wound size constantly decreases. This is often not achieved for clinical wounds. Our model accommodates this reality. Two criteria to determine effective healing time outcomes are proposed: r-fold wound size reduction time, t(r-fold), is defined as the time when wound size reduces to 1/r of initial size. t(δ) is defined as the time when the rate of the wound healing/size change reduces to a predetermined threshold δ current model improves with each additional evaluation. Routine assessment of wounds using detailed stereophotogrammetric imaging can provide personalized predictions of wound healing time. Application of a valid model will help the clinical team to determine wound management care pathways. Published by Elsevier Ltd.

  18. "Healing Effect of Topical Nifedipine on Skin Wounds of Diabetic Rats "

    Directory of Open Access Journals (Sweden)

    Abbas Ebadi

    2003-07-01

    Full Text Available Non-healing foot ulcers in patients with diabetes are the leading causes of complications such as infection and amputation. Ulceration is the most common single precursor to amputation and has been identified as a causative factor in 85% of lower extremity amputations. It seems that poor outcomes are generally associated with infection, peripheral vascular disease and wounds of increasing depth. Nifedipine, a calcium channel blocker that is mainly used for the treatment of cardiovascular disorders has recently been used to treat wounds caused by peripheral vascular disorders. In present study topical Nifedipine 3% has been used to treat skin wounds in normal and diabetic rats. Effects of Nifedipine were evaluated in three different phases of wound healing process. In both experiments (normal and diabetic rats topical Nifedipine significantly improved inflammatory phase. However, maturation phase was only significantly improved in diabetic rats. Nifedipine did not affect proliferation phase in either group significantly. Overall results of this study showed topical Nifedipine improved skin wound healing process in normal and diabetic rats.

  19. Effects of Alchemilla mollis and Alchemilla persica on the wound healing process

    Directory of Open Access Journals (Sweden)

    Burçin Ergene Öz

    2016-09-01

    Full Text Available Alchemilla mollis, is used in traditional medicine for the treatment of wounds and excessive menstruation. Aqueous methanol extracts of A. mollis and A. persica were evaluated for wound healing acivity by using linear incision and circular excision wound models along with hydroxyproline estimation and histopathological analysis. Anti-inflammatory effect was determined according to Whittle method. The extracts prepared from the aerial parts of A. mollis and A. persica exerted significant wound healing activity with the tensile strength values of 39.3% and 33.3%, respectively, and with the contraction values of 51.4% and 43.5%, respectively. Hydroxyproline estimation and histopathological analysis also confirmed the results. The extracts of A. mollis and A. persica showed significant anti-inflammatory activity with the values of 30.6% and 26.6% respectively. These results showed that A. mollis and A. persica possess significant wound healing and anti-inflammatory activities.

  20. Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2016-12-01

    Application of natural materials in wound healing is an interest topic due to effective treatment with no side effects. In this paper, Aloe Vera extract was encapsulated into Tragacanth Gum through a sonochemical microemulsion process to prepare a wound healing product. FESEM/EDX and FT-IR proved the successfully formation of the nanocapsules with spherical shape by cross-linking aluminum ions with Tragacanth Gum. The therapeutic characteristics of the prepared wound healing product were investigated using antimicrobial, cytotoxicity and wound healing assays. Relative high antimicrobial activities with the microbial reduction of 84, 91 and 80% against E. coli, S. aureus and C. albicans, a cell viability of 98% against human fibroblast cells and a good wound healing activity with considerable migration rate of fibroblast cells are the important advantages of the new formed wound healing product. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  2. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing

    Science.gov (United States)

    Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833

  3. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.

    Science.gov (United States)

    Hoke, Glenn D; Ramos, Corrine; Hoke, Nicholas N; Crossland, Mary C; Shawler, Lisa G; Boykin, Joseph V

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.

  4. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes

    OpenAIRE

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A.

    2016-01-01

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper io...

  5. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  6. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    Science.gov (United States)

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  7. Clinical evaluation of post-extraction site wound healing.

    Science.gov (United States)

    Adeyemo, Wasiu Lanre; Ladeinde, Akinola Ladipo; Ogunlewe, Mobolanle Olugbemiga

    2006-07-01

    The aim of this prospective study was to evaluate the clinical pattern of post-extraction wound healing with a view to identify the types, incidence, and pattern of healing complications following non-surgical tooth extraction. A total of 311 patients, who were referred for non-surgical (intra-alveolar) extractions, were included in the study. The relevant pre-operative information recorded for each patient included age and gender of the patient, indications for extraction, and tooth/teeth removed. Extractions were performed under local anesthesia with dental forceps, elevators, or both. Patients were evaluated on the third and seventh postoperative days for alveolus healing assessment. Data recorded were: biodata, day of presentation for alveolus healing assessment, day of onset of any symptoms, body temperature (degrees C) in cases of alveolus infection, and presence or absence of pain. Two hundred eighty-two patients (282) with 318 extraction sites were evaluated for alveolus healing. Healing was uneventful in 283 alveoli (89%), while 35 alveoli (11%) developed healing complications. These complications were: localized osteitis 26 (8.2%); acutely infected alveolus 5 (1.6%); and an acutely inflamed alveolus 4 (1.2%). Females developed more complications than males (p=0.003). Most complications were found in molars (60%) and premolars (37.1%). Localized osteitis caused severe pain in all cases, while infected and inflamed alveolus caused mild or no pain. Thirty patients (12%) among those without healing complications experienced mild pain. Most of the post-extraction alveoli healed uneventfully. Apart from alveolar osteitis (AO), post-extraction alveolus healing was also complicated by acutely infected alveoli and acutely inflamed alveoli. This study also demonstrated a painful alveolus is not necessarily a disturbance of post-extraction site wound healing; a thorough clinical examination must, therefore, be made to exclude any of the complications.

