WorldWideScience

Sample records for enhances solution state

  1. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  2. Innovative Solution to Video Enhancement

    Science.gov (United States)

    2001-01-01

    Through a licensing agreement, Intergraph Government Solutions adapted a technology originally developed at NASA's Marshall Space Flight Center for enhanced video imaging by developing its Video Analyst(TM) System. Marshall's scientists developed the Video Image Stabilization and Registration (VISAR) technology to help FBI agents analyze video footage of the deadly 1996 Olympic Summer Games bombing in Atlanta, Georgia. VISAR technology enhanced nighttime videotapes made with hand-held camcorders, revealing important details about the explosion. Intergraph's Video Analyst System is a simple, effective, and affordable tool for video enhancement and analysis. The benefits associated with the Video Analyst System include support of full-resolution digital video, frame-by-frame analysis, and the ability to store analog video in digital format. Up to 12 hours of digital video can be stored and maintained for reliable footage analysis. The system also includes state-of-the-art features such as stabilization, image enhancement, and convolution to help improve the visibility of subjects in the video without altering underlying footage. Adaptable to many uses, Intergraph#s Video Analyst System meets the stringent demands of the law enforcement industry in the areas of surveillance, crime scene footage, sting operations, and dash-mounted video cameras.

  3. Solution and solid-state studies on the halide binding affinity of perfluorophenyl-armed uranyl-salophen receptors enhanced by anion-π interactions

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, Luca; Mele, Andrea; Giannicchi, Ilaria; Mihan, Francesco Yafteh; Dalla Cort, Antonella [Dipartimento di Chimica and IMC-CNR, Universita di Roma La Sapienza (Italy); Puttreddy, Rakesh; Jurcek, Ondrej; Rissanen, Kari [University of Jyvaeskylae, Department of Chemistry, Nanoscience Center (Finland)

    2016-12-23

    The enhancement of the binding between halide anions and a Lewis acidic uranyl-salophen receptor has been achieved by the introduction of pendant electron-deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion-π interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: a solution for suppressed ambipolarity and enhanced ON state behavior

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-11-01

    The goal of this work is to overcome the major impediments of tunnel FET such as the inherent ambipolar current ( I AMB) and the lower ON current ( I ON). To suppress the I AMB, gate drain overlap (GDO) engineering scheme has been incorporated over the cylindrical gate all around TFET (GAA-TFET). However, to enhance the I ON, heterogate dielectrics (HD) are used in the gate oxide region. Results indicate that an appreciably reduced I AMB and significantly enhanced I ON has been obtained with the amalgamation of GDO and HD, respectively, onto GAA-TFET. Further, the effect of GDO length ( L ov) has also been studied. Quantitative analysis of ambipolarity factor " α" reveals that at large L ov, " α" improves. It is found that GDO degrades the high-frequency (HF) performance such as cutoff frequency ( f T) of the device, because of the enhanced parasitic capacitances. To surpass the deterioration at HF caused by GDO, the dielectric over GDO region has been altered, and it has been analyzed that by inserting a material of low-dielectric constant ( k = 1) and parasitic capacitances of the device reduces, resulting into enhancement in f T. Moreover, the low-k dielectric inserted over L ov reduces the I AMB supplementary, along with enhanced f T. Suppressed I AMB and enhanced f T of GDO-HD-GAA-TFET with low-k dielectric over L ov make it adequate for application in HF and digital circuitry.

  5. Enhanced detection of explosives by turn-on resonance Raman upon host-guest complexation in solution and the solid state

    DEFF Research Database (Denmark)

    Witlicki, Edward H.; Bähring, Steffen; Johnsen, Carsten

    2017-01-01

    complexation occur via a mechanism of resonance between the 785 nm laser line and the strongly absorbing charge-transfer chromophore arising from the complex between electron-donating TTF-C[4]P and electron-accepting nitroaromatic explosives. The addition of chloride forms the Cl-·TTF-C[4]P complex resetting......The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte...

  6. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    Science.gov (United States)

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.

  7. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.

    Science.gov (United States)

    Chi, Quan; Chen, Wanying; He, Zhike

    2015-11-01

    The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Biodiverse food solutions to enhance complementary feeding

    DEFF Research Database (Denmark)

    Robertson, Aileen; Parlesak, Alexandr; Greiner, Ted

    2016-01-01

    that lipidbased nutrient supplements (LNS) and ready-to-use therapeutic foods (RUTFs) may thus be ineffective, de Pee advocates research to improve compliance, assuming effectiveness has been demonstrated. We highlight four additional problems: inappropriateness, cost, lack of sustainability and potential adverse...... help combat global malnutrition by using practical solutions that can be rolled out as public health strategies. Culturally-sensitive, cost-effective, sustainable complementary foods have the potential to increase nutrition security and sovereignty, reduce poverty, hunger and levels of chronic...... undernutrition while conserving biodiversity and respecting indigenous knowledge....

  9. A comprehensive RFID solution to enhance inpatient medication safety.

    Science.gov (United States)

    Peris-Lopez, Pedro; Orfila, Agustin; Mitrokotsa, Aikaterini; van der Lubbe, Jan C A

    2011-01-01

    Errors involving medication administration can be costly, both in financial and in human terms. Indeed, there is much potential for errors due to the complexity of the medication administration process. Nurses are often singled out as the only responsible of these errors because they are in charge of drug administration. Nevertheless, the interventions of every actor involved in the process and the system design itself contribute to errors (Wakefield et al. (1998). Proper inpatient medication safety systems can help to reduce such errors in hospitals. In this paper, we review in depth two recent proposals (Chien et al. (2010); Huang and Ku (2009)) that pursue the aforementioned objective. Unfortunately, they fail in their attempt mainly due to their security faults but interesting ideas can be drawn from both. These security faults refer to impersonation and replay attacks that could produce the generation of a forged proof stating that certain medication was administered to an inpatient when it was not. We propose a leading-edge solution to enhance inpatient medication safety based on RFID technology that overcomes these weaknesses. Our solution, named Inpatient Safety RFID system (IS-RFID), takes into account the Information Technology (IT) infrastructure of a hospital and covers every phase of the drug administration process. From a practical perspective, our system can be easily integrated within hospital IT infrastructures, has a moderate cost, is very ease to use and deals with security aspects as a key point. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Ionic enhancement of silica surface nanowear in electrolyte solutions

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs+ and Ca2+, was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs+ showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl2 solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO3)2 did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed. © 2012 American Chemical Society.

  11. Absorption enhancement in solution processed metal-semiconductor nanocomposites.

    Science.gov (United States)

    García de Arquer, F Pelayo; Beck, Fiona J; Konstantatos, Gerasimos

    2011-10-10

    We present a full wave 3D simulation study of optical absorption enhancement in solution processed metal-semiconductor nanocomposite ultrathin films, which consist of colloidal metallic nanoparticles (MNPs) and semiconductor matrices of polymer and colloidal quantum dots (CQD). We present an approach for modeling the optical properties of a CQD film, and study the effect of the optical properties of the semiconductor in the near field enhancement showing that CQD is a very promising platform to exploit the benefits of the near-field effects. We show that over a 100% enhancement can be achieved in the visible-near infrared region of the spectrum for CQD PbS films, with a maximum gain factor of 4 when MNPs are on resonance. We study in detail the effect of MNP capping for different ligand lengths and materials and propose solutions to optimize absorption enhancement.

  12. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  13. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  14. Enhancing boron rejection in FO using alkaline draw solutions.

    Science.gov (United States)

    Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y

    2017-07-01

    This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Scaling BPS Solutions and pure-Higgs states

    NARCIS (Netherlands)

    Bena, I.; dr Berkooz, M.; de Boer, J.; El-Showk, S.; van den Bleeken, D.

    2012-01-01

    Depending on the value of the coupling, BPS states of type II string theory compactified on a Calabi-Yau manifold can be described as multicenter supergravity solutions or as BPS states in a quiver gauge theory. While states that spread into the Coulomb-branch states can be mapped one-to-one to

  16. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...... functional theory which we denote the PE-DFT method. It has been implemented in combination with time-dependent quantum mechanical linear and nonlinear response techniques, thus allowing for assessment of electronic excitation processes and dynamic ground- and excited-state molecular properties using...

  17. Contrast enhancing solution for use in confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tannous, Zeina; Torres, Abel; Gonzalez, Salvador

    2006-10-31

    A method of optically detecting a tumor during surgery. The method includes imaging at least one test point defined on the tumor using a first optical imaging system to provide a first tumor image. The method further includes excising a first predetermined layer of the tumor for forming an in-vivo defect area. A predetermined contrast enhancing solution is disposed on the in-vivo defect area, which is adapted to interact with at least one cell anomaly, such as basal cell carcinoma, located on the in-vivo defect area for optically enhancing the cell anomaly. Thereafter the defect area can be optically imaged to provide a clear and bright representation of the cell anomaly to aid a surgeon while surgically removing the cell anomaly.

  18. Two RFID-based solutions to enhance inpatient medication safety.

    Science.gov (United States)

    Chien, Hung-Yu; Yang, Chia-Chuan; Wu, Tzong-Chen; Lee, Chin-Feng

    2011-06-01

    Owing to the low cost and convenience of identifying an object without physical contact, Radio Frequency Identification (RFID) systems provide innovative, promising and efficient applications in many domains. An RFID grouping protocol is a protocol that allows an off-line verifier to collect and verify the evidence of two or more tags simultaneously present. Recently, Huang and Ku (J. Med. Syst, 2009) proposed an efficient grouping protocol to enhance medication safety for inpatients based on low-cost tags. However, the Huang-Ku scheme is not secure; an attacker can easily make up fake grouping records to cheat the verifier. This weakness would seriously endanger the safety of inpatient medication safety. This paper will show the weaknesses, and then propose two RFID-based solutions to enhance medication safety for two different scenarios. The proposed schemes are practical, secure and efficient for medication applications.

  19. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  20. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch

    Directory of Open Access Journals (Sweden)

    Alkın Yurtkuran

    2016-01-01

    Full Text Available The artificial bee colony (ABC algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  1. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch.

    Science.gov (United States)

    Yurtkuran, Alkın; Emel, Erdal

    2016-01-01

    The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  2. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

    2009-08-19

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

  3. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  4. Stabilizing the border steady-state solution of two interacting ...

    African Journals Online (AJOL)

    In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...

  5. Solution of the two identical ion Penning trap final state

    OpenAIRE

    Blackburn, W.; Brown, T L; Cozzo, E.; Moyers, B.; Crescimanno, M.

    2001-01-01

    We have derived a closed form analytic expression for the asymptotic motion of a pair of identical ions in a high precision Penning trap. The analytic solution includes the effects of special relativity and the Coulomb interaction between the ions. The existence and physical relevance of such a final state is supported by a confluence of theoretical, experimental and numerical evidence.

  6. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media.

    Science.gov (United States)

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A

    2015-01-01

    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ground state solutions for diffusion system with superlinear nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhiming Luo

    2015-03-01

    where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  8. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  9. Schroedinger invariant solutions of type IIB with enhanced supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Imperial College, London (United Kingdom). Theoretical Physics Group; Imperial College, London (United Kingdom). Inst. for Mathematical Sciences

    2009-07-15

    We construct the Killing spinors for a class of supersymmetric solutions of type IIB supergravity that are invariant under the non-relativistic Schroedinger algebra. The solutions depend on a five-dimensional Sasaki- Einstein space and it has been shown that they admit two Killing spinors. Here we will show that, for generic Sasaki-Einstein space, there are special subclasses of solutions which admit six Killing spinors and we determine the corresponding superisometry algebra. We also show that for the special case that the Sasaki-Einstein space is the round five-sphere, the number of Killing spinors can be increased to twelve. (orig.)

  10. Electronic states of graphene nanoribbons and analytical solutions

    Directory of Open Access Journals (Sweden)

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  11. Crystallization of probucol from solution and the glassy state.

    Science.gov (United States)

    Kawakami, Kohsaku; Ohba, Chie

    2017-01-30

    Crystallization of probucol (PBL) from both solution and glassy solid state was investigated. In the crystallization study from solution, six solvents and three methods, i.e., evaporation, addition of a poor solvent, and cooling on ice, were used to obtain various crystal forms. In addition to common two crystal forms (forms I and II), two further forms (forms III and cyclohexane-solvate) were found in this study, and their thermodynamic relationships were determined. Forms I and II are likely to be enantiotropically related with thermodynamic transition temperature below 5°C. Isothermal crystallization studies revealed that PBL glass initially crystallized into form III between 25 and 50°C, and then transformed to form I. The isothermal crystallization appears to be a powerful option to find uncommon crystal forms. The crystallization of PBL was identified to be pressure controlled, thus the physical stability of PBL glass is higher than that of typical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. States leverage telepsychiatry solutions to ease ED crowding, accelerate care.

    Science.gov (United States)

    2015-02-01

    Many states are having success turning to telepsychiatry-based solutions to connect mental health patients with needed care while also decompressing crowded EDs. Just one year into a statewide telepsychiatry initiative in North Carolina (NC-STeP), administrators say the approach has saved as much as $7 million, and hospital demand for the service is higher than anticipated. In Texas, mental health emergency centers (MHEC) that use telepsychiatry to connect patients in rural areas with needed psychiatric care are freeing up EDs to focus on medical care. In just 11 months, 91 North Carolina hospitals have at least started the process to engage in NC-STeP. Much of the savings from NC-STeP come from involuntary commitment orders being overturned as a result of the telepsychiatry consults, reducing the need for expensive inpatient care. Implementing NC-STeP has involved multiple hurdles including credentialing difficulties and technical/firewall challenges. The Texas model provides 24/7 availability of psychiatrists via telemedicine through a network of MHECs. In-person staff at the MHECs perform basic screening tests and blood draws so that medical clearance can be achieved without the need for an ED visit in most cases. Funding for the MHECs comes from the state, hospitals in the region, and local governmental authorities that reap savings or benefits from the initiative.

  13. Delocalized Quantum States Enhance Photocell Efficiency

    CERN Document Server

    Zhang, Yiteng; Alharbi, Fahhad H; Engel, Greg; Kais, Sabre

    2014-01-01

    The high quantum efficiency of photosynthetic complexes has inspired researchers to explore new routes to utilize this process for photovoltaic devices. Quantum coherence has been demonstrated to play a crucial role within this process. Herein, we propose a three-dipole system as a model of a new photocell type which exploits the coherence among its three dipoles. We have proved that the efficiency of such a photocell is greatly enhanced by quantum coherence. We have also predicted that the photocurrents can be enhanced by about 49.5 % in such a coherent coupled dipole system compared with the uncoupled dipoles. These results suggest a promising novel design aspect of photosynthesis-mimicking photovoltaic devices.

  14. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2011-01-01

    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on

  15. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    Directory of Open Access Journals (Sweden)

    Feng-Hua Sun

    2015-05-01

    Full Text Available The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05. The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min than during the PL trial (91.6 ± 5.9 min (p < 0.05. At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05. The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.

  16. Steady-State Thermoelastic Analytical Solutions for Insulated Pipelines

    Directory of Open Access Journals (Sweden)

    M. Fraldi

    2016-01-01

    Full Text Available A steady-state thermoelastic analytical solution for a multilayer hollow cylinder, composed of an arbitrary number of phases and subject to both radial pressure and temperature gradient, is presented. By assuming each phase to be homogeneous and thermally isotropic and by varying the mechanical and thermal constitutive parameters, a sensitivity analysis has been performed with the aim of finally applying the study to the mechanical behaviour of an industrial pipeline composed of three phases (steel, insulating coating, and polyethylene under the action of the above-mentioned load conditions. By making reference to a classical Hencky-von Mises criterion, the stress profiles along the thickness of the layers have been carried out, also localizing the onset of plasticity as a function of the temperature variations, material properties, and geometrical features characterizing the composite structure of interest. At the end, some numerical results of practical interest in the engineering applications have been specialized to three different insulated coating materials (expanded polyurethane, laminate glass, and syntactic foam, to highlight the cases in which thermal properties and loads can significantly interfere with the mechanical response in pipes, in terms of stresses, in this way suggesting possible strategies for avoiding unexpected failure and supporting the optimal structural design of these systems.

  17. Security enhanced memory for quantum state.

    Science.gov (United States)

    Mukai, Tetsuya

    2017-07-27

    Security enhancement is important in terms of both classical and quantum information. The recent development of a quantum storage device is noteworthy, and a coherence time of one second or longer has been demonstrated. On the other hand, although the encryption of a quantum bit or quantum memory has been proposed theoretically, no experiment has yet been carried out. Here we report the demonstration of a quantum memory with an encryption function that is realized by scrambling and retrieving the recorded quantum phase. We developed two independent Ramsey interferometers on an atomic ensemble trapped below a persistent supercurrent atom chip. By operating the two interferometers with random phases, the quantum phase recorded by a pulse of the first interferometer was modulated by the second interferometer pulse. The scrambled quantum phase was restored by employing another pulse of the second interferometer with a specific time delay. This technique paves way for improving the security of quantum information technology.

  18. State of the Art: Solution Concepts for Coalitional Games

    Directory of Open Access Journals (Sweden)

    Simina Branzei

    2010-04-01

    Full Text Available This paper investigates solution concepts for coalitional games. Several solution concepts are characterized, such as the core, Shapley value, bargaining set, stable set, nucleolus, and kernel. We look at recent developments of succinct representations of coalitional games, such as weighted voting games, coalitional resource games, cooperative boolean games, and marginal contribution nets. Existing solution concepts have prohibitive complexity requirements even for very simple classes of games. We discuss an agenda for finding an equilibrium solution concept that is as appealing as the core, but that is tractable and guaranteed to exist.

  19. The superior effect of nature based solutions in land management for enhancing ecosystem services.

    Science.gov (United States)

    Keesstra, Saskia; Nunes, Joao; Novara, Agata; Finger, David; Avelar, David; Kalantari, Zahra; Cerdà, Artemi

    2018-01-01

    The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local eco-system services will be maintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soil moisture and reducing droughts and soil erosion we can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of solution saturation state and temperature on diopside dissolution

    Directory of Open Access Journals (Sweden)

    Carroll Susan A

    2007-03-01

    Full Text Available Abstract Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields Rate (moldiopsidecm−2s−1=k×10−Ea/2.303RT(aH+2aMg2+n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaieaacqWFsbGucqWFHbqycqWF0baDcqWFLbqzcqqGGaaicqGGOaakcqWFTbqBcqWFVbWBcqWFSbaBcqWFGaaicqWFKbazcqWFPbqAcqWFVbWBcqWFWbaCcqWFZbWCcqWFPbqAcqWFKbazcqWFLbqzcqWFGaaicqWFJbWycqWFTbqBdaahaaWcbeqaaiabgkHiTiabikdaYaaakiab=bcaGiab=nhaZnaaCaaaleqabaGaeyOeI0IaeGymaedaaOGaeiykaKIaeyypa0Jaem4AaSMaey41aqRaeeymaeJaeeimaaZaaWbaaSqabeaacqGHsislcqWGfbqrdaWgaaadbaGaemyyaegabeaaliabc+caViabikdaYiabc6caUiabioda

  1. Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration.

    Science.gov (United States)

    Azaïs, Antonin; Mendret, Julie; Petit, Eddy; Brosillon, Stephan

    2016-11-01

    The objective of this paper is to help understanding the distinctive influence of the matrix and of the flux decline (e.g. through the cake enhanced concentration polarization (CECP) phenomenon) on the removal mechanisms of four pharmaceutically active compounds (PhACs) from wastewater treatment plant (WWTP) effluent by nanofiltration (NF). PhACs which are commonly encountered in secondary treated effluent were spiked in various matrix (real and synthetic) to investigate the separate and synergetic effects of the organic and ionic environment on PhACs rejection by two commercial membranes (NF-90 and NF-270). With pure water, rejection of NF membranes is dependent on the type of PhACs and of the permeate flux variations. Then, it appeared that the rejection of PhACs by NF-90 was poorly influenced by the type of compounds, because of the prevalence of steric mechanisms, but rather influenced by permeate flux variations and thus to fouling. For this tight NF membrane, CECP impacts PhACs rejection at the start of filtration while after a dense cake is formed, it became enhanced. On the contrary, rejections of PhACs by the NF-270 were enhanced during the filtration of the real wastewater in comparison with spiked pure water. It appeared that for loose-NF membranes, PhACs rejection is mainly governed by solute-solute interactions (EfOM-compound association) or electrostatic membrane-solute interactions. Finally, it seems that calcium concentration of the effluent is a critical parameter for the rejection of PhACs as it alters both the availability of sites for PhACs association and the fouling layer density. Rejections of the NF-270 were negatively impacted in the presence of Ca(2+). Such a study has practical implications for further understanding of the fate of trace organic compounds during nanofiltration of wastewater for reuse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  3. Enhanced degradation of metalaxyl in agricultural soils of São Paulo State, Brazil

    OpenAIRE

    Papini Solange; Andréa Mara Mercedes de

    2001-01-01

    This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation...

  4. Evaluation of Recommender Systems for Technology-Enhanced Learning: Challenges and Possible Solutions

    NARCIS (Netherlands)

    Sandy, Heleau; Drachsler, Hendrik; Gillet, Dennis

    2009-01-01

    Heleou, S., Drachsler, H., & Gillet, D. (2009). Evaluation of Recommender Systems for Technology-Enhanced Learning: Challenges and Possible Solutions. 1st workshop on Context-aware Recommender Systems for Learning at the Alpine Rendez-Vous. November, 30-December, 3, 2009, Garmisch-Patenkirchen,

  5. CO2 Mass transfer model for carbonic anhydrase-enhanced aqueous MDEA solutions

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold; Deslauriers, Maria Gundersen; Neerup, Randi

    2018-01-01

    In this study a CO2 mass transfer model was developed for carbonic anhydrase-enhanced MDEA solutions based on a mechanistic kinetic enzyme model. Four different enzyme models were compared in their ability to predict the liquid side mass transfer coefficient at temperatures in the range of 298...

  6. The superior effect of nature based solutions in land management for enhancing ecosystem services

    NARCIS (Netherlands)

    Keesstra, Saskia; Keesstra, Saskia; Nunes, Joao P.; Novara, Agata; Finger, David; Avelar, David; Kalantari, Zahra; Cerdà, Artemi

    2018-01-01

    The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainabilit y of catchment systems by promoting

  7. NASA Water-Cycle Solutions Networks and Community of Practice Approaches to enhance Decision-making

    Science.gov (United States)

    Pozzi, W.; Ward, J.; Cox, E. L.; Lawford, R. G.; Matthews, D.; Houser, P.; Doherty, M.

    2009-12-01

    The Japanese Aerospace Exploration Agency (JAXA) has created the Asian Water Cycle Initiative regional network for South Asia and NASA has launched two networks to enhance the rapid transitioning of scientific achievements and NASA technology into operational use. All three networks meet a new type of scientific challenge by providing strong linkage among the scientific communities, the space agencies, and decision makers. We focus here on the two NASA-sponsored networks that carry out complementary approaches: WaterNet focused on large-scale national/international collaborations; North Olympic Peninsula Solution Network developed a local proof of concept project first, then began integration and collaboration at progressively larger scales, culminating with a national-level discourse via the National Association of Resource, Conservation and Development councils (NARC&DC). The ultimate goals of both groups were to bring NASA Science and Technology products to organizations/groups to improve decision making and to create collaborations and networks that would extend beyond the parent groups and expand and continue to be sustainable, after the original projects were completed. This paper provides a summary of lessons learned. The primary objective of the NOPSN is to bring NASA science and technology tools to watershed managers to improve the scientific basis of decision making in NASA national application areas of water management, agricultural efficiency, and ecological forecasting. To achieve this objective, the NOPSN team first developed and implemented a local proof-of-concept project for the Dungeness River, Washington, to improve water forecasting. The team then developed local and regional collaborations with water resource managers, stakeholder groups, and local, state, and federal agencies to identify environmental issues, challenges, and needs that could be addressed with NASA technology. Finally,through its partnership with NARC&D, it provided the NOPSN

  8. State Mindfulness During Meditation Predicts Enhanced Cognitive Reappraisal

    OpenAIRE

    Garland, Eric L.; Hanley, Adam; Farb, Norman A.; Froeliger, Brett E.

    2013-01-01

    Putatively, mindfulness meditation involves generation of a state of “nonappraisal”, yet, little is known about how mindfulness may influence appraisal processes. We investigated whether the state and practice of mindfulness could enhance cognitive reappraisal. Participants (N = 44; M age = 24.44, SD = 4.00, range 19 – 38, 82.2% female) were randomized to either 1) mindfulness, 2) suppression, or 3) mind-wandering induction training conditions. Cognitive reappraisal was assessed with the Emot...

  9. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  10. Solubility enhancement of simvastatin by arginine: thermodynamics, solute-solvent interactions, and spectral analysis.

    Science.gov (United States)

    Meor Mohd Affandi, M M R; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, A B A

    2016-01-01

    We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.

  11. Enhancing state-community relations through the ward development ...

    African Journals Online (AJOL)

    The primary responsibility of the government is to develop communities under its jurisdiction through community development projects. The development of the rural areas creates conditions conducive for community living, enhances the legitimacy of government and promotes state-community relations. But the political ...

  12. State Mindfulness During Meditation Predicts Enhanced Cognitive Reappraisal

    Science.gov (United States)

    Hanley, Adam; Farb, Norman A.; Froeliger, Brett E.

    2013-01-01

    Putatively, mindfulness meditation involves generation of a state of “nonappraisal”, yet, little is known about how mindfulness may influence appraisal processes. We investigated whether the state and practice of mindfulness could enhance cognitive reappraisal. Participants (N = 44; M age = 24.44, SD = 4.00, range 19 – 38, 82.2% female) were randomized to either 1) mindfulness, 2) suppression, or 3) mind-wandering induction training conditions. Cognitive reappraisal was assessed with the Emotion Regulation Questionnaire (ERQ) prior to experimental induction, and state mindfulness was assessed immediately following induction using the Toronto Mindfulness Scale (TMS). Participants practiced their assigned strategy for one week and then were reassessed with the ERQ reappraisal subscale. Participants receiving mindfulness training reported significantly higher levels of state mindfulness than participants in the thought suppression and mind wandering conditions. Although brief mindfulness training did not lead to significantly greater increases in reappraisal than the other two conditions, state mindfulness during mindfulness meditation was prospectively associated with increases in reappraisal. Path analysis revealed that the indirect effect between mindfulness training and reappraisal was significant through state mindfulness. Degree of state mindfulness achieved during the act of mindfulness meditation significantly predicted increases in reappraisal over time, suggesting that mindfulness may promote emotion regulation by enhancing cognitive reappraisal. PMID:26085851

  13. INDUSTRIAL CRYSTALLIZATION AND PRECIPITATION FROM SOLUTIONS: STATE OF THE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Giulietti M.

    2001-01-01

    Full Text Available Crystallization and precipitation from solutions are responsible for 70% of all solid materials produced by the chemical industry. Competing with distillation as a separation and purification technique, their use is widespread. They operate at low temperatures with low energy consumption and yield with high purifications in one single step. Operational conditions largely determine product quality in terms of purity, filterability, flowability and reactivity. Producing a material with the desired quality often requires a sound knowledge of the elementary steps involved in the process: creation of supersaturation, nucleation, crystal growth, aggregation and other secondary processes. Mathematical models coupling these elementary processes to all particles in a crystallizer have been developed to design and optimize crystallizer operation. For precipitation, the spatial distribution of reactants and particles in the reactor is important; thus the tools of computational fluid dynamics are becoming increasingly important. For crystallization of organic chemicals, where incorporation of impurities and crystal shape are critical, molecular modeling has recently appeared as a useful tool. These theoretical developments must be coupled to experimental data specific to each material. Theories and experimental techniques of industrial crystallization and precipitation from solutions are reviewed, and recent developments are highlighted.

  14. State of the Art of CHF Enhancement using Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Park Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Graphene Oxide (GO) is chemically modified graphene, which is different from graphite with its structural difference and their molecular structure. Graphene oxide is a fragment of graphene with carboxyl functional group which has electrical polarity. Because of its characteristic, GO has a benefit of good solubility with water base solutions. Researchers can deposit graphene oxide on a heater surface by boiling of GO nanofluid (mixture of distilled water and graphene oxide nanoparticles) with electrically direct heating. Also, in this coating process, rough graphene structure is formed on the heater surface. A number of studies of pool boiling with graphene oxide argue that the mechanisms of CHF enhancement with GO are surface wettability, hydrodynamic instability, thermal activity, microlayer dryout model, and so on. But they cannot fully explain how GO enhances the CHF. This paper is a review of CHF enhancement mechanism using GO nanofluids. We analyze and compare CHF value, porosity, permeability ,and Scattering Electron Microscope (SEM) images to validate Liter-Kaviany CHF mechanism. It is well know that cooling a high temperature structure, nucleate boiling region has the biggest efficient in heat transfer. And the cooling limit is determined by critical heat flux. To enhance the CHF, many kinds of nanofluid were studied. Especially in GO nanofluid, it showed that the biggest CHF enhancement was obtained but the enhancement mechanism was not clear. The discrimination of GO compared to other nanoparticle is uncertainty attributed from reduction of GO. Because GO has polarity, different coating characteristics was obtained at the opposite electric sides. In this paper, the study of CHF enhancement mechanism was conducted using Liter-Kaviany models instead of surface wettability in GO nanofluid. Surface porosity, capillarity, and permeability were considered.

  15. Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    Directory of Open Access Journals (Sweden)

    Yangsen Kang

    2015-01-01

    Full Text Available We demonstrate a high-throughput, solution-based process for subwavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs solar cell. The nanostructured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE, a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency.

  16. Enhancement of Electrical Conductivity of LiFePO4 by Controlled Solution Combustion Synthesis

    Science.gov (United States)

    Rajoba, S. J.; Jadhav, L. D.; Patil, P. S.; Tyagi, D. K.; Varma, S.; Wani, B. N.

    2017-03-01

    LiFePO4 has been synthesized by a solution combustion method at different oxidant-to-fuel ratios. At stoichiometric oxidant-to-fuel ratio (1:2), Fe2O3 formed in addition to LiFePO4 during combustion. Hence, reducing atmosphere was generated by increasing the ratio from stoichiometric to 1:4 and 1:8, named as 1-LFP, 2-LFP, and 4-LFP, respectively. Furthermore, as-prepared powders were calcined in inert atmosphere to avoid oxidation of LiFePO4 to Fe2O3 and Li3PO4, as confirmed by x-ray diffraction (XRD) and thermogravimetric and differential thermal analyses. The calcined powders were characterized by XRD analysis, Raman spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. X-ray photoelectron spectroscopy ascertained oxidation state of +2 and +5 for Fe and P, respectively. With increasing oxidant-to-fuel ratio, the binding energies of 2 p 3/2 and 2 p 1/2 levels of Fe shifted downwards and showed increased splitting. According to Raman spectroscopy results, the residual carbon is amorphous with sp 2 C-C bond. The conductivity of 1-LFP, 2-LFP, and 4-LFP measured at 313 K was 0.15 × 10-6 S/cm, 8.46 × 10-6 S/cm, and 1.21 × 10-3 S/cm, respectively. The enhanced conductivity of 4-LFP is due to presence of residual carbon and Fe2P.

  17. Low-cost Approaches for Flux-pinning Enhancements in YBCO Films Using Solution Processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathyamurthy, Srivatsan [ORNL; Leonard, Keith J [ORNL; Bhuiyan, Md S [ORNL; Aytug, Tolga [ORNL; Kang, Sukill [ORNL; Martin, Patrick M [ORNL; Hunt, Rodney Dale [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Nanoparticles of several oxides have been synthesized using reverse micelle process. Microemulsions containing n-octane as the oil phase, cetyl trimethylammonium bromide and 1-butanol as surfactants, and an aqueous solution of metal nitrates and sodium hydroxide were used as the reaction medium. The nanoparticles obtained were characterized using differential thermal analysis, x-ray diffraction, and transmission electron microscopy. The application of these particles for flux-pinning enhancements has been studied.

  18. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs, i.e., multicast VMs (MVMs and compensation VMs (CVMs. MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD, and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast. The results show that it can obviously enhance the stability of the data distribution.

  19. Engineering Solutions to Enhance Traffic Safety Performance on Two-Lane Highways

    Directory of Open Access Journals (Sweden)

    Lina Wu

    2015-01-01

    Full Text Available Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1 traffic sign replacement, (2 repainting pavement markings, (3 roadside barrier installation, (4 intersection channelization, (5 drainage optimization, and (6 sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.

  20. Physically-enhanced data visualisation: towards real time solution of Partial Differential Equations in 3D domains

    Science.gov (United States)

    Zlotnik, Sergio

    2017-04-01

    Information provided by visualisation environments can be largely increased if the data shown is combined with some relevant physical processes and the used is allowed to interact with those processes. This is particularly interesting in VR environments where the user has a deep interplay with the data. For example, a geological seismic line in a 3D "cave" shows information of the geological structure of the subsoil. The available information could be enhanced with the thermal state of the region under study, with water-flow patterns in porous rocks or with rock displacements under some stress conditions. The information added by the physical processes is usually the output of some numerical technique applied to solve a Partial Differential Equation (PDE) that describes the underlying physics. Many techniques are available to obtain numerical solutions of PDE (e.g. Finite Elements, Finite Volumes, Finite Differences, etc). Although, all these traditional techniques require very large computational resources (particularly in 3D), making them useless in a real time visualization environment -such as VR- because the time required to compute a solution is measured in minutes or even in hours. We present here a novel alternative for the resolution of PDE-based problems that is able to provide a 3D solutions for a very large family of problems in real time. That is, the solution is evaluated in a one thousands of a second, making the solver ideal to be embedded into VR environments. Based on Model Order Reduction ideas, the proposed technique divides the computational work in to a computationally intensive "offline" phase, that is run only once in a life time, and an "online" phase that allow the real time evaluation of any solution within a family of problems. Preliminary examples of real time solutions of complex PDE-based problems will be presented, including thermal problems, flow problems, wave problems and some simple coupled problems.

  1. Photophysics of Nile red in solution. Steady state spectroscopy

    Science.gov (United States)

    Ghoneim, Nagwa

    2000-04-01

    Spectroscopic properties of Nile red (NR) in organic solvents, binary solvent mixtures have been studied. Remarkable shifts in the emission band positions have been observed as a function of the polarity of the medium. In solvent mixtures, these shifts can be explained by the process of specific solvation known as dielectric enrichment. The displacement of the fluorescence band was also measured as a function of temperature to obtain the thermochromic shifts (15 cm -1 K -1 in methyltetrahydrofuran and 13.8 cm -1 K -1 in butanol). Excited state dipole moments were calculated from these shifts.

  2. OUTSOURCING – IS IT A SOLUTION FOR THE STATE?

    Directory of Open Access Journals (Sweden)

    Victor-Adrian Troacă

    2012-03-01

    Full Text Available In terms of scientific research, we consider the need for an attempt to address both scientific and practical efficiency of the state apparatus. The issue of outsourcing seems to be most common in the field of microeconomics, because private firms are willing to maximize profits. On the other hand, the state seeks to minimize social risks in the first place, even though these often lead to improper functioning of the device. Fight for survival in an economic reality located in a changing requires constant adaptation to all those who live this reality. So far only those interested keeping pace with new demands remain in the market On the other hand, macroeconomic policy makers continue to show interest in minimizing "social" costs however would maximize these government spending. The paper will track how outsourcing would ensure a recovery in the national economy, use resources economically, efficiently could lead to a recovery of national economy, to a maximum income and expenses to minimize In other words the economic growth - the desire of any macroeconomic policy decider.

  3. Effect of Aluminum Sulfate on Dispersion State of Sodium Carboxymethylcellulose in Aqueous Solution

    National Research Council Canada - National Science Library

    Ishii, Daisuke; Tatsumi, Daisuke; Matsumoto, Takayoshi

    2013-01-01

    Effect of aluminum sulfate, Al 2 (SO 4 ) 3 , on dispersion state of sodium carboxymethylcellulose, NaCMC, in aqueous solution was investigated by rheological measurements and X-ray photoelectron spectroscopy (XPS...

  4. Analytical solutions for transient and steady state beam loading in arbitrary traveling wave accelerating structures

    CERN Document Server

    Lunin, Andrei; Grudiev, Alexej

    2011-01-01

    Analytical solutions are derived for transient and steady state gradient distributions in the travelling wave accelerating structures with arbitrary variation of parameters over the structure length. The results of both the unloaded and beam loaded cases are presented.

  5. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  6. Enhanced corrosion resistance of magnesium alloy AM60 by cerium(III) in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Heakal, F. El-Taib, E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Shehata, O.S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt); Tantawy, N.S. [Girl' s College of Arts, Science and Education, Ain Shams University, Asma Fahmi Street, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Corrosion rate of AM60 in Cl{sup -} solution decreases with increasing [Ce{sup 3+}] up to 1 mM. Black-Right-Pointing-Pointer Beyond that level the corrosion rate increases and then stabilizes. Black-Right-Pointing-Pointer The spontaneously formed film characterises by increasing resistance with time. Black-Right-Pointing-Pointer The converted film after 10 d immersion exhibits self-healing in plain Cl{sup -} solution. Black-Right-Pointing-Pointer Ce(III) should be present in the corrodent to form a more compact surface coating. - Abstract: Cerium(III) was utilised to enhance the corrosion resistance of AM60 in NaCl solution. Ce{sup 3+} can suppress corrosion deterioration up to 1.0 mM. Beyond that level corrosion rate increases till a steady value. Surface film resistance increases with time evolution until 24 h, then decreases and stabilizes. The converted film after 240 h immersion exhibits self-healing and thickening when re-exposed to plain chloride solution. SEM and EDX confirmed that when Ce is present as additive in solution, more compact coating is formed better than its presence as a post coating on the alloy surface before being immersed in the corrosive environment.

  7. Enhanced Genetic Algorithm based computation technique for multi-objective Optimal Power Flow solution

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, M. Sailaja; Maheswarapu, Sydulu [Department of Electrical Engineering, National Institute of Technology, Warangal (India)

    2010-07-15

    Optimal Power Flow (OPF) is used for developing corrective strategies and to perform least cost dispatches. In order to guide the decision making of power system operators a more robust and faster OPF algorithm is needed. OPF can be solved for minimum generation cost, that satisfies the power balance equations and system constraints. But, cost based OPF solutions usually result in unattractive system losses and voltage profiles. In the present paper the OPF problem is formulated as a multi-objective optimization problem, where optimal control settings for simultaneous minimization of fuel cost and loss, loss and voltage stability index, fuel cost and voltage stability index and finally fuel cost, loss and voltage stability index are obtained. The present paper combines a new Decoupled Quadratic Load Flow (DQLF) solution with Enhanced Genetic Algorithm (EGA) to solve the OPF problem. A Strength Pareto Evolutionary Algorithm (SPEA) based approach with strongly dominated set of solutions is used to form the pareto-optimal set. A hierarchical clustering technique is employed to limit the set of trade-off solutions. Finally a fuzzy based approach is used to obtain the optimal solution from the tradeoff curve. The proposed multi-objective evolutionary algorithm with EGA-DQLF model for OPF solution determines diverse pareto optimal front in just 50 generations. IEEE 30 bus system is used to demonstrate the behavior of the proposed approach. The obtained final optimal solution is compared with that obtained using Particle Swarm Optimization (PSO) and Fuzzy satisfaction maximization approach. The results using EGA-DQLF with SPEA approach show their superiority over PSO-Fuzzy approach. (author)

  8. Iron salts in solid state and in frozen solutions as dosimeters for low irradiation temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, T. [Facultad de Quimica UNAM, Ciudad Universitaria, D.F. Mexico (Mexico); Lartigue, J. [Facultad de Quimica UNAM, Ciudad Universitaria, D.F. Mexico (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico); Ramos, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico); Mosqueira, G.F. [Direccion General de Divulgacion de la Ciencia de la UNAM, A.P. 70-487, C:P, D.F. Mexico 04510 (Mexico); Negron-Mendoza, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico)]. E-mail: negron@nuclecu.unam.mx

    2005-12-01

    The aim of this work is to study the irradiation of iron salts in solid state (heptahydrated ferrous sulfate) and in frozen acid solutions. The study is focused on finding their possible use as dosimeters for low temperature irradiations and high doses. The analysis of the samples was made by UV-visible and Moessbauer spectroscopies. The output signal was linear from 0 to 10 MGy for the solid samples, and 0-600 Gy for the frozen solutions. The obtained data is reproducible and easy to handle. For these reasons, heptahydrate iron sulfate is a suitable dosimeter for low temperature and high irradiation doses, in solid state, and in frozen solution.

  9. Novel chemiluminescent Western blot blocking and antibody incubation solution for enhanced antibody-antigen interaction and increased specificity.

    Science.gov (United States)

    Schwartz, Kimberly; Bochkariov, Dmitry

    2017-10-01

    Western blotting is a ubiquitous tool used in protein and molecular biology research, providing information about the presence, size, relative abundance, and state of a protein in a mixture. First, the proteins in a sample are separated by size using SDS-PAGE then transferred onto a membrane for detection with a set of primary and secondary antibodies. High-quality Western data requires high signal-to-noise ratios, which depend upon reduction of nonspecific antibody interactions. Blocking is a critical step in the Western blot method as it prevents the antibodies from binding nonspecifically to the membrane and irrelevant proteins. A solution of nonfat dry milk (NFDM) in physiological buffer is commonly used for this purpose, but does not perform well with every type of antibody and is not optimal for low-abundance proteins. We present a novel blocking solution for chemiluminescent Western blots, AdvanBlock™-chemi, which outperforms NFDM in experiments with 20 unique antibodies by increasing signal-to-noise ratios and minimizing nonspecific binding. This solution enhances protein detection by Western blot and provides consistent results for detection of low abundant and modified proteins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Chevelkov, Veniamin, E-mail: shevelkov@fmp-berlin.de; Xiang, ShengQi; Giller, Karin; Becker, Stefan; Lange, Adam [Max-Planck-Institut für biophysikalische Chemie (MPI-bpc) (Germany); Reif, Bernd [Technische Universität München (TUM), Munich Center for Integrated Protein Science (CIPS-M), Department Chemie (Germany)

    2015-02-15

    In this work, we show how the water flip-back approach that is widely employed in solution-state NMR can be adapted to proton-detected MAS solid-state NMR of highly deuterated proteins. The scheme allows to enhance the sensitivity of the experiment by decreasing the recovery time of the proton longitudinal magnetization. The method relies on polarization transfer from non-saturated water to the protein during the inter-scan delay.

  11. Blockade of chloride ion transport enhances the cytocidal effect of hypotonic solution in gastric cancer cells.

    Science.gov (United States)

    Iitaka, Daisuke; Shiozaki, Atsushi; Ichikawa, Daisuke; Kosuga, Toshiyuki; Komatsu, Shuhei; Okamoto, Kazuma; Fujiwara, Hitoshi; Ishii, Hiromichi; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2012-08-01

    Cancer cells that are exfoliated into the peritoneal cavity during surgery are viable and have the potential to produce peritoneal recurrence. Although peritoneal lavage with distilled water is applied in some cancer surgeries to kill tumor cells, there is no consensus regarding the optimal methodology and its effects. Three human gastric cancer cell lines, MKN28, MKN45, and Kato-III, were exposed to distilled water, and the resultant morphologic changes were observed using a microscope. Analysis of cell volume changes was performed using a flow cytometer. To investigate the cytocidal effects of the water, re-incubation of the cells was performed after exposing them to hypotonic solution. Additionally, the effects of 5-nitro-2-3-phenylpropylamino)-benzoic acid (NPPB), a Cl(-) channel blocker, and R(+)-[(dihydroindenyl)oxy] alkanoic acid (DIOA), a blocker of the K(+)/Cl(-) co-transporter, on the cells during their exposure to hypotonic solution were analyzed. After the cells had been exposed to the distilled water, a rapid increase in cell volume occurred followed by cell rupture. In the MKN45 and Kato-III cells, treatment with NPPB increased cell volume by inhibiting regulatory volume decrease and enhanced the cytocidal effects of the hypotonic solution, whereas no such effects were observed in the MKN28 cells. On the other hand, treatment of the MKN28 cells with DIOA inhibited RVD and enhanced the cytocidal effects of hypotonic shock. These findings support the efficacy of peritoneal lavage with distilled water during surgery for gastric cancer and suggest that the regulation of Cl(-) transport enhances the cytocidal effects of hypotonic shock. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Temperature dependence of the surface enhanced raman spectroelectrochemistry of iron in aqueous solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, L. J.; Melendres, C. A.; Chemical Engineering

    1996-06-01

    The effect of temperature on the composition of the corrosion film on iron in aqueous sodium hydroxide and borate solutions was investigated using surface enhanced Raman spectroelectrochemistry (SERS). Fe(OH){sub 2} and Fe{sub 3}O{sub 4} were observed in the prepassivation region, while Fe{sub 3}O{sub 4} and FeOOH accounted for most of the passivated film at 25, 60 and 95 C. Fe(OH){sub 2} was found to be a stable component of the corrosion film on iron at 95 C, which is contrary to recently published theoretical calculations.

  13. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    Science.gov (United States)

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature

    DEFF Research Database (Denmark)

    Ma, Huanming; Qin, Zhiwei; Wang, Zaide

    2017-01-01

    ZnO nanoneedle arrays (ZnO nns) were synthesized by a facile two-step solution-phase method based on the etching of pre-synthesized ZnO nanowire arrays (ZnO nws) with flat ends at room temperature. Field emission measurement results showed that the turn-on electronic fields of ZnO nns and nws wer...... 2.7 and 5.3 V μm−1 at a current density of 10 μA cm−2, and the field enhancement factors were 4939.3 for ZnO nns and 1423.6 for ZnO nws. The enhanced field emission properties in ZnO nns were ascribed to the sharp tip geometry....

