WorldWideScience

Sample records for enhances seed oil

  1. seed oil

    African Journals Online (AJOL)

    Wara

    ABSTRACT. Neem seed oil from the neem tree (Azadiracta indica) finds wide usage one of which is its utilization for cosmetics particularly soap products. The chemical analysis of seed oil was carried out using the methods reported by AOAC (1998), Akpan et al., (2006) and Bassir, (1978) which revealed that it had.

  2. seed oil

    African Journals Online (AJOL)

    Wara

    The foam height of the soap was found to be 2.0 cm which is lower than that of Jatropha oil soap(5.4cm), Sesame oil soap(4.8cm), Cotton seed oil soap(4.5cm) and shea nut soap(4.2cm),t higher than that of Castor oil soap(1.6cm) and Castor glycerine soap(1.4cm). The soap was milk in colour and slightly soluble in distilled ...

  3. Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds1[W][OA

    Science.gov (United States)

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-01-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production. PMID:21562329

  4. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    Science.gov (United States)

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  5. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  6. The Mechanism of Methylated Seed Oil on Enhancing Biological Efficacy of Topramezone on Weeds

    Science.gov (United States)

    Zhang, Jinwei; Jaeck, Ortrud; Menegat, Alexander; Zhang, Zongjian; Gerhards, Roland; Ni, Hanwen

    2013-01-01

    Methylated seed oil (MSO) is a recommended adjuvant for the newly registered herbicide topramezone in China and also in other countries of the world, but the mechanism of MSO enhancing topramezone efficacy is still not clear. Greenhouse and laboratory experiments were conducted to determine the effects of MSO on efficacy, solution property, droplet spread and evaporation, active ingredient deposition, foliar absorption and translocation of topramezone applied to giant foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medic.). Experimental results showed that 0.3% MSO enhanced the efficacy of topramezone by 1.5-fold on giant foxtail and by 1.0-fold on velvetleaf. When this herbicide was mixed with MSO, its solution surface tension and leaf contact angle decreased significantly, its spread areas on weed leaf surfaces increased significantly, its wetting time was shortened on giant foxtail but not changed on velvetleaf, and less of its active ingredient crystal was observed on the treated weed leaf surfaces. MSO increased the absorption of topramezone by 68.9% for giant foxtail and by 45.9% for velvetleaf 24 hours after treatment. It also apparently promoted the translocation of this herbicide in these two weeds. PMID:24086329

  7. Characterization of amaranth seed oils

    NARCIS (Netherlands)

    Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P.H.

    2007-01-01

    The oil fractions of Amaranthus caudatus L. and Amaranthus cruentus L. seeds were studied after different treatments of the seeds. The oil contents were 7.1 and 8.5% for raw A. caudatus L. and A. cruentus L. seeds, and consisted of 80.3¿82.3% of triacylglycerols (TAGs). Phospholipids represented

  8. Moringa Seed Oils

    Directory of Open Access Journals (Sweden)

    Joana O. Ilesanmi

    2010-01-01

    Full Text Available This study was conducted to determine the effects of neem (Azadirachta indica A. Juss and moringa (Moringa oleifera seed oils on the storability of cowpea grain. Cowpea samples were treated with various concentrations (0.5, 1.0, and 1.5 mL/200 g cowpea of pure neem and moringa oils and their mixtures in ratios of 1:1, 1:2, and 1:3. The treated cowpea samples were stored for 180 days. Data were collected every 30 days on number of eggs laid, total weevil population, and percentage of uninfested grains and analysed statistically. Significantly different means were compared using LSD at <.05. Increasing oil concentration resulted in better cowpea protection, for example, in oviposition where the control had 6513 eggs, only 8 eggs were recorded in pure neem oil-treated sample at 0.5 mL/200 g. Generally, better results were obtained with higher oil concentrations either in their pure forms or mixtures. The control had a total weevil population of 4988, while most treated samples had none. The control samples had 0% uninfested grains, while 73–94% of uninfested grains were observed in treated samples after 6 months of storage. Therefore, mixture of the oils at 1.5 mL/200 g can be effectively used to store cowpea.

  9. Enhancing Oxidative Stability of Sunflower Oil during Convective and Microwave Heating Using Grape Seed Extract

    Directory of Open Access Journals (Sweden)

    Mariana-Atena Poiana

    2012-07-01

    Full Text Available This study was performed to investigate the effectiveness of grape seed extract (GSE compared to butylated hydroxytoluene (BHT on retarding lipid oxidation of sunflower oil subjected to convection and microwave heating up to 240 min under simulated frying conditions. The progress of lipid oxidation was assessed in terms of peroxide value (PV, p-anisidine value (p-AV, conjugated dienes and trienes (CD, CT, inhibition of oil oxidation (IO and TOTOX value. In addition, total phenolic content (TP was evaluated in samples before and after heating in order to assess the changes in these compounds relative to the extent of lipid oxidation. The results of this study highlight that GSE showed a significantly inhibitory effect on lipid oxidation during both treatments, although to a different extent. This ability was dose-dependent; therefore, the extent of lipid oxidation was inversely related to GSE level. Convective heating, respective microwave exposure for 240 min of samples supplemented by GSE to a level of 1000 ppm, resulted in significant decreases of investigated indices relative to the control values as follows: PV (48%; 30%, p-AV (29%; 40%, CD (45%; 30%, CT (41%; 36%, TOTOX (35%; 37%. GSE to a level of 600–800 ppm inhibited the lipid oxidation in a similar manner to BHT. These results suggested that GSE can be used as a potential natural extract for improving oxidative stability of sunflower oil during thermal applications.

  10. Enhancing oxidative stability of sunflower oil during convective and microwave heating using grape seed extract.

    Science.gov (United States)

    Poiana, Mariana-Atena

    2012-01-01

    This study was performed to investigate the effectiveness of grape seed extract (GSE) compared to butylated hydroxytoluene (BHT) on retarding lipid oxidation of sunflower oil subjected to convection and microwave heating up to 240 min under simulated frying conditions. The progress of lipid oxidation was assessed in terms of peroxide value (PV), p-anisidine value (p-AV), conjugated dienes and trienes (CD, CT), inhibition of oil oxidation (IO) and TOTOX value. In addition, total phenolic content (TP) was evaluated in samples before and after heating in order to assess the changes in these compounds relative to the extent of lipid oxidation. The results of this study highlight that GSE showed a significantly inhibitory effect on lipid oxidation during both treatments, although to a different extent. This ability was dose-dependent; therefore, the extent of lipid oxidation was inversely related to GSE level. Convective heating, respective microwave exposure for 240 min of samples supplemented by GSE to a level of 1000 ppm, resulted in significant decreases of investigated indices relative to the control values as follows: PV (48%; 30%), p-AV (29%; 40%), CD (45%; 30%), CT (41%; 36%), TOTOX (35%; 37%). GSE to a level of 600-800 ppm inhibited the lipid oxidation in a similar manner to BHT. These results suggested that GSE can be used as a potential natural extract for improving oxidative stability of sunflower oil during thermal applications.

  11. Enhancing Oxidative Stability of Sunflower Oil during Convective and Microwave Heating Using Grape Seed Extract

    Science.gov (United States)

    Poiana, Mariana-Atena

    2012-01-01

    This study was performed to investigate the effectiveness of grape seed extract (GSE) compared to butylated hydroxytoluene (BHT) on retarding lipid oxidation of sunflower oil subjected to convection and microwave heating up to 240 min under simulated frying conditions. The progress of lipid oxidation was assessed in terms of peroxide value (PV), p-anisidine value (p-AV), conjugated dienes and trienes (CD, CT), inhibition of oil oxidation (IO) and TOTOX value. In addition, total phenolic content (TP) was evaluated in samples before and after heating in order to assess the changes in these compounds relative to the extent of lipid oxidation. The results of this study highlight that GSE showed a significantly inhibitory effect on lipid oxidation during both treatments, although to a different extent. This ability was dose-dependent; therefore, the extent of lipid oxidation was inversely related to GSE level. Convective heating, respective microwave exposure for 240 min of samples supplemented by GSE to a level of 1000 ppm, resulted in significant decreases of investigated indices relative to the control values as follows: PV (48%; 30%), p-AV (29%; 40%), CD (45%; 30%), CT (41%; 36%), TOTOX (35%; 37%). GSE to a level of 600–800 ppm inhibited the lipid oxidation in a similar manner to BHT. These results suggested that GSE can be used as a potential natural extract for improving oxidative stability of sunflower oil during thermal applications. PMID:22942764

  12. Physicochemical Evaluation of Seeds and Oil of Nontraditional Oil Seeds

    Directory of Open Access Journals (Sweden)

    Adam Ismail Ahmed

    2015-08-01

    Full Text Available The present work was conducted in the Laboratory of Biochemistry and Food science department, Faculty of Natural Resources and Environmental Studies, University of Kordofan, in order to evaluate some nontraditional oil seeds these are i.e. Marula (Sclerocarya birrea, Roselle (Hibiscus sabdariffa L. seeds and Christ’s thorn (Zizyphus spina-christi seeds. The seeds of the roselle and Christ’s thorn fruits were procured from Elobeid local market, North Kordofan State, while marula fruits were obtained from Elnuhod, West Kordofan State. The proximate composition of the seeds, cake and christ’s thorn pulp was done. Some chemical and physical properties were performed for the extracted oil. The results revealed that proximate composition of the seeds and cake differ statistically among the studied materials. Significant differences were observed among the oil extracted from these species; moreover, these oils differ significantly in color and viscosity only.

  13. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  14. on oil palm seeds

    African Journals Online (AJOL)

    User

    flies' activities caused damage to seeds including rotten kennels and seeds, empty shells and dead developing embryos in transparent polyethylene storage bags. The highest infestation was on 2052 seeds out of a total production of 582,503 germinated seeds in batch number 5 and the lowest was 223 seeds out of ...

  15. 'venadillo' ( Swietenia humilis Zucc.) seed oil

    African Journals Online (AJOL)

    Physicochemical properties of Swietenia humilis Zucc seed oils were determined along with its fatty acid composition, by using gas-liquid chromatography. The oil content found in the germ portion of the seeds was 45.38%. From physicochemical oil evaluations, an oil density of 0.9099 mg∙ml-1 at 28°C; a refraction index of ...

  16. (Hibiscus sabdariffa) seeds oil

    African Journals Online (AJOL)

    plant that is indigenous to the tropics. It belongs to the Malvaceae family and has various local names as documented in a work reported by Schippers (2000). .... and/or the ultraviolet rays in the ambient light. (Ngassapa et al., 2016), hence faster rate shown for the oil under L and AF. The variation of saponification values of ...

  17. Seed structure characteristics to form ultrahigh oil content in rapeseed.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Hu

    Full Text Available Rapeseed (Brassica napus L. is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding.Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition.Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding.

  18. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows.

    Science.gov (United States)

    Pi, Y; Gao, S T; Ma, L; Zhu, Y X; Wang, J Q; Zhang, J M; Xu, J C; Bu, D P

    2016-07-01

    This experiment was conducted to investigate effect of rubber seed oil compared with flaxseed oil when fed alone or in combination on milk yield, milk composition, and α-linolenic acid (ALA) concentration in milk of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized design. Cows were fed a basal diet (control; CON) or a basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO), or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis for 9 wk. Feed intake, milk protein percentage, and milk fat levels did not differ between the treatments. Cows fed the RO, FO, or RFO treatments had a higher milk yield than the CON group (up to 10.5% more), whereas milk fat percentages decreased. Compared with the CON, milk concentration of ALA was substantially higher in cows receiving RO or RFO, and was doubled in cows receiving FO. The ALA yield (g/d) increased by 31.0, 70.3, and 33.4% in milk from cows fed RO, FO, or RFO, respectively, compared with the CON. Both C18:1 trans-11 (vaccenic acid) and C18:2 cis-9,trans-11 (conjugated linoleic acid; CLA) levels were higher in cows fed added flaxseed or rubber seed oil. The CLA yield (g/d) increased by 336, 492, and 484% in cows fed RO, FO, or RFO, respectively, compared with the CON. The increase in vaccenic acid, ALA, and CLA was greater in cows fed RFO than in cows fed RO alone. Compared with the CON, the milk fat from cows fed any of the dietary supplements had a higher concentration of unsaturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids; conversely, the saturated fatty acids levels in milk fat were 30.5% lower. Insulin and growth hormones were not affected by dietary treatments; however, we noted an increase in both cholesterol and nonesterified fatty acids levels in the RO, FO, or RFO treatments. These results indicate that rubber seed oil and flaxseed oil will increase milk

  19. Oil Content and Oil Quality Properties of Some Grape Seeds

    OpenAIRE

    BAYDAR, Nilgün GÖKTÜRK

    2014-01-01

    In the present study, the oil contents and some oil quality properties of seeds taken from 18 grape cultivars were examined. The results showed that the oil concentration of seeds ranged from 11.6 to 19.6%. Grape seeds were rich in oleic and linoleic acids, ranging from 17.8 to 26.5% and 60.1 to 70.1%, respectively. The degree of unsaturation in the grape seed oil was over 86%, and the average concentration of total tocopherol in oil was around 454 mg/kg. The results indicate that grape seed...

  20. Black currant seed oil supplementation of mothers enhances IFN-γ and suppresses IL-4 production in breast milk.

    Science.gov (United States)

    Linnamaa, Pia; Nieminen, Kaisa; Koulu, Leena; Tuomasjukka, Saska; Kallio, Heikki; Yang, Baoru; Tahvonen, Raija; Savolainen, Johannes

    2013-09-01

    The first year of infancy is crucial for the development of atopic immune response. Inadequate early Th1 and Treg responses and increased production of Th2 cytokines are associated with atopy. Breast milk contains several immunomodulatory cytokines and other factors that might influence the maturation of the infant's immune system. We assessed the cytokines in breast milk of mother of newborn infants and their associations with black currant seed oil (BCSO) supplementation during pregnancy, mother's atopic status and the development of infant's atopic dermatitis. Mothers and infants from an intervention study by black currant seed oil (n = 31) or olive oil as placebo (n = 30) were included in the study. Breast milk samples were collected during the first 3 months of breastfeeding. Breast milk levels of IL-4, IL-5, IL-10, IL-12, IFN-γ and TNF were measured by Luminex technology. BCSO intervention group had decreased level of IL-4 (p = 0.044) and elevated level of IFN-γ (p = 0.014) in breast milk as compared to olive oil group. No significant differences were observed in IL-5, IL-10, IL-12 and TNF levels between the BCSO and olive oil groups. Mothers who had atopic dermatitis had significantly decreased levels of IL-10 (p = 0.044) in breast milk. Breast milk of the mothers of the children who developed atopic dermatitis had lower levels of IFN-γ (p = 0.039) as compared to the breast milk of the mothers of the children without dermatitis. Dietary intervention with BCSO had immunomodulatory effects on breast milk cytokine production towards Th2 to Th1 immunodeviation. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. SUITABILITY OF SOYBEAN SEED OIL AS TRANSFORMER OIL

    OpenAIRE

    Egbuna, S.O.*, Ude, O.C., Ude, C.N.

    2016-01-01

    In search of solution to the harmful ecological problems due to toxicity and non-biodegradability posed by conventional transformer insulation oil (mineral oil), the production of transformer oil from soybean seed oil (vegetable oil) was carried out. The oil was extracted using n-hexane and was refined. The transformer oil was produced by transesterification and was characterized using American Society for Testing Material (ASTM) standard test. The solvent employed gave good yield of oil from...

  2. Triterpene-loaded microemulsion using Coix lacryma-jobi seed extract as oil phase for enhanced antitumor efficacy: preparation and in vivo evaluation.

    Science.gov (United States)

    Qu, Ding; He, Junjie; Liu, Congyan; Zhou, Jing; Chen, Yan

    2014-01-01

    Ganoderma lucidum triterpene-loaded microemulsions (TMEs) using Coix lacryma-jobi (adlay) seed oil as oil phase were prepared, characterized, and evaluated for enhanced antitumor activity. Ternary phase diagrams for the TMEs were constructed and the optimal preparation was developed. Transmission electron microscopy and dynamic light scattering showed that this formulation had a well defined spherical shape, a homogeneous distribution, a small size, and a narrow polydispersity index. The drug-loading rate was determined to be 9.87% by ultraviolet spectrophotometry, and acceptable stability under various stimulations in vitro was confirmed. Importantly, the TME formulation showed a significantly greater antiproliferative effect towards human lung carcinoma (A549) cells and murine lung tumor (Lewis) cells in comparison with suspension formulations containing triterpene and adlay seed oil as a positive control. The half-maximal inhibitory concentration of the TMEs was about 0.62 mg crude drug per mL, being 2.5-fold improved relative to that of the corresponding suspension formulation, but no significant cytotoxicity was observed for the bare microemulsion in A549 cells and Lewis cells. In vivo, the TME formulation showed markedly enhanced antitumor efficacy in a xenograft model of Lewis lung cancer after intragastric administration. Compared with cyclophosphamide, the TME formulation showed similar antitumor activity but less general toxicity. These results indicate the feasibility of using a microemulsion to increase the solubility of triterpene and adlay. TMEs hold promise as an efficient drug delivery system for the treatment of lung cancer.

  3. Oil body biogenesis and biotechnology in legume seeds.

    Science.gov (United States)

    Song, Youhong; Wang, Xin-Ding; Rose, Ray J

    2017-10-01

    The seeds of many legume species including soybean, Pongamia pinnata and the model legume Medicago truncatula store considerable oil, apart from protein, in their cotyledons. However, as a group, legume storage strategies are quite variable and provide opportunities for better understanding of carbon partitioning into different storage products. Legumes with their ability to fix nitrogen can also increase the sustainability of agricultural systems. This review integrates the cell biology, biochemistry and molecular biology of oil body biogenesis before considering biotechnology strategies to enhance oil body biosynthesis. Cellular aspects of packaging triacylglycerol (TAG) into oil bodies are emphasized. Enhancing seed oil content has successfully focused on the up-regulation of the TAG biosynthesis pathways using overexpression of enzymes such as diacylglycerol acyltransferase1 and transcription factors such as WRINKLE1 and LEAFY COTYLEDON1. While these strategies are central, decreasing carbon flow into other storage products and maximizing the packaging of oil bodies into the cytoplasm are other strategies that need further examination. Overall there is much potential for integrating carbon partitioning, up-regulation of fatty acid and TAG synthesis and oil body packaging, for enhancing oil levels. In addition to the potential for integrated strategies to improving oil yields, the capacity to modify fatty acid composition and use of oil bodies as platforms for the production of recombinant proteins in seed of transgenic legumes provide other opportunities for legume biotechnology.

  4. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.

    Science.gov (United States)

    Chhikara, Sudesh; Abdullah, Hesham M; Akbari, Parisa; Schnell, Danny; Dhankher, Om Parkash

    2017-10-04

    Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Ricinoleic acid in common vegetable oils and oil seeds.

    Science.gov (United States)

    Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira

    2008-05-01

    An original gas chromatography/mass spectrometry method for quantifying trace amounts of ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid) is detailed. Data are presented on trace amounts of ricinoleic acid found in several common vegetable oils and oils extracted from common oil seeds: e.g., ca. 30 ppm in commercial olive oil was the lowest amount; and ca. 2,690 ppm in oil extracted from cottonseeds was the highest amount.

  6. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis.

    Science.gov (United States)

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Li, Rong-Jun; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-06-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.

  7. Rape-seed oil - a substitute for mineral oil?

    Energy Technology Data Exchange (ETDEWEB)

    Badent, R.; Kist, K.; Schwab, A.J. [University of Karlsruhe (Germany). Institute of Electric Systems and High-Voltage Technology

    1999-07-01

    This paper presents the results obtained from the study on the basic characteristics of rape-seed oil considered to be a substitute of mineral oil in power transformers. The results show that rape- seed oil is usable as an insulating liquid. Furthermore, results are presented concerning the breakdown behaviour in uniform (plane-plane geometry) and non-uniform (rod-plane geometry) fields under impulse conditions with gaps up to 40 mm and voltages up to 650 kV. A sufficient high 50 Hz breakdown voltage is the most important precondition for a medium to be used as an insulator. The dielectric strength of rape-seed oil exceeds more than 50 kV/2,5 mm and consequently fulfils the requirements of the standards. The measurement of the permittivity and tan {delta} at 90{sup o}C yields to 3,18 and 0,015, respectively and is comparable to the values of standard mineral oil. However, there are still some problems to be overcome. Beside the insulating task the liquid dielectric has also a cooling function in power apparatus. Since the dynamic viscosity of rape-seed oil (about 70 mm{sup 2}/s at 40{sup o}C) is higher than that of mineral oil, rape-seed oil has a lower ability for heat conduction. A further problem is the solidification of rape-seed oil below -5{sup o}C. (author)

  8. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.

    Science.gov (United States)

    Timilsena, Yakindra Prasad; Adhikari, Raju; Barrow, Colin J; Adhikari, Benu

    2016-10-01

    Chia seed oil (CSO) microcapsules were produced by using chia seed protein isolate (CPI)-chia seed gum (CSG) complex coacervates aiming to enhance the oxidative stability of CSO. The effect of wall material composition, core-to-wall ratio and method of drying on the microencapsulation efficiency (MEE) and oxidative stability (OS) was studied The microcapsules produced using CPI-CSG complex coacervates as wall material had higher MEE at equivalent payload, lower surface oil and higher OS compared to the microcapsules produced by using CSG and CPI individually. CSO microcapsules produced by using CSG as wall material had lowest MEE (67.3%) and oxidative stability index (OSI=6.6h), whereas CPI-CSG complex coacervate microcapsules had the highest MEE (93.9%) and OSI (12.3h). The MEE and OSI of microcapsules produced by using CPI as wall materials were in between those produced by using CSG and CPI-CSG complex coacervates as wall materials. The CSO microcapsules produced by using CPI-CSG complex coacervate as shell matrix at core-to-wall ratio of 1:2 had 6 times longer storage life compared to that of unencapsulated CSO. The peroxide value of CSO microcapsule produced using CPI-CSG complex coacervate as wall material was oil during 30 days of storage. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. EFFECT OF AFRICAN OIL BEAN SEED ( PENTACLETHRA ...

    African Journals Online (AJOL)

    The plasma cholesterol level of rats fed with diets composed with Fu, F1, F2, F3 and F4 increased initially and decreased with the time of fermentation. Degree of fermentation of the African oil bean seed therefore affected the plasma cholesterol. KEYWORDS. Cholesterol, African bean seed, Pentaclethra macrophyllia, ...

  10. Enhanced repellency of binary mixtures of Zanthoxylum piperitum pericarp steam distillate or Zanthoxylum armatum seed oil constituents and Calophyllum inophyllum nut oil and their aerosols to Stomoxys calcitrans.

    Science.gov (United States)

    Hieu, Tran Trung; Kim, Soon-Il; Kwon, Hyung Wook; Ahn, Young-Joon

    2010-11-01

    The repellency to stable fly, Stomoxys calcitrans (L.), of Zanthoxylum piperitum (L.) DC pericarp steam distillate (ZP-SD), Zanthoxylum armatum DC seed oil (ZA-SO) and their constituents alone or in combination with Calophyllum inophyllum L. nut oil (CI-NO), as well as six aerosol formulations containing ZP-SD or ZP-SO and CI-NO, was compared with that of a synthetic repellent, DEET, using an exposed human hand bioassay. At 0.20 mg cm(-2), ZP-SD treatments resulted in 91 and 68% repellency following 30 and 60 min exposure respectively, while DEET gave 100 and 84% repellency. ZA-SO was less effective than ZP-SD. At 0.2 mg cm(-2), the most active constituents, cuminaldehyde, cuminyl alcohol, limonene and methyl cinnamate, gave 82, 74, 74 and 64% repellency at 30 min respectively, but DEET gave 100 and 87% repellency at 30 and 60 min. An increase in effectiveness and duration of repellency was produced by binary mixtures of ZP-SD, ZA-SO or bioactive constituents (each 0.01 mg cm(-2)) and CI-NO (0.99 mg cm(-2)). The repellency of aerosols containing 2.5% ZP-SD or 2.5% ZA-SO and 2.5% CI-NO was comparable with that of 5% DEET aerosol. Mixtures formulated from ZP-SD, ZA-SO or bioactive constituents and CI-NO could be useful as potential repellents for the control of stable fly populations in light of global efforts to reduce the level of highly toxic synthetic repellents. Copyright © 2010 Society of Chemical Industry.

  11. Extraction and characterization of radish seed oils using different ...

    African Journals Online (AJOL)

    Methods: Radish seed oil was prepared by traditional solvent extraction (SE), supercritical carbon dioxide extraction (SCE) ... medicinal radish seed oil. Keywords: Radish seed oil, Different extraction methods, Fatty acid composition, Tocopherol, ..... Evaluation of grape seed, monascus, gardenia and red radish extracts as ...

  12. Modifying The Drying Property Of Rubber-Seed Oil | Anozie | Global ...

    African Journals Online (AJOL)

    Rubber-seed oil, a semi drying oil, was modified by boiling and blowing process in the presence of a drier to enhance its drying property. The oil boiling and blowing process was carried out with variation in temperature, time and type of drier used. The levels of unsaturation of the oil in the natural and modified states were ...

  13. Tea seed upgrading facilities and economic assessment of biodiesel production from tea seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sirnak University, Engineering Faculty, Sirnak (Turkey); Sila Science, Trabzon (Turkey)

    2010-12-15

    Green tea seed (Camellia sinensis L. Kuntze) oil was used in this work. The tea seed oil contains more than 84% unsaturated fatty acid, such as oleic acid (62.5% by weight), linoleic acid (18.1% by weight) and linolenic acid. The biodiesel from tea seed oil in itself is not significantly different from biodiesel produced from vegetable oils. However, tea seed oil has lower pour point and lower viscosity as different common vegetable oils. Crude tea seed oil is one of the cheapest vegetable oil feedstocks with average price, 514 (US$/ton). (author)

  14. Protective effect of pumpkin seed oil against genotoxicity induced by azathioprine

    Directory of Open Access Journals (Sweden)

    S.A. Elfiky

    2012-10-01

    Full Text Available Pumpkin is a leafy green vegetable; it belongs to the Cucurbitaceae family. Pumpkin seed oil supplementation can prevent changes in plasma lipids and blood pressure. The present study was conducted to evaluate the protective effect of pumpkin seed oil against cytotoxicity and genotoxicity of azathioprine. Oral administration of pumpkin seed oil either before or after treatment of azathioprine was effective in the reduction of the frequencies of Mn-PCEs, decreased the DNA fragmentation, total sperm abnormalities and significantly increased sperm count, percentage of PCEs, and enhanced the ratio of PCEs to NCEs. However, random amplified polymorphism of DNA (RAPD showed distinct differences in animal groups intoxicated with azathioprine before and after pumpkin seed oil treatment, which reflected a DNA protective effect of pumpkin seed oil. Depletion of glutathione content in the testis was also observed in azathioprine treated mice, which was improved by an oral administration of pumpkin seed oil either before or after treatment with azathioprine.

  15. Monoacylglycerol from Punica granatum seed oil.

    Science.gov (United States)

    Fatope, Majekodunmi O; Al Burtomani, Suad Khamis S; Takeda, Yoshio

    2002-01-16

    The seeds of Punica granatum, known as hap roman in the Arabian Peninsula, are commonly eaten as a dessert. As part of an ongoing project to find nonnutritional natural products which have health benefits, or that can be exploited to protect crops, the chloroform-soluble extract of the fermented seeds of P. granatum was found to be rich in 1-O-trans,cis,trans-9,11,13-octadecatrienoyl glycerol (1). The seed oil is not lethal to brine shrimp larvae. 1-O-isopentyl-3-O-octadec-2-enoyl glycerol (2) and the known cis-9-octadecenoic, octadecanoic, and eicosanoic acids were also detected in small amounts in the seed oil by LC and MS. The structure of 1 was determined from NMR and MS spectral data.

  16. Seed oil content and selected qualitative parameters of oils from grape seeds

    Directory of Open Access Journals (Sweden)

    Vladimír Mašán

    2017-01-01

    Full Text Available Grape seed oil (Oleum vitis viniferae represents promising plant oil, which is used mainly in gastronomy and for pharmaceutical purposes as well as for various technical applications. In this paper, there were examined oil contents and oil quality properties of seeds taken from 8 grape cultivars. Oil contents were found to be different for each cultivar, which ranged from 11.5% (Dornfelder to 17.5% (Riesling. The results showed a dependence between the length of the growing season for individual varie-ties and the total content of oil in seeds. Fatty acid concentrations in the evaluated oil samples were in various ranges, while the highest values were determined in linoleic acid 70.10 to 71.55%, oleic acid 15.61 to 17.14%, palmitic acid 6.87 to 8.18% and stearic acid 3.16 to 3.90%. Saturated fatty acid values were lower than the values of monounsaturated fatty acids and polyunsaturated fatty acids in all oil samples. The degree of unsaturation in the grape seed oil ranged between 88.6 - 89.21%. Thanks to its content, grape seed oil can be considered as a food supplement improving the nutri-tional value of the human diet.

  17. Contamination of grape seed oil with mineral oil paraffins.

    Science.gov (United States)

    Fiorini, Dennis; Fiselier, Katell; Biedermann, Maurus; Ballini, Roberto; Coni, Ettore; Grob, Konrad

    2008-12-10

    The contamination of 11 commercial grape seed oils with paraffins of mineral oil origin was analyzed by online-coupled HPLC-HPLC-GC-FID and ranged from 43 to 247 mg kg(-1). The analysis of the marc and seeds indicated that the contamination is primarily from the peels. Since superficial extraction of the seeds with hexane removed most of the mineral paraffins, the contamination of the seeds is largely on the surface, perhaps transferred from the peels during storage of the marc. Mechanical purification of the seeds combined with washing with hexane reduced the contamination of the oil by a factor of about 10. The refining process removed 30% of the mineral paraffins, primarily the more volatile components. Oil obtained from the seeds of fresh grapes, including grapes not having undergone any phytochemical treatment, contained clearly less mineral paraffins (up to 14 mg kg(-1)), and the peels were less contaminated, suggesting an environmental background contamination. To this an additional contamination might be added by a treatment of the grapes used for wine making.

  18. Extraction and analysis of tea ( Camellia sinensis ) seed oil from ...

    African Journals Online (AJOL)

    This study provides data on the physico-chemical properties of Kenyan tea seed oil from selected clones of tea seeds to ascertain its potential applications. Soxhlet extraction using hexane was employed to obtain tea seed oil followed by chemical analysis to assess its properties. Oil yield, iodine value, saponification value, ...

  19. Kenaf seed oil from supercritical carbon dioxide fluid extraction ...

    African Journals Online (AJOL)

    Kenaf seed oil from supercritical carbon dioxide fluid extraction shows cytotoxic effects towards various cancer cell lines. ... African Journal of Biotechnology ... Even though kenaf seed oil from both varieties were cytotoxic to all the cancer cells, kenaf seed oil variety V36 extracted by SFE at 600 bars 40°C (V600/40) was the ...

  20. Localization and composition of seed oils of Crithmum maritimum L ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... The C. maritimum L. seed oil was rich with oleic acid (78.6%), low level of palmitic acid (4.8%) and non negligible amount of linoleic acid (15.4%). This composition is similar to olive oil and canola oil. These results confirmed the good quality of C. maritimum L. seed oils. Keys word: Halophytes; Crithmum ...

  1. Ameliorating Effects of Exogenously Applied Proline on Seed Composition, Seed Oil Quality and Oil Antioxidant Activity of Maize (Zea mays L. under Drought Stress

    Directory of Open Access Journals (Sweden)

    Qasim Ali

    2013-01-01

    Full Text Available This study was carried out to appraise whether or not the exogenous application of a potential osmoprotectant, proline, could ameliorate the adverse effects of drought stress on maize seed and seed oil composition, as well as oil antioxidant activity. Water stress reduced the kernel sugar, oil, protein and moisture contents and most of the seed macro- and micro-elements analyzed in both maize cultivars but it increased the contents of seed fiber and ash. Water stress increased the oil oleic acid content with a subsequent decrease in the amount of linoleic acid, resulting in an increased oil oleic/linoleic ratio for both maize cultivars. However, no variation was observed in oil stearic and palmitic acids content due to water stress. A considerable drought induced an increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids were observed in both maize cultivars. However, oil phenolic and carotenoid content as well as 1,1-diphenyl-2-picryl-hydrazyl (DPPH free radical scavenging activity decreased. Foliar-applied proline significantly increased the content of seed sugar, oil, protein, moisture, fiber and ash in both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of proline increased the oil oleic and linoleic acid contents. The concentrations of antioxidant compounds namely phenolics, carotenoids, flavonoids and tocopherols estimated in the seed oil increased due to foliar-applied proline under water deficit conditions that was positively correlated with the enhanced oil DPPH free radical scavenging activity. Moreover, the increase in the contents of these antioxidant compounds and oil antioxidant activity due to the foliar application of proline was noted to be more pronounced under water deficit conditions.

  2. Evaluation of chosen fruit seeds oils as potential biofuel

    Science.gov (United States)

    Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.

    2012-04-01

    Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.

  3. Seed oil content and fatty acid composition of annual halophyte ...

    African Journals Online (AJOL)

    Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. This study was conducted to compare oil content and fatty acid composition of the two seed morphs. Though oil characteristics between dimorphic seeds showed statistically significant difference, these differences were relatively ...

  4. Localization and composition of seed oils of Crithmum maritimum L ...

    African Journals Online (AJOL)

    The percentage of oils was 44.4% dry weight basis. The C. maritimum L. seed oil was rich with oleic acid (78.6%), low level of palmitic acid (4.8%) and non negligible amount of linoleic acid (15.4%). This composition is similar to olive oil and canola oil. These results confirmed the good quality of C. maritimum L. seed oils.

  5. Genetic analysis among selected vernonia lines through seed oil ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... through seed oil content, fatty acid content and RAPD DNA markers. ... the seed oil. Vernonia oil also contains other fatty acids such as linoleic acid (12 - 14%), oleic acid (4 - 6%), stearic acid (2 - 3%), palmitic acid (2 - 3%) and a trace .... The fatty acid composition was determined after transesterification.

  6. Genetic variation and heterotic effects for seed oil, seed protein and ...

    African Journals Online (AJOL)

    Four hybrids revealed greater per se performance and positive heterosis for seed oil content. Of these, Surabhi x TCH 1646 exhibiting highest per se performance, heterotic effect was found to be best for directional selection. Keywords: Cotton, heterosis, seed oil, seed protein, yield. African Journal of Biotechnology Vol.

  7. Physico-chemical characteristics of Mesua ferrea seed oil and ...

    African Journals Online (AJOL)

    Physico-chemical characteristics of Mesua ferrea seed oil and nutritional composition of its seed and leaves. M. Abu Sayeed, M. Abbas Ali, F.I. Sohel, G.R.M. Astaq Mohal Khan, Mst. Sarmina Yeasmin ...

  8. Cinnamomum camphora Seed Kernel Oil Improves Lipid Metabolism and Enhances β3-Adrenergic Receptor Expression in Diet-Induced Obese Rats.

    Science.gov (United States)

    Fu, Jing; Zeng, Cheng; Zeng, Zheling; Wang, Baogui; Wen, Xuefang; Yu, Ping; Gong, Deming

    2016-06-01

    The effects of dietary Cinnamomum camphora seed kernel oil (CCSKO) containing medium-chain triacylglycerols on lipid metabolism and mRNA and protein expression of β-3 adrenergic receptor in adipose tissue were studied in diet-induced obese rats. High fat food-induced obese rats were randomly divided into CCSKO group, Lard group, Soybean oil (SOY) group and naturally restoring group (n = 10). Rats fed with low fat food were used as a normal control group. Significant decreases in body mass and abdominal fat mass/body mass after 12 weeks were found in CCSKO group as compared with Lard and SOY groups (p lipid metabolism and up-regulate β3-adrenergic receptor expression in high fat diet-induced obese rats.

  9. Para rubber seed oil: new promising unconventional oil for cosmetics.

    Science.gov (United States)

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha

    2014-01-01

    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.

  10. Variability of seed oil content and fatty acid composition in the entire USDA sesame germplasm collection

    Science.gov (United States)

    Sesame (Sesame indicum L.) is one of the oldest oilseed crops with a long history of cultivation for its edible seeds and oil. The U.S. sesame germplasm collection (containing about 1,232 accessions) is a useful genetic resource for improving seed quality and enhancing grain yield. Variability of se...

  11. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    Science.gov (United States)

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g-1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Synthesis biolubricant from rubber seed oil

    Science.gov (United States)

    Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan

    2017-09-01

    The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.

  13. Development and efficacy assessments of tea seed oil makeup remover.

    Science.gov (United States)

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; Poil remover caused none of skin irritation as examined in 20 human volunteers. A single-blind, randomized control exhibited that the tea seed oil remover gained a better preference over the benchmark (75.42±8.10 and 70.00±7.78%; P=0.974). The safe and efficient tea seed oil makeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  14. Viscosity of Common Seed and Vegetable Oils

    Science.gov (United States)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  15. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds.

    Science.gov (United States)

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-10-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds.

  16. South African seed oils are safe for human consumption | Opperman ...

    African Journals Online (AJOL)

    We compared three oils, i.e. canola, sunflower and olive oil, against internationally accepted standards, to determine the quality of these oils using gaschromatographic analysis, to determine whether or not there was any foundation to the statement pertaining to the toxicity of South African seed oils. Reported parameters ...

  17. Physicochemical attributes of oils from seeds of different plants in ...

    African Journals Online (AJOL)

    The iodine values of the oils (31.50-85.00 mg iodine/100 g) placed them in the non-drying class. The saponification values of all the seven oils (161.29-244.97 mg KOH/g oil) suggest their usefulness in the industry as shaving cream. KEY WORDS: Seed, Oil, Physico-chemical, Attributes, Plant, Nigeria. Bull. Chem. Soc.

  18. [Fatty acid of Rkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seeds oil and its comparative byological activity].

    Science.gov (United States)

    Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A

    2012-11-01

    The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.

  19. Fatty Acid Profile and Bioactivity from Annona hypoglauca Seeds Oil ...

    African Journals Online (AJOL)

    Plants from Annona (Annonaceae) genus are present in tropical regions, where they have economic and medicinal potential. Information on the fatty acids profile and bioactivity from seed oil of Annona species are incipient. The objective of this work was to investigate Annona hypoglauca seeds oil in terms of its yield, ...

  20. Efficiency of borage seeds oil against gamma irradiation-induced ...

    African Journals Online (AJOL)

    Efficiency of borage seeds oil against gamma irradiation-induced hepatotoxicity in male rats: possible antioxidant activity. ... induced by radiation exposure. Therefore, BO may be used as a beneficial supplement for patients during radiotherapy treatment. Keywords: Borage seeds oil; γ-irradiation; Hepatotoxicity; Antioxidant ...

  1. Sesame ( Sesamum indicum L.) Seed Oil Methods of Extraction and ...

    African Journals Online (AJOL)

    The aim is to discuss the various extraction methods of the sesame seed oil and its industrial applications particularly its application in cosmetic production. The review focused mainly on the traditional African methods of extraction and the utilization of the seed oil in soap making and production of skin moisturizers.

  2. Fatty acid profiles of some Fabaceae seed oils

    Science.gov (United States)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  3. Extraction and characterization of radish seed oils using different ...

    African Journals Online (AJOL)

    Purpose: To evaluate the impact of three different extraction methods on oil yield, physicochemical properties and bioactive ingredients of radish seeds. Methods: Radish seed oil was prepared by traditional solvent extraction (SE), supercritical carbon dioxide extraction (SCE) and sub-critical propane extraction (SPE).

  4. Extraction and characterization of Raphanus Sativus seed oil ...

    African Journals Online (AJOL)

    Purpose: To evaluate the impact of three different extraction methods on yield, physicochemical properties and bioactive ingredients of Raphanus sativus seed oil. Methods: Raphanus sativus seed oil was prepared by traditional solvent extraction (SE), super-critical carbon dioxide extraction (SCE) and sub-critical propane ...

  5. Optimization of mechanical extraction conditions for producing grape seed oil

    Science.gov (United States)

    In the United States, over 150 thousand metric tons of dried grape seeds containing 13-19% of oil are produced every year, as a byproduct from processing of about 5.8 million metric tons of grapes. The health promoting properties of grape seed oil is due to the presence of many bioactive components ...

  6. Fatty acid profile and bioactivity from Annona hypoglauca seeds oil

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-29

    Jul 29, 2015 ... Plants from Annona (Annonaceae) genus are present in tropical regions, where they have economic and medicinal potential. Information on the fatty acids profile and bioactivity from seed oil of Annona species are incipient. The objective of this work was to investigate Annona hypoglauca seeds oil in.

  7. Extraction and physico chemical properties of some edible seed oils ...

    African Journals Online (AJOL)

    Six edible seed samples were obtained from Yankura market in Kano metropolis, Kano state. The samples were subjected to extraction for their oil contents. The percentage oil yield from the seeds were 40.60% for Moringa oleifera, 49.39% for cashew, 47.80% for sesame, 11.92% for bitter kola, 38.30% for melon and ...

  8. SESAME (SESAMUM INDICUM L.) SEED OIL METHODS OF ...

    African Journals Online (AJOL)

    DR. AMIN

    2011-12-02

    Dec 2, 2011 ... ABSTRACT. The relative abundance of sesame seed oil coupled with the little knowledge of its cosmetic usage prompted the need for this review. The aim is to discuss the various extraction methods of the sesame seed oil and its industrial applications particularly its application in cosmetic production.

  9. Production of Biodiesel from Parinari polyandra B. Seed Oil using ...

    African Journals Online (AJOL)

    Akorede

    efficient and economical since they are sourced as cheap, renewable raw material. ... mortar and pestle to increase the surface area for maximum oil extraction. B. Extraction and Refining of Seed Oil. 100g of the seed was weighed and extracted ...

  10. Influence the Rubber Seed Type and Altitude on Characteristic of Seed, Oil and Biodiesel

    Directory of Open Access Journals (Sweden)

    Salni Salni

    2017-06-01

    Full Text Available This research studies the influence of the type of rubber seed that is superior and local, altitude plant in South Sumatra province to the characteristic of seed, oil and biodiesel (methyl ester. Rubber plants planted from local rubber seed by seeds seedlings and superior rubber seed by selected clones. In the study, rubber plants planted at a different altitude, namely in Banyuasin district (18 m above sea level, Prabumulih District (176 m above sea level and Lahat District (627 m above sea level. The results showed that the weight of the flour, the water content and ash content in the local rubber seeds larger than the superior rubber seed for all altitude, but oil content a large in the superior rubber seeds. The major of fatty acids in the rubber seed oil in all types and altitude are a linoleic acid with a different percentage except local rubber seed oil from Lahat district with the large percentage of octadecanoic acid. Free fatty acids in the oil from the superior seeds rubber of 13.897-15.494 % large than local rubber seed oil was found 9.786-10.399 % for all altitude. By esterification process using sulfuric acid catalyst, Free Fatty Acid (FFA can be reduced to ≤ 2 %. The methyl ester made from the transesterification process of rubber seed oil after esterification using methanol and sodium hydroxide as catalyst. Analysis of methyl esters includes cetane index, flash point, kinematic viscosity, carbon residue, density, moisture content, water and sediment content and distillation compared with SNI 7182 and ASTM 6751-02.  The result indicated that the quality of methyl ester from superior rubber seed oil in the Banyuasin and Prabumulih district better than another methyl ester. The types of rubber seed altitude affect the characteristics of the seed, oil and methyl ester  but the altitude are not significantly different. Keywords: rubber seed, type, altitude, oil, biodiesel Article History: Received March 21st 2017; Received in

  11. Characteristics and composition of tomato seed oil

    Directory of Open Access Journals (Sweden)

    Lazos, Evangelos S.

    1998-12-01

    Full Text Available Tomato seeds were separated from dried pomace, and seeds were ground and extracted with hot petroleum ether. The extracted oil was degummed, neutralised and bleached, and then the physical and chemical characteristics of crude and purified oils were determined. Purification led to a decrease in acidity, colour, unsaponifiables, E1%1cm 232 and oxidative stability, and to an increase in smoke point and E1%1cm 270. The fundamental physicochemical properties of the oil were not affected by purification. Tomato seed oil was found to contain high levels of linoleic (54%, followed by oleic (22%, while the dominant saturated acids were palmitic (14% and stearic (6%. Purification led to an increase in C18:2 trans, while the fatty acid profile of the oil remained unchanged, a- and ô-tocopherols were detected at levels of 202 and 1059 mg/kg; purification reduced tocopherol content to 161 and 898 mg/kg, respectively (β-sitosterol was found as the most predominant component of the sterolic fraction from tomato seed oil. A large percentage (16% of cholesterol was detected. Other sterols found in percentages higher than 1.5% were campesterol, stigmasterol and Δ5-avenasterol. In addition, trace to minor amounts of 24- methylenecholesterol, brassicasterol, Δ7-campesterol, clerosterol, Δ7 24-stigmastadienol, Δ7-stigmastanol, Δ7-avenasterol and erythrodiol were found. Sterol profile was not affected by purification.

    Se separaron semillas de tomate de la pulpa seca y posteriormente se trituraron y extrajeron con éter de petróleo en caliente. El aceite extraído se desgomó, neutralizó y decoloró, y luego se determinaron las características físicas y químicas de los aceites crudos y purificados. La purificación produjo una disminución en la acidez, color, insaponificables, E1%1cm 232 y estabilidad oxidativa y un aumento en

  12. QUALITY OF HEMP SEED OIL DEPENDING ON ITS OBTAINING

    Directory of Open Access Journals (Sweden)

    Ladislav Staruch

    2010-07-01

    Full Text Available Hemp (Cannabis sativa L. is probably one of the oldest field crops used in nutrition, but also for the production of fibres for clothes, ropes or canvas. Cannabis sativa is one of the most spread species of cannabis which belongs to family Cannabinaceae. The seeds are important part of cannabis sativa, which contains high part of lipids and proteins. It provides also valuable essential fatty acids, carbohydrates, fiber, vitamins and minerals. Due to low content of THC is possible to produce valuable oil from seeds, which is used in cosmetic and food industry. The aim of this work was to evaluate composition of hemp seeds from one harvest, observe and compare quality of parameters both cold pressed hemp seed oil and hemp seed oil by CO2 extraction. Both oils are comparable in composition of fatty acids which follow from results of analyses. Also contents of sterols and moisture are similar in both oils. The saponification value is similar in both oils, conformable to as a iodine value. Also were found dissimilarities in colours, phospholipides, unsaponifiable matter, acid value and peroxide value. The cold pressed hemp seed oil contained lower values of unsaponifiable matter, colours and higher concentration of phospholipides and lower acid value. It is caused by influence of CO2. The oxidation stability of cold pressed hemp seed oil was four times higher than oil by CO2 extraction. doi:10.5219/32 

  13. CASTOR SEED BIO -TRANSFORMER OIL AS AN ALTERNATIVE TO CONVENTIONAL TRANSFORMER OIL

    OpenAIRE

    Egbuna, S.O.*, Ude, O.C., Ude, C.N.