  8. Partial-thickness burn wounds healing by topical treatment

    Science.gov (United States)

    Saeidinia, Amin; Keihanian, Faeze; Lashkari, Ardalan Pasdaran; Lahiji, Hossein Ghavvami; Mobayyen, Mohammadreza; Heidarzade, Abtin; Golchai, Javad

    2017-01-01

    Abstract Background: Burns are common event and associated with a high incidence of death, disability, and high costs. Centella asiatica (L.) is a medicinal herb, commonly growing in humid areas in several tropical countries that improve wound healing. On the basis of previous studies, we compared the efficacy of Centiderm versus silver sulfadiazine (SSD) in partial thickness burning patients. Methods: Study population comprised burn victims referred to Velayat Burning Hospital at Rasht, Iran. The intervention group received Centiderm and control group SSD cream. Burn wounds were treated once daily at home. All of the wounds were evaluated till complete healing occurred and at the admission, days 3, 7, 14 objective signs; visual acuity score (VAS) and subjective signs were recorded. Re-epithelialization time and complete healing days were recorded. We used random fixed block for randomization. The randomization sequence was created using the computer. Patients and burning specialist physician were blinded. Results: Seventy-five patients randomized into 2 groups; (40 patients: Centiderm group; 35 patients: SSD group). The mean age of them was 30.67 ± 9.91 years and 19 of them were male (31.7%). Thirty patients in Centiderm and 30 patients in SSD group were analyzed. All of objective and subjective signs and mean of re-epithelialization and complete healing were significantly better in Centiderm group rather than SSD group (P < 0.05). There was no infection in Centiderm group. Conclusions: We showed that use of Centiderm ointment not only improved the objective and subjective signs in less than 3 days, but also the re-epithelialization and complete healing rather than SSD without any infection in the subjects. PMID:28248871

  9. Wound healing activity and chemical standardization of Eugenia pruniformis Cambess

    OpenAIRE

    Ricardo Diego Duarte Galhardo de Albuquerque; Jamila Alessandra Perini; Daniel Escorsim Machado; Thaís Angeli-Gamba; Ricardo dos Santos Esteves; Marcelo Guerra Santos; Adriana Passos Oliveira; Leandro Rocha

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups o...

  10. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  11. Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments

    Directory of Open Access Journals (Sweden)

    Bizunesh M. Borena

    2015-04-01

    Full Text Available Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”. Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies.

  12. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing.

    Science.gov (United States)

    Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M

    2015-01-01

    Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P diabetic foot ulcers.

  13. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    Science.gov (United States)

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. © 2014 Wiley Periodicals, Inc.

  14. e of the Surgical Glove in Modified Vacuum-Assisted Wound Healing

    Directory of Open Access Journals (Sweden)

    Shankar Ram Hemmanur

    2013-09-01

    Full Text Available Vacuum-assisted wound healing has been proven to be more efficacious than conventionaldressings. Vacuum dressing has been frequently modified given the restrictions in resourcesavailable. Here we present a modified method of vacuum dressing by using surgical orgynaecological gloves for lower and upper limb wounds. Vacuum dressing was applied withparts of a surgical or gynaecological glove and Opsite with T-tailing of the suction outlet.Vacuum-assisted wound healing using the surgical gloves showed relatively good woundhealing in the amputation stump, finger, arm, and leg in the cases studied.

  15. Effects of the blended fibroin/aloe gel film on wound healing in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Inpanya, Paichit; Viyoch, Jarupa; Faikrua, Atchariya; Ounaroon, Anan; Sittichokechaiwut, Anuphan

    2012-01-01

    Delayed healing remains a major clinical problem and here we have sought to develop an improved dressing film comprising 1.95% w/v fibroin and 0.05% w/v aloe gel extract. The tensile strength of dry film was 21.1 ± 0.5 MPa and broke at 1.1 ± 0.2% elongation; corresponding values for wet film were 18.3 ± 1.3 MPa and 1.9 ± 0.1%. The film maintained its shape upon water immersion and the swelling ratio of the dry film was 0.8 ± 0.1 while the water uptake was 43.7 ± 2.6%. After 28 days of incubation in phosphate buffered saline (1 M, pH 7.4, 37 °C), the weight of film was reduced by 6.7 ± 1.1% and the tensile strength and elongation at breaking point (dry state) were 15.4 ± 0.6 MPa and 1.5 ± 0.2%, respectively. Compared to aloe-free fibroin film (2.0% fibroin extract only), the blended film enhanced the attachment and proliferation of skin fibroblasts. The bFGF immunofluorescence of fibroblasts cultured on the blended film appeared greater than those cultured on tissue culture plate or on aloe-free fibroin film while α-smooth muscle actin was maintained. In streptozotocin-induced diabetic rats, the wounds dressed with the blended film were smaller (p <0.05) by day 7 after wounding, compared to untreated diabetic wounds. Histology of repaired diabetic wounds showed the fibroblast distribution and collagen fiber organization to be similar to wounds in normal rats, and this was matched by enhanced hydroxyproline content. Thus, such accelerated wound healing by the blended fibroin/aloe gel films may find application in treatment of diabetic non-healing skin ulcers. (paper)

  16. The accelerating effect of chitosan-silica hybrid dressing materials on the early phase of wound healing.

    Science.gov (United States)

    Park, Ji-Ung; Jung, Hyun-Do; Song, Eun-Ho; Choi, Tae-Hyun; Kim, Hyoun-Ee; Song, Juha; Kim, Sukwha

    2017-10-01

    Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-β during the early stage. The higher level of TGF-β likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1828-1839, 2017. © 2016 Wiley Periodicals, Inc.

  17. VAC therapy to promote wound healing after surgical revascularisation for critical lower limb ischaemia.

    Science.gov (United States)

    De Caridi, Giovanni; Massara, Mafalda; Greco, Michele; Pipitò, Narayana; Spinelli, Francesco; Grande, Raffaele; Butrico, Lucia; de Franciscis, Stefano; Serra, Raffaele

    2016-06-01

    Vacuum-assisted closure (VAC) therapy is a new emerging non-invasive system in wound care, which speeds up wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates, and facilitating the removal of bacteria from the wound. The application of sub-atmospheric pressure on the lesions seems to alter the cytoskeleton of the cells on the wound bed, triggering a cascade of intracellular signals that increase the rate of cell division and subsequent formation of granulation tissue. The aim of this study is to analyse the results of VAC therapy used as an adjuvant therapy for the treatment of foot wounds in patients affected by critical limb ischaemia (CLI) (Rutherford 6 class) after distal surgical revascularisation, to promote and accelerate the healing of ulcers. Twenty-nine patients (20 males, 9 females; mean age 68·4) affected by CLI of Rutherford 6 class, after surgical revascularisation of the lower limb, underwent VAC therapy in order to speed up wound healing. Complete wound healing was achieved in 19 patients (65·51%), in an average period of 45·4 ± 25·6 days. VAC therapy is a valid aid, after surgical revascularisation, to achieve rapid healing of foot lesions in patients with CLI. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. Soft tissue wound healing around teeth and dental implants.