  15. Perfect fluid cosmological Universes: One equation of state and the most general solution

    Science.gov (United States)

    Das, Anadijiban; Banerjee, Asit; Chakraborty, Subenoy; Pan, Supriya

    2018-02-01

    Considering a homogeneous and isotropic Universe characterised by the Friedmann-Lemaître-Robertson-Walker line element, in this work, we have prescribed a general formalism for the cosmological solutions when the equation of state of the cosmic substance follows the general structure φ (p, ρ ) = 0, where p, ρ are respectively the pressure and the energy density of the cosmic substance. Using the general formalism we recover some well-known solutions, namely, when the cosmic substance obeys the linear equation of state, a Chaplygin-type equation of state, or a nonlinear equation of state. Thus, the current work offers a new technique to solve the cosmological solutions without any prior relation between p and ρ.

  16. Flow boiling critical heat flux enhancement on the 2-D slice for boric acid and TSP solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.M. [Korea Advanced Inst. of Science and Tech., Nuclear and Quantum Eng., Yuseong-gu, Daejeon (Korea, Republic of); Heo, S.; Song, C. [Korea Hydro & Nuclear Power Co., Nuclear Engineering and Technology Inst., Nuclear Engineering and Tech. Inst. (Korea, Republic of); Jeong, Y.H. [Korea Advanced Inst. of Science and Tech., Nuclear and Quantum Eng., Yuseong-gu, Daejeon (Korea, Republic of)

    2011-07-01

    The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slice test section. The radius of the curvature and the channel area of the test section were 0.15 m and 0.03 mx0.03 m, respectively. The objectives are to assess the effects of additives (TSP, boric acid) and heated material (SA508) in inclination angle 90° and to investigate flow boiling CHF enhancement resulting from various working fluids of 5000 ppm tri-sodium phosphate (TSP, Na{sub 3}PO{sub 4}∙12H{sub 2}O) solution, 4000 ppm boric acid solution and mixture solution of TSP and boric acid. Boric acid solution didn't show CHF enhancement and TSP and mixture solution showed CHF enhancement (20~34%). (author)

  17. Negotiating Content with Learners Using Technology Enhanced Teaching and Learning Solutions

    Directory of Open Access Journals (Sweden)

    Richard Smith

    2011-09-01

    Full Text Available This paper examines issues around learning ‘content’ and its place in the new digital learning culture. We focus on the increasing demands of digital learners for content that is relevant and the challenges this poses if educators are to stay relevant to them. We say ‘relevance’ is best achieved when content is negotiated with learners in collaboration with instructors. We describe strategies in which technology enhanced teaching and learning solutions have enabled learners to negotiate and create digitised learning content that is educationally, culturally and socially relevant. We cite two case studies that exemplify this approach: a trial of negotiated content with primary school aged digital learners at Brisbane School of Distance Education (BSDE, Australia, and the content decision-making processes used for the development of e-learning courses for hearing health professionals and Auditory-Verbal Therapy at Hear and Say WorldWide Brisbane, Australia. We focus on the changing demands and skill sets of digital learners, their learning managers and subject matter experts, and the use of technology enhanced teaching and learning solutions as the negotiating tool in the development of digital content that is academically rigorous and also learner friendly.

  18. Regulating Water-Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution.

    Science.gov (United States)

    Xu, Kun; Ding, Hui; Zhang, Mengxing; Chen, Min; Hao, Zikai; Zhang, Lidong; Wu, Changzheng; Xie, Yi

    2017-07-01

    Electrochemical water splitting to produce hydrogen renders a promising pathway for renewable energy storage. Considering limited electrocatalysts have good oxygen-evolution reaction (OER) catalytic activity in acid solution while numerous economical materials show excellent OER catalytic performance in alkaline solution, developing new strategies that enhance the alkaline hydrogen-evolution reaction (HER) catalytic activity of cost-effective catalysts is highly desirable for achieving highly efficient overall water splitting. Herein, it is demonstrated that synergistic regulation of water dissociation and optimization of hydrogen adsorption free energy on electrocatalysts can significantly promote alkaline HER catalysis. Using oxygen-incorporated Co 2 P as an example, the synergistic effect brings about 15-fold enhancement of alkaline HER activity. Theory calculations confirm that the water dissociation free energy of Co 2 P decreases significantly after oxygen incorporation, and the hydrogen adsorption free energy can also be optimized simultaneously. The finding suggests the powerful effectiveness of synergetic regulation of water dissociation and optimization of hydrogen adsorption free energy on electrocatalysts for alkaline HER catalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Infinite product expansion of the Fokker-Planck equation with steady-state solution.

    Science.gov (United States)

    Martin, R J; Craster, R V; Kearney, M J

    2015-07-08

    We present an analytical technique for solving Fokker-Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples.

  20. Enhanced degradation of metalaxyl in agricultural soils of São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Papini Solange

    2001-01-01

    Full Text Available This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation was studied through radiometric techniques to measure biomineralization and recovery of extractable- and soil-bound products. Enhanced degradation was verified only in one soil, although partial degradation and mineralization of the fungicide were detected in both soils. The different rates and patterns of metalaxyl degradation in the soils were probably due to their different physical, chemical, and biological characteristics.

  1. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    Science.gov (United States)

    Kowalska, Izabela; Klimonda, Aleksandra

    2017-11-01

    The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  2. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    Directory of Open Access Journals (Sweden)

    Kowalska Izabela

    2017-01-01

    Full Text Available The aim of the study was to assess the usefulness of micellar–enhanced ultrafiltration (MEUF for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi–pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration. Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L, the average concentration of copper ions in the permeate ranged from 1.2–4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  3. In situ surface enhanced Raman spectroscopy detection in high pressure solution

    Science.gov (United States)

    Wang, Pan; Li, Heping; Cui, Can; Jiang, Jianjun

    2017-12-01

    In situ surface enhanced Raman scattering (SERS) in solution was tested in this study at ambient temperature and high pressure (up to 978 MPa) in a diamond-anvil cell, with the intent of resolving trace detection in high pressure conditions. The 4-chlorothiophenol solution was used as the analyte in our experiments. A silver nanoparticle layer, formed by chemical reduction and assembled on a poly (allylamine hydrochloride)-modified silicon wafer, was used as the substrate. There was an obvious rise in SERS intensity when the sample chamber was pressurized for the first time in the diamond-anvil cell. But then the intensity drop occurred with increasing pressure and all peaks have pressure-induced blue shift below 700 MPa. The SERS intensity and Raman shift displayed irregular changes in the pressure range from 700 MPa to 978 MPa. The discovery of the survival of in situ high-pressure SERS in solution in the present study may make it a prospecting tool for the high-precision detection of analyte in high pressure conditions. Moreover, it could provide more information on the SERS mechanisms that have been puzzling us for decades.

  4. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  5. Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma

    Science.gov (United States)

    Camporeale, E.; Hogan, E. A.; MacDonald, E. A.

    2015-04-01

    We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics, Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf. (Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.

  6. Efficiency of an enhanced linear optical Bell-state measurement scheme with realistic imperfections

    Science.gov (United States)

    Wein, Stephen; Heshami, Khabat; Fuchs, Christopher A.; Krovi, Hari; Dutton, Zachary; Tittel, Wolfgang; Simon, Christoph

    2016-09-01

    We compare the standard 50%-efficient single beam splitter method for Bell-state measurement to a proposed 75%-efficient auxiliary-photon-enhanced scheme [W. P. Grice, Phys. Rev. A 84, 042331 (2011), 10.1103/PhysRevA.84.042331] in light of realistic conditions. The two schemes are compared with consideration for high input state photon loss, auxiliary state photon loss, detector inefficiency and coupling loss, detector dark counts, and non-number-resolving detectors. We also analyze the two schemes when multiplexed arrays of non-number-resolving detectors are used. Furthermore, we explore the possibility of utilizing spontaneous parametric down-conversion as the auxiliary photon pair source required by the enhanced scheme. In these different cases, we determine the bounds on the detector parameters at which the enhanced scheme becomes superior to the standard scheme and describe the impact of the different imperfections on measurement success rate and discrimination fidelity. This is done using a combination of numeric and analytic techniques. For many of the cases discussed, the size of the Hilbert space and the number of measurement outcomes can be very large, which makes direct numerical solutions computationally costly. To alleviate this problem, all of our numerical computations are performed using pure states. This requires tracking the loss modes until measurement and treating dark counts as variations on measurement outcomes rather than modifications to the state itself. In addition, we provide approximate analytic expressions that illustrate the effect of different imperfections on the Bell-state analyzer quality.

  7. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Yuan, Shi; Zhan, Juhong; Wang, Yujue; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin

    2015-09-01

    Electro-peroxone (E-peroxone) is a novel electrocatalytic ozonation process that combines ozonation and electrolysis process to enhance pollutant degradation during water and wastewater treatment. This enhancement has been mainly attributed to several mechanisms that increase O3 transformation to ·OH in the E-peroxone system, e.g., electro-generation of H2O2 from O2 at a carbon-based cathode and its subsequent peroxone reaction with O3 to ·OH, electro-reduction of O3 to ·OH at the cathode, and O3 decomposition to ·OH at high local pH near the cathode. To get more insight how these mechanisms contribute respectively to the enhancement, this study investigated total organic carbon (TOC) elimination from oxalic acid (OA) solutions by the E-peroxone process. Results show that the E-peroxone process significantly increased TOC elimination rate by 10.2-12.5 times compared with the linear addition of the individual rates of corresponding ozonation and electrolysis process. Kinetic analyses reveal that the electrochemically-driven peroxone reaction is the most important mechanism for the enhanced TOC elimination rate, while the other mechanisms contribute minor to the enhancement by a factor of 1.6-2.5. The results indicate that proper selection of electrodes that can effectively produce H2O2 at the cathode is critical to maximize TOC elimination in the E-peroxone process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

    CERN Document Server

    Gottberg, Alexander; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-01-01

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β-NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  9. Theoretical Application of Irreversible (Nonequilibrium Thermodynamic Principles to Enhance Solute Fluxes across Nanofabricated Hemodialysis Membranes

    Directory of Open Access Journals (Sweden)

    Assem Hedayat

    2012-01-01

    Full Text Available Objective. Nanotechnology has the potential to improve hemodialysis membrane technology. Thus, a major objective is to understand how to enhance toxic solute fluxes across these membranes. The aim of this concept building study is to review the application of irreversible thermodynamic (IT to solute fluxes. Methods. We expanded the application of the Nernst-Planck equation to include the Kedem-Katchalsky equation, pH, membrane thickness, pore size, and electric potential as variables. Results. (1 Reducing the membrane’s thickness from 25 μm to 25 nm increased the flux of creatinine, β2-microglobulin, and tumor necrosis factor-α (TNF-α by a thousand times but prevented completely albumin flux, (2 applying an electric potential of 50–400 mV across the membrane enhanced the flux of the respective molecules by 71.167 × 10-3, 38.7905 × 10-8, and 0.595 × 10-13 mol/s, and (3 changing the pH from 7.35 to 7.42 altered the fluxes minimally. Conclusions. The results supported an argument to investigate the application of IT to study forces of fluxes across membranes. Reducing the membrane’s thickness—together with the application of an electrical potential—qualities achievable by nanotechnology, can enhance the removal of uremic toxins by many folds. However, changing the pH at a specific membrane thickness does not affect the flux significantly.

  10. Technology Transfer in the EU: Exporting Strategically Important ICT Solutions to Other EU Member States

    Directory of Open Access Journals (Sweden)

    Säär Anni

    2015-10-01

    Full Text Available The fast development of ICTs pose new challenges to the European Union and its Member States. Every EU country has its own policies regarding technology transfer, ownership of state e-services, and the possibilities how the state-owned or licensed e-service could be exported. Taking into account the free movement of goods, the EU has created a platform to cooperate and export IT solutions. However, the lack of preparedness of infrastructures, legislation and stakeholders for cross-border exchanges poses a threat to IT transfer and should be taken into consideration in the EU as well. In the coming decades the number of outsourced ICT solutions, strategically important ICT solutions, public services and critically important information exchange platforms developed on behalf of the states, will grow exponentially. Still, digital development is uneven across the EU, they grow at different speeds and the performance is quite splintered. There are legal provisions which are outdated and therefore impede technological cooperation and export of IT solutions. A Member State may restrict the ICT licensing based on national security and policy reasons and the ownership of intellectual property might pose a threat to technology transfer or further development of the IT solution. There are examples of strategically important export of ICT solutions, the experience at which can be expanded to cover other EU Member States. Strong collaboration would enable mutual learning from past experiences along with the opportunities for better use of technology. Parallels can be drawn with military technology transfers, as the policies and legal framework was first developed and mostly used with them.

  11. A solid state and solution NMR study of the tautomerism in hydroxyquinoline carboxylic acids.

    Science.gov (United States)

    Gudat, Dietrich; Nycz, Jacek E; Polanski, Jaroslaw

    2008-01-01

    Some hydroxyquinoline carboxylic acids and their conjugate acids and bases were characterized by 13C and 15N NMR spectroscopy in solution and in the solid state. Differences in 13C and, in particular, 15N chemical shift patterns allow to distinguish between individual tautomers and confirm the presence of zwitterionic species in the solid state. Solution NMR spectra in dimethyl sulfoxide (DMSO) show effects resulting as a consequence of dynamic exchange and suggest the presence of an equilibrium mixture of hydroxyquinoline carboxylic acid and zwitterionic hydroxyquinolinium carboxylate tautomers.

  12. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  13. Analytical solution and simplified analysis of coupled parent-daughter steady-state transport with multirate mass transfer

    Science.gov (United States)

    R. Haggerty

    2013-01-01

    In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...

  14. Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States

    Science.gov (United States)

    Creatore, C.; Parker, M. A.; Emmott, S.; Chin, A. W.

    2013-12-01

    Artificially implementing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop such a paradigm and present a model photocell based on the nanoscale architecture and molecular elements of photosynthetic reaction centers. Quantum interference of photon absorption and emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of electronic, thermal, and optical parameters for optimized dipolar geometries. This result opens a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.

  15. Emotional brain states carry over and enhance future memory formation.

    Science.gov (United States)

    Tambini, Arielle; Rimmele, Ulrike; Phelps, Elizabeth A; Davachi, Lila

    2017-02-01

    Emotional arousal can produce lasting, vivid memories for emotional experiences, but little is known about whether emotion can prospectively enhance memory formation for temporally distant information. One mechanism that may support prospective memory enhancements is the carry-over of emotional brain states that influence subsequent neutral experiences. Here we found that neutral stimuli encountered by human subjects 9-33 min after exposure to emotionally arousing stimuli had greater levels of recollection during delayed memory testing compared to those studied before emotional and after neutral stimulus exposure. Moreover, multiple measures of emotion-related brain activity showed evidence of reinstatement during subsequent periods of neutral stimulus encoding. Both slow neural fluctuations (low-frequency connectivity) and transient, stimulus-evoked activity predictive of trial-by-trial memory formation present during emotional encoding were reinstated during subsequent neutral encoding. These results indicate that neural measures of an emotional experience can persist in time and bias how new, unrelated information is encoded and recollected.

  16. Developing technology-enhanced active learning for medical education: challenges, solutions, and future directions.

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Lewis, Joy H; Bennett, Thomas; Carrasco, Noel; Brysacz, Stanley; Makin, Inder Raj S; Hutman, Ryan; Schwartz, Frederic N

    2015-04-01

    Growing up in an era of video games and Web-based applications has primed current medical students to expect rapid, interactive feedback. To address this need, the A.T. Still University-School of Osteopathic Medicine in Arizona (Mesa) has developed and integrated a variety of approaches using technology-enhanced active learning for medical education (TEAL-MEd) into its curriculum. Over the course of 3 years (2010-2013), the authors facilitated more than 80 implementations of games and virtual patient simulations into the education of 550 osteopathic medical students. The authors report on 4 key aspects of the TEAL-MEd initiative, including purpose, portfolio of tools, progress to date regarding challenges and solutions, and future directions. Lessons learned may be of benefit to medical educators at academic and clinical training sites who wish to implement TEAL-MEd activities.

  17. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect

    Science.gov (United States)

    Khort, Alexander; Podbolotov, Kirill; Serrano-García, Raquel; Gun'ko, Yurii K.

    2017-09-01

    In this paper, we report a new modified one-step combustion synthesis technique for production of Ni metal nanoparticles. The main unique feature of our approach is the use of microwave assisted foam preparation. Also, the effect of different types of fuels (urea, citric acid, glycine and hexamethylenetetramine) on the combustion process and characteristics of resultant solid products were investigated. It is observed that the combination of microwave assisted foam preparation and using of hexamethylenetetramine as a fuel allows producing pure ferromagnetic Ni metal nanoparticles with enhanced coercivity (78 Oe) and high value of saturation magnetization (52 emu/g) by one-step solution combustion synthesis under normal air atmosphere without any post-reduction processing.

  18. Methanol-enhanced removal and metabolic conversion of formaldehyde by a black soybean from formaldehyde solutions.

    Science.gov (United States)

    Tan, Hao; Xiong, Yun; Li, Kun-Zhi; Chen, Li-Mei

    2017-02-01

    Methanol regulation of some biochemical and physiological characteristics in plants has been documented in several references. This study showed that the pretreatment of methanol with an appropriate concentration could stimulate the HCHO uptake by black soybean (BS) plants. The process of methanol-stimulated HCHO uptake by BS plants was optimized using the Central Composite Design and response surface methodology for the three variables, methanol concentration, HCHO concentration, and treatment time. Under optimized conditions, the best stimulation effect of methanol on HCHO uptake was obtained. 13C-NMR analysis indicated that the H13CHO metabolism produced H13COOH, [2-13C]Gly, and [3-13C]Ser in BS plant roots. Methanol pretreatment enhanced the metabolic conversion of H13CHO in BS plant roots, which consequently increased HCHO uptake by BS plants. Therefore, methanol pretreatment might be used to increase HCHO uptake by plants in the phytoremediation of HCHO-polluted solutions.

  19. Solution plasma synthesis of Au nanoparticles for coating titanium dioxide to enhance its photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Nakasugi, Yuki; Saito, Genki [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan); Yamashita, Toru [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Sakaguchi, Norihito [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan); Akiyama, Tomohiro, E-mail: takiyama@eng.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan)

    2015-05-29

    A convenient method for coating titanium dioxide (TiO{sub 2}) by Au nanoparticles (AuNPs) is demonstrated in solution plasma to improve the photocatalytic activity of TiO{sub 2}. AuNPs from a metallic Au electrode were bonded to the surface of a commercial TiO{sub 2} powder, which acted as a catalyst support, with the reaction taking place in an electrolyte solution. The effect of diverse plasma conditions on the size and productivity of the AuNPs was investigated initially to provide a reference in the absence of TiO{sub 2}. At 290 V, “partial plasma” was attained, with only a weak light emission surrounding the Au electrode. Conditions then evolved to “full plasma”, with a strong orange emission at 330 V. Partial or full status was maintained for 1 h at 300 and 400 V, respectively. At the transition to full, the AuNP particle size increased from 3.72 to 6.09 nm and the productivity increased dramatically from 0.025 to 0.87 mg h{sup −1} mm{sup −2}. Stronger plasma very efficiently synthesized AuNPs, and therefore, it was adopted for further study. AuNP-TiO{sub 2} combinations were formed by applying 400 V to a TiO{sub 2}-dispersed solution. In these experiments, TiO{sub 2} coated with AuNPs was synthesized; these combinations of AuNP-TiO{sub 2} had 0.44 mol% of Au. The photocatalytic activity of AuNP-TiO{sub 2} was investigated by measuring the degradation of Rhodamine B (RhB). Under UV irradiation, the AuNP-TiO{sub 2} particles removed up to 95% of the dye in 70 min. Commercial TiO{sub 2} achieves values closer to 85%. The results thus raise the possibility that solution plasma methods can be generalized as a means for achieving catalysis-enhancing coatings. - Highlights: • Au nanoparticles with a diameter of several nm were synthesized by solution plasma. • The effect of plasma conditions on the Au nanoparticles formation was investigated. • High resolution TEM was conducted to investigate the crystal structure. • Au nanoparticles were coated

  20. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Brezinsky

    2008-01-15

    The specific objective of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes such as LO-CAT II and SulFerox process utilizing biologically enhanced reoxidation of the redox solutions used in these processes. The project is based on the use of chelated ferric iron as the catalyst for the production of elemental sulfur, and then oxidizing bacteria, such as Thiobacillus Ferrooxidans (ATCC 23270) as an oxidizer. The regeneration of Fe{sup 3+} - chelate is accomplished by the use of these same microbes under mild conditions at 25-30 C and at atmospheric pressure to minimize the chelate degradation process. The pH of the redox solution was observed to be a key process parameter. Other parameters such as temperature, total iron concentration, gas to liquid ratio and bacterial cell densities also influence the overall process. The second part of this project includes experimental data and a kinetic model of microbial H{sub 2}S removal from sour natural gas using thiobacillus species. In the experimental part, a series of experiments were conducted with a commercial chelated iron catalyst at pH ranges from 8.7 to 9.2 using a total iron concentration range from 925 ppm to 1050 ppm in the solution. Regeneration of the solution was carried out by passing air through the solution. Iron oxidizing bacteria were used at cell densities of 2.3 x 10{sup 7}cells/ml for optimum effective performance. In the modeling part, oxidation of Fe{sup 2+} ions by the iron oxidizing bacteria - Thiobacillus Ferrooxidans was studied for application to a continuous stirred tank reactor (CSTR). The factors that can directly affect the oxidation rate such as dilution rate, temperature, and pH were analyzed. The growth of the microorganism was assumed to follow Monod type of growth kinetics. Dilution rate had influence on the rate of oxidation of ferrous iron. Higher dilution rates caused washout of the biomass. The oxidation rate was

  1. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  2. Density of low-energy vibrational states in a protein solution

    Science.gov (United States)

    Brill, A. S.; Fiamingo, F. G.; Hampton, D. A.; Levin, P. D.; Thorkildsen, R.

    1985-04-01

    Electron paramagnetic resonance measurements on the aquo complex of sperm whale skeletal myoglobin in solution at T<4 K show that, at phonon energies around 20 cm-1, the density of vibrational states is that of a three-dimensional system.

  3. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  4. Ground state solutions for the nonlinear Schrödinger–Maxwell equations

    National Research Council Canada - National Science Library

    Azzollini, A; Pomponio, A

    2008-01-01

    In this paper we study the nonlinear Schrodinger-Maxwell equations {-[DELTA]u+V(x)u+[phi]u=|u|.sup.p-1uin R.sup.3,-[DELTA][phi]=u.sup.2in R.sup.3. If V is a positive constant, we prove the existence of a ground state solution...

  5. The equation of state for solutions of the sunflower oil+isomerhexane system

    Science.gov (United States)

    Safarov, M. M.; Abdukhamidova, Z.

    1995-11-01

    The article presents the results of an experimental investigation into the density of solutions of the sunflower oil+isomerhexane system (from 23 to 75%) at temperatures of from 293 to 450 K and pressures of from 0.101 to 98.1 MPa. An equation of state is obtained.

  6. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells.

    Science.gov (United States)

    Kumar, Mulmudi Hemant; Yantara, Natalia; Dharani, Sabba; Graetzel, Michael; Mhaisalkar, Subodh; Boix, Pablo P; Mathews, Nripan

    2013-12-07

    A ZnO compact layer formed by electrodeposition and ZnO nanorods grown by chemical bath deposition (CBD) allow the processing of low-temperature, solution based and flexible solid state perovskite CH3NH3PbI3 solar cells. Conversion efficiencies of 8.90% were achieved on rigid substrates while the flexible ones yielded 2.62%.

  7. State Space Formulas for a Solution of the Suboptimal Nehari Problem on the Unit Disc

    NARCIS (Netherlands)

    Curtain, Ruth F.; Opmeer, Mark R.

    We give state space formulas for a ("central") solution of the suboptimal Nehari problem for functions defined on the unit disc and taking values in the space of bounded operators in separable Hilbert spaces. Instead of assuming exponential stability, we assume a weaker stability concept (the

  8. Antimicrobial Efficacy of Contact Lens Care Solutions Against Neutrophil-Enhanced Bacterial Biofilms.

    Science.gov (United States)

    Hinojosa, Jorge A; Patel, Naiya B; Zhu, Meifang; Robertson, Danielle M

    2017-04-01

    Neutrophil-derived extracellular debris has been shown to accelerate bacterial biofilm formation on hydrogel and silicone hydrogel contact lens surfaces compared to lenses inoculated with bacteria alone. The purpose of this study was to evaluate the disinfection efficacy of four standard commercial contact lens cleaning regimens against neutrophil-enhanced bacterial biofilms formed on silicone hydrogel contact lenses. Four reference strains were used: Pseudomonas aeruginosa, Serratia marcescens, Stenotrophomonas maltophilia, and Staphylococcus aureus. Human neutrophils were isolated from peripheral blood by venipuncture. Unworn Lotrafilcon B lenses were incubated overnight in each respective strain with stimulated neutrophils. Contact lenses were then cleaned using one of four contact lens care solutions according to manufacturer instructions. Bacterial viability was assessed by colony counts and confocal microscopy. Volume of residual debris on lens surfaces after cleaning was quantified using IMARIS software. All four solutions tested showed effective antimicrobial activity against each bacterial strain; however, substantial amounts of nonviable bacteria and cellular debris remained on the lens surface despite concomitant digital cleaning. Necrotic cellular debris that accumulates under the posterior lens surface during wear of an inoculated contact lens is not fully removed during routine cleaning and disinfection. The accumulation of residual cellular debris on the contact lens surface may contribute to new colonization of the lens and represents a significant risk factor for a contact lens-related adverse event. Additional studies are needed to correlate these findings with risk for corneal infiltrative and/or infectious events in a standard animal model.

  9. A finite state projection algorithm for the stationary solution of the chemical master equation

    Science.gov (United States)

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-01

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.

  10. Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Bio-functionalization and Cellular Uptake

    Science.gov (United States)

    Hong, Bong Jin; Compton, Owen C.; An, Zhi; Eryzazici, Ibrahim; Nguyen, SonBinh T.

    2013-01-01

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.03) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a non-covalently bound surfactant to minimize the aggregate-induced nanosheets-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily uptake by cells, demonstrating their excellent performance as potential drug delivery vehicles. PMID:22017285

  11. An RFID solution for enhancing inpatient medication safety with real-time verifiable grouping-proof.

    Science.gov (United States)

    Chen, Yu-Yi; Tsai, Meng-Lin

    2014-01-01

    The occurrence of a medication error can threaten patient safety. The medication administration process is complex and cumbersome, and nursing staffs are prone to error when they are tired. Proper Information Technology (IT) can assist the nurse in correct medication administration. We review a recent proposal regarding a leading-edge solution to enhance inpatient medication safety by using RFID technology. The proof mechanism is the kernel concept in their design and worth studying to develop a well-designed grouping-proof scheme. Other RFID grouping-proof protocols could be similarly applied in administering physician orders. We improve on the weaknesses of previous works and develop a reading-order independent RFID grouping-proof scheme in this paper. In our scheme, tags are queried and verified under the direct control of the authorized reader without connecting to the back-end database server. Immediate verification in our design makes this application more portable and efficient and critical security issues have been analyzed by the threat model. Our scheme is suitable for the safe drug administration scenario and the drug package scenario in a hospital environment to enhance inpatient medication safety. It automatically checks for correct drug unit-dose and appropriate inpatient treatments. Copyright © 2013. Published by Elsevier Ireland Ltd.

  12. αB-Crystallin. A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Jehle, Stefan [Freie Univ., Berlin (Germany); Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); van Rossum, Barth [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Stout, Joseph R. [Univ. of Washington, Seattle, WA (United States); Noguchi, Satoshi M. [Univ. of Washington, Seattle, WA (United States); Falber, Katja [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Rehbein, Kristina [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Oschkinat, Hartmut [Freie Univ., Berlin (Germany); Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Klevit, Rachel E. [Univ. of Washington, Seattle, WA (United States); Rajagopal, Ponni [Univ. of Washington, Seattle, WA (United States)

    2008-11-14

    Atomic-level structural information on αB-Crystallin (αB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an ~580-kDa human αB assembled from 175-residue 20-kDa subunits. An ~100-residue α-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different α- crystallin domain constructs isolated from αB. In vitro, the chaperone-like activities of full-length αB and the isolated α-crystallin domain are identical. Chemical shifts of the backbone and Cβ resonances have been obtained for residues 64–162 (α-crystallin domain plus part of the C-terminus) in αB and the isolated α-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six β-strands in the α-crystallin domain. A majority of residues in the α-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the α-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within αB. Evidence for a novel dimerization motif in the human α-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) 1H–15N heteronuclear single quantum coherence spectra as a function of pH. The isolated α-crystallin domain undergoes a dimer–monomer transition over the pH range 7.5–6.8. This steep pHdependent switch may be important for αB to function optimally (e.g., to preserve the filament integrity

  13. Henry constants in polymer solutions with the van der Waals equation of state

    DEFF Research Database (Denmark)

    Bithas, Sotiris; Kalospiros, Nikolaos; Kontogeorgis, Georgios

    1996-01-01

    is a corresponding-states correlation for a dimensionless Henry constant defined based on the van der Waals equation of state. Satisfactory results-often close to the ones from the one-parameter correlation-are obtained for all systems investigated in this work. Compared with literature models that have been applied......The simple der Waals equation of state, as extended to polymer systems, is applied to the correlation and prediction of Henry constants in polymer solutions comprising five polymers and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with one adjustable...

  14. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR.

    Science.gov (United States)

    Felli, Isabella C; Pierattelli, Roberta

    2015-02-01

    Spin-state-selective methods to achieve homonuclear decoupling in the direct acquisition dimension of (13)C detected NMR experiments have been one of the key contributors to converting (13)C detected NMR experiments into really useful tools for studying biomolecules. We discuss here in detail the various methods that have been proposed, summarize the large array of new experiments that have been developed and present applications to different kinds of proteins in different aggregation states. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Approximate P3 solution for the semi-infinite medium: steady state and time domain.

    Science.gov (United States)

    Wang, Xichang

    2017-09-01

    The steady-state solution of the Green's function obtained by the P3 equation in a semi-infinite medium is presented, the proposed solution is a diffusion-based model. Two time-domain solutions are established: one is the solution under extrapolation boundary condition, which we call the optical parameter method, and the other corresponds to the diffusion equation, which we call the double-diffusion coefficient method. The spatial-resolved reflectance and the time-resolved reflectance are calculated. The Monte Carlo simulation is used to verify the P3 equation. The results show that the P3 steady-state equation and the two time-domain equations are in good agreement with the Monte Carlo simulation. In the steady state, when the distance between the detector and the light source is less than several free paths, the P3 equation is more accurate than the diffusion equation. In other cases, the P3 model and the diffusion model have similar results. However, when the absorption coefficient is large, P3 is more accurate. In the time domain, the optical parameter method is more accurate, and the double-diffusion coefficient method is more consistent with the diffusion equation. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Solution of the stationary state of the PWR MOX/UO-2 core transient benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Langenbuch, S.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany)

    2006-07-01

    The multi-group Discrete Ordinates transport code DORT is applied to solve the stationary state of the OECD/NEA PWR MOX/UO-2 Core Transient Benchmark. Pin cell homogenised cross sections in 16 energy groups and P{sub 1} scattering order have been obtained by fuel assembly burn-up calculations using HELIOS. In this paper, we report on the details of our calculations for this benchmark problem and show our results to be in good agreement with an MCNP Monte Carlo solution with nuclear point data and a multi-group DeCART Method of Characteristics solution. (authors)

  17. Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution

    Directory of Open Access Journals (Sweden)

    Jingbin Liu

    2015-06-01

    Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.

  18. Excited states behavior of nucleobases in solution: insights from computational studies.

    Science.gov (United States)

    Improta, Roberto; Barone, Vincenzo

    2015-01-01

    We review the most significant results obtained in the study of isolated nucleobases in solution by quantum mechanical methods, trying to highlight also the most relevant open issues. We concisely discuss some methodological issues relevant to the study of molecular electronic excited molecular states in condensed phases, focussing on the methods most commonly applied to the study of nucleobases, i.e. continuum models as the Polarizable Continuum Model and explicit solvation models. We analyse how the solvent changes the relative energy of the lowest energy excited states in the Franck-Condon region, their minima and the Conical Intersections among the different states, interpreting the experimental optical spectra, both steady state and time-resolved. Several methods are available for accurately including solvent effects in the Franck-Condon region, and for most of the nucleobases the solvent shift on the different excited states can be considered assessed. The study of the excited state decay, both radiative and non-radiative, in solution still poses instead significant theoretical challenges.

  19. Efficiency enhancement in solution processed organic and organic-inorganic perovskite solar cells

    Science.gov (United States)

    Xiao, Zhengguo

    Solution processed thin film photovoltaic devices are one of the most promising renewable energy sources. Organic solar cells have been intensively studied due to their advantages of light-weight, flexibility and low-cost materials and manufacturing. The organic-inorganic hybrid perovskite materials have recently shown great potential application in solar cells. The PCE increased dramatically from 3.8% in 2009 to a certified efficiency of 20.1% in 2014. In this dissertation, we focus on the efficiency enhancement for solution processed organic and organic-inorganic solar cells. In Chapter 2, I demonstrated that the crystallinity of the ferroelectric polymer P(VDF-TrFE) at the organic active layer/ electrode interface plays a critical role in the efficiency enhancement of organic solar cells. Then, The ferroelectric P(VDF-TrFE) nanocrystals was synthesized and successfully applied in the low band gap polymers. A high efficiency of 6.8% was achieved in the PCDTBT:PCBM system. Another small polar molecule, TPACA, was also applied to increase the efficiency of organic solar cells. In Chapter 3, I developed a universal approach of solvent fluxing to fabricate graded bulk heterojunction (BHJ) polymer:fullerene films to increase the device efficiency. The solvent fluxing process can extract part of the fullerene inside the BHJ film to the top surface to form graded BHJ. The PCE of the devices after solvent fluxing is increased by 15%--50% compared with the control devices without solvent fluxing. In Chapter 5, a two-step spin coating approach was developed to fabricate the continuous and compact organolead trihalide perovskite (OTP) films. The average PCE of methylammonium lead iodide (MAPbI3) perovskite devices reached 14.5% and 85% of the devices had efficiency above 14%. In Chapter 6, I discovered that the solvent annealing can be used to increase the grain size and crystallinity of the perovskite films. The highest device efficiency reached 15.6%, and device

  20. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes [Colorado School of Mines, Golden, CO (United States); Ndione, Paul F. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Widjonarko, N. Edwin [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics; Lloyd, Matthew T. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Meyer, Jens [Princeton Univ., NJ (United States). Electrical Engineering Dept.; Ratcliff, Erin L. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry and Center for Interface Science: Solar Electric Materials (CISSEM); Kahn, Antoine [Princeton Univ., NJ (United States). Electrical Engineering Dept.; Armstrong, Neal R. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry and Center for Interface Science: Solar Electric Materials (CISSEM); Curtis, Calvin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Ginley, David S. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Berry, Joseph J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Olson, Dana C. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics

    2011-07-18

    We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work-function of the hole collecting indium-tin oxide (ITO) contact, modified with a solution-processed nickel oxide (NiOx) hole-transport layer (HTL), is matched to the ionization potential of the donor material in a bulk-heterojunction solar cell. Addition of the NiOx HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiOx films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiOx HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiOx HTL is shown to provide superior contact properties by increasing the ITO/NiOx contact work-function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiOx interface with the poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothidiazole) (PCDTBT):[6,6]-phenyl-C61 butyric acid methyl ester PCBM and [6,6]-phenyl-C71 butyric acid methyl ester (PC₇₀BM) active layer. A high work-function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance.

  1. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes; Ndione, Paul F.; Widjonarko, N. Edwin; Lloyd, Matthew T.; Meyer, Jens; Ratcliff, Erin L.; Kahn, Antoine; Armstrong, Neal R.; Curtis, Calvin J.; Ginley, David S.; Berry, Joseph J.; Olson, Dana C.

    2011-07-18

    We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work-function of the hole collecting indium-tin oxide (ITO) contact, modified with a solution-processed nickel oxide (NiOx) hole-transport layer (HTL), is matched to the ionization potential of the donor material in a bulk-heterojunction solar cell. Addition of the NiOx HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiOx films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiOx HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiOx HTL is shown to provide superior contact properties by increasing the ITO/NiOx contact work-function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiOx interface with the poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothidiazole) (PCDTBT):[6,6]-phenyl-C61 butyric acid methyl ester PCBM and [6,6]-phenyl-C71 butyric acid methyl ester (PC70BM) active layer. A high work-function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance.

  2. The optimal solution of a non-convex state-dependent LQR problem and its applications.

    Directory of Open Access Journals (Sweden)

    Xudan Xu

    Full Text Available This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR problem, in which the control penalty weighting matrix [Formula: see text] in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting [Formula: see text]. It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting [Formula: see text], in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.

  3. Optical limiting and excited-state absorption in fullerene solutions and doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    McBranch, D.; Smilowitz, L.; Klimov, V. [and others

    1995-09-01

    We report the ground state and excited state optical absorption spectra in the visible and near infrared for several substituted fullerenes and higher fullerenes in toluene solutions. Based on these measurements, broadband predictions of the optical limiting performance of these molecules can be deduced. These predictions are then tested at 532 to 700 nm in intensity-dependent transmission measurements. We observe optical limiting in all fullerenes measured; higher fullerenes show the greatest potential for limiting in the near infrared (650-1000 nm), while substituted C{sub 60} shows optimal limiting in the visible (450-700 nm). We observe dramatically reduced limiting for solid forms of C{sub 60} (thin films and C{sub 60}-doped porous glasses), indicating that efficient optical limiting in fullerenes requires true molecular solutions.

  4. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  5. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  6. An Efficient Implementation of Non-Linear Limit State Analysis Based on Lower-Bound Solutions

    DEFF Research Database (Denmark)

    Damkilde, Lars; Schmidt, Lotte Juhl

    2005-01-01

    Limit State analysis has been used in design for decades e.g. the yield line theory for concrete slabs or slip line solutions in geotechnics. In engineering practice manual methods have been dominating but in recent years the interest in numerical methods has been increasing. In this respect...... it is mandatory to formulate the methods using the well-known finite element concept in order to interface with other types of analysis....

  7. Plasma Creatine Kinetics After Ingestion of Microencapsulated Creatine Monohydrate with Enhanced Stability in Aqueous Solutions.

    Science.gov (United States)

    Hone, Michelle; Kent, Robert M; Scotto di Palumbo, Alessandro; Bleiel, Sinead B; De Vito, Giuseppe; Egan, Brendan

    2017-07-04

    Creatine monohydrate represents one of the largest sports supplement markets. Enhancing creatine (CRE) stability in aqueous solutions, such as with microencapsulation, represents innovation potential. Ten physically active male volunteers were randomly assigned in a double-blind design to either placebo (PLA) (3-g maltodextrin; n = 5) or microencapsulated CRE (3-g creatine monohydrate; n = 5) conditions. Experimental conditions involved ingestion of the samples in a 70-mL ready-to-drink format. CRE was delivered in a novel microencapsulation matrix material consisting entirely of hydrolyzed milk protein. Three hours after ingestion, plasma creatine concentrations were unchanged during PLA, and averaged ∼45 μM. During CRE, plasma creatine concentration peaked after 30 min at 101.6 ± 14.9 μM (p creatine concentration gradually trended downwards but remained significantly elevated (∼50% above resting levels) 3 hr after ingestion. These results demonstrate that the microencapsulated form of creatine monohydrate reported herein remains bioavailable when delivered in aqueous conditions, and has potential utility in ready-to-drink formulations for creatine supplementation.

  8. Ultrasound-enhanced electrochemical mineralization of perfluorooctanoic acid in aqueous solutions: Assessed by response surface methodology

    Directory of Open Access Journals (Sweden)

    Gholamreza Bonyadinejad

    2016-01-01

    Materials and Methods: The CCD was performed using three different variables such as current density (CD (mA/cm 2 , pH, and supporting electrolyte (EL concentration (mM. The total organic carbon (TOC removal was determined as an indicator of PFOA mineralization. A Shimadzu TOC analyzer was used to measure the TOC of the samples. The Ti/PbO 2 electrode was prepared using the electrochemical deposition method. In order to enhance the electrochemical mineralization, ultrasonic (US radiation was used. The US frequency was 20 kHz. Results: The optimum conditions for PFOA mineralization in synthetic solution were EL concentration of 94 mM, pH of 2, and CD of 83.64 mA/cm 2 , which resulted in complete TOC removal. The results indicated that the most effective factor for PFOA mineralization was CD. Besides, the TOC removal efficiency significantly increased with increasing CD. Conclusions: Under optimum conditions, the mineralization of PFOA was almost completed after 90 min of sonoelectrolysis. Therefore, sonoelectrolysis was found to be a more effective technique for mineralization of an environmentally persistent compound.

  9. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  10. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem.

    Science.gov (United States)

    Wingfield, Cai; Su, Li; Liu, Xunying; Zhang, Chao; Woodland, Phil; Thwaites, Andrew; Fonteneau, Elisabeth; Marslen-Wilson, William D

    2017-09-01

    There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR) systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental 'machine states', generated as the ASR analysis progresses over time, to the incremental 'brain states', measured using combined electro- and magneto-encephalography (EMEG), generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain.

  11. Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2017-01-01

    Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.

  12. Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system.

    Science.gov (United States)

    Masica, David L; Gray, Jeffrey J

    2009-04-22

    We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherin's helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces.

  13. Understanding the solution phase chemistry and solid state thermodynamic behavior of pharmaceutical cocrystals

    Science.gov (United States)

    Maheshwari, Chinmay

    Cocrystals have drawn a lot of research interest in the last decade due to their potential to favorably alter the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients. This dissertation focuses on the thermodynamic stability and solubility of pharmaceutical cocrystals. Specifically, the objectives are to; (i) investigate the influence of coformer properties such as solubility and ionization characteristics on cocrystal solubility and stability as a function of pH, (ii) to measure the thermodynamic solubility of metastable cocrystals, and study the solubility differences measured by kinetic and equilibrium methods, (iii) investigate the role of surfactants on the solubility and synthesis of cocrystals, (iv) investigate the solid state phase transformation of reactants to cocrystals and the factors that influence the reaction kinetics and, (v) provide models that enable the prediction of cocrystal formation by calculating the free energy of formation for a solid to solid transformation of reactants to cocrystals. Cocrystal solubilities were measured directly when cocrystals were thermodynamically stable, while solubilities were calculated from eutectic concentration measurements when cocrystals were of higher solubility than its components. Cocrystal solubility was highly dependent on coformer solubilities for gabapentin-lactam and lamotrigine cocrystals. It was found that melting point is not a good indicator of cocrystal solubility as solute-solvent interactions quantified by the activity coefficient play a huge role in the observed solubility. Similar to salts, cocrystals also exhibit pHmax, however the salts and cocrystals have different dependencies on the parameters that govern the value of pHmax. It is also shown that cocrystals could provide solubility advantage over salts as lamotrigine-nicotinamide cocrystal hydrate has about 6 fold higher solubility relative to lamotrigine-saccharin salt. In the case of mixtures of solid

  14. Very large photoconduction enhancement upon self-assembly of a new triindole derivative in solution-processed films

    Energy Technology Data Exchange (ETDEWEB)

    Gallego-Gomez, Francisco; Villalvilla, Jose M.; Quintana, Jose A.; Diaz-Garcia, Maria A. [Instituto Universitario de Materiales de Alicante and Dpto. Fisica Aplicada, Universidad de Alicante, 03080 Alicante (Spain); Garcia-Frutos, Eva M.; Gutierrez-Puebla, Enrique; Monge, Angeles; Gomez-Lor, Berta [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2011-02-22

    A new carbazole-related small molecule exhibiting self-assembly into ordered nanostructures in solution-processed cast films has been synthesized and its charge-photogeneration and -transport properties have been investigated. Large photoconductivity was measured in the amorphous state while an enormous improvement in the photoconduction properties was observed when the molecules spontaneously organized. Photocurrents increased upon self-assembly by up to four orders of magnitude, mostly due to the drastic enhancement of the charge photogeneration. A greatly favorable arrangement of the aromatic cores in the resulting nanostructures, which were characterized by X-ray analysis, may explain these improvements. Photocurrents of mA cm{sup -2}, on/off ratios of 10{sup 4} and quantum efficiencies of unity at low field and light intensity, which are among the best values reported to date, along with the simplicity of fabrication, give this readily-available organic system great potential for use in plastic optoelectronic devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Song Lina, E-mail: sln_dufe@hotmail.co [Center for Econometric Analysis and Forecasting, School of Mathematics and Quantitative Economics, Dongbei University of Finance and Economics, Dalian 116025 (China); Wang Weiguo [Center for Econometric Analysis and Forecasting, School of Mathematics and Quantitative Economics, Dongbei University of Finance and Economics, Dalian 116025 (China)

    2010-07-12

    In this Letter, an enhanced Adomian decomposition method which introduces the h-curve of the homotopy analysis method into the standard Adomian decomposition method is proposed. Some examples prove that this method can derive successfully approximate rational Jacobi elliptic function solutions of the fractional differential equations.