    2016-01-01

    In search of solution to the harmful ecological problems due to toxicity and non-biodegradability posed by conventional transformer insulation oil (mineral oil), the production of transformer oil from castor seed oil (vegetable oil) was carried out. The oil was extracted using N-hexane and was refined. The transformer oil was produced by trans-esterification and was characterized using American Society for Testing Material (ASTM) standard test. The solvent employed gave good yield of oil from...

  14. Calendula oil processing : seed classification, oil extraction, refining process development and oil quality aspects

    NARCIS (Netherlands)

    Janssens, R.J.J.

    2000-01-01

    The difference in Calendula oil quality from fractions obtained after seed classification is enormous. The oil quality varies from excellent to very poor, according to important aspects such as in the hulls and dust fraction, high free fatty acid values (13% vs. 0.6%) are found. This can be

  15. Life Cycle Assessment for the Production of Oil Palm Seeds.

    Science.gov (United States)

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  16. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    Science.gov (United States)

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Science.gov (United States)

    Hu, Zhaohui; Wu, Qian; Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O; Sederoff, Heike W; Qu, Rongda

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  18. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    Directory of Open Access Journals (Sweden)

    Zhaohui Hu

    Full Text Available With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt. was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0 and myristate (C14:0 were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0, from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  19. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    OpenAIRE

    Juliano Garavaglia; Melissa M. Markoski; Aline Oliveira; Aline Marcadenti

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These...

  20. The Effects of Dehulling on Physicochemical Properties of Seed Oil ...

    African Journals Online (AJOL)

    (1992). A new twin-screw press design for oil extraction of dehulled sunflower seeds. Journal of the American Oil Chemists. Society, 69: 884–889. Ixtaina, V.Y., Martínez, M.L., Spotorno, V.,. Mateo, C.M., Maestri, D.M., Diehl, B.W.,. Nolasco, S.M. and Tomás, M.C. (2011). Characterization of chia seed oils obtained by pressing ...

  1. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils

    National Research Council Canada - National Science Library

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques...

  2. Grape seed oil: a potential functional food?

    Directory of Open Access Journals (Sweden)

    Fernanda Branco SHINAGAWA

    2015-09-01

    Full Text Available Grape seed oil (GSO is not often consumed in Brazil and little is known of its nutritional value. Around the world there are already studies that point to the high levels of minority bioactive compounds and their relation to health benefits. The main constituent of GSO is linoleic fatty acid, some works are controversial and there is no consensus in literature regarding their effect on the animal organism. Thus, this study aimed to present a review of GSO and show the potential health effects of its major components, not only linoleic acid, but also γ-tocotrienol and β-sitosterol, and finally, their influence on lipid-modulating, anti and pro oxidative parameters.

  3. Comparison of thermal stability of grape seed oil with virgin sesame oil

    Directory of Open Access Journals (Sweden)

    Marzieh

    2015-11-01

    Full Text Available Background: Heating causes extensive physical and chemical changes in oil and fats, which can change all physical and chemical characteristics and quality of oil during frying is so critical. This study was aimed to compare the thermal stability of virgin sesame oil and grape seed oil. Methods: The grape seed oil and virgin sesame oil were heated at 180 ° C for 8 hours. Every hour, a sample of the heated oils was taken to determine the changes in acid value, peroxide, anisidine and Totox. Results: Heating the oil caused extensive chemical variations both oils. The acidity index increased over time (p<0.05, there were fluctuations inperoxide value, and anisidine and Totox values also increased during thermal processes (p<0.05. Conclusion: Grape seed oil showed more resistance to heat than sesame oil.

  4. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  5. Physicochemical properties of Mucuna pruriens seed oil (MPSO ...

    African Journals Online (AJOL)

    Physicochemical properties of Mucuna pruriens seed oil (MPSO), and the toxicological effects of a MPSO-based diet. ... oil meal compared to the palm oil group. The serum total and conjugated bilirubin, total proteins, albumin, creatinine and urea concentrations were also significantly (p<0.05) increased in the test group.

  6. Physicochemical characterization of Quassia undulata seed oil for ...

    African Journals Online (AJOL)

    dr eze

    2012-10-16

    Oct 16, 2012 ... In many parts of the world, there is a surplus of traditional crops and a continuous search for break and new crops, including some which produce useful oils. Quassia undulata seed oil is such an attractive resource. This present research was carried out to assess the physicochemical properties of the oil.

  7. Chemical properties of tomato (Lycopersicon escluntum) seed oil ...

    African Journals Online (AJOL)

    Solvent extraction of oil from tomato seeds was carried out. The extracted oil was analyzed for extract yield, quality and fatty acid composition. The results showed that the oil yield was quite appreciable (27.95%) while the results of peroxide value was 0.133O mgg , acid value of 3.3518mgKOH/g , while iodine value was ...

  8. Increasing the flow of carbon into seed oil.

    Science.gov (United States)

    Weselake, Randall J; Taylor, David C; Rahman, M Habibur; Shah, Saleh; Laroche, André; McVetty, Peter B E; Harwood, John L

    2009-01-01

    The demand for vegetable oils for food, fuel (bio-diesel) and bio-product applications is increasing rapidly. In Canada alone, it is estimated that a 50 to 75% increase in canola oil production will be required to meet the demand for seed oil in the next 7-10years. Plant breeding and genetics have demonstrated that seed oil content is a quantitative trait based on a number of contributing factors including embryo genetic effects, cytoplasmic effects, maternal genetic effects, and genotype-environment interactions. Despite the involvement of numerous quantitative trait loci in determining seed oil content, genetic engineering to over-express/repress specific genes encoding enzymes and other proteins involved in the flow of carbon into seed oil has led to the development of transgenic lines with significant increases in seed oil content. Proteins encoded by these genes include enzymes catalyzing the production of building blocks for oil assembly, enzymes involved in oil assembly, enzymes regulating metabolic carbon partitioning between oil, carbohydrate and secondary metabolite fractions, and transcription factors which orchestrate metabolism at a more general level.

  9. Grape Seed Oil Compounds: Biological and Chemical Actions for Health.

    Science.gov (United States)

    Garavaglia, Juliano; Markoski, Melissa M; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health.

  10. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    Directory of Open Access Journals (Sweden)

    Juliano Garavaglia

    2016-01-01

    Full Text Available Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health.

  11. Characteristics of blackberry and raspberry seeds and oils

    Directory of Open Access Journals (Sweden)

    Dimić Etelka B.

    2012-01-01

    Full Text Available This study is concerned with the determination of technological quality characteristics of dried pomaces, i.e. blackberry and raspberry seeds, along with the quality parameters, content of total carotenoids and chlorophyl and transparency of crude extracted oil (using organic solvent. Blackberry seeds (Rubus fruticosus L. were obtained from a domestic variety Čačanska bestrna, while the raspberry seeds (Rubus idaeus L. were of the variety Willamette. Oil content of the blackberry pomace was 13.97 and 14.34%, while the oil content of the raspberry pomace was 13.44 and 14.33% on dry basis (d.b.. In regard to technological characteristics of the pomaces, i.e. volumetric and specific weight, no considerably difference was found. However, a weight test for 1000 seeds showed a significant difference in weight: 3.5 g (d.b. for the blackberry pomace and 1.5 g for the raspberry pomace (d.b.. Proximate analysis of blackberry seed oil showed that this oil had better quality since the FFA value was 3.43% (sample B1 and 3.53% (sample B2, while the peroxide value was 8.89 and 11.16 mmol/kg, respectively. Raspberry seed oil had higher FFA (8.59 and 8.83% for sample R1 and R2 and peroxide values (13.99 and 13.84 for sample R1 and R2 than the blackberry seed oil. Crude extracted blackberry seed oil had a brown-greenish color due to the high total chlorophyll content (around 3000 mg/kg dissolved in cyclohexane. Raspberry seed oil had a dark yellowishorange color, due to lower chlorophyll content (around 200 mg/kg compared to the blackberry seed oil, while the content of total carotenoids was slightly higher in this oil (around 40 mg/kg compared to the blackberry seed oil (33 mg/kg. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014: Development of the new functional confectionery products based on oil crops

  12. Methanolysis of Carica papaya Seed Oil for Production of Biodiesel

    Directory of Open Access Journals (Sweden)

    Foluso O. Agunbiade

    2014-01-01

    Full Text Available The future of fossil fuel sources of energy has necessitated the need to search for renewable alternatives. Thus, Carica papaya seed oil (CPSO was employed as feedstock for the production of biodiesel by methanolysis. The seed was obtained locally, dried, and extracted with n-hexane. The CPSO was analyzed for specific gravity, viscosity, iodine value, and saponification value, among others using standard methods. The oil was transesterified by two-stage catalysis with oil to methanol mole ratio of 1 : 9. The biodiesel produced was subjected to standard fuel tests. The seed has an oil yield of 31.2% which is commercially viable. The kinematic viscosity of the oil at 313 K was 27.4 mm2s−1 while that of Carica papaya oil methylester (CPOME was reduced to 3.57 mm2s−1 and the specific gravity was 0.84 comparable with other seed-oil biodiesels and number 2 diesel. Other oil properties were compared favourably with seed oils already documented for biodiesel synthesis. CPOME’s cloud and pour points were 275 K and 274 K, respectively, and relatively higher than other biodiesels and number 2 diesel. CPOME exhibits moderate corrosion of copper strip. The methanolysis improved the fuel properties of the CPOME similar to other biodiesels. CPSO therefore exhibits a potential for biodiesel production.

  13. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    Science.gov (United States)

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  14. Comparison of thermal stability of grape seed oil with virgin sesame oil

    OpenAIRE

    Marzieh; Peyman; Fayegh Moulodi

    2015-01-01

    Background: Heating causes extensive physical and chemical changes in oil and fats, which can change all physical and chemical characteristics and quality of oil during frying is so critical. This study was aimed to compare the thermal stability of virgin sesame oil and grape seed oil. Methods: The grape seed oil and virgin sesame oil were heated at 180 ° C for 8 hours. Every hour, a sample of the heated oils was taken to determine the changes in acid value, peroxide, anisidine and Totox. ...

  15. Jatropha Curcas Seed Oil Linn ( Euphor Biaceae ): Contraceptive ...

    African Journals Online (AJOL)

    Attempts were made to formulate a stable oral emulsion from the oil. Formulations with 2; 2:1 oil, water, gum ratio gave better stability than those with 4: 2:1 ratio over a study period of 5 weeks. It was obvious that J. curcas seed oil is a volatile oil. It was also observed that tragacanth formed more stable primary emulsions ...

  16. [Effect of five kinds of vegetable seed oil on serum lipid and lipid peroxidation in rats].

    Science.gov (United States)

    Guo, Y; Cai, X; Zhao, X; Shi, R

    2001-01-01

    The effects of vegetable seed oil on hyperlipidemia induced by high lipid diet in rats. Male adult Wistar rats were fed on the test diet containing 94% high lipid diet and 6% lard pinon seed oil, perilla seed oil, blackcurrent seed oil, borage seed oil and evening primrose seed oil respectively for 3 weeks. The results showed that the vale of trilyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C(high density lipoprotein cholesterol) ratio increased and the vale of HDL-C/TC ratio and lecithin-cholesterol acyltransferase(LCAT) activity decreased in the groups with vegetable seed oil were less than that of the control group. The results suggested that all the five kinds of vegetable seed oil had the effect of regulating lipid metabolism of hyperlipidemia rats to some extent. Pinon seed oil and borage seed oil may be well suited for the prevention of atherosclerosis.

  17. Nigella seed oil as alternative to avilamycin antibiotic in broiler ...

    African Journals Online (AJOL)

    Dr Ahmed Saleh

    2014-09-14

    Statistical Packages for the. Social Sciences, 2008). Tukey's multiple comparison test was used to separate means at a significance level of P <0.05. Results. The effect of feeding avilamycin and nigella seed oil on live body ...

  18. The Extraction and Properties of Carica papaya Seed Oil

    OpenAIRE

    Li, Y.M.; Su, N.; Yang, H. Q.; X.P. Bai; Q.X. Zhu; Liu, H. X.; Li, J. Q.

    2015-01-01

    The main objective of the present study was to evaluate the suitability of Ultrasound-Microwave synergistic Extraction (UMAE) for the recovery of papaya seed oil as compared to Ultrasound-Assisted Extraction (UAE). The efficiency of these two methods was assessed by comparing the physicochemical properties and oxidative stability of papaya seed oil. The analytic tests were color, unsaponifiable matters, iodine value, acid value and peroxide value. The fatty acid components were analyzed by GC...

  19. Ultrasound Energy Effect on Solvent Extraction of Amaranth Seed Oil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Il; Chung, Ki Won; Lee, Seung Bum; Hong, In Kwon [Department of Chemical Engineering, Dankook University, Seoul (Korea); Park, Kyung Ai [Seoul Metropolitan Government Institute of Health and Environment, Seoul (Korea)

    2001-05-01

    Ultrasonic energy has been widely applied to cleaning, medical appliances, extraction, etc. And ultrasonic energy can be applied to solvent extraction of plant oil from amaranth seed. Amaranth seed oil contains small amount of squalene. Squalene is polyunsaturated branched hydrocarbon, which is an essential part of the human body. In this study, the seed oil was extracted from amaranth seed by ultrasonic solvent extraction process. Ultrasonic irradiation time was 1, 3 ,5, 10, 20 and 30 min and extraction temperature was 20, 30, and 40 degree C. And ultrasonic power was 390 W and 520 W. The extracted amounts of amaranth seed oil and squalene were increased with the increase of ultrasonic power and irradiation time. Using ultrasonic energy in solvent extraction, extraction time was very shorten. The optimum extraction temperature was 30 degree C, it was caused that ultrasonic energy effects were increased in the matters of low temperature. The maximum extracted amount of amaranth seed oil was 0.746 g and squalene was 37.54 mg per 10 g amaranth seed at 30 degree C. 10 refs., 8 figs., 1 tab.

  20. Breaking seed dormancy in oil rose ( Rosa damascena Mill.) by ...

    African Journals Online (AJOL)

    This study was carried out to determine the effects of microbial inoculation in breaking seed dormancy and on the germination of Rosa damascena Mill. Seeds of R. damascena Mill. are the most used scented rose species in rose oil production. The most important production centers around the world are Turkey and ...

  1. The preservative potentials of sweet orange seed oil on leather ...

    African Journals Online (AJOL)

    Orange seed oil was extracted using the steam distillation method. The fungi isolated from the leather samples were Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Paecilomyces sp., Penicillium sp., Rhizopus nigricans and Alternaria sp. However, the fungal species vary from person to person. The orange seed ...

  2. Physicochemical Characteristics of Citrus Seed Oils from Kerman, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reazai

    2014-01-01

    Full Text Available Recently, there has been a great deal of attention on usage, byproducts, and wastes of the food industry. There have been many studies on the properties of citrus seeds and extracted oil from citrus grown in Kerman, Iran. The rate of oil content of citrus seeds varies between 33.4% and 41.9%. Linoleic acid (33.2% to 36.3% is the key fatty acid found in citrus seeds oil and oleic (24.8% to 29.3% and palmitic acids (23.5% to 29.4% are the next main fatty acids, respectively. There are also other acids found at trivial rates such as stearic, palmitoleic, and linolenic. With variation between 0.54 meg/kg and 0.77 mgq/kg in peroxide values of citrus seed oils, acidity value of the oil varies between 0.44% and 0.72%. The results of the study showed that citrus seeds under study (orange and sour lemon grown in Kerman province and the extracted oil have the potential of being used as the source of edible oil.

  3. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    Science.gov (United States)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  4. Biodiesel production from seed oil of Cleome viscosa L.

    Science.gov (United States)

    Kumari, Rashmi; Jain, Vinod Kumar; Kumar, Sushil

    2012-07-01

    Edible oil seed crops, such as rapeseed, sunflower, soyabean and safflower and non-edible seed oil plantation crops Jatropha and Pongamia have proved to be internationally viable commercial sources of vegetable oils for biodiesel production. Considering the paucity of edible oils and unsustainability of arable land under perennial plantation of Jatropha and Pongamia in countries such as India, the prospects of seed oil producing Cleome viscosa, an annual wild short duration plant species of the Indogangetic plains, were evaluated for it to serve as a resource for biodiesel. The seeds of C. viscosa resourced from its natural populations growing in Rajasthan, Haryana and Delhi areas of Aravali range were solvent extracted to obtain the seed oil. The oil was observed to be similar in fatty acid composition to the non-edible oils of rubber, Jatropha and Pongamia plantation crops and soybean, sunflower, safflower, linseed and rapeseed edible oil plants in richness of unsaturated fatty acids. The Cleome oil shared the properties of viscosity, density, saponification and calorific values with the Jatropha and Pongamia oils, except that it was comparatively acidic. The C. viscosa biodiesel had the properties of standard biodiesel specified by ASTM and Indian Standard Bureau, except that it had low oxidation stability. It proved to be similar to Jatropha biodiesel except in cloud point, pour point, cold filter plugging point and oxidation stability. In view of the annual habit of species and biodiesel quality, it can be concluded that C. viscosa has prospects to be developed into a short-duration biodiesel crop.

  5. Chemical and physicochemical characterization of the seed oil from ...

    African Journals Online (AJOL)

    ... a hybrid fruit derived from the crossing of sugar-apple (Annona squamosa L.), with cherimoya (Annona cherimola Mill.). The objective of this study was to compare two extraction methodologies for the seed oil from 'Gefner' atemoya, for yield, chemical and physicochemical characteristics, in order to use the oil as biofuel.

  6. Nigella seed oil as alternative to avilamycin antibiotic in broiler ...

    African Journals Online (AJOL)

    Dr Ahmed Saleh

    2014-09-14

    Sep 14, 2014 ... Aromatic plants and essential oils extracted from these plants have .... extract was allowed to separate; the organic layer was taken, then passed through a glass funnel containing anhydrous .... albumin and albumin/globulin concentrations increased through feeding nigella seed oil compared with the.

  7. Pomegranate seed oil rich in conjugated linolenic acids reduces in ...

    African Journals Online (AJOL)

    User

    2016-10-01

    Oct 1, 2016 ... The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil ... stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the ... Plant oil extracts that are rich in unsaturated fatty acids could alter rumen fermentation. The.

  8. Quality characterization of Niger seed oil ( Guizotia Abyssinica Cass ...

    African Journals Online (AJOL)

    In the present investigation, an attempt has been made to find out cholesterol and total free fatty acid content in Niger seed oil which is the most available edible oil in Ethiopia. Acid value, peroxide value, saponification value and cholesterol content were determined. The analysis performed using Liebermann-Burchard ...

  9. Extraction and analysis of Jatropha curcas L. seed oil | Shivani ...

    African Journals Online (AJOL)

    Jatropha curcas L. is a multipurpose shrub with a variety of applications and enormous economic potentials for its seed oil, which can be converted into biodiesel- an alternative to petro-diesel. It aims to overcome energy crisis problem and also to reduce environmental changes. The fact that the oil of J. curcas cannot be ...

  10. Kenaf seed oil from supercritical carbon dioxide fluid extraction ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... Full Length Research Paper. Kenaf seed oil from supercritical carbon dioxide fluid .... The cells were harvested and washed twice with phosphate- buffered saline (PBS), fixed in ice-cold 70% ethanol and ..... Extraction of coffee diterpenes and coffee oil using supercritical carbon dioxide. Food Chem.

  11. Physicochemical characterization of Quassia undulata seed oil for ...

    African Journals Online (AJOL)

    dr eze

    2012-10-16

    Oct 16, 2012 ... This dependency on fossil fuel which is non-renewable has lead to increasing pollution and ... New oil seed crops are needed to meet existing energy demands (Gunstone, 1999) as such oils, mostly pro- ... with European organization (EN 14214). Refractive index (at room temperature), was determined ...

  12. Physicochemical characterisation of hexanic seed oil extract from ...

    African Journals Online (AJOL)

    It was concluded that oil from S. molle seeds could be used as a source of palmitic, oleic and linoleic acid which would be utilised as industrial ingredients in the manufacture of soaps, pharmaceutical products, cosmetics and nutritional supplements. Keywords: Schinus molle, hexane oil extraction, fatty acids, ethnomedicine

  13. Characteristics of grape seed and oil from nine Turkish cultivars.

    Science.gov (United States)

    Ozcan, Mehmet Musa; Unver, Ahmet; Gümüş, Tuncay; Akın, Aydın

    2012-11-01

    Percentages of crude oil, protein, fibre and ash of grape seeds obtained from Turkish cultivars were of the ranges 5.40-10.79, 5.24-7.54, 17.6-27.1, and 1.2-2.6, respectively. The highest crude oil, crude protein and crude fibre were determined in Siyah pekmezlik, Karadimrit and Antep grape seeds. The energy values of seeds were established to be between 102.28 and 148.07 kcal g(-1). Potassium and calcium contents of seed samples were found to be at high levels compared to sodium. The seeds contained 686-967 ppm of Na, 2468-3618 ppm of K and 2373-4127 ppm of Ca. The refractive index, relative density, acidity, saponification value, unsaponifiable matter and iodine value of seed oils were determined to be in the ranges 1.474-1.477 [Formula: see text], 0.909-0.934 25/25°C, 0.74-1.24%, 181-197, 0.91-1.66%, and 126-135, respectively. The main fatty acids were of the ranges 60.7-68.5% linoleic, 16.1-23.4% oleic and 8.0-10.2% palmitic. The highest percentages of linoleic acid (68.5%) was determined in Siyah pekmezlik seed oil.

  14. Antimicrobial activities of Moringa oleifera seed and seed oil residue and oxidative stability of its cold pressed oil compared with extra virgin olive oil

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2015-10-01

    Full Text Available Moringa oleifera (MO seed contains highly valuable substances with an impressive range of medicinal, cosmetic and food uses. MO seed, seed oil and its residue were investigated for antioxidant and antimicrobial activities against selected foodborne microorganisms using disc diffusion and minimum inhibitory concentration. In addition, the physico-chemical properties, fatty acid compositions and oxidative stability of cold pressed MO seed oil in comparison with those of extra virgin olive (EVO oil were also evaluated and the results indicated that MO residue had the highest antioxidant activity followed by oil and seed, respectively. The extracts of MO seed and residue against Staphylococcus aureus showed the maximum inhibition zone of 20.67 and 24.67 mm, respectively, at 100 mg/ml concentration. In comparison, MO seed oil contained a high level of oleic acid (71.87% to that of EVO oil (78.10%. MO seed oil was much more stable against oxidation than EVO oil based on the oxidative stability index results.

  15. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  16. Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis.

    Science.gov (United States)

    Meyer, Knut; Stecca, Kevin L; Ewell-Hicks, Kim; Allen, Stephen M; Everard, John D

    2012-07-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that

  17. Variability in seed traits, oil content and genetic diversity in local and ...

    African Journals Online (AJOL)

    Variability in seed traits, oil content and genetic diversity of Jatropha curcas L. according to rainfall gradient in Senegal are hereby reported and discussed. Seed oil variability ranged from 58.61% in Sudanian zone to 46.94% in Sahelian zone. Seed oil content and seed thickness were correlated to rainfall with a correlation ...

  18. Surface structure and properties of plant seed oil bodies.

    Science.gov (United States)

    Tzen, J T; Huang, A H

    1992-04-01

    Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles called oil bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oil bodies isolated from mature maize (Zea mays) embryos maintained their discreteness, but coalesced after treatment with trypsin but not with phospholipase A2 or C. Phospholipase A2 or C exerted its activity on oil bodies only after the exposed portion of oleosins had been removed by trypsin. Attempts were made to reconstitute oil bodies from their constituents. TAG, either extracted from oil bodies or of a 1:2 molar mixture of triolein and trilinolein, in a dilute buffer were sonicated to produce droplets of sizes similar to those of oil bodies; these droplets were unstable and coalesced rapidly. Addition of oil body PL or dioleoyl phosphatidylcholine, with or without charged stearylamine/stearic acid, or oleosins, to the medium before sonication provided limited stabilization effects to the TAG droplets. High stability was achieved only when the TAG were sonicated with both oil body PL (or dioleoyl phosphatidylcholine) and oleosins of proportions similar to or higher than those in the native oil bodies. These stabilized droplets were similar to the isolated oil bodies in chemical properties, and can be considered as reconstituted oil bodies. Reconstituted oil bodies were also produced from TAG of a 1:2 molar mixture of triolein and trilinolein, dioleoyl phosphatidylcholine, and oleosins from rice (Oryza sativa), wheat (Triticum aestivum), rapeseed (Brassica napus), soybean (Glycine max), or jojoba (Simmondsia chinensis). It is concluded that both oleosins and PL are required to stabilize the oil bodies and that oleosins prevent oil bodies from coalescing by providing steric hindrance. A structural model of an oil body is presented. The current findings on seed oil bodies could be extended to the intracellular storage lipid

  19. Amended safety assessment of Sesamum indicum (sesame) seed oil, hydrogenated sesame seed oil, Sesamum indicum (sesame) oil unsaponifiables, and sodium sesameseedate.

    Science.gov (United States)

    Johnson, Wilbur; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-05-01

    Sesamum indicum (sesame) seed oil and related cosmetic ingredients are derived from Sesamum indicum. Sesamum indicum (sesame) seed oil, sesamum indicum (sesame) oil unsaponifiables, and hydrogenated sesame seed oil function as conditioning agents. Sodium sesameseedate functions as a cleansing agent, emulsifying agent, and a nonaqueous viscosity increasing agent. These ingredients are neither skin irritants, sensitizers, teratogens, nor carcinogens at exposures that would result from cosmetic use. Both animal and human data relevant to the cosmetic use of these ingredients were reviewed. The CIR Expert Panel concluded that these ingredients are safe in the present practices of use and concentration as described in this safety assessment.

  20. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; Chen, Grace Q; Kim, Hyun Uk

    2015-04-01

    Hydroxy fatty acids produced in plant seed oil are important industrial material. This review focuses on the use of metabolic engineering approaches for the production of hydroxy fatty acids in transgenic plants. Vegetable oil is not only edible but can also be used for industrial purposes. The industrial demand for vegetable oil will increase with the continued depletion of fossil fuels and ensuing environmental issues such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high levels of unusual fatty acids in their seeds, and these fatty acids (FAs) have properties that make them suitable for industrial applications. Hydroxy fatty acids (HFAs) are some of the most important of these industrial FAs. Castor oil is the conventional source of HFA. However, due to the presence of toxin ricin in its seeds, castor is not cultivated on a large scale. Lesquerella is another HFA accumulator and is currently being developed as a new crop for a safe source of HFAs. The mechanisms of HFA synthesis and accumulation have been extensively studied using castor genes and the model plant Arabidopsis. HFAs accumulated to 17% in the seed oil of Arabidopsis expressing a FA hydroxylase gene from castor (RcFAH12), but its seed oil content and plant growth decreased. When RcFAH12 gene was coexpressed with additional castor gene(s) in Arabidopsis, ~30% HFAs were accumulated and the seed oil content and plant growth was almost restored to the wild-type level. Further advancement of our understanding of pathways, genes and regulatory mechanisms underlying synthesis and accumulation of HFAs is essential to developing and implementing effective genetic approaches for enhancing HFA production in oilseeds.

  1. EXTRACTION OF OIL SEED PIN (Citrullus vulgaris BY LEACHING

    Directory of Open Access Journals (Sweden)

    Peggy Londoño

    2014-12-01

    Full Text Available Extraction of seed oil initially consisted in physicochemical study of the seed, in order to meet their nutritional content by performing various analyzes as moisture, ash, fat, phosphorus, proteins and carbohydrates. Then we proceeded with oil extraction equipment using solid-liquid extraction, Soxhlet using hexane as a solvent using the factorial design of the type 23. After, the crude oil was characterized and refined by the methodology of COVENIN norms, where the oil presented potential properties to elaborate soap in the cosmetic industry. Finally, a lipid profile was obtained by a gas chromatographic, the results showed highly unsaturated fatty acid contents (linoleic and oleic that gives it the potential to be applied as a capable oil with excellent properties and quality to human consume.

  2. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    Science.gov (United States)

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    Science.gov (United States)

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  4. Chemical composition of carrot seeds (Daucus carota L.) cultivated in Turkey: characterization of the seed oil and essential oil

    OpenAIRE

    Chalchat, Jean Claude; Musa Özcan, Mehmet

    2007-01-01

    Chemical composition and physical properties were established in carrot (Daucus carota L.) seeds from Konya, Turkey to investigate their potential uses. Mature seeds were evaluated for moisture, crude protein, crude oil, crude fiber, ash, HCl-insoluble ash, total carbohydrate, essential oil yield and weight of 1000 seeds. Also, relative density, refractive index, free fatty acids, peroxide value, iodine value, saponification number and unsaponifiable matter were determined in the seed oil. Th...

  5. Citrus Seed Oils Efficacy against Larvae ofAedes aegypti.

    Science.gov (United States)

    Bilal, Hazrat; Akram, Waseem; Hassan, Soaib Ali; Din, Sadrud

    2017-09-01

    Dengue fever is a serious public health issue in Pakistan for many years. Globally plants have been reported to contain compounds with insecticidal properties. These properties have been demonstrated more recently on the larval stages of mosquitoes. Therefore, Citrus cultivar seeds were evaluated for larvicidal potential against the primary dengue vector Aedes aegypti . Extraction of oil was done by a steam distillation method and oils were evaluated according to WHO guidelines for larvicides 2005 for evaluation of insecticidal properties of citrus seed extracts against mosquito larvae. Among the Citrus cultivar seed oil, rough lemon ( Citrus jambhiri ) had the lowest LC 50 value (200.79ppm), while musambi ( C. sinensis var musambi ) had the highest LC 50 value (457.30ppm) after 24 h of exposure. Citrus cultivars have some larvicidal potential but C. jambhiri had the greatest potential against A. aegypti larvae. Further small-scale field trials using the extracts of C. jambhiri will be conducted to determine operational feasibility.

  6. Composition of vegetable oil from seeds of native halophytes

    Science.gov (United States)

    D. J. Weber; B. Gul; A. Khan; T. Williams; N. Williams; P. Wayman; S. Warner

    2001-01-01

    Of the world’s land area, about 7 percent is salt affected. Irrigated land is more susceptible to salinity and it is estimated that over 1/3 of the irrigated soils are becoming saline. Certain plants (halophytes) grow well on high saline soils. One approach would be to grow halophytes on high saline soils and harvest their seeds. The oil in the seeds would be extracted...

  7. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health.

    Science.gov (United States)

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2016-12-20

    Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil.

  8. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health

    Directory of Open Access Journals (Sweden)

    Alessandro Leone

    2016-12-01

    Full Text Available Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil.

  9. Perspectives on the use of seed oils in the South African diet

    African Journals Online (AJOL)

    better understanding. Opperman et al1 addressed the suggestion made in The Real Meal Revolution2 that seed oils are toxic, high in trans fat and genetically modified in this issue of the SAJCN. The authors concluded in their findings that South African seed oils,. i.e. sunflower oil, olive oil and canola oil are of good quality ...

  10. Biochemical characterisation during seed development of oil palm (Elaeis guineensis).

    Science.gov (United States)

    Kok, Sau-Yee; Namasivayam, Parameswari; Ee, Gwendoline Cheng-Lian; Ong-Abdullah, Meilina

    2013-07-01

    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA.

  11. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  12. Comparison of rheological properties of varietal grape seed oils

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2018-02-01

    Full Text Available The aim of this work was to determine the rheological properties of grape seed oils from different varieties selected at different temperatures. Measurement of the rheological properties of grape seed oils was performed on the instrument Anton Paar MCR 102. The rheological properties of the liquid have been performed at temperatures of 0 °C, 15 °C, 30 °C, 45 °C and 60 °C. The density of measured samples ranged from 0.905 ±0.002 to 0.948 ±0.002 g.mL-1. Subsequently, there were determined viscosity values at a shear rate of 5 s-1. As expected, the viscosity decreased with increasing temperature. Highest viscosity values reached grape seed oil of variety Pinot gris where at 0 °C the viscosity reached 0.206 ±0.037 Pa s. Samples measured at 0 °C showed non-Newtonian behavior, while at higher temperatures liquids behave as Newtonian substances. All grape seed oils samples exhibit non-Newtonian behavior at lower temperatures. In experiments carried out at 0 °C, it was observed that the tested samples tends to behave as shear-thinning system with thixotropic properties. At higher temperatures was, in line with other scientific works, observed that samples behave as Newtonian fluids. Knowledge of the rheological properties of oils are very important for their processing, storage, and may affect their quality.

  13. Diversity of Sterol Composition in Tunisian Pistacia lentiscus Seed Oil.

    Science.gov (United States)

    Mezni, Faten; Labidi, Arbia; Khouja, Mohamed Larbi; Martine, Lucy; Berdeaux, Olivier; Khaldi, Abdelhamid

    2016-05-01

    Pistacia lentiscus L. seed oil is used in some Mediterranean forest area for culinary and medicinal purposes. In this study, we aim to examine, for the first time, the effect of growing area on sterol content of Pistacia lentiscus seed oil. Fruits were harvested from 13 different sites located in northern and central Tunisia. Gas chromatography-flame-ionization detection (GC-FID) was used to quantify sterols and gas chromatography/mass spectrometry (GC/MS) was used to identify them. The major sterol identified was β-sitosterol with a value ranging from 854.12 to 1224.09 mg/kg of oil, thus making up more than 54% of the total sterols. The other two main sterols were cycloartenol (11%) and 24-methylene-cycloartenol (5%). Statistical results revealed that growing location significantly (P < 0.001) affected phytosterol levels in these oils. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    NJD

    2005-12-17

    Dec 17, 2005 ... The seed oil was pretreated by methyl ester before injection. That is, 10 mL of a 10:1 (v/v) methanol and sulphuric acid mixture was added to 1 g of extracted oil, and then esterified for. 3 h in a water bath at 60 °C. After 3 h, the esterification was cooled. RESEARCH ARTICLE. Y.J. Fu, W. Wang, Y.G. Zu, ...

  15. Analysing seed systems performance: the case of oil palm in Bénin

    NARCIS (Netherlands)

    Akpo, E.

    2013-01-01

    Key words: Bénin, genetic quality, growth dynamics, innovation, institutions, multistakeholders process, oil palm, perennials, physiological quality, pot size, seed quality, seed systems, smallholders, social learning.   The seed supply system used by smallholder farmers is

  16. Wetting of silicone oil onto a cell-seeded substrate

    Science.gov (United States)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  17. Characterization of grape seed and pomace oil extracts

    Directory of Open Access Journals (Sweden)

    Sema Çetin, Emine

    2007-03-01

    Full Text Available The objective of this study was to determine the nutrient and antioxidant contents of grape seed and pomace oil extracts from the main Turkish wine grape cultivars, Kalecik karas1, Narince, Hasandede and Emir. Dried and powdered seed and pomace materials were extracted with hexane. The results showed that the oil concentration of seeds ranged from 12.35 to 16.00% while in pomace the oil concentration varied from 5.47 to 8.66%. Grape seed and pomace oils were rich in oleic and linoleic acids and the degree of unsaturation in the oils was over 85%. α- tocopherol was the most abundant tocopherol in the oil extracts. Although γ and δ-tocopherols were found with low concentrations, β-tocopherol was not detected in the oil extracts. Oil extracts from pomace in all cultivars gave the highest tocopherol contents compared to the seeds. The contents of total phenolics were higher in pomace oil extracts than seed oil extracts. The highest total phenolic content (392.74 mg/kg was found in the oil extract from Narince pomace compared to the other oil extracts. The refractive indexes of pomace oil extracts ranged from 1.445 to 1.468 while the refractive indexes of the seed oil extracts ranged from 1.460 and 1.466. In conclusion, wine byproducts including the seeds and pomace can be utilized both to get natural antioxidants and to obtain edible vegetable oil.El objetivo de este estudio fue determinar los contenidos de nutrientes y antioxidantes de extractos de aceite de orujo y pepita de uva de los principales cultivares de uva de Turquía, Kalecik karas1, Narince, Hasandede y Emir. El material procedente del orujo y las semillas, seco y pulverizado, se extrajo con hexano. Los resultados mostraron que la concentración de aceite de las semillas osciló entre 12,35 y 16,00 % mientras que en el aceite de orujo la concentración varió entre 5,47 y 8,66%. Los aceites de orujo y pepita de uva eran ricos en ácido oleico y linoleico y su grado de instauraci

  18. Salvia macrosiphon seeds and seed oil: pharmacognostic, anti-inflammatory and analgesic properties

    Directory of Open Access Journals (Sweden)

    A. Hamedi

    2016-10-01

    Full Text Available Background and objectives:Wild Sage(Salvia macrosiphon Boiss. known as “Marvak” in Persian is one of the polymorphic and abundant plants of Lamiaceae. The plants whole seeds usually soaked or boiled in hot water are widely used for inflammatory ailments in folk medicine. Documents have shown that there is scant information on the chemical constituents of this plant seeds. The current study was carried out to assess the phytochemical constituents of Salvia macrosiphon seeds as well as anti-inflammatory activities. Methods: The seed oil extracted via a Soxhlet extractor was subjected to pharmacognostic assays using High Performance Thin Layer Chromatography (HPTLC, Gas chromatography/mass spectrometry (GC/MS analysis of fatty acids and sterols as well as evaluation of the possible anti-inflammatory activities in rats. Results: Total ash, acid insoluble and water soluble ash values were determined as 51.67±7.53, 10.00±0.02 and 30.01±5.01 mg/g, respectively. HPTLC assessment revealed the presence of different steroids, triterpenes and fatty acids. Amount of sterols in oil was found 2.44, 24.92 and 4.60 mg/g for esterified β-sitosterol, free β-sitosterol and free stigmasterol, respectively. The α-linolenic acid (77.69±6.10% was the principal fatty acid. Regarding the anti-inflammatory activity, the seed oil showed low activity in the early phase of formalin test; however, could not significantly inhibit the neutrophil-induced damage by reducing MPO activity in the paws of the rat. Conclusion: The seed oil did not exhibit satisfactory effects on acute inflammation in this study but considering the rich phytosterols content, the seed and its oil can be introduced as useful dietary supplements.

  19. Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil

    Directory of Open Access Journals (Sweden)

    Patrice Bazongo

    2014-02-01

    Full Text Available The proximate composition of seeds and main physicochemical properties and thermal stability of oil extracted from Lannea microcarpa seeds were evaluated. The percentage composition of the seeds was: ash (3.11%, crude oil (64.90%, protein (21.14%, total carbohydrate (10.85% and moisture (3.24%. Physicochemical properties of the oil were: refractive index, 1.473; melting point, 22.60°C; saponification value, 194.23 mg of KOH/g of oil; iodine value, 61.33 g of I2/100 g of oil; acid value, 1.21 mg of KOH/g of oil; peroxide value, 1.48 meq of O2/kg of oil and oxidative stability index, 43.20 h. Oleic (43.45%, palmitic (34.45%, linoleic (11.20% and stearic (8.35% acids were the most dominant fatty acids. Triacylglycerols with equivalent carbon number (ECN 48 and ECN 46 were dominant (46.96% and 37.31%, respectively. The major triacylglycerol constituents were palmitoyl diolein (POO (21.23%, followed by dipalmitoyl olein (POP (16.47%, palmitoyl linoleyl olein (PLO (12.03%, dipalmitoyl linolein (PLP (10.85% and dioleoyl linolein (LOO (9.30%. The total polyphenol and tocopherol contents were 1.39 mg GAE g−1 DW and 578.56 ppm, respectively. γ-Tocopherol was the major tocopherol (437.23 ppm. These analytical results indicated that the L. microcarpa seed oil could be used as a frying oil and in the cosmetic industry.

  20. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    Directory of Open Access Journals (Sweden)

    Bertrand Matthäus

    2015-01-01

    Full Text Available Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa, were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil to 96 mg/100 g (apple seed oil. The predominant isomers were established as α- and γ-tocopherol.

  1. Effect of irradiation and extractive solvents on the Thevetia seed oil ...

    African Journals Online (AJOL)

    Oil of irradiated thevetia seeds was extracted with different solvents. The effect of irradiation dosages on the extracted oils was studied by comparing the TLC chromatography of irradiated seed oil with that of non-radiated seeds. Saponification values were also compared.

  2. Thermal stability of Vernonia galamensis seed oil

    Directory of Open Access Journals (Sweden)

    Benny M. Wamalwa

    2000-12-01

    Full Text Available The physicochemical changes of refined vernonia oil-RVO (which naturally contains epoxidized triglycerides upon heating was evaluated and is reported in this manuscript. A boiling point range of 183 °C to 190 °C (at 760 mm Hg for the vernonia oil was obtained using the Siwolobboff's method. The oil changed its physical appearance and consistency in the course of the heating. A homogenous free-flowing beige-sand shade refined vernonia oil at room temperature (25 °C was transformed irreversibly to an intense-brown shade, becoming increasingly more viscous with increase in temperature, and ceasing to flow momentarily at 188 °C. On cooling to room temperature, the oil solidified into a brown rubber-like elastic material. The oil also exhibited a reduction in its oxirane content from 1.39 plus or minus 0.004 equivalent HBr kg-l at 25 °C to 0.542 plus or minus 0.002 equivalent HBr kg-l at 70 °C. This signifies a 61% drop in oxirane content for the 45 °C temperature rise. These findings point towards a thermally driven polymerization and/or decomposition of the refined vernonia oil (RVO.

  3. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    Science.gov (United States)

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  4. Copyrolysis of lignites and sunflower seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Sait Tascy; Tuncer Erciyes; Hasancan Okutan; Ekrem Ekinci [Osmangazi University (Turkey). Department. of Chemical Engineering

    2007-07-01

    Limitation to oil yield in static atmospheres is usually experienced during pyrolysis of hydrogen deficient hydrocarbons. One way of preventing this shortage may be the use of copyrolysis operations which may, either increase the oil yield, and/or modify composition of liquid products. In this study copyrolysis of Goynuk lignite and sunflower oil has been conducted in a modified Heinze retort using 100 g sample sizes. Lignite and sunflower oil were pyrolysed separately using 5{sup o}C heating rate up to 600{sup o}C. At this final temperature the system held for 30 minutes. Using similar experimental conditions (28:72%), (50:50%) and (70:30%) sunflower oil and lignite mixtures were also copyrolysed. After the cooling operation, the tars which collected were fractionated into aliphatic, aromatic and polar fractions in a silica gel column chromatography using n-hexane, toluene and methanol. Aliphatic fractions were subjected to GC/MS analysis. The total yield and liquid yield showed a synergy for (28-72%) oil-lignite mixture whereas negative synergy was obtained for the (70-30%) oil-lignite mixture. Tars obtained from the mixtures were found to be depressed in aliphatic and aromatic fraction and promoted in polar fractions. This behaviour is explained in terms of hydrogen deficiency resulting in shortage of hydrogenation reactions. On the other hand, the abundant unsaturated oxygen containing moieties in the sunflower oil increased the polar fractions. The overwhelmingly paraffinic (69.5 %) and moderate (21.1 %) olefinic structure of the pure lignite tar was found to decrease in parrafins and increase in olephins with increasing amount of sunflower oil in the mixture. 8 refs., 5 figs., 1 tab.

  5. The physico-chemical properties of some citrus seeds and seed oils.

    Science.gov (United States)

    Juhaimi, Fahad A L; Matthäus, Bertrand; Özcan, Mehmet Musa; Ghafoor, Kashif

    2016-03-01

    The chemical properties, mineral contents, fatty acid and tocopherol contents of seed and seed oils of some citrus genus provided from several locations in Turkey and Saudi Arabia were determined. While Ca contents of seeds were between 5018 mg/kg (Kütdiken lemon) and 7619 mg/kg (kinnow mandarin), K contents of seeds varied between 7007 mg/kg (Orlando orange) and 10334 mg/kg (kinnow mandarin). Glucose and fructose contents of citrus seed samples varied between 3.75 g/kg and 5.75 g/kg, and 4.09 g/kg and 6.03 g/kg. Palmitic, oleic and linoleic acids were established as dominant fatty acids. Palmitic, oleic and linoleic acid contents of citrus seed oils varied between 19.6% (Kütdiken lemon) and 26.2% (pineapple orange), 21.3% (kinnow mandarin) and 31.4% (Kütdiken lemon) and 32.3% (Kütdiken lemon) and 43.7% (kinnow mandarin), respectively. The total amount of tocopherols of Turkish citrus oil varied between 0.5 mg/100 g (Fremont mandarin) and 18.8 mg/100 g (bitter orange).

  6. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae.

    Science.gov (United States)

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil.

  7. Chemical Composition, Physicochemical Characteristics, and Nutritional Value of Lannea kerstingii Seeds and Seed Oil.

    Science.gov (United States)

    Ouilly, Judicaël Thomas; Bazongo, Patrice; Bougma, Adjima; Kaboré, Nèbpawindé; Lykke, Anne Mette; Ouédraogo, Amadé; Bassolé, Imaël Henri Nestor

    2017-01-01

    The chemical composition, main physicochemical properties, and nutritional value of seed flour and seed oil of Lannea kerstingii were studied. The results indicated that seeds contained 3.61% moisture, 57.85% fat, 26.39% protein, 10.07% carbohydrates, and 2.08% ash. Potassium was the predominant mineral, followed by magnesium and calcium. The essential amino acids were at higher levels than the estimated amino acid requirements of FAO/WHO/UNU except for lysine. Fatty acid composition showed that oleic acid was the major fatty acid, followed by palmitic, linoleic, and stearic acids. Physicochemical properties of the seed oil were melting point, 19.67°C; refractive index (25°C), 1.47; iodine value, 60.72/100 g of oil; peroxide value, 0.99 meq. O2/kg of oil; p-anisidine value, 0.08; total oxidation (TOTOX) value, 2.06; oxidative stability index (120°C), 52.53 h; free fatty acids, 0.39%; acid value, 0.64 mg of KOH/g of oil; saponification value, 189.73. Total amount of tocopherols, carotenoids, and sterols was 578.60, 4.60, and 929.50 mg/kg of oil, respectively. γ-Tocopherol (82%), lutein (80%), and β-sitosterol (93%) were the most abundant forms of tocopherols, carotenoids, and sterols, respectively. Seeds of L. kerstingii constitute an alternative source of stable vegetable oil and protein for nutritional and industrial applications.