    Science.gov (United States)

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D

    2014-04-01

    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Excisional wound healing is delayed in a murine model of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Akhil K Seth

    Full Text Available BACKGROUND: Approximately 15% of the United States population suffers from chronic kidney disease (CKD, often demonstrating an associated impairment in wound healing. This study outlines the development of a surgical murine model of CKD in order to investigate the mechanisms underlying this impairment. METHODS: CKD was induced in mice by partial cauterization of one kidney cortex and contralateral nephrectomy, modifying a previously published technique. After a minimum of 6-weeks, splinted, dorsal excisional wounds were created to permit assessment of wound healing parameters. Wounds were harvested on postoperative days (POD 0, 3, 7, and 14 for histological, immunofluorescent, and quantitative PCR (qPCR. RESULTS: CKD mice exhibited deranged blood chemistry and hematology profiles, including profound uremia and anemia. Significant decreases in re-epithelialization and granulation tissue deposition rates were found in uremic mice wounds relative to controls. On immunofluorescent analysis, uremic mice demonstrated significant reductions in cellular proliferation (BrdU and angiogenesis (CD31, with a concurrent increase in inflammation (CD45 as compared to controls. CKD mice also displayed differential expression of wound healing-related genes (VEGF, IL-1β, eNOS, iNOS on qPCR. CONCLUSIONS: These findings represent the first reported investigation of cutaneous healing in a CKD animal model. Ongoing studies of this significantly delayed wound healing phenotype include the establishment of renal failure model in diabetic strains to study the combined effects of CKD and diabetes.

  20. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing.

    Science.gov (United States)

    Thorlakson, Hong Huynh; Engen, Stian Andre; Schreurs, Olav; Schenck, Karl; Blix, Inger Johanne Schytte

    2017-08-01

    Epithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK). HOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed. HOK expressed the receptors LPA 1 , LPA 5 and LPA 6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2h) and intermediate (6h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6h. At 6h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted. After stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Wound healing angiogenesis: The clinical implications of a simple mathematical model

    KAUST Repository

    Flegg, Jennifer A.; Byrne, Helen M.; Flegg, Mark B.; Sean McElwain, D.L.

    2012-01-01

    Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we

  2. Evaluation of wound healing property of Caesalpinia mimosoides Lam.

    Science.gov (United States)

    Bhat, Pradeep Bhaskar; Hegde, Shruti; Upadhya, Vinayak; Hegde, Ganesh R; Habbu, Prasanna V; Mulgund, Gangadhar S

    2016-12-04

    Caesalpinia mimosoides Lam. is one of the important traditional folk medicinal plants in the treatment of skin diseases and wounds used by healers of Uttara Kannada district of Karnataka state (India). However scientific validation of documented traditional knowledge related to medicinal plants is an important path in current scenario to fulfill the increasing demand of herbal medicine. The study was carried out to evaluate the claimed uses of Caesalpinia mimosoides using antimicrobial, wound healing and antioxidant activities followed by detection of possible active bio-constituents. Extracts prepared by hot percolation method were subjected to preliminary phytochemical analysis followed by antimicrobial activity using MIC assay. In vivo wound healing activity was evaluated by circular excision and linear incision wound models. The extract with significant antimicrobial and wound healing activity was investigated for antioxidant capacity using DPPH, nitric oxide, antilipid peroxidation and total antioxidant activity methods. Total phenolic and flavonoid contents were also determined by Folin-Ciocalteu, Swain and Hillis methods. Possible bio-active constituents were identified by GC-MS technique. RP-UFLC-DAD analysis was carried out to quantify ethyl gallate and gallic acid in the plant extract. Preliminary phytochemical analysis showed positive results for ethanol and aqueous extracts for all the chemical constituents. The ethanol extract proved potent antimicrobial activity against both bacterial and fungal skin pathogens compared to other extracts. The efficacy of topical application of potent ethanol extract and traditionally used aqueous extracts was evidenced by the complete re-epithelization of the epidermal layer with increased percentage of wound contraction in a shorter period. However, aqueous extract failed to perform a consistent effect in the histopathological assessment. Ethanol extract showed effective scavenging activity against DPPH and nitric

  3. Wound healing and protease inhibition activity of Bacoside-A, isolated from Bacopa monnieri wettest.

    Science.gov (United States)

    Sharath, R; Harish, B G; Krishna, V; Sathyanarayana, B N; Swamy, H M Kumara

    2010-08-01

    Bacopa monnieri (L.) Wettest. (Scrophulariaceae) is a well-known medicinal herb. In the Indian system of medicine it is known as Brahmi (Sanskrit) and Indian water hyssop. Methanolic extract of Bacopa monnieri and its isolated constituent Bacoside-A were screened for wound healing activity. Bacoside-A was screened for wound healing activity by excision, incision and dead space wound on Swiss albino rats. Significant wound healing activity was observed in both extract and the Bacoside-A treated groups. The SDS-PAGE caseinolytic zymogram analysis of inhibition of matrix metalloproteases (MMPs) enzyme from the excision wound by Bacoside-A, an isolated constituent, was done with the concentrations 100 and 200 micromg/ml. In Bacoside-A treated groups, epithelialization of the excision wound was faster with a high rate (18.30 +/- 0.01 days) of wound contraction. The tensile strength of the incision wound was increased (538.47 +/- 0.14 g) in the Bacoside-A treated group. In the dead space wound model, the weight of the granuloma was also increased (89.15 +/- 0.08 g). The histological examination of the granuloma tissue of the Bacoside-A treated group showed increased cross-linking of collagen fibers and absence of monocytes. The wound healing activity of Bacoside-A was more effective in various wound models compared to the standard skin ointment Nitrofurazone.

  4. [A preliminary study of anti-aging and wound healing of recombination cytoglobin].

    Science.gov (United States)

    Li, Zhao-Fa; Zhao, Xiao-Fang; Zhang, Ting-Ting

    2012-01-01

    In this paper, the preliminary study on antioxidant, enhancement of antioxidant enzymes activity, reducing the content of oxygen free radicals, delaying skin aging of the recombination cytoglobin (rCygb) purified by our lab were investigated through human keratinocyte cell line (HaCAT) H2O2 oxidative stress model, mouse skin aging model caused by continuous subcutaneous injection D-gal, rat acute liver injury model induced by CCl4 and rat skin wound healing model. The results showed that rCygb improved the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), reduced the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) as well as decreased the content of malondialdehyde (MDA). Skin biopsy showed that rCygb promoted angiogenesis, increased expression of collagen and improved the anti-inflammatory ability. All results displayed that rCygb improved the oxygen free radical scavenging ability, delayed skin aging and promoted wound healing.