  16. Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin [Montana State University

    2014-10-31

    Background. The use of biological and chemical processes that degrade or immobilize contaminants in subsurface environments is a cornerstone of remediation technology. The enhancement of biological and chemical processes in situ, involves the transport, displacement, distribution and mixing of one or more reactive agents. Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale and larger is dictated by the success of phenomena that occur at the micron-scale. However, current understanding of scaling effects on the mixing and delivery of nutrients in biogeochemically dynamic porous media systems is limited, despite the limitations this imposes on the efficiency and effectiveness of the remediation challenges at hand. Objectives. We therefore proposed to experimentally characterize and computationally describe the growth, evolution, and distribution of microbial activity and mineral formation as well as changes in transport processes in porous media that receive two or more reactive amendments. The model system chosen for this project was based on a method for immobilizing 90Sr, which involves stimulating microbial urea hydrolysis with ensuing mineral precipitation (CaCO3), and co-precipitation of Sr. Studies at different laboratory scales were used to visualize and quantitatively describe the spatial relationships between amendment transport and consumption that stimulate the production of biomass and mineral phases that subsequently modify the permeability and heterogeneity of porous media. Biomass growth, activity, and mass deposition in mixing zones was investigated using two-dimensional micro-model flow cells as well as flow cells that could be analyzed using synchrotron-based x-ray tomography. Larger-scale flow-cell experiments were conducted where the spatial distribution of media properties, flow, segregation of biological activity and

  17. Solid state and solution conformation of [Ala7]-phalloidin: a synthetic phallotoxin analogue.

    Science.gov (United States)

    Zanotti, G; Falcigno, L; Saviano, M; D'Auria, G; Bruno, B M; Campanile, T; Paolillo, L

    2001-04-01

    Phallotoxins are toxic compounds produced by poisonous mushroom Amanita phalloides and belong to the class of bicyclic peptides with a transannular thioether bridge. Their intoxication mechanism in the liver involves a specific binding of the toxins to F-actin that, consequently, prevents the depolymerization equilibrium with G-actin. Even though the conformational features of phallotoxins have been worked out in solution, the exact mechanism of interaction with F-actin is still unknown. In this study a toxic phalloidin synthetic derivative, bicyclo(Ala1-D-Thr2-Cys3-cis-4-hydroxy-Pro4-Ala5-2-mercapto-Trp6-Ala7)(S-3-->6) has been synthesized. A substitution at position 7. with an Ala residue replaces the 4,5-dihydroxy-Leu present in the natural phalloidin. This analogue has formed crystals suitable for X-ray analysis, and represents the first case for such a class of compounds. The solid-state structure as well as the solution conformation have been evaluated. NMR techniques have been used to extract interproton distances as restraints in subsequent molecular dynamics calculations. Finally, a direct comparison between structures in solution and in the solid state is presented.

  18. Drop coating deposition Raman spectroscopy of proteinogenic amino acids compared with their solution and crystalline state

    Science.gov (United States)

    Pazderka, Tomáš; Kopecký, Vladimír

    2017-10-01

    The Raman spectra of 20 proteinogenic amino acids were recorded in the solution, glass phase (as drop coating deposition Raman (DCDR) samples) and crystalline forms in the wide spectral range of 200-3200 cm- 1. The most apparent spectral differences between the Raman spectra of the crystalline forms, glass phases and aqueous solutions of amino acids were briefly discussed and described in the frame of published works. The possible density dependencies of spectral bands were noted. In some cases, a strong influence of the sample density, as well as of the organization of the water envelope, was observed. The most apparent changes were observed for Ser and Thr. Nevertheless, for the majority of amino acids, the DCDR sample form is an intermediate between the solution and crystalline forms. In contrast, aromatic amino acids have only a small sensitivity to the form of the sample. Our reference set of Raman spectra is useful for revealing discrepancies between the SERS and solid/solution spectra of amino acids. We also found that some previously published Raman spectra of polycrystalline samples resemble glassy state rather than crystalline spectra. Therefore, this reference set of spectra will find application in every branch of Raman spectroscopy where the spectra of biomolecules are collected from coatings.

  19. Hydrodynamics of steady state phloem transport with radial leakage of solute

    Science.gov (United States)

    Cabrita, Paulo; Thorpe, Michael; Huber, Gregor

    2013-01-01

    Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189

  20. Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis.

    Science.gov (United States)

    Soroka, Carol J; Mennone, Albert; Hagey, Lee R; Ballatori, Nazzareno; Boyer, James L

    2010-01-01

    Organic solute transporter alpha-beta (Ostalpha-Ostbeta) is a heteromeric bile acid and sterol transporter that facilitates the enterohepatic and renal-hepatic circulation of bile acids. Hepatic expression of this basolateral membrane protein is increased in cholestasis, presumably to facilitate removal of toxic bile acids from the liver. In this study, we show that the cholestatic phenotype induced by common bile duct ligation (BDL) is reduced in mice genetically deficient in Ostalpha. Although Ostalpha(-/-) mice have a smaller bile acid pool size, which could explain lower serum and hepatic levels of bile acids after BDL, gallbladder bilirubin and urinary bile acid concentrations were significantly greater in Ostalpha(-/-) BDL mice, suggesting additional alternative adaptive responses. Livers of Ostalpha(-/-) mice had higher messenger RNA levels of constitutive androstane receptor (Car) than wild-type BDL mice and increased expression of Phase I enzymes (Cyp7a1, Cyp2b10, Cyp3a11), Phase II enzymes (Sult2a1, Ugt1a1), and Phase III transporters (Mrp2, Mrp3). Following BDL, the bile acid pool size increased in Ostalpha(-/-) mice and protein levels for the hepatic basolateral membrane export transporters, multidrug resistance-associated protein 3 (Mrp3) and Mrp4, and for the apical bilirubin transporter, Mrp2, were all increased. In the kidney of Ostalpha(-/-) mice after BDL, the apical bile acid uptake transporter Asbt is further reduced, whereas the apical export transporters Mrp2 and Mrp4 are increased, resulting in a significant increase in urinary bile acid excretion. These findings indicate that loss of Ostalpha provides protection from liver injury in obstructive cholestasis through adaptive responses in both the kidney and liver that enhance clearance of bile acids into urine and through detoxification pathways most likely mediated by the nuclear receptor Car.

  1. Mouse organic solute transporter α deficiency enhances renal excretion of bile acids and attenuates cholestasis

    Science.gov (United States)

    Soroka, Carol J.; Mennone, Albert; Hagey, Lee R.; Ballatori, Nazzareno; Boyer, James L.

    2010-01-01

    Organic solute transporter alpha-beta (Ostα-Ostβ) is a heteromeric bile acid and sterol transporter that facilitates the entero- and renal-hepatic circulation of bile acids. Hepatic expression of this basolateral membrane protein is increased in cholestasis, presumably to facilitate removal of toxic bile acids from the liver. In this study we show that the cholestatic phenotype induced by common bile duct ligation (BDL) is reduced in mice genetically deficient in Ostα. Although Ostα−/− mice have a smaller bile acid pool size which could explain lower serum and hepatic levels of bile acids after BDL, gallbladder bilirubin and urinary bile acid concentrations were significantly greater in Ostα−/− BDL mice, suggesting additional alternative adaptive responses. Livers of Ostα−/− mice had higher mRNA levels of constitutive androstane receptor (Car) than wild-type BDL mice and increased expression of Phase I enzymes (Cyp7a1, Cyp2b10, Cyp3a11), Phase II enzymes (Sult2a1, Ugt1a1) and Phase III transporters (Mrp2, Mrp3). Following BDL, the bile acid pool size increased in Ostα−/− mice and protein levels for the hepatic basolateral membrane export transporters, Mrp3 and Mrp4, and for the apical bilirubin transporter, Mrp2, were all increased. In the kidney of Ostα−/− mice after BDL the apical bile acid uptake transporter, Asbt, is further reduced, while apical export transporters, Mrp2 and Mrp4, are increased, resulting in a significant increase in urinary bile acid excretion. Conclusions: These findings indicate that loss of Ostα provides protection from liver injury in obstructive cholestasis through adaptive responses in both the kidney and liver that enhance clearance of bile acids into urine and through detoxification pathways most likely mediated by the nuclear receptor, Car. PMID:19902485

  2. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID® (AF), BFLUID® (BF), PARESAFE® (PS) and PAREPLUS® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli, Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans, they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  3. THERMODYNAMIC PROPERTIES OF NONAQUEOUS SINGLE SALT SOLUTIONS USING THE Q-ELECTROLATTICE EQUATION OF STATE

    Directory of Open Access Journals (Sweden)

    A. Zuber

    2015-09-01

    Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.

  4. Enhanced Hourly Wind Station Data for the Contiguous United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. Enhanced Hourly Wind Station Data is digital data set DSI-6421, archived at the National Centers for Environmental Information (NCEI; formerly National Climatic...

  5. Solution and solid-state models of peptide CH...O hydrogen bonds.

    Science.gov (United States)

    Baures, Paul W; Beatty, Alicia M; Dhanasekaran, Muthu; Helfrich, Brian A; Pérez-Segarra, Waleska; Desper, John

    2002-09-25

    Fumaramide derivatives were analyzed in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography in order to characterize the formation of CH...O interactions under each condition and to thereby serve as models for these interactions in peptide and protein structure. Solutions of fumaramides at 10 mM in CDCl(3) were titrated with DMSO-d(6), resulting in chemical shifts that moved downfield for the CH groups thought to participate in CH...O=S(CD(3))(2) hydrogen bonds concurrent with NH...O=S(CD(3))(2) hydrogen bonding. In this model, nonparticipating CH groups under the same conditions showed no significant change in chemical shifts between 0.0 and 1.0 M DMSO-d(6) and then moved upfield at higher DMSO-d(6) concentrations. At concentrations above 1.0 M DMSO-d(6), the directed CH...O=S(CD(3))(2) hydrogen bonds provide protection from random DMSO-d(6) contact and prevent the chemical shifts for participating CH groups from moving upfield beyond the original value observed in CDCl(3). X-ray crystal structures identified CH...O=C hydrogen bonds alongside intermolecular NH...O=C hydrogen bonding, a result that supports the solution (1)H NMR spectroscopy results. The solution and solid-state data therefore both provide evidence for the presence of CH...O hydrogen bonds formed concurrent with NH...O hydrogen bonding in these structures. The CH...O=C hydrogen bonds in the X-ray crystal structures are similar to those described for antiparallel beta-sheet structure observed in protein X-ray crystal structures.

  6. Training Course of Experimental Chemistry in the Nuclear Fuel Cycle: Solid State and Solution Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju hyeong; Park, Kwangheon; Kim, Tae hoon; Park, Hyoung gyu; Kim, Jisu [Kyunghee University, Yongin (Korea, Republic of); Song, Hyuk jin [Dongguk University, Gyeongju (Korea, Republic of); Lee, Chan ki; Kang, Do kyu; Jeong, Hyeon jun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    In this experimental study program in Tohoku University, basic experiments were done by the participants. First one is the hydrogen reduction experiment of the mixture of UO{sub 2} and ZrO{sub 2}. Second one is to observe microscopic structure of solid solution of UO{sub 2} and ZrO{sub 2} using SEM/EDX and XRD system, simulated fuel debris. Third one is milking process of {sup 239}Np from {sup 243}Am by solvent extraction using Tri-n-Octylamine (TOA). Last one is solvent extraction in PUREX by the simulated mixed aqueous solution of U, {sup 85}Sr and {sup 239}Np which is represented minor actinide elements included in the spent nuclear fuel. Uranium is separated from aqueous phase to organic phase during solvent extraction procedure using TBP and dodecane. Also, neptunium can be extracted to organic phase as nitric acid concentration change. The extraction behavior of neptunium is different by oxidation state in aqueous phase. The behavior of neptunium is represented as a combined form of these oxidation states in experiment. Therefore, because the oxidation states of neptunium can be controlled by controlling the concentration of nitric acid, the extractability of neptunium can be controlled.

  7. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR Methodology

    Directory of Open Access Journals (Sweden)

    Run-Cang Sun

    2013-01-01

    Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.

  8. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation

    Science.gov (United States)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-01

    Monoclinic-phase bismuth vanadate (BiVO4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO3 to BiVO4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO4/Ag+. Superior photocatalytic performance was obtained when BiVO4 was mixed with 0.01%(w/v) AgNO3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO4 or AgNO3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron-hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag+ and the formation of a BiVO4/Ag heterojunction. The synergic effect between BiVO4 and Ag+ was discovered to be unique. BiVO4/Ag+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO4 and a R6G solution to detect Ag+ ions in water was discovered.

  9. Enhanced external counterpulsation as an effective nonsurgical solution for ischemic heart disease patients

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    2017-01-01

    Full Text Available Stable angina is managed primarily through lifestyle advice, medication therapy, and coronary revascularization procedures. Some patients with refractory angina exhibit symptoms that are not optimally controlled with the optimal medication and revascularization options available. Enhanced external counterpulsation (EECP is a technique that can be used to improve symptoms in chronic stable angina. However, the role of EECP has also been investigated following positive outcomes in patients with both angina and heart failure in multicenter studies. We performed a systematic review of the evidence of the clinical effectiveness of EECP. EECP has been approved by the United States Food and Drug Administration (FDA for the management of refractory angina (Class IIb. About 200 hospitals across India have adopted this technique. EECP uses three sets of pneumatic cuffs that sequentially contract during diastole, increasing aortic diastolic pressure, augmenting coronary blood flow, and central venous return. EECP improves anginal symptoms and exercise tolerance, and reduces nitroglycerin use in patients with chronic, stable angina. EECP has also been shown to be safe and beneficial in patients with symptomatic stable congestive heart failure. It has been postulated that cardiac benefits of EECP are mediated through vascular endothelial growth factor, and nitric oxide-mediated vasodilatation and angiogenesis. In June 2002, the FDA also approved EECP therapy for heart failure patients. EECP is cost-effective if the observed quality of life benefits are assumed to continue throughout a patient's lifetime. However, there remain uncertainties around the long-term effects of the intervention.

  10. Integrating R and Java for Enhancing Interactivity of Algorithmic Data Analysis Software Solutions

    National Research Council Canada - National Science Library

    Titus Felix FURTUNĂ; Claudiu VINȚE

    2016-01-01

    Conceiving software solutions for statistical processing and algorithmic data analysis involves handling diverse data, fetched from various sources and in different formats, and presenting the results...

  11. Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting

    Science.gov (United States)

    Nizamoglu, Sedat; Demir, Hilmi Volkan

    2009-10-01

    In this paper, we present Förster resonance energy transfer (FRET)-enhanced color-conversion using colloidal semiconductor quantum dot nanocrystals (NCs) to make reddish-orange light-emitting diodes for use in ultraefficient solid state lighting. To achieve FRET enhancement at 614 nm, we use an energy gradient hybrid structure made of cyan- and orange-emitting CdSe/ZnS NCs (λPL=492 and 588 nm in solution, respectively). This enables recycling of trapped excitons using FRET and achieves a relative quantum efficiency enhancement of 15.1% in reddish-orange full color-conversion for the integrated hybrid cyan-orange NC layer with respect to the case of full color-conversion using only orange NCs without FRET.

  12. Anatomy of topological surface states: Exact solutions from destructive interference on frustrated lattices

    Science.gov (United States)

    Kunst, Flore K.; Trescher, Maximilian; Bergholtz, Emil J.

    2017-08-01

    The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties including correlation functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice, and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7 , which realize an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations, which are both relevant for Pr2Ir2O7 . Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi arcs although only the one

  13. Synthesis of silver particles on copper substrates using ethanol-based solution for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-03-01

    Full Text Available The displacement reaction of AgNO3 and copper metal is an effective and economical way to fabricate Ag-Cu surface enhanced Raman scattering (SERS substrates. Aqueous solutions of AgNO3 are usually used for substrate preparation. In this work, a new method for Ag-Cu SERS substrate preparation is proposed, which uses an ethanol solution rather than an aqueous AgNO3 solution. Analysis of the surface morphologies of sample substrates by field emission scanning electron microscopy (FESEM showed that the silver nanoparticles prepared by this new method were more regular than those prepared in the traditional aqueous solution. The SERS spectra of Rhodamine 6G (R6G adsorbed on these Ag-Cu substrates were then investigated and compared. It was found that the Ag-Cu substrates prepared by this method provide significant improvements in Raman signal sensitivity and large-area uniformity. The enhancement factor of this new substrate is about 330 times higher than that prepared using an aqueous AgNO3 solution under identical experimental conditions. It was also found that 70% of the original sensitivity of the substrate remains after 15 days of exposure to air.

  14. Quantum-continuum calculation of the surface states and electrical response of silicon in solution

    Science.gov (United States)

    Campbell, Quinn; Dabo, Ismaila

    2017-05-01

    A wide range of electrochemical reactions of practical importance occur at the interface between a semiconductor and an electrolyte. We present an embedded density-functional theory method using the recently released self-consistent continuum solvation (SCCS) approach to study these interfaces. In this model, a quantum description of the surface is incorporated into a continuum representation of the bending of the bands within the electrode. The model is applied to understand the electrical response of silicon electrodes in solution, providing microscopic insights into the low-voltage region, where surface states determine the electrification of the semiconductor electrode.

  15. Positive ground state solutions to Schrodinger-Poisson systems with a negative non-local term

    Directory of Open Access Journals (Sweden)

    Yan-Ping Gao

    2015-04-01

    Full Text Available In this article, we study the Schrodinger-Poisson system $$\\displaylines{ -\\Delta u+u-\\lambda K(x\\phi(xu=a(x|u|^{p-1}u, \\quad x\\in\\mathbb{R}^3, \\cr -\\Delta\\phi=K(xu^{2},\\quad x\\in\\mathbb{R}^3, }$$ with $p\\in(1,5$. Assume that $a:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ and $K:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ are nonnegative functions and satisfy suitable assumptions, but not requiring any symmetry property on them, we prove the existence of a positive ground state solution resolved by the variational methods.

  16. Synthesis of dental enamel-like hydroxyapatite through solution mediated solid-state conversion.

    Science.gov (United States)

    Zhang, Junling; Jiang, Dongliang; Zhang, Jingxian; Lin, Qingling; Huang, Zhengren

    2010-03-02

    An ordered dental enamel-like structure of hydroxyapatite (HAp) was achieved through a solution mediated solid-state conversion process with organic phosphate surfactant and gelatin as the mediating agent. Transmission electron microscopy (TEM) tests demonstrated uniform sizes in the obtained apatite nanorods which arranged in parallel to each other along the c-axis and formed organized microarchitectural units over 10 microm in size. The sizes of the synthetic hydroxyapatite nanorods were similar to that observed in enamel from human teeth. The formation and regulation of the orientation and size of HAp nanorods might lead to a better understanding of the biomineralization process for the preparation of high performance biomaterials.

  17. Parallel shooting methods for finding steady state solutions to engine simulation models

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2007-01-01

    Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...... as test case. A parallel speedup factor of 23 on 33 processors was achieved with multiple shooting. But fast transients at the beginnings of sub intervals caused significant overhead for the multiple shooting methods and limited the best speedup to 3.8 relative to the fastest sequential method: Single...... shooting with reduced dimension of the boundary value problem....

  18. Improved Arbitrary l-STATE Solutions of the HULTHÉN Potential

    Science.gov (United States)

    Qiang, Wen-Chao; Chen, Wen Li; Li, Kai; Zhang, Hua-Ping

    We developed a new and simple approximation scheme for centrifugal term. Using the new approximate formula for 1/r2 we derived approximately analytical solutions to the radial Schrödinger equation of the Hulthén potential with arbitrary l-states. Normalized analytical wave-functions are also obtained. Some energy eigenvalues are numerically calculated and compared with those obtained by C. S. Jia et al. and other methods such as the asymptotic iteration, the supersymmetry, the numerical integration methods and a Mathematica program, schroedinger, by W. Lucha and F. F. Schöberl.

  19. Detection of CO2 in solution with a Pt-NiO solid-state sensor.

    Science.gov (United States)

    Yue, Zhao; Niu, Wencheng; Zhang, Wei; Liu, Guohua; Parak, Wolfgang J

    2010-08-01

    A metal insulator semiconductor field effect transistor (MISFET)-type sensor for the detection of CO(2) dissolved in aqueous solution is presented. This all-solid-state device is based on a Pt-NiO thin film as active sensing material on the top of a gate electrode. The fabrication of the sensor is described and its performance is characterized. In particular the transient characteristics and response curves at different biases V(RS) versus the amount of dissolved CO(2) are presented. The sensor shows a linear response to the logarithm of the concentration of dissolved CO(2) at room temperature. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Ground state solutions for Choquard type equations with a singular potential

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-02-01

    Full Text Available This article concerns the Choquard type equation $$ -\\Delta u+V(xu=\\Big(\\int_{\\mathbb{R}^N}\\frac{|u(y|^p}{|x-y|^{N-\\alpha}}dy\\Big |u|^{p-2}u,\\quad x\\in \\mathbb{R}^N, $$ where $N\\geq3$, $\\alpha\\in ((N-4_+,N$, $2\\leq p <(N+\\alpha/(N-2$ and V(x is a possibly singular potential and may be unbounded below. Applying a variant of the Lions' concentration-compactness principle, we prove the existence of ground state solution of the above equations.

  1. Enhancing Science Teaching through Performing Marbling Art Using Basic Solutions and Base Indicators

    Science.gov (United States)

    Çil, Emine; Çelik, Kevser; Maçin, Tuba; Demirbas, Gülay; Gökçimen, Özlem

    2014-01-01

    Basic solutions are an indispensable part of our daily life. Basic solutions are commonly used in industries such as the textile industry, oil refineries, the fertilizer industry, and pharmaceutical products. Most cleaning agents, such as soap, detergent, and bleach, and some of our foods, such as chocolate and eggs, include bases. Bases are the…

  2. Sensitivity and resolution enhancement in solid-state NMR spectroscopy of bicelles

    Science.gov (United States)

    Dvinskikh, Sergey V.; Yamamoto, Kazutoshi; Dürr, Ulrich H. N.; Ramamoorthy, Ayyalusamy

    2007-02-01

    Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance 13C and 14N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of 13C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using 14N experiments on bicelles is also discussed.

  3. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR.

    Science.gov (United States)

    Pinon, Arthur C; Rossini, Aaron J; Widdifield, Cory M; Gajan, David; Emsley, Lyndon

    2015-11-02

    We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as (1)H-(13)C and (1)H-(15)N HETCOR or (13)C-(13)C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs.

  4. First observation of ultrafast intramolecular proton transfer rate between electronic ground states in solution.

    Science.gov (United States)

    Masuda, Yuichi; Nakano, Tomoko; Sugiyama, Midori

    2012-05-10

    Despite the importance of ultrafast (time scale exceeding 10(-11) s) intramolecular proton transfer (PT) events between electronic ground states in solution, experimental determination of the rates of such reactions has not yet been accomplished because of the limitations of the utilized methods. The objective of this study was to evaluate the PT rates of intramolecular O···H···O hydrogen-bonded systems in solution through the (1)H spin-lattice relaxation times of the hydroxyl protons, induced by the (1)H-(17)O dipolar interactions (T(1dd)(OH)), taking into account the contribution of the OH reorientational motion to T(1dd)(OH). Solutions of the benzoic acid dimer (BA dimer), 1-benzoyl-6-hydroxy-6-phenylfulvene (Fulvene), and dibenzoylmethane (DBM) were chosen as test systems. For Fulvene in CCl(4), the PT time, τ(PT), was deduced to be 7 × 10(-11) s. In the case of the BA dimer in CCl(4), the τ(PT) value was considerably greater than the OH reorientational correlation time, τ(R(OH)) = 4.3 × 10(-11) s. In contrast, the experimental results for DBM in CCl(4) indicated that the proton is located about midway between the two oxygen atoms, that is, the PT potential energy surface is a single well or a double well with a PT barrier near or below the zero-point energy.

  5. All-Solution-Based Aggregation Control in Solid-State Photon Upconverting Organic Model Composites.

    Science.gov (United States)

    Goudarzi, Hossein; Keivanidis, Panagiotis E

    2017-01-11

    Hitherto, great strides have been made in the development of organic systems that exhibit triplet-triplet annihilation-induced photon-energy upconversion (TTA-UC). Yet, the exact role of intermolecular states in solid-state TTA-UC composites remains elusive. Here we perform a comprehensive spectroscopic study in a series of solution-processable solid-state TTA-UC organic composites with increasing segregated phase content for elucidating the impact of aggregate formation in their TTA-UC properties. Six different states of aggregation are reached in composites of the 9,10-diphenylanthracene (DPA) blue emitter mixed with the (2,3,7,8,12,13,17,18-octaethylporphyrinato)platinum(II) sensitizer (PtOEP) in a fixed nominal ratio (2 wt % PtOEP). Fine-tuning of the PtOEP and DPA phase segregation in these composites is achieved with a low-temperature solution-processing protocol when three different solvents of increasing boiling point are alternatively used and when the binary DPA:PtOEP system is dispersed in the optically inert polystyrene (PS) matrix (PS:DPA:PtOEP). Time-gated (in the nanosecond and microsecond time scales) photoluminescence measurements identify the upper level of PtOEP segregation at which the PtOEP aggregate-based networks favor PtOEP triplet exciton migration toward the PtOEP:DPA interfaces and triplet energy transfer to the DPA triplet manifold. The maximum DPA TTA-UC luminescence intensity is ensured when the bimolecular annihilation constant of PtOEP remains close to γTTA-PtOEP = 1.1 × 10(-13) cm(3) s(-1). Beyond this PtOEP segregation level, the DPA TTA-UC luminescence intensity decreases because of losses caused by the generation of PtOEP delayed fluorescence and DPA phosphorescence in the nanosecond and microsecond time scales, respectively.

  6. Solution-processed photonic crystals to enhance the light outcoupling efficiency of organic light-emitting diodes.

    Science.gov (United States)

    Cho, Hwan-Hee; Park, Boik; Kim, Hyong-Jun; Jeon, Sohee; Jeong, Jun-Ho; Kim, Jang-Joo

    2010-07-20

    We report an effective solution process to fabricate planarized photonic crystal substrates to enhance the outcoupling efficiency of organic light-emitting diodes (OLEDs). The photonic crystal structure was fabricated using nanoimprint lithography using a UV-curable acrylate and was planarized by using a ZnO layer formed by the solgel process. The solgel process resulted in a smooth surface, and OLEDs have been successfully integrated on the planarized photonic crystal layer with a low leakage current. The resulting light outcoupling efficiency was enhanced by 38% compared with that of conventional OLEDs, which is well matched with a theoretical prediction.

  7. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  8. Chapter 6. Scaling Up Solutions to State, National and Global Levels

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2016-12-01

    Full Text Available Scaling-up solutions require learning and adapting lessons between locations and at different scales. To accomplish this, common metrics are vital to building a shared language. For California, this has meant careful financial, cradle-to-grave life-cycle assessment methods leading to carbon accounting in many avenues of government (via the Low Carbon Fuel Standard or the Cap and Trade program. These methods themselves interact, such as the use of carbon accounting for the resources needed to manage water and other key resources; the use of criteria air pollution monitoring to identify environmental injustices; and the use of carbon market revenues to address these inequalities, through investment in best available abatement technologies (BACT and in job creation in disadvantaged communities anticipated in the emerging clean energy sector.  Creating interdisciplinary partnerships across the UC Campuses and the National Laboratories to innovate science and technology is critical to scalable carbon neutrality solutions. As an example, we can build coordinated research and development programs across UC and California, with strong partnerships with the Federal government to coordinate and “multiply” resources that accelerate development and deployment. These partnerships should be strongly goal-focused, i.e., they are created to solve specific, large problems, to enable quantitatively measurable outcomes within energy generation, efficiency and CO2 abatement categories. Intersectoral partnerships should be fostered across campuses, laboratories, with state, federal and multi-lateral organizations funding to develop technologies and deploy solutions at scale. Integrated partnerships with industry are required to influence markets, deploy solutions, and create new industries and jobs.  Beyond California, we need to establish consortia with industry and foundations to deploy solutions at the regional, state, national, and international scale to

  9. Structures in solid state and solution of dimethoxy curcuminoids: regioselective bromination and chlorination

    Science.gov (United States)

    2013-01-01

    Background Several papers described the structure of curcumin and some other derivatives in solid and in solution. In the crystal structure of curcumin, the enol H atom is located symmetrically between both oxygen atoms of the enolone fragment with an O···O distance of 2.455 Å, which is characteristic for symmetrical H-bonds. In the solution, the geometry of the enolone fragment is attributed to the inherent disorder of the local environment, which solvates one of the basic sites better than the other, stabilizing one tautomer over the other. In this paper, how the position of methoxy groups in dimethoxy curcuminoids influence the conformation of molecules and how the halogen atoms change it when they are bonded at α-position in keto-enol part of molecules is described. Results Six isomers of dimethoxy curcuminoids were prepared. Conformations in solid state, which were determined by X-ray single crystallography and 1H MAS and 13C CPMAS NMR measurements, depend on the position of methoxy groups in curcuminoid molecules. In solution, a fast equilibrium between both keto-enol forms exists. A theoretical calculation finding shows that the position of methoxy groups changes the energy of HOMO and LUMO. An efficient protocol for the highly regioselective bromination and chlorination leading to α-halogenated product has been developed. All α-halogenated compounds are present mainly in cis keto-enol form. Conclusions The structures in solid state of dimethoxy curcuminoids depend on the position of methoxy groups. The NMR data of crystalline solid samples of 3,4-diOCH3 derivative, XRD measurements and X-ray structures lead us to the conclusion that polymorphism exists in solids. The same conclusion can be done for 3,5-diOCH3 derivative. In solution, dimethoxy curcuminoids are present in the forms that can be described as the coexistence of two equivalent tautomers being in fast equilibrium. The position of methoxy groups has a small influence on the enolic hydrogen

  10. The effect of solute additions on the steady-state creep behavior of dispersion-strengthened aluminum.

    Science.gov (United States)

    Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.

    1971-01-01

    The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.

  11. Enhancing The Performance Of Cooperative Societies In Abia State ...

    African Journals Online (AJOL)

    Against the background of recent economic reforms in the rural development sector and the enhanced linkages between the extension agency and cooperative societies this paper compares the performance of three categories of cooperatives, namely, farming, trading and agro-industrial. A multi stage stratified sampling ...

  12. Fractional Parker equation for the transport of cosmic rays: steady-state solutions

    Science.gov (United States)

    Zimbardo, G.; Perri, S.; Effenberger, F.; Fichtner, H.

    2017-10-01

    Context. The acceleration and transport of energetic particles in astrophysical plasmas can be described by the so-called Parker equation, which is a kinetic equation comprising diffusion terms both in coordinate space and in momentum space. In the past years, it has been found that energetic particle transport in space can be anomalous, for instance, superdiffusive rather than normal diffusive. This requires a revision of the basic transport equation for such circumstances. Aims: Here, we extend the Parker equation to the case of anomalous diffusion by means of fractional derivatives that generalize the usual second-order spatial diffusion operator. Methods: We introduce the left and right Caputo fractional derivatives in space. These derivatives are one of the tools used to describe anomalous transport. We consider the case of steady-state solutions upstream and downstream of a planar shock. Results: We obtain an estimate of the particle acceleration time at shocks in the case of superdiffusion. An analytical solution of the steady-state fractional Parker equation is given by the Mittag-Leffler functions, which correspond to a power-law profile for the energetic particle intensity far upstream of the shock, in agreement with the results obtained from a probabilistic approach to superdiffusion. These functions also correspond to a stretched exponential close upstream of the shock. Conclusions: These results can help to model more precisely the measured fluxes of energetic particles that are accelerated at both interplanetary shocks and supernova remnant shocks.

  13. Vibrational and electronic spectroscopy of the retro-carotenoid rhodoxanthin in avian plumage, solid-state films, and solution.

    Science.gov (United States)

    Berg, Christopher J; LaFountain, Amy M; Prum, Richard O; Frank, Harry A; Tauber, Michael J

    2013-11-15

    Rhodoxanthin is one of few retro-carotenoids in nature. These chromophores are defined by a pattern of single and double bond alternation that is reversed relative to most carotenoids. Rhodoxanthin is found in the plumage of several families of birds, including fruit doves (Ptilinopus, Columbidae) and the red cotingas (Phoenicircus, Cotingidae). The coloration associated with the rhodoxanthin-containing plumage of these fruit dove and cotinga species ranges from brilliant red to magenta or purple. In the present study, rhodoxanthin is characterized in situ by UV-Vis reflectance and resonance Raman spectroscopy to gain insights into the mechanisms of color-tuning. The spectra are compared with those of the isolated pigment in solution and in thin solid films. Key vibrational signatures are identified for three isomers of rhodoxanthin, primarily in the fingerprint region. Electronic structure (DFT) calculations are employed to describe the normal modes of vibration, and determine characteristic modes of retro-carotenoids. These results are discussed in the context of various mechanisms that change the electronic absorption, including structural distortion of the chromophore or enhanced delocalization of π-electrons in the ground-state. From the spectroscopic evidence, we suggest that the shift in absorption is likely a consequence of perturbations that primarily affect the excited state of the chromophore. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Shared Reproductive State Enhances Female Associations in Dolphins

    Directory of Open Access Journals (Sweden)

    Luciana M. Möller

    2008-01-01

    Full Text Available Female bottlenose dolphins (genus Tursiops usually associate at moderate level with other females within social clusters called bands or cliques. It has been suggested that reproductive state may play the predominant role in determining associations within female T. truncatus bands. Here, we test the hypothesis that reproductive state correlates with associations of female Indo-Pacific bottlenose dolphins (T. aduncus. We found that females in similar reproductive state, which included females from late pregnancy to the first year of their calves' life or females from early pregnancy to their calves' newborn period, had higher-association coefficients with each other than they did with females in different reproductive states (females with older calves or without calves. This was observed both within and across social clusters suggesting that reproductive state, at least for pregnant females and those with young calves, plays an important role in determining who to associate with. However, a female's most frequent associate was not always with another in similar reproductive state. We suggest that several factors, including reproductive state, may be of importance in determining associations of female bottlenose dolphins.

  15. Sliding enhances fluid and solute transport into buried articular cartilage contacts.

    Science.gov (United States)

    Graham, B T; Moore, A C; Burris, D L; Price, C

    2017-12-01

    Solutes and interstitial water are naturally transported from cartilage by load-induced interstitial fluid pressures. Fluid and solute recovery during joint articulation have been primarily attributed to passive diffusion and mechanical 'pumping' from dynamic loading. This paper tests if the sliding action of articulation is a significant and independent driver of fluid and solute transport in cartilage. The large osteochondral samples utilized in the present study preserve the convergent wedges necessary for physiological hydrodynamics. Following static load-induced fluid exudation and prior to sliding, a fluorescent solute (AlexaFluor 633) was added to the lubricant bath. In situ confocal microscopy was used to quantify the transport of solute from the bath into the buried stationary contact area (SCA) during sliding. Following static exudation, significant reductions in friction and strain during sliding at 60 mm/s were accompanied by significant solute transport into the inaccessible center of the buried contact; no such transport was detected for the 0- or 1 mm/s sliding conditions. The results suggest that external hydrodynamic pressures from sliding induced advective flows that carried solutes from the bath toward the center of contact. These results provide the first direct evidence that the action of sliding is a significant contributor to fluid and solute recovery by cartilage. Furthermore, they indicate that the sliding-induced transport of solutes into the buried interface was orders of magnitude greater than that attributable to diffusion alone, a result with critical implications for disease prevention and tissue engineering. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. MECHANISMS TO ENHANCE THE COMPETITIVENESS OF STATE-OWNED CORPORATIONS

    Directory of Open Access Journals (Sweden)

    Pavel V. Trifonov

    2014-01-01

    Full Text Available The article is devoted to the developmentof mechanisms to increase the competitiveness of the integrated corporate structureswith state participation. Special attentionis paid to the key factors in the evaluationof competitiveness. The article presents a comparative analysis of the competitivenessindex of major international corporations andthe Russian state corporations engaged instrategic sectors. The preconditions for the formation mechanisms of competitivenessfor corporations are provided. Getting acompetitive advantage in the internationalarena is possible through effective interaction between the state and integrated corporate structures in access to scientifi c and technical progress and the development ofinnovative potential.

  17. STATE-SPACE SOLUTIONS TO THE DYNAMIC MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM USING HIGH PERFORMANCE COMPUTING.

    Science.gov (United States)

    Long, Christopher J; Purdon, Patrick L; Temereanca, Simona; Desai, Neil U; Hämäläinen, Matti S; Brown, Emery N

    2011-06-01

    Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L(2) regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intra-cortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell's equations while the latent model representing neural dynamics is given by a random walk process. We show that the Kalman filter (KF) and the Kalman smoother [also known as the fixed-interval smoother (FIS)] may be used to solve the ensuing high-dimensional state-estimation problem. Using a well-known relationship between Bayesian estimation and Kalman filtering, we show that the MNE estimates carry a significant zero bias. Calculating these high-dimensional state estimates is a computationally challenging task that requires High Performance Computing (HPC) resources. To this end, we employ the NSF Teragrid Supercomputing Network to compute the source estimates. We demonstrate improvement in performance of the state-space algorithm relative to MNE in analyses of simulated and actual somatosensory MEG experiments. Our findings establish the

  18. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  19. Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery

    Science.gov (United States)

    Koch, Kevin; Dew, Beautia; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.; Garoff, Stephen

    2011-01-01

    Surface tension gradient driven, or “Marangoni,” flow can be used to move exogenous fluid, either surfactant dispersions or drug carrying formulations, through the lung. In this paper, we investigate the spreading of aqueous solutions of water-soluble surfactants over entangled, aqueous mucin solutions that mimic the airway surface liquid of the lung. We measure the movement of the formulation by incorporating dyes into the formulation while we measure surface flows of the mucin solution subphase using tracer particles. Surface tension forces and/or Marangoni stresses initiate a convective spreading flow over this rheologically complex subphase. As expected, when the concentration of surfactant is reduced until its surface tension is above that of the mucin solution, the convective spreading does not occur. The convective spreading front moves ahead of the drop containing the formulation. Convective spreading ends with the solution confined to a well-defined static area which must be governed by a surface tension balance. Further motion of the spread solution progresses by much slower diffusive processes. Spreading behaviors are qualitatively similar for formulations based on anionic, cationic, or nonionic surfactants, containing either hydrophilic or hydrophobic dyes, on mucin as well as on other entangled aqueous polymer solution subphases. This independence of qualitative spreading behaviors from the chemistry of the surfactant and subphase indicates that there is little chemical interaction between the formulation and the subphase during the spreading process. The spreading and final solution distributions are controlled by capillary and hydrodynamic phenomena and not by specific chemical interactions among the components of the system. It is suggested that capillary forces and Marangoni flows driven by soluble surfactants may thereby enhance the uniformity of drug delivery to diseased lungs. PMID:21250745

  20. Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond in Vapor of Methanol-Based Liquid Solutions

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2000-01-01

    .... An electrical discharge is generated by microwave power in a metal cavity in order to dissociate the vapor mixture from one of the liquid solutions, from which radicals such as OH, O, and H that etch...

  1. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions

    OpenAIRE

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water solub...

  2. Federal/State Regulatory Enhancement, Cost Allocation, and CATV/TELCO Distance Learning Initiatives in Connecticut.

    Science.gov (United States)

    Pietras, Jesse John

    Connecticut has adopted a moderate approach to communications infrastructure modernization, covering a 4-year implementation period from 1993 to 1996. The state's remote educational framework, with regulatory enhancements, will allow the state to be technologically competitive with neighboring states as it allows subscribers to use evolving…

  3. Enhanced Internet firewall design using stateful filters final report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, J.A. [Sandia National Labs., Livermore, CA (United States). Infrastructure and Networking Research Dept.; Simons, R.W. [Sandia National Labs., Albuquerque, NM (United States). Decision Support Systems Architectures

    1997-08-01

    The current state-of-the-art in firewall design provides a lot of security for company networks, but normally at the expense of performance and/or functionality. Sandia researched a new approach to firewall design which incorporates a highly stateful approach, allowing much more flexibility for protocol checking and manipulation while retaining performance. A prototype system was built and multiple protocol policy modules implemented to test the concept. The resulting system, though implemented on a low-power workstation, performed almost at the same performance as Sandia`s current firewall.

  4. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

    Directory of Open Access Journals (Sweden)

    Rachel Herndon Klein

    2017-04-01

    Full Text Available Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.

  5. Enhancement of sub-daily positioning solutions for surface deformation monitoring at Deception volcano (South Shetland Islands, Antarctica)

    Science.gov (United States)

    Prates, G.; Berrocoso, M.; Fernández-Ros, A.; García, A.

    2013-02-01

    Deception Island is one of the most visited places in Antarctica. There are biological, geological, and archeological features that are major attractions within Port Foster, its horse shoe-shaped natural inner bay, and two scientific bases that are occupied during austral summers. Deception Island is an active volcano, however, and needs to be monitored in order to reduce risk to people on the island. Surface deformation in response to fluid pressure is one of the main volcanic activities to observe. Automated data acquisition and processing using the global navigation satellite systems allow measurements of surface deformation in near real time. Nevertheless, the positioning repeatability in sub-daily solutions is affected by geophysical influences such as ocean tidal loading, among others. Such periodic influences must be accurately modeled to achieve similar repeatability as daily solutions that average them. However, a single solution each 24 h will average out the deformation suffered during that period, and the position update waiting time can be a limitation for near real-time purposes. Throughout the last five austral summer campaigns in Deception, using simultaneous wireless communications between benchmarks, a processing strategy was developed to achieve millimeter-level half-hourly positioning solutions that have similar repeatability as those given by 24-h solutions. For these half-hourly solutions, a tidal analysis was performed to assess any mismodeling of ocean tide loading, and a discrete Kalman filter was designed and implemented to enhance the sub-daily positioning repeatability. With these solutions, the volcano-dynamic activity resulting in localized surface deformation for the last five austral summer campaigns is addressed. Although based on only three carefully located benchmarks, it is shown that Deception has been shortening and subsiding during these last 4 years. The method's accuracy in baselines up to a few hundred kilometers assures

  6. Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers

    CSIR Research Space (South Africa)

    Bhaumik, M

    2015-01-01

    Full Text Available -ray Photoelectron Spectroscopy (XPS) and Vibrating Sample Magnetometry (VSM). These CNFs exhibited enhanced performance relevant to the adsorptive degradation/decolourization of CR, compared to PANI NFs and Fe0 nanoparticle counterparts. Batch experiments with a...

  7. State of the Art in LP-WAN Solutions for Industrial IoT Services

    Directory of Open Access Journals (Sweden)

    Ramon Sanchez-Iborra

    2016-05-01

    Full Text Available The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN, is explored. By means of a cellular-type architecture, LP-WAN–based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things networks and services.

  8. A solid-state NMR method for solution of zeolite crystal structures.

    Science.gov (United States)

    Brouwer, Darren H; Darton, Richard J; Morris, Russell E; Levitt, Malcolm H

    2005-07-27

    Since zeolites are notoriously difficult to prepare as large single crystals, structure determination usually relies on powder X-ray diffraction (XRD). However, structure solution (i.e., deriving an initial structural model) directly from powder XRD data is often very difficult due to the diffraction phase problem and the high degree of overlap between the individual reflections, particularly for materials with the structural complexity of most zeolites. Here, we report a method for structure determination of zeolite crystal structures that combines powder XRD and nuclear magnetic resonance (NMR) spectroscopy in which the crucial step of structure solution is achieved using solid-state (29)Si double-quantum dipolar recoupling NMR, which probes the distance-dependent dipolar interactions between naturally abundant (29)Si nuclei in the zeolite framework. For two purely siliceous zeolite blind test samples, we demonstrate that the NMR data can be combined with the unit cell parameters and space group to solve structural models that refine successfully against the powder XRD data.

  9. Vacuum-drying of maltodextrin aqueous solutions with ethanol in a foamed state

    Energy Technology Data Exchange (ETDEWEB)

    Kumazawa, E. (Research Inst. of Life Sciences, Snow Brand Milk Products Co., Ltd. (JP)); Ido, K. (Technical Research Inst., Snow Brand Milk Products Co., Ltd. (JP)); Toei, R.; Okazaki, M. (Dept. of Chemical Engineering, Kyoto Univ. (JP))

    1990-01-01

    This paper reports on an aqueous maltodextrin solution in a foamed state with ethanol as a model aroma component, vacuum-dried with radiative heat. A vacuum chamber was made in which the weight and temperature of the material on a belt were measured during the drying process. While measuring the drying rate, the material temperature and the retention of aroma, the effect of the drying conditions on the aroma retention were experimentally studied. Numerical solutions were obtained during the drying process by solving simultaneously two partial differential equations regarding heat and mass transfer. The drying rate depends on the heating temperature, the belt loading, and the initial total solids. Even when heated at a temperature of 150{degrees}C for 30 minutes, the experimentally measured aroma retention is over 65 percent for initial total solids exceeding 70 percent. A satisfactory agreement between the observed and the simulated values were obtained. This analytical model would appear to be useful for setting optimum drying conditions for practical vacuum dryers.

  10. State of the Art in LP-WAN Solutions for Industrial IoT Services.

    Science.gov (United States)

    Sanchez-Iborra, Ramon; Cano, Maria-Dolores

    2016-05-17

    The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN), is explored. By means of a cellular-type architecture, LP-WAN-based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things) networks and services.