  8. Chemical Composition, Physicochemical Characteristics, and Nutritional Value of Lannea kerstingii Seeds and Seed Oil

    Science.gov (United States)

    Ouilly, Judicaël Thomas; Bazongo, Patrice; Bougma, Adjima; Kaboré, Nèbpawindé; Lykke, Anne Mette; Ouédraogo, Amadé

    2017-01-01

    The chemical composition, main physicochemical properties, and nutritional value of seed flour and seed oil of Lannea kerstingii were studied. The results indicated that seeds contained 3.61% moisture, 57.85% fat, 26.39% protein, 10.07% carbohydrates, and 2.08% ash. Potassium was the predominant mineral, followed by magnesium and calcium. The essential amino acids were at higher levels than the estimated amino acid requirements of FAO/WHO/UNU except for lysine. Fatty acid composition showed that oleic acid was the major fatty acid, followed by palmitic, linoleic, and stearic acids. Physicochemical properties of the seed oil were melting point, 19.67°C; refractive index (25°C), 1.47; iodine value, 60.72/100 g of oil; peroxide value, 0.99 meq. O2/kg of oil; p-anisidine value, 0.08; total oxidation (TOTOX) value, 2.06; oxidative stability index (120°C), 52.53 h; free fatty acids, 0.39%; acid value, 0.64 mg of KOH/g of oil; saponification value, 189.73. Total amount of tocopherols, carotenoids, and sterols was 578.60, 4.60, and 929.50 mg/kg of oil, respectively. γ-Tocopherol (82%), lutein (80%), and β-sitosterol (93%) were the most abundant forms of tocopherols, carotenoids, and sterols, respectively. Seeds of L. kerstingii constitute an alternative source of stable vegetable oil and protein for nutritional and industrial applications. PMID:28255501

  9. Chemical Composition, Physicochemical Characteristics, and Nutritional Value of Lannea kerstingii Seeds and Seed Oil

    Directory of Open Access Journals (Sweden)

    Judicaël Thomas Ouilly

    2017-01-01

    Full Text Available The chemical composition, main physicochemical properties, and nutritional value of seed flour and seed oil of Lannea kerstingii were studied. The results indicated that seeds contained 3.61% moisture, 57.85% fat, 26.39% protein, 10.07% carbohydrates, and 2.08% ash. Potassium was the predominant mineral, followed by magnesium and calcium. The essential amino acids were at higher levels than the estimated amino acid requirements of FAO/WHO/UNU except for lysine. Fatty acid composition showed that oleic acid was the major fatty acid, followed by palmitic, linoleic, and stearic acids. Physicochemical properties of the seed oil were melting point, 19.67°C; refractive index (25°C, 1.47; iodine value, 60.72/100 g of oil; peroxide value, 0.99 meq. O2/kg of oil; p-anisidine value, 0.08; total oxidation (TOTOX value, 2.06; oxidative stability index (120°C, 52.53 h; free fatty acids, 0.39%; acid value, 0.64 mg of KOH/g of oil; saponification value, 189.73. Total amount of tocopherols, carotenoids, and sterols was 578.60, 4.60, and 929.50 mg/kg of oil, respectively. γ-Tocopherol (82%, lutein (80%, and β-sitosterol (93% were the most abundant forms of tocopherols, carotenoids, and sterols, respectively. Seeds of L. kerstingii constitute an alternative source of stable vegetable oil and protein for nutritional and industrial applications.

  10. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    Science.gov (United States)

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  11. essential oil extract from moringa oleifera roots as cowpea seed ...

    African Journals Online (AJOL)

    USER

    ESSENTIAL OIL EXTRACT FROM MORINGA OLEIFERA ROOTS AS COWPEA. SEED PROTECTANT AGAINST COWPEA BEETLE. O.Y. ALABI and M.M. ADEWOLE. Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria. Corresponding author: alabi.jummy@gmail.com, jmkalabi@yahoo.

  12. Extract of Zanthoxylum bungeanum maxim seed oil reduces ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-hyperlipidaemic effect of extract of Zanthoxylum bungeanum Maxim. seed oil (EZSO) on high-fat diet (HFD)-induced hyperlipidemic hamsters. Methods: Following feeding with HFD for 30 days, hyperlipidemic hamsters were intragastrically treated with EZSO for 60 days. Serum levels of ...

  13. Effects of Telfairia Occidentalis Seed Oil on Female Reproductive ...

    African Journals Online (AJOL)

    S.T Shittu

    and Yinusa Raji2. 1Department of Physiology, College of Health Science, Igbinedion University, Okada, Nigeria. 2Department of. Physiology, College of Medicine University of Ibadan, Ibadan, Nigeria. Summary: The effects of T. occidentalis seed oil on some female reproductive indices were investigated in Wistar rats. The.

  14. Extraction and characterization of Raphanus Sativus seed oil ...

    African Journals Online (AJOL)

    that consumption of radish (Raphanus sativus L.) has positive influence on reduction of risks of a number of cancers and cardiovascular diseases, due to its content of some beneficial phytochemicals [1-3]. In traditional Chinese medicine, Raphanus sativus seed oil, which is rich in sulforaphene, is used to improve intestinal.

  15. Nigella seed oil as alternative to avilamycin antibiotic in broiler ...

    African Journals Online (AJOL)

    This study was conducted to study the effect of nigella seed oil as an alternative to the antibiotic, avilamycin, on growth, digestibility, muscle fatty acid profile and some physiological parameters in broiler chickens. Fifty four chicks at 15 d of age (average weight, 320 ± 3 g) were divided into a control group and two treatment ...

  16. Lipase Activity in Fermented Oil Seeds of Africa Locust Bean ...

    African Journals Online (AJOL)

    acer

    producing important nutrients or eliminating anti-nutrient. This is necessary therefore to improve the prevailing cases of malnutrition in. Nigeria (Steinkraus, 1995). Significant contributions has been made in microbiology and biochemistry of fermentation of legumes and oil seeds leading to the production of fermented ...

  17. The effects of oral administration of Croton penduliflorus seed oil ...

    African Journals Online (AJOL)

    This study investigated the effects of oral administration of Croton penduliflorus seed oil (CSPO) and Depo provera on liver and kidney function of pregnant rabbits. Graded doses of CSPO were suspended in 5% Tween 20 solution. Twenty-five pregnant Dutch-white rabbits at mid–gestation were allocated into 5 groups.

  18. Determination of Physio-Chemical Properties of Oleander Seed Oil ...

    African Journals Online (AJOL)

    The need for alternative feedstock for biodiesel production due to the competition in vegetable oil production for human consumption and biodiesel production necessitated a study in the physiochemical properties of Nerium Oleander seed, a non-edible ornamental plant. The objectives were to determine the physical, ...

  19. Pomegranate seed oil rich in conjugated linolenic acids reduces in ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg ...

  20. Chemical investigation of Nigella sativa L. seed oil produced in Morocco

    Directory of Open Access Journals (Sweden)

    Said Gharby

    2015-06-01

    Full Text Available Seeds of Nigella sativa L. (black cumin or black seeds are widely used in traditional Islamic medicine and for culinary purposes worldwide. Nigella seed oil is becoming popular in and out of the Islamic world. Composition of Nigella seed oil is known to be location-dependent. We investigated the composition of Nigella seed oil prepared by solvent- or cold press-extraction of Nigella seeds grown in Morocco. Oil extraction yield was 37% and 27% when solvent or cold press extraction methods were used, respectively. In terms of oil major components, composition of Nigella seed oil from Morocco is similar to that from other Mediterranean countries known for their Nigella seed-oil quality.

  1. Evaluating a seed enhancement technology (seed pillows) for sagebrush restoration efforts across a large elevation gradient

    Science.gov (United States)

    Big sagebrush (Artemisia tridentata Nutt.) restoration is needed across vast areas, especially after large wildfires, to restore important ecosystem services. Sagebrush restoration success is inconsistent with a high rate of seeding failures, particularly at lower elevations. Seed enhancement tech...

  2. Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera Seed Oil

    Directory of Open Access Journals (Sweden)

    Issara Sramala

    2016-04-01

    Full Text Available In this study, tea (Camellia oleifera seed oil was formulated into self-emulsifying oil formulations (SEOF to enhance the aqueous dispersibility and intestinal retention to achieve higher bioavailability. Self-emulsifying tea seed oils were developed by using different concentrations of lecithin in combination with surfactant blends (Span®80 and Tween®80. The lecithin/surfactant systems were able to provide clear and stable liquid formulations. The SEOF were investigated for physicochemical properties including appearance, emulsion droplets size, PDI and zeta potential. The chemical compositions of tea seed oil and SEOF were compared using GC-MS techniques. In addition, the oil adsorption measurement on artificial membranes was performed using a Franz cell apparatus and colorimetric analysis. The microscopic structure of membranes was observed with scanning electron microscopy (SEM. After aqueous dilution with fed-state simulated gastric fluid (FeSSGF, the droplet size of all SEOF was close to 200 nm with low PDI values and the zeta potential was negative. GC-MS chromatograms revealed that the chemical compositions of SEOF were not significantly different from that of the original tea seed oil. The morphological study showed that only the SEOF could form film layers. The oil droplets were extracted both from membrane treated with tea seed oil and the SEOF in order to evaluate the chemical compositions by GC-MS.

  3. Fatty Acid And Essential Oil Compositions Of The Seed Oil Of Five ...

    African Journals Online (AJOL)

    The fatty acid and essential oil compositions of the seed oil of Annona cherimola, A. muricata, A. reticulata, A. senegalensis and A. squamosa were investigated by GC and GC/MS spectra. About eleven fatty acids were identified of which oleic, gondoic, palmitic and stearic acids predominated in each sample, and others ...

  4. Okra (Hibiscus esculentus) seed oil for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, Farooq; Nadeem, Muhammad [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Rashid, Umer [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Industrial Chemistry, Government College University, Faisalabad 38000 (Pakistan); Ashraf, Muhammad [Department of Botany, University of Agriculture, Faisalabad 38040 (Pakistan)

    2010-03-15

    Biodiesel was derived from okra (Hibiscus esculentus) seed oil by methanol-induced transesterification using an alkali catalyst. Transesterification of the tested okra seed oil under optimum conditions: 7:1 methanol to oil molar ratio, 1.00% (w/w) NaOCH{sub 3} catalyst, temperature 65 C and 600 rpm agitation intensity exhibited 96.8% of okra oil methyl esters (OOMEs) yield. The OOMEs/biodiesel produced was analyzed by GC/MS, which showed that it mainly consisted of four fatty acids: linoleic (30.31%), palmitic (30.23%), oleic (29.09%) and stearic (4.93%). A small amount of 2-octyl cyclopropaneoctanoic acid with contribution 1.92% was also established. Fuel properties of OOMEs such as density, kinematic viscosity, cetane number, oxidative stability, lubricity, flash point, cold flow properties, sulfur contents and acid value were comparable with those of ASTM D 6751 and EN 14214, where applicable. It was concluded that okra seed oil is an acceptable feedstock for biodiesel production. (author)

  5. Enzyme-supported oil extraction from Jatropha curcas seeds.

    Science.gov (United States)

    Winkler, E; Foidl, N; Gübitz, G M; Staubmann, R; Steiner, W

    1997-01-01

    Jatropha curcas is a tropical plant widely distributed in arid areas. The seeds contain about 55% of oil, which is mainly used for the production of soap as a fuel and after transesterification as biodiesel. Various methods for recovering of oil from the seeds, including extraction with organic solvents and water, have been investigated. Compared to hexane extraction (98%) the oil extraction using water only yielded 38% of the total oil content of the seeds. Using several cell wall degrading enzymes during aqueous extraction a maximum yield of 86% was obtained. The influence of cellulolytic, hemicellulolytic enzymes, as well as proteases was studied. The experiments were carried out at different pH-values and temperatures to find out the optimum for oil recovering using enzymes. , Surprisingly, the best results (86%) were obtained using an alkaline protease. Combinations of proteases with hemicellulases and/or cellulases did not further increase the extraction yield. The enzyme-supported aqueous extraction offers a nontoxic alternative to common extraction methods using organic solvents with reasonable yields.

  6. Storage stability of sunflower oil with added natural antioxidant concentrate from sesame seed oil.

    Science.gov (United States)

    Nasirullah; Latha, R Baby

    2009-01-01

    Demand for use of natural additives such as nutraceuticals, antioxidants, coloring and flavoring matter is continuously increasing world over. It is due to nutritional awareness among the masses and belief that most of the natural products are safe for human consumption. Interest has been shown recently on the use of natural antioxidants from oil seeds. Hence, oils obtained from sesame (Sesamum indicum) had been utilized for this purpose. Oils were thermally treated (T) to enhance the sesamol content from 4,900 to 9,500 ppm. A portion of resultant oil had been extracted with ethanol in a controlled conditions to yield a concentrate (ESSO-T) with sesamol content of 28,500 ppm. Whereas another portion after silica gel column separation yielded a concentrate (SSO-TFII) with sesamol content of 27,100 ppm. Refined sunflower oil without antioxidant was mixed with ESSO-T and SSO-TFII separately at the level of 2,000, 1,000, 500 and 200 ppm and its storage stability assessed was at ambient (22-28 degrees C) and elevated (37 degrees C) temperatures. Peroxide value (PV) and Free Fatty Acid content (FFA) of samples were estimated at intervals of 2 weeks for a total storage period of 12 weeks. Results indicated that ESSO-T at the level of 500 ppm had maximum protective effect on refined sunflower oil, where PV and FFA were found ranging between 2.1 to 5.9 and 0.10 to 0.15%; and 4.1 to 9.8 and 0.11 to 0.21% for samples stored at ambient and elevated conditions respectively. The storage stability of this sample was very close to the storage stability of sunflower oil containing TBHQ at 200 ppm. Comparatively in sunflower oil without antioxidant PV and FFA had gone up from 2.0 to 45.4 and 0.11 to 1.3% at ambient and 2.0 to 56.4 and 0.11 to 2.8% at elevated temperatures.

  7. Chemical composition of cold pressed Brazilian grape seed oil

    Directory of Open Access Journals (Sweden)

    Fernanda Branco SHINAGAWA

    2017-10-01

    Full Text Available Abstract Grape seed oil (GSO is an important by-product of the wine-making industry which has received attention as an alternative source of vegetable oils; its chemical compounds can be influenced by agricultural practices and industrial processing. Knowledge of the composition of Brazilian GSO is scarce; thus, this study aimed to analyze the chemical characteristics, as well as the antioxidant activity of these oils. GSO samples were obtained from Brazilian markets and showed significantly high amounts of phenolic, γ-tocotrienol and phytosterols as well as, the presence of several volatile compounds. Based on these results, is possible to show that oils exhibited good antioxidant activity. Therefore, it can be inferred that Brazilian GSO had a considerable content of phytochemical compounds with biological activity, which allows its association with other vegetable oils.

  8. Deodorizing Substance in Black Cumin (Nigella sativa L.) Seed Oil.

    Science.gov (United States)

    Nakasugi, Toru; Murakawa, Takushi; Shibuya, Koji; Morimoto, Masanori

    2017-08-01

    A deodorizing substance in black cumin (Nigella sativa L.), a spice for curry and vegetable foods in Southwest Asia, was examined. The essential oil prepared from the seeds of this plant exhibited strong deodorizing activity against methyl mercaptan, which is a main factor in oral malodor. After purification with silica gel column chromatography, the active substance in black cumin seed oil was identified as thymoquinone. This monoterpenic quinone functions as the main deodorizing substance in this oil against methyl mercaptan. Metabolite analysis suggested that the deodorizing activity may be generated by the addition of a reactive quinone molecule to methyl mercaptan. In the present study, the menthane-type quinone and phenol derivatives exhibited deodorizing activities via this mechanism.

  9. Recent developments, new trends in seed crushing and oil refining

    Directory of Open Access Journals (Sweden)

    Kővári Katalin

    2004-11-01

    Full Text Available Oil processing was considered as slowly changing “traditional” industry but the recent decades’ developments and trends resulted in a lot of changes initiated by market, industry, environment protection and consumer needs. Driving force of the developments were centralization of the industry, more and more concerns on environmental impact, increased importance of food-feed safety, and last but not least research and development activity together with improved analytical capabilities. The presentation gives an overview on the results achieved on the field of the following areas: the criteria of applicability of physical refining of seed oils, solutions for proper degumming, the effect of seed pretreatment and crushing conditions on the crude oil quality, the importance and role of bleaching and active carbon treatment, the proper practice of deacidification/deodorization.

  10. Renewable energy sources from Michelia champaca and Garcinia indica seed oils: A rich source of oil

    Energy Technology Data Exchange (ETDEWEB)

    Hosamani, K.M.; Hiremath, V.B.; Keri, R.S. [P.G. Department of Studies in Chemistry, Karnatak University, Pawate Nagar, Dharwad 580 003 (India)

    2009-02-15

    Michelia champaca and Garcinia indica seeds yielded 45.0% and 45.5% of oil. The fatty acid profiles of both the seed oils were examined. The saponification value (SV), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of both the seed oils were empirically determined. The saponification value (SV) and iodine value (IV) are in good agreement with the experimentally observed values. The fatty acid compositions, iodine value and cetane number were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Thus, the fatty acid methyl esters of seed oils of M. champaca and G. indica were found to be the most suitable biodiesel and they meet the major specification of biodiesel standards. The selected plants M. champaca and G. indica have great potential for biodiesel. M. champaca and G. indica seed oils were found to contain keto fatty acids along with the other normal fatty acids, respectively. These fatty acids have been detected and characterized by UV, FTIR, {sup 1}H NMR, {sup 13}C NMR, MS, GC techniques and chemical transformations. (author)

  11. Synthesis and properties of cross-linked polymers from epoxidized rubber seed oil and triethylenetetramine

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; Iqbal, Muhammad; Picchioni, Francesco; Manurung, Robert; Heeres, Hero J.

    2015-01-01

    A series of epoxidized oils were prepared from rubber seed, soybean, jatropha, palm, and coconut oils. The epoxy content varied from 0.03 to 7.4 wt %, in accordance with the degree of unsaturation of the oils (lowest for coconut, highest for rubber seed oil). Bulk polymerization/curing of the

  12. Osage orange (Maclura pomifera L) seed oil poly-(-a-hydroxy dibutylamine) triglycerides: Synthesis and characterization

    Science.gov (United States)

    In exploring alternative vegetable oils for non-food industrial applications, especially in temperate climates, tree seed oils that are not commonly seen as competitors to soybean, peanut, and corn oils can become valuable sources of new oils. Many trees produce edible fruits and seeds while others ...

  13. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Nath, Pravendra; Sane, Vidhu A

    2013-12-01

    The increasing consumption of fossil fuels and petroleum products is leading to their rapid depletion and is a matter of concern around the globe. Substitutes of fossil fuels are required to sustain the pace of economic development. In this context, oil from the non food crops (biofuel) has shown potential to substitute fossil fuels. Jatropha curcas is an excellent shrub spread and naturalized across the globe. Its oil contains a high percentage of unsaturated fatty acids (about 78-84% of total fatty acid content) making the oil suitable for biodiesel production. Despite its high oil content, it has been poorly studied in terms of important enzymes/genes responsible for oil biosynthesis. Here, we describe the isolation of the full length cDNA clone of JcDGAT1, a key enzyme involved in oil biosynthesis, from J. curcas seeds and manipulation of oil content and composition in transgenic Arabidopsis plants by its expression. Transcript analysis of JcDGAT1 reveals a gradual increase from early seed development to its maturation. Homozygous transgenic Arabidopsis lines expressing JcDGAT1 both under CaMV35S promoter and a seed specific promoter show an enhanced level of total oil content (up by 30-41%) in seeds but do not show any phenotypic differences. In addition, our studies also show alterations in the oil composition through JcDGAT1 expression. While the levels of saturated FAs such as palmitate and stearate in the oil do not change, there is significant reproducible decrease in the levels of oleic acid and a concomitant increase in levels of linolenic acid both under the CaMV35S promoter as well as the seed specific promoter. Our studies thus confirm that DGAT is involved in flux control in oil biosynthesis and show that JcDGAT1 could be used specifically to manipulate and improve oil content and composition in plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Chemical composition of carrot seeds (Daucus carota L. cultivated in Turkey: characterization of the seed oil and essential oil

    Directory of Open Access Journals (Sweden)

    Chalchat, Jean Claude

    2007-12-01

    Full Text Available Chemical composition and physical properties were established in carrot (Daucus carota L. seeds from Konya, Turkey to investigate their potential uses. Mature seeds were evaluated for moisture, crude protein, crude oil, crude fiber, ash, HCl-insoluble ash, total carbohydrate, essential oil yield and weight of 1000 seeds. Also, relative density, refractive index, free fatty acids, peroxide value, iodine value, saponification number and unsaponifiable matter were determined in the seed oil. The main fatty acids identified by gas chromatography were petroselinic (59.35%, linoleic (11,82%, palmitic (10.01% and stearic (2.41% acids. Mineral contents (Al, Ca, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Se, Sr, V and Zn of seeds were also determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The seeds were found to be rich in protein, fiber and ash. The essential oil and edible oil compositions of carrot seeds from Konya were investigated by GC and GC-MS. The oil yields of essential and edible oil from carrot seeds were established as 0.83% and 7.84%, respectively. The major constituents of seed essential oil were carotol (66.78%, daucene (8.74%, (Z,Z--farnesene (5.86%, germacrene D (2.34%, trans--bergamotene (2.41% and -selinene (2.20%. Whereas, carotol (30.55%, daucol (12.60% and copaenol (0.62% were the important components of edible carrot seed oil. However, the dominant component of both oils was carotol.Se determinó la composición química y las propiedades físicas de las semillas de zanahoria (Daucus carota L. obtenidas en Konya, Turquía, con objeto de investigar usos potenciales de las mismas. Se determinó la humedad, el peso, el contenido proteico, en aceite, en fibra, en ceniza, en ceniza insoluble en ácido clorhídrico, los carbohidratos totales, y el rendimiento de la obtención de aceite esencial a partir de 1000 semillas maduras. Asimismo se determinó la densidad relativa, el índice de refracci

  15. Genetic variation and heterotic effects for seed oil, seed protein and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-08-14

    Aug 14, 2013 ... Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu, India. Accepted 8 August ... List of parental genotypes used for genetic studies in upland cotton. CICR, Central ...... Heterosis and inbreeding depression for seed oil and protein contents in upland.

  16. Seed photosynthesis enhances Posidonia oceanica seedling growth

    National Research Council Canada - National Science Library

    Celdrán, David; Marín, Arnaldo

    2013-01-01

    Posidonia oceanica seeds demonstrate photosynthetic activity during germination as well as throughout seedling development, a fact which suggests that seed photosynthesis can influence seedling growth...

  17. GC Analyses of Salvia Seeds as Valuable Essential Oil Source

    Directory of Open Access Journals (Sweden)

    Mouna Ben Taârit

    2014-01-01

    Full Text Available The essential oils of seeds of Salvia verbenaca, Salvia officinalis, and Salvia sclarea were obtained by hydrodistillation and analyzed by gas chromatography (GC and GC-mass spectrometry. The oil yields (w/w were 0.050, 0.047, and 0.045% in S. verbenaca, S. sclarea, and S. officinalis, respectively. Seventy-five compounds were identified. The essential oil composition of S. verbenaca seeds showed that over 57% of the detected compounds were oxygenated monoterpenes followed by sesquiterpenes (24.04% and labdane type diterpenes (5.61%. The main essential oil constituents were camphor (38.94%, caryophyllene oxide (7.28%, and 13-epi-manool (5.61%, while those of essential oil of S. officinalis were α-thujone (14.77%, camphor (13.08%, and 1,8-cineole (6.66%. In samples of S. sclarea, essential oil consists mainly of linalool (24.25%, α-thujene (7.48%, linalyl acetate (6.90%, germacrene-D (5.88%, bicyclogermacrene (4.29%, and α-copaene (4.08%. This variability leads to a large range of naturally occurring volatile compounds with valuable industrial and pharmaceutical outlets.

  18. Study for the degumming pretreatment of rubber seed oil

    Science.gov (United States)

    Li, X. Y.; Chen, Y. B.; Zhang, X.; Souliyathai, D.; Yang, S. P.; Wang, Q.

    2017-11-01

    With the rapid development of the aviation industry, appearing of the aviation carbon tax and the increasingly serious environmental problems have forced the world to research the development of renewable bio-aviation fuel. Renewable biological aviation fuel contains phosphorus that could reduce the synthesis of noble metal catalysts such as Pd, Pt activity. In order to get low content of phosphorus in degummed oil of non-edible vegetable oil, in this paper, with rubber seed oil as raw material, making the experiment of single factor at the influence of temperature, stirring speed, adding amount of monoethanolamine (MEA) and water amount. The experimental results show that the added amount of MEA is 2.5% in the weight of oil, and temperature is 60°C, while the amount of added water is 2% in the weight of oil, reaction time is 40 min, and stirring speed is 200 r/min. Under these conditions, the phosphorus content of rubber seed oil can be reduced to below 3 mg/kg, degumming rate is 91.37%, and the degumming effects are obvious, which also provides some foundation for follow-up studies.

  19. Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil.

    Science.gov (United States)

    Delfan-Hosseini, Sasan; Nayebzadeh, Kooshan; Mirmoghtadaie, Leila; Kavosi, Maryam; Hosseini, Seyede Marzieh

    2017-05-01

    Purslane seed oil could be considered as potential nutritious oil due to its desirable fatty acid composition and other biological active compounds. In this study the effect of three extraction procedure including solvent extraction, cold pressing and microwave pretreatment (MW) followed by cold pressing on oil yield, physicochemical properties, oxidative stability and rheological behaviors of oil was investigated. Solvent extracted oil had the highest extraction yield (72.31%). Pretreatment by microwave before cold press extraction resulted in an increase in extraction yield, total phenolic compound (TPC) and antioxidant activity. Cold press extracted oil had the lowest oxidative stability (4.64h). This property was greatly enhanced by microwave irradiation, so that the longest oxidative stability was found in MW-cold press extracted oil with 9.67h. Furthermore, all extracted oils demonstrated Newtonian flow behaviors. MW-cold press extracted oil had the greatest apparent viscosity and highest sensitivity to temperature changes (Ea=29.18kJ/mol-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  1. Penetration enhancing effects of selected natural oils utilized in topical dosage forms.

    Science.gov (United States)

    Viljoen, Joe M; Cowley, Amé; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta

    2015-01-01

    Various natural products, including oils, have been utilized as penetration enhancers due to their "safety profiles". These oils contain fatty acids promoting skin permeability through lipid fluidization within the stratum corneum; and might therefore be able to effectively enhance transdermal drug delivery. We investigated possible penetration enhancing properties of selected oils, utilizing flurbiprofen as marker compound in emulgel formulations. The formulations were compared to a liquid paraffin emulgel and a hydrogel to establish any significant penetration enhancing effects. Gas chromatographic analysis of the natural oils was performed at ambient temperature to determine the fatty acid composition in each selected natural oils. Franz cell diffusion studies and tape stripping methods were employed to study delivery of the marker into, and through the skin. The following rank order for the emulgel flux-values was obtained: Hydrogel > olive oil > liquid paraffin > coconut oil > grape seed oil > Avocado oil ≥ Crocodile oil > Emu oil. Results suggested that oils containing predominantly mono-unsaturated oleic acid, on average increased the flux of the marker to a larger extent than oils containing an almost even mixture of both mono- and poly-unsaturated fatty acids. Oils comprising saturated fatty acids (SFAs) with alkyl chains between C12 and C14, increased the marker flux to a higher extent than oils containing C16-C18 SFAs. Effects observed for branched fatty acids, however, did not vary significantly from effects for unbranched fatty acids with the same carbon chain length. Natural oils possess penetration enhancing effects.

  2. Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora.

    Science.gov (United States)

    Bruni, R; Medici, A; Guerrini, A; Scalia, S; Poli, F; Muzzoli, M; Sacchetti, G

    2001-11-01

    Seed oil of wild Amaranthus caudatus from Ecuador was analyzed for determining the tocopherol, fatty acid, and sterol contents. The data obtained were compared with the analogous chemical profile of seed oil of Italian A. caudatus with the objective of evaluating the nutraceutical and alimentary potential of the Ecuadorian matrix. Supercritical fluid and ultrasound-enhanced extractions were performed on both matrices. Qualitative and quantitative determinations of tocopherols were performed by HPLC, whereas GC and GC-MS were used to determine the fatty acid composition and sterols, respectively. Supercritical fluid extraction at 400 atm was the most efficient extraction method in terms of both total yield extract and tocopherol yield. Seeds of Ecuadorian of A. caudatus contained higher levels of tocopherols than Italian samples, whereas the fatty acid composition and sterol content were similar. From the obtained results it can be suggested that seed oil of wild Ecuadorian A. caudatus can prove to be an effective nutraceutical and alimentary resource and a valid alternative to the European varieties.

  3. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey.

    Science.gov (United States)

    Duman, Erman; Ozcan, Mehmet Musa

    2014-01-01

    The mineral contents of seed and seed oils of Capparis species growing wild in Turkey were established by inductively coupled plasma-atomic emission spectrometry. Capparis spinosa var. spinosa (2010) and Capparis ovata var. canescens variety (2009) were determined to be rich in terms of mineral matter as 19,514.60 and 16,995.92 ppm as a total, respectively. C. spinosa var. spinosa collected from Muğla-Milas region (2009) had the highest amount of Ca with 1,010.67 ppm in C. spinosa species and in C. ovata species. C. ovata var. canescens collected from Ankara-Beypazarı (2010) region had the highest amount of Ca with 833.92 ppm Ca amount in C. spinosa var. spinosa, inermis, herbaceae seeds decreased in 2010. C. spinosa var. inermis collected from Antalya-Serik (2010) in C. spinosa species had rich amount of Ca with 123.78 ppm and C. ovata var. palaestina seed oils collected from Mardin-Savur region (2009) had rich amount of Ca with 253.71 ppm in C. ovata species. The oil of C. spinosa var. herbaceae variety collected from Mardin-Midyat region (2010) was determined to have the highest major mineral matter (Ca, K, Mg, Na, and P) with 1,424.37 ppm in C. spinosa species. It was also determined that as a result, caper seed and oils were found to be important sources of nutrients and essential elements.

  4. liquid soap production with blends of rubber seed oil (rso) and palm ...

    African Journals Online (AJOL)

    E.A. AIWIZE & J.I. ACHEBO low, grease, coconut oil, palm oil, palm kernel oil linseed oil, rubber seed oil, soybean oil, and corn oil. These fats and oils contain various properties of the fatty acid usually having 6-22 carbon atoms in the paraffin chain. These include caprylic acid (C8H16O3), lauric acid (C14H32O2), stearic.

  5. Extraction and nutritional properties of Solanum nigrum L seed oil ...

    African Journals Online (AJOL)

    The dry matter content of the seeds is 94.22%. Average lipids content varies between 34.5 and 37.5% dry matter, proteins content is 17% dry matter and crude ash content averages 7.18% dry matter and the principal mineral element is Mg (180 mg/100g). The acid value of the oil is about 2.5, saponification value varies ...

  6. Investigations into the chemistry and insecticidal activity of euonymus europaeus seed oil and methanol extract

    Science.gov (United States)

    Euonymus europaeus seeds and seed oil were investigated for their volatiles using GC-MS-FID, Headspace-SPME/GC-MS-FID, and derivative GC-MS-FID for their volatiles and HPLC-DAD-CAD/MS for their non-volatile compounds. The seeds contain about 30% of fatty oil, mainly glyceryl trioleate, small amounts...

  7. Haematological parameters, serum lipid profile, liver function and fatty acid profile of broiler chickens fed on diets supplemented with pomegranate seed oil and linseed oil.

    Science.gov (United States)

    Manterys, A; Franczyk-Zarow, M; Czyzynska-Cichon, I; Drahun, A; Kus, E; Szymczyk, B; Kostogrys, R B

    2016-12-01

    The objective of the present study was to determine effect of pomegranate seed oil (PSO) and linseed oil (LO) on haematological parameters, serum lipid profile and liver enzymes as well as fatty acids profile of adipose tissue in broilers. Broilers (n = 400) were fed on diets containing graded PSO levels (0.0%, 0.5%, 1.0%, 1.5%) with or without 2% LO. After 6 weeks of feeding, 6 male broilers from each group were slaughtered and abdominal fat, liver and blood samples were collected. Mixtures of pomegranate seed oil (0.5%, 1%) with linseed oil increased white blood cell level in broilers. Total cholesterol was elevated after LO supplementation whereas administration of PSO (1.5%) significantly decreased this parameter. PSO administration caused c9,t11 conjugated linoleic acid (CLA) concentration-dependent deposition in adipose tissue. By LO addition α-linolenic acid (ALA) content was enhanced, decreasing the n-6/n-3 ratio. PSO and ALA also affected oleic acid proportion in adipose tissue. Neither pomegranate seed oil nor linseed oil had any effect on liver parameters. Pomegranate seed oil had no negative effects on broiler health status and can be considered as a functional poultry meat component.

  8. Bio-electricity Generation using Jatropha Oil Seed Cake.

    Science.gov (United States)

    Raheman, Hifjur; Padhee, Debasish

    2016-01-01

    The review of patents reveals that Handling of Jatropha seed cake after extraction of oil is essential as it contains toxic materials which create environmental pollution. The goal of this work is complete utilisation of Jatropha seeds. For this purpose, Jatropha oil was used for producing biodiesel and the byproduct Jatropha seed cake was gasified to obtain producer gas. Both biodiesel and producer gas were used to generate electricity. To achieve this, a system comprising gasifier, briquetting machine, diesel engine and generator was developed. Biodiesel was produced successfully using the method patented for biodiesel production and briquettes of Jatropha seed cake were made using a vertical extruding machine. Producer gas was obtained by gasifying these briquettes in a downdraft gasifier. A diesel engine was then run in dual fuel mode with biodiesel and producer gas instead of only diesel. Electricity was generated by coupling it to a generator. The cost of producing kilowatthour of electricity with biodiesel and diesel in dual fuel mode with producer gas was found to be 0.84 $ and 0.75 $, respectively as compared to 0.69 $ and 0.5 $ for the same fuels in single fuel mode resulting in up to 48 % saving of pilot fuel. Compared to singlefuel mode, there was 25-32 % reduction in system and brake thermal efficiency along with significantly lower NOx, higher CO and CO2 emissions when the bio-electricity generating system was operated in dual fuel mode. Overall, the developed system could produce electricity successfully by completely uti- lising Jatropha seeds without leaving any seed cake to cause environmental pollution.

  9. Study of volatile oil component of petal and herbal and extraction of seed oil in Borage by Cold Press method

    Directory of Open Access Journals (Sweden)

    esfandiar Hassani Moghadam

    2010-03-01

    Full Text Available There is a few reported about the volatile oil component of petal, herbal and component of seed oil of borage. This research worked carried out for analysis and identification the volatile oil in herbals, petals, and seed oil compositions of Borago officinalis L. in Lorestan province. Material and methods: Extraction of essential oil from petals carried out using steam distillation by Clevenger apparatus. The new SPME-GC/MS method is used for extraction and identification of volatile oil compounds in the herbal of borage. The oil of the seeds was extracted using a Cold-press method. The identification of chemical composition of extracted oil was carried out by GC/MS apparatus. Results: In petals of Borage only Carvacerol component, and in the herbal of Borage three components Carvacrol, Bisabolone oxide and 2-Phenylethyl benzoate, extracted and identified respectively. In the seed oil of borage 16 different components were separated and identified. The following components had the highest amount in seed oil: Hexadecane, N, N-dimethylethanolamine, Beta-d-glycoside, 3, 6-glucurono-methyl, Benzaldehde, 4-methyl 3-Hydroxytetrahydrofuran, Hexadecanoic acid, Heptanoic acid, Gamma butyrolactone and Ethyl octadec-9-enoate are the major components respectively. These components contain 63.4% of all components in borage seed oil and the 7 residual components only 9.5% all of the components in borage seed oil. Also one unknown (27.1% component identified. Conclusion: Using result obtained from this research the volatile oil a few amounts of the borage chemical composition. The results show that the seed oil of this species can be used for medicinal preparation. Cold Press method was found to be rapid and simple for identification of seeds oil components.

  10. Citrus Seed Oils Efficacy against Larvae of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Hazrat Bilal

    2017-10-01

    Full Text Available Background: Dengue fever is a serious public health issue in Pakistan for many years. Globally plants have been reported to contain compounds with insecticidal properties. These properties have been demonstrated more recently on the larval stages of mosquitoes. Therefore, Citrus cultivar seeds were evaluated for larvicidal potential against the primary dengue vector Aedes aegypti.Methods: Extraction of oil was done by a steam distillation method and oils were evaluated according to WHO guidelines for larvicides 2005 for evaluation of insecticidal properties of citrus seed extracts against mosquito larvae.Result: Among the Citrus cultivar seed oil, rough lemon (Citrus jambhiri had the lowest LC50 value (200.79ppm, while musambi (C. sinensis var musambi had the highest LC50 value (457.30ppm after 24 h of exposure.Conclusion: Citrus cultivars have some larvicidal potential but C. jambhiri had the greatest potential against A. ae­gypti larvae. Further small-scale field trials using the extracts of C. jambhiri will be conducted to determine opera­tional feasibility.

  11. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extract

    NARCIS (Netherlands)

    Wolf, van der J.M.; Birnbaum, Y.E.; Zouwen, van der P.S.; Groot, S.P.C.

    2008-01-01

    Various essential oils, organic acids, Biosept, (grapefruit extract), Tillecur and extracts of stinging nettle and golden rod were tested for their antimicrobial properties in order to disinfect vegetable seed. In in vitro assays, thyme oil, oregano oil, cinnamon oil, clove oil and Biosept had the

  12. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats.

    Science.gov (United States)

    Marineli, Rafaela da Silva; Lenquiste, Sabrina Alves; Moraes, Érica Aguiar; Maróstica, Mário Roberto

    2015-10-01

    This study aimed to investigate the effects of dietary chia seed and oil on plasma and liver oxidative status in diet-induced obese rats. Thirty-six Wistar rats were divided in six groups (6 animals each): control group was fed the American Institute of Nutrition (AIN)-93M diet; HFF group was fed a high-fat and high-fructose (HFF) diet; chia seed short (6-weeks) and long (12-weeks) treatments received an HFF diet with chia seed; chia oil short (6-weeks) and long (12-weeks) treatments received an HFF diet with chia oil. Plasma and hepatic biomarkers of lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidant systems and antioxidant capacity were determined. HFF diet induced weight gain, oxidative stress and lipid peroxidation in plasma and liver of animals. Compared to HFF group chia seed and chia oil (12 and 6weeks) intake increased plasma reduced thiol (GSH) levels, plasma catalase (CAT) and glutathione peroxidase (GPx) activities. In the liver glutathione reductase (GRd) activity was enhanced, while CAT and GPx activities did not change. There were no differences in plasma and liver superoxide dismutase activity among chia diets and HFF group. Chia (seed and oil) intake did not modify liver lipid peroxidation, but was able to reduce plasma thiobarbituric acid reactive substances (TBARS) and 8-isoprostane levels increased by HFF group. Plasma and hepatic antioxidant capacity values were increased in chia seed and oil groups about 35% and 47%, respectively, compared to HFF group. Chia groups presented similar antioxidant potential, regardless of treatment time. Dietary chia seed and oil reduced oxidative stress in vivo, since it improved antioxidant status and reduced lipid peroxidation in diet-induced obese rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ultrasound induced green solvent extraction of oil from oleaginous seeds.

    Science.gov (United States)

    Sicaire, Anne-Gaëlle; Vian, Maryline Abert; Fine, Frédéric; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2016-07-01

    Ultrasound-assisted extraction of rapeseed oil was investigated and compared with conventional extraction for energy efficiency, throughput time, extraction yield, cleanness, processing cost and product quality. A multivariate study enabled us to define optimal parameters (7.7 W/cm(2) for ultrasonic power intensity, 40 °C for processing temperature, and a solid/liquid ratio of 1/15) for ultrasound-assisted extraction of oil from oilseeds to maximize lipid yield while reducing solvent consumption and extraction time using response surface methodology (RSM) with a three-variable central composite design (CCD). A significant difference in oil quality was noted under the conditions of the initial ultrasound extraction, which was later avoided using ultrasound in the absence of oxygen. Three concepts of multistage cross-current extraction were investigated and compared: conventional multistage maceration, ultrasound-assisted maceration and a combination, to assess the positive impact of using ultrasound on the seed oil extraction process. The study concludes that ultrasound-assisted extraction of oil is likely to reduce both economic and ecological impacts of the process in the fat and oil industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Physicochemical and thermal characteristics of Australian chia seed oil.

    Science.gov (United States)

    Timilsena, Yakindra Prasad; Vongsvivut, Jitraporn; Adhikari, Raju; Adhikari, Benu

    2017-08-01

    Physicochemical and thermal characteristics of Australian chia seed oil (CSO) were studied. The specific gravity, viscosity and refractive index of CSO at ambient temperature were 0.93, 43.2mPa.s and 1.48, respectively. The acid, peroxide, saponification and iodine values and unsaponifiable matter content of CSO were 2.54gKOH/kg oil, 4.33meqO 2 /kg oil, 197gKOH/kg oil, 204gI 2 /kg oil and 1.12%, respectively. α-linolenic acid is the most abundant fatty acid comprising (64.39% of total oil) followed by linoleic acid (21.46%), while saturated fatty acid content is less than 10%. This CSO contained twelve triacylglycerols (TAGs) out of which trilinolenin (αLnαLnαLn) was the most abundant comprising 33.2% of total TAG. Melting point and melting enthalpy of CSO were -34°C and 77.48J/g, respectively. CSO remained stable up to 300°C with negligible degradation. Due to these physicochemical and thermal properties, CSO is an excellent source of essential fatty acids for food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants.

    Science.gov (United States)

    Song, Qing-Xin; Li, Qing-Tian; Liu, Yun-Feng; Zhang, Feng-Xia; Ma, Biao; Zhang, Wan-Ke; Man, Wei-Qun; Du, Wei-Guang; Wang, Guo-Dong; Chen, Shou-Yi; Zhang, Jin-Song

    2013-11-01

    Soybean is one of most important oil crops and a significant increase in lipid content in soybean seeds would facilitate vegetable oil production in the world. Although the pathways for lipid biosynthesis in higher plants have been uncovered, our understanding of regulatory mechanism controlling lipid accumulation is still limited. In this study, we identified 87 transcription factor genes with a higher abundance at the stage of lipid accumulation in soybean seeds. One of these genes, GmbZIP123, was selected to further study its function in regulation of lipid accumulation. Overexpression of GmbZIP123 enhanced lipid content in the seeds of transgenic Arabidopsis thaliana plants. The GmbZIP123 transgene promoted expression of two sucrose transporter genes (SUC1 and SUC5) and three cell-wall invertase genes (cwINV1, cwINV3, and cwINV6) by binding directly to the promoters of these genes. Consistently, the cell-wall invertase activity and sugar translocation were all enhanced in siliques of GmbZIP123 transgenic plants. Higher levels of glucose, fructose, and sucrose were also found in seeds of GmbZIP123 transgenic plants. These results suggest that GmbZIP123 may participate in regulation of lipid accumulation in soybean seeds by controlling sugar transport into seeds from photoautotrophic tissues. This study provides novel insights into the regulatory mechanism for lipid accumulation in seeds and may facilitate improvements in oil production in soybean and other oil crops through genetic manipulation of the GmbZIP123 gene.

  16. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds.

    Science.gov (United States)

    Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K

    2015-11-01

    Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.)

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2013-01-01

    could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work......In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism......, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748...

  18. Evaluation of essential oils in health and physiological quality of Schinus molle seeds and seedlings

    Directory of Open Access Journals (Sweden)

    Kamila Cardoso Pereira

    2016-03-01

    Full Text Available The objective was to evaluate the effect of Mentha piperita, Cymbopogon nardus and Eucalyptus globules essential oils, in sanitary and physiological quality of Schinus molle L. seeds and seedlings. The seeds were treated with essential oils at concentrations of 10%, on 1 μL g-1, 20%, on 2 μL g-1, 30% , on 3 μL g-1 and control. After treatments, seeds were evaluated by sanity test, using filter paper method (“blotter test” and by germination test, where the seeds were placed between vermiculite substrate. For counts, sprouted and dead seeds were considered. Shoot length, root, total height and stem diameter were measured for seedlings evaluation. The use of citronella and mint essential oils reduced the incidence of different pathogens in S. molle seeds. Mint essential oil at 20% and 30% were effective to promote seeds germination. Eucalyptus essential oil in any concentration was efficient to increase seedlings growth.

  19. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  20. Protective effect of pumpkin seed oil against genotoxicity induced by azathioprine

    OpenAIRE

    S.A. Elfiky; Elelaimy, I.A.; Hassan, A.M.; Ibrahim, H. M.; Elsayad, R.I.

    2012-01-01

    Pumpkin is a leafy green vegetable; it belongs to the Cucurbitaceae family. Pumpkin seed oil supplementation can prevent changes in plasma lipids and blood pressure. The present study was conducted to evaluate the protective effect of pumpkin seed oil against cytotoxicity and genotoxicity of azathioprine. Oral administration of pumpkin seed oil either before or after treatment of azathioprine was effective in the reduction of the frequencies of Mn-PCEs, decreased the DNA fragmentation, total ...

  1. Lipid composition and antioxidant activities of the seed oil from three Mlvaceae species

    Directory of Open Access Journals (Sweden)

    Tešević V.

    2012-01-01

    Full Text Available The oil content and fatty acids, unsaponifiable composition and antioxidant activities of the seed oil from three Malvaceae species (Malva sylvestris L., Malva sylvestris L. var. mauritiana and Althaea officinalis L. from Serbia were determined. The oil yields from the seeds varied from 7.18 to 9.60%. The main fatty acids of the seed oils were linoleic acid (44.14-54.49%, oleic acid (13.00-16.99% and palmitic acid (11.45-24.29%. A small amount of cyclopropenoid acids, up to 1.85% was also established. The predominant sterol in all seed oils was β-sitosterol (11.51-17.34 mg/g of oil. The antioxidant potential of all the investigated seed oils was evaluated by radical scavenging activity using 2,2-diphenyl-1- picrylhydrazyl (DPPH assay.

  2. [Study on porous maize starch preparation and powdering coix seed oil].