  5. Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing.

    Science.gov (United States)

    da Silva, Lucília Pereira; Santos, Tírcia Carlos; Rodrigues, Daniel Barreira; Pirraco, Rogério Pedro; Cerqueira, Mariana Teixeira; Reis, Rui Luís; Correlo, Vitor Manuel; Marques, Alexandra Pinto

    2017-07-01

    The detailed pathophysiology of diabetic foot ulcers is yet to be established and improved treatments are still required. We propose a strategy that directs inflammation, neovascularization, and neoinnervation of diabetic wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were precultured in hyaluronic acid-based spongy hydrogels under neurogenic/standard media before transplantation into diabetic mice full-thickness wounds. Acellular spongy hydrogels and empty wounds were used as controls. Re-epithelialization was attained 4 weeks after transplantation independently of the test groups, whereas a thicker and more differentiated epidermis was observed for the cellular spongy hydrogels. A switch from the inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks after injury, but a significantly higher M2(CD163 + )/M1(CD86 + ) subtype ratio was observed in the neurogenic preconditioned group that also failed to promote neoinnervation. A higher number of intraepidermal nerve fibers were observed for the unconditioned group probably due to a more controlled transition from the inflammatory to the proliferative phase. Overall, stem cell-containing spongy hydrogels represent a promising approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating the inflammatory response to promote a successful neoinnervation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Youngmi; Yun, Yeoheung, E-mail: yyun@ncat.edu

    2016-12-01

    Polydeoxyribonucleotides (PDRN) have been explored as an effective treatment for tissue repair in peripheral artery occlusive disease, diabetic foot ulcers, and eye lotion. We report on the effect of polydeoxyribonucleotides (PDRN) on wound healing by using the electric cell-substrate impedance sensing (ECIS) system and viability testing. Human osteoblasts (U2OS) and primary human dermal fibroblasts (HDF) were used to study the effect of PDRN on migration and proliferation. ECIS allowed the creation of a wound by applying high current, and then monitoring the healing process by measuring impedance in real time. The traditional culture-insert gap-closure migration assay was performed and compared with the ECIS wound assay. PDRN-treated U2OS and HDF cells affected cell motilities to wounding site. Viability test results show that HDF and U2OS proliferation depended on PDRN concentration. Based on the results, a PDRN compound can be useful in wound healing associated with bone and skin. - Highlights: • Wound-healing study by the electric cell-substrate impedance sensing (ECIS). • Effect of polydeoxyribonucleotides (PDRN) on migration and proliferation of U2OS and HDF. • Effect of PDRN concentration on viability of U2OS and HDF.

  7. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS)

    International Nuclear Information System (INIS)

    Koo, Youngmi; Yun, Yeoheung

    2016-01-01

    Polydeoxyribonucleotides (PDRN) have been explored as an effective treatment for tissue repair in peripheral artery occlusive disease, diabetic foot ulcers, and eye lotion. We report on the effect of polydeoxyribonucleotides (PDRN) on wound healing by using the electric cell-substrate impedance sensing (ECIS) system and viability testing. Human osteoblasts (U2OS) and primary human dermal fibroblasts (HDF) were used to study the effect of PDRN on migration and proliferation. ECIS allowed the creation of a wound by applying high current, and then monitoring the healing process by measuring impedance in real time. The traditional culture-insert gap-closure migration assay was performed and compared with the ECIS wound assay. PDRN-treated U2OS and HDF cells affected cell motilities to wounding site. Viability test results show that HDF and U2OS proliferation depended on PDRN concentration. Based on the results, a PDRN compound can be useful in wound healing associated with bone and skin. - Highlights: • Wound-healing study by the electric cell-substrate impedance sensing (ECIS). • Effect of polydeoxyribonucleotides (PDRN) on migration and proliferation of U2OS and HDF. • Effect of PDRN concentration on viability of U2OS and HDF.

  8. Effects of low level laser therapy and high voltage stimulation on diabetic wound healing

    Directory of Open Access Journals (Sweden)

    María Cristina Sandoval Ortíz

    2014-08-01

    Full Text Available Background: a review of the literature found no clinical studies in which low level laser therapy (LLLT and high voltage pulsed current (HVPC were compared to evaluate their effectiveness in promoting wound healing. Objective: The purpose of this study was compare the effects of LLLT, HVPC and standard wound care (SWC on the healing of diabetic foot ulcers. Methods: randomized controlled clinical trial where diabetic patients were divided in control group (CG treated with SWC; HVPC group received HVPC plus SWC; LLLTgroup, treated with LLLT plus SWC. HVPC was applied 45min, 100pps and 100μs. LLLTparameters were 685nm, 30mW,2J/cm² applied to the wound edges and 1,5J/cm² in the wound bed. All subjects were treated 16 weeks or until the wound closed. The variables were healing, healing proportion, ulcers's characteristics, protective sensation, nerve conduction studies (NCS and quality life. ANCOVA analysis and a Fisher's exact test were applied. Results: Twenty-eight subjects completed the protocol.The healing was reached by 7/9, 8/10 and 6/9 participants of the LLLT, HVPC and CG respectively in the 16th week. There were no statistically significant differences between the groups in the healing proportion, NCS, sensory testing or quality of life (p>0,05. Conclusions: The results of this study did not demonstrated additional effects of LLL or HVPC to the standard wound care (SWC on healing of diabetic ulcers.

  9. Tissue repair genes: the TiRe database and its implication for skin wound healing

    OpenAIRE

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  10. Preparation and evaluation of squid ink polysaccharide-chitosan as a wound-healing sponge.

    Science.gov (United States)

    Huang, Na; Lin, Jiali; Li, Sidong; Deng, Yifeng; Kong, Songzhi; Hong, Pengzhi; Yang, Ping; Liao, Mingneng; Hu, Zhang

    2018-01-01

    A new type of wound healing agent was developed using two marine biomaterials (squid ink polysaccharide and chitosan) as carriers and calcium chloride as an initiator for coagulation. Based on central composite design-response surface methodology, comprehensive evaluation of appearance quality for composite sponges and water absorbency were used as evaluation indices to identify the optimized preparation conditions and further evaluate the performance of the squid ink polysaccharide-chitosan sponge (SIP-CS). The optimized formulation of SIP-CS was as follows: chitosan concentration, 2.29%; squid ink polysaccharide concentration, 0.55%; and calcium chloride concentration, 2.82%, at a volume ratio of 15:5:2. SIP-CS was conducive to sticking on the wound, characterized by the spongy property, strong absorptivity, and tackiness. Rabbit ear arterial, hepatic, and femoral artery hemorrhage experiments indicated that, compared with chitosan dressings and absorbable gelatin, the hemostatic times were shorter and the bleeding volume was smaller. Furthermore, SIP-CS absorbed a large amount of hemocytes, leading to rapid hemostasis. The healing areas and wound pathological sections in scalded New Zealand rabbits indicated that SIP-CS promoted wound healing more rapidly than chitosan and better than commercially available burn cream. Thus, SIP-CS is a good wound healing agent for rapid hemostasis, promoting burn/scalded skin healing, and protecting from wound infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Caveolin-1 as a novel indicator of wound-healing capacity in aged human corneal epithelium.