  11. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Hongwei Deng

    2010-11-01

    Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  12. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  13. Exact solution to the steady-state dynamics of a periodically modulated resonator

    Directory of Open Access Journals (Sweden)

    Momchil Minkov

    2017-07-01

    Full Text Available We provide an analytic solution to the coupled-mode equations describing the steady-state of a single periodically modulated optical resonator driven by a monochromatic input. The phenomenology of this system was qualitatively understood only in the adiabatic limit, i.e., for low modulation speed. However, both in and out of this regime, we find highly non-trivial effects for specific parameters of the modulation. For example, we show complete suppression of the transmission even with zero detuning between the input and the static resonator frequency. We also demonstrate the possibility for complete, lossless frequency conversion of the input into the sideband frequencies, as well as for optimizing the transmitted signal towards a given target temporal waveform. The analytic results are validated by first-principle simulations.

  14. Solution and solid state conformational preferences of a family of cyclic disulphide bridged tetrapeptides.

    Science.gov (United States)

    Berger, Nadja; Li, Fee; Mallick, Bert; Brüggemann, J Thomas; Sander, Wolfram; Merten, Christian

    2017-01-01

    A set of cyclic tetrapeptides of the general form cyclo (Boc-Cys-Pro-X-Cys-OMe) with X being L-/D-Ala, L-/D-Val, and L-/D-Trp was synthesized. These peptides serve as model systems for structure elucidation in solution and feature a variety of structural motifs - namely a β-turn with intramolecular hydrogen bonding interactions, cis/trans isomerism, and a disulphide bond. In this work, we performed a comprehensive structural analysis focussing on their β-turn conformational preferences using NMR, VCD, and Raman spectroscopy. Our results provide evidence for a strong influence of a single stereocenter on the structures of the peptides whereas solvent polarity does not significantly affect them. Additionally, the solid state conformational preferences were studied by crystal structure analysis. Overall, a general trend for the conformational preferences of this set of peptides can be concluded from the results of the complementary investigations. © 2016 Wiley Periodicals, Inc.

  15. Transient analytical solution of temperature distribution and fracture limits in pulsed solid-state laser rod

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available The exact analytical solution of axis-symmetry transient temperature and Tresca failure stress in pulsed mode solid-state laser rod is derived using integral transform method. The result obtained from this work is compared with previously published data and good agreement is found. The effect of increasing period is studied, and it is found that at constant pulse width as the period is increased, the allowable pumping power is increased too. Furthermore, the effect of changing pulse width with a constant period is studied, and it is found that as the pulse width is increased, the allowable pumping power is decreased. The effect of duty cycle is studied also and it is found that as duty cycle is increased the allowable pumping power is decreased. This work permits proper selection of pulse width, period and duty cycle to avoid laser rod fracture while obtaining maximum output laser power in the designing of laser system.

  16. Enhanced oil recovery: environmental issues and state regulatory programs

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.J.; Boggs, T.A.; Millemann, R.E.; Floran, R.J.; Hildebrand, S.G.

    1979-09-01

    Environmental assessments were prepared for nine EOR demonstration projects located in six states, and the oil regulations for all oil-producing states were reviewed. These evaluations revealed a number of potentially important environmental impacts associated with EOR, including: (1) loss of vegetation; (2) excessive air emissions from thermal operations; (3) excessive erosion and sedimentation (mostly in hilly terrain) and subsequent deterioration of surface-water quality; (4) pollution of land and surface waters from spills or leaks of oil or other chemicals; and (5) contamination of groundwater aquifers. The need for additional environmental planning and monitoring regulations specific for the oil-production industry is emphasized. States are encouraged to continue strengthening and upgrading their oil-regulatory programs to safeguard the environment. The evaluations also identified areas where additional information is needed: (1) toxicity and carcinogenicity studies of chemicals used in injection processes; (2) evaluation of groundwater monitoring methods; and (3) studies of reclamation procedures for soils contaminated by oil and brine.

  17. Student-Generated Solutions To Enhance the Academic Success of African American Youth.

    Science.gov (United States)

    Tucker, Carolyn M.; Herman, Keith C.; Pedersen, Tyler; Vogel, David; Reinke, Wendy M.

    2000-01-01

    Investigated African American elementary and high school students' perceptions of academic problems and solutions to these problems. Found that students considered the following factors beneficial: academic preparation and active class participation; positive peer influences; self- management techniques; and teachers' encouragement. (JPB)

  18. Enhancement of strength and stability of nanostructured Ni by small amounts of solutes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Lu, K.; Pippan, R.

    2011-01-01

    Polycrystalline Ni with a purity of 99.7% (with 0.14% Ti) has been deformed by high-pressure torsion at room temperature to εvM=100. The presence of solute atoms markedly raises both the strength and the thermal stability, showing a flow stress of about 1700MPa and a recrystallization temperature...

  19. Synthesis of europium-doped VSOP, customized enhancer solution and improved microscopy fluorescence methodology for unambiguous histological detection.

    Science.gov (United States)

    de Schellenberger, Angela Ariza; Hauptmann, Ralf; Millward, Jason M; Schellenberger, Eyk; Kobayashi, Yuske; Taupitz, Matthias; Infante-Duarte, Carmen; Schnorr, Jörg; Wagner, Susanne

    2017-10-10

    Intrinsic iron in biological tissues frequently precludes unambiguous the identification of iron oxide nanoparticles when iron-based detection methods are used. Here we report the full methodology for synthesizing very small iron oxide nanoparticles (VSOP) doped with europium (Eu) in their iron oxide core (Eu-VSOP) and their unambiguous qualitative and quantitative detection by fluorescence. The resulting Eu-VSOP contained 0.7 to 2.7% Eu relative to iron, which was sufficient for fluorescent detection while not altering other important particle parameters such as size, surface charge, or relaxivity. A customized enhancer solution with high buffer capacity and nearly neutral pH was developed to provide an antenna system that allowed fluorescent detection of Eu-VSOP in cells and histologic tissue slices as well as in solutions even under acidic conditions as frequently obtained from dissolved organic material. This enhancer solution allowed detection of Eu-VSOP using a standard fluorescence spectrophotometer and a fluorescence microscope equipped with a custom filter set with an excitation wavelength (λex) of 338 nm and an emission wavelength (λem) of 616 nm. The fluorescent detection of Eu-doped very small iron oxide nanoparticles (Eu-VSOP) provides a straightforward tool to unambiguously characterize VSOP biodistribution and toxicology at tissue, and cellular levels, providing a sensitive analytical tool to detect Eu-doped IONP in dissolved organ tissue and biological fluids with fluorescence instruments.

  20. Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution

    OpenAIRE

    Hare, Patrick M.; Crespo-Hernández, Carlos E.; Kohler, Bern

    2006-01-01

    The femtosecond transient absorption technique was used to study the relaxation of excited electronic states created by absorption of 267-nm light in all of the naturally occurring pyrimidine DNA and RNA bases in aqueous solution. The results reveal a surprising bifurcation of the initial excited-state population in

  1. Effect of temperature on the passive state of Alloy 31 in a LiBr solution: Passivation and Mott-Schottky analysis

    OpenAIRE

    Fernández Domene, Ramón Manuel; Blasco-Tamarit, E.; García-García, D.M.; Garcia-Anton, Jose

    2015-01-01

    The passive behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine (700 g/l) at different temperatures using potentiostatic polarisation and Mott-Schottky analysis. Cation vacancies have been found to be the dominant defect in the passive films formed on Alloy 31. An increase in temperature enhanced the generation of cation vacancies at the film/solution interface and raised the steady-state passive current density. The den...

  2. Solid-State Recorders Enhance Scientific Data Collection

    Science.gov (United States)

    2010-01-01

    Under Small Business Innovation Research (SBIR) contracts with Goddard Space Flight Center, SEAKR Engineering Inc., of Centennial, Colorado, crafted a solid-state recorder (SSR) to replace the tape recorder onboard a Spartan satellite carrying NASA's Inflatable Antenna Experiment. Work for that mission and others has helped SEAKR become the world leader in SSR technology for spacecraft. The company has delivered more than 100 systems, more than 85 of which have launched onboard NASA, military, and commercial spacecraft including imaging satellites that provide much of the high-resolution imagery for online mapping services like Google Earth.

  3. Solution structure determination of oligoureas using methylene spin state selective NMR at 13C natural abundance.

    Science.gov (United States)

    Guichard, Gilles; Violette, Aude; Chassaing, Gérard; Miclet, Emeric

    2008-10-01

    Ability of N,N'-linked oligoureas containing proteinogenic side chains to adopt a stable helix conformation in solution has been described recently. NMR as well as circular dichroism (CD) spectroscopies were employed to gain insight into their specific fold. It is herein proposed to extend the structural information available on these peptidomimetics by an advantageous use of a methylene spin state selective NMR experiment. Homodecoupling provided by the pulse scheme made it possible to readily measure conformation-dependent (3)J(HH) constants that are difficult if not impossible to obtain with standard NMR experiments. Adding those couplings to the NMR restraints improved the quality of the structure calculations significantly, as judged by a ca 30% decrease of the root mean square deviation (RMSD) obtained over an ensemble of 20 structures. Moreover, accurate determination of individual (1)J(CH) couplings within each methylene group revealed uniform values throughout the oligourea sequence, with (1)J(CH) systematically slightly larger for the pro-S hydrogen than for the pro-R. As shown in this study, the methylene spin state selective NMR experiment displays a good intrinsic sensitivity and could therefore provide valuable structural information at (13)C natural abundance for peptidomimetic molecules and foldamers bearing diastereotopic methylene protons. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    DEFF Research Database (Denmark)

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.

    1996-01-01

    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...... of state parameters for the solvent are estimated via the classical Soave method, i.e. using the critical properties and a generalized equation for the energy parameter. When extended to mixtures, the van der Waals one-fluid mixing rules along with the Berthelot combining rule for the molecular cross....... These problems are overcome by using a temperature-dependent interaction parameter, even for small temperature ranges, leading to excellent results. Despite the problems, we have developed an empirical methodology in using the van der Waals equation of state with a single interaction parameter for predicting...

  5. Solution-based characterization of surface-enhanced Raman response of single scattering centers

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Talley, C; Schwartzberg, A; Braun, G; Moskovits, M; Reich, N; Huser, T

    2008-03-06

    We demonstrate the rapid optical characterization of large numbers of individual metal nanoparticles freely diffusing in colloidal solution by confocal laser spectroscopy. We find that hollow gold nanospheres and solid silver nanoparticles linked with a bifunctional ligand, both designed nanostructures, exhibit significantly higher monodispersity in their Rayleigh and Raman scattering response than randomly aggregated gold and silver nanoparticles. We show that measurements of rotational diffusion timescales allow sizing of particles significantly more reliably than can be obtained using translational diffusion timescales.

  6. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    Science.gov (United States)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  7. Integrating R and Java for Enhancing Interactivity of Algorithmic Data Analysis Software Solutions

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNĂ

    2016-06-01

    Full Text Available Conceiving software solutions for statistical processing and algorithmic data analysis involves handling diverse data, fetched from various sources and in different formats, and presenting the results in a suggestive, tailorable manner. Our ongoing research aims to design programming technics for integrating R developing environment with Java programming language for interoperability at a source code level. The goal is to combine the intensive data processing capabilities of R programing language, along with the multitude of statistical function libraries, with the flexibility offered by Java programming language and platform, in terms of graphical user interface and mathematical function libraries. Both developing environments are multiplatform oriented, and can complement each other through interoperability. R is a comprehensive and concise programming language, benefiting from a continuously expanding and evolving set of packages for statistical analysis, developed by the open source community. While is a very efficient environment for statistical data processing, R platform lacks support for developing user friendly, interactive, graphical user interfaces (GUIs. Java on the other hand, is a high level object oriented programming language, which supports designing and developing performant and interactive frameworks for general purpose software solutions, through Java Foundation Classes, JavaFX and various graphical libraries. In this paper we treat both aspects of integration and interoperability that refer to integrating Java code into R applications, and bringing R processing sequences into Java driven software solutions. Our research has been conducted focusing on case studies concerning pattern recognition and cluster analysis.

  8. Enhancement of the cytocidal effects of hypotonic solution using a chloride channel blocker in pancreatic cancer cells.

    Science.gov (United States)

    Nako, Yoshito; Shiozaki, Atsushi; Ichikawa, Daisuke; Komatsu, Shuhei; Konishi, Hirotaka; Iitaka, Daisuke; Ishii, Hiromichi; Ikoma, Hisashi; Kubota, Takeshi; Fujiwara, Hitoshi; Okamoto, Kazuma; Ochiai, Toshiya; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2012-01-01

    Tumor cells exfoliated during surgery for pancreatic cancer can cause peritoneal recurrence. Peritoneal lavage with distilled water has been performed during surgery, but there have been no systematic studies for its efficacy and no experimental data demonstrating the cytocidal effects of distilled water on pancreatic cancer cells. This study investigated the cytocidal effects of hypotonic shock and enhancement using chloride channel blocker in pancreatic cancer cells. Three human pancreatic cancer cell lines, KP4-1, PK-1, and PK45-H, were exposed to distilled water, and the resultant morphological changes were observed under a differential interference contrast microscope connected to a high-speed video camera. Analysis of cell volume changes was performed using a high-resolution flow cytometer. To investigate the cytocidal effects of water, re-incubation of cells was performed after exposure to hypotonic solution. Additionally, the effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), a Cl(-) channel blocker, on cells during exposure to hypotonic solution were analyzed. Video recordings demonstrated that hypotonic shock induced cell swelling followed by cell rupture. Measurement of cell volume changes indicated that severe hypotonicity increased broken fragments of cancer cells within 5 min. Re-incubation experiments demonstrated the cytocidal effects of hypotonic shock. In all cell lines, treatment with NPPB increased cell volume by inhibiting regulatory volume decreases, which are observed during hypotonic shock, and enhanced the cytocidal effects of hypotonic solution. These findings support the efficacy of peritoneal lavage with distilled water for pancreatic cancer and suggest that regulation of Cl(-) transport enhances the cytocidal effects of hypotonic shock. Copyright © 2012 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  9. Enhanced extraction of phenolic compounds from coffee industry’s residues through solid state fermentation by Penicillium purpurogenum

    Directory of Open Access Journals (Sweden)

    Lady Rossana PALOMINO García

    2015-01-01

    Full Text Available Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.

  10. Inclusion of Paracetamol into β-cyclodextrin nanocavities in solution and in the solid state

    Science.gov (United States)

    El-Kemary, Maged; Sobhy, Saffaa; El-Daly, Samy; Abdel-Shafi, Ayman

    2011-09-01

    We report on steady-state UV-visible absorption and emission characteristics of Paracetamol, drug used as antipyretic agent, in water and within cyclodextrins (CDs): β-CD, 2-hydroxypropyl- β-CD (HP- β-CD) and 2,6-dimethyl- β-CD (Me- β-CD). The results reveal that Paracetamol forms a 1:1 inclusion complex with CD. Upon encapsulation, the emission intensity enhances, indicating a confinement effect of the nanocages on the photophysical behavior of the drug. Due to its methyl groups, the Me- β-CD shows the largest effect for the drug. The observed binding constant showing the following trend: Me- β-CD > HP- β-CD > β-CD. The less complexing effectiveness of HP- β-CD is due to the steric effect of the hydroxypropyl-substituents, which can hamper the inclusion of the guest molecules. The solid state inclusion complex was prepared by co-precipitation method and its characterization was investigated by Fourier transform infrared spectroscopy, 1H NMR and X-ray diffractometry. These approaches indicated that Paracetamol was able to form an inclusion complex with CDs, and the inclusion compounds exhibited different spectroscopic features and properties from Paracetamol.

  11. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm−2), concentration of enhancing agent (0......–86%) and 440–590 mg Cr kg−1 (removals: 35–51%), being within the 500 mg kg−1 limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential...

  12. Mobile applications as solutions to enhance sustainable travel behaviour among Generation Y

    OpenAIRE

    Kiilunen, Olga

    2013-01-01

    The aim of this thesis was to investigate the possibility and the best ways of using mobile applications to enhance sustainable travel behavior among Generation Y. The development of Information and Communication Technology (ICT) brings the new opportunities in tourism and travel industry. At the same time, widely accepted as currently most significant segment both in travel industry and global sustainable development, Generation Y is know for their high expertise and passion for using techno...

  13. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions

    OpenAIRE

    Trivedi, Pankaj; Peer M. Schenk; Matthew D Wallenstein; Singh, Brajesh K.

    2017-01-01

    Summary Plant‐associated microbiomes have tremendous potential to improve plant resilience and yields in farming systems. There is increasing evidence that biological technologies that use microbes or their metabolites can enhance nutrient uptake and yield, control pests and mitigate plant stress responses. However, to fully realize the potential of microbial technology, their efficacy and consistency under the broad range of real‐world conditions need to be improved. While the optimization o...

  14. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. ZT enhancement in solution-grown Sb(2-x)Bi(x)Te3 nanoplatelets

    OpenAIRE

    Scheele, Marcus; Oeschler, Niels; Veremchuk, Igor; Reinsberg, Klaus-Georg; Kreuziger, Anna-Marlena; Kornowski, Andreas; Broekaert, Jose; Klinke, Christian; Weller, Horst

    2011-01-01

    We report a solution-processed, ligand supported synthesis of 15-20 nm thick Sb(2-x)Bi(x)Te3 nanoplatelets. After complete ligand removal by a facile NH3-based etching procedure, the platelets are spark plasma sintered to a p-type nanostructured bulk material with preserved crystal grain sizes. Due to this nanostructure, the total thermal conductivity is reduced by 60 % in combination with a reduction in electric conductivity of as low as 20 % as compared to the bulk material demonstrating th...

  16. Marshak Lectureship Talk: Women in Physics in the Baltic States Region: Problems and Solutions

    Science.gov (United States)

    Satkovskiene, Dalia

    2008-03-01

    In this contribution the gender equality problem in physics will be discussed on the basis of the results obtained implementing the project ``Baltic States Network: Women in Sciences and High Technology'' (BASNET) initiated by Lithuanian women physicists and financed by European Commission. The main goal of BASNET project was creation of the regional Strategy how to deal with women in sciences problem in the Baltic States. It has some stages and the contribution follows them. The first one was in depth sociological study aiming to find out disincentives and barriers women scientists face in their career and work at science and higher education institutions. Analysis of results revealed wide range of problems concerned with science organization, management and financing common for both counterparts. However it also proved the existence of women discrimination in sciences. As main factors influencing women under-representation in Physics was found: the stereotypes existing in the society where physics is assigned to the masculine area of activity; failings of the science management system, where highest positions are distributed not using the institutionalized objective criteria but by voting, where the correctness of majority solutions is anticipated implicitly. In physics where male scientists are the majority (they also usually compose executive boards, committees etc.) results of such a procedures often are unfavorable for women. The same reasons also influence women ``visibility'' in physicist's community and as the consequence possibility to receive needed recourses for their research as well as appropriate presentation of results obtained. The study revealed also the conservatism of scientific community- reluctance to face existing in the scientific society problems and to start solving them. On the basis of the results obtained as well practice of other countries the common strategy of solving women in physics (sciences) in the Baltic States region was

  17. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.

    Science.gov (United States)

    Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A

    2016-12-01

    An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.

  18. Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution

    CERN Document Server

    Vallejo, E; Espinosa, J E

    2003-01-01

    A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)

  19. State of the art concerning optimum location of capacitors and studying the exhaustive search approach for optimising a given solution

    Directory of Open Access Journals (Sweden)

    Sergio Raúl Rivera Rodríguez

    2004-09-01

    Full Text Available The present article reviews the state of the art of optimum capacitor location in distribution systems, provideing guidelines for planners engaged in optimising tension profiles and controlling reagents in distribution networks.Optimising a given solution by exhastive search is studied here; the dimensions of a given problem are determined by evaluating the different possibilities for resolving it and the solution algorithm's computational times and requierements are visualised. An example system (9 node, IEEE is used for illustrating the exhaustive search approach, where it was found that methods used in the literature regarding this topic do not always lead to the optimum solution.

  20. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  1. Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G.

    2016-01-01

    Interpreting the functional state of chromatin from the combinatorial binding patterns of chromatin factors, that is, the chromatin codes, is crucial for decoding the epigenetic state of the cell. Here we present a systematic map of Drosophila chromatin states derived from data-driven probabilistic modelling of dependencies between chromatin factors. Our model not only recapitulates enhancer-like chromatin states as indicated by widely used enhancer marks but also divides these states into three functionally distinct groups, of which only one specific group possesses active enhancer activity. Moreover, we discover a strong association between one specific enhancer state and RNA Polymerase II pausing, linking transcription regulatory potential and chromatin organization. We also observe that with the exception of long-intron genes, chromatin state transition positions in transcriptionally active genes align with an absolute distance to their corresponding transcription start site, regardless of gene length. Using our method, we provide a resource that helps elucidate the functional and spatial organization of the chromatin code landscape. PMID:26841971

  2. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  3. Positive Solutions for Class of State Dependent Boundary Value Problems with Fractional Order Differential Operators

    Directory of Open Access Journals (Sweden)

    Dongyuan Liu

    2015-01-01

    Full Text Available We consider the following state dependent boundary-value problem D0+αy(t-pD0+βg(t,y(σ(t+f(t,y(τ(t=0, 0solutions for the above fractional order differential equations, which extend some references.

  4. Preferring balanced vs. advantageous peace agreements: A study of Israeli attitudes towards a two state solution

    Directory of Open Access Journals (Sweden)

    Deepak Malhotra

    2010-10-01

    Full Text Available The paper extends research on fixed-pie perceptions by suggesting that disputants may prefer proposals that are perceived to be equally attractive to both parties (i.e., balanced rather than one-sided, because balanced agreements are seen as more likely to be successfully implemented. We test our predictions using data on Israeli support for the Geneva Accords, an agreement for a two state solution negotiated by unofficial delegations of Israel and the Palestinian Authority in 2003. The results demonstrate that Israelis are more likely to support agreements that are seen favorably by other Israelis, but --- contrary to fixed-pie predictions --- Israeli support for the accords does not diminish simply because a majority of Palestinians favors (rather than opposes the accords. We show that implementation concerns create a demand among Israelis for balance in the degree to which each side favors (or opposes the agreement. The effect of balance is noteworthy in that it creates considerable support for proposals even when a majority of Israelis and Palestinians OPPOSE the deal.

  5. Oxygen binding to heme proteins in solution, encapsulated in silica gels, and in the crystalline state.

    Science.gov (United States)

    Ronda, Luca; Bruno, Stefano; Faggiano, Serena; Bettati, Stefano; Mozzarelli, Andrea

    2008-01-01

    The determination of accurate oxygen-binding curves for heme-containing proteins is a demanding task. In fact, great care is required in the (i) preparation of accurate gas mixtures at defined oxygen partial pressures, (ii) precise measurement of changes in protein absorbance, (iii) calculation of the fraction of oxygen-containing sites, and (iv) analysis of the dependence of fractional saturation on oxygen pressure using phenomenological or model-dependent equations. Over the years, methods have been developed for the determination of oxygen-binding curves based either on discrete steps in oxygen partial pressure ("static" method) or on continuous variations ("dynamic" method). This work presents a novel, versatile setup that allows one to determine oxygen-binding curves for heme and nonheme proteins in solution, encapsulated in wet, nanoporous silica gels, in the crystalline state, and for hemoglobin within single red blood cells. The apparatus is composed of a tandem of high-precision gas mixture generators and either an equilibration chamber coupled to a spectrophotometer cuvette or a gas-tight flow cell, placed on the stage of a microspectrophotometer, for immobilized samples down to a few micrometers in size.

  6. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Amir; Saad, Ebtissam A. [Ain Shams Univ., Cairo (Egypt). Chemistry Dept.; Mahmoud, Mamdoh R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.; Soliman, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Egypt Second Research Reactor; Kandil, Abdelhakim [Helwan Univ., Cairo (Egypt). Chemistry Dept.

    2017-06-01

    The present study aims at the removal of Eu(III) from aqueous solutions by sorptive flotation process. This process involves adsorption of Eu(III) onto bentonite and kaolinite clays followed by floatation using sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) collectors. The effect of adsorption parameters (pH, contact time, clay weight, Eu(III) concentration, ionic strength) as well as flotation parameters (collector and frother concentrations, bubbling time, concentrations of foreign cations and anions) on the removal efficiency of Eu(III) were studied. The obtained results show that Eu(III) ions are removed efficiently (R% ∝ 95%) at pH=4 after 1 h shaking with clay and 15 min floatation. The adsorption kinetics of Eu(III) onto the employed clays followed the pseudo-second-order model and the equilibrium data fitted well to the Freundlich isotherm model.

  8. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Science.gov (United States)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  9. Enhancement of Self Efficacy of Vocational School Students in Buffer Solution Topics through Guided Inquiry Learning

    Science.gov (United States)

    M, Ardiany; W, Wahyu; A, Supriatna

    2017-09-01

    The more students who feel less confident in learning, so doing things that are less responsible, such as brawl, drunkenness and others. So researchers need to do research related to student self efficacy in learning, in order to reduce unwanted things. This study aims to determine the effect of guided inquiry learning on improving self-efficacy of learners in the buffer solution topics. The method used is the mixed method which is the two group pretest postest design. The subjects of the study are 60 students of class XI AK in one of the SMKN in Bandung, consisting of 30 experimental class students and 30 control class students. The instruments used in this study mix method consist of self-efficacy questionnaire of pretest and posttest learners, interview guides, and observation sheet. Data analysis using t test with significant α = 0,05. Based on the result of inquiry of guided inquiry study, there is a significant improvement in self efficacy aspect of students in the topic of buffer solution. Data of pretest and posttest interview, observation, questionnaire showed significant result, that is improvement of experimental class with conventionally guided inquiry learning. The mean of self-efficacy of student learning there is significant difference of experiment class than control class equal to 0,047. There is a significant relationship between guided inquiry learning with self efficacy and guided inquiry learning. Each correlation value is 0.737. The learning process with guided inquiry is fun and challenging so that students can expose their ideas and opinions without being forced. From the results of questionnaires students showed an attitude of interest, sincerity and a good response of learning. While the results of questionnaires teachers showed that guided inquiry learning can make students learn actively, increased self-efficacy.

  10. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Science.gov (United States)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  11. Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Rodriguez, R D; Sheremet, E; Müller, S; Gordan, O D; Villabona, A; Schulze, S; Hietschold, M; Zahn, D R T

    2012-12-01

    There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

  12. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with (pyrazol-1-yl)acetic acid.

    Science.gov (United States)

    Chen, Xiao-Yan; Goff, George S; Scott, Brian L; Janicke, Michael T; Runde, Wolfgang

    2013-03-18

    As a precursor of carboxyl-functionalized task-specific ionic liquids (TSILs) for f-element separations, (pyrazol-1-yl)acetic acid (L) can be deprotonated as a functionalized pyrazolate anion to coordinate with hard metal cations. However, the coordination chemistry of L with f-elements remains unexplored. We reacted L with lanthanides in aqueous solution at pH = 5 and synthesized four lanthanide complexes of general formula [Ln(L)3(H2O)2]·nH2O (1, Ln = La, n = 2; 2, Ln = Ce, n = 2; 3, Ln = Pr, n = 2; 4, Ln = Nd, n = 1). All complexes were characterized by single crystal X-ray diffraction analysis revealing one-dimensional chain formations. Two distinct crystallographic structures are governed by the different coordination modes of carboxylate groups in L: terminal bidentate and bridging tridentate (1-3); terminal bidentate, bridging bidentate, and tridentate coordination in 4. Comparison of the solid state UV-vis-NIR diffuse reflectance spectra with solution state UV-vis-NIR spectra suggests a different species in solution and solid state. The different coordination in solid state and solution was verified by distinctive (13)C NMR signals of the carboxylate groups in the solid state NMR.

  13. EOMCC over excited state Hartree-Fock solutions (ESHF-EOMCC: An efficient approach for the entire ground state potential energy curves of higher-order bonds

    Directory of Open Access Journals (Sweden)

    Y. Sajeev

    2015-08-01

    Full Text Available The equation-of-motion coupled cluster (EOMCC method based on the excited state Hartree-Fock (ESHF solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the true ground state wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.

  14. Entanglement-enhanced transmission of classical information in Pauli channels with memory: Exact solution

    Science.gov (United States)

    Daems, D.

    2007-07-01

    The amount of classical information that is reliably transmitted over two uses of general Pauli channels with memory, modeled as a correlated noise between a single pair of uses, is investigated. The maximum of the mutual information between the input and the output is proven to be achieved by a class of product states that is explicitly given in terms of the relevant channel parameters below some memory threshold, and by maximally entangled states above this threshold. In particular, this proves a conjecture on the depolarizing channel by Macchiavello and Palma [Phys. Rev. A 65, 050301(R) (2002)]. Furthermore, it also shows that no other scenario can occur for Pauli channels as for example the existence of an intermediate optimal degree of entanglement reported for some Gaussian channels with memory.

  15. THE VAPOUR PRESSURES OF AQUEOUS SOLUTIONS WITH SPECIAL REFERENCE TO THE PROBLEM OF THE STATE OF WATER IN BIOLOGICAL FLUIDS

    Science.gov (United States)

    Grollman, Arthur

    1931-01-01

    Data for the depression of vapour pressure are presented for the following aqueous solutions: NaCl (0.03 to 0.1 molar), KCl (0.03 to 0.1 molar), urea (0.05 to 0.5 molar), sucrose (0.05 to 0.10 molar), lactic and succinic acids, creatine, CaCl2 (0.05 molar), and mixtures of these substances with one another and with certain other solutions (gelatin, gum acacia, sea water, LiCl, etc.). The relation of the depression of vapour pressure of a mixed solution to that of solutions of the individual constituents was investigated in order to ascertain to what extent such studies may be used for the determination of the degree of hydration, or of the state of water, in solutions. Organic substances (urea, sucrose, etc.) showed anomalous results which were markedly affected and unpredictable in mixed solutions. They are, therefore, unsuited for the study of water binding. In the case of solutions of inorganic substances—LiCl and CaCl2—the principle of the additive nature of colligative properties is also only approximately true—except perhaps in very dilute solutions. The limitations of the colligative method for determining the degree of hydration have been defined in accord with the above findings. Studies of the vapour pressures of mixtures of gelatin or gum acacia with NaCl or KCl demonstrated that hydration in gelatin is relatively small at pH = 7 and undetectable in gum acacia solutions. The view, therefore, that hydrophilic colloids are strongly hydrated has not been substantiated. The passage from the sol to the gel state also was not accompanied in gelatin or in blood by any appreciable change in the degree of hydration of the hydrophilic colloids present in these substances. PMID:19872614

  16. Enhancing Social Responsibility within Global Supply Chains: Is Legal Regulation the Optimal Solution?

    Directory of Open Access Journals (Sweden)

    Katerina Peterková

    2011-03-01

    Full Text Available This paper was presented at the first meeting of the NSU study group “Conceptions of ethical and social values in post-secular society: Towards a new ethical imagination in a cosmopolitan world society”, held on January 28-30, 2011 at Copenhagen Business School. First, this paper examines the voluntary (ethical v. mandatory (legal basis of corporate social responsibility (CSR. Second, it examines the relationship between CSR, law and business ethics. Third, it tries to answer the question if there is a need for a hard[2] legal regulation of CSR within international supply relationships or if ethical norms, e.g. expressed in the form of self-regulation, may better serve the purpose. And finally, it suggests possible ways for the future development of suitable regulatory methods for enhancing social standards within international supply chains. The questions are approached solely from the perspectives of legal theory and socio-legal analysis.

  17. Determination of U oxidation state in anoxic (N{sub 2}) aqueous solutions. Method development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1996-06-01

    The report describes the development and testing of a method for determining uranium oxidation state in aqueous solutions in inert (N{sub 2}) atmosphere. The method included the separation of the tetravalent and hexavalent states by anion-exchange chromatography in HCl medium, followed by analysis of the uranium contents of each of the fractions by ICP-MS. The tests of the study demonstrated the suitability of the method for analysing the oxidation states of uranium at the low concentrations representative for U solubilities in anoxic groundwater. Additionally, the results obtained give some information on the redox state of the aqueous solutions in inert (N{sub 2}) atmosphere. Obviously, the trace oxygen content in the atmosphere of the box is enough to cause slightly oxidizing conditions for uranium in the absence of reducing agents (e.g. H{sub 2}, iron). (10 refs.).

  18. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    Science.gov (United States)

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  19. Autophagy enhanced antitumor effect in K562 and K562/ADM cells using realgar transforming solution.

    Science.gov (United States)

    Wang, Xin; Chen, Baoqiang; Zhao, Longhe; Zhi, Dejuan; Hai, Yang; Song, Peng; Li, Yang; Xie, Qinjian; Inam, Ullah; Wu, Zhengrong; Yu, Lan; Li, Hongyu

    2018-02-01

    Realgar transforming solution (RTS) can be produced from a biotransformation process by using microorganisms cultured with realgar in our lab. RTS has been demonstrated as a novel arsenic anti-leukemia agent in K562 and K562/ADM. However, its underlying mechanism is unclear. In this study, we showed that RTS could strongly induce apoptosis in K562 and K562/ADM cells. After the cells were treated by RTS, apoptotic population were increased compared to control and clearly distinguishable by DAPI nuclei staining. With increasing the dose of RTS, more cells arrested in S phase and G2/M phase. Secondly, we also showed that RTS could induce autophagy via up-regulation of LC3, p62/SQSTM1 and inhibition of mTOR in a much lower arsenic dosage in contrast to ATO and realgar. In addition, autophagy induced by RTS partially due to the degradation of fusion oncoprotein Bcr-Abl, which is associated with multidrug resistant in (MDR)-CML. Our results also showed that the apoptotic rate decreased when autophagic flux was attenuated by CQ via inhibiting cleaved-caspase-3 and alleviating Bcl-2 level. These suggested that RTS triggered autophagy is a pro-death process in CML and MDR-CML cells. In conclusion, our findings demonstrated that RTS could serve as a promising arsenic candidate for anti-CML/MDR-CML by inducing apoptosis and autophagy and is more potent than ATO and realgar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution.

    Science.gov (United States)

    Modena, Mario M; Wang, Yu; Riedel, Dietmar; Burg, Thomas P

    2014-01-21

    We introduce the use of correlation analysis to extend the dynamic range of suspended micro- and nanochannel resonator (SMR/SNR) mass sensors by over five orders of magnitude. This method can analyze populations of particles flowing through an embedded channel micromechanical resonator, even when the individual particle masses are far below the noise floor. To characterize the method, we measured the mass of polystyrene nanoparticles with 300 zg resolution. As an application, we monitored the time course of insulin amyloid formation from pre-fibrillar aggregates to mature fibrils of 15 MDa average mass. Results were compared with thioflavin-T (ThT) assays and electron microscopy (EM). Mass measurements offer additional information over ThT during the fluorescent inaccessible lag period, and the average fibril dimensions calculated from the mass signal are in good accordance with EM. In the future, we envision that more detailed modeling will allow the computational deconvolution of multicomponent samples, enabling the mass spectrometric characterization of a variety of biomolecular complexes, small organelles, and nanoparticles in solution.

  1. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan

    2014-07-16

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  2. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    , and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column......It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables...

  3. Solution state conformational preferences of dipeptides derived from N-aminoazetidinecarboxylic acid: an assessment of the hydrazino turn.

    Science.gov (United States)

    Altmayer-Henzien, Amandine; Declerck, Valérie; Merlet, Denis; Baltaze, Jean-Pierre; Farjon, Jonathan; Guillot, Régis; Aitken, David J

    2013-06-21

    Four model compounds and four dipeptides containing N-aminoazetidinecarboxylic acid (AAzC) and a particular stereoisomer of 2-aminocyclobutanecarboxylic acid (ACBC) were studied to establish their solution state conformational preferences, particularly regarding the ability of AAzC to induce a three-center hydrogen-bonded folding feature known as a "hydrazino turn". On the basis of IR and NMR experiments, supported by molecular modeling, the AAzC residue adopted a trans configuration amenable to the formation of a cyclic eight-membered hydrogen bond conformation in solution, in all cases studied. The implication of the heterocyclic nitrogen atom of AAzC in the trans-like structure was demonstrated via a refined (1)H-(15)N HMBC experiment giving exploitable data at natural (15)N isotopic abundance, providing unprecedented evidence for the solution state hydrazino turn conformation. The predominance of this secondary structural feature depended on the configuration of the neighboring ACBC residue in the dipeptides: while the trans-ACBC derivatives prefer the hydrazino turn, the cis-ACBC derivatives may also populate low-energy 10-membered hydrogen-bonded ring structures. X-ray diffraction analysis of three compounds confirmed the presence of a solid state hydrazino turn in two cases, with geometries similar to those deduced from the solution state studies, but in the third compound, no intramolecular hydrogen-bonding feature was in evidence.

  4. Child Sexual Abuse Prevention and Treatment Service Delivery Problems and Solutions in Rural Areas of Washington State.

    Science.gov (United States)

    Ray, JoAnn; Murty, Susan A.

    This study investigates prevention and treatment programs that deal with rural child sexual abuse in the State of Washington. A survey of 61 rural service providers examined agencies, services provided, problems faced in service delivery, and innovative solutions to those problems. The study compares responses from three types of agencies (mental…

  5. A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine

    Science.gov (United States)

    Daniel Joseph Yelle

    2009-01-01

    Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...

  6. Pressure-volume equation of state for pyrope-almandine solid solutions

    Science.gov (United States)

    Nestola, Fabrizio; Milani, Sula; Angel, Ross J.; Pasqual, Daria; Geiger, Charles A.

    2013-04-01

    Garnet is a key phase of Earth's upper mantle and one of the most abundant solid inclusions in diamonds. The pyrope component (Mg3Al2Si3O12, Py) of garnet found in diamonds of peridotitic and eclogitic origin can be as high as about 79 and 43%, respectively and the almandine component (Fe3Al2Si3O12, Al) is about 11 and 33%, respectively. Thus such garnets are largely Py-Al-rich solid solutions (Stachel and Harris, 2008). To determine the depth of formation of diamond-inclusion pairs, precise and accurate thermoelastic parameters for both the diamond and the solid inclusion phase are necessary (e.g. Izraeli et al., 1999; Howell et al., 2010; Nestola et al., 2011; Howell et al., 2012). We are presently investigating the pressure-volume equation of state for a series of synthetic garnets along the binary pyrope-almandine by X-ray single-crystal diffraction using a diamond anvil cell up to a maximum of 8 GPa pressure. We have completed measurements on two crystals of composition Fe3Al2Si3O12 and Fe1.20Mg1.80Al2Si3O12. The equation of state coefficients obtained by fitting a third-order Birch-Murnaghan to the pressure-volume data show that an increase in the pyrope component in garnet causes a slight decrease of the isothermal bulk modulus, KT0, by about 3%, whereas the first pressure derivative term does not vary. Applying our results to obtain the pressure of formation of a natural diamond-garnet pair, and assuming a garnet composition close to Fe1.20Mg1.80Al2Si3O12, we obtain a pressure of encapsulation (or formation if garnet and diamond are syngenetic) of garnet in diamond between 6.5 and 7.0 GPa. References Howell, D., Wood, I.G., Dobson, D.P., Jones, A.P., Nasdala, L., Harris, J.W. (2010) Contrib. Mineral. Petrol., 160, 705-717. Howell, D., Wood, I.G., Nestola, F., Nimis, P., Nasdala, L. (2012) Eur. J. Mineral., ,. Izraeli, E.S., Harris, J.W., Navon, O. (1999) Earth Planet Sci. Lett., 173, 351-360. Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A

  7. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  8. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions.

    Science.gov (United States)

    Trivedi, Pankaj; Schenk, Peer M; Wallenstein, Matthew D; Singh, Brajesh K

    2017-09-01

    Plant-associated microbiomes have tremendous potential to improve plant resilience and yields in farming systems. There is increasing evidence that biological technologies that use microbes or their metabolites can enhance nutrient uptake and yield, control pests and mitigate plant stress responses. However, to fully realize the potential of microbial technology, their efficacy and consistency under the broad range of real-world conditions need to be improved. While the optimization of microbial biofertilizers and biopesticides is advancing rapidly to enable use in various soils, crop varieties and environments, crop breeding programmes have yet to incorporate the selection of beneficial plant-microbe interactions to breed 'microbe-optimized plants'. Emerging efforts exploring microbiome engineering could lead to microbial consortia that are better suited to support plants. The combination of all three approaches could be integrated to achieve maximum benefits and significantly improved crop yields to address food security. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  10. A Classical Genetic Solution to Enhance the Biosynthesis of Anticancer Phytochemicals in Andrographis paniculata Nees

    Science.gov (United States)

    Talei, Daryush; Abdul Kadir, Mihdzar; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides. PMID:24586262

  11. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  12. Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer

    Science.gov (United States)

    Zhou, Xiaodong; Fan, Xi; Sun, Xianke; Zhang, Yunli; Zhu, Ziqiang

    2015-01-01

    In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10-3 cm2 V-1·s-1. Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

  13. An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1.

    Science.gov (United States)

    Kiah, M L Mat; Nabi, Mohamed S; Zaidan, B B; Zaidan, A A

    2013-10-01

    This study aims to provide security solutions for implementing electronic medical records (EMRs). E-Health organizations could utilize the proposed method and implement recommended solutions in medical/health systems. Majority of the required security features of EMRs were noted. The methods used were tested against each of these security features. In implementing the system, the combination that satisfied all of the security features of EMRs was selected. Secure implementation and management of EMRs facilitate the safeguarding of the confidentiality, integrity, and availability of e-health organization systems. Health practitioners, patients, and visitors can use the information system facilities safely and with confidence anytime and anywhere. After critically reviewing security and data transmission methods, a new hybrid method was proposed to be implemented on EMR systems. This method will enhance the robustness, security, and integration of EMR systems. The hybrid of simple object access protocol/extensible markup language (XML) with advanced encryption standard and secure hash algorithm version 1 has achieved the security requirements of an EMR system with the capability of integrating with other systems through the design of XML messages.

  14. Solution scanning as a key policy tool: identifying management interventions to help maintain and enhance regulating ecosystem services

    Directory of Open Access Journals (Sweden)

    William J. Sutherland

    2014-06-01

    Full Text Available The major task of policy makers and practitioners when confronted with a resource management problem is to decide on the potential solution(s to adopt from a range of available options. However, this process is unlikely to be successful and cost effective without access to an independently verified and comprehensive available list of options. There is currently burgeoning interest in ecosystem services and quantitative assessments of their importance and value. Recognition of the value of ecosystem services to human well-being represents an increasingly important argument for protecting and restoring the natural environment, alongside the moral and ethical justifications for conservation. As well as understanding the benefits of ecosystem services, it is also important to synthesize the practical interventions that are capable of maintaining and/or enhancing these services. Apart from pest regulation, pollination, and global climate regulation, this type of exercise has attracted relatively little attention. Through a systematic consultation exercise, we identify a candidate list of 296 possible interventions across the main regulating services of air quality regulation, climate regulation, water flow regulation, erosion regulation, water purification and waste treatment, disease regulation, pest regulation, pollination and natural hazard regulation. The range of interventions differs greatly between habitats and services depending upon the ease of manipulation and the level of research intensity. Some interventions have the potential to deliver benefits across a range of regulating services, especially those that reduce soil loss and maintain forest cover. Synthesis and applications: Solution scanning is important for questioning existing knowledge and identifying the range of options available to researchers and practitioners, as well as serving as the necessary basis for assessing cost effectiveness and guiding implementation strategies. We

  15. Steady-state solution of the PTC thermistor problem using a quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    Bahadir A. R.

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  16. Calculating how long it takes for a diffusion process to effectively reach steady state without computing the transient solution

    Science.gov (United States)

    Carr, Elliot J.

    2017-07-01

    Mathematically, it takes an infinite amount of time for the transient solution of a diffusion equation to transition from initial to steady state. Calculating a finite transition time, defined as the time required for the transient solution to transition to within a small prescribed tolerance of the steady-state solution, is much more useful in practice. In this paper, we study estimates of finite transition times that avoid explicit calculation of the transient solution by using the property that the transition to steady state defines a cumulative distribution function when time is treated as a random variable. In total, three approaches are studied: (i) mean action time, (ii) mean plus one standard deviation of action time, and (iii) an approach we derive by approximating the large time asymptotic behavior of the cumulative distribution function. Our approach leads to a simple formula for calculating the finite transition time that depends on the prescribed tolerance δ and the (k -1 )th and k th moments (k ≥1 ) of the distribution. Results comparing exact and approximate finite transition times lead to two key findings. First, although the first two approaches are useful at characterizing the time scale of the transition, they do not provide accurate estimates for diffusion processes. Second, the new approach allows one to calculate finite transition times accurate to effectively any number of significant digits using only the moments with the accuracy increasing as the index k is increased.

  17. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil is the most critical energy source in the world, especially for transportation, provision of heat and light as there has not been a sufficient energy source to replace crude oil has broadly integrated, so there is an urgent need to maximize the extraction of the original oil in-place for every reservoir, and accelerating the development of enhanced oil recovery (EOR technologies. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM is a widely used technique through EOR technology. For successful application of these polymers, one should evaluate rheological and solution properties at simulated reservoir conditions as a function of polymer concentration, salinity, temperature and shear rate. The results showed that these copolymers exhibit favorable salt tolerance, temperature resistance, and recoverable viscosity after shearing, reasonable thickening behavior and improved viscosity enhancement properties due to presence of hydrophobic association in the copolymer main chains. Moreover, its capacity for oil production improvement was evaluated during flooding experiments through one dimensional sandstone model at simulated reservoir conditions.