    Science.gov (United States)

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Sun, E; Wang, Jing; Jia, Xiao-Bin

    2013-07-01

    To optimize the preparation conditions of porous starch The porous starch was used to powder coix seed oil. Porous starch was made of maize starch by using compound enzymes of glucoamylase and alpha-amylase. The preparation process was optimized through orthogonal test design with oil absorption rate to salad oil as indexes. The effect of different dosages of porous starch on yield of triglyceride by powdering coix seed oil was studied. The triglyceride release behaviors and fluidity of powdered coix seed oil were also studied. The results showed that the optimum conditions for preparation of porous maize starch were as follows, the mass radio of glucoamylase to a-amylase was 3:1, the temperatures was 55 degrees C, pH was 5.0, and hydrolysis time was 12 h. Under these conditions, the oil absorption rate to salad oil was 98.5% for porous maize starch. Porous starch was used to power coix seed oil. When porous starch to coix seed oil was 4:1, the triglyceride yield of powering coix seed oil was up to 97.02%. The fluidity of powdered coix seed oil was favorable and control released. The preparation of powdered liquid oil with porous starch had many advantages such as simple production technology, convenient operation, low cost and was worth generalizing.

  3. Morphological and oil content variation in seeds of Azadirachta indica A. Juss. (Neem) from northern and western provenances of India.

    Science.gov (United States)

    Kaura, S K; Gupta, S K; Chowdhury, J B

    1998-01-01

    Seed morphology (seed length and 20 seed weight) and oil content was studied in Azadirachta indica A. Juss. (Neem) of five provenances of northern and western India. Trees with wide ranges of girths were considered for study. Maximum average oil content was observed in trees from Hisar provenance. Seed oil content in most of the provenances was not consistently and significantly correlated with morphological parameters of seeds. Age of the tree had no significant effect on the oil yield.

  4. Characterisation and some possible uses of Plukenetia conophora and Adenopus breviflorus seeds and seed oils.

    Science.gov (United States)

    Akintayo, E T; Bayer, E

    2002-10-01

    Two non-conventional seeds, Plukenetia conophora (PKCP) and Adenopus breviflorus (ADB) were analysed for their proximate, fatty acids, sterols composition and physico-chemical characteristics. Crude protein was 25.65% for PKCP and 28.25% for ADB. ADB had lower moisture content (4.5%) than PKCP (8.0%) indicating that the former has better shelf life. Oil yields of the seeds were 49.58% for PKCP and 56.22% for ADB. The major sterols were stigmasterol and beta-sitosterol in PKCP and ADB respectively. PKCP oil had 98.8% unsaturated fatty acids with linolenic acid predominating (70.1%) while ADB had 85.1% unsaturated fatty acids with linoleic acid being most abundant (65.3%). The very high saponification and iodine values of PKCP oil suggest its utilisation in alkyd resin, shoe polish, liquid soap and shampoo production. There is the possibility of using ADB oil in these regards as well as for edible purposes.

  5. Physico-chemical properties of Tecoma stans Linn. seed oil: a new crop for vegetable oil.

    Science.gov (United States)

    Sbihi, Hassen Mohamed; Mokbli, Sadok; Nehdi, Imededdine Arbi; Al-Resayes, Saud Ibrahim

    2015-01-01

    Tecoma stans Linn. is known to have various medicinal and therapeutic properties. However, to our knowledge, no information is available regarding their seed oils. In this study, the fatty acid (FA) compositions, physico-chemical properties and antioxidant capacities of T. stans seed oils (TSOs) were investigated. The oil content of the seeds was 15%. The FAs of the TSOs were analysed by GC-MS. α-Linolenic (45.47%), oleic (23.56%), linoleic (11.48%), palmitic (6.09%) and stearic (4.12%) acids were the major detected FAs. γ-Linolenic acid and stearidonic acid, unusually FAs, were also present (1.04% and 6.65%, respectively). The total tocol content in the TSOs was found to be 266.06 mg/100 g. The main component was γ-tocopherol (78.93%). The total phenolic content (168.69 mg GAE/100 g oil) and total flavonoid content (5.54 mg CE/g oil) were also determined in the TSOs.

  6. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  7. The Effectof Temperature on the Dynmaic Viscosity of Acetone Sunflower-Seed Oil Mixtures

    OpenAIRE

    TOPALLAR, Hüseyin; BAYRAK, Yüksel

    2014-01-01

    The effect of acetone on the dynamic viscosity of sunflower-seed oil was studied under a dynamic heating regime at temeparuters ranging from 25oC to 50oC at 5oC intervals. Acetone dramatically reduced the viscosity of sunflower-seed oil. The reduction of viscosity was far less with further addition of acetone. A linear relationship was found between the density of sunflower-seed oil and temperature. The influence of a solvent on the density of the sunflower-seed oil/acetone solution can be ac...

  8. The effect of environmental factors on growth characteristics, seed germination and essential oils of Ziziphora clinopodioides

    National Research Council Canada - National Science Library

    Younes Asri; Maryam Firozi Ardestani; Mina Rabie; Gholamreza Bakhshi Khaniki

    2016-01-01

    In this study, the relationship between altitude, climate and soil characteristics as important and effective factors on the growth characteristics, seed germination and essential oils of Ziziphora...

  9. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    Full Text Available Background: Previously, we (HM found that most commercially available edible oils, which were processed by hexane extraction followed by a number of purification steps, were extremely low in anti-peroxy radical (ROO., or radical scavenging activity. This is a great contrast to the respective virgin oils as exemplified by extra-virgin olive oil or crude rape seed oil [1-4] (Figure 1. Therefore, such highly purified oils will became prooxidant and less desirable food components in terms of health oriented diet. Oxidized oils may eventually cause DNA cleavages, modification of proteins, RNA, and lipids, as well as cellular damage, or promote inflammation and carcinogenesis at later time [5-9]. These commercial oils of low antioxidant activity may be improved by adding functionally effective antioxidative components, by using dried vegetable-waste such as tomato-juice-waste-residues and wine-ferment-waste-residues. Their antioxiative components will be transferred into the functionally poor grade edible oils, and consequently, one can improve the quality of such functionally poor oils and thereby contributing human health [2,8,9]. The purpose of this paper is to report a practical procedure to fortify functionally low grade conventional edible oils to functionally enriched edible oils using dried vegetable-waste residues such as tomato juice waste, and wine-ferment-residues, or other vegetable-waste residues. Methods: (1 Preparation and measurements of lycopene and carotenoid enriched oils. To 5.0g or 1.0g of the dried residue of tomato juice waste, 100ml of commercial rape seed (canola oil was added respectively. Each mixture was incubated at room temperature in dark for several weeks. Amount of lycopene and carotenoids extracted into the oil was monitored by increase of absorption (400-550nm and fluorescence at 470nm of carotenoid. Grape-juice ferment (wine waste was similarly prepared after hot air drying, and immersed in canola oil. (2

  10. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wei, Fu-Yao; Luo, Meng; Wang, Wei; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-09-01

    In the present work, Forsythia suspense seed oil (FSSO) was investigated for the first time as an alternative non-conventional feedstock for the preparation of biodiesel. The FSSO yield is 30.08±2.35% (dry weight of F. suspense seed basis), and the oil has low acid value (1.07 mg KOH/g). The fatty acid composition of FSSO exhibits the predominance of linoleic acid (72.89%) along with oleic acid (18.68%) and palmitic acid (5.65%), which is quite similar to that of sunflower oil. Moreover, microwave-assisted transesterification process of FSSO with methanol in the presence of potassium hydroxide catalyst was optimized and an optimal biodiesel yield (90.74±2.02%) was obtained. Furthermore, the fuel properties of the biodiesel product were evaluated as against ASTM D-6751 biodiesel standards and an acceptable agreement was observed except the cetane number. Overall, this study revealed the possibility of FSSO as a potential resource of biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. No positive influence of ingesting chia seed oil on human running performance.

    Science.gov (United States)

    Nieman, David C; Gillitt, Nicholas D; Meaney, Mary Pat; Dew, Dustin A

    2015-05-15

    Runners (n = 24) reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg-1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max). Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA) during the chia seed oil (337%) versus water trial (35%) (70.8 ± 8.6, 20.3 ± 1.8 μg mL(-1), respectively, p Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures.

  12. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa.

    Science.gov (United States)

    Aznar-Moreno, J A; Durrett, T P

    2017-07-01

    The ability to transform Camelina sativa easily with biosynthetic enzymes derived from other plants has made this oil seed crop an ideal platform for the production of unusual lipids valuable for different applications. However, in addition to expressing transgenic enzymes, the suppression of endogenous enzyme activity to reduce competition for common substrates or cofactors is also required to enhance the production of target compounds. As camelina possesses a relatively undifferentiated hexaploid genome, up to three gene homeologs can code for any particular enzymatic activity, complicating efforts to alter endogenous biosynthetic pathways. New genome editing technologies, such as that offered by the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system, offer the capability to introduce mutations into specifically targeted genomic sites. Here, by using a carefully designed guide RNA identical to all three homeologs, we demonstrate the ability of the CRISPR/Cas genome editing system to introduce mutations in all three CsDGAT1 or CsPDAT1 homeologous genes important for triacylglycerol (TAG) synthesis in developing seeds. Sequence analysis from transgenic T1 plants revealed that each CsDGAT1 or each CsPDAT1 homeolog was altered by multiple mutations, resulting in a genetic mosaic in the plants. Interestingly, seed harvested from both CsDGAT1- and CsPDAT1-targeted lines was often shrunken and wrinkled. Further, lipid analysis revealed that many lines produced seed with reduced oil content and altered fatty acid composition, consistent with the role of the targeted genes in seed oil biosynthesis. The CRISPR/Cas system therefore represents a useful method to alter endogenous biosynthetic pathways efficiently in polyploid species such as camelina. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.

    Science.gov (United States)

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques. The results showed the percentage (%) moisture, crude fibre, ash, crude protein, lipids and total carbohydrate contents of the seeds as 7.51 and 4.27, 7.70 and 5.51, 1.02 and 2.94, 10.57 and 11.67, 47.80 and 50.42 and 32.84 and 29.47 while the calorific values were 553.99 and 567.32 Kcal/100 g for C. nucifera and C. citrullus, respectively. The two seed oils were odourless and at room temperature (30 degrees C) liquids, with a pale yellow to yellowish colouration. Lipid indices of the seed oils indicated the Acid Values (AV) as 2.06-6.36 mg NaOH g(-1) and 2.99-6.17 mg NaOH g(-1), Free Fatty Acids (FFA) as 1.03-3.18 and 1.49-3.09%, Saponification Values (SV) as 252.44-257.59 and 196.82-201.03 mg KOH g(-1), Iodine Values (IV) as 9.73-10.99 and 110.93-111.46 mg of I2 g(-1) of oil and Peroxide Values (PV) as 0.21-0.21 and 1.53-2.72 mg O2 kg(-1) for soxhlet-mechanical extracted C. nucifera and C. citrullus seed oils, respectively. The studied characteristics of the oil extracts in most cases compared favourably with most conventional vegetable oils sold in the Nigeria markets; however, there were some observed levels of significant differences in the values at p seeds examined may be nutritionally potent and also viable sources of seed oils judging by their oil yield. The data also showed that the seed oils were edible inferring from their low AV and their corresponding low FFA contents. Industrially, the results revealed the seed oils to have great potentials in soap manufacturing industries because of their high SV. They were also shown to be non-drying due to their low IV which also suggested that the oils contain few unsaturated bonds and therefore have low susceptibility to oxidative rancidity and deterioration as confirmed by their low PV which also serves as

  14. Effects of processing techniques on oxidative stability of Prunus pedunculatus seed oil

    Directory of Open Access Journals (Sweden)

    J. Yan

    2017-09-01

    Full Text Available This paper investigated the effects of Prunus pedunculatus (P. pedunculatus seed pre-treatment, including microwaving (M, roasting (R, steaming (S and roasting plus steaming (RS on crude oil quality in terms of yield, color change, fatty acid composition, and oxidative stability. The results showed an increase in monounsaturated fatty acid content and oxidative stability of the oils obtained from different processing treatments compared to the oil obtained from raw seeds (RW without processing. The oils, obtained from pretreated seeds, had higher conjugated diene (CD and 2-thiobarbituric acid (2-TBA values, compared to that obtained from RW when stored in a Schaal oven at 65 °C for 168 h. However, polyphenol and tocopherol contents decreased in all oil samples, processed or unprocessed. The effect of pre-treating the seeds was more prominent in the oil sample obtained through the RS technique, and showed higher oxidative stability than the other processed oils and the oil from RW.

  15. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions

    National Research Council Canada - National Science Library

    Veronika Mikulcova; Věra Kašparkova; Petr Humpolíček; Leona Buňkova

    2017-01-01

    .... The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions...

  16. Effect of Foliar Application of Iron, Zinc and Manganese Micronutrients on Yield and Yield Components and Seed Oil of Pot Marigold Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    E. Rezaei Chiyaneh

    2016-02-01

    Full Text Available Although micronutrients effect on growth and yield of different plants has been intensively investigated, but there is limited information on its effect on grain yield and seed oil content of pot marigold Calendula officinalis L.. In order to investigate the effects of micronutrients (Fe, Zn and Mn spraying on yield and yield components and seed oil of pot marigold, a field experiment was conducted based on randomized complete block design with three replications at the Research Farm of Payame Noor University of Nagadeh in 2010. Treatments included Fe, Zn, Mn, mixed solutions of these elements (Fe+Zn, Fe+Mn, Zn+Mn, Fe+Zn+Mn and control (water. Treatments were applied in 2 g/litter twice at stem elongation and early flowering stages. Different traits such as plant height, number of capitol per plant, number seed per capitol, thousand seed weight, biological yield, seed yield, seed oil percentage and oil Yield were recorded. The results showed that foliar application of micronutrients had significant effects on all of these traits. Yield components, seed yield, oil percentage and yield were enhanced by foliar application, compared with control (untreated plants. The maximum number seed per capitol, thousand seed weight and biological yield were relevant to Fe treatment. The highest numbers of capitol per plant and seed yield (643.33 kg.ha-1 were relevant to Zn+Fe treatment and the maximum oil yield (124.20 kg.ha-1 was produced by Zn+ Fe+ Mn treatment. Seed yield and oil yield increased by 31.27% and 44.18% yields more than control, respectively. It can be concluded that, foliar application of micronutrients had positive effects to obtain high yield and oil of pot marigold.

  17. Seed oil polyphenols: rapid and sensitive extraction method and high resolution-mass spectrometry identification.

    Science.gov (United States)

    Koubaa, Mohamed; Mhemdi, Houcine; Vorobiev, Eugène

    2015-05-01

    Phenolic content is a primary parameter for vegetables oil quality evaluation, and directly involved in the prevention of oxidation and oil preservation. Several methods have been reported in the literature for polyphenols extraction from seed oil but the approaches commonly used remain manually handled. In this work, we propose a rapid and sensitive method for seed oil polyphenols extraction and identification. For this purpose, polyphenols were extracted from Opuntia stricta Haw seed oil, using high frequency agitation, separated, and then identified using a liquid chromatography-high resolution mass spectrometry method. Our results showed good sensitivity and reproducibility of the developed methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Characterisation of seed oils from different grape cultivars grown in China

    OpenAIRE

    Wen, Xin; Zhu, Minghui; Hu, Rui; Zhao, Jinhong; Chen, Ziye; Li, Jingming; Ni, Yuanying

    2016-01-01

    To explore the potential of the large amount of grape pomace in wineries of China, oils of three Eurasian?grape cultivars (Chardonnay, Merlot and Carbernet Sauvignon) and two Chinese traditional grape cultivars (Vitis amurensis and Vitis davidii), were characterised. The results showed seed oil properties differ for various grape varities. Grape seed oils were demonstrated to be good sources of polyunsaturated fatty acid (PUFA) (63.88?77.12?%), sterols (227.99?338.83?mg/100?g oil) and tocotri...

  19. Fatty acid composition of Brunfelsia uniflora (Solanaceae seed oil

    Directory of Open Access Journals (Sweden)

    Guzmán, C. A.

    1995-04-01

    Full Text Available The seeds of Brunfelsia uniflora contained 30.5% of oil. The oil was analysed and components were identified by infrared (IR, gas chromatography-mass spectrometry (GC-MS and chemical methods. Linoleic acid predominated (75.5% followed by oleic (11.8% and palmitic (7.25% acids. Ricinoleic acid was present in small quantities (0.52%.Las semillas de Brunfelsia uniflora contuvieron 30.5% de aceite. El aceite fue analizado y los componentes fueron indentificados por espectroscopia de infrarrojo (IR, cromatografía gaseosa-espectrometría de masa (CGEM y métodos químicos. Predominó el ácido linoleico (75.5% seguido por el oleico (11.8% y el palmítico (7.25%. El ácido ricinoleico estuvo presente en pequeñas cantidades (0.52%.

  20. Which is the best grape seed additive for frankfurters: extract, oil or flour?

    Science.gov (United States)

    Özvural, Emin Burçin; Vural, Halil

    2014-03-15

    Grape seed products (winery by-products) are valuable vegetable sources to enhance the quality of meat products. In this study, 21 treatments of frankfurters, in three different groups, including 0%, 0.01%, 0.03%, 0.05%, 0.1%, 0.3% and 0.5% grape seed extract (GSE), 0%, 1%, 2%, 4%, 6%, 8% and 10% grape seed oil (GSO), and 0%, 0.5%, 1%, 2%, 3%, 4% and 5% grape seed flour (GSF) were produced in order to compare the differences among them during refrigerated storage for 90 days. Increasing the level of GSO made the frankfurters lighter in color (P grape seed products have partially undesirable effects on the sensory characteristics of the frankfurters, all these additives showed different positive influences in the production of frankfurters. The results showed that the group of frankfurters including GSE was the best of three different groups of products due to the lipid oxidation and overall acceptability results. © 2013 Society of Chemical Industry.

  1. Ultrasound Assisted Esterification of Rubber Seed Oil for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-04-01

    Full Text Available Production of biodiesel is currently shifting from the first to the second generation inwhich the raw materials are mostly from non-edible type oils and fats. Biodiesel production iscommonly conducted under batch operation using mechanical agitation to accelerate masstransfers. The main drawback of oil esterification is the high content of free fatty acids (FFA whichmay reduce the yield of biodiesel and prolong the production time (2-5 hours. Ultrasonificationhas been used in many applications such as component extraction due to its ability to producecavitation under certain frequency. This research is aimed to facilitate ultrasound system forimproving biodiesel production process particularly rubber seed oil. An ultrasound unit was usedunder constant temperature (40oC and frequency of 40 Hz. The result showed that ultrasound canreduces the processing time and increases the biodiesel yield significantly. A model to describecorrelation of yield and its independent variables is yield (Y = 43,4894 – 0,6926 X1 + 1,1807 X2 –7,1042 X3 + 2,6451 X1X2 – 1,6557 X1X3 + 5,7586 X2X3 - 10,5145 X1X2X3, where X1 is mesh sizes, X2ratio oil: methanol and X3 type of catalyst.

  2. Ultrasound Assisted Esterification of Rubber Seed Oil for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Berkah Fajar Tamtomo Kiono

    2012-02-01

    Full Text Available roduction of biodiesel is currently shifting from the first to the second generation in which the raw materials are mostly from non-edible type oils and fats. Biodiesel production is commonly conducted under batch operation using mechanical agitation to accelerate mass transfers. The main drawback of oil esterification is the high content of free fatty acids (FFA which may reduce the yield of biodiesel and prolong the production time (2-5 hours. Ultrasonification has been used in many applications such as component extraction due to its ability to produce cavitation under certain frequency. This research is aimed to facilitate ultrasound system for improving biodiesel production process particularly rubber seed oil. An ultrasound unit was used under constant temperature (40oC and frequency of 40 Hz. The result showed that ultrasound can reduces the processing time and increases the biodiesel yield significantly. A model to describe correlation of yield and its independent variables is yield (Y = 43,4894 – 0,6926 X1 + 1,1807 X2 – 7,1042 X3 + 2,6451 X1X2 – 1,6557 X1X3 + 5,7586 X2X3 - 10,5145 X1X2X3, where X1 is mesh sizes, X2 ratio oil: methanol and X3 type of catalyst.

  3. Viability of Biopolymers for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Sveistrup, Marte; van Mastrigt, Frank; Norrman, Jens; Picchioni, Francesco; Paso, Kristofer

    2016-01-01

    Xanthan gum and scleroglucan are assessed as environmentally friendly enhanced oil recovery (EOR) agents. Viscometric and interfacial tension measurements show that the polysaccharides exhibit favorable viscosifying performance, robust shear tolerance, electrolyte tolerance, and moderate

  4. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    Science.gov (United States)

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. The compositional characterisation of Romanian grape seed oils using spectroscopic methods.

    Science.gov (United States)

    Hanganu, Anamaria; Todaşcă, Maria-Cristina; Chira, Nicoleta-Aurelia; Maganu, Maria; Roşca, Sorin

    2012-10-15

    In the present study, we developed a method for the grape seed oil compositional characterisation using (1)H NMR spectroscopy directly applied on oils without sample derivatisation (as triglycerides). Using (1)H NMR spectroscopy data and systems of chemometric equations, we established the composition of grape seed oils on four classes of fatty acids. Spectral information from (1)H NMR and FT-IR spectroscopy was used to make the differences between grape seed oils and genuine common oils. Applying the PCA (Principal Component Analysis) method to the spectral information, it was evaluated the application potential in authenticity control of grape seed oils from common genuine oils (sunflower, soybean, linseed and rapeseed). Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Characterisation of seed oils from different grape cultivars grown in China.

    Science.gov (United States)

    Wen, Xin; Zhu, Minghui; Hu, Rui; Zhao, Jinhong; Chen, Ziye; Li, Jingming; Ni, Yuanying

    2016-07-01

    To explore the potential of the large amount of grape pomace in wineries of China, oils of three Eurasian grape cultivars (Chardonnay, Merlot and Carbernet Sauvignon) and two Chinese traditional grape cultivars ( Vitis amurensis and Vitis davidii ), were characterised. The results showed seed oil properties differ for various grape varities. Grape seed oils were demonstrated to be good sources of polyunsaturated fatty acid (PUFA) (63.88-77.12 %), sterols (227.99-338.83 mg/100 g oil) and tocotrienols (320.08-679.24 mg/kg oil). Seed oil of V. amurensis exhibited the highest values of polyunsaturated fatty acid, total tocotrienols, total tocols and DPPH· scavenging capacity. Seed oil of Carbernet Sauvignon had the highest contents of squalene, total sterols, total tocopherols and total phenolics. Principal component analysis five grape cultivars differentiated on the basis of bioactive components content and antioxidant properties.

  7. Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Alan Holser; Rogers Harry-O' Kurua [United States Department of Agriculture, Peoria, IL (United States). Agricultural Research Service, National Center for Utilization Research

    2006-10-15

    The methyl and ethyl esters of milkweed (Asclepias) seed oil were prepared and compared to soybean esters in laboratory tests to determine biodiesel fuel performance properties. The pour points of the methyl and ethyl milkweed esters measured -6{sup o}C and -10{sup o}C, respectively, which is consistent with the high levels of unsaturation characteristic of milkweed seed oil. The oxidative stabilities measured by OSI at 100{sup o}C were between 0.8 and 4.1 h for all samples tested. The kinematic viscosities determined at 40{sup o}C by ASTM D 445 averaged 4.9 mm{sup 2}/s for milkweed methyl esters and 4.2 mm{sup 2}/s for soybean methyl esters. Lubricity values determined by ASTM D 6079 at 60{sup o}C were comparable to the corresponding soybean esters with average ball wear scar values of 118 {mu}m for milkweed methyl esters and 200 {mu}m for milkweed ethyl esters.

  8. Diversity in oil content and fatty acid profile in seeds of Manihot species

    Science.gov (United States)

    Cassava (Manihot esculenta) is the only commercial species of the genus, cultivated mainly for its starchy tuber roots. Cassava seeds are known to be rich in oils and fats. However, there are very scant reports on the content and properties of oil from cassava seeds and its wild relatives, which usu...

  9. Diversity in oil content and fatty acid profile in seeds of wild cassava germplasm

    Science.gov (United States)

    Cassava (Manihot esculenta) is the only commercial species of the Manihot genus, cultivated for its starchy tuber roots. However, cassava seeds are known to be rich in oils and fats, there are scant reports on the content and properties of oil from cassava seeds and its wild relatives. Wild Manihot ...

  10. Extraction and the Fatty Acid Profile of Rosa acicularis Seed Oil.

    Science.gov (United States)

    Du, Huanan; Zhang, Xu; Zhang, Ruchun; Zhang, Lu; Yu, Dianyu; Jiang, Lianzhou

    2017-12-01

    Rosa acicularis seed oil was extracted from Rosa acicularis seeds by the ultrasonic-assisted aqueous enzymatic method using cellulase and protease. Based on a single experiment, Plackett-Burman design was applied to ultrasonic-assisted aqueous enzymatic extraction of wild rose seed oil. The effects of enzyme amount, hydrolysis temperature and initial pH on total extraction rate of wild rose seed oil was studied by using Box-Behnken optimize methodology. Chemical characteristics of a sample of Rosa acicularis seeds and Rosa acicularis seed oil were characterized in this work. The tocopherol content was 200.6±0.3 mg/100 g oil. The Rosa acicularis seed oil was rich in linoleic acid (56.5%) and oleic acid (34.2%). The saturated fatty acids included palmitic acid (4%) and stearic acid (2.9%). The major fatty acids in the sn-2 position of triacylglycerol in Rosa acicularis oil were linoleic acid (60.6%), oleic acid (33.6%) and linolenic acid (3.2%). According to the 1,3-random-2-random hypothesis, the dominant triacylglycerols were LLL (18%), LLnL (1%), LLP (2%), LOL (10%), LLSt (1.2%), PLP (0.2%), LLnP (0.1%), LLnO (0.6%) and LOP (1.1%). This work could be useful for developing applications for Rosa acicularis seed oil.

  11. Biorefinery methods for separation of protein and oil fractions from rubber seed kernel

    NARCIS (Netherlands)

    Widyarani, R.; Ratnaningsih, E.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Biorefinery of rubber seeds can generate additional income for farmers, who already grow rubber trees for latex production. The aim of this study was to find the best method for protein and oil production from rubber seed kernel, with focus on protein recovery. Different pre-treatments and oil

  12. Oil characteristics and fatty acid profile of seeds from three varieties ...

    African Journals Online (AJOL)

    Depending on the regional industry, these data suggest that the potential applications of date seed oil for humans and animals are feeding, cosmetic formulations such as in body creams, shaving soap and shampoos, and pharmaceutical products. Keywords: Seed oil (Phoenix dactylifera), fatty acid, gas chromatography ...

  13. Effect of powdered castor oil seed ( Ricinus communis L.) on some ...

    African Journals Online (AJOL)

    The rats were in five groups, which were replicated three (3) times. The castor oil seed was turned to powdery form using pestle and mortal. Four feed formulations were used; powdered castor oil seed and commercial rat feed mixed in ratio 1:1, 1:2, 1:5, 1:10 and ordinary commercial rat feed, which serves as the control.

  14. Molecular regulation and genetic improvement of seed oil content in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Wei HUA,Jing LIU,Hanzhong WANG

    2016-09-01

    Full Text Available As an important oil crop and a potential bioenergy crop, Brassica napus L. is becoming a model plant for basic research on seed lipid biosynthesis as well as seed oil content, which has always been the key breeding objective. In this review, we present current progress in understanding of the regulation of oil content in B. napus, including genetics, biosynthesis pathway, transcriptional regulation, maternal effects and QTL analysis. Furthermore, the history of breeding for high oil content in B. napus is summarized and the progress in breeding ultra-high oil content lines is described. Finally, prospects for breeding high oil content B. napus cultivars are outlined.

  15. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    Science.gov (United States)

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  16. Comparative study of the chemical composition and mineral element content of Artocarpus heterophyllus and Treculia africana seeds and seed oils.

    Science.gov (United States)

    Ajayi, Ibironke Adetolu

    2008-07-01

    A comparative study of Artocarpus heterophyllus and Treculia africana seeds, both of Moraceae family, was carried out to establish their chemical compositions and evaluate their mineral element content in order to investigate the possibility of using them for human and or animal consumption and also to examine if there is a relationship between the properties of these seeds. A. heterophyllus and T. africana are rich in protein; their protein contents are higher than those from high protein animal sources such as beef and marine fishes. Both seeds have high carbohydrate content and could act as source of energy for animals if included in their diets. The oil contents of the seeds are 11.39% and 18.54% for A. heterophyllus and T. africana, respectively. The oils are consistently liquid at room temperature. The results of the physicochemical properties of the two seeds are comparable to those of conventional oil seeds such as groundnut and palm kernel oils and could be useful for nutritional and industrial purposes. The seeds were found to be good sources of mineral elements. The result revealed potassium to be the prevalent mineral elements which are 2470.00 ppm and 1680.00 ppm for A. heterophyllus and T. africana, respectively followed by sodium, magnesium and then calcium. They also contain reasonable quantity of iron, in particular A. heterophyllus 148.50 ppm.

  17. Some physical and chemical properties of bitter melon (Momordica charantia L. seed and fatty acid composition of seed oil

    Directory of Open Access Journals (Sweden)

    Muharrem GÖLÜKÇÜ

    2014-06-01

    Full Text Available Edible part and leaves of bitter melon (Momordica charantia L. are used as food or medicine to control some diseases because of its antioxidant, antibacterial, anticancer, anti-hepatotoxic, antiviral, antiulcerogenic and larvicidal effects. Although fruits have considerable amount of seeds, they have not received much attention. In this study, some physical and chemical properties of the seed and also fatty acid composition of seed oil were determined. Oil content of the sample was determined by soxhlet apparatus as 26.10% in dried sample. Fatty acid composition was analyzed by GC-MS and seven fatty acids were identified and their ratios were determined in this seed oil. The main fatty acid was determined as α-eleostearic (45.60%. The other fatty acids were palmitic (3.69%, stearic (28.00%, oleic (12.45%, linoleic (8.90%, arachidic (0.71% and gadoleic acids (0.65%.

  18. Characterization of oil obtained from grape seeds collected during berry development.

    Science.gov (United States)

    Rubio, Manuela; Alvarez-Ortí, Manuel; Alvarruiz, Andrés; Fernández, Enrique; Pardo, Jose E

    2009-04-08

    The surpluses of the wine industry that originate from wine production in the European countries must be reduced. Green harvesting, consisting in collecting the grapes when they are still green, could contribute to the reduction of the yield of vineyards. The green grapes are not suitable for wine production, but they can be used for seed oil extraction. Grape seed oil is a linoleic acid rich oil that has been suggested as an alternative to traditional vegetable edible oils. In this work, grape samples were collected at different stages during berry development for seed oil extraction. The grapes collected at a very early stage showed a very low oil extraction yield compared with that of the samples collected at later stages. The oil from the grapes collected at an early stage had considerably higher sterols content and had a significantly different fatty acid composition compared with those of the oil extracted from grapes collected at later stages. However, the oil samples from grapes collected before veraison did not show significant differences with samples collected after veraison as regards oil extraction yield, fatty acids composition, and total sterol content and composition. Our data suggest that grapes collected from green harvesting near veraison could be suitable for seed oil extraction, with characteristics similar to those of the oil extracted from the seeds of mature grapes.

  19. Genetic variability for phenotype, seed production, oil content, and fatty acid composition among 17 Roselle (Hibiscus sabdariffa) accessions

    Science.gov (United States)

    Seed oil and fatty acids in plants have human health implications. Oil from roselle (Hibiscus sabdariffa L.) seeds are used in Taiwan as a diuretic, laxative, and tonic. The objectives of this study were to evaluate seeds from 17 roselle accessions for oil and fatty acid variation in a greenhouse. S...

  20. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues.

    Science.gov (United States)

    Bakowska-Barczak, Anna M; Schieber, Andreas; Kolodziejczyk, Paul

    2009-12-23

    The seeds from five black currant (Ribes nigrum L.) cultivars grown in western Canada were evaluated for their oil content, fatty acid and triacylglycerol (TAG) composition, and tocopherol and phytosterol profiles and contents. Moreover, polyphenolic compounds and antioxidant activity in the seed extracts remaining after oil extraction were determined. Oil contents of black currant seeds ranged from 27 to 33%. The gamma-linolenic acid content varied significantly among the cultivars (from 11% for Ben Conan to 17% for Ben Tirran). Among the 44 TAGs identified, LLalphaLn, alphaLnLgammaLn, and PLgammaLn (where L = linoleoyl, alphaLn = alpha-linolenoyl, gammaLn = gamma-linolenoyl, and P = palmitoyl) were the predominant ones. Black currant seed oil was a good source of tocopherols (1143 mg/100 g of oil on average) and phytosterols (6453 mg/100 g of oil on average). Quercetin-3-glucoside and p-coumaric acid were the main phenolic components in the seed residues. The high concentration of flavonols and phenolic acids was correlated with a high antioxidant activity of seed residue (average ABTS value of 1.5 mM/100 g and DPPH value of 1.2 mM/100 g). The data obtained from this study indicate that Canadian black currant seed oil is a good source of essential fatty acids, tocopherols, and phytosterols. Extraction of phenolic antioxidants from the seed residues even allows the recovery of additional valuable components from the byproduct of fruit processing.

  1. Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method.

    Science.gov (United States)

    Lee, Myung-Hee; Rhee, Young-Kyoung; Choi, Sang-Yoon; Cho, Chang-Won; Hong, Hee-Do; Kim, Kyung-Tack

    2017-07-01

    In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at 30°C for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

  2. Antioxidant and Free Radical Scavenging Capacity of Seed and Shell Essential Oils Extracted from Abrus precatorius (L

    Directory of Open Access Journals (Sweden)

    Sunday O. Okoh

    2014-04-01

    Full Text Available Essential oils from plants have been proven safe as natural antioxidants, and few are already marketed as digestive enhancers as well as in prevention of several degenerative diseases. This study evaluated the antioxidant capacity of seed and shell essential oils of Abrus precatorius (L, a herb used for ethno-medicinal practices in Nigeria. The essential oils were obtained by hydro-distillation. The ability of the oils to act as hydrogen/electrons donor or scavenger of radicals were determined by in-vitro antioxidant assays using 2,2-diphenyl-2-picryl-hydrazyl free radical (DPPH. scavenging; 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS radical scavenging; lipid peroxide and nitric oxide radicals scavenging assays. The IC50 of the seed and shell oils (2.10 mg/mL and 1.20 mg/mL respectively showed that antioxidant activity is higher than that for the standard drugs (3.20 mg/mL and 3.40 mg/mL for the nitric oxide scavenging assay. The lipid peroxidation radical activity of the oils were similar to vitamin C, weak DPPH and ABTS radical scavenging activities were discovered in comparison to vitamin C and rutin. Generally, in the four antioxidant assays, a significant correlation existed between concentrations of the oils and percentage inhibition of free radicals and lipid peroxidation. The composition of A. precatorius essential oils reported earlier may account for their antioxidant capacity.

  3. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids.

    Science.gov (United States)

    Ashraf-Khorassani, Mehdi; Taylor, Larry Thomas

    2004-05-05

    Pure supercritical CO(2) was used to remove >95% of the oil from the grape seeds. Subcritical CO(2) modified with methanol was used for the extraction of monomeric polyphenols, whereas pure methanol was used for the extraction of polyphenolic dimers/trimers and procyanidins from grape seed. At optimum conditions, 40% methanol-modified CO(2) removed >79% of catechin and epicatechin from the grape seed. This extract was light yellow in color, and no higher molecular weight procyanidins were detected. Extraction of the same sample after removal of the oils and polyphenols, but now under enhanced solvent extraction conditions using methanol as a solvent, provided a dark red solution shown via electrospray ionization HPLC-MS to contain a relatively high concentration of procyanidins. The uniqueness of the study is attested to by the use of CO(2)-based fluids and the employment of a single instrumental extraction system.

  4. Determination of Antimicrobial Activity and Resistance to Oxidation of Moringa peregrina Seed Oil

    Directory of Open Access Journals (Sweden)

    Ioanna Chinou

    2012-02-01

    Full Text Available The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  5. Supercritical fractional extraction of fennel seed oil and essential oil: Experiments and mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Reverchon, E.; Marrone, C.; Poletto, M. [Univ. di Salerno, Fisciano (Italy). Dipt. di Ingegneria Chimica a Alimentare; Daghero, J.; Mattea, M. [Univ. Nacional de Rio Cuarto (Argentina). Facultad de Ingenieria

    1999-08-01

    Supercritical CO{sub 2} extraction of fennel seeds has been performed in two steps; the first step was performed at 90 bar and 50 C to obtain the selective extraction of essential oil. The second one was performed at 200 bar and 40 C and allowed the extraction of vegetable oil. The experiments were performed using the fractional separation of the extracts using three different CO{sub 2} flow rates (0.5, 1.0, and 1.5 kg/h). On the basis of the extraction results and of the analysis of scanning electron microscopy (SEM) images of the vegetable matter, mathematical models of the two extraction processes have been proposed. The extraction of fennel vegetable oil has been modeled using a model based on differential mass balances and on the concept of broken and intact cells as evidenced by SEM. Only one adjustable parameter has been used: the internal mass-transfer coefficient k{sub t}. A fairly good fitting of the experimental data was obtained by setting k{sub t} = 8 {times} 10{sup {minus}8} m/s. The fennel essential oil extraction process was modeled as desorption from the vegetable matter plus a small mass-transfer resistance. The same internal mass-transfer coefficient value used for vegetable oil extraction allowed a fairly good fitting of the essential oil extraction data.

  6. Pilot scale biodiesel production from rubber seed oil

    Science.gov (United States)

    Kien, Le Anh; Hai, Le Xuan

    2017-09-01

    Rubber seed oil (RSO) is tend to be one of the replacement for fossil fuel in future. This paper is to present the study on treatment of RSO to become the fuel using for engine and burber. The experiments were setup as: the mol of MeOH/RSO was of 6/1; H2SO4 was 2% of mass of RSO; temperature of reaction was 60°C ± 2°C; time of reaction was 90mins. The quality of the obtained RSO was good properties. The Specific gravity was 0.880; Calorific value (MJ/kg) was 40.5; Viscosity (mm2/s) at 40°C was 5.28; Flash point (°C) was 190; and Acid value (mg KOH/g) index was 0.14.

  7. Physicochemical properties of Terminalia catappa seed oil as a novel dietary lipid source

    Directory of Open Access Journals (Sweden)

    Supatcha Janporn

    2015-06-01

    Full Text Available Terminalia catappa Linn (TC is an ornamental tree planted extensively in many countries. It has been known for a long time that the seeds are edible but no research has focused on the realm of its use as food. Our previous data showed that the seed contains high levels of oil content (600 g/kg and possesses the optimum fatty acid balance indicated in fat dietary guidelines. This study aims to investigate the physical and chemical properties and the possibility of using TC seed oil as a new dietary lipid. The effects of extraction conditions, partial refining process, and storage stability on TC oil properties were conducted compared with soybean oil. The results showed that physicochemical properties including the density, refractive index, melting point, acidity, free fatty acid, saponification value, unsaponifiable, peroxide, and fatty acid composition of the extracted oil were comparable with soybean oil and their values followed the dietary standard of edible oil.

  8. Determination of trigonelline in seeds and vegetable oils by capillary electrophoresis as a novel marker for the detection of adulterations in olive oils.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Puchalska, Patrycja; García-Ruiz, Carmen; Crego, Antonio L; Marina, Maria Luisa

    2010-07-14

    A capillary electrophoresis method with UV detection was developed for the first time for the determination of the pyridine betaine trigonelline (N-methylnicotinic acid) in seeds and vegetable oils. Analytical characteristics of the method showed its good performance in terms of linearity (r > 0.999), precision (relative standard deviations oils). The developed method was applied to the analysis of soy and sunflower seeds, three varieties of olives, and sunflower, soy, and extra virgin olive oils. Trigonelline was determined in soy and sunflower seeds and their respective oils, whereas it was not detected in olives or olive oils. Different mixtures of extra virgin olive oil with seed oils were analyzed, detecting up to 10% of soy oil in olive oil. As a consequence, trigonelline is proposed in this work as a novel marker for the detection of adulterations of olive oils with other vegetable oils such as soy and sunflower oils.

  9. A participatory diagnostic study of the oil palm (Elaeis guineensis) seed system in Benin

    NARCIS (Netherlands)

    Akpo, E.; Vissoh, P.V.; Tossou, R.C.; Crane, T.; Kossou, D.K.; Richards, P.; Stomph, T.J.; Struik, P.C.

    2012-01-01

    A participatory diagnostic study of the oil palm (Elaeis guineensis Jacq.) seed system (OPSS) was conducted along a gradient of rainfall and distance to the oil palm research centre across the oil palm growing belt of Benin. The objective was to identify, jointly with key actors, the constraints in

  10. Two Novel Non-Conventional Seed Oil Extracts with Antioxidant and ...

    African Journals Online (AJOL)

    picrylhydrazyl (DPPH) free radical scavenging method, and their antimicrobial effect was determined by agar dilution method. Results: Phospholipids, carotenoids and phenols contents of the studied seed oils were approximately. 2.0 %, 100 mg/100g ... olive (Olea europaea) oil, soybean (Glycine max) oil and sunflower ...

  11. Critical review of supercritical carbon dioxide extraction of selected oil seeds

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2010-01-01

    Full Text Available Supercritical carbon dioxide extraction, as a relatively new separation technique, can be used as a very efficient process in the production of essential oils and oleoresins from many of plant materials. The extracts from these materials are a good basis for the new pharmaceutical products and ingredients in the functional foods. This paper deals with supercritical carbon dioxide extraction of selected oil seeds which are of little interest in classical extraction in the food industry. In this article the process parameters in the supercritical carbon dioxide extraction, such as pressure, temperature, solvent flow rate, diameter of gound materials, and moisture of oil seed were presented for the following seeds: almond fruits, borage seed, corn germ, grape seed, evening primrose, hazelnut, linseed, pumpkin seed, walnut, and wheat germ. The values of investigated parameters in supercritical extraction were: pressure from 100 to 600 bar, temperature from 10 to 70oC, diameter of grinding material from 0.16 to 2.0 mm, solvent flow used from 0.06 to 30.0 kg/h, amount of oil in the feed from 10.0 to 74.0%, and moisture of oil seed from 1.1 to 7.5%. The yield and quality of the extracts of all the oil seeds as well as the possibility of their application in the pharmaceutical and food, industries were analyzed.

  12. Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco

    Directory of Open Access Journals (Sweden)

    S. Gharby

    2017-04-01

    Full Text Available The objective of this research work was to determine the characteristic features of the oil content and composition of nutrients of sesame seeds grown in Morocco. Characteristic features of the seed oil revealed a high degree of unsaturation and as determined by gas chromatography reported herein, the major unsaturated fatty acids were linoleic acid (46.9% followed by oleic acid (37.4%, while the main saturated fatty acid was palmitic acid (9.1%. Sesame seed oil was also found to be rich in tocopherols with a predominance of γ-tocopherol (90.5%. The phytosterol marker β-sitosterol accounted for 59.9% of total sterols contained in sesame seed oil. This oil, therefore, has a potential for its use in human nutrition or industrial applications. Compositional analysis revealed that the sesame seeds contained considerable amounts of protein (22% and high amounts of lipids (52%. Nutrient information reported herein illustrates the benefits to public health for consumers of these plant seeds. In terms of oil, sesame seed oil may be considered as a valuable source for new multi-purpose products as industrial, cosmetic, and pharmaceutical uses.

  13. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    Science.gov (United States)

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.

  14. Gamma-linolenic acid egg production enriched with hemp seed oil and evening primrose oil in diet of laying hens.

    Science.gov (United States)

    Park, Sang-Oh; Hwangbo, Jong; Yuh, In-Suh; Park, Byung-Sung

    2014-07-01

    This study was carried out to find out the effect of supplying gamma linolenic acid (GLA) on laying performance and egg quality. A hundred twenty of 30 weeks old hyline brown laying hens with 98% of egg production were completely randomized to 4 different treatment groups by 30 hens (the control group fed with the diet containing beef tallow, 3 treatment groups fed with the diet containing corn oil, the diet containing hemp seed oil and the diet containing evening primrose oil, respectively), and their laying performance and egg production were investigated for 5 weeks. Intake of hemp seed oil or evening primrose helped to increase the retention rate of GLA, which was transmigrated into eggs from blood. GLA was not detected in the blood samples of control group and treatment group fed diet containing corn oil, while it was significantly increased in the blood samples of the treatment groups fed with diet containing hemp seed oil and diet containing evening primrose oil, respectively. GLA retention was not observed in the eggs produced respectively by control group and treatment group fed with diet containing corn oil, whereas it was significantly increased in the eggs produced by the treatment group fed with diet containing hemp seed oil by 1.09% and the treatment group fed with diet containing evening primrose oil by 4.87%. This result suggests that GLA-reinforced functional eggs can be produced by adding hemp seed oil and evening primrose oil to the feed for laying hens and feeding them with it. It is thought that further researches and clinical trials on biochemical mechanism related to atopic dermatitis should be conducted in future.

  15. Seed washing, exogenous application of gibberellic acid, and cold stratification enhance the germination of sweet cherry (Prunus avium L.) seed

    OpenAIRE

    Javanmard, T.; Zamani, Z; R. Keshavarz Afshar; Hashemi, M; Struik, P. C.

    2014-01-01

    Seed germination in sweet cherry (Prunus avium L.) is a slow and lengthy process which has delayed breeding efforts. In this study, seed from ripe fruit of the sweet cherry cultivar ‘Lambert’ were collected and, after removing the endocarp, various dormancy-breaking treatments such as seed washing, the application of exogenous gibberellic acid (GA3), or cold stratification were evaluated for their ability to enhance the percentage and rate of seed germination. The results indicated that seed ...

  16. The relationship of antioxidant components and antioxidant activity of sesame seed oil.

    Science.gov (United States)

    Wan, Yin; Li, Huixiao; Fu, Guiming; Chen, Xueyang; Chen, Feng; Xie, Mingyong

    2015-10-01

    Although sesame seed oil contains high levels of unsaturated fatty acids and even a small amount of free fatty acids in its unrefined flavored form, it shows markedly greater stability than other dietary vegetable oils. The good stability of sesame seed oil against autoxidation has been ascribed not only to its inherent lignans and tocopherols but also to browning reaction products generated when sesame seeds are roasted. Also, there is a strong synergistic effect among these components. The lignans in sesame seed oil can be categorized into two types, i.e. inherent lignans (sesamin, sesamolin) and lignans mainly formed during the oil production process (sesamol, sesamolinol, etc.). The most abundant tocopherol in sesame seed oil is γ-tocopherol. This article reviews the antioxidant activities of lignans and tocopherols as well as the browning reaction and its products in sesame seed and/or its oil. It is concluded that the composition and structure of browning reaction products and their impacts on sesame ingredients need to be further studied to better explain the remaining mysteries of sesame oil. © 2014 Society of Chemical Industry.