    Science.gov (United States)

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1-dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged and elderly patients. We also examined caveolin-1 levels and other aging markers, such as p53 and p21, in the corneal epithelium. Elderly patients generally had higher caveolin-1 levels in the corneal epithelia than young patients. There were, however, variations among individuals with increased caveolin-1 in some young patients and decreased levels in some elderly patients. Wound-healing time after LASEK correlated well with the corneal caveolin-1 status. Therefore, we suggest that caveolin-1 status might be responsible for delayed wound healing in elderly patients after LASEK. Caveolin-1 status might be a regulator for wound-healing capacity and a novel target for in vivo adjustment.

  12. Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats.

    Science.gov (United States)

    Agarwal, P K; Singh, A; Gaurav, K; Goel, Shalini; Khanna, H D; Goel, R K

    2009-01-01

    Plantain banana (M. sapientum var. paradisiaca, MS) has been shown to possess ulcer healing activity. The present work with plantain banana was undertaken with the premise that the drug promoting ulcer healing could have effect on wound healing also. Wound healing activity of MS was studied in terms of (i) percent wound contraction, epithelization period and scar area; (ii) wound breaking strength and (iii) on granulation tissue antioxidant status [estimation of superoxide dismutase (SOD) and reduced glutathione (GSH), free radical (lipid peroxidation, an indicator of tissue damage) and connective tissue formation and maturation (hexuronic acid, hydroxyproline and hexosamine levels)] in excision, incision and dead space wound models respectively. The rats were given graded doses (50-200 mg/kg/day) of aqueous (MSW) and methanolic (MSE) extracts of MS orally for a period of 10-21 days depending upon the type of study. Both extracts (100 mg/kg) when studied for incision and dead space wounds parameters, increased wound breaking strength and levels of hydroxyproline, hexuronic acid, hexosamine, superoxide dismutase, reduced glutathione in the granulation tissue and decreased percentage of wound area, scar area and lipid peroxidation when compared with the control group. Both the extracts showed good safety profile. Plantain banana thus, favoured wound healing which could be due to its antioxidant effect and on various wound healing biochemical parameters.

  13. Evaluation of the wound healing potential of Protea madiensis Oliv ...

    African Journals Online (AJOL)

    Ijeoma

    2012-11-08

    Nov 8, 2012 ... In medical practice, the treat- ment of full ... wounds, burns and ulcers by indigenous West Africans ... wound healing activity, no scientific study has been car- ..... that the leaf extract of P. madiensis accelerated fibroblast.

  14. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care

    Science.gov (United States)

    Demidova-Rice, Tatiana N.; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians’ understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that initiate cellular and tissue responses after injury, which may be impeded during chronic wound healing. PMID:22713781

  15. Sheng-ji Hua-yu formula promotes diabetic wound healing of re-epithelization via Activin/Follistatin regulation.

    Science.gov (United States)

    Kuai, Le; Zhang, Jing-Ting; Deng, Yu; Xu, Shun; Xu, Xun-Zhe; Wu, Min-Feng; Guo, Dong-Jie; Chen, Yu; Wu, Ren-Jie; Zhao, Xing-Qiang; Nian, Hua; Li, Bin; Li, Fu-Lun

    2018-01-29

    Sheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound. However, elucidating the related molecular biological mechanism of how the SJHY Formula affects excessive inflammation in the process of re-epithelialization of diabetic wound healing is a task urgently needed to be fulfilled. The objectives of this study is to evaluate the effect of antagonisic expression of pro-/anti-inflammatory factors on transforming growth factor-β(TGF-β) superfamily (activin and follistatin) in the process of re-epithelialization of diabetic wound healing in vivo, and to characterize the involvement of the activin/follistatin protein expression regulation, phospho-Smad (pSmad2), and Nuclear factor kappa B p50 (NF-kB) p50 in the diabetic wound healing effects of SJHY formula. SJHY Formula was prepared by pharmaceutical preparation room of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine. Diabetic wound healing activity was evaluated by circular excision wound models. Wound healing activity was examined by macroscopic evaluation. Activin/follistatin expression regulation, protein expression of pSmad2 and NF-kB p50 in skin tissue of wounds were analyzed by Real Time PCR, Western blot, immunohistochemistry and hematoxylin and eosin (H&E) staining. Macroscopic evaluation analysis showed that wound healing of diabetic mice was delayed, and SJHY Formula accelerated wound healing time of diabetic mice. Real Time PCR analysis showed higher mRNA expression of activin/follistatin in diabetic delayed wound versus the wound in normal mice. Western Blot immunoassay analysis showed reduction of activin/follistatin proteins levels by SJHY Formula treatment 15 days after injury. Immunohistochemistry investigated the reduction of pSmad2 and NF-kB p50 nuclear staining in the epidermis of diabetic SJHY versus diabetic control mice on day 15 after wounding. H&E staining revealed that SJHY Formula

  16. The influence of polymorbidity, revascularization, and wound therapy on the healing of arterial ulceration

    Directory of Open Access Journals (Sweden)