  18. Functionality of hearing aids: state-of-the-art and future model-based solutions.

    Science.gov (United States)

    Kollmeier, Birger; Kiessling, Jürgen

    2016-12-13

    A review about technical and perceptual factors in hearing aid technology, research and development is provided, covering current commercial solutions, underlying models of hearing loss for usage in hearing devices and emerging future technical solutions for hearing aid functionalities. A chain of techniques has provided incremental, but steady increases in user benefit, e.g. in the fields of hearing aid amplification, feedback suppression, dynamic compression, noise reduction and situation adaptation. The models describing the perceptual consequences of sensorineural hearing impairment describe the effects on the acoustical level, the neurosensory level and the cognitive level and provide the framework for compensatory (or even substitutional) functions of hearing aids in terms of the attenuation component, the distortion component and the neural component of the hearing loss. A major factor is the requirement of a strong individualisation of hearing aid solutions calling for an appropriate assessment of the different sensorineural components of a hearing loss, especially with respect to bilateral and binaural hearing aid solutions.

  19. Power Control at Grid Connected Converters and Analytical Solution of Steady States

    OpenAIRE

    Viktor Valouch; Jiří Škramlík; Zdeněk Muller; Jan Švec; Josef Tlustý

    2015-01-01

    The paper presents a power control technique at grid connected converters under unbalanced voltage conditions. The current positive and negative sequences during grid voltage sags are controlled to ensure a proper exchange of active and reactive powers without power ripples. An analytical solution in a closed form of the B6 and B4 converters working with an optimized half a period switching symmetry is presented. The analytical solution may be applied for the converters connected to highly un...

  20. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Power Control at Grid Connected Converters and Analytical Solution of Steady States

    Directory of Open Access Journals (Sweden)

    Viktor Valouch

    2015-01-01

    Full Text Available The paper presents a power control technique at grid connected converters under unbalanced voltage conditions. The current positive and negative sequences during grid voltage sags are controlled to ensure a proper exchange of active and reactive powers without power ripples. An analytical solution in a closed form of the B6 and B4 converters working with an optimized half a period switching symmetry is presented. The analytical solution may be applied for the converters connected to highly unbalanced grids and for different grid filter topologies.

  2. Exploring Potential Energy Surfaces of Electronic Excited States in Solution with the EOM-CCSD-PCM Method.

    Science.gov (United States)

    Caricato, Marco

    2012-12-11

    The effect of the solvent on the structure of a molecule in an electronic excited state cannot be neglected. However, the computational cost of including explicit solvent molecules around the solute becomes rather onerous when an accurate method such as the equation of motion coupled cluster singles and doubles (EOM-CCSD) is employed. Solvation continuum models like the polarizable continuum model (PCM) provide an efficient alternative to explicit models, since the solvent conformational average is implicit and the solute-solvent mutual polarization is naturally accounted for. In this work, the coupling of EOM-CCSD and PCM in a state specific approach is presented for the evaluation of energy and analytic energy gradients. Also, various approximations are explored to maintain the computational cost comparable to gas phase EOM-CCSD. Numerical examples are used to test the different schemes.

  3. ARTICLE Photoreaction Behaviors of Two Liquid Crystalline Cinnamoyl Compounds with Different Phase in Solution and Mesomorphic States

    Science.gov (United States)

    Dong, Xiao-ming; Guo, Jin-bao; Wei, Jie

    2010-12-01

    A novel nematic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, and the chemical structures of photodimerization were confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectral analysis. The photoreaction behaviors of these two cinnamoyl compounds in mesomorphic state and solution were investigated, UV-Vis spectral analysis was used to analyze the photoproduct. The results show that the photochemistry of PCPC in nematic state involves both photodimerization and photoisomerization, while CC shows a complex reaction which can be divided into three parts, and this has enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. Additionally, the results of UV-Vis spectral analysis in solutions strongly suggest that UV-Vis spectral analysis can be used to study the kinetic behaviors of cinnamoyl moiety photoreaction.

  4. Luminescence from the ligand to metal charge transfer state of the neptunyl (V) ion and its complexes in solution

    Science.gov (United States)

    Bradshaw, Rebecca; Sykes, Daniel; Natrajan, Louise S.; Taylor, Robin J.; Livens, Francis R.; Faulkner, Stephen

    2010-03-01

    The photophysical properties of the neptunyl (V) ion in aqueous solution have been studied using time-resolved luminescence spectroscopy. While any f-f transitions in emission are too weak to detect using available technology, the ligand to metal charge transfer state is emissive in the visible part of the spectrum. Both the aquo ion and its complexes with bidentate ligands exhibit biexponential decay kinetics, which can be rationalised by slow exchange on the timescale of the experiment.

  5. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.

    Science.gov (United States)

    Zhou, Renjia; Stalder, Romain; Xie, Dongping; Cao, Weiran; Zheng, Ying; Yang, Yixing; Plaisant, Marc; Holloway, Paul H; Schanze, Kirk S; Reynolds, John R; Xue, Jiangeng

    2013-06-25

    Advances in colloidal inorganic nanocrystal synthesis and processing have led to the demonstration of organic-inorganic hybrid photovoltaic (PV) cells using low-cost solution processes from blends of conjugated polymer and colloidal nanocrystals. However, the performance of such hybrid PV cells has been limited due to the lack of control at the complex interfaces between the organic and inorganic hybrid active materials. Here we show that the efficiency of hybrid PV devices can be significantly enhanced by engineering the polymer-nanocrystal interface with proper chemical treatment. Using two different conjugated polymers, poly(3-hexylthiophene) (P3HT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), we show that treating the polymer:nanocrystal hybrid film in an ethanedithiol-containing acetonitrile solution can increase the efficiency of the hybrid PV devices by 30-90%, and a maximum power conversion efficiency of 5.2 ± 0.3% was obtained in the PCPDTBT:CdSe devices at 0.2 sun (AM 1.5G), which was slightly reduced to 4.7 ± 0.3% at 1 sun. The ethanedithiol treatment did not result in significant changes in the morphology and UV-vis optical absorption of the hybrid thin films; however, infrared absorption, NMR, and X-ray photoelectron spectroscopies revealed the effective removal of organic ligands, especially the charged phosphonic acid ligands, from the CdSe nanorod surface after the treatment, accompanied by the possible monolayer passivation of nanorod surfaces with Cd-thiolates. We attribute the hybrid PV cell efficiency increase upon the ethanedithiol treatment to the reduction in charge and exciton recombination sites on the nanocrystal surface and the simultaneous increase in electron transport through the hybrid film.

  6. Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways

    Science.gov (United States)

    Liu, Zongtang; Gu, Chenggang; Bian, Yongrong; Jiang, Xin; Sun, Yufeng; Fei, Zhenghao; Dai, Jingtao

    2017-08-01

    In this study, Fe/Ni bimetallic nanoparticles were supported on the attapulgite (A-Fe/Ni) to enhance the degradation reactivity of decabrominated diphenyl ether (BDE209) in aqueous solution. The Fe/Ni nanoparticles were well distributed on the attapulgite surface with an average diameter of 20-40 nm. The removal percentage of BDE209 by A-Fe/Ni was 1.59 times higher than Fe/Ni nanoparticles alone because attapulgite could act as supporting material to disperse Fe/Ni nanoparticles and prevent Fe/Ni nanoparticles from aggregation. The degradation kinetics for BDE209 debromination by A-Fe/Ni could be well described by a pseudo-first-order model, and the debromination rate constant of BDE209 increased with increasing the dosage of A-Fe/Ni, water/THF ratio, and decreasing the initial BDE209 concentration and solution pH. The degradation products were identified using a third-order polynomial regression equation between the experimental and reference gas chromatography relative retention times. Stepwise debromination from n-bromo-DE to (n  -  1)-bromo-DE was a possible pathway with bromines being substituted sequentially by hydrogen. The preferred elimination of bromines of BDE209 by A-Fe/Ni followed the debromination preference of para-Br  >  meta-Br  >  ortho-Br. The results provide evidences for understanding the debromination mechanism of polybrominated diphenyl ether by clay-supported Fe/Ni nanoparticles.

  7. Study of multi-site chemical exchange in solution state by NMR: 1D ...

    Indian Academy of Sciences (India)

    This work demonstrates a simple 1D NMR approach employing multiply selective excitation to study multi-site exchange processes in solution, applying it to systems that exhibit three-site exchange. This approach involves simultaneous excitation of all - or a chosen subset of - the exchanging sites by using an appropriately ...

  8. Oligomerization of hydrophobin SC3 in solution : From soluble state to self-assembly

    NARCIS (Netherlands)

    Wang, Xiaoqin; Graveland-Bikker, Johanna F.; Kruif, Cornelis G. de; Robillard, George T.

    2004-01-01

    Hydrophobin SC3 is a protein with special self-association properties that differ depending on whether it is in solution, on an air/water interface or on a solid surface. Its self-association on an air/water interface and solid surface have been extensively characterized. The current study focuses

  9. Bound state solutions of Schrödinger equation for Rydberg potential ...

    African Journals Online (AJOL)

    The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the Rydberg potential energy function D {1 +ar}exp(ar) has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of. Nikiforov-Uvarov (NU) method which is ...

  10. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement.

    Science.gov (United States)

    Whittaker, Christopher A P; Patching, Simon G; Esmann, Mikael; Middleton, David A

    2015-03-07

    NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has recently been utilized in several NMR structural investigations of proteins in the solid-state. Here we utilize paramagnetic relaxation enhancement (PRE) by Mn(2+) with cross-polarization magic-angle spinning (CP-MAS) solid-state NMR to investigate the interaction of a membrane-embedded protein the Na,K-ATPase (NKA) with a cardiotonic steroid inhibitor. The inhibitor, a diacetonide derivate of the cardiac glycoside ouabain, with (13)C labelled acetonide groups in the rhamnose sugar and steroid moieties ([(13)C2]ODA), is 1000-fold less potent than the parent compound. It is shown that the (13)C CP-MAS solid-state NMR spectra of the NKA-[(13)C2]ODA complex exhibit distinct signals for the two (13)C labels of the inhibitor when bound to the ouabain site of membrane-embedded NKA. Recent crystal structures of NKA indicate that the catalytic α-subunit binds a single Mn(2+) in a transmembrane site close to the high-affinity ouabain site. Here, complexation of NKA with Mn(2+) broadens the resonance line from the rhamnose group substantially more than the steroid peak, indicating that the rhamnose group is closer to the Mn(2+) site than is the steroid group. These observations agree with computational molecular docking simulations and are consistent with ODA adopting an inverted orientation compared to ouabain in the cardiac glycoside site, with the modified rhamnose group drawn toward the transmembrane centre of the protein. This work demonstrates that PRE can provide unique information on the positions and orientations of ligands within their binding pockets of transmembrane proteins.

  11. Enhancement mechanisms behind exclusive removal and selective recovery of copper from salt solutions with an aminothiazole-functionalized adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chao; Liu, Fu-qiang, E-mail: jogia@163.com; Gao, Jie; Li, Lan-juan; Bai, Zhi-ping, E-mail: baizp@nju.edu.cn; Ling, Chen; Zhu, Chang-qing; Chen, Da; Li, Ai-min

    2014-09-15

    Graphical abstract: - Highlights: • Exclusive removal and selective recovery of copper from salt solutions was achieved. • Interaction mechanisms and selective adsorption mechanisms were depicted. • Geometric structure of complex was optimized and affirmed by DFT. • Enhancement mechanism of salts was further investigated. - Abstract: The aminothiazole-functionalized adsorbent (CEAD) could exclusively remove and to selectively recover copper. The adsorption and separation properties of Cu(II) onto CEAD from aqueous media, with or without salts such as NaNO{sub 3}, Ca(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2}, were systematically compared by carrying out single, binary and multiple component static and dynamic experiments. In binary systems, the adsorption capacities of Cu(II) were obviously increased by 39.47%, 47.37% and 57.89% with Ni(NO{sub 3}){sub 2}, NaNO{sub 3} and Ca(NO{sub 3}){sub 2}, respectively. Besides, simulation study was performed to selectively recover Cu(II) from multi-component aqueous media, with the separation factor of only 54.91 in aqueous media without salts. The separation factor became infinite in the presence of NaNO{sub 3} and the enhancement ratio for Cu(II) was raised by 126.31%. Dynamic adsorption could separate Cu(II) and Ni(II) completely and the amount of effluent for pure Ni(II) increased to 127 BV with the help of NaNO{sub 3}. In the predominant chelating mode simulated by density functional theory calculation, a metal ion coordinated with three nitrogen atoms and formed a chelating complex with two five-membered rings, and Cu(II) showed stronger coordinating ability than Ni(II) did. Meanwhile, anions exerted significant beneficial effects by electrostatic screening, and thus strengthened the exclusive removal and selective recovery of Cu(II)

  12. Photofragmentations, state interactions, and energetics of Rydberg and ion-pair states: resonance enhanced multiphoton ionization via E and V (B) states of HCl and HBr.

    Science.gov (United States)

    Long, Jingming; Wang, Huasheng; Kvaran, Ágúst

    2013-01-28

    (2 + n) resonance enhanced multiphoton ionization mass spectra for resonance excitations to diabatic E(1)Σ(+) (v') Rydberg and V (1)Σ(+) (v') ion-pair states (adiabatic B(1)Σ(+)(v') states) of H(i)Cl (i = 35,37) and H(i)Br (i = 79,81) were recorded as a function of excitation wavenumber (two-dimensional REMPI). Simulation analyses of ion signal intensities, deperturbation analysis of line shifts and interpretations of line-widths are used to derive qualitative and quantitative information concerning the energetics of the states, off-resonance interactions between the E states and V states, closest in energy as well as on predissociation channels. Spectroscopic parameters for the E(1)Σ(+) (v')(v' = 1) for H(35)Cl and v' = 0 for H(79)Br states, interaction strengths for E - V state interactions and parameters relevant to dissociation of the E states are derived. An overall interaction and dynamical scheme, to describe the observations for HBr, is proposed.

  13. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    Science.gov (United States)

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  14. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    Science.gov (United States)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  15. Enhancing Performance and Uniformity of Perovskite Solar Cells via a Solution-Processed C70 Interlayer for Interface Engineering.

    Science.gov (United States)

    Zhou, Ya-Qing; Wu, Bao-Shan; Lin, Guan-Hua; Li, Yang; Chen, Di-Chun; Zhang, Peng; Yu, Ming-Yu; Zhang, Bin-Bin; Yun, Da-Qin

    2017-10-04

    Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C70 interlayer between TiO2 and (HC(NH2)2PbI3)x(CH3NH3PbCl3)1-x is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO2/C70 ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C70 molecules. In comparison with pristine TiO2-based PSCs, the efficiency and hysteresis index are, respectively, enhanced 28% and reduced 76% by adding the C70 interlayer between TiO2 and perovskite on the basis of statistical data of more than 50 cells. With the main advantages of low-temperature process and optimized interface, the champion efficiency of PSCs on flexible substrates could exceed 12% in contrast with the above 18% on rigid substrate.

  16. Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation.

    Science.gov (United States)

    Nagahama, Koji; Mori, Yousuke; Ohya, Yuichi; Ouchi, Tatsuro

    2007-07-01

    Monodisperse stereocomplex nanogels were obtained through the self-assembly of an equimolar mixture of dextran-graft-poly(L-lactide) (Dex-g-PLLA) and dextran-graft-poly(D-lactide) (Dex-g-PDLA) amphiphilic copolymers with well-defined composition in a dilute aqueous solution. The stereocomplex nanogel possessed partially crystallized cores of hydrophobic polylactide (PLA) and the hydrophilic dextran skeleton by intra- and/or intermolecular self-assembly between PLLA and PDLA chains. The stereocomplex nanogels exhibited significantly lower critical aggregation concentration (CAC) value as well as stronger thermodynamic stability compared with those of the corresponding L- or D-isomer nanogels. The mean diameter of the stereocomplex nanogels was 70 nm with narrow size distribution, implying they were well-defined and presumably nanogels. Furthermore, stereocomplex nanogel exhibited strong kinetic stability. The tunable degradation properties of Dex-g-PLA nanogels were achieved by varying the number of grafted PLA chains as well as applying stereocomplexation. This study demonstrates the advantage of stereocomplexation in the design of biodegradable nanogels with enhanced stability.

  17. Enhancing Ion Transfer in Overlimiting Electrodialysis of Dilute Solutions by Modifying the Surface of Heterogeneous Ion-Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Natalia Pismenskaya

    2012-01-01

    Full Text Available The desalination of dilute NaCl solutions with heterogeneous Russian commercial and modified ion-exchange membranes was studied in a laboratory cell imitating desalination channels of large-scale electrodialysers. The modification was made by casting a thin film of a Nafion-type material on the surface of cation-exchange membrane, and by processing with a strong polyelectrolyte the surface of anion-exchange membrane. It was shown that the modifications resulted in an increase of mass transfer coefficient and in a decrease in water splitting rate, both by up to 2 times. The effect of mass transfer growth is explained by higher surface hydrophobicity of the modified membrane that enhances electroconvection. The decrease in water splitting rate in the case of cation-exchange membrane is due to homogenization of its surface layer. In the case of anion-exchange membrane the effect is due to grafting of quaternary ammonium bases onto the original membrane surface layer. The suppression of water splitting favors development of electroconvection. In turn, intensive electroconvection contributes to deliver salt ions to membrane surface and thus reduces water splitting.

  18. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Oktaviani, Nur Alia [University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (Netherlands); Risør, Michael W. [University of Aarhus, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry (Denmark); Lee, Young-Ho [Osaka University, Institute for Protein Research (Japan); Megens, Rik P. [University of Groningen, Stratingh Institute for Chemistry (Netherlands); Jong, Djurre H. de; Otten, Renee; Scheek, Ruud M. [University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (Netherlands); Enghild, Jan J. [University of Aarhus, Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics (Denmark); Nielsen, Niels Chr. [University of Aarhus, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry (Denmark); Ikegami, Takahisa [Yokohama City University, Graduate School of Medical Life Science (Japan); Mulder, Frans A. A., E-mail: fmulder@chem.au.dk [University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (Netherlands)

    2015-06-15

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T{sub 1} relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T{sub 1} values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in ‘proton-less’ NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α{sub 1}-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.

  19. Smoluchowski aggregation-fragmentation equations: Fast numerical algorithm for steady-state solution

    OpenAIRE

    Stadnichuk, Vladimir; Bodrova, Anna; Brilliantov, Nikolai

    2015-01-01

    We propose an efficient and fast numerical algorithm of finding a \\emph{stationary} solution of large systems of aggregation-fragmentation equations of Smoluchowski type for concentrations of reacting particles. This method is applicable when the stationary concentrations steeply decreases with increasing aggregate size, which is fulfilled for the most important cases. We show that under rather mild restrictions, imposed on the kernel of the Smoluchowski equation, the following numerical proc...

  20. Chapter 6. Scaling Up Solutions to State, National and Global Levels

    OpenAIRE

    Daniel Kammen; Doug Rotman; Magali Delmas; David Feldman; Mike Mielke; Ramamoorthy Ramesh; Daniel Sperling

    2016-01-01

    Scaling-up solutions require learning and adapting lessons between locations and at different scales. To accomplish this, common metrics are vital to building a shared language. For California, this has meant careful financial, cradle-to-grave life-cycle assessment methods leading to carbon accounting in many avenues of government (via the Low Carbon Fuel Standard or the Cap and Trade program). These methods themselves interact, such as the use of carbon accounting for the resources needed to...

  1. ENHANCEMENT OF SOLID STATE FERMENTATION FOR PRODUCTION OF PENICILLIN G ON SUGAR BEET PULP

    OpenAIRE

    Evrim Taşkın; Rengin Eltem; Esra Soyak

    2010-01-01

    In this study, two local strains of Penicillium chrysogenum named EGEK458 and EGEK469 were selected for enhancement of Penicillin G (PenG) production under solid state fermentation (SSF) conditions. These two strains were selected among seven strains according to their fermentation yields for PenG production during previous tests under submerged fermentation conditions. Sugar beet pulp, an agro-industrial residue of the sugar industry, was used as an inert support for the first time in PenG ...

  2. Transient NOE enhancement in solid-state MAS NMR of mobile systems.

    Science.gov (United States)

    Cui, Jiangyu; Li, Jun; Peng, Xinhua; Fu, Riqiang

    2017-11-01

    It has been known that the heteronuclear cross-relaxation affects the dilute S spin magnetization along the longitudinal direction, causing an overshoot phenomenon for those mobile systems in spin-lattice relaxation rate measurements. Here, we analyze the Solomon equations for an I-S system and derive the transient cross relaxation effect as to when an overshoot phenomenon would take place and what the maximum enhancement could be at the time of the overshoot. In order to utilize such a transient nuclear Overhauser effect (NOE), we first time apply it to dynamic solid samples by inverting the (1)H magnetization prior to the excitation of the S spin. It is found that the overshoot depends on the ratio of the I and S spin-lattice relaxation rates, i.e. RSS/RII. When RSS/RII≫1, the maximum enhancement factor for transient NOE could be larger than that obtained in steady-state NOE experiments. Furthermore, transient NOE appears to be more efficient in terms of sensitivity enhancement of dilute spins in solid-state NMR of mobile systems than the traditional cross polarization scheme whose efficiency is greatly compromised by molecular mobility. A sample of natural abundance l-isoleucine amino acid, in which the spin-lattice relaxation rates for the four methyl carbons are different, has been used to demonstrate sensitivity enhancement factors under various experimental schemes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparison between field measurements and numerical simulation of steady-state solute transport in a heterogeneous soil profile

    Directory of Open Access Journals (Sweden)

    J. Vanderborght

    1997-01-01

    Full Text Available Abstract: Field-scale solute dispersion is determined by water flow heterogeneity which results from spatial variability of soil hydraulic properties and soil moisture state. Measured variabilities of soil hydraulic properties are highly sensitive to the experimental method. Field-scale dispersion derived from leaching experiments in a macroporous loam soil was compared with field-scale dispersion obtained with numerical simulations in heterogeneous random fields. Four types of random fields of hydraulic properties having statistical properties derived from four different types of laboratory measurements were considered. Based on this comparison, the measurement method depicting heterogeneities of hydraulic properties most relevant to field-scale solute transport was identified. For unsaturated flow, the variability of the hydraulic conductivity characteristic measured on a small soil volume was the most relevant parameter. For saturated flow, simulated dispersion underestimated the measured dispersion and it was concluded that heterogeneity of macroscopic hydraulic properties could not represent solute flow heterogeneity under these flow conditions. Field-scale averaged solute concentrations depend both on the detection method and the averaging procedure. Flux-averaged concentrations (relevant to practical applications differ from volume-averaged or resident concentrations (easy to measure, especially when water flow is more heterogeneous. Simulated flux and resident concentrations were subsequently used to test two simple one-dimensional transport models in predicting flux concentrations when they are calibrated on resident concentrations. In the first procedure, solute transport in a heterogeneous soil is represented by a 1-D convection dispersion process. The second procedure was based on the relation between flux and resident concentrations for a stochastic convective process. Better predictions of flux concentrations were obtained using

  4. Scattering state solutions of the Duffin-Kemmer-Petiau equation with the Varshni potential model

    Energy Technology Data Exchange (ETDEWEB)

    Oluwadare, O.J. [Federal University Oye-Ekiti, Department of Physics, Oye-Ekiti, Ekiti State (Nigeria); Oyewumi, K.J. [Federal University of Technology, Department of Physics, Minna, Niger State (Nigeria)

    2017-02-15

    The scattering state of the Duffin-Kemmer-Petiau equation with the Varshni potential was studied. The asymptotic wave function, the scattering phase shift and normalization constant were obtained for any J states by dealing with the centrifugal term using a suitable approximation. The analytical properties of the scattering amplitude and the bound state energy were obtained and discussed. Our numerical and graphical results indicate that the scattering phase shift depends largely on total angular momentum J, screening parameter β and potential strengths a and b. (orig.)

  5. General three-state model with biased population replacement: analytical solution and application to language dynamics.

    Science.gov (United States)

    Colaiori, Francesca; Castellano, Claudio; Cuskley, Christine F; Loreto, Vittorio; Pugliese, Martina; Tria, Francesca

    2015-01-01

    Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent-based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low-frequency state, where the lemma becomes fully regular, and a high-frequency one, where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three-state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known naming game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three-state model, although discussed in terms of language dynamics, are widely applicable.

  6. Effect of Lanthanide Ions on Dynamic Nuclear Polarization Enhancement and Liquid State T1 Relaxation

    Science.gov (United States)

    Gordon, Jeremy; Fain, Sean B.; Rowland, Ian J

    2012-01-01

    In the dynamic nuclear polarization process, microwave irradiation facilitates exchange of polarization from a radical’s unpaired electron to nuclear spins at cryogenic temperatures, increasing polarization by >10000. Doping samples with Gd3+ ions further increases the achievable solid-state polarization. However, upon dissolution, paramagnetic lanthanide metals can be potent relaxation agents, decreasing liquid-state polarization. Here, the effects of lanthanide metals on the solid and liquid-state magnetic properties of [1-13C]pyruvate are studied. The results show that in addition to gadolinium, holmium not only increases the achievable polarization but also the rate of polarization. Liquid-state relaxation studies found that unlike gadolinium, holmium minimally affects T1. Additionally, results reveal that linear contrast agents dissociate in pyruvic acid, greatly reducing liquid-state T1. While macrocyclic agents do not readily dissociate, they yield lower solid-state polarization. Results indicate that polarization with free lanthanides and subsequent chelation during dissolution produces the highest polarization enhancement while minimizing liquid-state relaxation. PMID:22367680

  7. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation

    KAUST Repository

    Chen, Mark S.

    2013-12-26

    Efficient charge carrier transport in organic field-effect transistors (OFETs) often requires thin films that display long-range order and close π-π packing that is oriented in-plane with the substrate. Although some polymers have achieved high field-effect mobility with such solid-state properties, there are currently few general strategies for controlling the orientation of π-stacking within polymer films. In order to probe structural effects on polymer-packing alignment, furan-containing diketopyrrolopyrrole (DPP) polymers with similar optoelectronic properties were synthesized with either linear hexadecyl or branched 2-butyloctyl side chains. Differences in polymer solubility were observed and attributed to variation in side-chain shape and polymer backbone curvature. Averaged field-effect hole mobilities of the polymers range from 0.19 to 1.82 cm2/V·s, where PDPP3F-C16 is the least soluble polymer and provides the highest maximum mobility of 2.25 cm2/V·s. Analysis of the films by AFM and GIXD reveal that less soluble polymers with linear side chains exhibit larger crystalline domains, pack considerably more closely, and align with a greater preference for in-plane π-π packing. Characterization of the polymer solutions prior to spin-coating shows a correlation between early onset nanoscale aggregation and the formation of films with highly oriented in-plane π-stacking. This effect is further observed when nonsolvent is added to PDPP3F-BO solutions to induce aggregation, which results in films with increased nanostructural order, in-plane π-π orientation, and field-effect hole mobilities. Since nearly all π-conjugated materials may be coaxed to aggregate, this strategy for enhancing solid-state properties and OFET performance has applicability to a wide variety of organic electronic materials. © 2013 American Chemical Society.

  9. Ab initio QM/MM excited-state molecular dynamics study of coumarin 151 in water solution

    Science.gov (United States)

    Kina, Daisuke; Arora, Pooja; Nakayama, Akira; Noro, Takeshi; Gordon, Mark S.; Taketsugu, Tetsuya

    Ab initio molecular dynamics (AIMD) simulations are performed to investigate the excited state dynamics of coumarin 151 (C151) in the gas phase and in water solution at the CASSCF level of theory with segmented DZP basis sets, where in the latter case effective fragment potentials (EFP) are used. The dipole moment of an isolated C151 molecule increases considerably upon electronic vertical excitation, from 5.0 D (S0 state) to 11.1 D (S1 state). Two equilibrium structures have been identified in the S1 state, i.e., a charge-transfer state with a planar amino group and a deformed structure of the six-membered ring with the carbonyl group, and a structure that is similar to the S0 equilibrium structure. In AIMD simulations for an isolated C151 molecule (presumably similar to dynamics in nonpolar solvents), C151 decays from S1 to S0 via a crossing point of the charge-transfer state in some trajectories, while in the AIMD simulations for C151-EFP (including solvent), the S1 and S0 energies show an almost parallel energy variation with structural changes, and no crossing point is observed. This result is in good agreement with the experimental observation.

  10. Miscibility Studies of Hydroxypropyl Cellulose/Poly(Ethylene Glycol in Dilute Solutions and Solid State

    Directory of Open Access Journals (Sweden)

    K. Sudharsan Reddy

    2012-01-01

    Full Text Available The miscibility of Hydroxypropyl cellulose (HPC/poly(ethylene glycol (PEG blends over an extended range of concentrations in water. The viscosity, ultrasonic velocity, and refractive index of the above blend solutions have been measured at 30°C. The interaction parameters such as and μ proposed by Chee and α proposed by Sun have been obtained using the viscosity data to probe the miscibility of the polymer blends. The values indicated that the blends were miscible when HPC content is more than 40% in the blend. The obtained results have been confirmed by the ultrasonic velocity and refractive index studies. The films of the blends were prepared by solution casting method using water as a solvent. The prepared films have been characterized by analytical techniques such as FTIR, DSC, X-RD, and SEM to probe the miscibility of HPC/PEG blends. The compatibility in the above compositions may be due to the formation of H-bonding between hydroxyl groups of HPC and etheric oxygen atom of PEG molecules.

  11. Enhanced Prognostic Model for Lithium Ion Batteries Based on Particle Filter State Transition Model Modification

    Directory of Open Access Journals (Sweden)

    Buddhi Arachchige

    2017-11-01

    Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.

  12. Enhanced efficiency in plastic solar cells via energy matched solution processed NiO{sub x} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes [Colorado School of Mines, Physics Dept., Golden, CO (United States); Ndione, Paul F.; Lloyd, Matthew T.; Curtis, Calvin J.; Ginley, David S.; Berry, Joseph J.; Olson, Dana C. [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Widjonarko, N. Edwin [University of Colorado, Physics Dept., Boulder, CO (United States); Meyer, Jens; Kahn, Antoine [Princeton University, Electrical Engineering Dept., Princeton, NJ (United States); Ratcliff, Erin L.; Armstrong, Neal R. [University of Arizona, Dept. of Chemistry and Biochemistry and Center for Interface Science, Solar Electric Materials, Tucson, AZ (United States)

    2011-10-15

    We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work-function of the hole collecting indium-tin oxide (ITO) contact, modified with a solution-processed nickel oxide (NiO{sub x}) hole-transport layer (HTL), is matched to the ionization potential of the donor material in a bulk-heterojunction solar cell. Addition of the NiO{sub x} HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiO{sub x} films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiO{sub x} HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiO{sub x} HTL is shown to provide superior contact properties by increasing the ITO/NiO{sub x} contact work-function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiO{sub x} interface with the poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothidiazole)) (PCDTBT):[6,6]-phenyl-C61 butyric acid methyl ester PCBM and [6,6]-phenyl-C71 butyric acid methyl ester (PC{sub 70}BM) active layer. A high work-function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity.

    Directory of Open Access Journals (Sweden)

    Zhujian Huang

    Full Text Available To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2 was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt was functionalized with 3-aminopropyl triethoxysilane (APTES to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater.

  14. Ground-state properties of the two-site Hubbard-Holstein model: an exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuyu; Wang Xiaoguang [Department of Physics, Zhejiang University, Hangzhou 321004 (China); Liu Tao; Wang Kelin [Department of Physics, Southwest University of Science and Technology, Mianyang 621010 (China); Chen Qinghu, E-mail: qhchen@zju.edu.c [Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2009-10-14

    We study the two-site Hubbard-Holstein model by using an extended phonon coherent state. For the nontrivial singlet bipolarons, the double occupancy probability, the fidelity and the entanglement entropy are calculated to characterize the ground-state properties in both two-site and single-site bipolaron-dominated regimes. We use the localized minimum of the fidelity to define a crossover and plot the bipolaron phase diagram, which separates the large and small entanglement region. Furthermore, the relation between the bipolaron entanglement and the correlation functions demonstrates that the large entanglement corresponds to the large magnitude of lattice deformations induced by electrons.

  15. Training state agency personnel in satellite remote sensing technology - Solutions to a special problem

    Science.gov (United States)

    Short, N. M.

    1980-01-01

    To aid state/local agencies in starting effective programs to apply Landsat and other remote sensing data, NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has developed a comprehensive training program as part of its technology transfer mission. Skills in data processing and interpretation are produced through 'hands-on' experience with computer techniques used to conduct practical applications involving state-oriented projects, conducted jointly by agencies and ERRSAC. In time, ERRSAC will shift much of these training activities to universities where future agency personnel can obtain a broader foundation in remote sensing.

  16. Wireless Sensor Network Security Enhancement Using Directional Antennas: State of the Art and Research Challenges.

    Science.gov (United States)

    Curiac, Daniel-Ioan

    2016-04-07

    Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.

  17. Wireless Sensor Network Security Enhancement Using Directional Antennas: State of the Art and Research Challenges

    Directory of Open Access Journals (Sweden)

    Daniel-Ioan Curiac

    2016-04-01

    Full Text Available Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.

  18. A new class of enhanced kinetic sampling methods for building Markov state models

    Science.gov (United States)

    Bhoutekar, Arti; Ghosh, Susmita; Bhattacharya, Swati; Chatterjee, Abhijit

    2017-10-01

    Markov state models (MSMs) and other related kinetic network models are frequently used to study the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often constructed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains a large number of states and kinetic pathways that are not known a priori. However, the resulting network generally encompasses only parts of the configurational space, and regardless of any additional MD performed, several states and pathways will still remain missing. This implies that the duration for which the MSM can faithfully capture the true dynamics, which we term as the validity time for the MSM, is always finite and unfortunately much shorter than the MD time invested to construct the model. A general framework that relates the kinetic uncertainty in the model to the validity time, missing states and pathways, network topology, and statistical sampling is presented. Performing additional calculations for frequently-sampled states/pathways may not alter the MSM validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at targeting rare states/pathways that contribute most to the uncertainty so that the validity time is boosted in an effective manner. Examples including straightforward 1D energy landscapes, lattice models, and biomolecular systems are provided to illustrate the application of the method. Developments presented here will be of interest to the kinetic Monte Carlo community as well.

  19. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Science.gov (United States)

    Garrison, V.H.; Ward, G.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or

  20. Evaluation and comparison of 1,2-indanedione and 1,8-diazafluoren-9-one solutions for the enhancement of latent fingerprints on porous surfaces.

    Science.gov (United States)

    D'Elia, Valentina; Materazzi, Stefano; Iuliano, Gianpaolo; Niola, Luca

    2015-09-01

    1,2-indanedione (1,2-IND) and 1,8-diazafluoren-9-one (DFO) are used in the forensic field to enhance latent fingerprints deposited on porous surfaces due to the formation of fluorescent products by reacting with the amino acids present in the papillary exudate. The study was carried out in collaboration with the Fingerprints and Photography Section of the Carabinieri Scientific Investigation Department (RIS) of Rome, in which laboratories, until now, DFO has been the most used because of its excellent enhancing properties, even if it is more expensive and relatively toxic in comparison with the 1,2-IND. The aim of this work was then to evaluate and to compare the effectiveness of three solutions of 1,2-IND in different formulations and a DFO solution employed as single enhancing treatments, in order to assess whether it was possible to replace a reagent with the other obtaining equally satisfying results. In this case, white office paper was selected as deposit surface since it also permitted one to observe those reaction products that appear visible to a naked eye. Beside to a qualitative study of the visual characteristic of the enhanced fingerprints, further quantitative studies were conducted on the intensity of fluorescence of the products and on the consumption of amino acids during the reaction. The analyses, which at first were conducted on standard samples, were then repeated on real samples to validate the results obtained. The DFO confirmed its excellent enhancement properties, but also one of the three solutions of 1,2-IND showed comparable properties in terms of enhanced fingerprint definition and stability over time from the completion of a crime. As a result, we proved that a selected 1,2-IND formulation may replace with satisfactory achievements the DFO solution currently employed, providing also advantages from the point of view of safety and cost savings. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Challenges and solutions in immigrant occupational health in the United States: a literature review and comparative analysis.

    Science.gov (United States)

    Tsuji, Hiroshi; Usuda, Kan; Takahashi, Yuka; Kono, Koichi; Tamaki, Junko

    2016-06-07

    Because of the declining birthrate in Japan, an increasing number of companies are hiring immigrants to fill the labor shortage. Although research on migrant occupational health has progressed in the United States, this topic has received little attention in Japan. The aim of this study was to elucidate the current situation, challenges, and solutions surrounding the occupational health of immigrant workers in the United States. Data and selected studies were reviewed and analyzed. The results are discussed, and a few anecdotal experiences in the United States are introduced and compared. Possible causes of disparities in immigrant occupational health fell into the following seven categories. (Keywords for each category are shown in parentheses.) (1) Occupation (hazardous job, injury, missed workday, blue-collar worker, low birth weight); (2) Education (academic record, health literacy, training); (3) Culture (culture-specific, community-based); (4) Environment (poor hygiene, regional disparities, environmental change); (5) Access (language, statistics, workers' compensation, health insurance, voluntary restraint); (6) Infection (tuberculosis, human immunodeficiency virus/AIDS, follow-up); and (7) Discrimination (race, assault, harassment). Lack of data on immigrant workers was found to be a common problem. Some businesses and community groups achieved positive results by simultaneously dealing with multiple aforementioned categories. In the United States, the occupational health of immigrant workers has been studied mainly in terms of health disparities. Possible causes of disparities in immigrant occupational health fell into seven categories. Solutions centered on the keywords in each category were inferred. Some businesses and community groups achieved positive results by simultaneously dealing with multiple aforementioned categories. Occupational health professionals have to take each of seven categories into account to improve immigrant occupational health

  2. Balancing conflicting values: ecosystem solutions in the Pacific Northwest of the United States and Canada.

    Science.gov (United States)

    Richard W. Haynes; Robert C. Szaro; Dennis P. Dykstra

    2005-01-01

    Ecosystem approaches to sustainable forest management in the Pacific Northwest of the United States and Canada have arisen in response to significant changes that have occurred in these societies over the past century or so (Interagency Ecosystem Management Task Force, 1995). One such change as been rapid population growth along the Pacific Coast, where the mild...

  3. Functional Coherence in the State Education Agency: A Structure for Performance Management. Solutions. Issue No. 4

    Science.gov (United States)

    Redding, Sam; Nafziger, Dean

    2013-01-01

    The purpose of the state education agency (SEA) is to focus the entire education system on helping students become capable in college and career in an increasingly complex world. One of the most vexing problems facing SEAs today is how to meet increasing demands for performance while adjusting to significant resource reductions. Meeting that…

  4. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong

    2010-11-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T1) times of 31P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The 31P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τc, the r-6-weighted, time-averaged distances between the spin-labels and the 31P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth. © 2010 Elsevier Inc. All rights reserved.

  5. Caractérisation des solutions de tensio-actif utilisées en récupération assistée Characterization of Surfactant Solutions Used in Enhanced Recovery

    Directory of Open Access Journals (Sweden)

    Moulu J. C.

    2006-11-01

    Full Text Available Des solutions de tensio-actif sont étudiées en vue de déterminer celles qui doivent être les plus efficaces pour le déplacement d'huile résiduelle en milieu poreux. Selon les propriétés de ces solutions au moment de leur injection, un banc d'huile se forme rapidement et progresse au niveau du front de tensio-actif, ou au contraire, les globules d'huile sont entraînés avec une vitesse faible dans l'ensemble du bouchon, les échanges entre les phases peuvent alors être importants. On a donc cherché à évaluer les caractéristiques des solutions en tenant compte des échanges qu'elles ont pu avoir avec l'huile et en particulier dans les deux cas extrêmes : solutions aqueuses sans huile et solutions équilibrées avec un grand volume d'huile. Pour ces deux états des solutions aqueuses, on a mis en évidence des comportements rhéologiques et interfaciaux très différents, dus à la migration d'alcool et d'huile entre les phases en présence. Ces propriétés des solutions de tensio-actif ont par ailleurs été reliées à la présence de structures cristallines et à leur transformation au cours des échanges qui se produisent. Research is being done on surfactant solutions to determine the ones that should be the most efficient for driving residual oil in porous media. Depending on the properties of these solutions at the time of their injection, an oil bank is formed quickly and progresses at the level of the surfactant front or, on the contrary, the oil ganglia are displaced slowly in the slug as a whole, and exchanges between the phases may then be great. Therefore, an effort was made to assess the characteristics of solutions while considering the exchanges they may have had with the oil, and particularly in the two extreme cases, i. e. aqueous solutions without oil and equilibrated solutions with a large volume of oil. For these two states of aqueous solutions, very different rheological and interfacial behaviors were found as

  6. Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method

    Directory of Open Access Journals (Sweden)

    Lizhong Wang

    2015-10-01

    Full Text Available Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA. It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both the photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.

  7. A potential new, stable state of the E-cadherin strand-swapped dimer in solution.

    Science.gov (United States)

    Schumann-Gillett, Alexandra; Mark, Alan E; Deplazes, Evelyne; O'Mara, Megan L

    2018-01-01

    E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.

  8. State conditions transferability of vapor-liquid equilibria via fluctuation solution theory with correlation function integrals from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.J.; Hansen, Flemming Yssing

    2007-01-01

    The ‘State Conditions Transferability’ category of IFPSC 2006 tests prediction of binary vapor–liquid isotherms for mixtures of ethanol and the refrigerant HFF-227ea (1,1,1,2,3,3,3-heptafluoropropane). We predict these isotherms using fluctuation solution theory (FST). The method is based......–457] comprise the nearly ideal benzene/methyl acetate system, and the less ideal benzene/ethanol system at ambient temperatures. Both are at low pressures and remote from the pure component critical points. For the IFPSC system, we have used the same method even though predictions are for conditions remote from...

  9. A Multiple Time-Step Finite State Projection Algorithm for the Solution to the Chemical Master Equation

    Science.gov (United States)

    2006-11-30

    begins in state k, the initial probability distribution for the CME was written, pi(0) = δik, where δik is the Kronecker delta . Suppose now that the...initial distribution is given not by the Kronecker delta but by a vector with many non-zero elements. For example, suppose that the initial distribution is...pap-pili epigenetic switch,” Proc. FOSBE , pp. 145–148, August 2005. [16] B. Munsky and M. Khammash, “A reduced model solution for the chemical master

  10. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  11. The use of dopamine enhancing medications with children in low response states following brain injury.

    Science.gov (United States)

    Patrick, P D; Buck, M L; Conaway, M R; Blackman, J A

    2003-06-01

    The study examines the possible relationship between dopamine-enhancing medications and improvement of arousal and awareness in children during persistent low response states (Rancho Los Amigos Levels I, II and III). A retrospective review was conducted of 10 children enrolled in an existing clinical protocol. The Kluge Children's Rehabilitation Center (KCRC) low response protocol provides a double baseline serial measure (A, A, B, B, B) design. Scores on the Western NeuroSensory Stimulation Profile (WNSSP) are the dependent variable. Ten children, mean age of 13.7 years low response state (30 days or more) who were treated with dopamine agonists. Co-morbid or iatrogenic influences were addressed or ruled out. Seven children had traumatic brain injury, one cerebral vascular accident, one anoxia and one encephalitis. On average, dopamine medications were started 52.9 days post-event. Paired t-test of WNSSP scores before medications and on medications were significant at p = 0.03 (paired t-test). Also, the distributions of the slopes (rates of change of WNSSP scores over time) were significantly different in the pre-medication and medication phases (Paired T-test, p = 0.02). Random coefficient model comparison of individuals during pre- and medication phase response variability on WNSSP yielded F-test at p = 0.02. These results suggest a promising relationship between acceleration of recovery for some children in a low response state and administration of dopamine-enhancing medications.

  12. Radiative absorption enhancements due to the mixing state of atmospheric black carbon.

    Science.gov (United States)

    Cappa, Christopher D; Onasch, Timothy B; Massoli, Paola; Worsnop, Douglas R; Bates, Timothy S; Cross, Eben S; Davidovits, Paul; Hakala, Jani; Hayden, Katherine L; Jobson, B Tom; Kolesar, Katheryn R; Lack, Daniel A; Lerner, Brian M; Li, Shao-Meng; Mellon, Daniel; Nuaaman, Ibraheem; Olfert, Jason S; Petäjä, Tuukka; Quinn, Patricia K; Song, Chen; Subramanian, R; Williams, Eric J; Zaveri, Rahul A

    2012-08-31

    Atmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions. The observed E(abs) is small-6% on average at 532 nm-and increases weakly with photochemical aging. The E(abs) is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E(abs) for BC are possible.