  17. Hydroprocessing of rubber seed oil to renewable fuels

    Science.gov (United States)

    Tran, Tan Viet; Phung, Minh Tri

    2017-09-01

    Hydroprocessing of rubber seed oil (RSO) with various types of alumina-silica support catalyst was conducted at 400°C and a hydrogen partial pressure of 3.0 MPa in 3 hours. The effects of the alumina-silica and metal doping on alumina-silica on the conversion, and distribution of oil fraction products (initial boiling point (IBP) to 80°C, from 80-200°C, from 200-360°C and higher than 360°C boiling point) were investigated. Compared to the results obtained when using Mo@Al2O3-SiO2, hydroprocessing of RSO resulted in a higher conversion and much higher yield of the light fraction (BP <230°C). Both alumina-silica catalysts led to an improved conversion as well as a higher light fraction yield. Results show that hydroprocessing of RSO with metal doping on alumina-silica support was more efficient than that only Al2O3-SiO2.

  18. No Positive Influence of Ingesting Chia Seed Oil on Human Running Performance

    Directory of Open Access Journals (Sweden)

    David C. Nieman

    2015-05-01

    Full Text Available Runners (n = 24 reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg−1 chia seed oil (random order, provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max. Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA during the chia seed oil (337% versus water trial (35% (70.8 ± 8.6, 20.3 ± 1.8 μg mL−1, respectively, p < 0.001, run time to exhaustion did not differ between trials (1.86 ± 0.10, 1.91 ± 0.13 h, p = 0.577, respectively. No trial differences were found for respiratory exchange ratio (RER (0.92 ± 0.01, oxygen consumption, ventilation, ratings of perceived exertion (RPE, and plasma glucose and blood lactate. Significant post-run increases were measured for total leukocyte counts, plasma cortisol, and plasma cytokines (Interleukin-6 (IL-6, Interleukin-8 (IL-8, Interleukin-10 (IL-10, and Tumor necrosis factors-α (TNF-α, with no trial differences. Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures.

  19. Functional ingredients and cardiovascular protective effect of pumpkin seed oils

    Directory of Open Access Journals (Sweden)

    Al-Okbi, S. Y.

    2014-03-01

    Full Text Available The objective of the present study was to evaluate the cardiovascular protective effect of Egyptian and European umpkin seed oil (PSO in hypercholesterolemic rats. Tocopherols, fatty acids (FAs and unsaponifiable matter (UNSAP were assessed in both oils. The results showed that α-tocopherol was 108 and 273, γ-tocopherol was 3.95 and 0 and d-tocopherol was 0 and 1.58 mg·100 g-1 oil of the Egyptian and European, respectively. GLC analysis of FAs revealed the presence of linoleic acid as the major fatty acid in both oils. Feeding a hypercholesterolemic diet produced a significant increase in plasma total cholesterol (T-Ch, triglycerides (TGs, low density lipoprotein cholesterol, T-Ch/HDL-Ch, TGs/HDL-Ch and malondialdehyde and a significant reduction in high density lipoprotein cholesterol (HDL-Ch, vitamin E, and adiponectin. Rats fed on hypercholesterolemic diet with either oil showed a significant improvement in all biochemical parametersEl objetivo fue evaluar el efecto protector cardiovascular de aceites de semilla de calabaza (PSO de variedades egipcia y europea en ratas con hipercolesterolemia. Se evaluó tocoferoles, ácidos grasos (FAs y materia insaponificable (UNSAP en ambos aceites. Los resultados mostraron valores de α-tocoferol de 108 y 273, γ-tocoferol 3,95 y 0 y δ-tocoferol de 0 y 1,58 mg·100 g-1 en las variedades egipcia y europea, respectivamente. El análisis por GLC de los ácidos grasos (FAS mostró al linoleico como mayoritario en ambos aceites. La alimentación con una dieta hipercolesterolémica produjo en plasma un aumento significativo de colesterol total (T-Ch, triglicéridos (TG, colesterol en lipoproteínas de baja densidad, T-Ch/HDL-Ch, TGs/HDL- ch y malondialdehído y una reducción significativa en el colesterol de lipoproteínas de alta densidad (HDL-cH, vitamina E, y adiponectina. Las ratas alimentadas con una dieta hipercolesterolémica y con ambos aceites, mostraron mejoras significativas en todos los par

  20. Pressurized liquid extraction of vitamin E from Brazilian grape seed oil.

    Science.gov (United States)

    Dos Santos Freitas, Lisiane; Jacques, Rosângela Assis; Richter, Marc François; Silva, Andréia Loviane da; Caramão, Elina Bastos

    2008-07-18

    The goal of this paper is to optimize the pressurized liquid extraction (PLE) of vitamin E from grape seed oil from residues of the wine industry. For this purpose an experimental planning to optimize the extraction of Brazilian grape seed oil by means of PLE with hexane as solvent was applied and the results are compared with conventional methods (Soxhlet and mechanical press extraction). Vitamin E was separated and analyzed using HPLC with UV detection. This study demonstrates the ability of the PLE in extracting grape seed oil rich in vitamin E.

  1. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  2. Characterization of crude and purified pumpkin seed oil.

    Directory of Open Access Journals (Sweden)

    Tsaknis, John

    1997-10-01

    Full Text Available Oil from hulled pumpkin seeds (Cucurbita pepo and Cucurbita Maxima was extracted with hot petroleum ether, and then it was degummed, neutralized and bleached, consecutively Physical and chemical characteristics of crude and purified oils were determined. Density, refractive index, viscosity and peroxide value were not affected by purification, while decreases in acidity, colour, unsaponifiable, E1%1cm 232, and oxidative stability, and increases in smoke point and E1%1cm 270 were observed. Purification did not affect the fatty acid and sterol profiles. GLC analysis for the fatty acid composition of the seed oil showed that the predominant unsaturates were linoleic (42% and oleic (38%, while the major saturates were palmitic (12,7% and stearic (6%. Only α-tocopherol was detected at a level of 126 mg/kg, which reduced to 78 mg/kg after purification. The main sterols of pumpkin seed oil unsaponifiable were Δ7.22,25 -stigmastatrien-3β-ol, α-spinasterol, Δ7,25_stigmastadienol and Δ7-avenasterol, followed by stigmasterol, 24-methylcholest-7-enol and Δ7-stigmastenol, and also trace to minor amounts of cholesterol, brassicasterol, campesterol, sitostanol, Δ5-avenasterol, erythrodiol and uvaol were found.

    Aceite de semillas de calabaza descascarada (Cucurbita pepo YCucurbita maxima fue extraído con éter de petróleo caliente, y luego desgomado, neutralizado y decolorado consecutivamente. Las características físicas y químicas de aceites crudo y purificado fueron determinadas. La densidad, el índice de refracción, la viscosidad y el índice de peróxido no se afectaron por la purificación, mientras que se observó una disminución en la acidez, color, insaponificable, E1%1cm 232, y estabilidad oxidativa, y un aumento en el punto de humo y de E1%1cm270. La purificaci

  3. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  4. The effects of fulvic acid application on seed and oil yield of safflower cultivars

    Directory of Open Access Journals (Sweden)

    Payman MORADI

    2017-09-01

    Full Text Available This study was carried out as split split plots in a randomized complete block design with three replications at Research Field of Agriculture Faculty, during 2014-2015 in Iran. In this study, the main factor was two safflower cultivars including: Sina and Faraman and subplot were foliar application of fulvic acid in 2 stages as: stem elongation and flowering and also sub sub plot were 3 different fulvic acid concentrations including as: 0: control (distilled water, 0.5 and 1 kg*ha-1. The results showed that the characters including: numbers of seed in head, 1,000 seed weight, seed yield, harvest index and oil percent were affected significantly by safflower cultivars, and also head weight were affected in different growth stages. Also the results of fulvic acid were showed significant different about head numbers, numbers of seed in head, biological yield, harvest index and oil percent. In this study the maximum seed yield and oil percent were achieved by Faraman cultivar in comparison with Sina, as it produced 14.33 and 19.5 percent more seed yield and oil percent in arrangement. Foliar application in stem elongation stage obtained 6.02 percent more seed yield but in flowering stage, fulvic acid spraying were achieved 35.5 percent more oil percent. Finally the results showed the positive effects of foliar application of fulvic acid in 1 kg*ha-1, as it produced 85.67 percent more oil percent in comparison with control.

  5. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils.

    Science.gov (United States)

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-03-01

    The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α- and β-pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from P. pungens seeds and cones was similar, while the hydrodistilled oils of P. orientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however P. orientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of P. pungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC-1) were similar: in a concentration of 0 - 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 - 0.005 μl/ml for HMEC-1 cells. IC 50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC 50 of both oils were 0.035 μl/ml for HMEC-1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Bioactive properties of faveleira (Cnidoscolus quercifolius seeds, oil and press cake obtained during oilseed processing.

    Directory of Open Access Journals (Sweden)

    Penha Patrícia Cabral Ribeiro

    Full Text Available To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid and peroxide value (1.13 ± 0.12 mEq/1000g, associated with the relevant concentration of linoleic acid (53.56%. It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g, especially flavonoids (29.81 ± 0.71 mg RE/g remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.

  7. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing.

    Science.gov (United States)

    Ribeiro, Penha Patrícia Cabral; Silva, Denise Maria de Lima E; Assis, Cristiane Fernandes de; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.

  8. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.)

    OpenAIRE

    Illana Louise Pereira de MELO; Carvalho,Eliane Bonifácio Teixeira de; Ana Mara de Oliveira e Silva; Luciana Tedesco YOSHIME; Sattler, José Augusto Gasparotto; PAVAN,Rosângela Torres; Mancini-Filho, Jorge

    2016-01-01

    Abstract This study aimed to characterize pomegranate seed oil and evaluate its quality and stability parameters against those of linseed oil. The profile of fatty acids and phytosterols and the content of tocopherols were analyzed by gas chromatography and high performance liquid chromatography, respectively. The quality of both oils was assessed as recommended by the American Oil Chemists' Society (AOCS) and stability was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene...

  9. Effects of microwave roasting on the yield and composition of cold pressed orange seed oils

    Directory of Open Access Journals (Sweden)

    B. Aydeniz Güneşer

    2017-03-01

    Full Text Available The aim of this study was to valorize orange (Citrus sinensis seeds, which are generated as waste. This study presents data about raw orange seed, the meal gained after cold pressing, and characterization data of the cold pressed seed oils. Furthermore, the effects of microwave roasting of the seds compared to regular roasting (control were determined. The oil yield of orange seed cold pressing was around 52.93–62.99%. After cold pressing, 13.57–17.97% oil remained in the meal together with 20.68–25.61% protein. Hence, pressed meals could be valorized for different purposes. Except for turbidity, the color b* value, free acidity, the p-anisidine value and antioxidant capacity, there was no significant difference between the two oil samples for the measured physicochemical properties. Six different fatty acids were quantified and the major fatty acids were linoleic, palmitic and oleic acids. The fatty acid composition of the orange seed oil can be accepted as nutritionally balanced. Among the fifteen sterols quantified, ß-sitosterol was dominant (around 77–78%. Likewise, the α-tocopherol content of the samples was not significantly different. The thermal onset and peak temperatures, and enthalpies for crystallization and melting were also reported. This study showed that good quality orange seed oils can be produced by cold pressing, and the oils could be used in food and non-food applications.

  10. Sterculia striata seed kernel oil: Characterization and thermal stability

    Directory of Open Access Journals (Sweden)

    Oliveira Cavalheiro, José Marcelino

    2008-06-01

    Full Text Available The objective of the present work was to characterize sterculia seed kernel oil. The chemical composition of the seeds, physicochemical properties as well as the fatty acid composition of the kernel oil was determined. The chemical composition of kernel flour presented about 25.8% lipid content. The physicochemical parameters such as acid, iodine, peroxide and saponification values were 0.82 (% as oleic acid, 69.2 (g iodine/100 g oil, 4.20 (m eq./kg and 136.1 (mg. KOH/g oil, respectively. With respect to fatty acid composition, the oil contained 36.2, 43.7 and 10.9% saturated, monounsaturated and polyunsaturated fatty acids, respectively. Palmitic acid (31.9%, oleic acid (41.7% and linoleic acid (10.73% were the principal saturated, monounsaturated and polyunsaturated fatty acids. Two cyclopropanoid fatty acids i.e. sterculic and malvalic acid were identified at a concentration of 5.3 and 2.3%, respectively. With regards to the thermal stability of the oil, a thermogravimetric analysis (TGA has shown that the oil was stable until about 284 °C, above that the oil started loosing mass, while a differential thermogravimetric analysis (DTGA revealed three stages of degradation with an increase in temperature. These stages corresponded to the degradation of polyunsaturated, monounsaturated and saturated fatty aids. The Differential Scanning Calorimetric (DSC analysis showed the existence of two exothermic events of energy transition, one of which is related to the oxidation reactions and another to the decomposition of the oil. Exothermic transitions in the oil were initiated at a temperature (Ti of 287.79 °C, and terminated at 347.81 °C, with an enthalpy variation of 11.69 joules.g–1 and at initial temperature (Ti of 384.87 °C, peak temperature (Tp 415.71 °C, final temperature (Tf 448.9 °C and an enthalpy of 200.83 Joules. G–1El objetivo de este trabajo fue la caracterización del aceite de almendra de la semilla de

  11. Alyssum homolocarpum seeds: phytochemical analysis and effects of the seed oil on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Hamedi, Azadeh; Ghanbari, Amir; Razavipour, Razieh; Saeidi, Vahid; Zarshenas, Mohammad M; Sohrabpour, Maryam; Azari, Hassan

    2015-07-01

    Pharmacognostic evaluation of medicinal plants may assess their current applications and possibly results in finding new active components. In this study, ash and extractive values and high performance thin layer chromatography fingerprints of Alyssum homolocarpum (Brassicaceae) seed extracts were investigated to elucidate its composition. Differential scanning calorimetry and gas chromatography-mass spectrometry analysis were employed to determine the components of A. homolocarpum seed oil (AHO). Neurosphere assay, in vitro differentiation and immunofluorescence analysis were performed to evaluate the effects of oral administration of AHO (0.5 or 1 g/kg/day for 14 days) on proliferation and differentiation of neural stem cells (NSCs) in adult male BALB/c mice. Total, acid-insoluble and water-soluble ash values were determined as 45.83 ± 5.85, 6.67 ± 2.89 and 28.33 ± 2.89 mg/g, respectively. The extractive values were 4.90, 0.43 and 0.56 % (w/w) for n-hexane, dichloromethane and ethanolic extracts, respectively. Interestingly, AHO was mainly composed of α-linolenic acid (89.71 %), β-sitosterol (3.3 mg/g) and campesterol (0.86 mg/g). Administration of AHO at 1 g/kg/day significantly increased proliferation of NSCs, as evidenced by an increase in mean neurosphere-forming frequency per brain (872.7 ± 15.17) and neurosphere diameter (101 ± 2.48 µm) compared to the control group (424.3 ± 59.29 and 78.63 ± 1.7 µm, respectively; P < 0.05). AHO treatment did not affect in vitro differentiation of the harvested NSCs. Our data show that A. homolocarpum seed oil is a rich source of α-linolenic acid and β-sitosterol with potential therapeutic application to enhance NSC proliferation and recruitment in neurological diseases.

  12. Detection Of Volatile Oil Content Of Single-Grainzanthoxylum Seed Based on Nir

    Science.gov (United States)

    Xu, Yun; Wang, Yiming; Wu, Jingzhu; Zhu, Shiping

    A NIR model was established to predict the volatile oil content of single particle red Zanthoxylum seed in this paper. With the characteristic of irregular surface, A single Zanthoxylum seed will reflect the great difference in response to spectrum signals the entire spectrum detection and exceptional sample rejection method were employed before model optimization. As a result, the NIR model for predicting the content of volatile oil were built up by 74 red Zanthoxylum seed and results indicated: the NIR model of the single grain Zanthoxylum seed had good stability and predictability (RSD3). Results of this paper suggested that NIR could be used as a quick and convenient method for predicting the volatile oil content of Zanthoxylum seed, which is useful for breeding and the quality evaluation of it.

  13. Evaluation of seed and oil yield stability in NS rapeseed cultivars (Brassica napus L

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2011-01-01

    Full Text Available Rapeseed trials performed in the period 2007-2010 were analyzed to evaluate seed and oil yield stability in NS rapeseed cultivars in changeable environmental conditions of northern Serbia. Seed yield, oil content and yield for 40 winter and 9 spring rapeseed cultivars were analyzed. It was found that the influence of year on seed and oil yield was most significant. Genotype (cultivars by environment (year interaction was further analyzed using AMMI (Additive Main Effects and Multiplicative Interaction model. In the environmental conditions present during the trial in Rimski Šančevi according to the analysis of regression coefficient (bi and ecovalence (Wi and AMMI model, winter cultivars Nena and NS-L-102 were the most stable and high seed yielding, and hybrid cultivar NS-H-R-3 was singled out for oil yield. These cultivars are recommended for implementation in future breeding programs and for growing in the conditions described in this paper.

  14. Comparison of chemical composition of Aerva javanica seed essential oils obtained by different extraction methods.

    Science.gov (United States)

    Samejo, Muhammad Qasim; Memon, Shahabuddin; Bhanger, Muhammad Iqbal; Khan, Khalid Mohammed

    2013-07-01

    Aerva javanica (Burm.f.) Juss. ex Schult. seed essential oils were obtained by hydrodistillation (HD) and dry steam distillation (SD) extracting methods and analyzed by using gas chromatography-mass spectrometry(GC-MS). Twenty and eighteen components representing 90.5% and 95.6% of the seed essential oil were identified, using hydrodistillation and dry steam distillation, respectively. The major constituent identified from seed essential oil obtained by HD were heptacosane (25.4%), 3-allyl-6-methoxyphenol (14.1%), pentacosane (12.1%), 6,10,14-trimethyl-2-pentade-canone (7.9%), nonacosane (7.1%), tricosane (3.6%), α-farnesene (3.5%), dodecanal (2.7%) and octacosane (2.1%). Whereas the major constituent identified from seed essential oil obtained by SD were heptacosane (41.4%), pentacosane (21.2%), nonacosane (14.8%), tricosane (6.3%), octacosane (4.2%) and tetracosane (3.0%).

  15. Radiations and biodegradation techniques for detoxifying Carica papaya seed oil for effective dietary and industrial use

    National Research Council Canada - National Science Library

    Afolabi, Israel Sunmola; Bisi-Adeniyi, Tolulope Dorcas; Adedoyin, Toluwalase Ronke; Rotimi, Solomon Oladapo

    2015-01-01

    Benzyl isothiocyanate (BITC) is toxic in high concentration. The capacity of Aspergillus niger, microwave and ultraviolet radiations to reduce the BITC levels in Carica papaya Linn seed oil were assessed in vitro...

  16. comparison of antimicrobial activity of seed oil of garlic and moringa

    African Journals Online (AJOL)

    User

    kinds of antibiotics, including the major last-resort drugs, the .... antihypertensive, antimicrobial, antidote (heavy metal poisoning) and .... 1 Antimicrobial activity of seed oil of Garlic against E.coli, S. aureus, Salmonella Sp. and Pseudomonas.

  17. Combustion for Enhanced Recovery of Light Oil at Medium Pressures

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.

    2014-01-01

    Using conventional production methods, recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in highly permeable homogeneous reservoirs. To increase the oil recovery factor, enhanced oil recovery (EOR) methods are used. We distinguish EOR that uses chemical

  18. Analytical Characterization of Butter Oil Enriched with Omega-3 and 6 Fatty Acid Sthrough Chia (Salvia hispanica L.) Seed Oil

    OpenAIRE

    Muhammad Nadeem; Muhammad Ajmal; Fazal Rahman; Muhammad Ayaz

    2015-01-01

    Analytical characterization of blends of butter oil and chia (Salvia hispanica L.) seed oil was performed. Chia oil was added in butter oil at four different levels i.e. 6.25%, 12.5%, 18.75% and 25% (T1, T2, T3 and T4), butter oil without any addition of chia oil served as control. Blends of butter oil and chia oil were packaged in tin containers, stored at ambient temperature (34±2oC) for 90-days. Iodine values of control, T1, T2, T3 and T4 were 36.85, 45.63, 57.22, 67.45 and 76.37 (cg/g).Co...

  19. Optimization of castor seed oil extraction process using response surface methodology

    Directory of Open Access Journals (Sweden)

    J. D. Mosquera-Artamonov

    2016-09-01

    Full Text Available This work focuses on the study of the oil extraction yield from castor seed using three different seed conditions: whole, minced and bare endosperm. Taguchi design was used to determine the contribution of the following parameters: seed condition, seed load in the extractor, temperature, and pressure. It was proved that it is necessary to introduce the whole seed and that the presence of the pericarp increases the extraction yield. The contribution of the control factors has an extraction yield limit. After determining which factors contributed to the process, these were left at their optimum levels aiming to reduce the control factors to only two. The complete analysis was done using a surface response methodology giving the best parameter for temperature and pressure that allows a better yielding mechanical extraction. The oil extraction yield can be kept up to 35% of the seed.

  20. Characterization of Acanthosicyos horridus and Citrullus lanatus seed oils: two melon seed oils from Namibia used in food and cosmetics applications.

    Science.gov (United States)

    Cheikhyoussef, Natascha; Kandawa-Schulz, Martha; Böck, Ronnie; de Koning, Charles; Cheikhyoussef, Ahmad; Hussein, Ahmed A

    2017-10-01

    The physicochemical characteristics, fatty acid, tocopherol, stigmasterol, β-sitosterol, and 1H NMR profiles of Citrullus lanatus and Acanthosicyos horridus melon seed oils were determined and compared among different extraction methods (cold pressing, traditional, and Soxhlet). The oil content was 40.2 ± 3.45 and 37.8 ± 7.26% for C. lanatus and A. horridus, respectively. Significant differences (p < 0.05) were observed among the different extraction methods in the characteristics studied. Physicochemical characteristics of the melon seed oils were saponification value, 180.48-189.86 mg KOH/g oil; iodine value, 108.27-118.62 g I2/100 g oil; acid value, 0.643-1.63 mg KOH/g oil; peroxide value; 1.69-2.98 mequiv/kg oil; specific gravity, 0.901-0.922; and refractive indices, 1.4676-1.4726. The dominant tocopherol was γ-tocopherol with total tocopherol in the range 27.61-74.39 mg/100 g. The dominant fatty acid was linoleic acid in the range 52.57-56.96%. The favorable oil yield, physicochemical characteristics, tocopherol, and fatty acid composition have the potential to replace or improve major commercial vegetable oils and to be used for various applications in the food industry and nutritive medicines.

  1. Formulasi Masker Wajah dari Minyak Biji Buah Anggur (Grape Seed Oil) sebagai Anti-Aging

    OpenAIRE

    Putra, Handy Pramana

    2016-01-01

    Background: Tropical climate may cause increased risk of skin damage or premature aging. This couldtriggering the formation of free radicals in the skin that cause wrinkles. Grape seed oil contains linoleic acid (Omega 6), oleic acid, stearic acid, palmitic acid and antioxidants such as vitamin E and OPC was beneficial to inhibit the free radicals. Objective: Formulation of grape seed oil in the preparation of face mask anti-aging and to determine the effect of different concentrations of ...

  2. Cold pressed poppy seed oils: sensory properties, aromatic profiles and consumer preferences

    OpenAIRE

    Emir, D. D.; Güneșer, O.; Yılmaz, E

    2014-01-01

    The sensory descriptions, aromatic profiles and consumer preferences of poppy seed oils produced from three poppy varieties (ofis3, ofis4, and ofis8) by cold pressing were studied. Roasting and enzyme treatments were applied to the seeds prior to cold pressing. In addition, 75 different volatiles were quantified by GC-MS analysis. A flavor profile analysis was made with 9 panelists and 12 terms were identified for the description of the oil. The results shown that, only earthy term scores wer...

  3. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    Science.gov (United States)

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Changes in the sterol compositions of milk thistle oil (Silybium marianum L.) during seed maturation

    Energy Technology Data Exchange (ETDEWEB)

    Harrabi, S.; Curtis, S.; Hayet, F.; Mayer, P.M.

    2016-07-01

    In this study, the total lipid content and sterol compositions were determined during the development of milk thistle seeds. The oil content increased to a maximum value of 36±1.7% and then declined to reach a value of 30.5±0.9% at full maturity. The sterol content of milk thistle seeds was affected by the ripening degree of the seeds. At the early stages of seed maturation, Δ7 -stigmastenol was the most abundant sterol followed by β-sitosterol. However, at full maturity, β-sitosterol was the most predominant sterol (46.50±0.8%). As the seed developed, campesterol and stigmasterol amounts increased, while Δ7 -avenasterol content decreased. It can be concluded that milk thistle seed oil has a characteristic sterol pattern comparable to the ones elucidated for olive oil and corn oil. The extracted oil from milk thistle seeds is rich in phytosterols and could be used in foodpreparation and human nutrition. (Author)

  5. Enhanced oil recovery projects data base

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  6. Characteristics of papaya seed oils obtained by extrusion-expelling processes.

    Science.gov (United States)

    Lee, Wei-Ju; Lee, Min-Hsiung; Su, Nan-Wei

    2011-10-01

    In general, about 300 g kg(-1) of the weight of papaya fruits appears as waste materials during processing, including a considerable amount of papaya seeds. To make a more efficient use of papaya, it is worth investigating the utilization of the seeds. The aim of this study was to comprehensively assess the lipid characteristics of papaya seed oil obtained by expelling processes. Papaya seed oil was found to have several unique characteristics, including its high oleic content, the relative ratio of saturated/monounsaturated/polyunsaturated fatty acids of 29/68/3, the polyunsaturated fatty acids merely accounting for 3.34% and its triacylglycerol composition being very similar to that of olive oil. Also, this oil was rich in chemopreventive benzyl isothiocyanate, the level ranging from 4.0 to 23.3 g kg(-1) dependent on the various processing methods for the pretreatment of papaya seeds. On the basis of our results, papaya seed oil can be considered as a high-oleic oil with a chemoprotective effect, and may be viewed as a healthy alternative in the functional food industry. Copyright © 2011 Society of Chemical Industry.

  7. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis.

    Science.gov (United States)

    Andre, Carl; Froehlich, John E; Moll, Matthew R; Benning, Christoph

    2007-06-01

    Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.

  8. Physicochemical properties of caper species seed oils collected from two different harvest years.

    Science.gov (United States)

    Duman, Erman; Özcan, Mehmet Musa

    2015-11-01

    In this study the physicochemical properties, fatty acid composition and sterol and tocopheol contents of caper species seed oils were determined. Brightness (L*) values of oils obtained from caper seeds ranged between 36.76 and 53.48. Viscosity values of oils of Capparis spinosa species were between 41.1 and 48.6 mPa. While oleic acid levels were high in C. spinosa species oils, linoleic acid levels were high in Capparis ovata species oils. Sterol contents of crude oils were between 3140 and 3272 mg kg(-1) (mean 3220 mg kg(-1)) for C. spinosa species and between 3275 and 3312 mg kg(-1) (mean 3298 mg kg(-1)) for C. ovata species. α-Tocopherol contents of C. spinosa and C. ovata oils averaged 3.87 and 2.63 mg per 100 g respectively. Radical-scavenging activities of crude oils averaged 29.78% (C. spinosa species) and 26.09% (C. ovata species). Total phenolic concentrations in crude oils averaged 0.642 mg g(-1) for C. ovata species (P < 0.01). Caper seeds are a natural source of vegetable oils that are beneficial in terms of health, oil stability and resistance to oxidation. © 2014 Society of Chemical Industry.

  9. Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F. (Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L. oil for the safety of pigeon pea seeds.

    Science.gov (United States)

    Pandey, Abhay K; Palni, Uma T; Tripathi, N N

    2014-12-01

    Essential oils from 35 aromatic and medicinal plant species of Gorakhpur Division (U. P., India) were evaluated for their repellent activity against pulse bruchids Callosobruchus chinensis L. and C. maculatus F. of stored pigeon pea seeds. The oil concentration was at 0.36 μl/ml. Out of 35 essential oils, Adhatoda vasica Ness and Chenopodium ambrosioides L. oils showed absolute (100 %) insect repellency. Chenopodium oil exhibited 100 % mortality for both the test insects at 10 μl concentration (LD50 = 2.8 μl for C. chinensis & 2.5 μl for C. maculatus) and more toxic than Adhatoda oil (LD50 = 6.8 μl for C. chinensis & 8.4 μl for C. maculatus). During in vivo evaluation, 0.29 and 0.58 μl/ml of Chenopodium oil significantly enhanced feeding deterrence in insects and reduced the seed damage as well as weight loss of fumigated pigeon pea seeds up to 6 months of storage as compared to control set. Thus, Chenopodium oil can be used as an effective option of commercial fumigants for the storage of pigeon pea seeds against pulse bruchids.

  10. Enhancing crop productivity through community-based seed ...

    African Journals Online (AJOL)

    Enhancing crop productivity through community-based seed multiplication system. ... to purchase household items, and part invested in transport businesses and rearing of small ruminants as well as in human capital such as paying children's school fees and family hospital bills and meeting other social responsibilities.

  11. Phytoestrogen content of beverages, nuts, seeds, and oils.

    Science.gov (United States)

    Kuhnle, Gunter G C; Dell'Aquila, Caterina; Aspinall, Sue M; Runswick, Shirley A; Mulligan, Angela A; Bingham, Sheila A

    2008-08-27

    Phytoestrogens are secondary plant metabolites that have received increasing attention for their bioactivity, in particular due to their structural and functional similarity to 17beta-estradiol. Although urinary and plasma phytoestrogens can be used as biomarkers for dietary intake, this is often not possible in large epidemiological studies or in the assessment of general exposure in free-living individuals. Accurate information about dietary phytoestrogens is therefore important, but there are very limited data concerning food contents. In this study was analyzed a comprehensive selection of tea, coffee, alcoholic beverages, nuts, seeds, and oils for their phytoestrogen content using a newly developed sensitive method based on LC-MS incorporating (13)C 3-labeled standards. Phytoestrogens were detected in all foods analyzed, although the contents in gin and bitter (beer) were below the limit of quantification (1.5 microg/100 g). Lignans were the main type of phytoestrogens detected. Tea and coffee contained up to 20 microg/100 g phytoestrogens and beer (except bitter) contained up to 71 microg/100 g, mainly lignans. As these beverages are commonly consumed, they are a main source of dietary lignans. The results published here will contribute to databases of dietary phytoestrogen content and allow a more accurate determination of phytoestrogen exposure in free-living individuals.

  12. GC-MS study of Nigella sativa (seeds fatty oil

    Directory of Open Access Journals (Sweden)

    Mehta, B. K.

    2002-06-01

    Full Text Available The GC-MS study of N. sativa (seeds fatty oil revealed the presence of 26 compounds which were identified as methyl hept-6-enoate,1-phenylhepta-2,4-dione, pentadecane, hexadec-1-ene, 1-phenyldecan-2-one, octadec-1-ene, octadecane, methyl pentadecanoate, bis(3-chlorophenyl ketone, diethyl phthalate, ethyl octadec-7-enoate, methyl octadecanoate, tricos-9-ene, octadeca-9,12-dienoic acid, hexadecanoic acid, methyl hexadecanoate, methyl octadec-15-enoate, henicosan-10-one, 2-methyl octadecanoic acid, docos-1-ene, ethyl octadecanoate, methyl octadecanoate, pentacos-5-ene,12-methyltricosane, dibutyl phthalate and 2-methyltetracosane.El estudio por GC-MS del aceite de la semilla de Nigella sativa reveló la presencia de 26 compuestos los cuales fueron identificados como: hept-6-enoato de metilo, 1-fenilhepta-2,4-diona, pentadecano, hexadec-1-eno, 1-fenildecan-2-ona, octadec-1-eno, octadecano, pentadecanoato de metilo, bis(3-clorofenil cetona, ftalato de dietilo, octadec-7-enoato de etilo, octadecanoato de metilo, tricos-9-eno, ácido octadeca-9,12-dienoico, ácido hexadecanoico, hexadecanoato de metilo, octadec-15-enoato de metilo, henicosan-10-ona, ácido 2-metil octadecanoico, docos-1-eno, octadecanoato de etilo, octadecanoato de metilo, pentacos-5-eno, 12-metiltricosano, ftalato de dibutilo y 2-metiltetracosano.

  13. Fatty acids and sterols of Griffonia seeds oil

    Directory of Open Access Journals (Sweden)

    Ramazanov, Zakir

    2003-03-01

    Full Text Available Lipids, fatty acids and sterols of Griffonia simplicifolia seeds oil were studied. Fatty acid composition is 18:2 - 60 %, 16:0, 18:0, 18:1 - 9-18 %, and 20:0 - 3-4 %. The main sterol is β-sitosterol - 60 %, stigmasterol is 29 %, and campesterol is 11 %. Linoleic acid can be relatively simply enriched to 95 % separating the other fatty acids as urea adducts.Se han estudiado los lípidos, ácidos grasos y esteroles del aceite de semillas de Griffonia simplicifolia. La composición en ácidos grasos es 18:2 – 60 %, 16:0, 18:0, 18:1 – 9-18 %, y 20:0 – 3-4 %. El principal esterol es el β-sitosterol – 60 %, el estigmasterol constituye el 29 %, y el campesterol el 11 %. El ácido linoleico puede enriquecerse hasta el 95 % separando los otros ácidos grasos como aductos de urea.

  14. Characterization of Barnyard Millet Starch Films Containing Borage Seed Oil

    Directory of Open Access Journals (Sweden)

    Thi Luyen Cao

    2017-11-01

    Full Text Available In this study, barnyard millet starch (BMS was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO. The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.

  15. Analytic investigations on protein content in refined seed oils: implications in food allergy.

    Science.gov (United States)

    Ramazzotti, Matteo; Mulinacci, Nadia; Pazzagli, Luigia; Moriondo, Maria; Manao, Giampaolo; Vincieri, Franco Francesco; Degl'Innocenti, Donatella

    2008-11-01

    A number of scientific reports have investigated the possible implications of refined seed oils in allergic reactions, resulting in conflicting points of view. Also the total amount of residual proteins after refinement is still a matter of debate. Nevertheless, seed oils are now blamed as possible cause of allergic reactions. To determine the true amount of proteins after oil refinement and to shed new lights on allergenic properties of refined seed oils. We optimized a protein extraction procedure on several commercial refined seed oils. Both colorimetric and amino acid analysis were used to measure residual protein content. SDS-PAGE was also used for characterizations of protein band patterns. Sensitized child patients sera were tested by Western blot on PAGE-resolved proteins. Our extraction method proved to be effective and reproducible. Amino acid analysis resulted more accurate in determining the protein content with respect to colorimetric methods, indicating a higher protein content than that previously reported. IgE responsive residual proteins were found in peanut oil extracts. Our preliminary data suggest that fully refined seed oils should be taken into account in the context of allergic reactions and would benefit of further toxicological studies.

  16. Physicochemical characteristics of the cold-pressed oil obtained from seeds of Fagus sylvatica L.

    Science.gov (United States)

    Siger, Aleksander; Dwiecki, Krzysztof; Borzyszkowski, Wojciech; Turski, Mieczysław; Rudzińska, Magdalena; Nogala-Kałucka, Małgorzata

    2017-06-15

    A physicochemical characteristic of the cold-pressed oil obtained from seeds of common beech (Fagus sylvatica L.) has been presented. This plant may be considered as unconventional oilseeds crops because of relatively high content of fat (27.25%). The analyzed beech seeds oil has been classified as oleic-linoleic acids oil with more than 76% percentage share of those species. Beech seeds oil contains 4.2% of gamma-linolenic acid (GLA). Unique characteristic is the high content of γ-tocopherol (75.4mg/100g) and δ-tocopherol (34.05mg/100g). γ-Tocopherol is effective scavengers of reactive nitrogen species and prevents DNA bases nitration, what makes beech seeds oil interesting raw material in the production of cosmetics. Additionally the content of carotenoids, very effective photooxidation inhibitors, is at high level in comparison with other cold-pressed oils. It was demonstrated that PCA analysis may help to determine the authenticity of oil obtained from beech seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Seed Borne fungi Castor Oil ( Ricinus cummunis ): Effect of Their ...

    African Journals Online (AJOL)

    Benlate], mancozeb [Dithan M45] and thiran [Fernasan D] at three different concentrations all significantly controlled seed-borne fungi and increased seed germination. Benomyl proved to be the most effective in controlling mycoflora and increasing ...

  18. Bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides seeds against Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae).

    Science.gov (United States)

    Fogang, Hervet Paulain Dongmo; Womeni, Hilaire Macaire; Piombo, Georges; Barouh, Nathalie; Tapondjou, Léon Azefack

    2012-03-01

    Experiments were conducted in the laboratory to evaluate the bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides (Rutaceae) against Acanthoscelides obtectus (Coleoptera: Bruchidae). The chemical composition of the essential oil and the fatty acid composition of the vegetable oil extracted from the seeds of Z. xanthoxyloides were determined. The insecticidal activities of these oils and the associated aromatized clay powder were evaluated against A. obtectus. Both oils were strongly repellent (100% repellency at 0.501 μl/cm² essential oil and 3.144 μl/cm² vegetable oil) and highly toxic (LC₅₀ = 0.118 μl/cm² for essential oil) to this beetle after contact on filter paper. The vapors of the essential oil were highly toxic to adult insects (LC₅₀ = 0.044 μl/cm³), and the aromatized powder made from clay and essential oil was more toxic (LD₅₀ = 0.137 μl/g) than the essential oil alone (LD₅₀ = 0.193 μl/g) after 2 days of exposure on a common bean. Both oils greatly reduced the F₁ insect production and bean weight loss and did not adversely affect the bean seed viability. In general, the results obtained indicate that these plant oils can be used for control of A. obtectus in stored beans.

  19. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physicochemical properties of Terminalia catappa seed oil as a novel dietary lipid source

    OpenAIRE

    Janporn, Supatcha; Ho, Chi-Tang; Chavasit, Visith; Pan, Min-Hsiung; Chittrakorn, Sasivimon; Ruttarattanamongkol, Khanitta; Weerawatanakorn, Monthana

    2015-01-01

    Terminalia catappa Linn (TC) is an ornamental tree planted extensively in many countries. It has been known for a long time that the seeds are edible but no research has focused on the realm of its use as food. Our previous data showed that the seed contains high levels of oil content (600 g/kg) and possesses the optimum fatty acid balance indicated in fat dietary guidelines. This study aims to investigate the physical and chemical properties and the possibility of using TC seed oil as a new ...

  1. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    Science.gov (United States)

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  2. Health Benefits of Dietary Tree Peony Seed Oil in a High Fat Diet Hamster Model

    National Research Council Canada - National Science Library

    Zhiqiang Zheng; Jigang Han; Yingyi Mao; Xue Tang; Yan Guan; Yonghong Hu

    2017-01-01

    .... In this study, we experimentally investigated benefits of dietary tree peony seed oil(PSO) in dyslipidemia-associated metabolic diseases using a high fat diet hamster model.Methods:High fat diets(HFD)containing 15 % coconut oil(CO...

  3. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    Directory of Open Access Journals (Sweden)

    Lingli Deng

    Full Text Available Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.. The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase ( 45% water along the dilution line.

  4. Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties

    Science.gov (United States)

    Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...

  5. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    Science.gov (United States)

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial

  6. Performance and Emission Characteristics of an IDI Diesel Engine Fuelled Biodiesel (Rubber Seed Oil and Palm Oil Mix Diesel Blends

    Directory of Open Access Journals (Sweden)

    Adam Ibrahim K.

    2014-07-01

    Full Text Available In this study crude rubber seed oil and palm oil were mixed at 50: 50 vol.feedstock’s blending methods is motivated by cost reduction and properties enhancement. Biodiesel was produced and thermo physical properties are studied. Blends of B5, B10 and B20 of biodiesel to diesel were prepared. Engine performance (torque, brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and emission (CO, NOx and exhaust gas temperature were evaluated in a 4 cylinder, natural aspirated, indirect injection (IDI diesel engine. The results indicated that at rated engine speed of 2500 rpm torque obtained were 87, 86, 85.3 and 85 Nm for neat diesel, B5, B10 and B20 respectively. Torque in all blends case yield between 0 to 5% lower than neat diesel. BTE were 27.58, 28.52, and 26.45% for B5, B10 and B20 compared to neat diesel 26.99%. At lower blends ratio BSFC was found to be lower and increased proportional to the blends ratio. The CO emission reduced but the exhaust gas temperature and NOx increased as blends ratio increases.

  7. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    Science.gov (United States)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  8. Health and physiological quality of sorghum seeds treated with aqueous extracts and essential oils

    Directory of Open Access Journals (Sweden)

    Nicoletta Stefânia Dias da Silva Flávio

    2014-02-01

    Full Text Available The objective of the present study was to evaluate the efficiency of aqueous extracts and essential oils on seed quality of sorghum cultivar BR 310. Two experiments were conducted, one using sorghum seeds treated with aqueous extract of Cinnamomum zeylanicum and Mentha spicata and another using essential oils of Ocimum gratissimum and Annona crassiflora. For the experiment with extracts concentrations were 0, 10, 20 and 30% and for the oils were 0, 5, 10 and 15 ?L/mL. We evaluated the following characteristics: seed health (Blotter test, germination, first count of germination and germination speed index. The design was a DIC in 2 x 4 factorial arrangement, two oils or two extracts with four concentrations, independent testing. Several fungal species were associated with the seed, and the genus Curvularia the most prevalent. The aqueous extract of cinnamon (Cinnamomum zeylanicum and clove essential oil of basil (Ocimum gratissimum have shown promise for the treatment of seeds, reducing fungal infestation, especially Curvularia, however have phytotoxic effect reducing the viability and vigor of sorghum seeds.

  9. Effects of adlay seed oil on blood lipids and antioxidant capacity in hyperlipidemic rats.

    Science.gov (United States)

    Yu, Fei; Gao, Jing; Zeng, Yong; Liu, Chang-Xiao

    2011-08-15

    Adlay (Coix lacryma-jobi L. subsp. ma-yuen (Romanet) T. Koyama (family Poaceae)) seed has been used as a dietary supplement for its therapeutic effects for thousands of years. This study was designed to investigate the effects of adlay seed oil, obtained by supercritical CO₂ extraction, on blood lipids and antioxidant capacity in hyperlipidemic rats. Adlay seed oil could reduce the abdominal fat tissue and low-density lipoprotein concentration, and increase the total antioxidant capacity in hyperlipidemic rats. Adlay seed oil also significantly decreased the malondialdehyde content in serum, and increased serum total superoxide dismutase activity in hyperlipidemic rats. Therefore, the antioxidant mechanism might be related to the scavenging effects of adlay seed oil on reactive oxidative species, especially on the superoxide anion free radical. The results showed that adlay seed oil had blood lipid-reducing and antioxidant effects, and could be used as a supplement in healthcare food and drugs for the prevention of chronic diseases (especially artherosclerosis and coronary artery disease). Copyright © 2011 Society of Chemical Industry.

  10. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2015-02-01

    Full Text Available Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD and seeding rate (SR on seed composition (protein, oil, fatty acids, and sugars and seed minerals (B, P, and Fe in soybean grown in two row-types (RT on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at seeding rates of 20, 30, 40, and 50 seeds m–2. The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest seeding rates (40 and 50 seeds m–2, the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature, and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions.

  11. enhancing the potency of vegetable oils by combining with ...

    African Journals Online (AJOL)

    after treated seeds had been stor for (i days. Presumably, with storage the oils were absorbed by grains» therey reducing its availability for pick up by the beetles (Temho and Merritt, i95); Furthermore, the oils could also act as antifeedants or modify the storage micro-environment thereby discouraging insect penetration and ...

  12. Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities.

    Science.gov (United States)

    Kedia, Akash; Prakash, Bhanu; Mishra, Prashant K; Dubey, N K

    2014-01-03

    The study reports potential of Cuminum cyminum (cumin) seed essential oil (EO) as a plant based shelf life enhancer against fungal and aflatoxin contamination and lipid peroxidation. The EO showed efficacy as a preservative in food systems (stored wheat and chickpeas). A total of 1230 fungal isolates were obtained from food samples, with Aspergillus flavus LHP(C)-D6 identified as the highest aflatoxin producer. Cumin seed EO was chemically characterized through GC-MS where cymene (47.08%) was found as the major component. The minimum inhibitory concentration and minimum aflatoxin inhibitory concentration of EO were 0.6 and 0.5 μl/ml respectively. The EO showed toxicity against a broad spectrum of food borne fungi. The antifungal action of EO on ergosterol content in the plasma membrane of A. flavus was determined. The EO showed strong antioxidant potential having IC50 0.092 μl/ml. As a fumigant in food systems, the EO provided sufficient protection of food samples against fungal association without affecting seed germination. In view of the antifungal and antiaflatoxigenic nature, free radical scavenging potential and efficacy in food system, cumin seed EO may be able to provide protection of food commodities against quantitative and qualitative losses, thereby enhancing their shelf life. The present investigation comprises the first report on antifungal mode of action of cumin seed EO and its efficacy as fumigant in food systems. © 2013.

  13. In vitro antioxidant activities of extract and oil from roselle (Hibiscus sabdariffa L.) seed against sunflower oil autoxidation.

    Science.gov (United States)

    Nyam, K L; Teh, Y N; Tan, C P; Kamariah, L

    2012-08-01

    In order to overcome the stability problems of oils and fats, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) have widespread use as food additives in many countries. Recent reports reveal that these compounds may be implicated in many health risks, including cancer and carcinogenesis. Hence, there is a move towards the use of natural antioxidants of plant origin to replace these synthetic antioxidants. In this study, roselle seed oil (RSO) and extract (RSE) were mixed with sunflower oil, respectively to monitor degradation rate and investigate antioxidant activity during accelerated storage. The antioxidant activity was found to stabilise sunflower oil of various samples and in the order of RSE>RSO>tocopherol>sunflower oil. The total percentage increased after 5 days of storage period in free fatty acid (FFA), peroxide value (PV) and anisidine value (AV). Total oxidation value (TOx) of sunflower oil supplemented with 1500 ppm RSE was 33.3%, 47.7%, 14.5%, and 45.5%, respectively. While the total percentage increased under different analysis methods, sunflower oil supplemented with 5% RSO was 17.2%, 60.4%, 36.2% and 59.0% in the order of FFA, PV, AV and TOTOX. Both RSO and RSE were found to be more effective in stabilisation of sunflower oil compared to tocopherol. Total phenolic content of RSE was 46.40 +/- 1.51 mg GAE/100g of oil while RSO was 12.51 +/- 0.15 mg GAE/ 100g of oil. The data indicates that roselle seed oil and seed extract are rich in phenolics and antioxidant activities and may be a potential source of natural antioxidants.