    Joerg Tautenhahn

    2008-06-01

    Full Text Available Joerg Tautenhahn1, Ralf Lobmann2, Brigitte Koenig3, Zuhir Halloul1, Hans Lippert1, Thomas Buerger11Department of General, Visceral and Vascular Surgery; 2Department of Endocrinology and Metabolism; 3Institute for Medical Microbiology, Medical School, Otto-von-Guericke University, Magdeburg, GermanyObjective: An ulcer categorized as Fontaine’s stage IV represents a chronic wound, risk factor of arteriosclerosis, and co-morbidities which disturb wound healing. Our objective was to analyze wound healing and to assess potential factors affecting the healing process.Methods: 199 patients were included in this 5-year study. The significance levels were determined by chi-squared and log-rank tests. The calculation of patency rate followed the Kaplan-Meier method.Results: Mean age and co-morbidities did not differ from those in current epidemiological studies. Of the patients with ulcer latency of more than 13 weeks (up to one year, 40% required vascular surgery. Vascular surgery was not possible for 53 patients and they were treated conservatively. The amputation rate in the conservatively treated group was 37%, whereas in the revascularizated group it was only 16%. Ulcers in patients with revascularization healed in 92% of cases after 24 weeks. In contrast, we found a healing rate of only 40% in the conservatively treated group (p < 0.001. Revascularization appeared more often in diabetic patients (n = 110; p < 0.01 and the wound size and number of infections were elevated (p = 0.03. Among those treated conservatively, wound healing was decelerated (p = 0.01/0.02; χ² test.Conclusions: The success of revascularization, presence of diabetes mellitus, and wound treatment proved to be prognostic factors for wound healing in arterial ulcers.Keywords: arterial leg ulcer, wound management, risk factors, revascularization

  17. Antimicrobials and Non-Healing Wounds. Evidence, controversies and suggestions-key messages

    DEFF Research Database (Denmark)

    Gottrup, Finn; Apelqvist, Jan; Bjarnsholt, Thomas

    2014-01-01

    This article constitutes an extraction of key messages originally presented in the Document: Antimicrobials and Non-Healing Wounds. Evidence, controversies and suggestions written by the European Wound Management Association (EWMA), and originally published by the Journal of Wound Care in 2013. All...

  18. Secretion of wound healing mediators by single and bi-layer skin substitutes.

    Science.gov (United States)

    Maarof, Manira; Law, Jia Xian; Chowdhury, Shiplu Roy; Khairoji, Khairul Anuar; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2016-10-01

    Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.

  19. Poly (3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) hydrogel promotes angiogenesis and collagen deposition during cutaneous wound healing in rats.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Razaif-Mazinah, Mohd Rafais Mohd; Anis, Siti Nor Syairah; Annuar, Mohamad Suffian Mohamad

    2015-07-08

    Wound management and healing in several physiological or pathological conditions, particularly when comorbidities are involved, usually proves to be difficult. This presents complications leading to socio-economic and public health burdens. The accelerative wound healing potential of biocompatible poly(3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) (PHA-PCL) composite hydrogel is reported herein. The biosynthesized PHA-PCL macromer was cross-linked with PEGMA to give a hydrogel. Twenty-four rats weighing 200-250 g each were randomly assigned to four groups of six rats. Rats in group I (negative control) were dressed with sterilized gum acacia paste in 10% normal saline while PEGMA-alone hydrogel (PH) was used to dress group II (secondary control) rats. Group III rats were dressed with PHAs-PCL cross-linked PEGMA hydrogel (PPH). For the positive control (group IV), the rats were dressed with Intrasite(®) gel. Biochemical, histomorphometric and immunohistomorphometric analyses revealed a significant difference in area closure and re-epithelialization on days 7 and 14 in PPH or Intrasite(®) gel groups compared to gum acacia or PEGMA-alone groups. Furthermore, wounds dressed with PPH or Intrasite(®) gel showed evident collagen deposition, enhanced fibrosis and extensively organized angiogenesis on day 14 compared to the negative control group. While improvement in wound healing of the PH dressed group could be observed, there was no significant difference between the negative control group and the PH dressed group in any of the tests. The findings suggested that topical application of PPH accelerated the rats' wound healing process by improving angiogenesis attributed to the increased microvessel density (MVD) and expressions of VEGF-A in tissue samples. Thus, PPH has been demonstrated to be effective in the treatment of cutaneous wounds in rats, and could be a potential novel agent in the management and acceleration of wound healing in humans and animals.

  20. Tobacco toxins deposited on surfaces (third hand smoke) impair wound healing.

    Science.gov (United States)

    Dhall, Sandeep; Alamat, Raquelle; Castro, Anthony; Sarker, Altaf H; Mao, Jian-Hua; Chan, Alex; Hang, Bo; Martins-Green, Manuela

    2016-07-01

    Third hand smoke (THS) is the accumulation of second hand smoke (SHS) toxins on surfaces in homes, cars, clothing and hair of smokers. It is known that 88M US nonsmokers ≥3 years old living in homes of smokers are exposed to THS toxicants and show blood cotinine levels of ≥0.05 ng/ml, indicating that the toxins are circulating in their circulatory systems. The goal of the present study is to investigate the mechanisms by which THS causes impaired wound healing. We show that mice living under conditions that mimic THS exposure in humans display delayed wound closure, impaired collagen deposition, altered inflammatory response, decreased angiogenesis, microvessels with fibrin cuffs and a highly proteolytic wound environment. Moreover, THS-exposed mouse wounds have high levels of oxidative stress and significantly lower levels of antioxidant activity leading to molecular damage, including protein nitration, lipid peroxidation and DNA damage that contribute to tissue dysfunction. Furthermore, we show that elastase is elevated, suggesting that elastin is degraded and the plasticity of the wound tissue is decreased. Taken together, our results lead us to conclude that THS toxicants delay and impair wound healing by disrupting the sequential processes that lead to normal healing. In addition, the lack of elastin results in loss of wound plasticity, which may be responsible for reopening of wounds. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  2. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights.

    Science.gov (United States)

    Baltzis, Dimitrios; Eleftheriadou, Ioanna; Veves, Aristidis

    2014-08-01

    Diabetic foot ulcers (DFUs) are one of the most common and serious complications of diabetes mellitus, as wound healing is impaired in the diabetic foot. Wound healing is a dynamic and complex biological process that can be divided into four partly overlapping phases: hemostasis, inflammation, proliferative and remodeling. These phases involve a large number of cell types, extracellular components, growth factors and cytokines. Diabetes mellitus causes impaired wound healing by affecting one or more biological mechanisms of these processes. Most often, it is triggered by hyperglycemia, chronic inflammation, micro- and macro-circulatory dysfunction, hypoxia, autonomic and sensory neuropathy, and impaired neuropeptide signaling. Research focused on thoroughly understanding these mechanisms would allow for specifically targeted treatment of diabetic foot ulcers. The main principles for DFU treatment are wound debridement, pressure off-loading, revascularization and infection management. New treatment options such as bioengineered skin substitutes, extracellular matrix proteins, growth factors, and negative pressure wound therapy, have emerged as adjunctive therapies for ulcers. Future treatment strategies include stem cell-based therapies, delivery of gene encoding growth factors, application of angiotensin receptors analogs and neuropeptides like substance P, as well as inhibition of inflammatory cytokines. This review provides an outlook of the pathophysiology in diabetic wound healing and summarizes the established and adjunctive treatment strategies, as well as the future therapeutic options for the treatment of DFUs.