  13. Mg(OH)2 Supported Nanoscale Zero Valent Iron Enhancing the Removal of Pb(II) from Aqueous Solution.

    Science.gov (United States)

    Liu, Minghui; Wang, Yonghao; Chen, Luntai; Zhang, Yan; Lin, Zhang

    2015-04-22

    In this article, a novel composite (Mg(OH)2 supported nanoscale zerovalent iron (denoted as nZVI@Mg(OH)2) was prepared and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy method. The morphology analysis revealed that Mg(OH)2 appeared as self-supported flower-like spheres, and nano Fe0 particles were uniformly immobilized on the surface of their "flower petals", thus aggregation of Fe0 particles was minimized. Then the Pb(II) removal performance was tested by batch experiments. The composite presented exceptional removal capacity (1986.6 mg/g) compared with Mg(OH)2 and nanoscale zerovalent iron due to the synergistic effect. Mechanisms were also explored by a comparative study of the phase, morphology, and surface valence state of composite before and after reaction, indicating that at least three paths are involved in the synergistic removal process: (1) Pb(II) adsorption by Mg(OH)2 (companied with ion exchange reaction); (2) Pb(II) reduction to Pb0 by nanoscale zerovalent iron; and (3) Pb(II) precipitation as Pb(OH)2. The hydroxies provided by Mg(OH)2 can dramatically promote the role of nanoscale zerovalent iron as reducer, thus greatly enhancing the whole Pb(II) sequestration process. The excellent performance shown in our research potentially provides an alternative technique for Pb(II) pollution treatment.

  14. Hopping conduction via highly localized impurity states of indium in PbTe and its solid solutions. Review

    CERN Document Server

    Ravich, Y I

    2002-01-01

    Results of experimental investigation of the transport phenomena in PbTe and Pb sub 1 sub - sub x Sn sub x Te solid solutions with high contents of In impurity (up to 20 at %) at temperatures up to 400 K have been considered. An analysis of the experimental data has been made on the base of an idea of hopping conductivity via highly localized impurity states creates by indium atoms. The temperature dependences of transport coefficients unusual for the IV-VI-type semiconductors, the change of sing of the thermoelectromotive force at negative Hall coefficient, the positive Nernst-Ettingshausen coefficient are explained. The activation energy of the hoping conductivity, characterizing discrepancy between impurity energy levels the effective wave function radius and the density of localized states as the energy function are found experimentally

  15. Evaluation of a peer assessment approach for enhancing the organizational capacity of state injury prevention programs.

    Science.gov (United States)

    Hunter, Wanda M; Schmidt, Ellen R; Zakocs, Ronda

    2005-01-01

    To conduct a formative and pilot impact evaluation of the State Technical Assessment Team (STAT) program, a visitation-based (visitatie) peer assessment program designed to enhance the organizational capacity of state health department injury prevention programs. The formative evaluation was based on observational, record review, and key informant interview data collected during the implementation of the first 7 STAT visits. Pilot impact data were derived from semi-structured interviews with state injury prevention personnel one year after the visit. Formative evaluation identified 6 significant implementation problems in the first visits that were addressed by the program planners, resulting in improvements to the STAT assessment protocol. Impact evaluation revealed that after one year, the 7 state injury prevention programs had acted on 81% of the recommendations received during their STAT visits. All programs reported gains in visibility and credibility within the state health department and increased collaboration and cooperation with other units and agencies. Other significant program advancements were also reported. Specific program standards and review procedures are important to the success of peer assessment programs such as STAT. Early impact evaluation suggests that peer assessment protocols using the visitatie model can lead to gains in organizational capacity.

  16. Semantic Entity-Component State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.

    Science.gov (United States)

    Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich

    2017-04-01

    Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

  17. The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions

    Directory of Open Access Journals (Sweden)

    Katherine Tully

    2015-05-01

    Full Text Available The primary cause of soil degradation in sub-Saharan Africa (SSA is expansion and intensification of agriculture in efforts to feed its growing population. Effective solutions will support resilient systems, and must cut across agricultural, environmental, and socioeconomic objectives. While many studies compare and contrast the effects of different management practices on soil properties, soil degradation can only be evaluated within a specific temporal and spatial context using multiple indicators. The extent and rate of soil degradation in SSA is still under debate as there are no reliable data, just gross estimates. Nevertheless, certain soils are losing their ability to provide food and essential ecosystem services, and we know that soil fertility depletion is the primary cause. We synthesize data from studies that examined degradation in SSA at broad spatial and temporal scales and quantified multiple soil degradation indicators, and we found clear indications of degradation across multiple indicators. However, different indicators have different trajectories—pH and cation exchange capacity tend to decline linearly, and soil organic carbon and yields non-linearly. Future research should focus on how soil degradation in SSA leads to changes in ecosystem services, and how to manage these soils now and in the future.

  18. Investigation of solutions of state-dependent multi-impulsive boundary value problems

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084. xml

  19. New analytical solution for solving steady-state heat conduction problems with singularities

    Directory of Open Access Journals (Sweden)

    Laraqi Najib

    2013-01-01

    Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.

  20. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    Science.gov (United States)

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  1. Models of the physicochemical state of saturated solutions and the mechanism of crystallization in the system CsCl-CuCl/sub 2/-H/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, L.V.

    1987-09-01

    Models were proposed for the physicochemical state of heterogeneous solutions of the system CsCl-CuCl/sub 2/-H/sub 2/O and the chemistry of the crystallization of solid phases of the system. The interaction of saturated solutions of CsCl and CuCl/sub 2/ is accompanied by the formation of aquachloride copper complexes of different composition and structure and also chloride copper complexes, characteristic of the structure of a growing crystal. The effect of the structural state of the solutions on the crystal growth was studied. By appropriately choosing the optimal conditions for crystal growth from the solubility diagrams, changing the pH of the solutions, and disordering of the structural state of the crystallizing solutions, it is possible to affect the chemistry of the crystallization processes.

  2. Synthesis of Pyridine– and Pyrazine–BF 3 Complexes and Their Characterization in Solution and Solid State

    Energy Technology Data Exchange (ETDEWEB)

    Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang; Assary, Rajeev S.; Kowalski, Jeffrey A.; Barton, John L.; Bertke, Jeffery A.; Gray, Danielle L.; Brushett, Fikile R.; Curtiss, Larry A.; Moore, Jeffrey S.

    2016-03-31

    Following the discovery of the redox-active 1,4- bis-BF3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1D and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.

  3. Steady-state solutions for the motion of a globular cluster in an inhomogeneous, rotating elliptical galaxy

    Science.gov (United States)

    Gasanov, S. A.

    2012-06-01

    Steady-state solutions for the motion of a passively gravitating globular cluster (GC) inside an inhomogeneous, rotating, ellipsoidal elliptical galaxy (EG) are considered. It is assumed that an EG with a halo is comprised of a triaxial ellipsoid consisting of two layers. The first is formed by an inner, uniform ellipsoid representing the luminous part of the galaxy, while the second corresponds to the space between an inner and outer ellipsoid, which is uniformly filled with dark matter. The triaxial ellipsoids are taken to be homothetic and to have a common center; the space between them is called a homeoid. The outer boundary of the homeoid is the boundary of the galaxy halo. The densities of the luminous part of the EG and the homeoid are different. This picture of an EG is in agreement with our current understanding of galactic structure. The motion of the GC occurs outside the luminous part of the EG, but inside the homeoid, which is treated like a perturbing body. Steady-state solutions (libration points) are found for the GC, and its Lyapunov stability determined. The elliptical galaxies NGC 4472 (M49), NGC 4636, and NGC 4374, which contain a large number of GCs, are used as examples. Analysis of these galaxies shows that the exact expression for the potential of the luminous part of the EG must be used to find the libration points and study their stability, rather than an approximate expression for this potential.

  4. An integrated low carbon energy solution to cooking fuel, tailored to Niger state's rural population

    Science.gov (United States)

    Carvell, Aaron; Price-Allison, Andrew; Birch, Calum; Green, Toby; Harijan, Khanji; Maihankuri, Sheidi; Raji, Abdulganiy; Uqaili, Mohammed; Dupont, Valerie

    2017-11-01

    Niger State (Nigeria) was selected as a case study of renewable, affordable and user friendly clean energy provision in remote areas of developing countries. Niger state has 80% of its 4.5 million population living in rural agrarian areas with low literacy rates, there is a lack of wind thus eliminating wind as widely available potential power source. Based on the assessment of the local large insolation, the type of agricultural, biomass and husbandry resources, this study selected the design of anaerobic digestion units processing mostly animal and human waste, and whose heating and power requirement would be entirely provided by solar photovoltaic/thermal to maintain optimum efficiency of the biogas production. The designs was carried out at the scale of up to 15 household demand (community scale). Volume and therefore the production of biogas maybe increased or decreased in the design considered, and local, low cost resilient material were proposed. The proposed system was costed for a community of 24 people, demonstrating the potential for clean and renewable gas production economically.

  5. Self-Consistent Solutions for the Scattering State with Two Free Electrons

    Science.gov (United States)

    Hahn, Y. K.; Gau, J. N.; Zerrad, E.

    2013-11-01

    Wave functions for the scattering states with two free electrons in the field of an ion core are explicitly calculated by the self-consistent, continuum Hartree-Fock (CHF) theory. Typically, such states are associated with the three-body recombination, collisional ionization and photo-double ionization, but have never been directly studied previously. The calculated continuum orbitals are found to be predominantly of the plane-wave forms, as though the system is translation invariant, in the context of many-body HF theory. The symmetry is mildly broken by the presence of the core ion, at about fifteen-percents level, indicating that the orbitals are largely delocalized and the effect of the core potential is an important but minor perturbation. The properties of channel orthogonality and completeness are preserved by the nearly plane wave forms. To test the validity of this finding and the CHF, the continuum orbitals are used to evaluate the amplitudes for the electron impact ionization, and the amputation procedure, that is crucial in the theory, is also critically re-examined.

  6. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  7. Alkylation-, Heating-, and Doping-Induced Emission Enhancement of a Polyaromatic Tube in the Solid State.

    Science.gov (United States)

    Kuroda, Kiyonori; Otsuki, Masafumi; Yazaki, Kohei; Sei, Yoshihisa; Akita, Munetaka; Yoshizawa, Michito

    2018-01-11

    A polyaromatic tube with a subnanometer-sized cavity was efficiently prepared on a gram-scale through the stereo-controlled cyclotrimerization of a diphenylanthracene derivative as a key step. The facile exterior alkylation of the polyaromatic framework leads to a moderately fluorescent tube (R = -OC10H21; ΦF = 20%) in the solid state. The emission intensity of the solid-state alkyl-substituted tube is remarkably enhanced upon heating (up to 1.6 times, ΦF = 31%) as well as doping with fluorescent dyes (up to 4.2 times, ΦF = 83%) through efficient energy transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Using "human state aware" robots to enhance physical human-robot interaction in a cooperative scenario.

    Science.gov (United States)

    Guerrero, Carlos Rodriguez; Fraile Marinero, Juan Carlos; Turiel, Javier Perez; Muñoz, Victor

    2013-11-01

    Human motor performance, speed and variability are highly susceptible to emotional states. This paper reviews the impact of the emotions on the motor control performance, and studies the possibility of improving the perceived skill/challenge relation on a multimodal neural rehabilitation scenario, by means of a biocybernetic controller that modulates the assistance provided by a haptic controlled robot in reaction to undesirable physical and mental states. Results from psychophysiological, performance and self assessment data for closed loop experiments in contrast with their open loop counterparts, suggest that the proposed method had a positive impact on the overall challenge/skill relation leading to an enhanced physical human-robot interaction experience. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Inampudi, Sandeep; Capretti, Antonio [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Sugimoto, Hiroshi [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Fujii, Minoru [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Dal Negro, Luca, E-mail: dalnegro@bu.edu [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary' s Street Boston, Massachusetts 02215 (United States); Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States)

    2015-06-15

    Light emitting silicon quantum dots by colloidal synthesis were uniformly spin-coated into a 20 nm-thick film and deposited atop a hyperbolic metamaterial of alternating TiN and SiO{sub 2} sub-wavelength layers. Using steady-state and time-resolved photoluminescence spectroscopy as a function of the emission wavelength in partnership with rigorous electromagnetic modeling of dipolar emission, we demonstrate enhanced Local Density of States and coupling to high-k modes in a broad spectral range. These findings provide an alternative approach for the engineering of novel Si-compatible broadband sources that leverage the control of radiative transitions in hyperbolic metamaterials and the flexibility of the widespread Si platform.

  10. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Directory of Open Access Journals (Sweden)

    Virginia H. Garrison

    2012-03-01

    Full Text Available In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands in 1999 and was followed for 12 years. The primary objectives were to (1 identify a source of coral colonies for transplantation that would not result in damage to reefs, (2 test the feasibility of transplanting storm-generated coral fragments, and (3 develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae] and another fast-growing species [Porites porites (Poritidae] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and

  11. X-ray solution scattering of squid heavy meromyosin: strengthening the evidence for an ancient compact off state.

    Science.gov (United States)

    Gillilan, Richard E; Kumar, V S Senthil; O'Neall-Hennessey, Elizabeth; Cohen, Carolyn; Brown, Jerry H

    2013-01-01

    The overall conformations of regulated myosins or heavy meromyosins from chicken/turkey, scallop, tarantula, limulus, and scorpion sources have been studied by a number of techniques, including electron microscopy, sedimentation, and pulsed electron paramagnetic resonance. These studies have indicated that the binding of regulatory ions changes the conformation of the molecule from a compact shape found in the "off" state of the muscle to extended relationships between the tail and independently mobile heads that predominate in the "on" state. Here we strengthen the argument for the generality of this conformational change by using small angle X-ray scattering on heavy meromyosin from squid. Small angle X-ray scattering allows the protein to be visualized in solution under mild and relatively physiological conditions, and squid differs from the other species studied by at least 500 million years of evolution. Analysis of the data indicates that upon addition of Ca(2+) the radius of gyration increases. Differences in the squid "on" and "off" states are clearly distinguishable as bimodal and unimodal pair distance distribution functions respectively. These observations are consistent with a Ca(2+)-free squid heavy meromyosin that is compact, but which becomes extended when Ca(2+) is bound. Further, the scattering profile derived from the current model of tarantula heavy meromyosin in the "off" state is in excellent agreement with the measured "off" state scattering profile for squid heavy meromyosin. The previous and current studies together provide significant evidence that regulated myosin's compact off-state conformation is an ancient trait, inherited from a common ancestor during divergent evolution.

  12. Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios; Thomsen, Kaj

    2013-01-01

    to associating mixtures. Wertheim’s association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion–solvent association. Finally, we compare the Debye–Hückel Helmholtz energy obtained using an empirical model with the new physical model......, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new...... methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich...

  13. Power System State Estimation Accuracy Enhancement Using Temperature Measurements of Overhead Line Conductors

    Directory of Open Access Journals (Sweden)

    Wydra Michał

    2016-06-01

    Full Text Available Power system state estimation is a process of real-time online modeling of an electric power system. The estimation is performed with the application of a static model of the system and current measurements of electrical quantities that are encumbered with an error. Usually, a model of the estimated system is also encumbered with an uncertainty, especially power line resistances that depend on the temperature of conductors. At present, a considerable development of technologies for dynamic power line rating can be observed. Typically, devices for dynamic line rating are installed directly on the conductors and measure basic electric parameters such as the current and voltage as well as non-electric ones as the surface temperature of conductors, their expansion, stress or the conductor sag angle relative to the plumb line. The objective of this paper is to present a method for power system state estimation that uses temperature measurements of overhead line conductors as supplementary measurements that enhance the model quality and thereby the estimation accuracy. Power system state estimation is presented together with a method of using the temperature measurements of power line conductors for updating the static power system model in the state estimation process. The results obtained with that method have been analyzed based on the estimation calculations performed for an example system - with and without taking into account the conductor temperature measurements. The final part of the article includes conclusions and suggestions for the further research.

  14. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    Science.gov (United States)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  15. Principles for enhancing the role of state vocational rehabilitation in IPS-supported employment.

    Science.gov (United States)

    Oulvey, Eugene; Carpenter-Song, Elizabeth A; Swanson, Sarah J

    2013-03-01

    Research has established the Individual Placement and Support (IPS) model of supported employment as an effective approach for persons with severe mental illnesses. This article examines strategies for Vocational Rehabilitation (VR) to enhance employment outcomes through better collaboration with IPS programs. Twenty-one focus groups were conducted in rural and urban locations in Illinois with mental health consumers, VR counselors, IPS specialists, and mental health professionals. Thematic analysis was conducted to identify features of strong collaborations between VR and IPS programs. Features of strong collaborations between VR and IPS programs included the following: (a) expertise, (b) consistency, (c) accessibility, and (d) integration. Five recommendations were developed from themes expressed in focus groups: (a) enhance mutual knowledge and understanding between VR and IPS practitioners, (b) examine and modify VR regulations and guidelines that conflict with IPS principles, (c) create clear guidelines for VR participation on IPS teams, (d) create guidelines for good relationships between VR and community mental health centers, and (e) develop tools to promote accountability in VR staff and systems to improve employment outcomes for people with mental illness. Modest changes in the federal/state VR program could enhance that system's capability to foster employment outcomes for persons with severe mental illness. PsycINFO Database Record (c) 2013 APA, all rights reserved

  16. Structural interpretation of paramagnetic relaxation enhancement-derived distances for disordered protein states.

    Science.gov (United States)

    Ganguly, Debabani; Chen, Jianhan

    2009-07-17

    Paramagnetic relaxation enhancement (PRE) is a powerful technique for studying transient tertiary organizations of unfolded and partially folded proteins. The heterogeneous and dynamic nature of disordered protein states, together with the r(-6) dependence of PRE, presents significant challenges for reliable structural interpretation of PRE-derived distances. Without additional knowledge of accessible conformational substates, ensemble-simulation-based protocols have been used to calculate structure ensembles that appear to be consistent with the PRE distance restraints imposed on the ensemble level with the proper r(-6) weighting. However, rigorous assessment of the reliability of such protocols has been difficult without intimate knowledge of the true nature of disordered protein states. Here we utilize sets of theoretical PRE distances derived from simulated structure ensembles that represent the folded, partially folded and unfolded states of a small protein to investigate the efficacy of ensemble-simulation-based structural interpretation of PRE distances. The results confirm a critical limitation that, due to r(-6) weighting, only one or a few members need to satisfy the distance restraints and the rest of the ensemble are essentially unrestrained. Consequently, calculated structure ensembles will appear artificially heterogeneous no matter whether the PRE distances are derived from the folded, partially unfolded or unfolded state. Furthermore, the nature of the heterogeneous ensembles is largely determined by the protein model employed in structure calculation and reflects little on the true nature of the underlying disordered state. These findings suggest that PRE measurements on disordered protein states alone generally do not contain enough information for a reliable structural interpretation and that the latter will require additional knowledge of accessible conformational substates. Interestingly, when a very large number of PRE measurements is

  17. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S

    2015-01-01

    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers

    Science.gov (United States)

    Chen, Hao; Liu, Detao; Wang, Yafei; Wang, Chenyun; Zhang, Ting; Zhang, Peng; Sarvari, Hojjatollah; Chen, Zhi; Li, Shibin

    2017-03-01

    Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical property also improved the fill factors (FF) and power conversion efficiency (PCE) of the solar cells. This study has indicated that the low-temperature solution-processed Al-SnO2 is a promising ETL for commercialization of planar PSCs.

  19. Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers.

    Science.gov (United States)

    Chen, Hao; Liu, Detao; Wang, Yafei; Wang, Chenyun; Zhang, Ting; Zhang, Peng; Sarvari, Hojjatollah; Chen, Zhi; Li, Shibin

    2017-12-01

    Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al(3+) doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical property also improved the fill factors (FF) and power conversion efficiency (PCE) of the solar cells. This study has indicated that the low-temperature solution-processed Al-SnO2 is a promising ETL for commercialization of planar PSCs.

  20. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  1. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence and decommissioning experience and Waste management solutions

    Energy Technology Data Exchange (ETDEWEB)

    Salnikova, Tatiana [AREVA GmbH, Erlangen (Germany); Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-10-15

    Summary report on the Key Topics ''Enhanced Safety and Operation Excellence'' and ''Decommissioning Experience and Waste Management Solutions'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  2. Comparative study of the uses of poly(4-vinylpyridine) and poly(diallyldimethylammonium) chloride for the removal of perchlorate from aqueous solution by polyelectrolyte-enhanced ultrafiltration.

    Science.gov (United States)

    Roach, Jim D; Lane, Rachael F; Hussain, Yasin

    2011-01-01

    An application of polyelectrolyte-enhanced ultrafiltration utilizes cationic polyelectrolytes to electrostatically bind anionic species. The colloid and target anion are then concentrated using an ultrafilter, producing a filtrate with a lower concentration of the target. This study compared the performances of poly(4-vinylpyridine) (P4VP) and poly(diallyldimethylammonium) chloride (PDADMAC) for the removal of perchlorate. Potentiometric titration data revealed that the ionization properties of P4VP in aqueous solution vary as functions of titrant utilized, degree of protonation, and counterion concentration. The greater affinity of perchlorate over chloride for the protonated pyridine residues of P4VP provided up to 95.8% retention of perchlorate under the solution conditions investigated. Through ultrafiltration experiments, the effects solution pH, counterion concentration, and polymer concentration were examined for both P4VP and PDADMAC. In addition, the effectiveness of P4VP recovery and reuse was also assessed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    is compared with a cell with an identical electrode setup but a liquid electrolyte (1 M LiPF6 in EC:DMC). All measurements were carried out at a temperature of 60°C. For the all-solid-state cells, 81% of the theoretical discharge capacity is reached for a discharge rate of 10 μA, but a capacity fade of 1......The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...... the change in the discharge capacity of the cells and changes in the cell impedance over 200 charge-discharge cycles. This is expectedly due to the possible formation of passivating areas in the cell and/or loss of contact area between the electrolyte and the electrodes....

  4. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.

    Directory of Open Access Journals (Sweden)

    Gregory D Friedland

    2009-05-01

    Full Text Available Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR Residual Dipolar Couplings (RDCs. Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.

  5. An automated approach for solution based mesh adaptation to enhance numerical accuracy for a given number of grid cells

    NARCIS (Netherlands)

    Lucas, P.; Van Zuijlen, A.H.; Bijl, H.

    2009-01-01

    Mesh adaptation is a fairly established tool to obtain numerically accurate solutions for flow problems. Computational efficiency is, however, not always guaranteed for the adaptation strategies found in literature. Typically excessive mesh growth diminishes the potential efficiency gain. This

  6. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  7. Impediments and solutions to sustainable, watershed-scale urban stormwater management: lessons from Australia and the United States.

    Science.gov (United States)

    Roy, Allison H; Wenger, Seth J; Fletcher, Tim D; Walsh, Christopher J; Ladson, Anthony R; Shuster, William D; Thurston, Hale W; Brown, Rebekah R

    2008-08-01

    In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.

  8. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  9. Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates considering State Space Method

    Directory of Open Access Journals (Sweden)

    Tieliang Yang

    2016-01-01

    Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.

  10. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  11. Tuberculosis genotyping information management system: enhancing tuberculosis surveillance in the United States.

    Science.gov (United States)

    Ghosh, Smita; Moonan, Patrick K; Cowan, Lauren; Grant, Juliana; Kammerer, Steve; Navin, Thomas R

    2012-06-01

    Molecular characterization of Mycobacterium tuberculosis complex isolates (genotyping) can be used by public health programs to more readily identify tuberculosis (TB) transmission. The Centers for Disease Control and Prevention's National Tuberculosis Genotyping Service has offered M. tuberculosis genotyping for every culture-confirmed case in the United States since 2004. The TB Genotyping Information Management System (TB GIMS), launched in March 2010, is a secure online database containing genotype results linked with case characteristics from the national TB registry for state and local TB programs to access, manage and analyze these data. As of September 2011, TB GIMS contains genotype results for 89% of all culture-positive TB cases for 2010. Over 400 users can generate local and national reports and maps using TB GIMS. Automated alerts on geospatially concentrated cases with matching genotypes that may represent outbreaks are also generated by TB GIMS. TB genotyping results are available to enhance national TB surveillance and apply genotyping results to conduct TB control activities in the United States. Published by Elsevier B.V.

  12. Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution.

    Science.gov (United States)

    Formosinho, Sebastião J; Burrows, Hugh D; da Graça Miguel, Maria; Azenha, M Emília D G; Saraiva, Isabel M; Ribeiro, A Catarina D N; Khudyakov, Igor V; Gasanov, Rashid G; Bolte, Michèle; Sarakha, Mohamed

    2003-05-01

    A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.

  13. Impact of Schwartz enhanced visualization solution on staging colorectal cancer and clinicopathological features associated with lymph node count.

    Science.gov (United States)

    Chapman, Brandon; Paquette, Cherie; Tooke, Chelsea; Schwartz, Michelle; Osler, Turner; Weaver, Donald; Wilcox, Rebecca; Hyman, Neil

    2013-09-01

    Stage-specific survival for colon cancer improves when more lymph nodes are reported in the surgical specimen. This has led to a minimum standard of identifying 12 lymph nodes as a quality indicator. The aim of this study was to determine whether the addition of Schwartz solution increases node yield and impacts pathologic staging. This is a prospective cohort study. The study was conducted in an academic medical center. Included were 104 consecutive patients with colorectal cancer. Lymph node counts before and after specimen treatment with Schwartz solution and incidence of upstaging were measured. An additional 20 minutes (interquartile range, 15-40 minutes) was spent searching for lymph nodes, increasing the median number of nodes from 22.5 to 29.0 nodes. However, only 1 patient was upstaged. Schwartz solution decreased the number of specimens with less than 12 lymph nodes from 15 to 6. The following factors were associated with Schwartz solution leading to the detection of additional nodes: number of nodes detected initially with formalin only (p Schwartz solution increased the number of nodes detected in 95% of patients and improved compliance with the 12-node standard for colon resection, there was minimal impact on cancer staging. Upstaging is unlikely to explain the increase in overall survival in patients with higher lymph node counts, casting doubt on the validity of this process measure as a meaningful quality indicator. Rather, the lymph node count may be a reflection of inherent tumor biology or host-related factors.

  14. Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells.

    Science.gov (United States)

    Loh, Leonard; Briscoe, Joe; Dunn, Steve

    2014-06-21

    This paper reports for the first time the use of perovskite bismuth ferrite (BiFeO3 or BFO) on ZnO-based solid state solar cells using only chemical solution methods for materials synthesis. As ZnO has poor chemical stability in acidic and corrosive environments, a buffer method using aminosilane ((3-aminopropyltriethoxysilane or H2N(CH2)3Si(OC2H5)3)) coating was used to provide a protective coating on the ZnO nanorods. The aminosilane layer was removed after BFO coating. The solid state solar cells, sensitized by N719, used CuSCN as the hole conductor and were tested under 100 mW cm(-2), AM 1.5G simulated sunlight. The photovoltaic performance showed current density improvement from 0.64 mA cm(-2) to 1.4 mA cm(-2) and efficiencies from 0.1% to 0.38% when comparing between ZnO and ZnO/BFO solar cells. The observed ca. 400% improved performance is shown to result from BFO's role as an electron blocking layer.

  15. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    2016-08-30

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, where encouraging results have been obtained.

  16. The frequency response of dynamic friction: Enhanced rate-and-state models

    Science.gov (United States)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  17. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics.

    Science.gov (United States)

    Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele

    2017-05-31

    This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  18. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Science.gov (United States)

    Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele

    2017-01-01

    This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. PMID:28561750

  19. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  20. Enhancement in Steady State and Dynamic Performance of Direct Torque Control Induction Motor Drive

    Science.gov (United States)

    Singh, Bhoopendra; Jain, Shailendra; Dwivedi, Sanjeet

    2013-09-01

    An enhancement in dynamic performance of a traditional DTC drive can be achieved by a robust speed control algorithm while the steady state performance depends upon the switching strategy selected for minimization of torque ripples and an efficient flux control loop. In this paper a new torque ripple reduction technique with a modified look up table incorporating a larger number of synthesized non zero active voltage vectors is utilized to overcome the limitations of the conventionally controlled DTC drive. A fuzzy logic based speed controller and a low pass filter with tunable cutoff frequency for flux estimation is proposed in this paper. The proposed study is investigated through simulation and experimentally validated on a test drive.

  1. Enhanced proinflammatory state and autoimmune activation: a breakthrough to understanding chronic diseases.

    Science.gov (United States)

    Onat, Altan; Can, Günay

    2014-01-01

    Insight is provided herein into the novel mechanisms of cardiometabolic risk. Previous reports, including the epidemiological work of the Turkish Adult Risk Factor study, indicated that proinflammatory state and oxidative stress are crucial for evaluating cardiometabolic risk. Autoimmune pathways in the course of oxidative stress are major determinants of cardiorenal and metabolic risk. The latter encompasses metabolic syndrome, type 2 diabetes, coronary heart disease, and chronic kidney disease (CKD). Along with platelet-activating factor acetylhydrolase, creatinine, thyroid stimulating hormone, acylation-stimulating protein, asymmetric dimethylarginine, and serum lipoprotein[Lp](a) are triggers of systemic low-grade inflammation and enhanced autoimmune reactions. Related studies are analyzed in the current review. Lp(a) plays a crucial role by taking part in the immune activation, thereby accelerating the course of diabetes, CKD, and other chronic disorders. Populations prone to impaired glucose tolerance, and particularly peri- and postmenopausal women, are at high risk of developing related vascular complications.

  2. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  3. Potato flour mediated solid-state fermentation for the enhanced production of Bacillus thuringiensis-toxin.

    Science.gov (United States)

    Smitha, Robinson Babysarojam; Jisha, Veloorvalappil Narayanan; Pradeep, Selvanesan; Josh, Moolakkariyil Sarath; Benjamin, Sailas

    2013-11-01

    In this study, we explored the efficacy of raw potato flour (PF) as supplement to the conventional LB medium (LB control, designated as M1) for enhancing the concomitant production of endospores and δ-endotoxin from Bacillus thuringiensis subsp. kurstaki by solid-state fermentation (SSF). Of different concentrations and combinations of media tested, 10% (w/v) PF supplemented LB medium (M2) was found as the best source for the maximum yield of toxin. After 12 h submerged fermentation (SmF) at 37°C and 125 rpm, M2 was made into a wet-solid matter for SSF by removing the supernatant (1000 ×g, 10 min); the resultant pellet subsequently incubated statically (37°C) for the production of B. thuringiensis subsp. kurstaki toxin (Btk-toxin). In comparison to M1, yield of δ-endotoxin purified by sucrose density gradient centrifugation method from M2 was about 6-fold higher (53% recovery). This maximum yield from M2 was obtained at 48 h (as against 72 h from M1), thus the gestation period of M2 was reduced by 24 h with higher yield. In addition to the quantitative data, qualitative photomicrographs taken by image analyzer, scanning electron and fluorescent microscopes and digital camera showed physical evidences for the upper hand of SSF over conventional SmF for the enhanced production of Btk-toxin. SDS-PAGE image of the purified δ-endotoxin showed three major fractions with apparent MWs 66, 45 and 30 kDa. Briefly, if low-cost agricultural products like PF is used as supplement to LB, by SSF strategy, production of Btk-toxin could be enhanced to 6-fold in short gestation time without losing its entomotoxicity efficiency. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Use of a Measure of Reading Comprehension to Enhance Prediction on the State High Stakes Assessment.

    Science.gov (United States)

    Shapiro, Edward S; Solari, Emily; Petscher, Yaacov

    The current study examined the diagnostic accuracy of two screening measures of risk for future difficulties in reading comprehension, as well as the degree to which adding a screening measure of reading comprehension enhanced the prediction of Oral Reading Fluency to outcomes of student reading performance on the state high stakes assessment for grades 3 through 5. Data from fall and winter assessments of the DIBELS Oral Reading Fluency (DORF) and 4Sight Benchmark Assessment (4Sight) measures along with outcomes on the Pennsylvania System of School Assessment (PSSA) across a total of 1000 students from 6 schools were examined using indices of diagnostic efficiency, ROC curve, and logistic regression analyses. Results showed that the addition of a measure of reading comprehension (4Sight) to DORF enhanced the decision making process for identifying students at risk for reading difficulties, especially for those students at higher elementary grades and those who achieved benchmark levels on the DORF. Although DORF alone showed a good level of prediction to the statewide assessment, the combination of the DORF plus 4Sight measures resulted consistently in the best predictive outcomes. Suggestions are made to consider alternative cut points for the DORF and 4Sight measures.

  5. Structure and Dynamics of the Metal Site of Cadmium-Substituted Carboxypeptidase A in Solution and Crystalline States and under Steady-State peptide Catalysis

    DEFF Research Database (Denmark)

    Bauer, R.; Danielsen, E.; Hemmingsen, L.

    1997-01-01

    geometry for cadmium in crystalline CPD derived from X-ray diffraction studies. A single broad distribution of NQIs is observed for CPD in sucrose solutions and 0.1 M NaCl at pH values below 6.5. This NQI (NQI-1') has parameters very close to those for the crystalline state. The enzyme metal site...... are consistent with an intact scissile peptide bond in the enzyme-substrate complex of Bz-Gly-L-Phe and Bz-Gly-Gly-L-Phe. A single nuclear quadrupole interaction (NQI) is observed for the crystalline state of the enzyme between pH 5.7 and pH 9.4. This NQI agrees with calculations based on the metal coordination...... forms of a hydrogen bond between the Glu-270 carboxyl group and the metal-bound water (Glu-270 COO-...(HOH)M reversible arrow Glu-270 COOH ...(OH-)M) being slow on the time scale of a PAC experiment, i.e., slower than 0.5 mu s. We finally suggest that NQI-1' observed at low pH reflects an enzyme species...

  6. The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy

    Science.gov (United States)

    Patzelt, Heiko; Simon, Bernd; terLaak, Antonius; Kessler, Brigitte; Kühne, Ronald; Schmieder, Peter; Oesterhelt, Dieter; Oschkinat, Hartmut

    2002-01-01

    The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis,15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis,15-syn forms shows a shift in position of about 0.25 Å within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12—C14 region, while leaving W182 and T178 essentially unchanged. The N—H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N—H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole. PMID:12119389

  7. Ribozyme Catalysis with a Twist: Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation.

    Science.gov (United States)

    Gaines, Colin S; York, Darrin M

    2016-03-09

    We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path to gain insight into its mechanism. The results, together with recent biochemical experiments, provide support for a mechanism involving general-acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, currently, there is a lack of a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33. In this state, the nucleophile is in line with the scissile phosphate, and the N1 position of G33 and N3 position of A1 are poised to act as a general base and acid, respectively, as supported by mutational experiments. Free energy calculations further predict the electrostatic environment causes a shift of the microscopic pKa at the N3 position of A1 toward neutrality by approximately 5 pKa units. These results offer a unified interpretation of a broad range of currently available experimental data that points to a novel mode of general acid catalysis through the N3 position of an adenine nucleobase, thus expanding the repertoire of known mechanistic strategies employed by

  8. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    Science.gov (United States)

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  9. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies.

    Science.gov (United States)

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Mohamad, Rosfarizan

    2017-06-08

    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  10. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2017-06-01

    Full Text Available In the present study, ZnO nanoparticles (NPs were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD, Transmission Electron Microscopy (TEM, and UV–visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II. The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH0, free energy change (ΔG0, and entropy change (ΔS0 were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  11. Enhanced photocatalytic performance of BiVO{sub 4} in aqueous AgNO{sub 3} solution under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Kai [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Wu, Tsunghsueh [Department of Chemistry, University of Wisconsin-Platteville, Platteville (United States); Huang, Chang-Wei [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China); Lai, Chi-Yung [Department of Biology, National Changhua University of Education, Changhua, Taiwan (China); Wu, Mei-Yao, E-mail: meiyaowu0919@gmail.com [Research Centre for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan (China); Lin, Yang-Wei, E-mail: linywjerry@cc.ncue.edu.tw [Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan (China)

    2017-03-31

    Graphical abstract: Ag{sup +} ions enhanced photocatalytic activity of BiVO{sub 4} under visible light irradiation. - Highlights: • The presence of Ag{sup +} ions enhanced the photodegradation activity of BiVO{sub 4}. • Photoreduction of Ag deposited on the BiVO{sub 4} surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO{sub 4}/Ag{sup +}. • Used BiVO{sub 4}/Ag{sup +} exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO{sub 4}) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag{sup +}) in an aqueous solution under visible light irradiation. The mass ratio of AgNO{sub 3} to BiVO{sub 4} and the calcination temperature were discovered to considerably affect the degradation activity of BiVO{sub 4}/Ag{sup +}. Superior photocatalytic performance was obtained when BiVO{sub 4} was mixed with 0.01%(w/v) AgNO{sub 3} solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO{sub 4} or AgNO{sub 3} solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag{sup +} and the formation of a BiVO{sub 4}/Ag heterojunction. The synergic effect between BiVO{sub 4} and Ag{sup +} was discovered to be unique. BiVO{sub 4}/Ag{sup +} was successfully used to degrade two other dyes and disinfect Escherichia Coli. A

  12. Two-state solutions

    Index Scriptorium Estoniae

    2011-01-01

    16. detsembril Tartus toimunud Eesti-Läti koostöökonverentsist võtsid osa ka mõlema riigi peaministrid Andrus Ansip ja Valdis Dombrovskis. Kohal olid ka haridusministrid Jaak Aaviksoo ja Roberts Kilis

  13. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances.

    Science.gov (United States)

    Castillo, A; García, P; Sanz, R; Albertos, P

    2017-12-19

    This paper presents an enhanced Extended State Observer (ESO)-based control strategy to deal with the disturbance attenuation problem for a class of non integral-chain systems subject to non-linear mismatched uncertainties and external disturbances. The proposed control strategy does not assume the integral-chain form and it is formed by a state-feedback plus a dynamic disturbance compensation term, which is designed to reject the disturbance effect in the system output. From a theoretical point of view, the proposed strategy is reduced to the conventional ESO when the integral chain form and the matched condition hold. In this sense, this paper is presented as an extension of the ESO principles to cover a wider class of systems. The theoretical results show that the internal zero-dynamics plays an important role in ESO-based control design. Also, the closed-loop stability is analyzed and some numerical simulations show the effectiveness of the proposal in comparison with previous ESO-based techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories

    Science.gov (United States)

    Rieländer, Daniel; Lenhard, Andreas; Mazzera, Margherita; de Riedmatten, Hugues

    2016-12-01

    We report on a source of heralded narrowband (≈ 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW-1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.

  15. Promoting health-enhancing physical activity in Europe: Current state of surveillance, policy development and implementation.

    Science.gov (United States)

    Breda, João; Jakovljevic, Jelena; Rathmes, Giulia; Mendes, Romeu; Fontaine, Olivier; Hollmann, Susanne; Rütten, Alfred; Gelius, Peter; Kahlmeier, Sonja; Galea, Gauden

    2018-02-03

    This study aims to present information on the surveillance, policy developments, and implementation of physical activity policies in the 28 European Union (EU) countries. Data was collected on the implementation of the EU Recommendation on health-enhancing physical activity (HEPA) across sectors. In line with the monitoring framework proposed in the Recommendation, a questionnaire was designed to capture information on 23 physical activity indicators. Of the 27 EU countries that responded to the survey, 22 have implemented actions on more than 10 indicators, four countries have implemented more than 20 indicators, and one country has fully addressed and implemented all of the 23 indicators of the monitoring framework. The data collected under this HEPA monitoring framework provided, for the first time, an overview of the implementation of HEPA-related policies and actions at the national level throughout the EU. Areas that need more investment are the "Senior Citizens" sector followed by the "Work Environment", and the "Environment, Urban Planning, and Public Safety" sectors. This information also enabled comparison of the state of play of HEPA policy implementation between EU Member States and facilitated the exchange of good practices. Copyright © 2018. Published by Elsevier B.V.

  16. A psychoeducational nursing intervention to enhance coping and affective state in newly diagnosed malignant melanoma patients.

    Science.gov (United States)

    Fawzy, N W

    1995-12-01

    The primary purpose of this study was to determine if a psychoeducational nursing intervention including (a) health education, (b) stress management, and (c) the teaching of coping skills could enhance the coping behavior and affective state of newly diagnosed Stage I/II malignant melanoma patients. The secondary purpose was to determine if this intervention could be implemented by a nurse and integrated into the overall patient care program. Sixty-one patients were randomized to a control condition or an experimental condition that received and educational manual plus 3 h of individual nurse teaching. Despite randomization, experimental patients had significantly higher baseline distress. By 3 months there was a complete reversal of the baseline trend in Profile of Mood States (POMS) total mood disturbance (TMD), suggesting that the experimental subjects were experiencing less distress over time. Between-group analysis of change scores found significant decreases in experimental subjects for POMS TMD, fatigue, and Brief Symptom Index (BSI) somatization. Within-group analysis found significant experimental decreases for BSI somatization, anxiety, grand total, General Severity Index, and Positive Symptom Distress Index as well as for POMS anxiety, fatigue, confusion, vigor, and TMD. No significant changes were found for controls. Experimental patients were using significantly fewer ineffective passive resignation coping strategies than controls at 3 months.

  17. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila

    Science.gov (United States)

    Hoopfer, Eric D; Jung, Yonil; Inagaki, Hidehiko K; Rubin, Gerald M; Anderson, David J

    2015-01-01

    How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner. DOI: http://dx.doi.org/10.7554/eLife.11346.001 PMID:26714106

  18. Enhancing Heat Transfer of Drag-Reducing Surfactant Solution by an HEV Static Mixer with Low Pressure Drop

    Directory of Open Access Journals (Sweden)

    Haifeng Shi

    2011-01-01

    Full Text Available A novel high-efficiency vortex (HEV static mixer was used to locally enhance the heat transfer coefficient of a drag-reducing fluid, Ethoquad O/12 (EO12 (3 mM with sodium salicylate (NaSal (5 mM. Significant enhancement of heat transfer coefficients was observed. The Nusselt numbers were three to five times those of normal drag-reducing flow without mixer and were close to those of water at high Reynolds number with only modest energy penalty. In contrast, a Helix static mixer increased Nusselt number slightly with very high pressure loss. A performance number was used for comparisons among the HEV static mixer, the Helix static mixer, and water without mixer. The HEV static mixer had a performance number comparable to that of water. The enhanced heat transfer by the HEV static mixer resulted from streamwise vortices generated by the inclined tabs, which increased the convective heat transfer in the radial direction.

  19. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Directory of Open Access Journals (Sweden)

    Virginia H. Garrison

    2012-03-01

    Full Text Available In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands in 1999 and was followed for 12 years. The primary objectives were to (1 identify a source of coral colonies for transplantation that would not result in damage to reefs, (2 test the feasibility of transplanting storm-generated coral fragments, and (3 develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae] and another fast-growing species [Porites porites (Poritidae] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and

  20. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    Science.gov (United States)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  1. Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Peng; Zhang, Hong-Qi [Capital Medical University, Department of Neurosurgery, Xuanwu Hospital, Beijing (China); Yang, Qi [Capital Medical University, Department of Radiology, Xuanwu Hospital, Beijing (China); Wang, Dan-Dan [Capital Medical University, Department of Clinical Pathology, Xuanwu Hospital, Beijing (China); Guan, Shao-Chen [Capital Medical University, Department of Evidence-Based Medicine, Xuanwu Hospital, Beijing (China)

    2016-10-15

    The aneurysm wall has been reported to play a critical role in the formation, development, and even rupture of an aneurysm. We used high-resolution magnetic resonance imaging (HRMRI) to investigate the aneurysm wall in an effort to identify evidence of inflammation invasion and define its relationship with aneurysm behavior. Patients with intracranial aneurysms who were prospectively evaluated using HRMRI between July 2013 and June 2014 were enrolled in this study. The aneurysm's wall enhancement and evidence of inflammation invasion were determined. In addition, the relationship between aneurysm wall enhancement and aneurysm size and symptoms, including ruptured aneurysms, giant unruptured intracranial aneurysms (UIAs) presenting as mass effect, progressively growing aneurysms, and aneurysms associated with neurological symptoms, was statistically analyzed. Twenty-five patients with 30 aneurysms were available for the current study. Fourteen aneurysms showed wall enhancement, including 6 ruptured and 8 unruptured aneurysms. Evidence of inflammation was identified directly through histological studies and indirectly through intraoperative investigations and clinical courses. The statistical analysis indicated no significant correlation between aneurysm wall enhancement and aneurysm size. However, there was a strong correlation between wall enhancement and aneurysm symptoms, with a kappa value of 0.86 (95 % CI 0.68-1). Aneurysm wall enhancement on HRMRI might be a sign of inflammatory change. Symptomatic aneurysms exhibited wall enhancement on HRMRI. Wall enhancement had a high consistent correlation of symptomatic aneurysms. Therefore, wall enhancement on HRMRI might predict an unsteady state of an intracranial saccular aneurysm. (orig.)

  2. SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline.

    Science.gov (United States)

    Baud, A; Aymé, L; Gonnet, F; Salard, I; Gohon, Y; Jolivet, P; Brodolin, K; Da Silva, P; Giuliani, A; Sclavi, B; Chardot, T; Mercère, P; Roblin, P; Daniel, R

    2017-05-01

    Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of

  3. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  4. Solid-state and solution /sup 13/C NMR in the conformational analysis of methadone-hydrochloride and related narcotic analgesics

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, S.C.J.

    1986-01-01

    Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemic mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.