  14. Immobilization of Candida rugosa lipase on MCM-41 for the transesterification of cotton seed oil.

    Science.gov (United States)

    Katiyar, Madhu; Ali, Amjad

    2012-01-01

    Present study demonstrated the preparation of MCM-41 as a support for the immobilization of Candida rugosa lipase by the physical adsorption technique. The lipase immobilized MCM-41 has been characterized by scanning electron microscopic and FTIR techniques. At pH 6, maximum lipase immobilization (250 mg/g) on MCM support has been observed and the immobilized lipase was employed as biocatalyst for the transesterification of the cotton seed oil with methanol. The pH of the reaction medium, reaction temperature and methanol/oil molar ratio have been optimized to achieve a maximum 98±3% fatty acid methyl esters yield (FAMEs)from cotton seed oil.

  15. Quantitation of the main constituents of some authentic grape-seed oils of different origin.

    Science.gov (United States)

    Crews, Colin; Hough, Patrick; Godward, John; Brereton, Paul; Lees, Michelle; Guiet, Sebastien; Winkelmann, Wilfried

    2006-08-23

    This paper describes the composition of 30 grape-seed oils obtained from France, Italy, and Spain during 2002-2003. Oils were extracted from the seeds using small-scale industrial solvent extraction equipment and analyzed in their unrefined state using standard methods for fatty acids, fatty acids in the triacylglycerol 2-position, tocopherols and tocotrienols, triglycerides, sterols, steradienes, and iodine value. Values for the composition of the sterols, triglycerides, fatty acids, iodine value, and tocopherol composition were generally in good agreement with the results of previous similar surveys. Steradienes (stigmastadiene, campestadiene, stigmastatriene, and campestatriene) were detected in the oil and were probably formed from sterols during the extraction process.

  16. Cold pressed poppy seed oils: sensory properties, aromatic profiles and consumer preferences

    Directory of Open Access Journals (Sweden)

    Emir, D. D.

    2014-09-01

    Full Text Available The sensory descriptions, aromatic profiles and consumer preferences of poppy seed oils produced from three poppy varieties (ofis3, ofis4, and ofis8 by cold pressing were studied. Roasting and enzyme treatments were applied to the seeds prior to cold pressing. In addition, 75 different volatiles were quantified by GC-MS analysis. A flavor profile analysis was made with 9 panelists and 12 terms were identified for the description of the oil. The results shown that, only earthy term scores were different among the seed varieties, while treatments have caused differences in roasted, hazelnut, hay and sweet aromatic terms. Roasting and enzyme treatments decreased hay and increased sweet aromatic values. The enzyme treatment of the poppy seeds enhanced fermented and waxy scores in the cold press oils. 1-hexanol, 2-heptanone, 2-pentanone, 2-pentyl furan, 3-ethyl- 2-methyl 1,3-hexadiene, 2-(dimethylamino-3-phenylbenzo[b]thiophene, 3-octen-2-one, 4-hydroxyphenylacetic acid, alpha-pinene, limonene, dimethyl sulfone, mercaptoacetic acid, hexanal and nonanal were quantified as the major volatiles in all treatment groups. Consumer test results indicated that roasted samples are more liked, and the yellow (ofis4 roasted sample was identified as the most preferred (53.55% oil by consumers. This study provides the first sensory descriptive definitions and consumer preferences for poppy seed oils.En este trabajo, se analizan las descripciones sensoriales, perfiles aromáticos y preferencias de los consumidores de aceites de semillas de amapola producidosmediante prensado en frío a partir de tres variedades (ofis3, ofis4, y ofis8.Previo al prensado en frío, a las semillas se aplicóuna fase de tostado y un tratamiento enzimático. Además del análisis GC-MS donde se cuantificaron 75 compuestos volátiles, el perfil del sabor,realizado con 9 panelistas,logra identificar 12 términos descriptores. Los resultados muestran que, solamente la puntuación del t

  17. Antioxidant effect of poleo and oregano essential oil on roasted sunflower seeds.

    Science.gov (United States)

    Quiroga, Patricia R; Grosso, Nelson R; Nepote, Valeria

    2013-12-01

    The objective was to evaluate the stability of sensory and chemical parameters in roasted sunflower seeds supplemented with oregano and poleo essential oils; and the consumer acceptability of this product. Four samples were prepared: plain roasted sunflower seeds (Control = RS-C), and sunflower seeds added with oregano (RS-O) or poleo (RS-P) essential oils or BHT (RS-BHT). Consumer acceptance was determined on fresh samples. The overall acceptance averages were 6.13 for RS-C, 5.62 for RS-P, and 5.50 for RS-O (9-point hedonic scale). The addition of BHT showed greater protection against the oxidation process in the roasted sunflower seeds. Oregano essential oil exhibited a greater antioxidant effect during storage than poleo essential oil. Both essential oils (oregano and poleo) provided protection to the product, inhibiting the formation of undesirable flavors (oxidized and cardboard). The antioxidant activity that presents essential oils of oregano and poleo could be used to preserve roasted sunflower seeds. © 2013 Institute of Food Technologists®

  18. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes.

    Science.gov (United States)

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H

    2012-01-01

    Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA.

  19. Oil accumulation in soybean seeds grown in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    José Leonardo Bruno

    2015-10-01

    Full Text Available The soybean seed presents around 20% of oil and 40% of protein. These levels, during the filling of the seeds, can be influenced by environmental conditions, where are produced changes on its biochemistry composition. The higher temperatures promote the accumulation of protein, and the moderate temperatures favor the oil accumulation. Under in vivo growing conditions the control of these factors is difficult. The in vitro procedure can help the research, because the seed can be isolated from the mother plant in controlled environment. The objective of this experiment was to evaluate the oil content of BRS184 and BRS282in vitro and in vivo. The in vivo procedure, occurred in the greenhouse, with 3plantsper potand seed collectionin R8, and in vitro procedure, developed in the laboratory, where the immature seeds were taken from the mother plant in R5 stage, cultured with a liquid culture medium containing 20 mM, 40 mM and 60 mM glutamine, with a constant agitation, during eight days at 25 ± 0.2 °C, and sucrose concentration of 204.5 mM. After the in vitro cultivation time for, the fresh weight gain of the seeds was evaluated, and after both experiments, was determined by the oil content for cultivation in R5, and R8. The accumulation of oil in soybean seeds presents a complex interaction, ranging between the genotype and the environmental conditions, under in vivo and in vitro cultivation. There is a positive correlation between production and oil content in seeds.

  20. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    Science.gov (United States)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  1. Induction of apoptotic cell death in HL-60 cells by jacaranda seed oil derived fatty acids.

    Science.gov (United States)

    Yamasaki, Masao; Motonaga, Chihiro; Yokoyama, Marino; Ikezaki, Aya; Kakihara, Tomoka; Hayasegawa, Rintaro; Yamasaki, Kaede; Sakono, Masanobu; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2013-01-01

    Various fatty acids are attracting considerable interest for their anticancer effects. Among them, fatty acids containing conjugated double bonds show one of the most potent cytotoxic effects on cancer cells. Here, we focused on the cancer cell killing activity of jacaranda seed oil. The seed oil of jacaranda harvested from Miyazaki in Japan contained 30.9% cis-8, trans-10, cis-12 octadecatrienoic acid, called jacaric acid (JA). Fatty acid prepared from this oil (JFA) and JA strongly induced cell death in human leukemia HL-60 cells. On the other hand, linoleic acid and trans-10, cis-12 conjugated linoleic acid (jacaranda seed oil has potent apoptotic activity in HL-60 cells through induction of oxidative stress.

  2. Spectroscopic and thermooxidative analysis of organic okra oil and seeds from Abelmoschus esculentus.

    Science.gov (United States)

    de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; Dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi

    2012-01-01

    With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2 °C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption.

  3. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    Science.gov (United States)

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  4. Hemp-seed and olive oils: their stability against oxidation and use in O/W emulsions.

    Science.gov (United States)

    Sapino, S; Carlotti, M E; Peira, E; Gallarate, M

    2005-01-01

    Hemp-seed oil has several positive effects on the skin: thanks to its unsaturated fatty acid (PUFA) content it alleviates skin problems such as dryness and those related to the aging process. We present a comparative study of hemp-seed and olive oils, determining some physicochemical indices and evaluating their stability against oxidation. The peroxide value of hemp-seed oil was below 20, the threshold limit for edible oils. Hemp-seed oil was less stable against peroxidation than olive oil, but MDA and MONO assays showed its stability to be above expectations. The chlorophyll contained in extra virgin olive oil had a higher photostability than that contained in hemp-seed oil, possibly due to the larger amount of antioxidant in the olive oil. A certain amount of Vitamin E was found in hemp-seed oil. Since quality analyses indicated that hemp-seed oil is relatively stable, emulsions were prepared with the two oils, and their stability and rheological characteristics were tested. Some of the resulting gel-emulsions were suitable for spraying on the skin.

  5. APPLICATION METHOD OF ANTIMICROBIAL SUB -STANCES FOR THE CONTROL OF schiZophyllum commuN e FR. CAUSING BROWN GERM AND SEED ROT OF OIL PALM

    Directory of Open Access Journals (Sweden)

    ANTARIO DIKIN

    2008-01-01

    Full Text Available Biological seed treatment promotes to save the environment from toxic chemicals in the agricultural practices. Schizophyllum commune is one of the important seedborne pathogenic fungi causing brown germ and seed rot of oil palm which required effective and efficient treat -ment based on environmental friendly approaches. Anti-microbial substances are extracted from antagonistic bacteria of B. multivorans and M. testaceum after mass production in the liquid media. Application method of anti-microbial substances for the control of Schizophylllum commune was done by seed dipping for 30 minutes and vacuum infiltration at 400 mm Hg. vac. for 2 min. in supernatant of anti-microbial substances diluted in sterilized distilled water with concentra -tion ratio of 1:4. Application method using anti-microbial substances from antagonistic bacteria inhibited the growth of pathogenic fungus, enhanced seed germination, and without causing any abnormal growth of oil palm seedlings.

  6. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation1

    Science.gov (United States)

    2016-01-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A. β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation. PMID:27493214

  7. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation.

    Science.gov (United States)

    Ma, Huimin; Wang, Shui

    2016-10-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Chemical Composition of Date Palm (Phoenix dactylifera L.) Seed Oil from Six Saudi Arabian Cultivars.

    Science.gov (United States)

    Nehdi, Imeddedine Arbi; Sbihi, Hassen Mohamed; Tan, Chin Ping; Rashid, Umer; Al-Resayes, Saud Ibrahim

    2018-01-27

    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein. This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia. © 2018 Institute of Food Technologists®.

  9. The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system

    Energy Technology Data Exchange (ETDEWEB)

    Curt, M.D.; Sanchez, G.; Fernandez, J. [Universidad Politecnica de Madrid, Dept. de Produccion Vegetal: Botanica y Proteccion Vegetal, Madrid (Spain)

    2002-07-01

    Cynara cardunculus L. has been recognised as an energy crop for rainfed lands with Mediterranean climates. For energy purposes, it is grown as a permanent crop and the whole aerial biomass produced over the annual growth cycle is harvested every year. In this work, the potential of C. cardunculus L. as an oil crop is studied in a perennial cultivation system. The degree of variation of seed oil content and fatty acid oil composition is assessed in two experiments designed to study the effect of the factors: plant population, crop year and experiment location. The range of values of seed oil content was greater for the multilocal experiment (20.0-31.6%) than for the experiment on populations (22.0-28.8%), but the effect of the agricultural year was noticed in both experiments. There were significant differences in the 18 populations experiment and a group of 5 populations was identified as rich in seed oil (>26%). Seed presscake was analysed and as a result the use of this material as fertiliser or as animal feed was proposed. Finally, the degree of variation of fatty acid oil composition-studied for the factors population, location and year-turned out to be rather small. Cynara oil profile was characterised in terms of major fatty acids as: 10.7% palmitic, 3.7% stearic, 25.0% oleic and 59.7% linoleic. (Author)

  10. Cold pressed versus solvent extracted lemon (Citrus limon L.) seed oils: yield and properties.

    Science.gov (United States)

    Yilmaz, Emin; Güneşer, Buket Aydeniz

    2017-06-01

    During the processing of lemon fruit, a large quantity of seeds is produced as a by-product. These seeds contain valuable components; therefore, required to be evaluated. This study aimed to compare the cold pressed with hexane-extracted lemon seed oils and determine their physicochemical and thermal properties. Cold pressing yielded significantly lower oil (36.84%) than hexane extraction (71.29%). In addition, the concentrations of free fatty acids, peroxides, and p-anisidine were lower in the cold pressed oil. Cold pressed oil showed higher total phenolics, α-tocopherol and antioxidant capacity. The major fatty acids found in the cold pressed oil were linoleic and palmitic acids, whereas β-sitosterol and campesterol were the dominant sterols. The crystallization and melting temperatures and enthalpies were also elucidated. In conclusion, this study proved that high quality of lemon seed oils can be produced by the cold pressing technique; this oil can be used in industries such as the food, cosmetic or chemical industries.

  11. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice.

    Science.gov (United States)

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Hamdi Pacha, Y

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD₅₀ values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opuntia ficus indica seeds were extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, and saponification value as well as refractive index and density. LD₅₀ values obtained by single doses, orally and intraperitoneally administered in mice, were respectively 43 ± 0,8 ;[40.7- 45.4 ] ml/kg body wt. p.o. and 2.72 ± 0,1 ;[2.52-2.92] ml/kg body wt. i.p. for Opuntia ficus indica ; and 37 ± 1 ;[34.4 - 39.8 ] ml/kg body wt. p.o. and 2.52 ± 0,2 ;[2.22 - 2.81 ] ml/kg body wt. i.p. for Pistacia lentiscus respectively. The yields of seed oil were respectively calculated as 20.25% and 10.41%. The acid and free fatty acid values indicated that the oil has a low acidity.

  12. Antimicrobial and resistance modulatory activity of Alpinia katsumadai seed phenolic extract, essential oil and post-distillation extract

    National Research Council Canada - National Science Library

    Kovac, Jasna; Gavaric, Neda; Bucar, Franz; Mozina, Sonja Smole

    2014-01-01

    .... We investigated antimicrobial and resistance modulatory activity of the phenolic extract, essential oil and post-distillation extract of Alpinia katsumadai seeds against Campylobacter jejuni and Staphylococcus aureus...

  13. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia.

    Science.gov (United States)

    Hong, Heeok; Kim, Chun-Soo; Maeng, Sungho

    2009-01-01

    This study was to investigate the role of complementary and alternative medicine in the prevention and treatment of benign prostatic hyperplasia. For this purpose, a randomized, double-blind, placebo-controlled trial was performed over 12 months on 47 benign prostatic hyperplasia patients with average age of 53.3 years and international prostate symptom score over 8. Subjects received either sweet potato starch (group A, placebo, 320 mg/day), pumpkin seed oil (group B, 320 mg/day), saw palmetto oil (group C, 320 mg/day) or pumpkin seed oil plus saw palmetto oil (group D, each 320 mg/day). International prostate symptom score, quality of life, serum prostate specific antigen, prostate volume and maximal urinary flow rate were measured. In groups B, C and D, the international prostate symptom score were reduced by 3 months. Quality of life score was improved after 6 months in group D, while those of groups B and C were improved after 3 months, compared to the baseline value. Serum prostate specific antigen was reduced only in group D after 3 months, but no difference was observed in prostate volume in all treatment groups. Maximal urinary flow rate were gradually improved in groups B and C, with statistical significance after 6 months in group B and after 12 months in group C. None of the parameters were significantly improved by combined treatment with pumpkin seed oil and saw palmetto oil. From these results, it is suggested that administrations of pumpkin seed oil and saw palmetto oil are clinically safe and may be effective as complementary and alternative medicine treatments for benign prostatic hyperplasia.

  14. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Andrew Lowe

    2007-03-20

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  15. Tracer monitoring of enhanced oil recovery projects

    Directory of Open Access Journals (Sweden)

    Kleven R.

    2013-05-01

    Full Text Available In enhanced oil recovery (EOR, chemicals are injected into the oil reservoir, either to increase macroscopic sweep efficiency, or to reduce remaining oil saturation in swept zones. Tracers can be used to identify reservoirs that are specifically suited for EOR operations. Injection of a selection of partitioning tracers, combined with frequent sample analysis of produced fluids, provides information suited for estimation of residual oil saturation. Tracers can also be used to evaluate and optimize the application of EOR chemicals in the reservoir. Suitable tracers will follow the EOR chemicals and assist in evaluation of retention, degradation or trapping. In addition to field applications, tracers also have a large potential as a tool to perform mechanistic studies of EOR chemicals in laboratory experiments. By labelling EOR chemicals with radioactive isotopes of elements such as H, C and S, detailed studies of transport mechanisms can be carried out. Co-injection of labelled compounds in dynamic flooding experiments in porous media will give information about retention or separation of the unique compounds constituting the chemical formulation. Separation of such compounds may be detrimental to obtaining the EOR effect expected. The paper gives new information of specific methods, and discusses current status for use of tracers in EOR operations.

  16. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    Science.gov (United States)

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  17. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    Science.gov (United States)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  18. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes.

    Science.gov (United States)

    Boulard, Céline; Bardet, Michel; Chardot, Thierry; Dubreucq, Bertrand; Gromova, Marina; Guillermo, Armel; Miquel, Martine; Nesi, Nathalie; Yen-Nicolaÿ, Stéphanie; Jolivet, Pascale

    2015-07-01

    The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.

  19. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.

    Science.gov (United States)

    Bhunia, Rupam Kumar; Chakraborty, Anirban; Kaur, Ranjeet; Gayatri, T; Bhattacharyya, Jagannath; Basu, Asitava; Maiti, Mrinal K; Sen, Soumitra Kumar

    2014-11-01

    The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.

  20. Effect of mechanical extraction parameters on the yield and quality of tobacco (Nicotiana tabacum L.) seed oil

    National Research Council Canada - National Science Library

    Sannino, M; del Piano, L; Abet, Massimo; Baiano, S; Crimaldi, M; Modestia, F; Raimo, F; Ricciardiello, G; Faugno, S

    2017-01-01

    ... quality of tobacco seed oil (TSO). For its peculiar properties, TSO can be used for several purposes, as raw material in the manufacturing of soap, paints, resins, lubricants, biofuels and also as edible oil...

  1. Trans and conjugated fatty acids in milk from cows and goats consuming pasture or receiving vegetable oils or seeds

    National Research Council Canada - National Science Library

    Chilliard, Yves; Ferlay, Anne; Loor, Juan; Rouel, Jacques; Martin, Bruno

    2010-01-01

    ...:1 and conjugated linoleic acids (CLA) in milk fat from dairy cows and goats. Main dietary factors taken into account are the nature of for- ages and pasture, and supplementation with oil seeds, vegetable or marine oils...

  2. Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Department of Mechanical Education, Marmara University, 34722, Istanbul (Turkey); Kasifoglu, S. [Occupational High School, Duezce University, 81010, Duezce (Turkey)

    2010-01-15

    In this study, apricot (Prunus armeniaca) seed kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain apricot seed kernel oil methyl ester. Neat apricot seed kernel oil methyl ester and its blends with diesel fuel were tested in a compression ignition diesel engine to evaluate performance and emissions. Apricot seed kernel oil methyl ester and its blends can be successfully used in diesel engines without any modification. Lower concentration of apricot seed kernel oil methyl ester in blends gives a better improvement in the engine performance and exhaust emissions. Therefore lower percent of apricot seed kernel oil methyl ester can be used as additive. (author)

  3. Seed oil triglyceride profiling of thirty-two hybrid grape varieties.

    Science.gov (United States)

    De Marchi, Fabiola; Seraglia, Roberta; Molin, Laura; Traldi, Pietro; De Rosso, Mirko; Panighel, Annarita; Dalla Vedova, Antonio; Gardiman, Massimo; Giust, Mirella; Flamini, Riccardo

    2012-09-01

    Triglyceride profile of seed oil samples from 32 hybrid grape varieties not studied before was investigated. A new method for the analysis of triacylglycerols (TAGs) has been developed based on the direct infusion in the electrospray ionization (ESI) source and employing tetrahydrofuran/methanol/water (85:10:5 v|v|v) as solvent; the formation of [M + Na](+) ions in high yield has been observed. TAGs were identified by ESI-tandem mass spectrometry analysis, and the matrix-assisted-laser-desorption-ionization and time-of-flight profile of samples was determined. Six were the principal TAGs identified in seed oil: trilinolein (LLL) was the most abundant (43%), followed by dilinoleoyl-oleoylglycerol (LOL, 23%), and dilinoleoyl-palmitoylglycerol (LPL, 15%). Compounds present in lower concentration were LSL and LOO (11%), LOP (6%), and LSP (2%). Compared with seed oils produced from V. Vinifera grapes, some significant differences in the relative abundances of TAGs were found, in particular hybrid grape seed oils showed higher LOL and lower LPL content, respectively. Among the samples studied, a particularly high content of LLL (rich in unsaturated fatty acids) was found in seed oils from two red varieties. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Oil quality of passion fruit seeds subjected to a pulp-waste purification process

    Directory of Open Access Journals (Sweden)

    Suelen Alvarenga Regis

    2015-06-01

    Full Text Available Passion fruit seeds must be clean and dry before the extraction processing to obtain high-quality oil for edible and cosmetic purposes. This research studies the viability of a cleaning process of seeds by evaluating the oil quality. The research examined 2 maturation stages of the fruit and one purification process of the seeds, compared to the control. The oil quality was evaluated by fatty acid composition, acidity, peroxide value and oxidative stability. The pulp waste suffered a thermal treatment in an alkaline water solution at 60°C for 10min and was further purified in an experimental decanter. In the control treatment, the pulp waste was processed using only water at ambient conditions. The passion fruit seeds were totally cleaned by the thermal/chemical treatment, allowing a faster drying (less than 50% of the drying time of the seeds and a bit higher yield of oil extraction (proportionally around 7.7%, without changes in quality of the oil

  5. Allelopatic effects of some medicinal plant essential oils on plant seeds germination

    Directory of Open Access Journals (Sweden)

    ALI SHOKOUHIAN

    2016-04-01

    Full Text Available The effect of essential oils from some medicinal plants on seed germination was studied with the aim of assessing their potential use as bioherbicides. The experiment was conducted as factorial based on completely randomized design (CRD with three replications. Seeds of 3 summer crops including lettuce (Lactuca sativa, pepper (Piper longum and tomato (Solanum lycopersicum were exposed to essential oils of rosemary (Rosmarinus officinalis, thyme (Thymus vulgaris and anise (Pimpinella anisum at 3 different concentrations (25 and 50% diluted and undiluted. Treated seeds were grown in a growth chamber at 25°C for 5 days. The number of germinated seeds in each Petri dish was daily counted. After five days seed germination percentage (Ge was calculated. Biplot analysis was performed using genotype plus genotype environment interaction (GGE method. Results showed that the allelopathic effect on Ge was varied among studied plants, which was mainly due to i differences in the composition of the studied essential oils and ii different allelopathic effects of the studied essential oils on Ge. Accordingly, compared to the individual use, combining several essential oils would have a greater inhibitory effect on Ge of weeds.

  6. Modified method for combined DNA and RNA isolation from peanut and other oil seeds.

    Science.gov (United States)

    Dang, Phat M; Chen, Charles Y

    2013-02-01

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA isolation from plant seeds is a prerequisite for many seed specific gene expression studies and DNA is necessary in marker-assisted selection and other genetic studies. We describe a modified method to isolate both RNA and DNA from the same seed tissue and have been successful with several oil seeds including peanut, soybean, sunflower, canola, and oil radish. An additional LiCl precipitation step was added to isolate both RNA and DNA from the same seed tissues. High quality nucleic acids were observed based on A(260)/A(280) and A(260)/A(230) ratios above 2.0 and distinct bands on gel-electrophoresis. RNA was shown to be suitable for reverse transcriptase polymerase chain reaction based on actin or 60S ribosomal primer amplification and DNA was shown to have a single band on gel-electrophoresis analysis. This result shows that RNA and DNA isolated using this method can be appropriate for molecular studies in peanut and other oil containing seeds.

  7. Characterization of white Mahlab (Prunus mahaleb L.) seed oil: a rich source of α-eleostearic acid.

    Science.gov (United States)

    Sbihi, Hassen Mohamed; Nehdi, Imededdine Arbi; Al-Resayes, Saud Ibrahim

    2014-05-01

    Seed oils with high polyunsaturated fatty acid content are used in various industries including the food and pharmaceutical industries. White mahlab (Prunus mahaleb L.) seed was found to contain 31% oil. The oil was highly polyunsaturated and abundant in α-eleostearic (38.32%), oleic (31.29%), and linoleic (22.96%) acids, which together comprised 93.91% of the total fatty acids. The α-eleostearic acid was identified and characterized based on (1)H-NMR, UV, and FTIR spectroscopy. The oil was characterized by a relatively high quantity of tocopherols with γ-tocopherol as the major tocopherol isomer. The physicochemical characteristics of the white mahlab seed and seed oil were also determined. The thermogravimetric analysis indicated that the oil was thermally stable up to 350 °C and began to decompose at 520 °C. This study demonstrated that these seeds may be reused and their oil incorporated into other food products, a beneficial practice considering that the compounds present in the seeds and oils have positive effects on human health. In this study, mahlab seed oil was found to have potentials to become a new edible oil source as it contained a high level of polyunsaturated fatty acids especially, α-eleostearic acid, which is a conjugated fatty acid rarely found in vegetable oils and has a beneficial effects on human health. © 2014 Institute of Food Technologists®

  8. Lubricant properties of the polyol from the seed oil of Lonchocarpus sericeus

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2012-12-01

    Full Text Available Oil was extracted from the seed of the Lonchocarpus sericeus using hexane in a soxhlet extractor. The oil was characterized and used for the synthesis of polyol via epoxy ring opening reaction with 2-ethylhexanol. The structural characterization of the polyol was confirmed using FTIR and 1HNMR. The GC analysis of the oil of L. sericeus revealed C18:3 and C18:1 fatty acid as the dominant fatty acids present in the oil. The polyol had hydroxyl value of 182.10 ± 0.20 mg KOH/g, a copper strip corrosion value of 1A and a flash point of 280.00 ± 1.20oC. The synthesis and lubricant properties exhibited by the polyol suggested that the seed oil of L. sericeus can be chemically modified and employed as a starting material for lubricantproduction.

  9. Investigation of Cucumeropsis mannii N. seed oil as potential ...

    African Journals Online (AJOL)

    Werewere” (Cucumeropsis mannii N., Cucurbitaceae) a fruit vegetable plant in Ghana with high oil content were analysed for their fatty acid ... Keywords: Renewable energy, biodiesel, vegetable oil, transesterification, fatty acid methyl ester.

  10. Extraction, Characterization and Modification of Castor Seed Oil

    Directory of Open Access Journals (Sweden)

    A. D. MOHAMMED

    2006-01-01

    Full Text Available This paper carried out experimental study, through extraction and characterization of both crude and refined castor oil. Normal hexane was used as solvent for the extraction process. The oil produced was refined through degumming, neutralization and bleaching process using local adsorbent (activated clay. The characterization analysis revealed that tested parameters, which include specific gravity, refractive index, acid value, saponification value and iodine value for both crude and refined castor oil produced, were within the ASTM standard specifications. In fact the iodine value obtained (84.8 for the refined oil indicates that the oil could certainly be used as lubricant, hydraulic break fluid and protecting coatings. The oil was modified via sulphation method to produce Turkey – red oil that was tested on wooden material, paper and cloth. The test revealed that the Turkey – red oil produced is suitable to be used as a good dying agent and polish.

  11. Reservoir characterization and enhanced oil recovery research

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  12. Mixed surfactant systems for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  13. Investigating “Egusi” (Citrullus Colocynthis L. Seed Oil as Potential Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Solomon Giwa

    2010-03-01

    Full Text Available Biodiesel’s acceptance as a substitute for fossil-derived diesel has grown the world over. However, the food-fuel debate over conventional vegetable oils has rekindled research interest in exploring lesser known and minor oil crops. In this work, egusi melon seed oil was studied for the first time as a potential feedstock for biodiesel production. Crude egusi melon seed oil was transesterified using sodium methoxide as the catalyst at 60 °C and an oil/methanol ratio of 1:6 to produce its corresponding methyl esters. Egusi melon oil methyl ester (EMOME yield was 82%. Gas chromatographic analysis of EMOME showed that it was composed mainly of palmitic, stearic, oleic, linoleic and linolenic esters, which is similar to the profile of sunflower, soybean and safflower oil. All the measured fuel properties of EMOME satisfied both the ASTM D6751 and the EN 14214 biodiesel standards. Fuel properties of EMOME were essentially identical with those of soybean, safflower and sunflower biodiesel. Remarkably, the kinematic viscosity of EMOME was measured to be 3.83 mm2/s, a value lower than most biodiesel fuels reported in the literature. The potential of egusi melon seed oil as a biodiesel feedstock is clearly presented in this study.

  14. Antimicrobial activity of Monodora myristica seed oil | Odoh | Journal ...

    African Journals Online (AJOL)

    The essential oil is colourless, bitter with nice smell and the density is 0.789 g/ml. The oil had antimicrobial activity of the oil against Bacillus subtilis, Candida albicans and Staphylococcus aureus among the tested organism and can be incorporated into cream as antimicrobial agent and as a perfume. Key words: Monodora ...

  15. Oil extraction from plant seeds for biodiesel production

    Directory of Open Access Journals (Sweden)

    Yadessa Gonfa Keneni

    2017-04-01

    Full Text Available Energy is basic for development and its demand increases due to rapid population growth, urbanization and improved living standards. Fossil fuels will continue to dominate other sources of energy although it is non-renewable and harm global climate. Problems associated with fossil fuels have driven the search for alternative energy sources of which biodiesel is one option. Biodiesel is renewable, non-toxic, environmental-friendly and an economically feasible options to tackle the depleting fossil fuels and its negative environmental impact. It can be produced from vegetable oils, animal fats, waste oils and algae. However, nowadays, the major feedstocks of biodiesel are edible oils and this has created food vs fuel debate. Therefore, the future prospect is to use non-edible oils, animal fats, waste oils and algae as feedstock for biodiesel. Selection of non-expensive feedstock and the extraction and preparation of oil for biodiesel production is a crucial step due to its relevance on the overall technology. There are three main conventional oil extraction methods: mechanical, chemical/solvent and enzymatic extraction methods. There are also some newly developed oil extraction methods that can be used separately or in combination with the conventional ones, to overcome some disadvantages of the conventional oil extraction methods. This review paper presents, compare and discusses different potential biofuel feedstocks, various oil extraction methods, advantages and disadvantages of different oil extraction methods, and propose future prospective for the improvement of oil extraction methods and sustainability of biodiesel production and utilization.

  16. Effect of seed quality on oxidative stability of cold-pressed sunflower oil

    Directory of Open Access Journals (Sweden)

    Dimić Etelka B.

    2015-01-01

    Full Text Available The objective of this study was to investigate the impact of the storage time, content of the husk and impurities in the seed mass on the oxidative stability of the cold pressed sunflower oil. The oxidative stability of oil was analyzed by the RSM (Response Surface Methodology, where the response value (output of the model was the content of oxidation products measured via specific absorbance at 232 nm for conjugated dienes and 270 nm for conjugated trienes. Analyses were performed on the fresh oil samples and oil samples tempered under the Schaal-Oven’s test conditions (96 h at 63±2ºC. It was concluded that the seed storage time had significant impact on the primary (A1%232nm and secondary (A1%270nm oil oxidation products, both before (b1-p<0,001; b1-p=0,021 and after (b1-p=0,048; b1-p=0,033 the heating of oil. The content of impurities and husks in the seeds used for pressing also had an influence of the conjugated dienes and trienes contents in both, fresh and heated oil samples. However, their impact was not statistically significant. Interaction of seed storage time, the content of impurities and husks also exert some effect on the values of these quality parameters in the fresh oil as well as in the oil after the heat treatment, even though their influence is not significant. The obtained results have shown that the cold pressed sunflower oil had a good oxidative stability at temperatures up to 63±2ºC.

  17. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L

    Directory of Open Access Journals (Sweden)

    Moreira Raquel C

    2010-08-01

    Full Text Available Abstract Background To date, oil-rich plants are the main source of biodiesel products. Because concerns have been voiced about the impact of oil-crop cultivation on the price of food commodities, the interest in oil plants not used for food production and amenable to cultivation on non-agricultural land has soared. As a non-food, drought-resistant and oil-rich crop, Jatropha curcas L. fulfils many of the requirements for biofuel production. Results We have generated 13,249 expressed sequence tags (ESTs from developing and germinating Jatropha seeds. This strategy allowed us to detect most known genes related to lipid synthesis and degradation. We have also identified ESTs coding for proteins that may be involved in the toxicity of Jatropha seeds. Another unexpected finding is the high number of ESTs containing transposable element-related sequences in the developing seed library (800 when contrasted with those found in the germinating seed library (80. Conclusions The sequences generated in this work represent a considerable increase in the number of sequences deposited in public databases. These results can be used to produce genetically improved varieties of Jatropha with increased oil yields, different oil compositions and better agronomic characteristics.

  18. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L

    Science.gov (United States)

    2010-01-01

    Background To date, oil-rich plants are the main source of biodiesel products. Because concerns have been voiced about the impact of oil-crop cultivation on the price of food commodities, the interest in oil plants not used for food production and amenable to cultivation on non-agricultural land has soared. As a non-food, drought-resistant and oil-rich crop, Jatropha curcas L. fulfils many of the requirements for biofuel production. Results We have generated 13,249 expressed sequence tags (ESTs) from developing and germinating Jatropha seeds. This strategy allowed us to detect most known genes related to lipid synthesis and degradation. We have also identified ESTs coding for proteins that may be involved in the toxicity of Jatropha seeds. Another unexpected finding is the high number of ESTs containing transposable element-related sequences in the developing seed library (800) when contrasted with those found in the germinating seed library (80). Conclusions The sequences generated in this work represent a considerable increase in the number of sequences deposited in public databases. These results can be used to produce genetically improved varieties of Jatropha with increased oil yields, different oil compositions and better agronomic characteristics. PMID:20691070

  19. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet.

    Science.gov (United States)

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-09-01

    It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.

  20. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  1. Pathogenic Fungi Transmitted Through Cucumber Seeds and Safely Elimination by Application of Peppermint Extract and Oil

    Directory of Open Access Journals (Sweden)

    Eman S.H. FARRAG

    2012-08-01

    Full Text Available Diseases induced by Fusarium, like damping-off and wilt on cucumber, are serious problems around the world. Samples of cucumber seeds were collected from commercial markets in Egypt and tested for seed-borne fungi. In order to detect the maximum number of internal and external seed-borne fungi, agar plate examination of disinfected and non-disinfected seeds were used. Two species of Fusarium were the most frequent and predominant fungi. Facultative parasites of the genera Alternaria, Rhizoctonia, Helminthosporium and Penicillium were also found. A total 33 isolates of Fusarium spp. were obtained using Komada�s selective medium. Fusarium oxysporum and F. solani were highly frequent. Pathogenicity test indicated that, F. oxysporum isolate (Fem8 was the main causal organism of pre- and post-emergence damping off. Furthermore, it occurred in all seed parts tested. Some infected seeds germinate, but they were either rapidly overgrown by F. oxysporum or they developed into a diseased seedling. The water extract of garlic, peppermint and rheum completely inhibited the conidiospore germination and mycelial growth of F. oxysporum at tested conc. 3, 2 and 3%, respectively. Soaked seeds in 2% peppermint extract and evaporated seeds by vapor of peppermint oil caused a highly reduction in the infection and reduced transmission of the referred fungi from seeds to the growing seedlings. The vigor of cucumber seedlings raised from the treated seeds was better than that developed from untreated ones.

  2. Pathogenic Fungi Transmitted Through Cucumber Seeds and Safely Elimination by Application of Peppermint Extract and Oil

    Directory of Open Access Journals (Sweden)

    Eman S.H. FARRAG

    2012-08-01

    Full Text Available Diseases induced by Fusarium, like damping-off and wilt on cucumber, are serious problems around the world. Samples of cucumber seeds were collected from commercial markets in Egypt and tested for seed-borne fungi. In order to detect the maximum number of internal and external seed-borne fungi, agar plate examination of disinfected and non-disinfected seeds were used. Two species of Fusarium were the most frequent and predominant fungi. Facultative parasites of the genera Alternaria, Rhizoctonia, Helminthosporium and Penicillium were also found. A total 33 isolates of Fusarium spp. were obtained using Komadas selective medium. Fusarium oxysporum and F. solani were highly frequent. Pathogenicity test indicated that, F. oxysporum isolate (Fem8 was the main causal organism of pre- and post-emergence damping off. Furthermore, it occurred in all seed parts tested. Some infected seeds germinate, but they were either rapidly overgrown by F. oxysporum or they developed into a diseased seedling. The water extract of garlic, peppermint and rheum completely inhibited the conidiospore germination and mycelial growth of F. oxysporum at tested conc. 3, 2 and 3%, respectively. Soaked seeds in 2% peppermint extract and evaporated seeds by vapor of peppermint oil caused a highly reduction in the infection and reduced transmission of the referred fungi from seeds to the growing seedlings. The vigor of cucumber seedlings raised from the treated seeds was better than that developed from untreated ones.

  3. Characterization of sunflower oils obtained separately by pressing and subsequent solvent extraction from a new line of seeds rich in phytosterols and conventional seeds

    Directory of Open Access Journals (Sweden)

    Aguirre Marta R.

    2014-11-01

    Full Text Available In this study we evaluate the chemical composition of sunflower oils obtained separately by pressing and subsequent solvent extraction from a new seeds rich in phytosterols (IASP-18 and conventional seeds (HA-89. Results have shown that the total content of oil was much lower in the IASP-18 (18.1% than in the conventional (37.5% seeds. The extraction yield obtained by pressing was as low as 3% in the IASP-18 seeds and 37.5% in HA-89, while in the solvent extraction it was of the same order (~18 wt% on seeds extracted by pressing for the two types of seeds. No significant changes in the fatty acid composition were found between the oils extracted by the two procedures, but the pressed oils presented significantly lower acidity and larger content of the unsaponifiable fraction. Expressed as free sterols, the total sterols were 37–38% more concentrated in the oils extracted with solvent, reaching amounts of 13 700 and 6500 mg/kg in the IASP-18 and HA-89 oils, respectively. No substantial differences were found in the composition of total sterols analysed as free sterols between the oils extracted with the two procedures, but the contents of free sterols and sterol glycosides were much higher in the oils extracted with solvent.

  4. Lubricant properties of the polyol from the seed oil of Lonchocarpus sericeus

    OpenAIRE

    Adewale Adewuyi; Oderinde, Rotimi A.

    2012-01-01

    Oil was extracted from the seed of the Lonchocarpus sericeus using hexane in a soxhlet extractor. The oil was characterized and used for the synthesis of polyol via epoxy ring opening reaction with 2-ethylhexanol. The structural characterization of the polyol was confirmed using FTIR and 1HNMR. The GC analysis of the oil of L. sericeus revealed C18:3 and C18:1 fatty acid as the dominant fatty acids present in the oil. The polyol had hydroxyl value of 182.10 ± 0.20 mg KOH/g, a copper strip cor...

  5. Analytical Characterization of Butter Oil Enriched with Omega-3 and 6 Fatty Acid Sthrough Chia (Salvia hispanica L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2015-12-01

    Full Text Available Analytical characterization of blends of butter oil and chia (Salvia hispanica L. seed oil was performed. Chia oil was added in butter oil at four different levels i.e. 6.25%, 12.5%, 18.75% and 25% (T1, T2, T3 and T4, butter oil without any addition of chia oil served as control. Blends of butter oil and chia oil were packaged in tin containers, stored at ambient temperature (34±2oC for 90-days. Iodine values of control, T1, T2, T3 and T4 were 36.85, 45.63, 57.22, 67.45 and 76.37 (cg/g.Concentration of omega-3 fatty acids in T1, T2, T3 and T4 were 4.17%, 7.39%, 12.55% and 16.74%. The extent of omega-6 fatty acids in T1, T2, T3 and T4 was 2.81%, 2.94%, 3.15% and 3.32%.Concentration of omega-3 and 6 fatty acids in butter oil can be increased by chia oil.

  6. Environmental regulations handbook for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  7. Chemotaxonomic Evaluation of Species of Turkish Salvia: Fatty Acid Composition of Seed Oils. II

    Directory of Open Access Journals (Sweden)

    Turgut Kılıç

    2007-05-01

    Full Text Available Fatty acids composition of seed oil of Salvia viridis, S. hydrangea, S. blepharochleana, S. chianantha, S. staminea, S. hypergeia,, S. cilicica, S. caespitosa, S. sclarea, S. cadmica, S. microstegia, S. pachystachys and S. verticillata were analyzed by GC/MS. The main compound were found to be as linoleic acid (18:2; 12.8 % to 52.2 %, linolenic acid (18:3; 3.2 % to 47.7 %, oleic acid (18:1; 11.3 % to 25.6 %, palmitic acid (16:0; 0.7 % to 16.8 % and stearic acid (18:0; 1.8 % to 4.8 %. A phylogenetic tree of species of Salvia were reported and compared to 18:3/18:2 ratio of the seed oils. Fatty acid composition of Salvia seed oils could be used as a chemotaxonomical marker.

  8. Physicochemical properties of Terminalia catappa seed oil as a novel dietary lipid source.

    Science.gov (United States)

    Janporn, Supatcha; Ho, Chi-Tang; Chavasit, Visith; Pan, Min-Hsiung; Chittrakorn, Sasivimon; Ruttarattanamongkol, Khanitta; Weerawatanakorn, Monthana

    2015-06-01

    Terminalia catappa Linn (TC) is an ornamental tree planted extensively in many countries. It has been known for a long time that the seeds are edible but no research has focused on the realm of its use as food. Our previous data showed that the seed contains high levels of oil content (600 g/kg) and possesses the optimum fatty acid balance indicated in fat dietary guidelines. This study aims to investigate the physical and chemical properties and the possibility of using TC seed oil as a new dietary lipid. The effects of extraction conditions, partial refining process, and storage stability on TC oil properties were conducted compared with soybean oil. The results showed that physicochemical properties including the density, refractive index, melting point, acidity, free fatty acid, saponification value, unsaponifiable, peroxide, and fatty acid composition of the extracted oil were comparable with soybean oil and their values followed the dietary standard of edible oil. Copyright © 2014. Published by Elsevier B.V.

  9. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean.

    Science.gov (United States)

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M C; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-09-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed.

  10. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions.

    Science.gov (United States)

    Mikulcová, Veronika; Kašpárková, Věra; Humpolíček, Petr; Buňková, Leona

    2017-04-27

    The formulation, characterization, and anticipated antibacterial properties of hemp seed oil and its emulsions were investigated. The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions. The emulsions were prepared using pairs of non-ionic surfactants (Tween, Span). The effects of the emulsification method (spontaneous emulsification vs. high-intensity stirring), hydrophilic lipophilic balance (HLB), type and concentration of surfactant, and oil type on the size and distribution of the emulsion particles were investigated. It was found that the ability to form stable emulsions with small, initial particle sizes is primarily dependent on the given method of preparation and the HLB value. The most efficient method of emulsification that afforded the best emulsions with the smallest particles (151 ± 1 nm) comprised the high-energy method, and emulsions stable over the long-term were observed at HBL 9 with 10 wt % concentration of surfactants. Under high-intensity emulsification, refined and unrefined oils performed similarly. The oils as well as their emulsions were tested against the growth of selected bacteria using the disk diffusion and broth microdilution methods. The antibacterial effect of hemp seed oil was documented against Micrococcus luteus and Staphylococcus aureus subsp. aureus . The formulated emulsions did not exhibit the antibacterial activity that had been anticipated.

  11. Pilot study of the efficacy and safety of lettuce seed oil in patients with sleep disorders

    Directory of Open Access Journals (Sweden)

    Yakoot M

    2011-06-01

    Full Text Available Mostafa Yakoot1, Sherine Helmy2, Kamal Fawal31Green Clinic Research Center, 2Pharco Pharmaceutical Company, 3Mamorah Psychiatric Hospital, Alexandria, EgyptBackground: Lactuca sativa (garden lettuce is a popular salad herb. It has been in use in folk medicine since ancient times as both an appetite stimulant and as an aid to sleep. L. sativa seed oil (Sedan® has demonstrated a pronounced sedative effect and potentiated the hypnotic effect of barbiturates in animal models. It also exhibited significant analgesic and anti-inflammatory activities. In this study, we evaluated the sedative and hypnotic effects of L. sativa in patients suffering from insomnia.Methods: Sixty patients suffering from insomnia with or without anxiety were randomized to receive capsules containing L. sativa seed oil 1000 mg (n = 30 or placebo (n = 30. All patients were asked to complete a verbal questionnaire before the start of the trial and 1 week after starting treatment.Results: Improvements in the modified State-Trait Anxiety Inventory and the Sleep rating scale scores were significantly greater in patients receiving L. sativa seed oil compared with those on placebo (P < 0.05. No side effects were found to be attributable to L. sativa seed oil at the given dosage.Conclusion: L. sativa seed oil was found to be a useful sleeping aid and may be a hazard-free line of treatment, especially in geriatric patients suffering from mild-to-moderate forms of anxiety and sleeping difficulties.Keywords: Lactuca sativa seed oil, insomnia, sleeping disorder, anxiety

  12. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species.

    Science.gov (United States)

    Jarret, Robert L; Wang, Ming Li; Levy, Irvin J

    2011-04-27

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species-A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus-were evaluated for seed oil content using time domain NMR (TD-NMR). Oil content in seed of A. caillei, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus was in the ranges 2.51-13.61%, 12.36-21.56%, 6.62-16.7%, 16.1-22.0%, 10.3-19.8% and 10.8-23.2%, respectively. Accession PI639680 (A. tuberculatus) had the highest seed oil content (∼23%). Accessions of A. esculentus with high seed oil content included PI nos. PI274350 (21.5%), PI538082 (20.9%) and PI538097 (20.9%). Values for the three accessions of A. manihot with the highest seed oil content were PI nos. PI639673 (20.4%), PI639674 (20.9%) and PI639675 (21.9%), all representing var. tetraphyllus. Average percent seed oil in materials of A. esculentus from Turkey and Sudan (17.35% and 17.36%, respectively) exceeded the averages of materials from other locations. Ninety-eight accessions (total of six species) were also examined for fatty acid composition. Values of linoleic acid ranged from 23.6-50.65% in A. esculentus. However, mean linoleic acid concentrations were highest in A. tuberculatus and A. ficulneus. Concentrations of palmitic acid were significantly higher in A. esculentus (range of 10.3-36.35%) when compared to that of other species, and reached a maximum in PI489800 Concentrations of palmitic acid were also high in A. caillei (mean = ∼30%). Levels of oleic acid were highest in A. manihot, A. manihot var. tetraphyllus and A. moschatus.

  13. Oil content and fatty acids composition of poppy seeds cultivated in two localities of Slovakia

    Directory of Open Access Journals (Sweden)

    Lančaričová Andrea

    2016-04-01

    Full Text Available Oil content, fatty acids profile, acid and saponification values of poppy seeds grown on two localities of the Slovak Republic were evaluated in the study. Statistically significant effects of locality, genotype and their interaction (P < 0.05 for numerous descriptors were proved by non-parametric tests. Results confirmed that variation in the analysed parameters was influenced by the colour of seeds. Ochre variety Redy contained the highest oil level in both localities (49.9 and 52.4% and linoleic acid level (74.3 and 71.6%. White-seeded Racek and Albín had the highest acid value (2.8 and 2.4% of free fatty acids and grey-seeded Malsar and blue-seeded Maratón contained the highest saponification value. Buddha, a high-morphine poppy variety, differed significantly in all monitored parameters. High negative interrelation between linoleic and oleic acids levels was observed. Oil content was positively correlated with linoleic acid and negatively with oleic acid. Weather conditions at the end of vegetation influenced the accumulation of oil and essential linoleic acid.

  14. [Efectiveness of long-term consumption of nuts, seeds and seeds' oil on glucose and lipid levels; systematic review].

    Science.gov (United States)

    De Lira-García, C; Bacardí-Gascón, M; Jiménez-Cruz, A

    2012-01-01

    The aim of this study was to determine the effectiveness of long-term consumption of nuts, seeds and vegetable oil (NSO) on weight, glucose, and lipid levels. We searched English articles published in Pubmed and Ebsco up to May 2011. Studies were included if they were randomized clinical trials, and had an intervention period of 24 or more weeks. Search terms include: "diabetes mellitus", "Nuts", "Diet Mediterranean", "Seeds", "Oils", "Canola oil", "Olive oil","Walnut", "Almond", "Pistachio", "Paleolithic diet", "High monounsaturated diet", "High polyunsaturated diet", "Soya" and "Sunflower". Thirteen studies met the inclusion criteria; eight studies had a 24 weeks intervention period, one had 42 weeks, one had 48 weeks, and for the other three the intervention lasted 52 or more weeks. At 24 weeks a consistent increase of HDL levels and inconsistent improvement of weight, BMI, waist to hip index, A1C, total cholesterol, LDL: HDL, LDL, triglycerides, and diastolic blood pressure was observed. Four studies with an intervention ≥ 48 weeks showed no statistical difference, and in one study a reduction of weight, BMI, waist hip index, glucose, insulin, total cholesterol, HDL: cholesterol, triglycerides, and blood pressure was observed. No evidence of long-term improvement of NSO on weight, glucose or lipids in the adult population was found.

  15. Neem seed oil: a potent nitrification inhibitor to control nitrate leaching after incorporation of crop residues

    OpenAIRE

    Opoku, A; Chaves, B; De Neve, Stefaan

    2014-01-01

    The effect of neem seed oil and neem leaf extract as organic nitrification inhibitors (NIs) on the accumulation of NH4+ and NO3-, and nitrification inhibition after incorporation of crop residue was investigated in an incubation experiment. Dicyandiamide (DCD) applications of 15 and 30 kg active ingredient ha(-1) were used as low and high doses of a synthetic NI. Soil samples were amended with 21 g kg(-1) cauliflower leaves and treated with NIs at a rate of 30 kg ha(-1) of neem seed oil, 60 k...

  16. Influence of formulated neem seed oil and jatropha curcas seed oil on wire drawing of mild steel and medium carbon steel at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Mamuda Muhammad

    2016-09-01

    Full Text Available So many facets of hot wire drawing process, despite its extensive and long time employment in the industries, still remain unclear, due to want of systematic investigation of the process. This work investigated the influence of formulated neem seed and jatropha seed oil as lubricants, using antimony dialkyl dithiocarbamates (ADTC as an additive, on wire drawing process. The suitability of the bio-based oils in friction and wear control during wire drawing process were investigated, using a four ball tester. Experimental drawing process, using a Tungsten Carbide die and the formulated lubricants was carried out on mild steel and medium carbon steel rod (6 and 8mm diameter respectively at temperatures from 20OC to 750OC, on a drawing bench. The stresses and the temperature distribution profiles along the work-piece were reported. Up to 45% of reductions in area, without wire fracture, achieved on the drawing of the medium carbon steel have equally been reported.

  17. Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Abdulkadir E. Elshafie

    2015-11-01

    Full Text Available Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery was studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v and, corn oil (10%v/v added separately or concurrently. The samples were collected at 24h interval up to 120h and checked for growth (OD660, and biosurfactant production (Surface tension and Interfacial tension. The medium with both glucose and corn oil gave better biosurfactant production and reduced both surface tension and interfacial tension to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24 with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil. The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids. The potential of sophorolipids in enhancing oil recovery was tested using core-flooding experiments, under reservoir conditions, where additional 27.27% of residual oil (Sor was recovered. This confirmed the potential of sophorolipids for applications in microbial enhanced oil recovery.

  18. Beauty in Baobab: a pilot study of the safety and efficacy of Adansonia digitata seed oil

    Directory of Open Access Journals (Sweden)

    Baatile M. Komane

    Full Text Available ABSTRACT Recently there has been a renewed impetus in the search for novel ingredients to be used in the cosmetic industry and Baobab (Adansonia digitata L., Malvaceae seed oil has received high interest. In this study, a commercial Baobab seed oil sample was characterised (fatty acid content using GCxGC-ToF-MS and a pilot study on the safety and efficacy of the seed oil was performed. The safety and efficacy of Baobab seed oil after topical application was determined using healthy adult female caucasian participants (n = 20. A 2× magnifying lamp was used for visual analysis, while for monitoring and evaluation of the irritancy level, transepidermal water loss (TEWL and hydration level of the skin, Chromameter®, Aquaflux® and Corneometer® instruments, respectively, were used. In addition, Aquaflux® and Corneometer® instruments were used to assess occlusive effects. Thirteen methyl esters were identified using GCxGC-ToF-MS. The major fatty acids included 36.0% linoleic acid, 25.1% oleic acid and 28.8% palmitic acid with 10.1% constituting trace fatty acids. The irritancy of sodium lauryl sulphate (SLS in the patch test differed significantly compared to both de-ionised water (p < 0.001 and Baobab seed oil (p < 0.001 but the difference between the irritancy of Baobab seed oil and de-ionised water was not significant (p = 0.850. The moisture efficacy test indicated a reduced TEWL (p = 0.048 and an improved capacitance moisture retention (p < 0.001 for all the test products (Baobab oil, liquid paraffin, Vaseline® intensive care lotion and Vaseline®. The occlusivity wipe-off test indicated an increased moisture hydration (p < 0.001 and decreased TEWL particularly when Baobab oil was applied. Baobab possesses hydrating, moisturising and occlusive properties when topically applied to the skin. Baobab seed oil could be a valuable functional ingredient for cosmeceutical applications.

  19. Fractionation of hairless canary seed (Phalaris canariensis) into starch, protein, and oil.

    Science.gov (United States)

    Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann; Gray, Danielle

    2010-06-09

    Canary seed is an important specialty crop in Canada. The current market for this true cereal (i.e., belonging to the family Poaceae as wheat) is limited to feed for caged birds. However, canary seed holds a promise for many food and industrial applications based on its composition. Three wet milling procedures based on ethanol (E), water (W), and alkaline (A) extractions used in different order were investigated to determine extraction efficiency and purity of starch, protein, oil, and fiber separated from hairless canary seed, a variety developed for human consumption. Highest extraction efficiencies were obtained when canary seed was defatted with ethanol and then extracted with alkali and water (EAW process). Using this process, approximately 92% pure starch, 75% pure protein, and oil were recovered from canary seed groats. The highest purity of protein, however, was obtained when canary seed was fractionated by the EWA process, that is, defatted and then extracted with water followed by alkali. Fiber component separated prior to alkaline extraction contained high amounts of nonfiber components as indicated by its yield. The EAW extraction process seems to be more promising in canary seed fractionation based on recovery and purity of components.

  20. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    Science.gov (United States)

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    Science.gov (United States)

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  2. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown camelina sativa L. Crantz

    Directory of Open Access Journals (Sweden)

    Kumar Sumit

    2012-03-01

    Full Text Available Abstract Background Camelina (Camelina sativa L. Crantz is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS-1-(4-Chlorophenyl-4,4-dimethyl-2-(1H-1,2,4-triazol-1-ylpentan-3-ol] (PBZ, a popular plant growth regulator, on the seed and oil yield of Camelina sativa (cv. Celine. Results A field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011 and five different PBZ treatments (Control: T0; 25 mg l-1: T1; 50 mg l-1: T2; 75 mg l-1: T3; 100 mg l-1: T4; 125 mg l-1: T5 were applied (soil application at the time of initiation of flowering. PBZ at 100 mg l-1 concentration (T4 resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation. Conclusion We report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from Camelina sativa that holds great promise as a biofuel crop in future.

  3. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz.

    Science.gov (United States)

    Kumar, Sumit; Ghatty, Sreenivas; Satyanarayana, Jella; Guha, Anirban; Chaitanya, Bsk; Reddy, Attipalli R

    2012-03-13

    Camelina (Camelina sativa L. Crantz) is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS)-1-(4-Chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol] (PBZ), a popular plant growth regulator, on the seed and oil yield of Camelina sativa (cv. Celine). A field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011) and five different PBZ treatments (Control: T0; 25 mg l-1: T1; 50 mg l-1: T2; 75 mg l-1: T3; 100 mg l-1: T4; 125 mg l-1: T5) were applied (soil application) at the time of initiation of flowering. PBZ at 100 mg l-1 concentration (T4) resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation. We report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from Camelina sativa that holds great promise as a biofuel crop in future.

  4. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown camelina sativa L. Crantz

    Science.gov (United States)

    2012-01-01

    Background Camelina (Camelina sativa L. Crantz) is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS)-1-(4-Chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol] (PBZ), a popular plant growth regulator, on the seed and oil yield of Camelina sativa (cv. Celine). Results A field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011) and five different PBZ treatments (Control: T0; 25 mg l-1: T1; 50 mg l-1: T2; 75 mg l-1: T3; 100 mg l-1: T4; 125 mg l-1: T5) were applied (soil application) at the time of initiation of flowering. PBZ at 100 mg l-1 concentration (T4) resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation. Conclusion We report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from Camelina sativa that holds great promise as a biofuel crop in future. PMID:22410213

  5. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent

    NARCIS (Netherlands)

    Jansen, P.A.; Bongers, F.J.J.M.; Hemerik, L.

    2004-01-01

    Many tree species that depend on scatter-hoarding animals for seed dispersal produce massive crops of large seeds at irregular intervals. Mast seeding and large seed size in these species have been explained as adaptations to increase animal dispersal and reduce predation. We studied how seed size

  6. Determination of betaines in vegetable oils by capillary electrophoresis tandem mass spectrometry--application to the detection of olive oil adulteration with seed oils.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Castro-Puyana, María; Luisa Marina, María; Crego, Antonio L

    2011-06-01

    A CE-tandem mass spectrometry (MS²) methodology enabling the simultaneous determination of betaines (glycine betaine, trigonelline, proline betaine and total content of carnitines) in vegetable oils was developed. Betaines were derivatized with butanol previous to their baseline separation in 10 min using a 0.1 M formic acid buffer at pH 2.0. Ion trap conditions were optimized in order to maximize the selectivity and sensitivity. Analytical characteristics of the proposed method were established by evaluating its selectivity, linearity, precision (RSDs ranged from 4.8 to 10.7% for corrected peak areas) and accuracy by means of recovery studies (from 80 to 99%) and LODs and LOQs at 0.1 ppb level. The method was applied for the determination of the selected betaines in seed oils and extra virgin olive oils. MS² experiments provided the fingerprint fragmentation for the betaines identified in vegetable oils. In extra virgin olive oils, carnitines were not detected, making it possible to propose them as a feasible novel marker for the detection of adulterations of olive oils. Application of the developed method for the analysis of different mixtures of extra virgin olive oil with seed oil (between 2 and 10%) enabled the detection and quantitation of the total content of carnitines. The results obtained show the high potential of the developed method for the authentication and quality control of olive oils. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [The fatty acid composition of Rkatsiteli grape seed oil and its effect as a food-additive].

    Science.gov (United States)

    Kikalishvili, B Iu; Zurabashvili, D Z; Nikolaĭshvili, M N; Zurabashvili, Z A; Giorgobiani, I B

    2011-02-01

    In this paper high fatty acids in the Rkatsiteli grape seed oil were qualitatively and quantitatively identified. In the Rkatsiteli grape seed oil linolenic, oleic, palmitic, stearic, palmitooleinovaya, linoleic and arachidonic acids were identified. The impact of Rkatsiteli grape seed oil as a dietary supplement on the contents of fatty acid synthase and lipids in the livers of mice were determined. Investigations were carried out on 120 inbred mice: for 15 days to a standard diet grape seed oil was added as a food additive. The investigation showed that the optimal use of food additives in the form of oil from Rkatsiteli grape seed plays an important role in maintaining the physiological needs of the human organism.

  8. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade.

    Science.gov (United States)

    Bhat, Rajeev; Reddy, Kasa Ravindra Nadha

    2017-01-15

    Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    Science.gov (United States)

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed.

  10. Essential oil extract from Moringa oleifera roots as cowpea seed ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the efficacy of Moringa oleifera (Lam.) roots essential oil extract on the survival of Callosobruchus maculatus. Behaviour of Hexane extract of powdered Moringa oleifera roots was obtained by the Soxhlet extraction method. Moringa roots oil extract was applied at dosages of 0.5 l, ...

  11. Economics of oil bean ( Pentaclethra macrophylla ), seed marketing ...

    African Journals Online (AJOL)

    The study assessed the economics of oil bean marketing in Owerri agricultural zone of Imo state. Forty- five marketers oil bean marketers were randomly selected from three markets of the study area. Primary data were collected using structural questionnaire. Data collected were analysed using statistical tools such as ...

  12. Antimicrobial and Pharmaceutical Properties of The Seed Oil of ...

    African Journals Online (AJOL)

    Gentamycin and tioconazole were the reference drugs respectively. The oil was later formulated as a lotion and the pharmaceutical properties of the formulation determined.The oil was found to have a concentration-dependent activity against both Gram-positive and Gram-negative bacteria, while showing no activity against ...

  13. Kinetic Modelling of Oil Extraction from Neem Seed | Ogunleye ...

    African Journals Online (AJOL)

    The suitability of three different types of extraction kinetic models (one- step, two –step and three – step models) for neem oil was investigated in this study. Solvent extraction using n-hexane at temperatures range between 303K and 323 K ; 360minutes of extraction time were experimented and the oil yield calculated.

  14. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing.

    Science.gov (United States)

    Jiang, Wen Zhi; Henry, Isabelle M; Lynagh, Peter G; Comai, Luca; Cahoon, Edgar B; Weeks, Donald P

    2017-05-01

    The CRISPR/Cas9 nuclease system is a powerful and flexible tool for genome editing, and novel applications of this system are being developed rapidly. Here, we used CRISPR/Cas9 to target the FAD2 gene in Arabidopsis thaliana and in the closely related emerging oil seed plant, Camelina sativa, with the goal of improving seed oil composition. We successfully obtained Camelina seeds in which oleic acid content was increased from 16% to over 50% of the fatty acid composition. These increases were associated with significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to enhanced oil composition in T3 and T4 generation Camelina seeds was associated with a combination of germ-line mutations and somatic cell mutations in FAD2 genes in each of the three Camelina subgenomes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.

    Science.gov (United States)

    Nguyen, Huu T; Silva, Jillian E; Podicheti, Ram; Macrander, Jason; Yang, Wenyu; Nazarenus, Tara J; Nam, Jeong-Won; Jaworski, Jan G; Lu, Chaofu; Scheffler, Brian E; Mockaitis, Keithanne; Cahoon, Edgar B

    2013-08-01

    Camelina (Camelina sativa), a Brassicaceae oilseed, has received recent interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve the quality and content of the seed protein-rich meal and oil, which is enriched in oxidatively unstable polyunsaturated fatty acids that are deleterious for biodiesel. To identify candidate genes for meal and oil quality improvement, a transcriptome reference was built from 2047 Sanger ESTs and more than 2 million 454-derived sequence reads, representing genes expressed in developing camelina seeds. The transcriptome of approximately 60K transcripts from 22 597 putative genes includes camelina homologues of nearly all known seed-expressed genes, suggesting a high level of completeness and usefulness of the reference. These sequences included candidates for 12S (cruciferins) and 2S (napins) seed storage proteins (SSPs) and nearly all known lipid genes, which have been compiled into an accessible database. To demonstrate the utility of the transcriptome for seed quality modification, seed-specific RNAi lines deficient in napins were generated by targeting 2S SSP genes, and high oleic acid oil lines were obtained by targeting FATTY ACID DESATURASE 2 (FAD2) and FATTY ACID ELONGASE 1 (FAE1). The high sequence identity between Arabidopsis thaliana and camelina genes was also exploited to engineer high oleic lines by RNAi with Arabidopsis FAD2 and FAE1 sequences. It is expected that these transcriptomic data will be useful for breeding and engineering of additional camelina seed traits and for translating findings from the model Arabidopsis to an oilseed crop. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Lipid composition of seed oils of different pomegranate (Punica granatum L. cultivars from Spain

    Directory of Open Access Journals (Sweden)

    Luana Fernandes

    2015-04-01

    Full Text Available Pomegranate (Punica granatum L. is an ancient fruit tree traditionally cultivated in the Near and Middle East. Presently, its most important growing regions include Afghanistan, Iran, Israel, USA, Italy and Spain, the latter country the largest European exporter. The pomegranate fruit can be divided into several anatomical compartments: outside peel, inside peel, and arils (pulp and seeds, the last part being usually used for consumption as is or for juice, jams and jellies production. Even though pomegranate seeds are an industrial by-product, recent reports have highlighted their potential use as a source of oil with beneficial chemical attributes. Therefore, the main objective of the present work was to characterize the seed oil of nine European pomegranate varieties, collected in Spain, for their fatty acid and vitamin E compositions. All seed lipid fractions consisted mainly of punicic acid (c9,t11,c13 C-18:3, ranging between 77.3% and 83.6% of total fatty acids, followed by small amounts of linoleic acid (C18:2n6, oleic acid (C18:1n9 and palmitic acid (C16:0. Regarding vitamin E composition, α-, γ-, δ-tocopherols were found in all pomegranate seed oils, but mainly γ-tocopherol, with total tocopherols ranging from 174.5 to 627.3 mg/100g oil.The richness of these pomegranate varieties seed oils in punicic acid, a conjugated linolenic acid with interesting anti-carcinogenic activity, and the elevated amount of tocopherols on the extracted lipids, of technological and nutritional relevance, make this by-product interesting for further exploitation.

  17. Optimization of biodiesel production from refined cotton seed oil and its characterization

    Directory of Open Access Journals (Sweden)

    Dominic Okechukwu Onukwuli

    2017-03-01

    Full Text Available Biodiesel was produced through transesterification of refined cotton seed oil with methanol and potassium hydroxide (KOH as a catalyst using batch mode. The physicochemical properties of cotton seed oil and biodiesel as an alternative fuel for diesel engine was characterized through ASTM standards for fuel tests. The functional groups of the biodiesel were investigated using Fourier transform infrared spectroscopy. Influence of key parameters like reaction temperature, reaction time, catalyst concentration and methanol/oil molar ratio were determined using batch mode. These process parameters were optimized using response surface methodology (RSM and analysis of variance (ANOVA. The significance of the different process parameters and their combined effects on the transesterification efficiency were established through a full factorial central composite design. The results obtained are in good agreement with published data for other vegetable oil biodiesel as well as various international standards for biodiesel fuel. An optimum yield of 96% was achieved with optimal conditions of methanol/oil molar ratio, 6:1; temperature, 55 °C; time, 60 min; and catalyst concentration, 0.6%. This investigation has shown that cotton seed oil from Nigeria can be used to produce biodiesel.

  18. Analytical characterization of Hempseed (seed of Cannabis sativa L.) oil from eight regions in China.

    Science.gov (United States)

    Chen, Tianpeng; He, Jinfeng; Zhang, Jianchun; Zhang, Hua; Qian, Ping; Hao, Jianxiong; Li, Lite

    2010-06-01

    In this study, eight cultivars of hempseed were collected from different regions of China for analysis of physiochemical properties and chemical composition, as well as for seed indexes and proximate composition of seed kernel. The results indicated that Yunma No. 1 and Bama Huoma, with more than 50% oil and 30% protein in dehulled seed, could be considered as oil extraction material and protein source with respect to kernel yield. Iodine values ranging from 153.6 to 169.1 g/100 g reflected the high degree of unsaturation. The concentration of unsaturated fatty acids exceeded 90%, higher than most conventional vegetable oils. Moreover, polyunsaturated fatty acids ranged from 76.26% to 82.75% and were mainly composed of linoleic acid and α-linolenic acid with a ratio close to 3:1. γ-Tocopherol was found at an average concentration of 28.23 mg/100 g of hempseed oil. The results indicated that hempseed oil is a potentially valuable vegetable oil.

  19. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds

    Science.gov (United States)

    Ekman, Åsa; Hayden, Daniel M.; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development. PMID:19036843

  20. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.

    Directory of Open Access Journals (Sweden)

    Illana Louise Pereira de MELO

    2016-03-01

    Full Text Available Abstract This study aimed to characterize pomegranate seed oil and evaluate its quality and stability parameters against those of linseed oil. The profile of fatty acids and phytosterols and the content of tocopherols were analyzed by gas chromatography and high performance liquid chromatography, respectively. The quality of both oils was assessed as recommended by the American Oil Chemists' Society (AOCS and stability was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH, β-carotene bleaching (coupled oxidation of β-carotene/linoleic acid and Rancimat® assays. While α-linolenic acid (52% was the most abundant fatty acid in linseed oil (LO, punicic acid (55% was highest in pomegranate seed oil (PSO. Tocopherols and phytosterols (175 and 539 mg/100 g, respectively were greater in PSO than in LO (51 and 328 mg/100 g, respectively. Both oils met quality standards. The β-carotene bleaching and the DPPH assays showed greater oxidative stability for PSO than for LO. The Rancimat® method, on the other hand, indicated low stability for both oils.

  1. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    Science.gov (United States)

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  2. The effects of process technology on the physicochemical properties of peony seed oil

    Directory of Open Access Journals (Sweden)

    J. Qu

    2017-06-01

    Full Text Available Peony seed oils (PSOs were prepared using supercritical CO2 (SC and compared with soxhlet extraction (SE and mechanical screw press extraction (SPE methods. The fatty acid compositions of the oils were determined, and the physicochemical properties of the oils, including free radical-scavenging activity, α-amylase and α-glucosidase inhibition, thermal and rheological properties were evaluated. The unsaturated fatty acids in the SE oils were higher than SC and SPE oils due to the higher percentage of olefinic, allylic methylene and allylic methine protons in the SE oils. The SPE oils also displayed the highest DPPH and ABTS+ radical scavenging activity at the tested concentrations. However, the SE oils showed stronger inhibitory effects on α-amylase and α-glucosidase enzymes under in vitro conditions when compared with the other oil samples. The three oils had similar melting and crystalline point due to similar contents of fatty acids (FAs. The SC oils had a lower Ea than the others.

  3. Quality Evaluation of Oil from Seeds of Wild Plant Tylosema fassoglensis in Kenya

    Directory of Open Access Journals (Sweden)

    Ojwang D. Otieno

    2015-01-01

    Full Text Available Tylosema fassoglensis is a plant species that is native to Sub-Saharan Africa. The aim of this study was to evaluate the physicochemical properties of oil from T. fassoglensis in Kenya. Seeds of T. fassoglensis were collected from Mombasa, Taita Taveta, Homa Bay, and Siaya regions. Counts of T. fassoglensis in each region were recorded during the entire survey period. The highest distribution was recorded in Homa Bay followed by Siaya region. Distribution was the least in Taita Taveta and Mombasa regions. The analysis of the physicochemical characteristics of the oil was performed according to the official methods of analysis and the recommended practices of the American Oil Chemists Society. Oil content of 36.4% was obtained. The oil had refractive index 1.47 at 40°C, peroxide value 6.34 meq O2/kg, iodine value 94.06 g of I2/100 g, saponification value 145.93 mg KOH/g of oil, acid value 2.49 ± 0.56 mg KOH/g of oil, and unsaponifiable matter 5.87 g/kg. The oil had Lovibond color index of 2.0Y+28.0R. Oil content of T. fassoglensis is comparable with those of most oil crop under commercial production. The physicochemical properties of oil from T. fassoglensis are within the range recommended by FAO/WHO and hence suitable for human consumption.

  4. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  5. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil to Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Wara Dyah Pita Rengga

    2015-03-01

    Full Text Available Reaction kinetics of catalytic cracking of rubber seed oil to liquid fuels has been investigated. The reac-tion was performed with sulfuric acid as catalyst at temperatures of 350-450 oC and the ratio of oil-catalyst of 0-2 wt.% for 30-90 minutes. Kinetics was studied using the model of 6-lump parameters. The parameters were rubber seed oil, gasoline, kerosene, diesel, gas, and coke. Analysis of experimen-tal data using regression models to obtain reaction rate constants. Activation energies and pre-exponential factors were then calculated based on the Arrhenius equation. The simulation result illus-trated that the six-lump kinetic model can well predict the product yields of rubber seed oil catalytic cracking. The product has high selectivity for gasoline fraction as liquid fuel and the smallest amount of coke. The constant indicates that secondary reactions occurred in diesel products compared to gaso-line and kerosene. The predicted results indicate that catalytic cracking of rubber seed oil had better be conducted at 450 oC for 90 minutes using 0.5 wt.% catalyst. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd December 2013; Revised: 5th December 2014; Accepted: 7th December 2014How to Cite: Rengga, W.D.P., Handayani, P.A., Kadarwati, S., Feinnudin, A.(2015. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil  to Liquid Fuels. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 50-60. (doi:10.9767/bcrec.10.1.5852.50-60Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.5852.50-60

  6. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours.

    Science.gov (United States)

    Lutterodt, Herman; Slavin, Margaret; Whent, Monica; Turner, Ellen; Yu, Liangli Lucy

    2011-09-15

    Cold-pressed chardonnay, muscadine, ruby red, and concord grape seed oils and their defatted flours were studied for their fatty acid composition, oxidative stability and antioxidant and antiproliferative activities. The phenolic profiles of the seed flours were also measured. The most abundant fatty acid in the oils was linoleic acid, ranging from 66.0g/100g of total fatty acids in ruby red seed oil to 75.3g/100g of total fatty acids in concord seed oil. The oils were also high in oleic acid and low in saturated fat. Ruby red grape seed oil recorded the highest oxidative stability index of 40h under the accelerated conditions. Total phenolic content (TPC) was up to 100 times lower in the oils than in the flours. Lutein, zeaxanthin, cryptoxanthin, β-carotene, and α-tocopherol levels were also measured. DPPH radical-scavenging capacity ranged from 0.07 to 2.22mmol trolox equivalents (TE)/g of oil and 11.8 to 15.0mmol TE/g of flour. Oxidative stability of menhaden fish oil containing extracts of the seed flours was extended by up to 137%. HPLC analysis was conducted to determine the levels of free soluble, soluble conjugated and insoluble bound phenolics in the seed flours. The phenolic compounds analyzed included catechin, epicatechin, epicatechin gallate, quercetin, gallic acid, and procyanidins B1 and B2. Antiproliferative activity was tested against HT-29 colon cancer cells. All of the seed flours and muscadine seed oil registered significant (Pseed oils and flours as dietary sources of natural antioxidants and antiproliferative agents for optimal health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Plasma and hepatic cholesterol-lowering in hamsters by tomato pomace, tomato seed oil and defatted tomato seed supplemented in high fat diets

    Science.gov (United States)

    We determined the cholesterol-lowering effects of tomato pomace (TP), a byproduct of tomato processing, and its components such as tomato seed oil (TSO) and defatted tomato seed (DTS) in hamsters, a widely used animal model for cholesterol metabolism. Male Syrian Golden hamsters were fed high-fat di...

  8. OBTAINING COTTON SEED OIL EPOXIDIZED USING AN WEAK ACID

    Directory of Open Access Journals (Sweden)

    Karina Cruz-Aldaco

    2015-12-01

    Full Text Available In this study, parameters which influence the chemical modification under mild conditions using a weak organic acid, fatty acids of unsaturated oil, cottonseed to produce epoxidized oil, which is a useful precursor in obtaining resins epoxy industrial importance, were evaluated. We studied the following reaction parameters: concentration of acetic acid, hydrogen peroxide, catalyst and solvent, as well as temperature, agitation rate and reaction time. The results showed that the agitation and temperature are the parameters which influence the modification of unsaturated fatty acids. Studied conditions allowed obtaining up to 70% relative conversion of oxygen-oxirane from cottonseed oil.

  9. Antifungal Activity of Leaf and Latex Extracts of Calotropis procera (Ait.) against Dominant Seed-Borne Storage Fungi of Some Oil Seeds

    OpenAIRE

    Manoorkar V B; Mandge S V; B D Gachande

    2015-01-01

    In present study, aqueous and ethanol extracts of leaf & latex of Calotropis procera (Ait.) was tested for their antifungal activity against dominant storage seed-borne fungi of some oil seeds such as groundnut, soybean, sunflower and mustard. The antifungal effect of ethanol and aqueous extracts of leaf & latex of Calotropis procera (Ait.) against ten seed-borne dominant fungi viz., Cuvularia lunata, Alternaria alternata, Rhizoctonia solani, Fusarium solani, Penicillium chrysogenum, Asperg...

  10. Immiscible foam for enhancing oil recovery

    NARCIS (Netherlands)

    Simjoo, M.

    2012-01-01

    Growing worldwide oil demand increased the need of new and efficient oil recovery methods. Gas injection in oil reservoirs is deemed one of the most widely used methods to increase oil recovery. However, the full potential of gas injection is often not realized due to poor vertical and areal sweep

  11. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds

    OpenAIRE

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-01-01

    Background Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study ...

  12. Studies on Iron Embedded Polyesteramide Resin Derived from Melia-azedarach Seed oil-A Renewable Resource

    OpenAIRE

    A. Hasnat; M. Naseem; Ahmad, S. A.

    2016-01-01

    Due to the depletion of petroleum oil reserves and the environmental issues both, efforts have made to utilize the renewable resources in the polymer synthesis now-a-days.Among the different renewable resources seed oils of different plants pay considerable attraction due to its unique properties. Melia azedarach is a medium sized tree largely cultivated throughout the country as a shadow tree. The seeds of the plant have approximately 40-wt% non edible oil with sufficiently high unsaturation...

  13. Fatty acid composition of hemp seed oils from different locations in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kiralan, M.; Gul, V.; Metin Kara, S.

    2010-07-01

    Recent interest in hemp seed as a source of food has largely focused on its oil content and fatty acid profile. The oil content and fatty acid composition (15 fatty acids) of twenty one different hemp seed samples of domestic origin from north-western Turkey were monitored. The samples were obtained from seed wholesalers and local spice shops and are of unknown genetic origin. The oil content of the hemp seeds ranged between 29.6 to 36.5%. Out of the 15 detected fatty acids, the omega-6 linoleic acid (18:2n-6) was predominant and fluctuated from 55.4 to 56.9%, while the omega-3 a-linolenic (18:3n-3) acid ranged from 16.5 to 20.4% and the omega-9 oleic acid (18:1n-9) ranged from 11.4 to 15.9%. Of the minor fatty acids, the highest concentrations were found for {gamma}-linolenic acid (18:3n-6), range 0.6-1.1%, followed by stearidonic acid (18:4n-3), range 0.3-0.5%. These results show that hemp seed grown in north-western Turkey provides a well balanced and rich source of dietary omega-6 and -3 essential fatty acids and appears to be a potentially valuable source of food. (Author) 31 refs.

  14. OPTIMIZATION OF SESAME SEEDS OIL EXTRACTION OPERATING CONDITIONS USING THE RESPONSE SURFACE DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    HAITHAM OSMAN

    2016-12-01

    Full Text Available This paper applies Response Surface Design (RSD to model the experimental data obtained from the extraction of sesame seeds oil using n-hexane, chloroform and acetone as solvents under different operating conditions. The results obtained revealed that n-hexane outperformed the extraction obtained using chloroform and acetone. The developed model predicted that n-hexane with a rotational speed of 547 rpm and a contact time between the solvent and seeds of 19.46 hours with solvent: seeds ratio of 4.93, yields the optimum oil extracted of 37.03 %, outperforming chloroform and acetone models that gave prediction for 4.75 and 4.21 respectively. While the maximum predictions yield for chloroform is 6.73 %, under the operating conditions of 602 rpm, and 24 hours contact time, with a ratio of solvent: seeds of 1.74. On the other hand the acetone maximum prediction is only 4.37 %, with operational conditions of 467 rpm, and 6.00 hours contact time, with a ratio of solvent: seeds of 1. It is has been found that the maximum oil extraction yield obtained from the chloroform (6.73 % and Acetone (4.37 % is much lower than that predicted by n-hexane 37.03 %.

  15. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    Science.gov (United States)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  16. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  17. Enhanced chlorhexidine skin penetration with eucalyptus oil

    Directory of Open Access Journals (Sweden)

    Worthington Tony

    2010-09-01

    Full Text Available Abstract Background Chlorhexidine digluconate (CHG is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v CHG in various concentrations of eucalyptus oil (EO and 70% (v/v isopropyl alcohol (IPA. The concentration of CHG (μg/mg of skin was determined to a skin depth of 1500 μm by high performance liquid chromatography (HPLC. Results The 2% (w/v CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v EO in combination with 2% (w/v CHG in 70% (v/v IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis.

  18. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  19. Effect of heat stress on seed yield components and oil composition ...

    African Journals Online (AJOL)

    High temperature stress is a major environmental factor influencing processes such as growth, yield and quality of crops. The objective of this study was to assess the effect of heat stress, applied during grain-filling, on seed yield- and oil quality components in high- and mid-oleic sunflower hybrids. Genotypes were exposed ...

  20. Comparison of antimicrobial activity of seed oil of garlic and Moringa ...

    African Journals Online (AJOL)

    This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results ...

  1. Seed oil and Fatty acid content in okra (Abelmoschus esculentus) and related species

    Science.gov (United States)

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species were evaluated for seed oil content using TD-NMR. Species evaluated included; A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschat...

  2. Camelina seed transcriptome: Tool for meal and oil improvement and translational research

    Science.gov (United States)

    Camelina (Camelina sativa), a Brassicaceae oilseed, has received intense interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve seed composition traits such as the quality and content of the protein rich-me...

  3. ADS genes for reducing saturated fatty acid levels in seed oils

    Science.gov (United States)

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  4. Osage orange (Maclura pomifera L) seed oil poly(alpha-hydroxydibutylamine) triglycerides: Synthesis and characterization

    Science.gov (United States)

    Milled Osage orange seeds (Maclura pomifera (Raf.) Schneid) were Soxhlet extracted with hexane, and portions of the extract were treated with activated carbon before solvent removal. The crude oil was winterized and degummed by centrifugation at low temperature. Decantation of the centrifuge gave an...

  5. Evaluation of antidiabetic properties of cactus pear seed oil in rats

    OpenAIRE

    Berraaouan, Ali; Ziyyat, Abderrahim; MEKHFI, Hassane; Legssyer, Abdelkhaleq; Sindic, Marianne; Aziz, Mohammed; Bnouham, Mohamed

    2014-01-01

    Cactus pear (Opuntia ficus-indica (L.) Mill. (Cactaceae)) is a medicinal plant widely used to treat diabetes. This work investigates the hypoglycemic and antihyperglycemic effect of cactus pear seed oil (CPSO), its mechanism of action, and any toxic effects. Peer reviewed

  6. Dietary Effect of some Oil Seed-Based Methionine on sperm Quality ...

    African Journals Online (AJOL)

    The two oil seeds used were soybean and groundnut. Diet 1 had only fish meal and was designated as FM, diet 2 designated as FM+SB contained fish meal and soybean meal, diet 3 contained fish meal and groundnut cake and was designated as FM+GC, diet 4 had fish meal, soybean meal and groundnut cake meals in ...

  7. Comparison of antimicrobial activity of seed oil of garlic and Moringa ...

    African Journals Online (AJOL)

    Comparison of antimicrobial activity of seed oil of garlic and Moringa oleifera against some food-borne microorganisms. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about ...

  8. Technological Desition of Extraction of Melanin from the Waste of Production of Sunflower-Seed Oil

    Science.gov (United States)

    Kartushina, Yu N.; Nefedieva, E. E.; Sevriukova, G. A.; Gracheva, N. V.; Zheltobryukhov, V. F.

    2017-05-01

    The research was realized in the field of the technology for re-use of waste of sunflower-seed oil production. A technological scheme of production of melanin from sunflower husk as a waste was developed. Re-cycling will give the opportunity to reduce the amount of waste and to obtain an additional source of income.

  9. Amelioration of Anti-Nutritive Effects of Castor Oil Seed ( Ricinus ...

    African Journals Online (AJOL)

    Amelioration of Anti-Nutritive Effects of Castor Oil Seed ( Ricinus communis ) Meal in Broilers' Ration Using Natural Fermentation and Dl-Methionine ... Growth performance, coefficient of total tract apparent digestibility, serum metabolites, dressing percentage, and retail cuts were determined at the end of the study, which ...

  10. Effects of dietary fish oil and flax seed on cholesterol and fatty acid ...

    African Journals Online (AJOL)

    This study was conducted to determine the effects of the supplementation of different levels of fish oil (FO) and flax seed (FS) in the diets of layers on the content of egg yolk fatty acid, cholesterol, blood parameters, egg production and egg quality criteria. In the experiment, a total of 120 Isa-White laying hens of 34 weeks of ...

  11. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    Science.gov (United States)

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  12. Synthesis of Polyurethanes Membranes from Rubber Seed Oil and Methylene Diphenyl Diisocyanates (MDI)

    Science.gov (United States)

    Marlina; Nurman, S.; Saleha, S.; Fitriani; Thanthawi, I.

    2017-03-01

    Rubber seed oil and methylene diphenyl diisocyanates (MDI) based polyurethane membrane has been prepared in this study. The main objective of this research is manufacture of polyurethane membranes from avocado seed oil, as a filter of this membrane use as a filter of metals from water such as mercury (Hg). In this study, the polyurethane membrane had been synthesized by varying compositions of rubber seed oil and MDI, with ratios of 10:0.2; 10:0.4; 10:0.6; 10:0.8; 10:1.0; 10:1.2; 10:1.4; 10:1.6; 10:1.8 and 10:2.0 (v/w) at 80°C and 170°C as polymerization and curing temperatures, respectively. Optimum polyurethane membrane was obtained at rubber seed oil: MDI 10: 0.8 v/w, it was dry, non-sticky, smooth and blackish brown. The membrane flux was 5,8307 L / m2.h.bar and rejection factor was 35,3015 %. The results of characterization indicated the formation of urethane bonds (NH at 3480 cm-1, C=O at 1620 cm-1, CN at 1374 cm-1, -OC-NH- at 1096 cm-1 and no -NCO at 2270 cm-1), the value of Tg was 55°C. The polyurethane membrane which treated at the optimum treatment conditions were used to the filter of metals from water such as mercury (Hg).

  13. Social institutional dynamics of seed system reliability: the case of oil palm in Benin

    NARCIS (Netherlands)

    Akpo, E.; Crane, T.A.; Stomph, T.J.; Tossou, C.R.; Kossou, D.; Vissoh, P.; Struik, P.C.

    2014-01-01

    Seed system reliability is of major importance in farming. Whereas earlier studies analysed mainly annuals, this study focuses on a perennial. Oil palm in Benin was chosen as a case study because farmers complained about non-hybrids (dura and pisifera) in plots allegedly planted with 100% hybrid

  14. Kenaf seed oil from supercritical carbon dioxide fluid extraction ...

    African Journals Online (AJOL)

    Hibiscus cannabinus) variety V36 extracted using supercritical carbon dioxide fluid extraction (SFE) with different combinations of pressure (bars) and temperature (°C). Extracted oils were tested on human promyelocytic HL-60, murine ...

  15. Enzymes for Enhanced Oil Recovery (EOR)

    OpenAIRE

    Nasiri, Hamidreza

    2011-01-01

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR me...

  16. Evaluation of the pressing process during oil extraction from grape seeds

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2017-01-01

    Full Text Available This study evaluated the physical properties and oil extraction from grape seeds from three white (Welschriesling, Green Veltliner, Hibernal and two red (Zweigelt and Saint Laurent must varieties of grapevine by cold screw pressing as the appropriate extraction process. Pressing was carried out by a screw press UNO FM 3F by Farmet Company, Czech Republic. The pressing device consists of a matrix, 220 mm screw, head, heating mantle, nozzle holder, and a nozzle of 10 mm in diameter. The minimal and maximal screw rotation speeds were chosen within the press characteristics in order to achieve a correct expression and to avoid press overload. For successful pressing of the seeds and their storage, their initial moisture content was lowered from 40 to 45% to about 5 to 8% in a chamber dryer. The temperature in the chamber dryer did not exceeded 40 °C. Seeds of all varieties were pressed at the same speeds of 20, 40, 60, and 80 rpm. The characteristics of the grape seeds are as follows: The density ranges from 602.7 to 606.3 kg.m-3, thousand seeds weigh is between 21.9 - 26.6 g, humidity between 5.6 - 7.1% of dry matter and seed oil content, determined by extraction and depending on the variety, ranges from 15.3 to 17.5% in dry basis. The results have confirmed that when the screw rotation speed is changed from 20 to 80 rpm, the press capacity increases on average from 0.84 kg.h-1 to 1.75 kg.h-1, but simultaneously the oil yield reduces from 9.85 to 6.75%. This means that one kilogram of seed may produce 67.5 to 98.5 g of oil. The quantity of the pressed oil ranges from 67.5 to 98.5 g.kg-1 and thus depends on the variety. The measured results can be used in commercial practice for optimizing the pressing process for pressing of oil from grape seeds.

  17. Ultrasound induced green solvent extraction of oil from oleaginous seeds

    OpenAIRE

    Sicaire, Anne-Gaëlle; Abert Vian, Maryline; Fine, Frédéric; Carré, Patrick; Tostain, Sylvain

    2016-01-01

    Ultrasound-assisted extraction of rapeseed oil was investigated and compared with conventional extraction for energy efficiency, throughput time, extraction yield, cleanness, processing cost and product quality. A multivariate study enabled us to define optimal parameters (7.7 W/cm2 for ultrasonic power intensity, 40 °C for processing temperature, and a solid/liquid ratio of 1/15) for ultrasound-assisted extraction of oil from oilseeds to maximize lipid yield while reducing solvent consumptio...

  18. Anti-HIV coumarins from Calophyllum seed oil.

    Science.gov (United States)

    Spino, C; Dodier, M; Sotheeswaran, S

    1998-12-15

    The seeds of Calophyllum cerasiferum Vesque (Family-Clusiaceae), and Calophyllum inophyllum Linn. (Family-Clusiaceae) contain several known coumarins, among which were the potent HIV reverse transcriptase inhibitors costatolide and inophyllum P. Calophyllum cerasiferum contained (-)-calanolide B as its major coumarin constituent in significant amount and thus constitute a renewable source of this compound.

  19. Analysis and identification of oils from seed extract of Anthonotha ...

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... 2Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Lagos, Lagos, Nigeria. Received 23 ... The volatile components obtained from the seed extract of Anthonotha Macrophylla were analyzed using gas ... untapped. One of such underutilised plant is Anthonotha.

  20. Lipase Activity in Fermented Oil Seeds of Africa Locust Bean ...

    African Journals Online (AJOL)

    acer

    seeds above. Increasing NaCl concentration decreases the activity of Lipase indicating that NaCl is an inhibitor of lipase. The effect of substrate concentration on .... concentration. Effect of NaCl concentration on Lipase. Activity and Stability: Enzyme activity assay was repeated with varying NaCl concentration. (1-10%).

  1. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety.

    Science.gov (United States)

    Yanty, Noorzianna Abdul Manaf; Marikkar, Jalaldeen Mohammed Nazrim; Nusantoro, Bangun Prajanto; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-01-01

    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.

  2. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  3. Repellent Action Of Neem (Azadiracta India Seed Oil Against Aedes Aegypti Mosquitoes

    Directory of Open Access Journals (Sweden)

    Hati A K

    1995-01-01

    Full Text Available Neem (Azadiracta India seed oil in appropriate amount when smeared on the surface of the hand showed excellent repellent action against Aedes aegypti mosquitoes. When 1 ml of oil was spread on the hand, with an approximate area of 160 sq cm the percentage of alighting and blood fed mosquitoes in the experimental cages varied from 14 to 78 and 4 to 46 respectively. This percentage decreased to 6 to 18 and 0 to 16 respectively when the amount of oil applied was 1.5 ml. Only 0-4% of the mosquitoes alighted on the skin of which 2% only took the blood meal when 2 ml of the oil was used to cover the hand. In the control cages cent percent of the mosquitoes alighted and sucked blood. The repellent action was directly proportional to the hour of exposure to the oil. It was also observed that even after alighting on a oil- smeared skin a sizeable proportion of mosquitoes were not able to imbibe blood meal. Neem seed oil was non-toxic, non- irritating to skin.

  4. SESQUITERPENE RICH VOLATILE SEED OIL OF TAGETES PATULA L. FROM NORTHWEST IRAN

    Directory of Open Access Journals (Sweden)

    M. B. HASSANPOURAGHDAM

    2011-10-01

    Full Text Available Hydrodistilled volatile seed oil composition of commonly growing ornamental Tagetes patula L. was analyzed for its constituents by GC/MS. Forty constituents were identified, comprising 94% of the total oil. Sesquiterpene hydrocarbons (52.7% and oxygenated sesquiterpenes (15.8% were the main subclasses of volatile oil components followed by monoterpene hydrocarbons (12.6%. The principle constituents of the volatile oil were (E-caryophyllene (44.6% caryophyllene oxide (14.8%, germacrene D (3.8%, (Z-β-ocimene (3.8% and limonene (3.7%. From chemical point of view, oxides (15.7% were the predominant group of components with caryophyllene oxide as their main representative. α-terthienyl (3.8% comprised partially large amount in the volatile oil content despite of its polar and less-volatile nature. Taking into account the volatile oil profile, the chemical composition of the volatile seed oil of commonly growing ornamental T. patula L. was characterized as sesquiterpene and α-terthienyl rich one probably with appreciable biocidal (Insecticidal and nematicidal and pharmacological potential.

  5. Penetration Enhancement Effect of Turpentine Oil on Transdermal ...

    African Journals Online (AJOL)

    Purpose: To prepare transdermal films of ketorolac tromethamine (KT) and study the effect of turpentine oil as a penetration enhancer for the drug. Methods: Transdermal films of KT were prepared with Carbopol-934 and ethyl cellulose, with turpentine oil as the penetration enhancer, using solvent evaporation method.

  6. Biodiesel from the seed oil of Treculia africana with high free fatty acid content

    Energy Technology Data Exchange (ETDEWEB)

    Adewuyi, Adewale [Redeemer' s University, Department of Chemical Sciences, Faculty of Natural Sciences, Redemption City, Ogun State (Nigeria); Oderinde, Rotimi A.; Ojo, David F.K. [University of Ibadan, Industrial Unit, Department of Chemistry, Ibadan, Oyo State (Nigeria)

    2012-12-15

    Oil was extracted from the seed of Treculia africana using hexane. The oil was characterized and used in the production of biodiesel. Biodiesel was produced from the seed oil of T. africana using a two-step reaction system. The first step was a pretreatment which involved the use of 2 % sulfuric acid in methanol, and secondly, transesterification reaction using KOH as catalyst. Saponification value of the oil was 201.70 {+-} 0.20 mg KOH/g, free fatty acid was 8.20 {+-} 0.50 %, while iodine value was 118.20 {+-} 0.50 g iodine/100 g. The most dominant fatty acid was C18:2 (44 %). The result of the method applied showed a conversion which has ester content above 98 %, flash point of 131 {+-} 1.30 C, and phosphorus content below 1 ppm in the biodiesel. The biodiesel produced exhibited properties that were in agreement with the European standard (EN 14214). This study showed that the high free fatty acid content of T. africana seed oil can be reduced in a one-step pretreatment of esterification reaction using H{sub 2}SO{sub 4} as catalyst. (orig.)

  7. Behavioral Effect of Sterculia apetala Seed Oil Consumption in Male Zucker Rats.

    Science.gov (United States)

    Herrera-Meza, Socorro; Rodríguez-Landa, Juan Francisco; Martínez, Armando J; Herrera-Meza, Grecia; Fernández-Demeneghi, Rafael; Reyes-Saldaña, Karla; Oliart-Ros, Rosa María

    2017-11-01

    Sterculia apetala (order: Malvales, family: Sterculiaceae) seed oil contains two cyclopropene fatty acids: sterculic and malvalic acid. Both positive and negative effects have been associated with the consumption of sterculic oil. In Mexico, S. apetala seeds are consumed after being boiled or roasted, used as chocolate flavoring, and utilized as animal fodder. Therefore, it is important to evaluate whether the consumption of this seed has a negative impact on the organism. The aim of this study was to evaluate the effect of administration of sterculic oil, during an 8-week period, on anxiety-like behavior and spontaneous locomotor activity in Zucker rats, analyzed through light/dark and open-field tests. The results showed that the consumption of sterculic oil decreased exploration latency in light/dark tests, which suggests an anxiolytic-like effect. Alterations in time spent on rearing and grooming were present in open-field tests, but this was not statistically significant, discarding nonspecific motor alterations. The alterations found in this study are possibly related to intrinsic obesity and metabolic complications present in the Zucker rat model, where leptin plays an important role in animal mood, more so than sterculic oil consumption.

  8. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    Science.gov (United States)

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  9. Composition, physical properties and drying characteristics of seed oil of Citrullus lanatus

    Science.gov (United States)

    Idris, S. A.; Rashidi, A. R.; Muhammad, A.; Abdullah, M.; Elham, O. S. J.; Mamat, M. S.

    2017-09-01

    A study to investigate the effect of different drying methods for the pre-treatment process on the quality and quantity of oil extracted from Citrulllus lanatus seeds was conducted. The red type Citrulllus lanatus seeds from local supermarket in Shah Alam is used in this experiment. The amount of seed was divided into two portions; one portion was subjected to sun drying while the other portion was subjected to oven drying (at a temperature of 70°C). After the drying process, the seeds were ground in a laboratory grinder to turn them into powder. The ground seeds then will be fed to Supercritical Carbon Dioxide unit (SC-CO2) for extraction. Once the extracted oil is obtained, it will be analysed by using Gas Chromatography and Mass Spectrometer (GC-MS). Results indicated that the amount of the moisture content from the sun-dried was lower compared to oven-dried. The results also indicated that, there were no significant difference in the quantity of oil obtained from both samples of oven-dried and sun-dried. However, the acid value and other component content in the sample were higher in the sun-dried sample relative to the oven-dried sample. Linoleic acid is the only compound that was found in the oven-dried sample, whereas linoleic acid and oleic acid were found in the sun-dried sample. Based on the results, it shows that the drying effect were important when the quality of oil was to be considered. The other compounds like Naphtalenol, 9-17-Octadecadeinal, 2-Chloroethyl linoleate, and Carboxin also are found in the sun-dried sample. Other that that, drying method does not give any effect to the physical appearance of the extracted oil, as similar color and other physical appearance was produced by the both sample.

  10. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    Science.gov (United States)

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  11. Investigation on the mineral contents of capers (Capparis spp.) seed oils growing wild in Turkey.

    Science.gov (United States)

    Ozcan, M Musa

    2008-09-01

    Minor and major mineral contents of seed oils of Capparis ovata Desf. var. canescens (Coss.) Heywood and Capparis spinosa var. spinosa used as pickling products in Turkey were determined by inductively coupled plasma atomic emission spectrometry. The seed oils contained Al, P, Na, Mg, Fe, and Ca, in addition to fatty acids. The highest mineral concentrations measured were 14.91-118.81 mg/kg Al, 1,489.34-11,523.74 mg/kg P, 505.78-4,489.51 mg/kg Na, 102.15-1,655.33 mg/kg Mg, 78.83-298.14 mg/kg Fe, and 1.04-76.39 mg/kg Ca. The heavy metal concentrations were less than the limit of detection in all oil samples. The results may also be useful for the evaluation of nutritional information.

  12. RESPONSE SURFACE METHODOLOGY FOR OPTIMIZATION OF THE EXTRACTION OF FLAX (LINUM USITATISSIMUM SEED OIL

    Directory of Open Access Journals (Sweden)

    Tibor Maliar

    2011-12-01

    Full Text Available Flax seed is an important source of ω-3 polyunsaturated fatty acids essential for human physiology. The aim of this paper is to investigate the effects of major parameters of the lipid extraction from flax seed, in relation to the recovery of oil as well as the oil quality properties. The independent variables of extraction were proposed as: organic solvents, temperature, extraction time and solid-liquid ratio. The following quantitative and qualitative parameters were chosen as dependent variables: yield of the lipid fraction, acid value of oil and the absorbance at 490 nm. After calculating the optimal values of the extraction, the validation analysis was carried out and it was found out that the predicted and experimentally verified dependent variables were in agreement with the optimal extraction parameters.doi:10.5219/168

  13. Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Pedersen, A.; Sandstrøm, B.

    2002-01-01

    oxidation of fasting and postprandial lipoproteins eighteen males consumed diets enriched with rapeseed oil (RO), olive oil (OO), or sunflower-seed oil (SO) in randomised order for periods of 3 weeks followed by a RO test meal. In the postprandial state the concentrations of cholesterol and triacylglycerol......Elevated concentrations of fasting and non-fasting triacylglycerol-rich lipoproteins (TRL) as well as oxidative changes of lipoproteins may increase the risk of ischaemic heart disease. To compare the effects of different diets rich in unsaturated fatty acids on the concentrations and in vitro...

  14. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2017-10-01

    Full Text Available Mandarin (Citrus reticulata is one of the most popular fruits in tropical and sub-tropical countries around the world. It contains about 22–34 seeds per fruit. This study investigated the potential of non-edible mandarin seed oil as an alternative fuel in Australia. The seeds were prepared after drying in the oven for 20 h to attain an optimum moisture content of around 13.22%. The crude oil was extracted from the crushed seed using 98% n-hexane solution. The biodiesel conversion reaction (transesterification was designed according to the acid value (mg KOH/g of the crude oil. The study also critically examined the effect of various reaction parameters (such as effect of methanol: oil molar ratio, % of catalyst concentration, etc. on the biodiesel conversion yield. After successful conversion of the bio-oil into biodiesel, the physio-chemical fuel properties of the virgin biodiesel were measured according to relevant ASTM standards and compared with ultra-low sulphur diesel (ULSD and standard biodiesel ASTM D6751. The fatty acid methyl esters (FAMEs were analysed by gas chromatography (GC using the EN 14103 standard. The behaviour of the biodiesel (variation of density and kinematic viscosity at various temperatures (10–40 °C was obtained and compared with that of diesel fuel. Finally, mass and energy balances were conducted for both the oil extraction and biodiesel conversion processes to analyse the total process losses of the system. The study found 49.23 wt % oil yield from mandarin seed and 96.82% conversion efficiency for converting oil to biodiesel using the designated transesterification reaction. The GC test identified eleven FAMEs. The biodiesel mainly contains palmitic acid (C16:0 26.80 vol %, stearic acid (C18:0 4.93 vol %, oleic acid (C18:1 21.43 vol % (including cis. and trans., linoleic acid (C18:2 4.07 vol %, and less than one percent each of other fatty acids. It is an important source of energy because it has a higher

  15. effectiveness of community based seed multiplication in enhancing

    African Journals Online (AJOL)

    ACSS

    Community Based Seed Multiplication (CBSM) approaches have been used by agricultural research and .... received seed for multiplication and distribution in rural ..... M. NATEEBWA et al. 332 seed production strategies, Mexico. D.F.: CIMMYT. http://ageconsearch.umn.edu/ bitstream/56188/2/seed_production. Manual.pdf.

  16. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    Science.gov (United States)

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  17. Physico-chemical Characteristics of Oil and Seed Residues of Bauhinia variegata and Bauhinia linnaei

    Directory of Open Access Journals (Sweden)

    Sarfraz Arain

    2012-06-01

    Full Text Available Physico-chemical characteristics of two Bauhinia seed varieties (B. variegata and B. linnaei, were evaluated for commercial exploration. Physico-chemical characteristics of the oils for both varieties were demonstrated and mean values found to be refractive index (40 °C 1.4589 and 1.4588, peroxide value 1.9 and 2.4 (meq O2 / kg of oil, iodine value 84.5 and 92.2 (g of I2/100g of oil, saponification number 191.3 and 195.5 (mg of KOH /g of oil, free fatty acids 0.6% and 0.9%, unsaponifiable matter 0.9% and 1.2% and color (1 in. cell, 2.2-2.9R + 30.0-25.0Y, respectively. Linoleic 42.1 and 45.8 %, oleic 13.4 and 12.6%, stearic 17.5 and 18.8% and palmitic 22.1 and 16.8% were the main fatty acids in the crude seed oils. Minor amounts of palmitoleic, margaric, linolenic, arachidic, behenic, eicosapentaenoic and nervonic acid were also identified. The composition of defatted seed residue of B. variegata and B. linnaei were found as: protein 41.9% and 38.6%, oil 18.0%, and 17.4% ash 4.8% and 4.2%, moisture 6.7% and 6.3%, fiber 6.9% and 7.3% and total carbohydrate 28.4% and 33.8%, respectively. Proximate and fatty acid composition of both Bauhinia varieties were found to be almost similar. It was concluded that Bauhinia seed is a rich source of linoleic acid and could be explored for commercial uses.

  18. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Fatty acid composition and some physicochemical characteristics of Sterculia apetala seed oils

    Directory of Open Access Journals (Sweden)

    Herrera-Meza, S.

    2014-09-01

    Full Text Available In the tropical rain forests of southeastern Mexico, the use of Sterculia mexicana and Sterculia apetala seed oils for human and animal nutrition is common. However, the seeds contain cyclopropene fatty acids, whose consumption is related with beneficial as well as detrimental physiological effects. The aim of this study was to determine the fatty acid profile and the physicochemical characteristics of S. apetala seed oil and to evaluate the effect of roasting on both aspects. Cyclopropenoic fatty acids, sterculic acid and malvalic acid were identified in the natural and roasted seed oils. The major component in the seed oil was sterculic acid, as has been reported for Sterculia mexicana and Sterculia foetida. The roasting process modified some physicochemical properties and the fatty acid composition of the seed oil, particularly by decreasing its content of sterculic acid. To our knowledge, this is the first report on the fatty acid composition of S. apetala seed oil.En zonas tropicales del sureste de México, el uso de semillas de Sterculia mexicana y Sterculia apetala es común para consumo humano y animal. Sin embargo, dichas semillas contienen ácidos grasos ciclopropenoicos, los cuales se les ha relacionado tanto con efectos fisiológicos beneficiosos como adversos para la salud. El objetivo de este estudio fue determinar el perfil de ácidos grasos y las características fisicoquímicas de la especie S. apetala, así como la evaluación del aceite sometido a un proceso de tostado. Se identificaron ácidos grasos ciclopropenoicos como el ácido estercúlico y malválico, en el aceite natural y tostado. Para las especies S. mexicana y S. foetida, el componente mayoritario en las semillas fue el ácido estercúlico. El proceso de tostado modificó algunas propiedades fisicoquímicas y la composción de los ácidos grasos, especificamente disminuyó el contenido de ácido estercúlico. Para nuestro conocimiento, este es la primera informaci

  20. SYNTHESIS AND CHARACTERIZATION OF SODIUM SOAP FROM NYAMPLUNG SEED OIL (Calophyllum inophyllum L. AND TEST ANTIBACTERIAL ACTIVITY AGAINST Staphilococus aureus

    Directory of Open Access Journals (Sweden)

    Mochamad Chasani

    2015-05-01

    Full Text Available This research was used nyamplung seed oil as antibacterial soap material. The soap from nyamplung seed oil was performed by saponification reactions, characterization of soap based on SNI 06-3632-1994. The antibacterial activity was tested against bacteria Staphylococus aureus. The result of this research showed that soap had yellow color with weight 13,028 g from 10,028 g nyamplung seed oil. The characteristic of soap based on SNI were water content of 25,287%, fatty acid of 72,177%, free alkali 0,082%, unsoap fatty or free fatty 0,834%, and mineral oil was negative. Soap base on nyamplung seed oil have antibacterial activity against bacteria Staphylococus aureus with diameter of inhibition zone 14,701 mm.

  1. Comparison of Chemical Profile and Antioxidant Capacity of Seeds and Oils from Salvia sclarea and Salvia officinalis.

    Science.gov (United States)

    Živković, Jelena; Ristić, Mihailo; Kschonsek, Josephine; Westphal, Anna; Mihailović, Milica; Filipović, Vladimir; Böhm, Volker

    2017-12-01

    Composition of tocopherols, tocotrienols, carotenoids, fatty acids, as well as hydrophilic and lipophilic antioxidant activities, were determined in seeds of two Salvia species and oils obtained from them. Both seeds contained a large amount of oil (around 20%) rich in polyunsaturated fatty acids. While Salvia officinalis seed oil can be classified as oleic-linoleic oil, the predominant fatty acid in Salvia sclarea was α-linolenic acid (around 54%). Among tocols, the main isomers in both seeds and oils were γ-tocopherol, followed by α-tocopherol. Concerning carotenoids, their concentration was around 0.75 mg/100 g of seeds and 0.16 mg/100 g of oils, with a predominance of lutein. Oil and seeds of S. officinalis exhibited higher antioxidant potential compared to S. sclarea investigated samples which could be attributed to higher content of total vitamin E and carotenoids. This study provides results that enables use of two Salvia species as new alternative sources of vegetable oils. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Effect of long-term optional ingestion of canola oil, grape seed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats.

    Science.gov (United States)

    Asadi, Farzad; Shahriari, Ali; Chahardah-Cheric, Marjan

    2010-01-01

    The aim of the present study was to determine the effect of long-term optional intake of vegetable oils (canola, grape seed, corn) and yogurt butter on the serum, liver and muscle cholesterol status. Twenty-five male Wistar rats were randomly categorized into five groups (n=5) as follows: control, canola oil, grape seed oil, corn oil and manually prepared yogurt butter. In each group, 24h two bottle choice (oil and water) tests were performed for 10 weeks. Serum cholesterol values showed a trend to decrease in grape seed oil, corn oil and yogurt butter groups compared to the control. Optional intake of yogurt butter made a significant increase in HDL-C values (42.34+/-9.98 mg/dL) yet decrease in LDL-C values (11.68+/-2.06 mg/dL) compared to the corresponding control (19.07+/-3.51; 30.96+/-6.38 mg/dL, respectively). Furthermore, such findings were concomitant with a significant decrease in the liver TC levels (1.75+/-0.31 mg/g liver) and an increase in the muscle TC levels (1.85+/-0.32 mg/g liver) compared to the corresponding control (2.43+/-0.31; 0.94+/-0.14 mg/g liver, respectively). Optional intake of manually prepared yogurt butter has more beneficial effects on serum lipoprotein cholesterol values with some alterations in the liver and muscle cholesterol states than the vegetable oils. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Enhanced oil recovery with modified nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, A.; Littmann, W.

    1982-01-01

    Practically all work on chemical flooding, both in the laboratory and in the field, has been focused on petroleum sulphonates. However, as soon as the concentration of electrolyes, especially of divalent ions, exceeds a critical value, the use of this class of anionic surfactants becomes troublesome. Some of the difficulties may be overcome by the use of additives, preferably ether sulphates or ether sulphonates. Hence, the favourable properties of nonionic substances, such as excellent stability to electrolytes, have been combined with those of anionics, and thus the so-called modified nonionics are available for chemical flooding. These products offer the possibility of chemical adaption to the reservoir conditions, are very stable toward electrolytes, and their solubility does not depend on the temperature. The latter is a drawback of nonionic products (cloud point). The modified nonionics are essentially anionics based on ethene oxide derivatives of alcohols or alkylphenols, with subsequent incorporation of sulphate, sulphonate, carboxyl or phosphate groups. On the basis of the reservoir conditions, crude oil properties, and reservoir water, various processes have been screened for enhanced oil recovery in the Velebit reservoir. It was decided to simultaneously inject modified nonionic surfactants and polymers. In part of the reservoir, this process will be tested in two stages in a line drive with several injection wells and production wells. The total area is about 20,000 m/sup 3/. The first stage involves water flooding of about half the area, in order to collect additional data on the reservoir. During the second stage, simultaneous injection of surfactants and polymers will take place. The reservoir is described, and possible EOR processes, the flooding concept and selection of chemicals are discussed.

  4. Variation in oil content and fatty acid composition of the seed oil of Acacia species collected from the northwest zone of India.

    Science.gov (United States)

    Khan, Riyazuddeen; Srivastava, Ruchi; Khan, Mather Ali; Alam, Pravej; Abdin, Malik Zainul; Mahmooduzzafar

    2012-08-30

    The oil content and fatty acid composition of the mature seeds of Acacia species collected from natural habitat of the northwest zone of the Indian subcontinent (Rajasthan) were analyzed in order to determine their potential for human or animal consumption. Oil content varied between 40 and 102 g kg⁻¹. The highest oil content was obtained in Acacia bivenosa DC. (102 g kg⁻¹) among the nine Acacia species. The fatty acid composition showed higher levels of unsaturated fatty acids, especially linoleic acid (~757.7 g kg⁻¹ in A. bivenosa), oleic acid (~525.0 g kg⁻¹ in A. nubica) and dominant saturated fatty acids were found to be 192.5 g kg⁻¹ palmitic acid and 275.6 g kg⁻¹ stearic acid in A. leucophloea and A. nubica respectively. Seed oils of Acacia species can thus be classified in the linoleic-oleic acid group. Significant variations were observed in oil content and fatty acid composition of Acacia species. The present study revealed that the seed oil of Acacia species could be a new source of high linoleic-oleic acid-rich edible oil and its full potential should be exploited. The use of oil from Acacia seed is of potential economic benefit to the poor native population of the areas where it is cultivated. The fatty acid composition of Acacia seed oils is very similar to that reported for commercially available edible vegetable oils like soybean, mustard, sunflower, groundnut and olive. Hence the seed oil of Acacia species could be a new source of edible vegetable oil after toxicological studies. Copyright © 2012 Society of Chemical Industry.

  5. Metabolic Changes during Storage of Brassica napus Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil.

    Science.gov (United States)

    Bonte, Anja; Schweiger, Rabea; Pons, Caroline; Wagner, Claudia; Brühl, Ludger; Matthäus, Bertrand; Müller, Caroline

    2017-12-20

    Virgin rapeseed (Brassica napus) oil is a valuable niche product, if delivered with a high quality. In this study, the effects of moist storage of B. napus seeds for 1 to 4 days on the seed metabolome and the chemo-sensory properties of the produced oils were determined. The concentrations of several primary metabolites, including monosaccharides and amino acids, rapidly increased in the seeds, probably indicating the breakdown of storage compounds to support seed germination. Seed concentrations of indole glucosinolates increased with a slight time offset suggesting that amino acids may be used to modify secondary metabolism. The volatile profiles of the oils were pronouncedly influenced by moist seed storage, with the sensory quality of the oils decreasing. This study provides a direct time-resolved link between seed metabolism under moist conditions and the quality of the resulting oils, thereby emphasizing the crucial role of dry seed storage in ensuring high oil quality.

  6. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    CO2) extraction. The oil was analysed by GC-MS after methylation. Compounds were identified according to their mass spectra (EI, 70 eV) by comparison with authentic reference substances and literature data. Five fatty acids were identified, with ...

  7. Evaluation and characterization of the seed oils of Trichosanthes ...

    African Journals Online (AJOL)

    snake gourd) and Ricinodendron heudelotii (honey plum) ... The refractive indices at 400C, boiling point, smoke point and flash points were high in the two oils. Their relative densities were high and their melting points were low. From the ...

  8. South African seed oils are safe for human consumption

    African Journals Online (AJOL)

    2015-06-17

    Jun 17, 2015 ... Food Chem. 2009;116(2):535-541. 21. Choe E, Min DB. Chemistry of deep-fat frying oils. J Food Sci. 2007;72(5):R77-R86. 22. United States Department of Agriculture Agricultural Research Service. National nutrient database for Standard Reference Release 28. USDA [homepage on the Internet]. c2015.

  9. Small scale industrial application of rubber seed oil in soap ...

    African Journals Online (AJOL)

    Its pH was slightly basic which makes it suitable for use in soap manufacture. It was, therefore, used as a substitute for palm kernel oil in the production of soaps (bar soap and detergent soap). Tests for the foam capacity and stability of the soaps exhibited good visual foam stabilities and capacities. These make it suitable for ...

  10. Extraction and qualitative assessment of African sweet orange seed oil

    African Journals Online (AJOL)

    By solvent extraction using petroleum ether, a golden yellow coloured oil was obtained and characterized by determining the pH, refractive index, density, solvent miscibility, congealing temperature, flame nature, specific gravity, retention factor on chromatographic plate, heat of combustion, smoke point, flash point, fire ...

  11. extraction and physico chemical properties of some edible seed oils

    African Journals Online (AJOL)

    User

    of carbon tetrachloride was added to the oil and dissolved. Twenty cm3 Wijs' solution was equally added to the mixture and the content was corked with a stopper that initially moistened with potassium iodide solution. The mixture was titrated with 0.IM standard sodium thiosulphate solution using starch as an indicator just.

  12. Allelopathic activity of medicinal plant essential oils on seed germination and vigor of lettuce achenes

    Directory of Open Access Journals (Sweden)

    Cíntia Alvarenga Santos Fraga de Miranda

    2015-07-01

    Full Text Available In recent years, essential oils have gained commercial interest in the agricultural area, mainly for their allelopathic, insecticidal, antifungal, antimicrobial and antioxidant properties, and, also for their natural compounds, which have generally displayed low toxicity, relatively low cost and rapid degradation in the environment. Medicinal plants have emerged as potential suppliers of essential oils because of their ethnopharmacological utility. The aim of this study was to evaluate the allelopathic potential of essential oils extracted from fresh leaves of lemon grass (Cymbopogon citratus, wild basil (Ocimum gratissimum L. and sweet basil (Ocimum basilicum L. with regard to their major constituents (citral, eugenol and cineol, respectively in different application forms (direct contact and the effect of volatile constituents on the germination and vigor of lettuce seeds (cultivar Regina SF 3500. The effects of the oils and their major components were evaluated with regard to the variables: first germination count, total germination, GVI (germination velocity index, seedling dry weight and average lengths of shoots and lettuce roots. The essential oils from lemon grass and basil displayed allelopathic potentials on seed germination and vigor of lettuce achenes that can be assigned to their respective major constituents citral and eugenol. On the other hand, the allelopathic effect of the essential oil from basil was a consequence of the combined effect of all the components, regardless the application method.

  13. Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity.

    Science.gov (United States)

    Bail, Stefanie; Stuebiger, Gerald; Krist, Sabine; Unterweger, Heidrun; Buchbauer, Gerhard

    2008-06-01

    Grape seed oil (Oleum vitis viniferae) representing a promising plant fat, mainly used for culinary and pharmaceutical purposes as well as for various technical applications, was subject of the present investigation. HS-SPME-GC-MS was applied to study volatile compounds in several seed oil samples from different grape oils. The triacylglycerol (TAG) composition of these oils was analyzed by MALDI-TOF-MS/MS. In addition the total phenol content and the antioxidant capacity (using TEAC) of these oils were determined. The headspace of virgin grape oils from white and red grapes was dominated by ethyl octanoate (up to 27.5% related to the total level of volatiles), ethylacetate (up to 25.0%), ethanol (up to 22.7%), acetic acid (up to 17.2%), ethyl hexanoate (up to 17.4%) and 3-methylbutanol (up to 11.0%). Triacylglycerol composition was found to be dominated by LLL (up to 41.8%), LLP (up to 24.3%), LLO (up to 16.3%) and LOO (up to 11.7%), followed by LOP (up to 9.3%) and LOS/OOO (up to 4.3%). Total phenol content ranged between 59μg/g and 115.5μg/g GAE. Antioxidant capacity (TEAC) was analyzed to range between 0.09μg/g and 1.16μg/g. Copyright © 2007 Elsevier Ltd. All rights reserved.

  14. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification.

    Science.gov (United States)

    Davidov-Pardo, Gabriel; McClements, David Julian

    2015-01-15

    The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Purification and protein composition of oil bodies from Brassica napus seeds

    Directory of Open Access Journals (Sweden)

    Jolivet Pascale

    2006-11-01

    Full Text Available Seed oil bodies are intracellular particles to store lipids as food reserves in oleaginous plants. Description of oil body-associated proteins of Arabidopsis thaliana has been recently reported whereas only few data are available in the case of rapeseed. Oil bodies have been prepared from two double-low varieties of Brassica napus seeds, a standard variety (Explus and an oleic variety (Cabriolet. Oil bodies have been purified using floatation technique in the successive presence of high salt concentration, detergent or urea in order to remove non-specifically trapped proteins. The integrity of the oil bodies has been verified and their size estimated. Their protein and fatty acid contents have been determined. The proteins composing these organelles were extracted, separated by denaturing gel electrophoresis, digested by trypsin and their peptides were subsequently analyzed by liquid chromatography-tandem mass spectrometry. Protein identification was performed using Arabidopsis thaliana protein sequence database and a collection of Expressed Sequence Tag (EST of Brassica napus generated from the framework of the French plant genomics programme “Genoplante”. This led to the identification of a limited number of proteins: eight oleosins showing a high similarity each other and representing up to 75% of oil body proteins, a 11 β hydroxysteroid dehydrogenase-like protein highly homologous to the same protein from A. thaliana, and only few contaminating proteins associated with myrosinase activity.

  16. Composition of tocopherols in sesame seed oil: an indicative of adulteration

    Directory of Open Access Journals (Sweden)

    Gastaldo Badolato, Elza S.

    2006-06-01

    Full Text Available The objective of this research was to verify how the composition of tocopherols can help to reveal adulteration in samples of sesame seed oils commercialized in Brazil. Five samples have been analyzed. One sample presented the composition of fatty acids, tocopherols and desmethylsterols of authentic sesame oil. Another one presented only non complying parameters. Three other samples showed the fatty acid composition of pure sesame oil, but the tocopherol and desmethylsterol profiles did not comply with those for sesame seed oil. The results indicate that samples could be adulterated by other vegetable oils like soybean, lauric and corn oils.Este trabajo examina la importancia de los tocoferoles en la detección de la adulteración del aceite de sésamo comercializado en Brasil. Se analizaron cinco muestras a las que se le determinaron su composición en ácidos grasos, esteroles y tocoferoles. Una de las muestras se reveló puro aceite de semilla de sésamo; en otra, todos los parámetros estaban en desacuerdo. En las demás, el perfil de ácidos grasos caracterizaba el aceite de sésamo, sin embargo los tocoferoles y esteroles permanecieron en desacuerdo. Los resultados indican adulteración con otros aceites vegetales como soja, aceites láuricos y maíz.

  17. Flexible Bionanocomposites from Epoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes.

    Science.gov (United States)

    Shuttleworth, Peter S; Díez-Pascual, Ana M; Marco, Carlos; Ellis, Gary

    2017-03-23

    Hemp seed (Cannabis sativa L.) oil comprises a variety of beneficial unsaturated triglycerides with well-documented nutritional and health benefits. However, it can become rancid over a relatively short time period, leading to increased industrial costs and waste of a valuable product. The development of sustainable polymers is presented as a strategy, where both the presence of unsaturation and peroxide content could be effectively used to alleviate both the waste and financial burden. After the reaction with peroxyacetic acid, the incorporation of halloysite nanotubes (HNTs), and the subsequent thermal curing, without the need for organic solvents or interfacial modifiers, flexible transparent materials with a low glass-transition temperature were developed. The improvement in the thermal stability and both the static and dynamic mechanical properties of the bionanocomposites were significantly enhanced with the well-dispersed HNT filler. At an optimum concentration of 0.5 wt % HNTs, a simultaneous increase in stiffness, strength, ductility, and toughness was observed in comparison to the unfilled cured resin. These sustainable food-waste-derived bionanocomposites may provide an interesting alternative to petroleum-based materials, particularly for low-load-bearing applications, such as packaging.

  18. Energy- and exergy analysis of rape seed oil methyl ester (RME) production under Swedish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hovelius, K.; Hansson, P. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1999-10-01

    In this study the rape seed oil methyl ester (RME) production chain was analysed with respect to its energy- and exergy efficiencies. The differences between results from an ordinary energy analysis and an exergy analysis of the production were also quantified and discussed. The sensitivity of the results to changes in some of the most important input parameters were then analysed in order to find production strategies that increase the exergy efficiency. The study was applied to rape seed cultivation situated in southern Sweden. The rape seed oil was hot pressed in a large-scale plant, and the RME was esterified in the same factory as that in which the rape seed oil was pressed. Both direct and indirect energy and exergy flows used for RME production were included. The analysis showed that a large part of the energy and exergy used to produce RME was related to nitrogen fertilizers and diesel fuels. Another important conclusion was that the exergy efficiency of the production in general is higher than the energy efficiency. A third conclusion was that it is possible, by using alternative production strategies, to improve the exergy efficiency without decreasing the energy efficiency.

  19. Blends of olive oil and seeds oils: characterisation and olive oil quantification using fatty acids composition and chemometric tools. Part II.

    Science.gov (United States)

    Monfreda, M; Gobbi, L; Grippa, A

    2014-02-15

    A method to verify the percentage of olive oil in a blend, in compliance with the Commission Regulation EU No. 29/2012, was developed by GC-FID analysis of methyl esters of fatty acids, followed by chemometric tools (PCA, TFA, SIMCA and PLS). First of all, binary blends of twelve olive oils and one sunflower oil were studied, in order to evaluate the variability associated to the fatty acids profile of olive oils (Monfreda, Gobbi, & Grippa, 2012). In this study, binary blends of twelve olive oils with four types of seeds oils (peanut, corn, rice and grape seed oils) were evaluated. These four groups of blends were analysed and processed separately, each group consisting of 36 samples with 40%, 50% and 60% of olive oil content. Chemometric tools were also applied to the global data set (180 samples, including those analysed in the previous paper). Outstanding results were achieved, showing that the proposed method would be capable to discriminate blends with a difference in concentration of olive oil lower than 5% (a standard error of prediction of 3.97% was obtained with PLS). Therefore blends containing 45% and 55% of olive oil were also analysed with the current method and added to the data sets for chemometric assessment with supervised tools. SIMCA still provided good models; however the best performance was achieved by processing each group of binary blends (consisting of 60 samples) separately, rather than applying SIMCA to the overall data set (300 samples). On the other hand PLS did not show significant improvements. Copyright © 2013. Published by Elsevier Ltd.

  20. The PTRC : a world leader in enhanced heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kristoff, B.; Knudsen, R.; Asghari, K. [Petroleum Technology Research Centre, Regina, SK (Canada); Pappas, E.S. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    The Petroleum Technology Research Centre (PTRC) fosters knowledge and progressive technologies to enhance the recovery of petroleum. This paper discussed the PTRC's leadership in enhanced heavy oil recovery, with particular reference to core research program such as heavy oil (post) cold flow; enhanced waterflooding; miscible/immiscible solvent injection; and near-wellbore conformance control. Other projects that were presented included a joint implementation of vapour extraction project (JIVE); and the IEA greenhouse gas (GHG) Weyburn-Midale carbon dioxide monitoring and storage project. The JIVE project will develop, demonstrate and evaluate solvent vapour extraction processes for enhanced oil recovery in heavy oil reservoirs. The GHG Weyburn-Midale project, launched in 2000, studies carbon dioxide injection and storage in partially depleted oil reservoirs. It was concluded that the PTRC continues to develop technologies to meet the world's energy requirements while mitigating both immediate and long-term environmental impacts. 4 figs.

  1. The Effect of Adding Fish Oil Sunflower Seed Oil in the Produce of Yogurt From Skim Milk on Cholesterol Level of Mice (Mus Musculus)

    OpenAIRE

    Purnama, A; Malaka, R; Ako, A

    2011-01-01

    This study aims to look at the effect of adding fish oil and sunflower seed oil in the produce of yogurt from skim milk as unsaturated fatty acids that can lower blood cholesterol levels are tested on mice (Mus musculus). Materials research is skim milk, lamuru fish oil, sunflower seed oil, starter plain yogurt Lb.delbrueckii subps. bulgaricus, penoptalin 1%, NaOH 0.1 N and experimental animals. Experimental animals used were 27 mice (Mus musculus) which 2-3 month old male and weighing 25-30 ...

  2. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Science.gov (United States)

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  3. Changes in Acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation

    Science.gov (United States)

    Zeb, Alam; Ahmad, Sultan

    2017-07-01

    This study was aimed to determine the acylglycerols composition, quality characteristics and protective role of dietary pumpkin seed oil in rabbits. Pumpkin seed oil was thermally oxidized and analyzed for quality characteristics and acylglycerols composition using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD). Oxidized and un-oxidized oil samples were fed to the rabbits in different doses for two weeks. The changes in the serum biochemistry, hematology, and liver histology were studied. The levels of quality parameters such peroxide value (PV), anisidine value (AV), total phenolic contents (TPC), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and conjugated trienes (CT) significantly increased with thermal treatment. HPLC analyses revealed ten individual triacylglycerols (TAGs), total di-acylglycerols (DAGs), mono-acylglycerols (MAGs), and total oxidized TAGs. Trilinolein (LLL), 1-oleoyl-2,3-dilinolinoyl glycerol (OLL), triolein (OOO) and 1,2-distearoyl-3-palmitoyl glycerol (SSP) were present in higher amounts and decreased with thermal treatment. Animal's studies showed that oxidized oils decreased the whole body weight, which was ameliorated by the co-administration of un-oxidized oils. The levels of serum biochemical parameters were improved by co-administration of pumpkin seed oils. There were no significant effects of both oxidized and un-oxidized pumpkin seed oil on the hematological and histological parameters of rabbits. In conclusion, nutritionally important triacylglycerols were present in pumpkin seed oil with protective role against the toxicity of its corresponding oxidized oils.

  4. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    Science.gov (United States)

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  5. The novel approach to enhance seed security: dual anti-counterfeiting methods applied on tobacco pelleted seeds.

    Directory of Open Access Journals (Sweden)

    Yajing Guan

    Full Text Available Seed security is of prime importance for agriculture. To protect true seeds from being faked, more secure dual anti-counterfeiting technologies for tobacco (Nicotiana tabacum L. pelleted seed were developed in this paper. Fluorescein (FR, rhodamine B (RB, and magnetic powder (MP were used as anti-counterfeiting labels. According to their different properties and the special seed pelleting process, four dual-labeling treatments were conducted for two tobacco varieties, MS Yunyan85 (MSYY85 and Honghua Dajinyuan (HHDJY. Then the seed germination and seedling growth status were investigated, and the fluorescence in cracked pellets and developing seedlings was observed under different excitation lights. The results showed that FR, RB, and MP had no negative effects on the germination, seedling growth, and MDA content of the pelleted seeds, and even some treatments significantly enhanced seedling dry weight, vigor index, and shoot height in MS YY85, and increased SOD activity and chlorophyll content in HHDJY as compared to the control. In addition, the cotyledon tip of seedlings treated with FR and MP together represented bright green fluorescence under illumination of blue light (478 nm. And the seedling cotyledon vein treated with RB and MP together showed red fluorescence under green light (546 nm. All seeds pelleted with magnetic powder of proper concentration could be attracted by a magnet. Thus, it indicated that those new dual-labeling methods that fluorescent compound and magnetic powder simultaneously applied in the same seed pellets definitely improved anti-counterfeiting technology and enhanced the seed security. This technology will ensure that high quality seed will be used in the crop production.

  6. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    behavior inside the reservoir can be manipulated by the injection of surfactants and co-surfactants, creating advantageous conditions in order to mobilize trapped oil. Correctly designed surfactant systems together with the crude oil can create microemulsions at the interface between crude oil and water...... at constant salinity (6.56 %), constant surfactant-alcohol ratio (SAR) but with varying water-oil ratios (WOR). At all temperatures it was very clear that the effect of pressure was significant. The system changed from the two phase region, Winsor II, to the three phase region, Winsor III, as pressure...... characterization of the two crude oils using gas chromatography and SARA analysis confirmed that the heavier components in the crude oils, (in the case of the Latin American crude oil), are correlated to the observed decrease of viscosity, where the viscosity decrease may be explained from change of the shape...

  7. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

    Science.gov (United States)

    Elhiti, Mohamed; Yang, Cunchun; Chan, Ainsley; Durnin, Douglas C; Belmonte, Mark F; Ayele, Belay T; Tahir, Muhammad; Stasolla, Claudio

    2012-07-01

    SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.

  8. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.).

    Science.gov (United States)

    Yang, Xin; Zhang, Di; Song, Li-Min; Xu, Qian; Li, Hong; Xu, Hui

    2017-01-01

    Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.

  9. Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil.

    Science.gov (United States)

    Abbas Ali, M; Anowarul Islam, M; Othman, Noor Hidayu; Noor, Ahmadilfitri Md

    2017-12-01

    The oxidative stability and fatty acid composition of groundnut seed oil (GSO) exposed to microwaves were evaluated during heating at 170 °C. During heating, the oxidative indices such as free fatty acid, peroxide value, p -anisidine value, TOTOX, thiobarbituric acid value, specific extinctions, and color value were increased. The increments were found to be higher in unroasted seed oils compared to roasted ones indicating lower release of lipid oxidation products in roasted GSO. After 9 h heating, the relative content of polyunsaturated fatty acid (PUFA) decreased to 89.53% and that of saturated fatty acid (SFA) increased to 117.46% in unroasted sample. The relative content of PUFA decreased to 92.05% and that of SFA increased to 105.76% in 7.5 min roasted sample after 9 h of heating. However, the roasting process slowed down the oxidative deterioration of PUFA. With increased heating times, an appreciable loss was more apparent in the triacylglycerol species OLL and OOL in unroasted samples compared to roasted ones. In FTIR, the peak intensities in unroasted samples were markedly changed in comparison with roasted samples during heating. The roasting of groundnut seed prior to the oil extraction reduced the oxidative degradation of oil samples; thereby increasing heat stability.

  10. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

    Science.gov (United States)

    Citti, Cinzia; Pacchetti, Barbara; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe

    2017-11-20

    Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil. Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein. This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils. Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Triacylglycerols and fatty acids composition of egusi seed oil (Cucumeropsis Mannii Naudin

    Directory of Open Access Journals (Sweden)

    Kamga, R.

    1993-12-01

    Full Text Available Triacylglycerols were determined from a Cameroonian (African white egusi seed oil (Cucumeropsis Mannii Naudin using reversed phase high performance liquid chromatography. The fatty acid composition of two types of seed (red and white is obtained by capillary gas chromatography. The study of the triacyiglycerol composition obtained in white egusi seed oil revealed that only nine triacylglycerols were present in amounts above 1% (area. The first five triglycerides represent more than 80% of the total triacylglycerols, and the major triacyiglycerol was palmitoyldilinoleoylglycerol, accounting for 23.6% of the oil. This oil contains a high proportion of linoleic acid (60% wt/wt.Se determinó la composición en triacilgliceroles del aceite de semilla de egusi del Camerún (Cucumeropsis Mannii Naudin utilizando cromatografía líquida de alta eficacia en fase inversa. La composición en ácidos grasos de dos tipos de semillas de egusi (roja y blanca fue obtenida por cromatografía de gases en columna capilar. El estudio de la composición en triacilgliceroles del aceite obtenido de semilla blanca de egusi reveló que sólo nueve de ellos se encontraban en proporción superior al 1% (en área. Cinco triacilgliceroles representaron más del 80% del total y el mayoritario fue el palmitoildilinoleoilglicerol (23,6%. Este aceite contiene una alta proporción de ácido linoleico (60%.

  12. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available Peony seed oil (PSO is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%, fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69, and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.

  13. Metabolic engineering plant seeds with fish oil-like levels of DHA.

    Directory of Open Access Journals (Sweden)

    James R Petrie

    Full Text Available BACKGROUND: Omega-3 long-chain (≥C(20 polyunsaturated fatty acids (ω3 LC-PUFA have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C(20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%, although undesirable ω6 PUFA levels have also remained high. METHODOLOGY/PRINCIPAL FINDINGS: The transgenic seed production of the particularly important C(22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C(22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C(18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. CONCLUSIONS/SIGNIFICANCE: The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish.

  14. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    Science.gov (United States)

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  15. Pengaruh Penambahan Minyak Kelapa, Minyak Biji Bunga Matahari, dan Minyak Kelapa Sawit terhadap Penurunan Produksi Metan di dalam Rumen secara in Vitro (The Effect of Addition Coconut Oil, Sunflower Seed Oil, and Palm Olein on Reducing Ruminal Methane Pro

    Directory of Open Access Journals (Sweden)

    Puput Diah Sitoresmi

    2012-02-01

    protozoa growth and addition oil up to 5.0% reduced methane production as much as 15.80%. (Key words : Coconut oil, Sunflower seed oil, Palm olein, Methane production, Protozoa count, In vitro fermentation

  16. Repellent Action of Neem (Azadirachta indica) Seed Oil Cream ...

    African Journals Online (AJOL)

    Nekky Umera

    contact urticaria(Malbach and Johnson,1975) and skin eruption(Reuveni and. Yagupsky,1982). , to severe reactions, such ... neem oil in Vanishing Cream base were made (0%w/w , 2.5%w/w. ,5.0%w/w. ,7.5%w/w ... (cleaned with alcohol) in each cage and counting the number of mosquitoes that alighted within 10 seconds.

  17. Hemp ( Cannabis sativa L.) seed oil: analytical and phytochemical characterization of the unsaponifiable fraction.

    Science.gov (United States)

    Montserrat-de la Paz, S; Marín-Aguilar, F; García-Giménez, M D; Fernández-Arche, M A

    2014-02-05

    Non-drug varieties of Cannabis sativa L., collectively namely as "hemp", have been an interesting source of food, fiber, and medicine for thousands of years. The ever-increasing demand for vegetables oils has made it essential to characterize additional vegetable oil through innovative uses of its components. The lipid profile showed that linoleic (55%), α-linolenic (16%), and oleic (11%) were the most abundant fatty acids. A yield (1.84-1.92%) of unsaponifiable matter was obtained, and the most interesting compounds were β-sitosterol (1905.00 ± 59.27 mg/kg of oil), campesterol (505.69 ± 32.04 mg/kg of oil), phytol (167.59 ± 1.81 mg/kg of oil), cycloartenol (90.55 ± 3.44 mg/kg of oil), and γ-tocopherol (73.38 ± 2.86 mg/100 g of oil). This study is an interesting contribution for C. sativa L. consideration as a source of bioactive compounds contributing to novel research applications for hemp seed oil in the pharmaceutical, cosmetic food, and other non-food industries.

  18. Ultrasound-Assisted Extraction (UAE and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile

    Directory of Open Access Journals (Sweden)

    Hasanah Mohd Ghazali

    2013-10-01

    Full Text Available The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE and solvent extraction (SE. In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C and ultrasound-assisted extraction (UAE methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively. Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%–74.7%, palmitic (16:0, 14.9%–17.9%, stearic (18:0, 4.50%–5.25%, and linoleic acid (18:2, 3.63%–4.6%. Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO, palmitoyl diolein (POO and stearoyl oleoyl linolein (SOL. In this study, ultrasound-assisted extraction (UAE significantly (p < 0.05 influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE and conditions.

  19. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    Science.gov (United States)

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  20. Solar technology application to enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

    1979-12-01

    One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.