  3. Monitoring wound healing by multiphoton tomography/endoscopy

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  4. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Directory of Open Access Journals (Sweden)

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.

  5. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  6. Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing.

    Science.gov (United States)

    Tellechea, Ana; Silva, Eduardo A; Min, Jianghong; Leal, Ermelindo C; Auster, Michael E; Pradhan-Nabzdyk, Leena; Shih, William; Mooney, David J; Veves, Aristidis

    2015-06-01

    Diabetic foot ulcers (DFU) represent a severe health problem and an unmet clinical challenge. In this study, we tested the efficacy of novel biomaterials in improving wound healing in mouse models of diabetes mellitus (DM). The biomaterials are composed of alginate- and deoxyribonucleic acid (DNA)-based gels that allow incorporation of effector cells, such as outgrowth endothelial cells (OEC), and provide sustained release of bioactive factors, such as neuropeptides and growth factors, which have been previously validated in experimental models of DM wound healing or hind limb ischemia. We tested these biomaterials in mice and demonstrate that they are biocompatible and can be injected into the wound margins without major adverse effects. In addition, we show that the combination of OEC and the neuropeptide Substance P has a better healing outcome than the delivery of OEC alone, while subtherapeutic doses of vascular endothelial growth factor (VEGF) are required for the transplanted cells to exert their beneficial effects in wound healing. In summary, alginate and DNA scaffolds could serve as potential delivery systems for the next-generation DFU therapies. © The Author(s) 2015.

  7. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Directory of Open Access Journals (Sweden)

    Chang Rae Rho

    Full Text Available Granulocyte-macrophage colony-stimulating factor (GM-CSF is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs. We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF. An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml. MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  8. Systemic granulocyte colony-stimulating factor (G-CSF) enhances wound healing in dystrophic epidermolysis bullosa (DEB): Results of a pilot trial.

    Science.gov (United States)

    Fine, Jo-David; Manes, Becky; Frangoul, Haydar

    2015-07-01

    Chronic nonhealing wounds are the norm in patients with inherited epidermolysis bullosa (EB), especially those with dystrophic EB (DEB). A possible benefit in wound healing after subcutaneous treatment with granulocyte colony-stimulating factor (G-CSF) was suggested from an anecdotal report of a patient given this during stem cell mobilization before bone-marrow transplantation. We sought to determine whether benefit in wound healing in DEB skin might result after 6 daily doses of G-CSF and to confirm its safety. Patients were assessed for changes in total body blister and erosion counts, surface areas of selected wounds, and specific symptomatology after treatment. Seven patients with DEB (recessive, 6; dominant, 1) were treated daily with subcutaneous G-CSF (10 μg/kg/dose) and reevaluated on day 7. For all patients combined, median reductions of 75.5% in lesional size and 36.6% in blister/erosion counts were observed. When only the 6 responders were considered, there were median reductions of 77.4% and 38.8% of each of these measured parameters, respectively. No adverse side effects were noted. Limitations include small patient number, more than 1 DEB subtype included, and lack of untreated age-matched control subjects. Subcutaneous G-CSF may be beneficial in promoting wound healing in some patients with DEB when conventional therapies fail. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    Science.gov (United States)

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  10. Tight Skin 2 Mice Exhibit Delayed Wound Healing Caused by Increased Elastic Fibers in Fibrotic Skin.

    Science.gov (United States)

    Long, Kristen B; Burgwin, Chelsea M; Huneke, Richard; Artlett, Carol M; Blankenhorn, Elizabeth P

    2014-09-01

    Rationale: The Tight Skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of human disease, including tight skin, excessive collagen deposition, alterations in the extracellular matrix (ECM), increased elastic fibers, and occurrence of antinuclear antibodies with age. A tight skin phenotype is observed by 2 weeks of age, but measurable skin fibrosis is only apparent at 10 weeks. We completed a series of wound healing experiments to determine how fibrosis affects wound healing in Tsk2/+ mice compared with their wild-type (WT) littermates. Method: We performed these experiments by introducing four 4 mm biopsy punched wounds on the back of each mouse, ventral of the midline, and observed wound healing over 10 days. Tsk2/+ mice showed significantly delayed wound healing and increased wound size compared with the WT littermates at both 5 and 10 weeks of age. We explored the potential sources of this response by wounding Tsk2/+ mice that were genetically deficient either for the NLRP3 inflammasome (a known fibrosis mediator), or for elastic fibers in the skin, using a fibulin-5 knockout. Conclusion: We found that the loss of elastic fibers restores normal wound healing in the Tsk2/+ mouse and that the loss of the NLRP3 inflammasome had no effect. We conclude that elastic fiber dysregulation is the primary cause of delayed wound healing in the Tsk2/+ mouse and therapies that promote collagen deposition in the tissue matrix in the absence of elastin deposition might be beneficial in promoting wound healing in SSc and other diseases.

  11. Predictive value of skin perfusion pressure after endovascular therapy for wound healing in critical limb ischemia.

    Science.gov (United States)

    Utsunomiya, Makoto; Nakamura, Masato; Nagashima, Yoshinori; Sugi, Kaoru

    2014-10-01

    To determine the predictive value of skin perfusion pressure (SPP) for wound healing after endovascular therapy (EVT). Between May 2004 and March 2011, 113 consecutive patients (84 men; mean age 71.5±12.5 years) with CLI (123 limbs) underwent successful balloon angioplasty ± stenting (flow from >1 vessel to the foot without bypass) and were physically able to undergo SPP measurement before and within 48 hours after EVT. The status of wound healing was recorded over a mean follow-up of 17.4±12.4 months. The wound healing rate was 78.9% (97 limbs of 89 patients). SPP values after EVT were significantly higher in these patients than in the 24 patients (26 limbs) without wound healing (44.2±15.6 mmHg vs. 27.5±10.4 mmHg, pwound healing had an area under the curve of 0.81 (95% CI 0.723 to 0.899, pwound healing was 30 mmHg, with a sensitivity of 81.4% and a specificity of 69.2%. Binary logistic regression analysis demonstrated SPP after EVT to be an independent predictor of wound healing (pwound healing with SPP values >30 mmHg, 40 mmHg, and 50 mmHg were 69.8%, 86.3%, and 94.5%, respectively. SPP after EVT is an independent predictor of wound healing in patients with CLI. In our study, an SPP value of 30 mmHg was shown to be the best cutoff for prediction of wound healing after EVT.