  5. Pregnancy-associated homicide and suicide in 37 US states with enhanced pregnancy surveillance.

    Science.gov (United States)

    Wallace, Maeve E; Hoyert, Donna; Williams, Corrine; Mendola, Pauline

    2016-09-01

    Pregnant and postpartum women may be at increased risk of violent death including homicide and suicide relative to nonpregnant women, but US national data have not been reported since the implementation of enhanced mortality surveillance. The objective of the study was to estimate homicide and suicide ratios among women who are pregnant or postpartum and to compare their risk of violent death with nonpregnant/nonpostpartum women. Death certificates (n = 465,097) from US states with enhanced pregnancy mortality surveillance from 2005 through 2010 were used to compare mortality among 4 groups of women aged 10-54 years: pregnant, early postpartum (pregnant within 42 days of death), late postpartum (pregnant within 43 days to 1 year of death), and nonpregnant/nonpostpartum. We estimated pregnancy-associated mortality ratios and compared with nonpregnant/nonpostpartum mortality ratios to identify differences in risk after adjusting for potential levels of pregnancy misclassification as reported in the literature. Pregnancy-associated homicide victims were most frequently young, black, and undereducated, whereas pregnancy-associated suicide occurred most frequently among older white women. After adjustments, pregnancy-associated homicide risk ranged from 2.2 to 6.2 per 100,000 live births, depending on the degree of misclassification estimated, compared with 2.5-2.6 per 100,000 nonpregnant/nonpostpartum women aged 10-54 years. Pregnancy-associated suicide risk ranged from 1.6-4.5 per 100,000 live births after adjustments compared with 5.3-5.5 per 100,000 women aged 10-54 years among nonpregnant/nonpostpartum women. Assuming the most conservative published estimate of misclassification, the risk of homicide among pregnant/postpartum women was 1.84 times that of nonpregnant/nonpostpartum women (95% confidence interval, 1.71-1.98), whereas risk of suicide was decreased (relative risk, 0.62, 95% confidence interval, 0.57-0.68). Pregnancy and postpartum appear to be times of

  6. Probing organometallic reactions by time-resolved infrared spectroscopy in solution and in the solid state using quantum cascade lasers.

    Science.gov (United States)

    Calladine, James A; Horvath, Raphael; Davies, Andrew J; Wriglesworth, Alisdair; Sun, Xue-Zhong; George, Michael W

    2015-05-01

    The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = η(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ΔOD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements.

  7. Excited-state free energy surfaces in solution: time-dependent density functional theory∕reference interaction site model self-consistent field method.

    Science.gov (United States)

    Minezawa, Noriyuki

    2013-06-28

    Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.

  8. Liquid state machine with dendritically enhanced readout for low-power, neuromorphic VLSI implementations.

    Science.gov (United States)

    Roy, Subhrajit; Banerjee, Amitava; Basu, Arindam

    2014-10-01

    In this paper, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM), a popular model for reservoir computing. Compared to the parallel perceptron architecture trained by the p-delta algorithm, which is the state of the art in terms of performance of readout stages, our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity (two compartment model). The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best 'combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that compared to a single perceptron using analog weights, this architecture for the readout can attain, even by using the same number of binary valued synapses, up to 3.3 times less error for a two-class spike train classification problem and 2.4 times less error for an input rate approximation task. Even with 60 times larger synapses, a group of 60 parallel perceptrons cannot attain the performance of the proposed dendritically enhanced readout. An additional advantage of this method for hardware implementations is that the 'choice' of connectivity can be easily implemented exploiting address event representation (AER) protocols commonly used in current neuromorphic systems where the connection matrix is stored in memory. Also, due to the use of binary synapses, our proposed method is more robust against statistical variations.

  9. Interim OECA Guidance on Enhancing Regional-State Planning and Communication on Compliance Assurance Work in Authorized States

    Science.gov (United States)

    Guidance outlining principles and best practices for State and EPA collaboration in inspections and enforcement. work planning and implementation. National Enforcement Initiatives, and outcome and performance measurement.

  10. Enhanced stress resistance of Deinococcus radiodurans cells in the dried state

    Science.gov (United States)

    Bauermeister, Anja; Moeller, Ralf; Reitz, Guenther; Billi, Daniela; Rettberg, Petra

    Liquid water is often regarded as a pre-requisite for life as we know it. However, some organisms can survive prolonged periods in a desiccated state and seem to resist other environmental stres-sors even better when water is absent. We tested this observation in Deinococcus radiodurans, a non-sporeforming soil bacterium well-known for its outstanding resistance to DNA damaging stressors, including high doses of UV and ionizing radiation, oxidants, and desiccation. Due to its polyextremophilic characteristics it has been regarded as a model organism in astrobiological research. To determine if the cellular changes imposed by the removal of water have an effect on the stress resistance of D. radiodurans, we compared the survival capacity of dried cells with that of hydrated cells after exposure to mono-and polychromatic UV radiation, -radiation, and heat shock (85C). In all cases, resistance was enhanced in dried cells. It is suggested that these effects are mainly due to a reduced oxidative stress in dried cells, as the metabolism is shut down and radical diffusion is very limited. Hence, desiccating conditions as encountered in space vacuum or on arid planets such as Mars may be beneficial instead of detrimental to the survival of some polyextremophilic microbes. Ongoing experiments aim to evaluate damage at a subcellular level in dried and hydrated cells after exposure to irradiation or heat shock.

  11. Optimization of Media for Enhanced Glucoamylase Production in Solid-State Fermentation by Fusarium solani

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Bhatti

    2007-01-01

    Full Text Available Solid-state cultivation of Fusarium solani was carried out for enhanced production of glucoamylase (GA using different substrates like wheat bran, rice bran, green gram bran, black gram bran and maize bran. The SSF medium containing wheat bran as a substrate yielded the highest enzyme activity. The physical and chemical parameters were optimized. Maximum enzyme activity (61.35±3.69 U/g of dry wheat bran was achieved under optimum growth conditions. The optimum conditions were fructose as carbon and energy additive 1 % (by mass, urea as nitrogen additive 1 % (by mass, initial moisture content of solid substrate 70 % (by mass per volume, incubation period 96 h, inoculum size 15 % (by mass per volume having 10^6–10^7 spores/mL, incubation temperature (35±1 °C and pH=5.0. It was further observed that the addition of surfactants caused a decrease in enzyme biosynthesis by F. solani in SSF of wheat bran under optimum process conditions.

  12. A simple resonance enhanced laser ionization scheme for CO via the A1Π state

    Science.gov (United States)

    Sun, Z. F.; von Zastrow, A. D.; Parker, D. H.

    2017-07-01

    We investigate the laser ionization process taking place when the CO molecule is exposed to vacuum ultraviolet (VUV) radiation resonant with the CO A1Π (v = 0) ← X1Σ+ (v = 0) transition around 154 nm, along with the ultraviolet (UV) and visible (Red) radiation used to generate VUV by four-wave difference-frequency mixing. By measuring the CO+ ion recoil and a room temperature gas spectrum, it is possible to assign the ionization process as 1 + 1' + 1'' REMPI where the one-photon steps refer to the VUV, UV, and Red radiation, respectively. Resonance enhanced ionization of rotational states around J = 12 arise due to the overlap of the fixed wavelength UV (˜250 nm) with the R band-head of a transition assigned to CO E1Π (v = 6) ← A1Π (v = 0) with a term value of 104 787.5 cm-1. The REMPI process is efficient and polarization sensitive and should be useful in a wide range of studies involving nascent CO.

  13. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    Science.gov (United States)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  14. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states.

    Science.gov (United States)

    Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S; MacDonald, Allan H; Shi, Jing

    2016-05-04

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.

  15. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity

    OpenAIRE

    Zhujian Huang; Pingxiao Wu; Beini Gong; Yaping Dai; Pen-Chi Chiang; Xiaolin Lai; Guangwei Yu

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents ...

  16. Thomas Edison State College and Colorado State University: Using Cutting-Edge Technology to Enhance CE Unit Success

    Science.gov (United States)

    van Zyl, Henry; Powell, Albert, Jr.

    2012-01-01

    Thomas Edison State College (TESC) and Colorado State University (CSU) offer significant contrasts in institutional culture, student demographics, faculty and institutional priorities and approaches to distance education course development and delivery. This article offers case studies showing that widely disparate program design and delivery…

  17. Enhanced Colouration Efficiency of Pulsed DC Magnetron Sputtered WO3 Films Cycled in H2SO4 Electrolyte Solution

    Directory of Open Access Journals (Sweden)

    K. Punitha

    2014-01-01

    Full Text Available In the present investigation, we report on DC power and pulsing frequency induced changes in electrochromic properties of pulsed DC magnetron sputtered WO3 films by intercalating/deintercalating H+ ions from 0.1 M H2SO4 electrolyte solution. The observed efficient colouration ↔ bleaching mechanism of WO3 films confirms the effective electrochromic nature of the films associated with the electrochemical intercalation/deintercalation of H+ ions and electrons into WO3 lattice. The higher optical modulation was observed in the visible region of the optical transmittance spectra of colored and bleached WO3 films. The maximum coloration efficiency of 79 cm2/C was observed the first time for the film deposited at a DC power of 150 W and a pulsing frequency of 25 kHz.

  18. Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange

    KAUST Repository

    Jo, Jea Woong

    2017-10-09

    The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.

  19. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Bartczak, Przemysław; Jesionowski, Teofil

    2017-06-01

    A new biomaterial based on chitin and lignin was prepared and applied for the removal of hazardous dye C.I. Direct Blue 71 (DB71) from aqueous solutions and wastewaters. The dye sorption on the chitin/lignin biosorbent (Ch/L) was examined depending on the initial dye concentration (50-200mg/L), phase contact time (1-1440min), kind of auxiliaries (NaCl, Na2SO4, anionic surfactant SDS) and their concentrations (1-20g/L salts, 0.1-0.75g/L SDS), initial solution pH as well as temperature (20-50°C). The equilibrium and kinetic characteristics of C.I. Direct Blue 71 uptake by chitin/lignin followed by the Freundlich isotherm model and the pseudo-second order model rather than the Langmuir, Tempkin models, and pseudo-first order model. C.I. Direct Blue 71 adsorption on chitin/lignin was spontaneous (-2.86 to -8.14kJ/mol) and endothermic (60.1kJ/mol). The possibilities of dye elution and reuse by means of the batch method were investigated and as follows the chemical reaction is an inseparable sorption mechanism. Purification of wastewaters containing direct dyes was made with 91% efficiency after 1h of phase contact time. For comparison, data obtained or obtained results in the DB71-chitin (Ch) system were also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014.

    Science.gov (United States)

    El-Gendy, Mervat Morsy Abbas Ahmed; El-Bondkly, Ahmed Mohamed Ahmed

    2016-01-01

    An analysis of wastewater samples collected from different industrial regions of Egypt demonstrated dangerously high levels of nickel (0.27-31.50mgL(-1)), chromium (1.50-7.41mgL(-1)) and zinc (1.91-9.74mgL(-1)) in the effluents. Alarmingly, these heavy metals are among the most toxic knownones to humans and wildlife. Sixty-nine Actinomycete isolates derived from contaminated sites were evaluated under single, binary, and ternary systems for their biosorption capacity for Ni(2+), Cr(6+) and Zn(2+) from aqueous solutions. The results of the study identified isolates MORSY1948 and MORSY2014 as the most active biosorbents. Phenotypic and chemotypic characterization along with molecular phylogenetic evidence confirmed that the two strains are members of the Nocardiopsis and Nocardia genera, respectively. The results also proved that for both the strains, heavy metal reduction was more efficient with dead rather than live biomass. The affinity of the dead biomass of MORSY1948 strain for Ni(2+), Cr(6+) and Zn(2+) under the optimized pH conditions of 7, 8 and 7, respectively at 40°C temperature with 0.3% biosorbent dosage was found to be as follows: Ni(2+) (87.90%)>Zn(2+) (84.15%)>Cr(6+) (63.75%). However, the dead biomass of MORSY2014 strain under conditions of pH 8 and 50°C temperature with 0.3% biosorbent dose exhibited the highest affinity which was as follows: Cr(6+) (95.22%)>Ni(2+) (93.53%)>Zn(2+) (90.37%). All heavy metals under study were found to be removed from aqueous solutions in entirety when the sorbent dosage was increased to 0.4%. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Shear enhanced compaction-solution bands in quartz-rich calcarenites of the Cotiella Massif (Spanish Pyrennes)

    Science.gov (United States)

    Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep

    2017-04-01

    In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.

  2. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen, E-mail: dawenl@eng.ua.edu [Department of Electrical and Computer Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Chen, Jihua [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  3. Exact solutions in (2 + 1)-dimensional anti-de Sitter space-time admitting a linear or non-linear equation of state

    CERN Document Server

    Banerjee, Ayan; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur

    2014-01-01

    Gravitational analyzes in lower dimensions has become a field of active research interest ever since Banados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69, 1849, 1992) proved the existence of a black hole solution in (2 + 1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2 + 1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.

  4. Exact solutions in (2+1)-dimensional anti-de Sitter space-time admitting a linear or non-linear equation of state

    Science.gov (United States)

    Banerjee, Ayan; Rahaman, Farook; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur

    2015-02-01

    Gravitational analyzes in lower dimensions has become a field of active research interest ever since Bañados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69:1849, 1992) proved the existence of a black hole solution in (2+1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2+1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.

  5. Pyrene-Based Blue AIEgen: Enhanced Hole Mobility and Good EL Performance in Solution-Processed OLEDs

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2017-12-01

    Full Text Available Organic luminogens with strong solid-state emission have attracted much attention for their widely practical applications. However, the traditional organic luminogens with planar conformations often suffer from the notorious aggregation-caused quenching (ACQ effect in solid state for the π–π stacking. Here, a highly efficient blue emitter TPE-4Py with an aggregation-induced emission (AIE effect is achieved by combining twisted tetraphenylethene (TPE core and planar pyrene peripheries. When the emitter was spin-coated in non-doped OLEDs with or without a hole-transporting layer, comparable EL performance was achieved, showing the bifunctional property as both an emitter and a hole-transporting layer. Furthermore, its EL efficiency was promoted in doped OLED, even at a high doping concentration (50%, because of its novel AIE effect, with a current efficiency up to 4.9 cd/A at 484 nm.

  6. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 2, Non-catalyzed reactions with the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    Solution-state NMR provides a powerful tool to observe the presence or absence of covalent bonds between wood and adhesives. Finely ground wood can be dissolved in an NMR compatible solvent system containing dimethylsulfoxide-d6 and N-methylimidazole-d6, in which the wood polymers remain largely intact. High-resolution...

  7. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  8. Investigation of a 10 MHz, non-steady state cavity for pulse energy enhancement of ultrafast fiber lasers

    Science.gov (United States)

    Breitkopf, Sven; Wunderlich, Stefano; Eidam, Tino; Shestaev, Evgeny; Gottschall, Thomas; Carstens, Henning; Holzberger, Simon; Pupeza, Ioachim; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    Here, we present a passive 30-m long enhancement cavity that supports a steady-state enhancement of 198, which is the highest enhancement that has ever been reached in such a long cavity. Furthermore, we demonstrate the extraction of a short burst with a total energy of 53.6 μJ employing an acousto-optic modulator (AOM) as a switching device. The cavity was seeded with pulses of 1.49 μJ energy at 10 MHz repetition rate. The individual output coupled pulses showed an energy enhancement of up to 8.5 while the whole burst contained the entire energy of 36 input pulses. In the last section theoretical considerations for the single pulse extraction are presented and briefly discussed.

  9. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states

    Science.gov (United States)

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-08-01

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current-temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  10. Dissolution enhancement and mathematical modeling of removal of residual trichloroethene in sands by ozonation during flushing with micro-nano-bubble solution

    Science.gov (United States)

    Sung, Menghau; Teng, Chun-Hao; Yang, Tsung-Hsien

    2017-07-01

    Soil flushing using micro-nano-sized bubbles (MNB) in water as the flushing solution was tested in laboratory sand columns for the cleanup of residual trichloroethene (TCE) non-aqueous-phase-liquid (NAPL). Experiments considering flushing with MNB as well as ozone MNB (OZMNB) in water to treat soils contaminated with residual TCE liquid were conducted to examine effects of ozone on dissolution enhancement. The degrees of residual TCE saturation in soils, ranging from 0.44% to 7.6%, were tested. During flushings, aqueous TCE concentrations at the column exit were monitored and TCE masses remained in the columns after flushing were determined. Experimental results between runs with MNB and OZMNB in water revealed that dissolution enhancement was dependent on residual saturation conditions, and the maximum enhancement was around 9%. Governing equations consisting of three coupled partial differential equations (PDEs) were developed to model the system, and high-order finite difference (HOFD) method was employed to solve these PDEs. From mathematical modeling of reactive mass transfer under low residual saturation conditions (0.44% and 1.9%), experimental data were simulated and important controlling mechanisms were identified. It was concluded that a specific parameter pertinent to NAPL-water interfacial area in the Sherwood number had to be modified to satisfactorily describe the dissolution of TCE in the presence of MNB in water.

  11. Technology Solutions Case Study: Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes: Phase 2, Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    In many two-story homes, there are attic spaces above the first-floor of the home that border portions of the second-story conditioned space. These spaces have breaches of the air and thermal boundaries, creating a phenomenon known as wind washing. This can cause attic air above the first-floor space to be driven into the cavity between the first and second floors by wind, thermal buoyancy forces, or mechanical driving forces as well as circulation of hot attic air against the wallboard because of gaps between insulation batts installed on knee walls and the gypsum wallboard. In this project, the U.S. Department of Energy team Building America Partnership for Improved Residential Construction (BA-PIRC) investigated wind washing in 56 homes. The goals were to identify the failure mechanisms that lead to wind washing, characterize the pathways for air and heat to enter the house, and evaluate the seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for cost-effective retrofit solutions and information that can help avoid these problems in new construction.

  12. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate.

    Science.gov (United States)

    Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang

    2017-08-01

    Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Addition of sucrose on cryoprotectant solution of vitrification enhances the quality of Dorper sheep embryos produced in vivo

    Directory of Open Access Journals (Sweden)

    Alane Pains Oliveira do Monte

    2015-12-01

    Full Text Available This study aimed to evaluate the efficacy of adding sucrose in vitrification solution of ovine embryos produced in vivo. Forty Dorper ewes were selected and superovulated. Immediately prior to the embryo collection by laparotomy, a laparoscopy was performed to verify the superovulatory response. The recovered flushing was followed by embryo evaluation and embryos were divided in two experimental groups where embryos from Control group were submitted to a traditional vitrification protocol and embryos from Sucrose group to a modified vitrification protocol with sucrose. After warming, embryos were again divided regarding cryoprotectant removal (Indirect or not (Direct. The embryo quality was classified as embryos of degrees I (excellent or good, II (regular, III (poor and IV (dead or degenerate. It was also verified the homogeneity of mass, occurrence of embryonic mass retraction and rupture of pellucid zone. The results were expressed as percentages and were subjected to Chi-square test with P < 0.05. The embryos vitrified in the presence of sucrose had lower proportions of lower-quality embryos after warming (22.20 vs. 44.50%, higher percentages of homogeneous embryos after warming (63.89 vs. 38.89 % while concerning other parameters there was no difference between these groups. It can be concluded that the addition of 0.4 M sucrose during vitrification improves the embryo quality.

  14. Solution processed transition metal oxide anode buffer layers for efficiency and stability enhancement of polymer solar cells

    Science.gov (United States)

    Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Reddy, V. S.

    2018-01-01

    Polymer solar cells were fabricated with solution-processed transition metal oxides, MoO3 and V2O5 as anode buffer layers (ABLs). The optimized device with V2O5 ABL exhibited considerably higher power conversion efficiency (PCE) compared to the devices based on MoO3 and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ABLs. The space charge limited current measurements and impedance spectroscopy results of hole-only devices revealed that V2O5 provided a very low charge transfer resistance and high hole mobility, facilitating efficient hole transfer from the active layer to the ITO anode. More importantly, incorporation of V2O5 as ABL resulted in substantial improvement in device stability compared to MoO3 and PEDOT:PSS based devices. Unencapsulated PEDOT:PSS-based devices stored at a relative humidity of 45% have shown complete failure within 96 h. Whereas, MoO3 and V2O5 based devices stored in similar conditions retained 22% and 80% of their initial PCEs after 96 h. Significantly higher stability of the V2O5-based device is ascribed to the reduction in degradation of the anode/active layer interface, as evident from the electrical measurements.

  15. Enhancing the Delivery of Resveratrol in Humans: If Low Bioavailability is the Problem, What is the Solution?

    Directory of Open Access Journals (Sweden)

    James M. Smoliga

    2014-10-01

    Full Text Available Resveratrol has emerged as a leading candidate for improving healthspan through potentially slowing the aging process and preventing chronic diseases. The poor bioavailability of resveratrol in humans has been a major concern for translating basic science findings into clinical utility. Although a number of positive findings have emerged from human clinical trials, there remain many conflicting results, which may partially be attributed to the dosing protocols used. A number of theoretical solutions have been developed to improve the bioavailability of resveratrol, including consumption with various foods, micronized powders, combining it with additional phytochemicals, controlled release devices, and nanotechnological formulations. While laboratory models indicate these approaches all have potential to improve bioavailability of resveratrol and optimize its clinical utility, there is surprisingly very little data regarding the bioavailability of resveratrol in humans. If bioavailability is indeed a limitation in the clinical utility of resveratrol, there is a need to further explore methods to optimize bioavailability in humans. This review summarizes the current bioavailability data, focusing on data from humans, and provides suggested directions for future research in this realm.

  16. BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    Energy Technology Data Exchange (ETDEWEB)

    Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)

    2017-02-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  17. Combined shared and distributed memory ab-initio computations of molecular-hydrogen systems in the correlated state: Process pool solution and two-level parallelism

    Science.gov (United States)

    Biborski, Andrzej; Kądzielawa, Andrzej P.; Spałek, Józef

    2015-12-01

    An efficient computational scheme devised for investigations of ground state properties of the electronically correlated systems is presented. As an example, (H2)n chain is considered with the long-range electron-electron interactions taken into account. The implemented procedure covers: (i) single-particle Wannier wave-function basis construction in the correlated state, (ii) microscopic parameters calculation, and (iii) ground state energy optimization. The optimization loop is based on highly effective process-pool solution - specific root-workers approach. The hierarchical, two-level parallelism was applied: both shared (by use of Open Multi-Processing) and distributed (by use of Message Passing Interface) memory models were utilized. We discuss in detail the feature that such approach results in a substantial increase of the calculation speed reaching factor of 300 for the fully parallelized solution. The scheme elaborated in detail reflects the situation in which the most demanding task is the single-particle basis optimization.

  18. submitter BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    CERN Document Server

    Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th

    2017-01-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  19. Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration.

    Science.gov (United States)

    Dasgupta, J; Singh, M; Sikder, J; Padarthi, V; Chakraborty, S; Curcio, S

    2015-11-01

    Retention of toxic dyes with molecular weights lower than the molecular weight cut-off (MWCO) of the ultrafiltration membranes can be improved through selective binding of the target dyes to a water-soluble polymer, followed by ultrafiltration of the macromolecular complexes formed. This method, often referred to as polymer enhanced ultrafiltration (PEUF), was investigated in the present study, using polyethyleneimine (PEI) as the chelating agent. Model azo dye Reactive Red 120 was selected as the poorly biodegradable, target contaminant, because of its frequent recalcitrant presence in colored effluents, and its eventual ecotoxicological impacts on the environment. The effects of the governing process factors, namely, cross flow rate, transmembrane pressure polymer to dye ratio and pH, on target dye rejection efficiency were meticulously examined. Additionally, each parameter level was statistically optimized using central composite design (CCD) from the response surface methodology (RSM) toolkit, with an objective to maximize performance efficiency. The results revealed high dye retention efficiency over 99%, accompanied with reasonable permeate flux over 100L/m(2)h under optimal process conditions. The estimated results were elucidated graphically through response surface (RS) plots and validated experimentally. The analyses clearly established PEUF as a novel, reasonably efficient and economical route for recalcitrant dye treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Prioritizing the causes and correctors of smoking towards the solution of tobacco free future using enhanced analytic hierarchy process

    Science.gov (United States)

    Halim, Tisya Farida Abdul; Sapiri, Hasimah; Abidin, Norhaslinda Zainal

    2017-11-01

    This paper presents a method for prioritizing the causes and correctors of smoking habits in Malaysia. In order to identify the driving forces that causes (initiation factors) smoking habits and its correctors (anti-smoking strategies), a method called Enhanced Analytic Hierarchy Process (EAHP) is employed. The EAHP has advantages over normal Analytic Hierarchy Process (AHP) based on its capability to eliminate inconsistency (consistency ratio > 0.1) in evaluating expert's judgment. Based on the Theory of Triadic Influence, the identified initiation factors were personal beliefs and values, personal psychological, family influence, psychosocial influence, culture and legislative. There are five anti-smoking strategies that have been implemented in Malaysia, namely packaging and labelling, pricing and taxation, advertising, smoke-free legislation and education and support. Findings from the study shows that psychosocial influence was considered as the initiation factor of smoking among Malaysian adults, and mass media campaign was the most effective anti-smoking strategies to reduce smoking prevalence. The implementation of an effective anti-smoking strategies should be considered towards the endgame of tobacco by the year 2040 as outlined by the government. The findings in turn can provide insights and guidelines for researchers as well as policy makers to assess the effectiveness of anti-smoking strategies towards a better policy planning decisions in the future.

  1. Today´s medical self and the other: Challenges and evolving solutions for enhanced humanization and quality of care.

    Directory of Open Access Journals (Sweden)

    Perla Sueiras

    Full Text Available Recent scientific developments, along with growing awareness of cultural and social diversity, have led to a continuously growing range of available treatment options; however, such developments occasionally lead to an undesirable imbalance between science, technology and humanism in clinical practice. This study explores the understanding and practice of values and value clusters in real-life clinical settings, as well as their role in the humanization of medicine and its institutions. The research focuses on the values of clinical practice as a means of finding ways to enhance the pairing of Evidence-Based Medicine (EBM with Values-based Medicine (VBM in daily practice.The views and representations of clinical practice in 15 pre-CME and 15 post-CME interviews were obtained from a random sampling of active healthcare professionals. These views were then identified and qualitatively analyzed using a three-step hermeneutical approach. A clinical values space was identified in which ethical and epistemic values emerge, grow and develop within the biomedical, ethical, and socio-economic dimensions of everyday health care. Three main values-as well as the dynamic clusters and networks that they tend to form-were recognized: healthcare personnel-patient relationships, empathy, and respect. An examination of the interviews suggested that an adequate conceptualization of values leads to the formation of a wider axiological system. The role of clinician-as-consociate emerged as an ideal for achieving medical excellence.By showing the intricate clusters and networks into which values are interwoven, our analysis suggests methods for fine-tuning educational interventions so they can lead to demonstrable changes in attitudes and practices.

  2. Today´s medical self and the other: Challenges and evolving solutions for enhanced humanization and quality of care.

    Science.gov (United States)

    Sueiras, Perla; Romano-Betech, Victoria; Vergil-Salgado, Alejandro; de Hoyos, Adalberto; Quintana-Vargas, Silvia; Ruddick, William; Castro-Santana, Anaclara; Islas-Andrade, Sergio; Altamirano-Bustamante, Nelly F; Altamirano-Bustamante, Myriam M

    2017-01-01

    Recent scientific developments, along with growing awareness of cultural and social diversity, have led to a continuously growing range of available treatment options; however, such developments occasionally lead to an undesirable imbalance between science, technology and humanism in clinical practice. This study explores the understanding and practice of values and value clusters in real-life clinical settings, as well as their role in the humanization of medicine and its institutions. The research focuses on the values of clinical practice as a means of finding ways to enhance the pairing of Evidence-Based Medicine (EBM) with Values-based Medicine (VBM) in daily practice. The views and representations of clinical practice in 15 pre-CME and 15 post-CME interviews were obtained from a random sampling of active healthcare professionals. These views were then identified and qualitatively analyzed using a three-step hermeneutical approach. A clinical values space was identified in which ethical and epistemic values emerge, grow and develop within the biomedical, ethical, and socio-economic dimensions of everyday health care. Three main values-as well as the dynamic clusters and networks that they tend to form-were recognized: healthcare personnel-patient relationships, empathy, and respect. An examination of the interviews suggested that an adequate conceptualization of values leads to the formation of a wider axiological system. The role of clinician-as-consociate emerged as an ideal for achieving medical excellence. By showing the intricate clusters and networks into which values are interwoven, our analysis suggests methods for fine-tuning educational interventions so they can lead to demonstrable changes in attitudes and practices.

  3. Today´s medical self and the other: Challenges and evolving solutions for enhanced humanization and quality of care

    Science.gov (United States)

    Quintana-Vargas, Silvia; Ruddick, William; Castro-Santana, Anaclara; Islas-Andrade, Sergio; Altamirano-Bustamante, Nelly F.

    2017-01-01

    Background Recent scientific developments, along with growing awareness of cultural and social diversity, have led to a continuously growing range of available treatment options; however, such developments occasionally lead to an undesirable imbalance between science, technology and humanism in clinical practice. This study explores the understanding and practice of values and value clusters in real-life clinical settings, as well as their role in the humanization of medicine and its institutions. The research focuses on the values of clinical practice as a means of finding ways to enhance the pairing of Evidence-Based Medicine (EBM) with Values-based Medicine (VBM) in daily practice. Methods and findings The views and representations of clinical practice in 15 pre-CME and 15 post-CME interviews were obtained from a random sampling of active healthcare professionals. These views were then identified and qualitatively analyzed using a three-step hermeneutical approach. A clinical values space was identified in which ethical and epistemic values emerge, grow and develop within the biomedical, ethical, and socio-economic dimensions of everyday health care. Three main values—as well as the dynamic clusters and networks that they tend to form—were recognized: healthcare personnel-patient relationships, empathy, and respect. An examination of the interviews suggested that an adequate conceptualization of values leads to the formation of a wider axiological system. The role of clinician-as-consociate emerged as an ideal for achieving medical excellence. Conclusions By showing the intricate clusters and networks into which values are interwoven, our analysis suggests methods for fine-tuning educational interventions so they can lead to demonstrable changes in attitudes and practices. PMID:28759585

  4. Enhanced negative ion formation via electron attachment to electronically-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  5. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state.

    Science.gov (United States)

    Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar

    2012-09-17

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands.

  6. Solution structure of Mycobacterium tuberculosis NmtR in the apo state: insights into Ni(II)-mediated allostery.

    Science.gov (United States)

    Lee, Chul Won; Chakravorty, Dhruva K; Chang, Feng-Ming James; Reyes-Caballero, Hermes; Ye, Yuzhen; Merz, Kenneth M; Giedroc, David P

    2012-03-27

    Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.

  7. Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Ribeiro, Alexandra B.

    2005-01-01

    /desorption processes of the heavy metals. The present study gives some examples where it is necessary to use an enhancement solution to aid desorption of Cu, Zn and Pb during electrodialytic treatment. Dependent on the composition of the pollution, different choices can be made. In the case of a Cu-polluted calcareous......Numerous studies have been conducted with electrochemical removal of heavy metals from spiked kaolinite. Meanwhile, when moving from kaolinite to real soils, new factors must be taken into account-factors influencing, e.g., the buffering capacity of the soil against acidification and the adsorption...... for electrochemical treatment of an actual industrially polluted soil, this scheme must be chosen on basis of characterization of soil and pollution combination....

  8. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  9. Enhanced bias stability of solution-processed zinc-tin-oxide thin film transistors using self-assembled monolayer as a selective channel passivation.

    Science.gov (United States)

    Heo, Jae-Sang; Park, Sung-Kyu

    2013-10-01

    The enhanced positive bias stability of amorphous zinc-tin-oxide thin-film transistors (a-ZTO TFTs) were obtained by applying self-assembled monolayer (SAM) as a selective passivation layer on the metal-oxide back channel area. The a-ZTO TFTs with passivation layers such as poly(methyl methacylate) (PMMA), SAM, and SAM/PMMA were fabricated by simple solution methods. After deposition of the passivation layers, the electrical characteristics of a-ZTO TFTs have not been changed and the threshold voltage shift (deltaV(th)) under gate-bias stress for around 10(4) seconds was improved. The deltaV(th) of the devices with PMMA, SAM, and SAM/PMMA dual layer were 3.79 V, 3.2 V, and 2.17 V, respectively.

  10. Enhanced solar light photodegradation of brilliant black bis-azo dye in aqueous solution by F, Sm3+ codoped TiO2

    Science.gov (United States)

    Mukonza, Sabastian S.; Nxumalo, Edward N.; Mamba, Bhekie B.; Mishra, Ajay K.

    2017-05-01

    This research focuses on improving the photocatalytic efficiency of TiO2 during the photo-mineralisation of brilliant black (BN) bis-azo dye pollutant in aqueous solution. This was achieved by improving the visible light activity of TiO2 photocatalyst semiconductor through co-doping of fluorine (F) and trivalent samarium ions (Sm3+) into a TiO2 matrix using a modified sol-gel synthesis method. Structural, morphological, and textural properties were evaluated using ultra-violet /visible spectroscopy (UV-visible), Raman spectroscopy, scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction spectroscopy (XRD). Photocatalytic and degradation efficiencies were assessed by decolourisation of BN dye in aqueous solution. Complete degradation of BN was attained after an irradiation time of 3 h using F, Sm3+-TiO2 (0.6% Sm3+) compared to 73.4% achieved using pristine TiO2. Pseudo first order kinetics rate constants (Ka) were 2.73×10-2 and 6.6×10-3 min-1 for Sm3+-TiO2 (0.6%Sm3+) and pristine TiO2, respectively, which translates to a remarkably high enhancement factor of 4. The results obtained established that doping of TiO2 by F and Sm3+ enhances the photocatalytic performance of TiO2 during solar light radiation which enables the utilisation of freely available and clean solar energy.

  11. Mercaptoundecanoic acid capped palladium nanoparticles in a SAPO 34 membrane: a solution for enhancement of H₂/CO₂ separation efficiency.

    Science.gov (United States)

    Das, Jugal Kishore; Das, Nandini

    2014-12-10

    In this work, the high quality Pd/SAPO 34 membranes were grown on the support using a secondary (seeded) growth hydrothermal technique followed by insertion of 11-mercaptoundecanoic acid capped palladium (MUA-Pd) nanoparticles (NPs) to the membrane surface. For this, first, the indigenous low cost clay-alumina support was treated with poly diallyldimethylammonium chloride (PolyDADMAC) polymer, and subsequently, a seed layer of SAPO 34 crystals was deposited homogeneously in a regular orientation. Since PolyDADMAC is a high charge density cationic polymer, it assisted in reversing the charge of the support surface and produced an attractive electrostatic interaction between the support and zeolite crystals. This may facilitate the zeolite grain orientation in the synthesized membrane layer. Here, the Pd NPs were deposited in the membrane matrix by a simple dip-coating method. After thermal treatment of the Pd/SAPO 34 membrane, the defects were formed because of the removal of the structure-directing agent (SDA) from the zeolite pores but the presence of Pd NPs, which were entrapped inside the nonzeolitic pores and clogged the defects of the membrane. Field emission scanning electron microscopy (FESEM) and elemental mapping of the membrane cross-section confirmed that most of the Pd NPs were deposited at the interface of the membrane and the support layer which may increase the membrane efficiency, i.e., separation factor, as well as permeability of H2 through the membrane. As the membrane structure was associated with the oriented crystal, the pores were more aligned and permeation adequacy of H2 through the membrane enhanced. These membranes have a relative hydrogen permeance of 14.8 × 10(-7) mol·m(-2)·s(-1)·Pa(-1). The selectivity of H2/CO2 based on single gas permeation was 10.6, but for the mixture gas (H2/CO2 55:45), the H2/CO2 mixture separation factor increased up to 20.8 at room temperature. It is anticipated that this technique may be useful for making

  12. A better state-of-mind: deep breathing reduces state anxiety and enhances test performance through regulating test cognitions in children.

    Science.gov (United States)

    Khng, Kiat Hui

    2017-11-01

    A pre-test/post-test, intervention-versus-control experimental design was used to examine the effects, mechanisms and moderators of deep breathing on state anxiety and test performance in 122 Primary 5 students. Taking deep breaths before a timed math test significantly reduced self-reported feelings of anxiety and improved test performance. There was a statistical trend towards greater effectiveness in reducing state anxiety for boys compared to girls, and in enhancing test performance for students with higher autonomic reactivity in test-like situations. The latter moderation was significant when comparing high-versus-low autonomic reactivity groups. Mediation analyses suggest that deep breathing reduces state anxiety in test-like situations, creating a better state-of-mind by enhancing the regulation of adaptive-maladaptive thoughts during the test, allowing for better performance. The quick and simple technique can be easily learnt and effectively applied by most children to immediately alleviate some of the adverse effects of test anxiety on psychological well-being and academic performance.

  13. Preparation of Poly-(Methyl vinyl ether-co-maleic Anhydride Nanoparticles by Solution-Enhanced Dispersion by Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Kang

    2012-10-01

    Full Text Available The supercritical CO2-based technologies have been widely used in the formation of drug and/or polymer particles for biomedical applications. In this study, nanoparticles of poly-(methyl vinyl ether-co-maleic anhydride (PVM/MA were successfully fabricated by a process of solution-enhanced dispersion by supercritical CO2 (SEDS. A 23 factorial experiment was designed to investigate and identify the significance of the processing parameters (concentration, flow and solvent/nonsolvent for the surface morphology, particle size, and particle size distribution of the products. The effect of the concentration of PVM/MA was found to be dominant in the results regarding particle size. Decreasing the initial solution concentration of PVM/MA decreased the particle size significantly. After optimization, the resulting PVM/MA nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution. Fourier transform infrared spectroscopy (FTIR spectra demonstrated that the chemical composition of PVM/MA was not altered during the SEDS process and that the SEDS process was therefore a typical physical process. The absolute value of zeta potential of the obtained PVM/MA nanoparticles was larger than 40 mV, indicating the samples’ stability in aqueous suspension. Analysis of thermogravimetry-differential scanning calorimetry (TG-DSC revealed that the effect of the SEDS process on the thermostability of PVM/MA was negligible. The results of gas chromatography (GC analysis confirmed that the SEDS process could efficiently remove the organic residue.

  14. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method.

    Science.gov (United States)

    Jung, Kyung-Won; Ahn, Kyu-Hong

    2016-01-01

    A novel combined electrochemical modification (CEM) method, using a graphite electrode-based electric field and MgCl2 as electrolyte, was newly developed to prepare porosity-enhanced biochar containing periclase (MgO) nanocomposites (PE-MgO/biochar). During the CEM method, the dried marine macroalgae was immersed in the MgCl2 solution, and a voltage of 20V was then applied for 10min prior to pyrolysis. Morphological and chemical analyses results showed that nano-sized MgO particles with a highly crystalline structure were dispersed and enriched on the surface of the PE-MgO/biochar, which enabled higher phosphate adsorption capability. In an adsorption equilibrium test, among various biochars, PE-MgO/biochar exhibited the highest phosphate adsorption capacity from aqueous solution with a Langmuir-Freundlich maximum adsorption capacity as high as 620mg-Pg(-1). It can be concluded that the newly introduced CEM method is a potent additional technique to effectively prepare modified-biochar in terms of a simple and time-saving modification method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase.

    Science.gov (United States)

    Liu, Lei; Zhang, Ruifen; Deng, Yuanyuan; Zhang, Yan; Xiao, Juan; Huang, Fei; Wen, Wei; Zhang, Mingwei

    2017-04-15

    In this study, rice bran was successively steamed with α-amylase, fermented with lactic acid bacteria, and hydrolyzed with complex enzymes. The changes in phenolic profiles and antioxidant activities of the corresponding aqueous solutions from three stages were investigated. Compared to the first stage, fermentation and complex enzyme hydrolysis significantly increased the total phenolics, total flavonoids, total FRAP and ORAC values by 59.2%, 56.6%, 73.6% and 45.4%, respectively. Twelve individual phenolics present in free or soluble conjugate forms were also analyzed during the processing. Ferulic acid was released in the highest amount among different phenolics followed by protocatechuic acid. Moreover, a major proportion of phenolics existed as soluble conjugates. The results showed that fermentation and complex enzyme hydrolysis enhanced total phenolics and antioxidant activities of aqueous solution from rice bran pretreated by steaming with α-amylase. This research could provide basis for the processing of rice bran beverage rich in phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Enhanced inactivation of Salmonella and Pseudomonas biofilms on stainless steel by use of T-128, a fresh-produce washing aid, in chlorinated wash solutions.

    Science.gov (United States)

    Shen, Cangliang; Luo, Yaguang; Nou, Xiangwu; Bauchan, Gary; Zhou, Bin; Wang, Qin; Millner, Patricia

    2012-10-01

    The effect of the washing aid T-128 (generally recognized as safe [GRAS] formulation, composed mainly of phosphoric acid and propylene glycol) on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel was evaluated under conditions of increasing organic matter loads in chlorinated wash solutions dominated by hypochlorous acid. Biofilms were formed statically on stainless steel coupons suspended in 2% lettuce extract after inoculation with Salmonella enterica serovar Thompson or Newport or with Pseudomonas fluorescens. Coupons with biofilms were washed in chlorine solutions (0, 0.5, 1, 2, 5, 10, or 20 mg/liter at pH 6.5, 5.0 and 2.9), with or without T-128, and with increasing loads of organic matter (0, 0.25, 0.5, 0.75, or 1.0% lettuce extract). Cell populations on coupons were dispersed using intermittent, pulsed ultrasonication and vortexing and enumerated by colony counts on XLT-4 or Pseudomonas agars. Cell responses to fluorescent viability staining of biofilm treatment washing solutions were examined using confocal laser scanning microscopy. Results showed that 0.1% T-128 (without chlorine) reduced P. fluorescens biofilm populations by 2.5 log(10) units but did not reduce Salmonella populations. For both Salmonella and Pseudomonas, the sanitizing effect of free chlorine (1.0 to 5.0 mg/liter) was enhanced (P biofilms compared to treatments without T-128. Image analysis of surfaces stained with SYTO and propidium iodide corroborate the cultural assay results showing that T-128 can aid in reducing pathogen viability in biofilms and thus can aid in sanitizing stainless steel contact surfaces during processing of fresh-cut produce.

  17. Zn-depleted mice absorb more of an intragastric Zn solution by a metallothionein-enhanced process than do Zn-replete mice.

    Science.gov (United States)

    Coyle, P; Philcox, J C; Rofe, A M

    2000-04-01

    The influence of metallothionein (MT)(2) on Zn absorption was investigated in MT-null (MT-/-) and normal (MT+/+) mice fed Zn-depleted (ZnD) diets for 7 d and compared with those fed Zn-replete (ZnR) diets in a previous study. Mice were starved for 20 h, then administered an oral gavage of aqueous (65)ZnSO(4) solution at doses of 154, 770 or 1540 nmol of Zn, and the amount transferred into nongut tissues was determined 4 h later. (65)Zn transfer did not differ between genotypes in ZnR mice. However ZnD MT+/+ mice had a 30-40% greater transfer from the 154 and 770 Zn doses compared to ZnR MT+/+ mice. This was not observed in MT-/- mice. In MT+/+ mice, Zn depletion enhanced the induction of MT by Zn in the intestine and pancreas. (65)Zn uptakes in the liver and pancreas were greater in MT+/+ than MT-/- mice, and this was greater (50%) at the 154 and 770 doses in mice fed ZnD diets. Plasma Zn concentrations were raised to a similar extent in ZnR and ZnD MT-/- mice. ZnR MT+/+ mice had significantly lower plasma Zn levels than MT-/-mice; this difference was less marked in the ZnD mice. We conclude that a MT-facilitated enhancement in Zn absorption occurs in response to dietary Zn deficiency.

  18. Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer.

    Science.gov (United States)

    Pagliaccia, D; Merhaut, D; Colao, M C; Ruzzi, M; Saccardo, F; Stanghellini, M E

    2008-10-01

    Fluorescent pseudomonads have been associated, via diverse mechanisms, with suppression of root disease caused by numerous fungal and fungal-like pathogens. However, inconsistent performance in disease abatement, after their employment, has been a problem. This has been attributed, in part, to the inability of the biocontrol bacterium to maintain a critical threshold population necessary for sustained biocontrol activity. Our results indicate that a nitrogen stabilizer (N-Serve, Dow Agrosciences) selectively and significantly enhanced, by two to three orders of magnitude, the resident population of fluorescent pseudomonads in the amended (i.e., 25 microg ml(-1) nitrapyrin, the active ingredient) and recycled nutrient solution used in the cultivation of hydroponically grown gerbera and pepper plants. Pseudomonas putida was confirmed as the predominant bacterium selectively enhanced. Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rDNA suggested that N-Serve selectively increased P. putida and reduced bacterial diversity 72 h after application. In vitro tests revealed that the observed population increases of fluorescent pseudomonads were preceded by an early growth suppression of indigenous aerobic heterotrophic bacteria (AHB) population. Interestingly, the fluorescent pseudomonad population did not undergo this decrease, as shown in competition assays. Xylene and 1,2,4-trimethylbenzene (i.e., the inert ingredients in N-Serve) were responsible for a significant percentage of the fluorescent pseudomonad population increase. Furthermore, those increases were significantly higher when the active ingredient (i.e., nitrapyrin) and the inert ingredients were combined, which suggests a synergistic response. P. putida strains were screened for the ability to produce antifungal compounds and for the antifungal activity against Pythium aphanidermatum and Phytophthora capsici. The results of this study suggest the presence of diverse mechanisms with

  19. Marriage, Abortion, or Unwed Motherhood? How Women Evaluate Alternative Solutions to Premarital Pregnancies in Japan and the United States

    Science.gov (United States)

    Hertog, Ekaterina; Iwasawa, Miho

    2011-01-01

    In this article, the authors argue that to understand the very low incidence of outside-of-marriage childbearing in contemporary Japan one needs to take into account perceptions of all possible solutions to a premarital pregnancy: marriage, abortion, and childbearing outside wedlock. To demonstrate the particular impact of these perceptions in…

  20. Improved metabolism and redox state with a novel preservation solution: Implications for donor lungs after cardiac death (DCD)

    NARCIS (Netherlands)

    D.A. Schipper (David A.); Louis, A.V. (Anthony V.); Dicken, D.S. (Destiny S.); Johnson, K. (Kitsie); R.T. Smolenski (Ryszard); Black, S.M. (Stephen M.); Runyan, R. (Ray); Konhilas, J. (John); Garcia, J.G.N. (Joe G. N.); Z. Khalpey (Zain)

    2017-01-01

    textabstractLungs donated after cardiac death (DCD) are an underutilized resource for a dwindling donor lung transplant pool. Our study investigates the potential of a novel preservation solution, Somah, to better preserve statically stored DCD lungs, for an extended time period, when compared to

  1. High-frequency and -field EPR spectroscopy of tris(2,4-pentanedionato)manganese(III): investigation of solid-state versus solution Jahn-Teller effects.

    Science.gov (United States)

    Krzystek, J; Yeagle, Gregory J; Park, Ju-Hyun; Britt, R David; Meisel, Mark W; Brunel, Louis-Claude; Telser, Joshua

    2003-07-28

    High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy of a classical coordination complex, Mn(acac)(3) (Hacac = 2,4-pentanedione), has been performed on both solid powder and frozen solution (in CH(2)Cl(2)/toluene, 3:2 v/v) samples. Parallel mode detection X-band EPR spectra exhibiting resolved (55)Mn hyperfine coupling were additionally obtained for frozen solutions. Magnetic susceptibility and field-dependent magnetization measurements were also made on powder samples. Analysis of the entire EPR data set for the frozen solution allowed extraction of the relevant spin Hamiltonian parameters: D = -4.52(2); |E| = 0.25(2) cm(-1); g(iso) = 1.99(1). The somewhat lower quality solid-state HFEPR data and the magnetic measurements confirmed these parameters. These parameters are compared to those for other complexes of Mn(III) and to previous studies on Mn(acac)(3) using X-ray crystallography, solution electronic absorption spectroscopy, and powder magnetic susceptibility. Crystal structures have been reported for Mn(acac)(3) and show tetragonal distortion, as expected for this Jahn-Teller ion (Mn(3+), 3d(4)). However, in one case, the molecule exhibits axial compression and, in another, axial elongation. The current HFEPR studies clearly show the negative sign of D, which corresponds to an axial (tetragonal) elongation in frozen solution. The correspondence among solution and solid-state HFEPR data, solid-state magnetic measurements, and an HFEPR study by others on a related complex indicates that the form of Mn(acac)(3) studied here exhibits axial elongation in all cases. Such tetragonal elongation has been found for Mn(3+) and Cr(2+) complexes with homoleptic pseudooctahedral geometry as well as for Mn(3+) in square pyramidal geometry. This taken together with the results obtained here for Mn(acac)(3) in frozen solution indicates that axial elongation could be considered the "natural" form of Jahn-Teller distortion for octahedral high-spin 3d(4

  2. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  3. Observation of Supercurrent Enhancement in SNS Junctions by Nonequilibrium Injection into Supercurrent Carrying Bound Andreev States

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael; Sørensen, Claus B.

    1999-01-01

    We report for the first time enhancement of the supercurrent by means of injection in a mesoscopic three terminal planar SN-SNS device made of Al on GaAs. When a current is injected from one of the superconducting Al electrodes at an injection bias V = Δ(T)/e, the dc Josephson current between...

  4. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.

    Science.gov (United States)

    Caricato, Marco

    2013-07-28

    The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.

  5. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  6. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    Science.gov (United States)

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Innovating to enhance clinical data management using non-commercial and open source solutions across a multi-center network supporting inpatient pediatric care and research in Kenya.

    Science.gov (United States)

    Tuti, Timothy; Bitok, Michael; Paton, Chris; Makone, Boniface; Malla, Lucas; Muinga, Naomi; Gathara, David; English, Mike

    2016-01-01

    To share approaches and innovations adopted to deliver a relatively inexpensive clinical data management (CDM) framework within a low-income setting that aims to deliver quality pediatric data useful for supporting research, strengthening the information culture and informing improvement efforts in local clinical practice. The authors implemented a CDM framework to support a Clinical Information Network (CIN) using Research Electronic Data Capture (REDCap), a noncommercial software solution designed for rapid development and deployment of electronic data capture tools. It was used for collection of standardized data from case records of multiple hospitals' pediatric wards. R, an open-source statistical language, was used for data quality enhancement, analysis, and report generation for the hospitals. In the first year of CIN, the authors have developed innovative solutions to support the implementation of a secure, rapid pediatric data collection system spanning 14 hospital sites with stringent data quality checks. Data have been collated on over 37 000 admission episodes, with considerable improvement in clinical documentation of admissions observed. Using meta-programming techniques in R, coupled with branching logic, randomization, data lookup, and Application Programming Interface (API) features offered by REDCap, CDM tasks were configured and automated to ensure quality data was delivered for clinical improvement and research use. A low-cost clinically focused but geographically dispersed quality CDM (Clinical Data Management) in a long-term, multi-site, and real world context can be achieved and sustained and challenges can be overcome through thoughtful design and implementation of open-source tools for handling data and supporting research. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  8. The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    Science.gov (United States)

    CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun

    2012-01-01

    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified

  9. Bioengineering-enhanced neurosurgical solutions

    OpenAIRE

    Ganau, Mario

    2016-01-01

    The advancements in basic sciences and the availability of sophisticated technological aids have led over the last few years to the rise of innovative surgical strategies, the identification of better prognostic/predictive biomolecular factors, and the development of novel drugs all meant to profoundly impact the outcome of neurosurgical patients. This thesis touches upon the window of opportunity to exploit bioengineering techniques in three subspecialties of this vast discipline: neuro-onco...

  10. High Energy Density Solid State Li-ion Battery with Enhanced Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  11. DRUG CONTROL: State Department Provides Required Aviation Program Oversight, but Safety and Security Should Be Enhanced

    National Research Council Canada - National Science Library

    2001-01-01

    .... 2 Under State 's Bureau for International Narcotics and Law Enforcement Affairs, the Office of Aviation, through a contract with DynCorp Aerospace Technology, supports foreign governments efforts...

  12. Renewable Energy Prices in State-Level Feed-in Tariffs: Federal Law Constraints and Possible Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hempling, S.; Elefant, C.; Cory, K.; Porter, K.

    2010-01-01

    State legislatures and state utility commissions trying to attract renewable energy projects are considering feed-in tariffs, which obligate retail utilities to purchase electricity from renewable producers under standard arrangements specifying prices, terms, and conditions. The use of feed-in tariffs simplifies the purchase process, provides revenue certainty to generators, and reduces the cost of financing generating projects. However, some argue that federal law--including the Public Utility Regulatory Policies Act of 1978 (PURPA) and the Federal Power Act of 1935 (FPA)--constrain state-level feed-in tariffs. This report seeks to reduce the legal uncertainties for states contemplating feed-in tariffs by explaining the constraints imposed by federal statutes. It describes the federal constraints, identifies transaction categories that are free of those constraints, and offers ways for state and federal policymakers to interpret or modify existing law to remove or reduce these constraints. This report proposes ways to revise these federal statutes. It creates a broad working definition of a state-level feed-in tariff. Given this definition, this report concludes there are paths to non-preempted, state-level feed-in tariffs under current federal law.

  13. N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Li, Fa-tang; Zhao, Ye; Hao, Ying-juan; Wang, Xiao-jing; Liu, Rui-hong; Zhao, Di-shun; Chen, Dai-mei

    2012-11-15

    Nitrogen-doped Degussa P25 TiO2-amorphous Al2O3 composites were prepared via facile solution combustion. The composites were characterised using X-ray diffraction, high-resolution transmission microscopy, scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, UV-vis light-diffusion reflectance spectrometry (DRS), zeta-potential measurements, and photoluminescence spectroscopy. The DRS results showed that TiO2 and amorphous Al2O3 exhibited absorption in the UV region. However, the Al2O3/TiO2 composite exhibited visible-light absorption, which was attributed to N-doping during high-temperature combustion and to alterations in the electronic structure of Ti species induced by the addition of Al. The optimal molar ratio of TiO2 to Al2O3 was 1.5:1, and this composite exhibited a large specific surface area of 152 m2/g, surface positive charges, and enhanced photocatalytic activity. These characteristics enhanced the degradation rate of anionic methylene orange, which was 43.6 times greater than that of pure P25 TiO2. The high visible-light photocatalytic activity was attributed to synthetic effects between amorphous Al2O3 and TiO2, low recombination efficiency of photo-excited electrons and holes, N-doping, and a large specific surface area. Experiments that involved radical scavengers indicated that OH and O2- were the main reactive species. A potential photocatalytic mechanism was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing [State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023 (China); School of the Environment, Nanjing University, Nanjing 210023 (China); Li, Zhengkui, E-mail: zhkuili@nju.edu.cn [State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023 (China); School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-12-30

    Highlights: • A novel ion-imprinted poly(polyethylenimine/hydroxyethyl acrylate) hydrogel was synthesized. • The prepared hydrogel enhanced the selectivity of Cu(II) removal. • The material had high adsorption capacity and excellent regeneration property for copper. • The adsorption mechanism was the chelate interaction between functional groups and Cu(II) ions. - Abstract: A novel polyethylenimine-functionalized ion-imprinted hydrogel (Cu(II)-p(PEI/HEA)) was newly synthesized by {sup 60}Co-γ-induced polymerization for the selective removal of Cu(II) from aqueous solution. The adsorption performances including the adsorption capacity and selectivity of the novel hydrogel were much better than those of similar adsorbents reported. The hydrogel was characterized via scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis and X-ray photoelectron spectroscopy to determine the structure and mechanisms. The adsorption process was pH and temperature sensitive, better fitted to pseudo-second-order equation, and was Langmuir monolayer adsorption. The maximum adsorption capacity for Cu(II) was 40.00 mg/g. The selectivity coefficients of ion-imprinted hydrogel for Cu(II)/Pb(II), Cu(II)/Cd(II) and Cu(II)/Ni(II) were 55.09, 107.47 and 63.12, respectively, which were 3.93, 4.25 and 3.53 times greater than those of non-imprinted hydrogel, respectively. Moreover, the adsorption capacity of Cu(II)-p(PEI/HEA) could still keep more than 85% after four adsorption–desorption cycles. Because of such enhanced selective removal performance and excellent regeneration property, Cu(II)-p(PEI/HEA) is a promising adsorbent for the selective removal of copper ions from wastewater.

  15. Synthesis of Graphene Oxide-Based Sulfonated Oligoanilines Coatings for Synergistically Enhanced Corrosion Protection in 3.5% NaCl Solution.

    Science.gov (United States)

    Lu, Hao; Zhang, Shengtao; Li, Weihua; Cui, Yanan; Yang, Tao

    2017-02-01

    As a vital derivative of graphene, graphene oxide (GO) is widely applied in various fields, such as transparent electrodes, solar cells, energy storage, and corrosion protection due to the large specific surface area and abundant active sites. However, compared with graphene, the application of GO has been less reported in metal corrosion protection field. Therefore, in our study, 3-aminobenzenesulfonic acid was selected to combine with oligoanilines to fabricate the GO-based sulfonated oligoanilines coatings for marine corrosion protection application. The obtained composite coatings were covered on the surface of Q235 steel, which is one of the most important structural marine materials. Fourier transform infrared spectra were utilized to prove the existence of different bonds and functional groups of aniline trimer and sulfonated aniline trimer (SAT). Scanning electron microscopy was applied to verify the combination of GO and SAT. What's more, transmission electron microscopy was applied to observe the surface appearance of the obtained GO-SAT composite material. Besides, the results of electrochemical measurements performed in 3.5 wt % NaCl solution showed excellent corrosion-protective properties of GO/SAT-coated epoxy resin with a dosage of 10 mg of GO compared with the pure epoxy resin. Moreover, the enhancement of surface hydrophobic property, to some extent, is in favor of preventing the absorption of corrosive medium and water molecules revealed by contact angle test. The addition of GO can make the diffusion pathway of the corrosive medium longer and more circuitous, while SAT has displayed excellent solvent solubility while maintaining corrosion-protective properties similar to those of polyanilines so that the corrosion-protective properties of the modified coatings improve significantly due to the synergistically enhanced corrosion protection of GO and SAT.

  16. New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation.

    Science.gov (United States)

    Tulipani, Sara; Mora-Cubillos, Ximena; Jáuregui, Olga; Llorach, Rafael; García-Fuentes, Eduardo; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2015-03-03

    Although LC-MS untargeted metabolomics continues to expand into exiting research domains, methodological issues have not been solved yet by the definition of unbiased, standardized and globally accepted analytical protocols. In the present study, the response of the plasma metabolome coverage to specific methodological choices of the sample preparation (two SPE technologies, three sample-to-solvent dilution ratios) and the LC-ESI-MS data acquisition steps of the metabolomics workflow (four RP columns, four elution solvent combinations, two solvent quality grades, postcolumn modification of the mobile phase) was investigated in a pragmatic and decision tree-like performance evaluation strategy. Quality control samples, reference plasma and human plasma from a real nutrimetabolomic study were used for intermethod comparisons. Uni- and multivariate data analysis approaches were independently applied. The highest method performance was obtained by combining the plasma hybrid extraction with the highest solvent proportion during sample preparation, the use of a RP column compatible with 100% aqueous polar phase (Atlantis T3), and the ESI enhancement by using UHPLC-MS purity grade methanol as both organic phase and postcolumn modifier. Results led to the following considerations: submit plasma samples to hybrid extraction for removal of interfering components to minimize the major sample-dependent matrix effects; avoid solvent evaporation following sample extraction if loss in detection and peak shape distortion of early eluting metabolites are not noticed; opt for a RP column for superior retention of highly polar species when analysis fractionation is not feasible; use ultrahigh quality grade solvents and "vintage" analytical tricks such as postcolumn organic enrichment of the mobile phase to enhance ESI efficiency. The final proposed protocol offers an example of how novel and old-fashioned analytical solutions may fruitfully cohabit in untargeted metabolomics

  17. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    Directory of Open Access Journals (Sweden)

    Kim Hyungdae

    2011-01-01

    Full Text Available Abstract Nanofluids (suspensions of nanometer-sized particles in base fluids have recently been shown to have nucleate boiling critical heat flux (CHF far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified.

  18. Can a clinical senate enhance state-wide clinician engagement? A survey study.

    Science.gov (United States)

    Quinlivan, Julie A; Miller, Mary; Hutton, Marani

    2017-12-01

    Objective Clinician engagement correlates with quality, safety and efficacy outcomes. The aim of the present study was to explore whether a clinical senate model achieves clinical input into system manager and operational health service boards. Methods A mixed-methods survey was undertaken. Participants were current or immediate past members of the Clinical Senate of Western Australia (CS). For the 124 surveys sent out, the response rate was 60%. Results Respondents stated the CS played a role in clinician engagement (95%), contributed to healthcare reform (82%), knowledge of contemporary health issues (92%), feedback to decision makers (82%), clinician networking (94%), debate on important issues (93%), enabled clinicians to work on recommendations to improve health at a state level (87%), contributed to clinician thinking on health reform (88%) and enabled clinicians to share their knowledge (91%). Four major themes emerged in the qualitative analysis: (1) the need for a strong independent clinician forum and voice at a state level; (2) the need to strengthen clinician interactions with operational healthcare boards; (3) a strong belief that clinician engagement strengthened quality and safety outcomes at a state level; and (4) that membership was important and needed to be diverse, multidisciplinary and independent, but structurally representative of clinicians in the state. Conclusion A clinical senate model can facilitate state-wide clinician engagement. What is known about the topic? High levels of clinical engagement foster a culture within healthcare organisations that is associated with the delivery of sustained high-quality, safe and efficient services. This has led to a focus on strategies to optimise clinical engagement in healthcare planning and reform. However, there is limited data exploring how to achieve clinical engagement at a state, rather than local, level within the healthcare system. What does this paper add? This survey study evaluates the

  19. Flavonoid-rich agro-industrial residues for enhanced bacterial laccase production by submerged and solid-state fermentation.

    Science.gov (United States)

    Sharma, Aarjoo; Gupta, Vijaya; Khan, Mussarat; Balda, Sanjeev; Gupta, Naveen; Capalash, Neena; Sharma, Prince

    2017-07-01

    Laccases have potential applications in industrial, biotechnological, and environmental set ups. Development of cost effective and efficient production technologies has gained significant attention in recent years. To enhance the laccase production from Rheinheimera sp. (Gram negative) using submerged fermentation (SmF) and from Lysinibacillus sp. (Gram positive) using solid-state fermentation (SSF), the inducing effect of various flavonoid-rich agro-industrial residues was investigated. Peels of citrus fruits, soybean meal, tofu dreg, lignin monomers, and lingo-cellulosic waste, used tea leaves and peels of onion and kiwi, paper, and dying industry effluents were tested as inducers. In SmF, 0.1% of soybean meal, tofu dreg, and powdered orange peel were best, enhancing the laccase production 2.57-, 2.11-, and 2.05-fold, respectively. In SSF, 10 mg (w/w) of used tata acti green tea leaves per 5 g of wheat bran, 1% pulp and paper industry effluent (agro based), and 1% wine made from Sygium cumini enhanced the laccase production 2.69-, 2.61-, and 2.09-fold, respectively. These results suggest the utilization of these flavonoid and phenolic-rich waste materials to be potential enhancers of industrially important laccase production.

  20. Exploring a United States Maize Cellulose Biofuel Scenario Using an Integrated Energy and Agricultural Markets Solution Approach

    Science.gov (United States)

    Biofuel feedstock production in the United States (US) is an emergent environmental nutrient management issue, whose exploration can benefit from a multi-scale and multimedia systems modeling approach that explicitly addresses diverging stakeholder interests. In the present analy...

  1. Ultrafast fluorescence detection in tris(2,2'-bipyridine)ruthenium(II) complex in solution: relaxation dynamics involving higher excited states.

    Science.gov (United States)

    Bhasikuttan, Achikanath C; Suzuki, Masaya; Nakashima, Satoru; Okada, Tadashi

    2002-07-17

    The excited-state dynamics of a transition metal complex, tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)(3)](2+), has been investigated using femtosecond fluorescence upconversion spectroscopy. The relaxation dynamics in these molecules is of great importance in understanding the various ultrafast processes related to interfacial electron transfer, especially in semiconductor nanoparticles. Despite several experimental and theoretical efforts, direct observation of a Franck-Condon singlet excited state in this molecule was missing. In this study, emission from the Franck-Condon excited singlet state of [Ru(bpy)(3)](2+) has been observed for the first time, and its lifetime has been estimated to be 40 +/- 15 fs. Biexponential decays with a fast rise component observed at longer wavelengths indicated the existence of more than one emitting state in the system. From a detailed data analysis, it has been proposed that, on excitation at 410 nm, crossover from higher excited (1)(MLCT) states to the vibrationally hot triplet manifold occurs with an intersystem crossing time constant of 40 +/- 15 fs. Mixing of the higher levels in the triplet state with the singlet state due to strong spin-orbit coupling is proposed. This enhances the radiative rate constant, k(r), of the vibrationally hot states within the triplet manifold, facilitating the upconversion of the emitted photons. The vibrationally excited triplet, which is emissive, undergoes vibrational cooling with a decay time in the range of 0.56-1.3 ps and relaxes to the long-lived triplet state. The results on the relaxation dynamics of the higher excited states in [Ru(bpy)(3)](2+) are valuable in explaining the role of nonequilibrated higher excited sensitizer states of transition metal complexes in the electron injection and other ultrafast processes.

  2. Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach.

    Science.gov (United States)

    Improta, Roberto; Scalmani, Giovanni; Frisch, Michael J; Barone, Vincenzo

    2007-08-21

    A state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of emission energies has been developed and coded in the framework of the so called polarizable continuum model (PCM). The new model allows for a rigorous and effective treatment of dynamical solvent effects in the computation of fluorescence and phosphorescence spectra in solution, and it can be used for studying different relaxation time regimes. SS and conventional linear response (LR) models have been compared by computing the emission energies for different benchmark systems (formaldehyde in water and three coumarin derivatives in ethanol). Special attention is given to the influence of dynamical solvation effects on LR geometry optimizations in solution. The results on formaldehyde point out the complementarity of LR and SS approaches and the advantages of the latter model especially for polar solvents and/or weak transitions. The computed emission energies for coumarin derivatives are very close to their experimental counterparts, pointing out the importance of a proper treatment of nonequilibrium solvent effects on both the excited and the ground state energies. The availability of SS-PCM/TD-DFT models for the study of absorption and emission processes allows for a consistent treatment of a number of different spectroscopic properties in solution.

  3. Coatable Li4 SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Young Eun; Park, Kern Ho; Kim, Dong Hyeon; Oh, Dae Yang; Kwak, Hi Ram; Lee, Young-Gi; Jung, Yoon Seok

    2017-06-22

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm-1 ) and dry-air-stable SEs (Li4 SnS4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO2 ) coated by solidified Li4 SnS4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO2 to aqueous solutions are minimized by using predissolved Li4 SnS4 solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    Science.gov (United States)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  5. Conscious Augmentation of Creative State Enhances "Real" Creativity in Open-Ended Analogical Reasoning.

    Science.gov (United States)

    Weinberger, Adam B; Iyer, Hari; Green, Adam E

    2016-01-01

    Humans have an impressive ability to augment their creative state (i.e., to consciously try and succeed at thinking more creatively). Though this "thinking cap" phenomenon is commonly experienced, the range of its potential has not been fully explored by creativity research, which has often focused instead on creativity as a trait. A key question concerns the extent to which conscious augmentation of state creativity can improve creative reasoning. Although artistic creativity is also of great interest, it is creative reasoning that frequently leads to innovative advances in science and industry. Here, we studied state creativity in analogical reasoning, a form of relational reasoning that spans the conceptual divide between intelligence and creativity and is a core mechanism for creative innovation. Participants performed a novel Analogy Finding Task paradigm in which they sought valid analogical connections in a matrix of word-pairs. An explicit creativity cue elicited formation of substantially more creative analogical connections (measured via latent semantic analysis). Critically, the increase in creative analogy formation was not due to a generally more liberal criterion for analogy formation (that is, it appeared to reflect "real" creativity rather than divergence at the expense of appropriateness). The use of an online sample provided evidence that state creativity augmentation can be successfully elicited by remote cuing in an online environment. Analysis of an intelligence measure provided preliminary indication that the influential "threshold hypothesis," which has been proposed to characterize the relationship between intelligence and trait creativity, may be extensible to the new domain of state creativity.

  6. Enhanced analogue front-end for the measurement of the high state of wide-band voltage pulses with 87 dB common-mode rejection ratio and ±0.65 ppm 1-day offset stability

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Martino, Michele

    2015-01-01

    An improved analogue front-end for measuring the high state of trapezoidal voltage pulses with transition duration of 3 μs is presented. A new measurement system, composed by a front-end and the state-of-the-art acquisition board NI PXI-5922, has been realized with improved Common Mode Rejection Ratio (CMRR) of more than 87 dB at DC and 3-sigma stability of }0.65 ppm over 1 day. After highlighting the main design enhancements with respect to state-of-the-art solutions, the CMRR measurement is reported. The output drift due to temperature and humidity is assessed to be negligible. Finally, the worst-case repeatability is measured both with shorted-to-ground inputs and with an applied common-mode voltage of 10 V, which represents the nominal working condition.

  7. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    Science.gov (United States)

    Beckstead, Ashley Ann

    results to similar observations of viscosity-dependent excited-state decay rates in other molecules. I also consider the relevance of violacein's excited-state properties to the hypothesized sunscreening role of violacein. Overall, the studies presented in this dissertation illustrate how ultrafast spectroscopic techniques can be used to unravel complex biomolecular excited-state dynamics in solution.

  8. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Devisme, F.; Juvenelle, A.; Touron, E. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN/DRCP, 30 - Marcoule (France)

    2001-07-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of {sup 129}I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L{sup -1}) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  9. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng

    Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity....... In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  10. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    Science.gov (United States)

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  11. Cluster-State Quantum Computing Enhanced by High-Fidelity Generalized Measurements

    Science.gov (United States)

    Biggerstaff, D. N.; Kaltenbaek, R.; Hamel, D. R.; Weihs, G.; Rudolph, T.; Resch, K. J.

    2009-12-01

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832±0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10-3), less than some recent thresholds for fault-tolerant cluster computing.

  12. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections.

    Science.gov (United States)

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A; Inderbitzin, Patrik; Sitepu, Irnayuli R; Torok, Tamas; Brown, Daniel R; Cho, Juliana; Wertz, John E; Mukherjee, Supratim; Cady, Sherry L; McCluskey, Kevin

    2015-09-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    Energy Technology Data Exchange (ETDEWEB)

    Boundy-Mills, K.; Hess, Matthias; Bennett, A. R.; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.; McCluskey, Kevin

    2015-09-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  14. Performance enhancement by unsteady-state reactor operation: Theoretical analysis for two-sites kinetic model

    OpenAIRE

    Reshetnikov, S. I.; Ivanov, E. A.; Kiwi-Minsker, L; Renken, A.

    2003-01-01

    Theor. anal. of the reactor performance under unsteady-state conditions was carried out. The reactions are described by two kinetic models, which involve the participation in catalytic reaction of two types of active sites. The kinetic model I assumes the blocking of one of the active sites by a reactant, and the kinetic model II suggests a transformation of active sites of one type into another under the effect of the reaction temp. The unsteady-state conditions on the catalyst surface are s...

  15. Exact solution and short-time dynamics of multimode Gaussian states embedded in a common non-Markovian environment

    Science.gov (United States)

    Xiang, Shao-Hua; Song, Ke-Hui

    2013-07-01

    We investigate a system of N mutually coupled harmonic oscillators interacting with the same environment and derive the corresponding exact non-Markovian master equation using our introduced approach. We obtain an explicit formula for the covariance matrix of the evolved state by taking a Gaussian state as initial one. With this, we analyze the short-time non-Markovian dynamics of three-mode Gaussian state in high-temperature limit. Our results show that the short-time evolution behavior of bipartite entanglement for 1 × 2 bipartition is similar to that of genuine tripartite entanglement, while the 1 × 1 bipartition entanglement does not. It is also shown that there exists a threshold that makes the initial tri- and bipartite entanglement increase or decrease. For the squeezing degree of the initial state than this critical value, the entanglement is increased with the evolution time; otherwise it is decreased. Finally, we present a physical positivity criterion for the covariance matrix of the evolved state.

  16. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...

  17. Information and Communication Technologies in Enhancing Learning Ability in Secondary Schools in Edo State, Nigeria

    Science.gov (United States)

    Osagie, Roseline O.

    2012-01-01

    The dismal results of 2011, 2010, 2009, and previous years WAEC and NECO Senior School Certificate Examinations (SSCE) show the pitiable state of education in secondary schools in Nigeria. The youths of today live in a digital age. Web technologies and sites have become an integral part of the youth culture. Today's youths use the web tools to…

  18. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    Science.gov (United States)

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  19. Multi-frequency radio observations of CTA 102 during enhanced activity state

    Science.gov (United States)

    Righini, Simona; Giroletti, Marcello; D'Ammando, Filippo; Raiteri, Claudia; Villata, Massimo; Bach, Uwe

    2016-12-01

    We report on multi-frequency radio observations of CTA 102 (2230+114), obtained following the reports of intense gamma-ray emission by AGILE and Fermi (ATel #9863, #9869) and the record optical blazar state ever detected (ATel #9868).

  20. Angular momentum-induced delays in solid-state photoemission enhanced by intra-atomic interactions.

    Science.gov (United States)

    Siek, Fabian; Neb, Sergej; Bartz, Peter; Hensen, Matthias; Strüber, Christian; Fiechter, Sebastian; Torrent-Sucarrat, Miquel; Silkin, Vyacheslav M; Krasovskii, Eugene E; Kabachnik, Nikolay M; Fritzsche, Stephan; Muiño, Ricardo Díez; Echenique, Pedro M; Kazansky, Andrey K; Müller, Norbert; Pfeiffer, Walter; Heinzmann, Ulrich

    2017-09-22

    Attosecond time-resolved photoemission spectroscopy reveals that photoemission from solids is not yet fully understood. The relative emission delays between four photoemission channels measured for the van der Waals crystal tungsten diselenide (WSe 2 ) can only be explained by accounting for both propagation and intra-atomic delays. The intra-atomic delay depends on the angular momentum of the initial localized state and is determined by intra-atomic interactions. For the studied case of WSe 2 , the photoemission events are time ordered with rising initial-state angular momentum. Including intra-atomic electron-electron interaction and angular momentum of the initial localized state yields excellent agreement between theory and experiment. This has required a revision of existing models for solid-state photoemission, and thus, attosecond time-resolved photoemission from solids provides important benchmarks for improved future photoemission models. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method

    Science.gov (United States)

    Hajipour, Mojtaba; Jajarmi, Amin

    2018-02-01

    Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.

  2. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    Science.gov (United States)

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  3. Conscious Augmentation of Creative State Enhances “Real” Creativity in Open-Ended Analogical Reasoning

    Science.gov (United States)

    Weinberger, Adam B.; Iyer, Hari; Green, Adam E.

    2016-01-01

    Humans have an impressive ability to augment their creative state (i.e., to consciously try and succeed at thinking more creatively). Though this “thinking cap” phenomenon is commonly experienced, the range of its potential has not been fully explored by creativity research, which has often focused instead on creativity as a trait. A key question concerns the extent to which conscious augmentation of state creativity can improve creative reasoning. Although artistic creativity is also of great interest, it is creative reasoning that frequently leads to innovative advances in science and industry. Here, we studied state creativity in analogical reasoning, a form of relational reasoning that spans the conceptual divide between intelligence and creativity and is a core mechanism for creative innovation. Participants performed a novel Analogy Finding Task paradigm in which they sought valid analogical connections in a matrix of word-pairs. An explicit creativity cue elicited formation of substantially more creative analogical connections (measured via latent semantic analysis). Critically, the increase in creative analogy formation was not due to a generally more liberal criterion for analogy formation (that is, it appeared to reflect “real” creativity rather than divergence at the expense of appropriateness). The use of an online sample provided evidence that state creativity augmentation can be successfully elicited by remote cuing in an online environment. Analysis of an intelligence measure provided preliminary indication that the influential “threshold hypothesis,” which has been proposed to characterize the relationship between intelligence and trait creativity, may be extensible to the new domain of state creativity. PMID:26959821

  4. Conscious Augmentation of Creative State Enhances "Real" Creativity in Open-Ended Analogical Reasoning.

    Directory of Open Access Journals (Sweden)

    Adam B Weinberger

    Full Text Available Humans have an impressive ability to augment their creative state (i.e., to consciously try and succeed at thinking more creatively. Though this "thinking cap" phenomenon is commonly experienced, the range of its potential has not been fully explored by creativity research, which has often focused instead on creativity as a trait. A key question concerns the extent to which conscious augmentation of state creativity can improve creative reasoning. Although artistic creativity is also of great interest, it is creative reasoning that frequently leads to innovative advances in science and industry. Here, we studied state creativity in analogical reasoning, a form of relational reasoning that spans the conceptual divide between intelligence and creativity and is a core mechanism for creative innovation. Participants performed a novel Analogy Finding Task paradigm in which they sought valid analogical connections in a matrix of word-pairs. An explicit creativity cue elicited formation of substantially more creative analogical connections (measured via latent semantic analysis. Critically, the increase in creative analogy formation was not due to a generally more liberal criterion for analogy formation (that is, it appeared to reflect "real" creativity rather than divergence at the expense of appropriateness. The use of an online sample provided evidence that state creativity augmentation can be successfully elicited by remote cuing in an online environment. Analysis of an intelligence measure provided preliminary indication that the influential "threshold hypothesis," which has been proposed to characterize the relationship between intelligence and trait creativity, may be extensible to the new domain of state creativity.

  5. Arbitrary l-state solutions of the Klein-Gordon equation with the Poeschl-Teller potential

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, G.; Taskin, F. [Department of Physics, Erciyes University, Kayseri (Turkey)

    2010-11-15

    Within the framework of the Klein-Gordon equation, the relativistic bound states for the Poeschl-Teller potential are obtained for arbitrary angular momentum quantum numbers by using an approximation for the centrifugal term. The special case for equally scalar and vector Poeschl-Teller potential is studied. The energy eigenvalues are obtained in closed form and the corresponding normalized radial wave functions are expressed in terms of the generalized hypergeometric functions. The s-wave (l=0) case and bound state conditions are also investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Enhancing State-of-the-art Multi-objective Optimization Algorithms by Applying Domain Specific Operators

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    To solve dynamic multi-optimization problems, optimization algorithms are required to converge quickly in response to changes in the environment without reducing the diversity of the found solutions. Most Multi-Objective Evolutionary Algorithms (MOEAs) are designed to solve static multiobjective...... problems. Problems emerge when the algorithms can not converge fast enough, due to scalability issues introduced by using too generic operators. This paper presents an evolutionary algorithm CONTROLEUM-GA that uses domain specific variables and operators to solve a real dynamic greenhouse climate control...... optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...

  7. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    Science.gov (United States)

    He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang

    2015-08-01

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for 1H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo 1H MRI at 0.35 T.

  8. Solubilities of gases in ionic liquids using a corresponding-states approach to Kirkwood-Buff solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2011-01-01

    The solubilities of gases in ionic liquids and compressed liquid densities have been successfully described over a wide range of conditions using a reformulated corresponding-states formulation for direct correlation function integrals. In addition, comparisons with experimental data show reliable...... prediction of ionic liquid characteristic properties from simple rules....

  9. A solution thermodynamics definition of the fiber saturation point and the derivation of a wood-water phase (state) diagram

    Science.gov (United States)

    Samuel L. Zelinka; Samuel V. Glass; Joseph E. Jakes; Donald S. Stone

    2016-01-01

    The fiber saturation point (FSP) is an important concept in wood– moisture relations that differentiates between the states of water in wood and has been discussed in the literature for over 100 years. Despite its importance and extensive study, the exact theoretical definition of the FSP and the operational definition (the correct way to measure the FSP) are still...

  10. Solid-state structure, dynamical properties in solution and computational studies of a new sodium hemispherand complex

    NARCIS (Netherlands)

    van Veggel, F.C.J.M.; van Duynhoven, J.P.M.; van Duynhoven, John P.M.; Harkema, Sybolt; Oude Wolbers, M.P.; Reinhoudt, David

    1996-01-01

    The solid-state structure of 1·NaClO4 has been determined by X-ray diffraction and shows the Na+ complexed in an approximate hexagonal bipyrimidal fashion. The six ether oxygens form the ground plane, the inner carbonyl group and one of the two outer carbonyl groups occupy the apical positions. The

  11. Renewable Energy Prices in State-Level Feed-in Tariffs. Federal Law Constraints and Possible Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hempling, Scott [National Regulatory Research Inst., Silver Spring, MD (United States); Elefant, Carolyn [Law Offices of Carolyn Elefant, Washington, DC (United States); Cory, Karlynn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porter, Kevin [Exeter Associates, Inc., Golden, CO (United States)

    2010-01-01

    This report details how state feed-in tariff (FIT) programs can be legally implemented and how they can comply with federal requirements. The report describes the federal constraints on FIT programs and identifies legal methods that are free of those constrains.

  12. Quantum random number generation enhanced by weak-coherent states interference.

    Science.gov (United States)

    Ferreira da Silva, T; Xavier, G B; Amaral, G C; Temporão, G P; von der Weid, J P

    2016-08-22

    We propose and demonstrate a technique for quantum random number generation based on the random population of the output spatial modes of a beam splitter when both inputs are simultaneously fed with indistinguishable weak coherent states. We simulate and experimentally validate the probability of generation of random bits as a function of the average photon number per input, and compare it to the traditional approach of a single weak coherent state transmitted through a beam-splitter, showing an improvement of up to 32%. The ensuing interference phenomenon reduces the probability of coincident counts between the detectors associated with bits 0 and 1, thus increasing the probability of occurrence of a valid output. A long bit string is assessed by a standard randomness test suite with good confidence. Our proposal can be easily implemented and opens attractive performance gains without a significant trade-off.

  13. Protected state enhanced quantum metrology with interacting two-level ensembles.

    Science.gov (United States)

    Ostermann, Laurin; Ritsch, Helmut; Genes, Claudiu

    2013-09-20

    Ramsey interferometry is routinely used in quantum metrology for the most sensitive measurements of optical clock frequencies. Spontaneous decay to the electromagnetic vacuum ultimately limits the interrogation time and thus sets a lower bound to the optimal frequency sensitivity. In dense ensembles of two-level systems, the presence of collective effects such as superradiance and dipole-dipole interaction tends to decrease the sensitivity even further. We show that by a redesign of the Ramsey-pulse sequence to include different rotations of individual spins that effectively fold the collective state onto a state close to the center of the Bloch sphere, partial protection from collective decoherence is possible. This allows a significant improvement in the sensitivity limit of a clock transition detection scheme over the conventional Ramsey method for interacting systems and even for noninteracting decaying atoms.

  14. Enhanced Resilience Through Expanded Community Preparedness in the United States: Application of Israeli Models

    Science.gov (United States)

    2014-03-01

    model in the United States include education and training for youth, as well as mandatory national service for most citizens. Based upon the findings...and recovery. FEMA Corps is composed of approximately 1,000 members, who are 18–24 years of age, and have committed to a year of national service within...President’s Call to Service Award given in recognition of 4,000 hours of volunteer service over a lifetime. Expansion of national service in the United

  15. Enhanced solid-state electrolytes made of lithium phosphorous oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.F., E-mail: jribeiro@dei.uminho.pt [University of Minho, Dept Industrial Electronics, Campus Azurem, 4800-058 Guimaraes (Portugal); Sousa, R.; Carmo, J.P.; Goncalves, L.M.; Silva, M.F. [University of Minho, Dept Industrial Electronics, Campus Azurem, 4800-058 Guimaraes (Portugal); Silva, M.M. [University of Minho, Chemistry Centre, Braga (Portugal); Correia, J.H. [University of Minho, Dept Industrial Electronics, Campus Azurem, 4800-058 Guimaraes (Portugal)

    2012-11-01

    This paper presents glassy films of lithium phosphorus oxynitride electrolyte with an amorphous structure and improved ionic conductivity suitable for solid-state batteries. The films of lithium phosphorus oxynitride electrolyte were obtained by deposition using the RF sputtering technique in a reactive N{sub 2} atmosphere. The measurements showed films with ionic conductivities in range of 10{sup -7}-10{sup -6} S{center_dot}cm{sup -1}, for temperatures between 22 Degree-Sign C and 43 Degree-Sign C. The depositions were done at several pressures (0.03 Pa, 0.7 Pa and 1 Pa) and for RF applied powers of 150 W and 200 W, in order to evaluate the best deposition set-point. The highest ionic conductivity of 10{sup -6} S{center_dot}cm{sup -1} was measured under a practical room temperature of 35 Degree-Sign C on the best films. These results are comparable with the related state-of-the-art. - Highlights: Black-Right-Pointing-Pointer Lithium phosphorous oxynitride films obtained by RF sputtering Black-Right-Pointing-Pointer Ionic conductivity correlated with deposition settings Black-Right-Pointing-Pointer Ionic conductivity comparable and correlated with the state-of-the-art.

  16. Solid state and solution characterization of a new dinuclear nickel (II) complex: The search for synthetic models for urease

    Science.gov (United States)

    Horn, Adolfo; Fim, Luciana; Bortoluzzi, Adailton J.; Szpoganicz, Bruno; Silva, Marlon de S.; Novak, Miguel A.; Neto, Mario Benassi; Eberlin, Lívia Schiavinato; Catharino, Rodrigo Ramos; Eberlin, Marcos Nogueira; Fernandes, Christiane

    2006-09-01

    The X-ray molecular structure and, magnetic, and spectroscopic properties, as well as the analysis of the structural behavior in solution of a novel nickel (II) complex [Ni 2(HBPClNOL) 2(OAc)](ClO 4) 1 are reported. Complex 1 was prepared by the reaction between the ligand H 2BPClNOL ( N-(2-hydroxybenzyl)- N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine), [Ni(H 2O) 6](ClO 4) 2 and sodium acetate. Magnetic measurements indicate the presence of a weak antiferromagnetic coupling between the Ni(II) ions in 1, resulting in J = -4.23 cm -1. Mass spectrometric characterization of the complex 1 was also performed via ESI-MS and ESI-MS/MS experiments and reveals that there are at least three different cations in solution, one mononuclear [Ni(H 2BPClNOL)(OAc)] + and two dinuclear [Ni 2(HBPClNOL) 2(OAc)] + and [Ni 2(HBPClNOL) 2(ClO 4)] + cations, as well as likely a fourth one [Ni(HBPClNOL)] +. Potentiometric titration experiments confirm that under acid conditions, the dinuclear unit is broken. However, under neutral/basic pH values the dinuclear unit is stable and shows the presence of two water molecules coordinated to the nickel ions, resulting in the cation [Ni 2(HBPClNOL) 2(H 2O) 2] 2+. This cation shows two protonation/deprotonation equilibriums with p Ka values of 9.68 and at 10.29, which are related to the aquo/hydroxo equilibrium associated with the water molecules coordinated to the metal ions.

  17. Bound State Solution of Dirac Equation for Generalized Pöschl-Teller plus Trigomometric Pöschl-Teller Non- Central Potential Using SUSY Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Suparmi

    2014-12-01

    Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.

  18. Assessment of the State-Of-The-Art of Numerical Simulation of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-11-01

    The reservoir features of importance in the operation of enhanced geothermal systems are described first (Section 2). The report then reviews existing reservoir simulators developed for application to HDR reservoirs (Section 3), hydrothermal systems (Section 4), and nuclear waste isolation (Section 5), highlighting capabilities relevant to the evaluation and assessment of EGS. The report focuses on simulators that include some representation of flow in fractures, only mentioning other simulators, such as general-purpose programs or groundwater models (Section 6). Following these detailed descriptions, the report summarizes and comments on the simulators (Section 7), and recommends a course of action for further development (Section 8). The references are included in Section 9. Appendix A contains contractual information, including a description of the original and revised scope of work for this study. Appendix B presents comments on the draft report from DOE reviewer(s) and the replies of the authors to those comments. [DJE-2005

  19. DNP-enhanced ultrawideline207Pb solid-state NMR spectroscopy: an application to cultural heritage science.

    Science.gov (United States)

    Kobayashi, Takeshi; Perras, Frédéric A; Murphy, Anna; Yao, Yao; Catalano, Jaclyn; Centeno, Silvia A; Dybowski, Cecil; Zumbulyadis, Nicholas; Pruski, Marek

    2017-03-14

    Dynamic nuclear polarization (DNP) is used to enhance the (ultra)wideline 207 Pb solid-state NMR spectra of lead compounds of relevance in the preservation of cultural heritage objects. The DNP SSNMR experiments enabled, for the first time, the detection of the basic lead carbonate phase of the lead white pigment by 207 Pb SSNMR spectroscopy. Variable-temperature experiments revealed that the short T' 2 relaxation time of the basic lead carbonate phase hinders the acquisition of the NMR signal at room temperature. We additionally observe that the DNP enhancement is twice as large for lead palmitate (a lead soap, which is a degradation product implicated in the visible deterioration of lead-based oil paintings), than it is for the basic lead carbonate. This enhancement has allowed us to detect the formation of a lead soap in an aged paint film by 207 Pb SSNMR spectroscopy; which may aid in the detection of deterioration products in smaller samples removed from works of art.

  20. Enhanced surveillance for the Third United Nations Conference on Small Island Developing States, Apia, Samoa, September 2014.

    Science.gov (United States)

    White, Paul; Saketa, Salanieta; Durand, Alexis; Vaai-Nielsen, Saine; Leong-Lui, Tile Ah; Naseri, Take; Matalima, Ailuai; Amosa, Filipina; Mercier, Alize; Lepers, Christelle; Lal, Vjesh; Wojcik, Richard; Lewis, Sheri; Roth, Adam; Souares, Yvan; Merilles, Onofre Edwin; Hoy, Damian

    2017-01-01

    The Ministry of Health in Samoa, in partnership with the Pacific Community, successfully implemented enhanced surveillance for the high-profile Third United Nations Conference on Small Island Developing States held concurrently with the popular local Teuila festival during a widespread chikungunya outbreak in September 2014. Samoa's weekly syndromic surveillance system was expanded to 12 syndromes and 10 sentinel sites from four syndromes and seven sentinel sites; sites included the national hospital, four private health clinics and three national health service clinics. Daily situation reports were produced and were disseminated through PacNet (the e-mail alert and communication tool of the Pacific Public Health Surveillance Network) together with daily prioritized line lists of syndrome activity to facilitate rapid response and investigation by the Samoan EpiNet team. Standard operating procedures for surveillance and response were introduced, together with a sustainability plan, including a monitoring and evaluation framework, to facilitate the transition of the mass gathering surveillance improvements to routine surveillance. The enhanced surveillance performed well, providing vital disease early warning and health security assurance. A total of 2386 encounters and 708 syndrome cases were reported. Influenza-like illness was the most frequently seen syndrome (17%). No new infectious disease outbreaks were recorded. The experience emphasized: (1) the need for a long lead time to pilot the surveillance enhancements and to maximize their sustainability; (2) the importance of good communication between key stakeholders; and (3) having sufficient staff dedicated to both surveillance and response.