  12. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing.

    Science.gov (United States)

    Mahmoudian-Sani, Mohammad-Reza; Rafeei, Fatemeh; Amini, Razieh; Saidijam, Massoud

    2018-03-04

    Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing. © 2018 Wiley Periodicals, Inc.

  13. The impact of virulence factors of Porphyromonas gingivalis on wound healing in vitro

    NARCIS (Netherlands)

    Laheij, A.M.G.A.; van Loveren, C.; Deng, D.; de Soet, J.J.

    2015-01-01

    Background: Porphyromonas gingivalis inhibits oral epithelial wound healing in vitro more strongly than other oral bacteria, but it is unknown why P. gingivalis is such a potent inhibitor of wound healing. Objective: Therefore, the aim of this study was to investigate the influence of major

  14. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP Accelerates Wound Healing in Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Abdulmohsen H. Al-Elq

    2012-01-01

    Full Text Available Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy was made to create a wound of about 10 mm on the right ears of all rabbits. Every day, the wound was cleaned with saline in control groups. In the peptide group, 15 mg of SHMSP was applied after cleaning. On day 15th, all animals were sacrificed, and the wounds were excised with a rim of 5 mm of normal surrounding tissue. Histo-pathological assessment of wound healing, inflammatory cell infiltration, blood vessel proliferation, and collagen deposition was performed. Results. There were no deaths among the groups. There was significant increase in wound healing, blood vessel proliferation and collagen deposition, and significant decrease in inflammatory cell infiltration in the peptide group compared to the control group. Conclusion. Topical application of SHMSP improves wound healing in diabetic rabbits.

  15. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Science.gov (United States)

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  16. Impact of diabetes on gingival wound healing via oxidative stress.

    Directory of Open Access Journals (Sweden)

    Daisuke Kido

    Full Text Available The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N

  17. Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice.

    Science.gov (United States)

    Huang, Sha; Wu, Yan; Gao, Dongyun; Fu, Xiaobing

    2015-07-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) participate in wound healing to favor tissue regeneration and inhibit fibrotic tissue formation. However, the evidence of MSCs to suppress cutaneous scar is extremely rare, and the mechanism remains unidentified. This study aimed to demonstrate whether MSCs-as the result of their paracrine actions on damaged tissues-would accelerate wound healing and prevent cutaneous fibrosis. For efficient delivery of MSCs to skin wounds, microspheres were used to maintain MSC potency. Whether MSCs can accelerate wound healing and alleviate cutaneous fibrosis through paracrine action was investigated with the use of a Transwell co-culture system in vitro and a murine model in vivo. MSCs cultured on gelatin microspheres fully retained their cell surface marker expression profile, proliferation, differentiation and paracrine potential. Co-cultures of MSCs and fibroblasts indicated that the benefits of MSCs on suppressing fibroblast proliferation and its fibrotic behavior induced by inflammatory cytokines probably were caused by paracrine actions. Importantly, microspheres successfully delivered MSCs into wound margins and significantly accelerated wound healing and concomitantly reduced the fibrotic activities of cells within the wounds and excessive accumulation of extracellular matrix as well as the transforming growth factor-β1/transforming growth factor-β3 ratio. This study provides insight into what we believe to be a previously undescribed, multifaceted role of MSC-released protein in reducing cutaneous fibrotic formation. Paracrine action of MSCs delivered by microspheres may thus qualify as a promising strategy to enhance tissue repair and to prevent excessive fibrosis during cutaneous wound healing. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of wound healing activity of atranorin, a lichen secondary metabolite, on rodents

    Directory of Open Access Journals (Sweden)

    Rosana S. S. Barreto

    2013-02-01

    Full Text Available The aim of this study was to investigate the wound healing activity of atranorin cream (Patent requested on excision wounds. Seventy-two male rats were anesthetized and an excisional wound was performed. Then the rats were randomly assigned into three groups: untreated control group; atranorin 1 (group treated with 1% AT ointment; and atranorin 5 (group treated with 5% AT ointment. Six animals of each group were euthanized 3, 7, 14 or 21 days after surgical procedures and the wounded areas were analyzed and removed. Serial histological sections were obtained and stained by histochemical techniques (Hematoxilin-Eosin-HEand Sirius red and immunohistochemical techniques. Topical application of atranorin reduced wound areas, induced earlier granulation tissue formation, increased cell proliferation, improved collagenization and modulated the myofibroblasts differentiation when compared to control animals. It is suggested that atranorin modulates the wound healing process. These data suggest that this formulation based on atranorin extracted from Cladina kalbii AHTI may be a new biotechnological product for wound healing clinical applications.

  19. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo.

    Science.gov (United States)

    Tanha, Shima; Rafiee-Tehrani, Morteza; Abdollahi, Mohamad; Vakilian, Saeid; Esmaili, Zahra; Naraghi, Zahra Safaei; Seyedjafari, Ehsan; Javar, Hamid Akbari

    2017-10-01

    Sustained release of functional growth factors can be considered as a beneficial methodology for wound healing. In this study, recombinant human granulocyte colony-stimulating factor (G-CSF)-loaded chitosan nanoparticles were incorporated in Poly(ε-caprolactone) (PCL) nanofibers, followed by surface coating with collagen type I. Physical and mechanical properties of the PCL nanofibers containing G-CSF loaded chitosan nanoparticles PCL/NP(G-CSF) and in vivo performance for wound healing were investigated. G-CSF structural stability was evaluated through SDS_PAGE, reversed phase (RP) HPLC and size-exclusion chromatography, as well as circular dichroism. Nanofiber/nanoparticle composite scaffold was demonstrated to have appropriate mechanical properties as a wound dresser and a sustained release of functional G-CSF. The PCL/NP(G-CSF) scaffold showed a suitable proliferation and well-adherent morphology of stem cells. In vivo study and histopathological evaluation outcome revealed that skin regeneration was dramatically accelerated under PCL/NP(G-CSF) as compared with control groups. Superior fibroblast maturation, enhanced collagen deposition and minimum inflammatory cells were also the beneficial properties of PCL/NP(G-CSF) over the commercial dressing. The synergistic effect of extracellular matrix-mimicking nanofibrous membrane and G-CSF could develop a suitable supportive substrate in order to extensive utilization for the healing of skin wounds. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2830-2842, 2017. © 2017 Wiley Periodicals, Inc.

  20. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    Science.gov (United States)

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM