WorldWideScience

Sample records for enhances perforin expression

  1. Immunohistochemical expression of perforin in lichen planus lesions.

    Science.gov (United States)

    Gaber, Mohamed Abdelwahed; Maraee, Alaa Hassan; Alsheraky, Dalia Rifaat; Azeem, Marwa Hussain Abdel

    2014-12-01

    Lichen planus (LP) is a chronic inflammatory papulosquamous skin disease characterized by epidermal basal cell damage and a particular band-like infiltrate predominantly of T cells in the upper dermis. It is characterized by the formation of colloid bodies representing apoptotic keratinocytes. The apoptotic process mediated by CD8+ cytotoxic T lymphocytes and natural killer cells mainly involves two distinct pathways: the perforin/granzyme pathway and the Fas/FasL pathway. So far, little is known regarding the role of perforin-mediated apoptosis in LP. Is to study the expression and distribution of perforin in the epidermis and dermis of lesional LP skin. Skin biopsy specimens from lesional skin of 31 patients with LP and 10 healthy persons were analyzed by immunohistochemistry. Significant accumulation of perforin + cells was found in both epidermis and dermis of LP lesions compared with healthy skin. Perforin expression was significantly upregulated in the epidermis of LP lesions. Accumulation of perforin + cells in the epidermis of LP lesions suggest a potential role of perforin in the apoptosis of basal keratinocytes.

  2. Switch from perforin-expressing to perforin-deficient CD8(+) T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo.

    Science.gov (United States)

    Meiraz, Avihai; Garber, Orit Gal; Harari, Shaul; Hassin, David; Berke, Gideon

    2009-09-01

    Although CD8(+) cytotoxic T lymphocytes (CTL) exhibit both Fas ligand (FasL) -based and perforin-based lytic activities, the accepted hallmark of a fully active CTL remains its perforin killing machinery. Yet the origin, rationale for possessing both a slow-acting (FasL) and a fast-acting (perforin) killing mechanism has remained enigmatic. Here we have investigated perforin expression in CTL directly involved in acute tumour (i.e. leukaemias EL4 and L1210) allograft rejection occurring within the peritoneal cavity. We show that at the height of the immune response, the majority of conjugate-forming CD8(+) CTL express high levels of perforin messenger RNA and protein, and kill essentially via perforin. Later however, coinciding with complete rejection, fully cytocidal CTL emerge which exhibit a stark decrease in perforin and now kill preferentially via constitutively expressed FasL. Although late in emergence, and persistent, these powerful CTL are neither effector-memory nor memory CTL. This finding has implications for the monitoring of anti-transplant responses in clinical settings, based on assessing perforin expression in graft infiltrating CD8(+) T cells. The results show that as the immune response progresses in vivo, targeted cellular suicide mainly prunes high perforin-expressing CD8(+) cells, resulting in the gradual switch in effector CTL, from mostly perforin-based to largely Fas/FasL-based killers. Hence, two kinds of CD8(+) CTL have two killing strategies.

  3. Switch from perforin-expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo

    Science.gov (United States)

    Meiraz, Avihai; Garber, Orit Gal; Harari, Shaul; Hassin, David; Berke, Gideon

    2009-01-01

    Although CD8+ cytotoxic T lymphocytes (CTL) exhibit both Fas ligand (FasL) -based and perforin-based lytic activities, the accepted hallmark of a fully active CTL remains its perforin killing machinery. Yet the origin, rationale for possessing both a slow-acting (FasL) and a fast-acting (perforin) killing mechanism has remained enigmatic. Here we have investigated perforin expression in CTL directly involved in acute tumour (i.e. leukaemias EL4 and L1210) allograft rejection occurring within the peritoneal cavity. We show that at the height of the immune response, the majority of conjugate-forming CD8+ CTL express high levels of perforin messenger RNA and protein, and kill essentially via perforin. Later however, coinciding with complete rejection, fully cytocidal CTL emerge which exhibit a stark decrease in perforin and now kill preferentially via constitutively expressed FasL. Although late in emergence, and persistent, these powerful CTL are neither effector-memory nor memory CTL. This finding has implications for the monitoring of anti-transplant responses in clinical settings, based on assessing perforin expression in graft infiltrating CD8+ T cells. The results show that as the immune response progresses in vivo, targeted cellular suicide mainly prunes high perforin-expressing CD8+ cells, resulting in the gradual switch in effector CTL, from mostly perforin-based to largely Fas/FasL-based killers. Hence, two kinds of CD8+ CTL have two killing strategies. PMID:19689737

  4. High Level of Perforin Expression Is Required for Effective Correction of Hemophagocytic Lymphohistiocytosis

    OpenAIRE

    Tiwari, Swati; Hontz, Adrianne; Terrell, Catherine E.; Arumugam, Paritha; Carmo, Marlene; Risma, Kimberly; Jordan, Michael; Malik, Punam

    2016-01-01

    Perforin-1 mutations result in a potentially fatal hemophagocytic lymphohistiocytosis (HLH) with heightened immune activation, hypercytokinemia, pancytopenia, and end-organ damage. At present, hematopoietic stem cell (HSC) transplantation is curative, but limited by donor availability and associated mortality, making gene therapy an attractive alternative approach for HLH. We reported that perforin expression driven by cellular promoters in lentiviral (LV) vectors resulted in significant, alb...

  5. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control.

    Directory of Open Access Journals (Sweden)

    Adam R Hersperger

    2010-05-01

    Full Text Available Many immune correlates of CD8(+ T-cell-mediated control of HIV replication, including polyfunctionality, proliferative ability, and inhibitory receptor expression, have been discovered. However, no functional correlates using ex vivo cells have been identified with the known ability to cause the direct elimination of HIV-infected cells. We have recently discovered the ability of human CD8(+ T-cells to rapidly upregulate perforin--an essential molecule for cell-mediated cytotoxicity--following antigen-specific stimulation. Here, we examined perforin expression capability in a large cross-sectional cohort of chronically HIV-infected individuals with varying levels of viral load: elite controllers (n = 35, viremic controllers (n = 29, chronic progressors (n = 27, and viremic nonprogressors (n = 6. Using polychromatic flow cytometry and standard intracellular cytokine staining assays, we measured perforin upregulation, cytokine production, and degranulation following stimulation with overlapping peptide pools encompassing all proteins of HIV. We observed that HIV-specific CD8(+ T-cells from elite controllers consistently display an enhanced ability to express perforin directly ex vivo compared to all other groups. This ability is not restricted to protective HLA-B haplotypes, does not require proliferation or the addition of exogenous factors, is not restored by HAART, and primarily originates from effector CD8(+ T-cells with otherwise limited functional capability. Notably, we found an inverse relationship between HIV-specific perforin expression and viral load. Thus, the capability of HIV-specific CD8(+ T-cells to rapidly express perforin defines a novel correlate of control in HIV infection.

  6. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guojun [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Mingkai, E-mail: mkxu@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Zhang, Huiwen [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Song, Yubo [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Jian; Zhang, Chenggang [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China)

    2016-12-15

    Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulation and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis

  7. Acute Psychosocial Stress-Mediated Changes in the Expression and Methylation of Perforin in Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Virginia R. Falkenberg

    2013-01-01

    Full Text Available Perforin ( PRF1 is essential for immune surveillance and studies report decreased perforin in chronic fatigue syndrome (CFS, an illness potentially associated with stress and/or infection. We hypothesize that stress can influence regulation of PRF1 expression, and that this regulation will differ between CFS and non-fatigued (NF controls. We used the Trier Social Stress Test (TSST as a standardized acute psychosocial stress, and evaluated its effect on PRF1 expression and methylation in CFS (n = 34 compared with NF (n = 47 participants. During the TSST, natural killer (NK cells increased significantly in both CFS ( P = <0.0001 and NF subjects ( P = <0.0001. Unlike previous reports, there was no significant difference in PRF1 expression at baseline or during TSST between CFS and NF. However, whole blood PRF1 expression increased 1.6 fold during the TSST in both CFS ( P = 0.0003 and NF ( P = <0.0001. Further, the peak response immediately following the TSST was lower in CFS compared with NF ( P = 0.04. In addition, at 1.5 hours post TSST, PRF1 expression was elevated in CFS compared with NF (whole blood, P = 0.06; PBMC, P = 0.02. Methylation of seven CpG sites in the methylation sensitive region of the PRF1 promoter ranged from 38%-79% with no significant differences between CFS and NF. Although, the average baseline methylation of all seven CpG sites did not differ between CFS and NF groups, it showed a significant negative correlation with PRF1 expression at all TSST time points in both CFS (r = –0.56, P = <0.0001 and NF (r = –0.38, P = <0.0001. Among participants with high average methylation (≥65%, PRF1 expression was significantly lower in CFS than NF subjects immediately following TSST. These findings suggest methylation could be an important epigenetic determinant of inter-individual differences in PRF1 expression and that the differences in PRF1 expression and methylation between CFS and NF in the acute stress response require

  8. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    International Nuclear Information System (INIS)

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar; Lang, Florian

    2012-01-01

    Highlights: ► Akt/SGK dependent phosphorylation of GSK3α,β regulates T lymphocytes. ► T cells from mice expressing Akt/SGK insensitive GSK3α,β (gsk3 KI ) release less IL-2. ► CD4 + cells from gsk3 KI mice express less CD62L. ► CD8 + cells from gsk3 KI mice are relatively resistant to activation induced cell death. ► Perforin expression is enhanced in gsk3 KI T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3α,β. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3α,β inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3 KI ). T cells from gsk3 KI mice were compared to T cells from corresponding wild type mice (gsk3 WT ). As a result, in gsk3 KI CD4 + cells surface CD62L (L-selectin) was significantly less abundant than in gsk3 WT CD4 + cells. Upon activation in vitro T cells from gsk3 KI mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3 KI T cells, suggesting that GSK3 induces effector function in CD8 + T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3α,β is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  9. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  10. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  11. A Comparative Study of the Expression of Cytotoxic Proteins in Allergic Contact Dermatitis and Psoriasis : Spongiotic Skin Lesions in Allergic Contact Dermatitis Are Highly Infiltrated by T Cells Expressing Perforin and Granzyme B

    OpenAIRE

    Yawalkar, Nikhil; Hunger, Robert E.; Buri, Caroline; Schmid, Simone; Egli, Fabienne; Brand, Christoph U.; Mueller, Christoph; Pichler, Werner J.; Braathen, Lasse R.

    2001-01-01

    Recent reports indicate that cytotoxic T cells are critically involved in contact hypersensitivity reactions in animals. In this study we sought to investigate the in vivo expression of cytotoxic granule proteins in the elicitation phase of allergic contact dermatitis in humans. Skin biopsy specimens were obtained from patients with allergic contact dermatitis (n = 8) and psoriasis (n = 6) and from controls with normal skin (n = 6). Expression of perforin and granzyme B was investigated by in...

  12. The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors

    Directory of Open Access Journals (Sweden)

    Pedro Xavier-Elsas

    2015-01-01

    Full Text Available Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp- deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations.

  13. Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria

    Science.gov (United States)

    McCormack, Ryan M; de Armas, Lesley R; Shiratsuchi, Motoaki; Fiorentino, Desiree G; Olsson, Melissa L; Lichtenheld, Mathias G; Morales, Alejo; Lyapichev, Kirill; Gonzalez, Louis E; Strbo, Natasa; Sukumar, Neelima; Stojadinovic, Olivera; Plano, Gregory V; Munson, George P; Tomic-Canic, Marjana; Kirsner, Robert S; Russell, David G; Podack, Eckhard R

    2015-01-01

    Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system. DOI: http://dx.doi.org/10.7554/eLife.06508.001 PMID:26402460

  14. Perforin is detrimental to controlling [corrected] C. muridarum replication in vitro, but not in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond M Johnson

    Full Text Available CD4 T cells are critical for clearing experimental Chlamydia muridarum genital tract infections. Two independent in vitro CD4 T cell mechanisms have been identified for terminating Chlamydia replication in epithelial cells. One mechanism, requiring IFN-γ and T cell-epithelial cell contact, terminates infection by triggering epithelial production of nitric oxide to chlamydiacidal levels; the second is dependent on T cell degranulation. We recently demonstrated that there are two independent in vivo clearance mechanisms singly sufficient for clearing genital tract infections within six weeks; one dependent on iNOS, the other on Plac8. Redundant genital tract clearance mechanisms bring into question negative results in single-gene knockout mice. Two groups have shown that perforin-knockout mice were not compromised in their ability to clear C. muridarum genital tract infections. Because cell lysis would be detrimental to epithelial nitric oxide production we hypothesized that perforin was not critical for iNOS-dependent clearance, but posited that perforin could play a role in Plac8-dependent clearance. We tested whether the Plac8-dependent clearance was perforin-dependent by pharmacologically inhibiting iNOS in perforin-knockout mice. In vitro we found that perforin was detrimental to iNOS-dependent CD4 T cell termination of Chlamydia replication in epithelial cells. In vivo, unexpectedly, clearance in perforin knockout mice was delayed to the end of week 7 regardless of iNOS status. The discordant in vitro/in vivo results suggest that the perforin's contribution to bacterial clearance in vivo is not though enhancing CD4 T cell termination of Chlamydia replication in epithelial cells, but likely via a mechanism independent of T cell-epithelial cell interactions.

  15. Candida albicans induces Metabolic Reprogramming in human NK cells and responds to Perforin with a Zinc Depletion Response

    Directory of Open Access Journals (Sweden)

    Daniela eHellwig

    2016-05-01

    Full Text Available As part of the innate immune system, natural killer (NK cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with C. albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

  16. Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity

    DEFF Research Database (Denmark)

    Topham, D J; Cardin, R C; Christensen, Jan Pravsgaard

    2001-01-01

    resulted in a failure of most animals to drive the virus into latency, although lytic virus in the lung was reduced by approximately 1000-fold from its peak. Second, the absence of either perforin or Fas alone had no impact on the ability to reduce titres of lytic virus in the lung. Further neutralization...... of IFN-gamma in CD4-depleted P(+/+), P(-/-) or Fas(-/-) mice had no effect. To define the requirements for Fas or perforin more clearly, two sets of chimeric mice were constructed differing in perforin expression by the T cells, and Fas on infected epithelial cells or lymphocytes. Animals with P(-/-) T...... cells and a Fas(-/-) lung failed to limit the shedding of infectious virus, regardless of whether CD4 T cells were present. In addition, we noted that having P(-/-) T cells in irradiated Fas(+/+) hosts caused a lethal disease that was not apparent in the non-chimeric (unirradiated) P(-/-) (Fas...

  17. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  18. Perforin Promotes Amyloid Beta Internalisation in Neurons.

    Science.gov (United States)

    Lana, Erica; Khanbolouki, Mahbod; Degavre, Charline; Samuelsson, Eva-Britt; Åkesson, Elisabet; Winblad, Bengt; Alici, Evren; Lithner, Christina Unger; Behbahani, Homira

    2017-03-01

    Studies on the mechanisms of neuronal amyloid-β (Aβ) internalisation are crucial for understanding the neuropathological progression of Alzheimer's disease (AD). We here investigated how extracellular Aβ peptides are internalised and focused on three different pathways: (i) via endocytic mechanisms, (ii) via the receptor for advanced glycation end products (RAGE) and (iii) via the pore-forming protein perforin. Both Aβ 40 and Aβ 42 were internalised in retinoic acid differentiated neuroblastoma (RA-SH-SY5Y) cells. A higher concentration was required for Aβ 40 (250 nM) compared with Aβ 42 (100 nM). The internalised Aβ 40 showed a dot-like pattern of distribution whereas Aβ 42 accumulated in larger and distinct formations. By confocal microscopy, we showed that Aβ 40 and Aβ 42 co-localised with mitochondria, endoplasmic reticulum (ER) and lysosomes. Aβ treatment of human primary cortical neurons (hPCN) confirmed our findings in RA-SH-SY5Y cells, but hPCN were less sensitive to Aβ; therefore, a 20 (Aβ 40 ) and 50 (Aβ 42 ) times higher concentration was needed for inducing uptake. The blocking of endocytosis completely inhibited the internalisation of Aβ peptides in RA-SH-SY5Y cells and hPCN, indicating that this is a major pathway by which Aβ enters the cells. In addition, the internalisation of Aβ 42 , but not Aβ 40 , was reduced by 55 % by blocking RAGE. Finally, for the first time we showed that pore formation in cell membranes by perforin led to Aβ internalisation in hPCN. Understanding how Aβ is internalised sheds light on the pathological role of Aβ and provides further ideas of inhibitory strategies for preventing Aβ internalisation and the spreading of neurodegeneration in AD.

  19. Diarylthiophenes as inhibitors of the pore-forming protein perforin.

    Science.gov (United States)

    Miller, Christian K; Huttunen, Kristiina M; Denny, William A; Jaiswal, Jagdish K; Ciccone, Annette; Browne, Kylie A; Trapani, Joseph A; Spicer, Julie A

    2016-01-15

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure-activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Perforin rapidly induces plasma membrane phospholipid flip-flop.

    Directory of Open Access Journals (Sweden)

    Sunil S Metkar

    Full Text Available The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.

  1. Real-time visualization of perforin nanopore assembly

    Science.gov (United States)

    Leung, Carl; Hodel, Adrian W.; Brennan, Amelia J.; Lukoyanova, Natalya; Tran, Sharon; House, Colin M.; Kondos, Stephanie C.; Whisstock, James C.; Dunstone, Michelle A.; Trapani, Joseph A.; Voskoboinik, Ilia; Saibil, Helen R.; Hoogenboom, Bart W.

    2017-05-01

    Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.

  2. Diarylthiophenes as inhibitors of the pore-forming protein perforin

    OpenAIRE

    Miller, Christian K.; Huttunen, Kristiina M.; Denny, William A.; Jaiswal, Jagdish K.; Ciccone, Annette; Browne, Kylie A.; Trapani, Joseph A.; Spicer, Julie A.

    2016-01-01

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure?activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a t...

  3. Molecular study of the perforin gene in familial hematological malignancies

    Directory of Open Access Journals (Sweden)

    El Abed Rim

    2011-09-01

    Full Text Available Abstract Perforin gene (PRF1 mutations have been identified in some patients diagnosed with the familial form of hemophagocytic lymphohistiocytosis (HLH and in patients with lymphoma. The aim of the present study was to determine whether patients with a familial aggregation of hematological malignancies harbor germline perforin gene mutations. For this purpose, 81 unrelated families from Tunisia and France with aggregated hematological malignancies were investigated. The variants detected in the PRF1 coding region amounted to 3.7% (3/81. Two of the three variants identified were previously described: the p.Ala91Val pathogenic mutation and the p.Asn252Ser polymorphism. A new p.Ala 211Val missense substitution was identified in two related Tunisian patients. In order to assess the pathogenicity of this new variation, bioinformatic tools were used to predict its effects on the perforin protein structure and at the mRNA level. The segregation of the mutant allele was studied in the family of interest and a control population was screened. The fact that this variant was not found to occur in 200 control chromosomes suggests that it may be pathogenic. However, overexpression of mutated PRF1 in rat basophilic leukemia cells did not affect the lytic function of perforin differently from the wild type protein.

  4. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin.

    Science.gov (United States)

    Chang, Chih-Jung; Chen, Yi-Yuan M; Lu, Chia-Chen; Lin, Chuan-Sheng; Martel, Jan; Tsai, Sheng-Hui; Ko, Yun-Fei; Huang, Tsung-Teng; Ojcius, David M; Young, John D; Lai, Hsin-Chih

    2014-04-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.

  5. A Comparative Study of the Expression of Cytotoxic Proteins in Allergic Contact Dermatitis and Psoriasis

    Science.gov (United States)

    Yawalkar, Nikhil; Hunger, Robert E.; Buri, Caroline; Schmid, Simone; Egli, Fabienne; Brand, Christoph U.; Mueller, Christoph; Pichler, Werner J.; Braathen, Lasse R.

    2001-01-01

    Recent reports indicate that cytotoxic T cells are critically involved in contact hypersensitivity reactions in animals. In this study we sought to investigate the in vivo expression of cytotoxic granule proteins in the elicitation phase of allergic contact dermatitis in humans. Skin biopsy specimens were obtained from patients with allergic contact dermatitis (n = 8) and psoriasis (n = 6) and from controls with normal skin (n = 6). Expression of perforin and granzyme B was investigated by in situ hybridization and immunohistochemistry. In contrast to normal skin and psoriasis, a significant enhancement of perforin and granzyme B gene expression and immunoreactivity was observed in the mononuclear cell infiltrate of allergic contact dermatitis. Immunoreactivity for perforin and granzyme B was mainly found in the cytoplasm of lymphocytic cells, which were located in the dense perivascular infiltrate as well as at sites of marked spongiosis in the epidermis. Double immunostaining revealed that both CD4+ and CD8+ T cells are capable of expressing perforin and granzyme B. In conclusion, our data suggest that T-cell-mediated mechanisms involving cytotoxic granule proteins may elicit epidermal cell injury in vivo and thereby strongly contribute to the development of allergic contact dermatitis in humans. PMID:11238028

  6. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    Science.gov (United States)

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4 + CD49b + LAG-3 + T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25 + Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10 + Foxp3 - CD4 + T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  7. Protection against polyoma virus-induced tumors is perforin-independent

    International Nuclear Information System (INIS)

    Byers, Anthony M.; Hadley, Annette; Lukacher, Aron E.

    2007-01-01

    CD8 T cells are necessary for controlling tumors induced by mouse polyoma virus (PyV), but the effector mechanism(s) responsible have not been determined. We examined the PyV tumorigenicity in C57BL/6 mice mutated in Fas or carrying targeted disruptions in the perforin gene or in both TNF receptor type I and type II genes. Surprisingly, none of these mice developed tumors. Perforin/Fas double-deficient radiation bone marrow chimeric mice were also resistant to PyV-induced tumors. Anti-PyV CD8 T cells in perforin-deficient mice were found not to differ from wild type mice with respect to phenotype, capacity to produce cytokines or maintenance of memory T cells, indicating that perforin does not modulate the PyV-specific CD8 T cell response. In addition, virus was cleared and persisted to similar extents in wild type and perforin-deficient mice. In summary, perforin/granzyme exocytosis is not an essential effector pathway for protection against PyV infection or tumorigenesis

  8. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    Science.gov (United States)

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  9. IFNγ and perforin cooperate to control infection and prevent fatal pathology during persistent gammaherpesvirus infection in mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Høgh-Petersen, Mette; Storm, Pernille

    2014-01-01

    herpes virus infection, we infected IFNγ/perforin double deficient C57BL/6 mice and followed the outcome of infection. While absence of perforin prevented the splenic atrophy in IFNγ deficient mice, fibrosis did not disappear. Moreover, double deficient mice developed extreme splenomegaly, were unable...... in double deficient mice, other aspects are exaggerated, and the normal architecture of the spleen is completely destroyed. Thus, IFNγ and perforin work in concert to minimize pathology and control the viral load. In the absence of both effector molecules, the balancing race between the virus and the host...

  10. Human CD4+ T cells lyse target cells via granzyme/perforin upon circumvention of MHC class II restriction by an antibody-like immunoreceptor.

    Science.gov (United States)

    Hombach, Andreas; Köhler, Heike; Rappl, Gunter; Abken, Hinrich

    2006-10-15

    Immune elimination of tumor cells requires the close cooperation between CD8+ CTL and CD4+ Th cells. We circumvent MHC class II-restriction of CD4+ T cells by expression of a recombinant immunoreceptor with an Ab-derived binding domain redirecting specificity. Human CD4+ T cells grafted with an immunoreceptor specific for carcinoembryonic Ag (CEA) are activated to proliferate and secrete cytokines upon binding to CEA+ target cells. Notably, redirected CD4+ T cells mediate cytolysis of CEA+ tumor cells with high efficiencies. Lysis by redirected CD4+ T cells is independent of death receptor signaling via TNF-alpha or Fas, but mediated by perforin and granzyme because cytolysis is inhibited by blocking the release of cytotoxic granules, but not by blocking of Fas ligand or TNF-alpha. CD4+ T cells redirected by Ab-derived immunoreceptors in a MHC class II-independent fashion substantially extend the power of an adoptive, Ag-triggered immunotherapy not only by CD4+ T cell help, but also by cytolytic effector functions. Because cytolysis is predominantly mediated via granzyme/perforin, target cells that are resistant to death receptor signaling become sensitive to a cytolytic attack by engineered CD4+ T cells.

  11. Intragenic HIV-1 env sequences that enhance gag expression

    International Nuclear Information System (INIS)

    Suptawiwat, Ornpreya; Sutthent, Ruengpung; Lee, T.-H.; Auewarakul, Prasert

    2003-01-01

    Expression of HIV-1 genes is regulated at multiple levels including the complex RNA splicing and transport mechanisms. Multiple cis-acting elements involved in these regulations have been previously identified in various regions of HIV-1 genome. Here we show that another cis-acting element was present in HIV-1 env region. This element enhanced the expression of Gag when inserted together with Rev response element (RRE) into a truncated HIV-1 genome in the presence of Rev. The enhancing activity was mapped to a 263-bp fragment in the gp41 region downstream to RRE. RNA analysis showed that it might function by promoting RNA stability and Rev-dependent RNA export. The enhancement was specific to Rev-dependent expression, since it did not enhance Gag expression driven by Sam68, a cellular protein that has been shown to be able to substitute for Rev in RNA export function

  12. Neuromyelitis optica, atypical hemophagocytic lymphohistiocytosis and heterozygous perforin A91V mutation.

    Science.gov (United States)

    Palterer, Boaz; Brugnolo, Francesca; Sieni, Elena; Barilaro, Alessandro; Parronchi, Paola

    2017-10-15

    Neuromyelitis optica is an autoimmune demyelinating inflammatory disease characterized by optic neuritis and myelitis with anti-aquaporin 4 antibodies. Hemophagocytic lymphohistiocytosis is a severe systemic inflammatory syndrome that can present in a genetic primary form or secondarily to infective, neoplastic or autoimmune diseases. Our case discusses the first reported case of atypical late-onset hemophagocytic lymphohistiocytosis in a patient with neuromyelitis optica, with multiple triggering factors and carrying the common A91V hypomorphic perforin mutation, that blurs the distinction between primary and secondary forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    Directory of Open Access Journals (Sweden)

    Yuske Komiyama

    Full Text Available Tenomodulin (Tnmd is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain.

  14. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    OpenAIRE

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-01-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) ...

  15. Enhanced subliminal emotional responses to dynamic facial expressions

    Directory of Open Access Journals (Sweden)

    Wataru eSato

    2014-09-01

    Full Text Available Emotional processing without conscious awareness plays an important role in human social interaction. Several behavioral studies reported that subliminal presentation of photographs of emotional facial expressions induces unconscious emotional processing. However, it was difficult to elicit strong and robust effects using this method. We hypothesized that dynamic presentations of facial expressions would enhance subliminal emotional effects and tested this hypothesis with two experiments. Fearful or happy facial expressions were presented dynamically or statically in either the left or the right visual field for 20 (Experiment 1 and 30 (Experiment 2 ms. Nonsense target ideographs were then presented, and participants reported their preference for them. The results consistently showed that dynamic presentations of emotional facial expressions induced more evident emotional biases toward subsequent targets than did static ones. These results indicate that dynamic presentations of emotional facial expressions induce more evident unconscious emotional processing.

  16. Expressive Writing: Enhancing the Emotional Intelligence of Human Services Majors

    Science.gov (United States)

    Castillo, Yuleinys; Fischer, Jerome M.

    2017-01-01

    The skills and tasks in the human services field are highly connected to emotional intelligence abilities. The purpose of the study was to investigate the effect of an expressive writing program involving human service students in an undergraduate rehabilitation services course. The program was developed to enhance their emotional intelligence.…

  17. Structural and functional analysis of perforin mutations in association with clinical data of familial hemophagocytic lymphohistiocytosis type 2 (FHL2) patients

    Science.gov (United States)

    An, Omer; Gursoy, Attila; Gurgey, Aytemiz; Keskin, Ozlem

    2013-01-01

    Perforin plays a key role in the immune system via pore formation at the target cell membrane in the elimination of virus-infected and transformed cells. A vast number of observed mutations in perforin impair this mechanism resulting in a rare but fatal disease, familial hemophagocytic lymphohistiocytosis type 2 (FHL2). Here we report a comprehensive in silico structural analysis of a collection of 76 missense perforin mutations based on a proposed pore model. In our model, perforin monomers oligomerize having cyclic symmetry in consistent with previously found experimental constraints yet having flexibility in the size of the pore and the number of monomers involved. Clusters of the mutations on the model map to three distinct functional regions of the perforin. Calculated stability (free energy) changes show that the mutations mainly destabilize the protein structure, interestingly however, A91V polymorphism, leads to a more stable one. Structural characteristics of mutations help explain the severe functional consequences on perforin deficient patients. Our study provides a structural approach to the mutation effects on the perforin oligomerization and impaired cytotoxic function in FHL2 patients. PMID:23592409

  18. Measuring ability to enhance and suppress emotional expression: The Flexible Regulation of Emotional Expression (FREE) Scale.

    Science.gov (United States)

    Burton, Charles L; Bonanno, George A

    2016-08-01

    Flexibility in self-regulatory behaviors has proved to be an important quality for adjusting to stressful life events and requires individuals to have a diverse repertoire of emotion regulation abilities. However, the most commonly used emotion regulation questionnaires assess frequency of behavior rather than ability, with little evidence linking these measures to observable capacity to enact a behavior. The aim of the current investigation was to develop and validate a Flexible Regulation of Emotional Expression (FREE) Scale that measures a person's ability to enhance and suppress displayed emotion across an array of hypothetical contexts. In Studies 1 and 2, a series of confirmatory factor analyses revealed that the FREE Scale consists of 4 first-order factors divided by regulation and emotional valence type that can contribute to 2 higher order factors: expressive enhancement ability and suppression ability. In Study 1, we also compared the FREE Scale to other commonly used emotion regulation measures, which revealed that suppression ability is conceptually distinct from suppression frequency. In Study 3, we compared the FREE Scale with a composite of traditional frequency-based indices of expressive regulation to predict performance in a previously validated emotional modulation paradigm. Participants' enhancement and suppression ability scores on the FREE Scale predicted their corresponding performance on the laboratory task, even when controlling for baseline expressiveness. These studies suggest that the FREE Scale is a valid and flexible measure of expressive regulation ability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  20. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  1. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Nansen, A; Jensen, Teis; Christensen, Jan Pravsgaard

    1999-01-01

    To define the role of IFN-gamma in the control of acute infection with a noncytopathogenic virus, mice with targeted defects of the genes encoding IFN-gamma, perforin, or both were infected i.v. with two strains of lymphocytic choriomeningitis virus differing markedly in their capacity to spread...... in wild-type mice. Our results reveal that IFN-gamma is pivotal to T cell-mediated control of a rapidly invasive stain, whereas it is less important in the acute elimination of a slowly invasive strain. Moreover, the majority of mice infected with the rapidly invasive strain succumb to a wasting syndrome...... mediated by CD8+ effector cells. The primary effector mechanism underlying this disease is perforin-dependent lysis, but other mechanisms are also involved. Wasting disease can be prevented if naive CD8+ cells from mice transgenic for an MHC class I-restricted lymphocytic choriomeningitis virus...

  2. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    International Nuclear Information System (INIS)

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-01

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  3. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  4. Enhanced expression of Ang-(1-7 during pregnancy

    Directory of Open Access Journals (Sweden)

    Brosnihan K.B.

    2004-01-01

    Full Text Available Pregnancy is a physiological condition characterized by a progressive increase of the different components of the renin-angiotensin system (RAS. The physiological consequences of the stimulated RAS in normal pregnancy are incompletely understood, and even less understood is the question of how this system may be altered and contribute to the hypertensive disorders of pregnancy. Findings from our group have provided novel insights into how the RAS may contribute to the physiological condition of pregnancy by showing that pregnancy increases the expression of both the vasodilator heptapeptide of the RAS, angiotensin-(1-7 [Ang-(1-7], and of a newly cloned angiotensin converting enzyme (ACE homolog, ACE2, that shows high catalytic efficiency for Ang II metabolism to Ang-(1-7. The discovery of ACE2 adds a new dimension to the complexity of the RAS by providing a new arm that may counter-regulate the activity of the vasoconstrictor component, while amplifying the vasodilator component. The studies reviewed in this article demonstrate that Ang-(1-7 increases in plasma and urine of normal pregnant women. In preeclamptic subjects we showed that plasma Ang-(1-7 was suppressed as compared to the levels found in normal pregnancy. In addition, kidney and urinary levels of Ang-(1-7 were increased in pregnant rats coinciding with the enhanced detection and expression of ACE2. These findings support the concept that in normal pregnancy enhanced ACE2 may counteract the elevation in tissue and circulating Ang II by increasing the rate of conversion to Ang-(1-7. These findings provide a basis for the physiological role of Ang-(1-7 and ACE2 during pregnancy.

  5. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones.

    Science.gov (United States)

    Spicer, Julie A; Huttunen, Kristiina M; Miller, Christian K; Denny, William A; Ciccone, Annette; Browne, Kylie A; Trapani, Joseph A

    2012-02-01

    An aryl-substituted isobenzofuran-1(3H)-one lead compound was identified from a high throughput screen designed to find inhibitors of the lymphocyte pore-forming protein perforin. A series of analogs were then designed and prepared, exploring structure-activity relationships through variation of 2-thioxoimidazolidin-4-one and furan subunits on an isobenzofuranone core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 natural killer effector cells was determined. Several compounds showed excellent activity at concentrations that were non-toxic to the killer cells. This series represents a significant improvement on previous classes of compounds, being substantially more potent and largely retaining activity in the presence of serum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    Xu, Qingping; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed. Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT-3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment

  8. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  9. Perforin and IFN-gamma do not significantly regulate the virus-specific CD8+ T cell response in the absence of antiviral effector activity

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Wodarz, Dominik; Christensen, Jan P

    2004-01-01

    Using gene-targeted mice we have investigated whether perforin and/or interferon-gamma exert a direct regulatory effect on the expansion and contraction of antigen-specific CD8(+) T cells following infection with a virus (vesicular stomatitis virus) which is not controlled through these molecular...

  10. Enhanced production of subtilisin of Pyrococcus furiosus expressed ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... on SDS-PAGE as compared to theoretical molecular mass of 17.6 kDa. This aberrant electrophoresis mobility could be .... analyze protein expression by 12% SDS-PAGE (Laemmli, 1970). To analyze the expression of .... pellet washed with buffer containing Triton X; lane 4, refolded subtilisin. subjected to ...

  11. GAL4 enhancer trap strains with reporter gene expression during ...

    Indian Academy of Sciences (India)

    the development of adult brain in Drosophila melanogaster. C. R. VENKATESH ... vous system (CNS), at different time points during the pupal stage—a critical .... in frontal view, with further reduced reporter gene expression. Orthodenticle and ...

  12. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    ARL

    2012-06-12

    Jun 12, 2012 ... production and faithful translation and processing of proteins (Baldi et al., ..... deeper understanding of the interaction of cellular factors and regulatory DNA .... mediated transgene expression in the rat brain. Gene Ther., 7: ...

  13. Tissue-specific RNA expression marks distant-acting developmental enhancers.

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-09-01

    Full Text Available Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.

  14. Inhibition of the cellular function of perforin by 1-amino-2,4-dicyanopyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Lyons, Dani M; Huttunen, Kristiina M; Browne, Kylie A; Ciccone, Annette; Trapani, Joseph A; Denny, William A; Spicer, Julie A

    2011-07-01

    A high throughput screen showed the ability of a 1-amino-2,4-dicyanopyrido[1,2-a]benzimidazole analogue to directly inhibit the lytic activity of the pore-forming protein perforin. A series of analogues were prepared to study structure-activity relationships (SAR) for the this activity, either directly added to cells or released in situ by KHYG-1 NK cells, at non-toxic concentrations. These studies showed that the pyridobenzimidazole moiety was required for effective activity, with strongly basic centres disfavoured. This class of compounds was relatively unaffected by the addition of serum, which was not the case for a previous class of direct inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Enhanced production of subtilisin of Pyrococcus furiosus expressed ...

    African Journals Online (AJOL)

    A subtilisin gene identified in the reported genome sequence of Pyrococcus furiosus was amplified and inserted in pET-22b(+) vector to produce the recombinant plasmid pET-SB. Escherichia coli BL-21 (DE3) CodonPlus was transformed with this plasmid and the enzyme was expressed up to 30% of the total cell protein on ...

  16. Phytochrome B mRNA expression enhances biomass yield and ...

    African Journals Online (AJOL)

    A wide variety of physiological responses, including most light responses, also are modulated by photoreceptor gene such as PHYB. Phytochrome B (PHYB) expression patterns may be significant in the daily regulation of plant physiology and indicate an unexpectedly intimate relationship between the components of the ...

  17. Carbon monoxide may enhance bile secretion by increasing glutathione excretion and Mrp2 expression in rats

    Directory of Open Access Journals (Sweden)

    Chiung-Yu Chen

    2013-05-01

    Conclusion: The present study demonstrated that CO enhanced biliary output in conjunction with NO by increasing the biliary excretion of glutathione. The increment in biliary glutathione was associated with an increased expression of hepatic Mrp2.

  18. Differential tissue expression of enhanced green fluorescent protein in ‘Green mice’

    OpenAIRE

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-01-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in ‘green mice’ from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these ‘green mice’ by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On i...

  19. Can expressions of anger enhance creativity? A test of the emotions as social information (EASI) model

    NARCIS (Netherlands)

    van Kleef, Gerben A.; Anastasopoulou, Christina; Nijstad, Bernard A.

    We investigated whether expressions of anger can enhance creative performance. Building on the emotions as social information (EASI) model (Van Kleef, 2009), we predicted that the interpersonal effects of anger expressions on creativity depend on the target's epistemic motivation (EM) the desire to

  20. Can expressions of anger enhance creativity? A test of the emotions as social information (EASI) model

    NARCIS (Netherlands)

    van Kleef, G.A.; Anastasopoulou, C.; Nijstad, B.A.

    2010-01-01

    We investigated whether expressions of anger can enhance creative performance. Building on the emotions as social information (EASI) model (Van Kleef, 2009), we predicted that the interpersonal effects of anger expressions on creativity depend on the target's epistemic motivation (EM)—the desire to

  1. Compartmentalised expression of meprin in small intestinal mucosa: enhanced expression in lamina propria in coeliac disease.

    Science.gov (United States)

    Lottaz, Daniel; Buri, Caroline; Monteleone, Giovanni; Rösmann, Sandra; Macdonald, Thomas T; Sanderson, Ian R; Sterchi, Erwin E

    2007-03-01

    Epithelial cells in the human small intestine express meprin, an astacin-like metalloprotease, which accumulates normally at the brush border membrane and in the gut lumen. Therefore, meprin is targeted towards luminal components. In coeliac disease patients, peptides from ingested cereals trigger mucosal inflammation in the small intestine, disrupting epithelial cell differentiation and function. Using in situ hybridisation on duodenal tissue sections, we observed a marked shift of meprin mRNA expression from epithelial cells, the predominant expression site in normal mucosa, to lamina propria leukocytes in coeliac disease. Meprin thereby gains access to the substrate repertoire present beneath the epithelium.

  2. Disruption of a -35kb enhancer impairs CTCF binding and MLH1 expression in colorectal cells.

    Science.gov (United States)

    Liu, Qing; Thoms, Julie A; Nunez, Andrea C; Huang, Yizhou; Knezevic, Kathy; Packham, Deborah; Poulos, Rebecca C; Williams, Rachel; Beck, Dominik; Hawkins, Nicholas J; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Sloane, Mathew A; Pimanda, John

    2018-06-13

    MLH1 is a major tumour suppressor gene involved in the pathogenesis of Lynch syndrome and various sporadic cancers. Despite their potential pathogenic importance, genomic regions capable of regulating MLH1 expression over long distances have yet to be identified. Here we use chromosome conformation capture (3C) to screen a 650-kb region flanking the MLH1 locus to identify interactions between the MLH1 promoter and distal regions in MLH1 expressing and non-expressing cells. Putative enhancers were functionally validated using luciferase reporter assays, chromatin immunoprecipitation and CRISPR-Cas9 mediated deletion of endogenous regions. To evaluate whether germline variants in the enhancer might contribute to impaired MLH1 expression in patients with suspected Lynch syndrome, we also screened germline DNA from a cohort of 74 patients with no known coding mutations or epimutations at the MLH1 promoter. A 1.8kb DNA fragment, 35kb upstream of the MLH1 transcription start site enhances MLH1 gene expression in colorectal cells. The enhancer was bound by CTCF and CRISPR-Cas9 mediated deletion of a core binding region impairs endogenous MLH1 expression. 5.4% of suspected Lynch syndrome patients have a rare single nucleotide variant (G>A; rs143969848; 2.5% in gnomAD European, non-Finnish) within a highly conserved CTCF binding motif, which disrupts enhancer activity in SW620 colorectal carcinoma cells. A CTCF bound region within the MLH1 -35 enhancer regulates MLH1 expression in colorectal cells and is worthy of scrutiny in future genetic screening strategies for suspected Lynch syndrome associated with loss of MLH1 expression. Copyright ©2018, American Association for Cancer Research.

  3. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand

    2005-10-01

    To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.

  4. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery.

    Science.gov (United States)

    Cheng, Jianjun; Zeidan, Ryan; Mishra, Swaroop; Liu, Aijie; Pun, Suzie H; Kulkarni, Rajan P; Jensen, Gregory S; Bellocq, Nathalie C; Davis, Mark E

    2006-11-02

    To understand how chloroquine (CQ) enhances transgene expression in polycation-based, nonviral gene delivery systems, a number of CQ analogues with variations in the aliphatic amino side chain or in the aromatic ring are synthesized and investigated. Our studies indicate that the aliphatic amino moiety of CQ is essential to provide increased gene expression. Further, the enhancements are more dramatically affected by changes to the aromatic ring and are positively correlated to the strength of intercalation between DNA and the CQ analogues. Quinacrine (QC), a CQ analogue with a fused acridinyl structure that can strongly intercalate DNA, enhances transfection similarly to CQ at a concentration 10 times lower, while N(4)-(4-pyridinyl)-N(1),N(1)-diethyl-1,4-pentanediamine (CP), a CQ analogue that has a weakly intercalating pyridinyl ring, shows no effect on gene expression. Subtle change on the 7-substituent of the chloroquine aromatic structure can also greatly affect the ability of the CQ analogues to enhance transgene expression. Transfection in the presence of N(4)-(7-trifluoromethyl-4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamin e (CQ7a) shows expression efficiency 10 times higher than in the presence of CQ at same concentration, while transfection in the presence of N(4)-(4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamine (CQ7b) does not reveal any enhancing effects on expression. Through a number of comparative studies with CQ and its analogues, we conclude that there are at least three mechanistic features of CQ that lead to the enhancement in gene expression: (i) pH buffering in endocytic vesicles, (ii) displacement of polycations from the nucleic acids in polyplexes, and (iii) alteration of the biophysical properties of the released nucleic acid.

  5. Task-dependent enhancement of facial expression and identity representations in human cortex.

    Science.gov (United States)

    Dobs, Katharina; Schultz, Johannes; Bülthoff, Isabelle; Gardner, Justin L

    2018-05-15

    What cortical mechanisms allow humans to easily discern the expression or identity of a face? Subjects detected changes in expression or identity of a stream of dynamic faces while we measured BOLD responses from topographically and functionally defined areas throughout the visual hierarchy. Responses in dorsal areas increased during the expression task, whereas responses in ventral areas increased during the identity task, consistent with previous studies. Similar to ventral areas, early visual areas showed increased activity during the identity task. If visual responses are weighted by perceptual mechanisms according to their magnitude, these increased responses would lead to improved attentional selection of the task-appropriate facial aspect. Alternatively, increased responses could be a signature of a sensitivity enhancement mechanism that improves representations of the attended facial aspect. Consistent with the latter sensitivity enhancement mechanism, attending to expression led to enhanced decoding of exemplars of expression both in early visual and dorsal areas relative to attending identity. Similarly, decoding identity exemplars when attending to identity was improved in dorsal and ventral areas. We conclude that attending to expression or identity of dynamic faces is associated with increased selectivity in representations consistent with sensitivity enhancement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes.

    Science.gov (United States)

    Nagasaki, Hiroshi; Kondo, Takaaki; Fuchigami, Masahiro; Hashimoto, Hiroyuki; Sugimura, Yoshihisa; Ozaki, Nobuaki; Arima, Hiroshi; Ota, Akira; Oiso, Yutaka; Hamada, Yoji

    2012-02-17

    In this study we aimed to identify the physiological roles of G protein-coupled receptor 84 (GPR84) in adipose tissue, together with medium-chain fatty acids (MCFAs), the specific ligands for GPR84. In mice, high-fat diet up-regulated GPR84 expression in fat pads. In 3T3-L1 adipocytes, co-culture with a macrophage cell line, RAW264, or TNFα remarkably enhanced GPR84 expression. In the presence of TNFα, MCFAs down-regulated adiponectin mRNA expression in 3T3-L1 adipocytes. Taken together, our results suggest that GPR84 emerges in adipocytes in response to TNFα from infiltrating macrophages and exacerbates the vicious cycle between adiposity and diabesity. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  7. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts

    Directory of Open Access Journals (Sweden)

    Saeed Ur Rahman

    2017-11-01

    Full Text Available Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF optimal motif (TOP reporter activity than the cells on tissue culture dishes (OCCM30-TCD, indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54. Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation.

  8. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    Science.gov (United States)

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  9. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    International Nuclear Information System (INIS)

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  10. γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shuya; Baba, Kiwako; Makio, Akiko; Kumazoe, Motofumi; Huang, Yuhui; Lin, I-Chian; Bae, Jaehoon; Murata, Motoki; Yamada, Shuhei; Tachibana, Hirofumi, E-mail: tatibana@agr.kyushu-u.ac.jp

    2016-05-13

    Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.

  11. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    Science.gov (United States)

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  12. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  13. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  14. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  15. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    International Nuclear Information System (INIS)

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S.

    1991-01-01

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue

  16. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S. (E. P. Joslin Research Laboratory, Joslin Diabetes Center, Harvard Medical School, Boston, MA (USA))

    1991-07-15

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue.

  17. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog).

    Science.gov (United States)

    Will, Anja J; Cova, Giulia; Osterwalder, Marco; Chan, Wing-Lee; Wittler, Lars; Brieske, Norbert; Heinrich, Verena; de Villartay, Jean-Pierre; Vingron, Martin; Klopocki, Eva; Visel, Axel; Lupiáñez, Darío G; Mundlos, Stefan

    2017-10-01

    Copy number variations (CNVs) often include noncoding sequences and putative enhancers, but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of IHH (encoding Indian hedgehog), which cause multiple, highly localized phenotypes including craniosynostosis and synpolydactyly. We show through transgenic reporter and genome-editing studies in mice that Ihh is regulated by a constellation of at least nine enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips. Consecutive deletions, resulting in growth defects of the skull and long bones, showed that these enhancers function in an additive manner. Duplications, in contrast, caused not only dose-dependent upregulation but also misexpression of Ihh, leading to abnormal phalanges, fusion of sutures and syndactyly. Thus, precise spatiotemporal control of developmental gene expression is achieved by complex multipartite enhancer ensembles. Alterations in the composition of such clusters can result in gene misexpression and disease.

  18. Hydrogel Macroporosity and the Prolongation of Transgene Expression and the Enhancement of Angiogenesis

    Science.gov (United States)

    Shepard, Jaclyn A.; Virani, Farrukh R.; Goodman, Ashley G.; Gossett, Timothy D.; Shin, Seungjin; Shea, Lonnie D.

    2012-01-01

    The utility of hydrogels for regenerative medicine can be improved through localized gene delivery to enhance their bioactivity. However, current systems typically lead to low-level transgene expression located in host tissue surrounding the implant. Herein, we investigated the inclusion of macropores into hydrogels to facilitate cell ingrowth and enhance gene delivery within the macropores in vivo. Macropores were created within PEG hydrogels by gelation around gelatin microspheres, with gelatin subsequently dissolved by incubation at 37°C. The macropores were interconnected, as evidenced by homogeneous cell seeding in vitro and complete cell infiltration in vivo. Lentivirus loaded within hydrogels following gelation retained its activity relative to the unencapsulated control virus. In vivo, macroporous PEG demonstrated sustained, elevated levels of transgene expression for 6 weeks, while hydrogels without macropores had transient expression. Transduced cells were located throughout the macroporous structure, while non-macroporous PEG hydrogels had transduction only in the adjacent host tissue. Delivery of lentivirus encoding for VEGF increased vascularization relative to the control, with vessels throughout the macropores of the hydrogel. The inclusion of macropores within the hydrogel to enhance cell infiltration enhances transduction and influences tissue development, which has implications for multiple regenerative medicine applications. PMID:22800542

  19. Effect of enhanced expression of connexin 43 on sunitinib-induced cytotoxicity in mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2015-05-01

    Full Text Available Connexin (Cx makes up a type of intercellular channel called gap junction (GJ. GJ plays a regulatory role in cellular physiology. The Cx expression level is often decreased in cancer cells compared to that in healthy ones, and the restoration of its expression has been shown to exert antiproliferative effects. This work aims to evaluate the effect of the restoration of connexin 43 (Cx43 (the most ubiquitous Cx subtype expression on sunitinib (SU-induced cytotoxicity in malignant mesothelioma (MM cells. Increased Cx43 expression in an MM cell line (H28 improved the ability of SU to inhibit receptor tyrosine kinase (RTK signaling. Moreover, higher Cx43 expression promoted SU-induced apoptosis. The cell viability test revealed that Cx43 enhanced the cytotoxic effect of SU in a GJ-independent manner. The effect of Cx43 on a proapoptotic factor, Bax, was then investigated. The interaction between Cx43 and Bax was confirmed by immunoprecipitation. Furthermore, higher Cx43 expression increased the production of a cleaved (active form of Bax during SU-induced apoptosis with no alteration in total Bax expression. These findings indicate that Cx43 most likely increases sensitivity to SU in H28 through direct interaction with Bax. In conclusion, we found that Cx43 overcame the chemoresistance of MM cells.

  20. CCAAT/enhancer binding protein a gene expression in Egyptian patients with acute myeloid leukemia

    International Nuclear Information System (INIS)

    Kassem, N.; Fahmy, A.; Desoky, M.; Zawam, H.M.; Medhat, N.; Medhat, N.

    2013-01-01

    Background: Transcription factors play a crucial role in myeloid differentiation and lineage determination. Tumor suppressor protein C/EBPa is a key regulator of granulocytic differentiation whose functional inactivation has become a pathophysiological signature of myeloid leukemia. Given the role that CCAAT/enhancer binding protein α (C/EBP α) plays in myelopoiesis, we anticipated that their expression might be disrupted in myeloid neoplasms. Purpose: To estimate the expression of C/EBP α mRNA in patients with acute myeloid leukemia and correlate its expression with the pathogenesis of the disease. Patients and methods: Forty AML patients and 20 age and sex matched healthy controls were included in the study. Blood samples of patients and controls were analyzed for CEBP α mRNA expression by quantitative RT-real time PCR using TaqMan technology and δδct method for calculation of gene expression. Results: Twenty-nine (72.5%) patients out of the 40 showed low expression levels of CEBP α mRNA below the cutoff value with median of 0.19 (range:0-0.87). While eleven (27.5%) patients out of the 40 showed higher expression levels of CEBP α above the cutoff value with median of 1.52 (range: 1.07-2). Seven patients out of the 11 showed higher expression levels of CEBP α mRNA belong to the M3 subtype of AML harboring the t(15;17) PML-RARa translocation. Conclusion: We conclude that the majority of the AML patients analyzed, express low levels of C/EBPa mRN. However, a subset of patients represented by the M3 subtype, express higher levels of C/EBPa

  1. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  2. Facial Expression Enhances Emotion Perception Compared to Vocal Prosody: Behavioral and fMRI Studies.

    Science.gov (United States)

    Zhang, Heming; Chen, Xuhai; Chen, Shengdong; Li, Yansong; Chen, Changming; Long, Quanshan; Yuan, Jiajin

    2018-05-09

    Facial and vocal expressions are essential modalities mediating the perception of emotion and social communication. Nonetheless, currently little is known about how emotion perception and its neural substrates differ across facial expression and vocal prosody. To clarify this issue, functional MRI scans were acquired in Study 1, in which participants were asked to discriminate the valence of emotional expression (angry, happy or neutral) from facial, vocal, or bimodal stimuli. In Study 2, we used an affective priming task (unimodal materials as primers and bimodal materials as target) and participants were asked to rate the intensity, valence, and arousal of the targets. Study 1 showed higher accuracy and shorter response latencies in the facial than in the vocal modality for a happy expression. Whole-brain analysis showed enhanced activation during facial compared to vocal emotions in the inferior temporal-occipital regions. Region of interest analysis showed a higher percentage signal change for facial than for vocal anger in the superior temporal sulcus. Study 2 showed that facial relative to vocal priming of anger had a greater influence on perceived emotion for bimodal targets, irrespective of the target valence. These findings suggest that facial expression is associated with enhanced emotion perception compared to equivalent vocal prosodies.

  3. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    DEFF Research Database (Denmark)

    Cheuk, Stanley; Schlums, Heinrich; Sérézal, Irène Gallais

    2017-01-01

    with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation...

  4. Expressive Suppression and Enhancement During Music-Elicited Emotions in Younger and Older Adults

    Directory of Open Access Journals (Sweden)

    Sandrine eVieillard

    2015-02-01

    Full Text Available When presented with emotional visual scenes, older adults have been found to be equally capable to regulate emotion expression as younger adults, corroborating the view that emotion regulation skills are maintained or even improved in later adulthood. However, the possibility that gaze direction might help achieve an emotion control goal has not been taken into account, raising the question whether the effortful processing of expressive regulation is really spared from the general age-related decline. Since it does not allow perceptual attention to be redirected away from the emotional source, music provides a useful way to address this question. In the present study, affective, behavioral and physiological consequences of free expression of emotion, expressive suppression and expressive enhancement were measured in 31 younger and 30 older adults while they listened to positive and negative musical excerpts. The main results indicated that compared to younger adults, older adults reported experiencing less emotional intensity in response to negative music during the free expression of emotion condition. No age difference was found in the ability to amplify or reduce emotional expressions. However, an age-related decline in the ability to reduce the intensity of emotional state and an age-related increase in physiological reactivity were found when participants were instructed to suppress negative expression. Taken together, the current data support previous findings suggesting an age-related change in response to music. They also corroborate the observation that older adults are as efficient as younger adults at controlling behavioral expression. But most importantly, they suggest that when faced with auditory sources of negative emotion, older age does not always confer a better ability to regulate emotions.

  5. Nimotuzumab enhances temozolomide?induced growth suppression of glioma cells expressing mutant EGFR in vivo

    OpenAIRE

    Nitta, Yusuke; Shimizu, Saki; Shishido?Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    Abstract A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti?EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild?type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and pho...

  6. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract.

    OpenAIRE

    Connell, I; Agace, W; Klemm, P; Schembri, M; Mărild, S; Svanborg, C

    1996-01-01

    Type 1 fimbriae are adhesion organelles expressed by many Gram-negative bacteria. They facilitate adherence to mucosal surfaces and inflammatory cells in vitro, but their contribution to virulence has not been defined. This study presents evidence that type 1 fimbriae increase the virulence of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory response to infection. In a clinical study, we observed that disease severity was greater in chil...

  7. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, D.S.; Hittle, J.L.; Blanch, H.W.; Keasling, J.D.

    2000-01-05

    One possible alternative to current fuel hydrodesulfurization methods is the use of microorganisms to remove sulfur compounds. Biodesulfurization requires much milder processing conditions, gives higher specificity, and does not require molecular hydrogen. In the present work the authors have produced two compatible plasmids: pDSR3, which allows Escherichia coli to convert dibenzothiophene (DBT) to hydroxybiphenyl (HBP), and pDSR2, which produces a Vibrio harveyi flavin oxidoreductase. The authors show that the flavin oxidoreductase enhances the rate of DBT removal when co-expressed in vivo with the desulfurization enzymes. The plasmids pDSR2 and pDSR3 were co-expressed in growing cultures. The expression of oxidoreductase caused an increase in the rate of DBT removal but a decrease in the rate of HBP production. The maximum rate of DBT removal was 8 mg/h {center{underscore}dot} g dry cell weight. Experiments were also conducted using resting cells with the addition of various carbon sources. It was found that the addition of glucose or glycerol to cultures with oxidoreductase expression produced the highest DBT removal rate. The culture with acetate and no oxidoreductase expression had the highest level of HBP production. For all carbon sources, the DBT removal rate was faster and the HBP generation rate slower with the expression of the oxidoreductase. Analysis of desulfurization intermediates indicates that the last enzyme in the pathway may be limiting.

  8. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene.

    Science.gov (United States)

    Reichmuth, D S; Hittle, J L; Blanch, H W; Keasling, J D

    2000-01-05

    One possible alternative to current fuel hydrodesulfurization methods is the use of microorganisms to remove sulfur compounds. Biodesulfurization requires much milder processing conditions, gives higher specificity, and does not require molecular hydrogen. In the present work we have produced two compatible plasmids: pDSR3, which allows Escherichia coli to convert dibenzothiophene (DBT) to hydroxybiphenyl (HBP), and pDSR2, which produces a Vibrio harveyi flavin oxidoreductase. We show that the flavin oxidoreductase enhances the rate of DBT removal when co-expressed in vivo with the desulfurization enzymes. The plasmids pDSR2 and pDSR3 were co-expressed in growing cultures. The expression of oxidoreductase caused an increase in the rate of DBT removal but a decrease in the rate of HBP production. The maximum rate of DBT removal was 8 mg/h. g dry cell weight. Experiments were also conducted using resting cells with the addition of various carbon sources. It was found that the addition of glucose or glycerol to cultures with oxidoreductase expression produced the highest DBT removal rate (51 mg/h. g dry cell weight). The culture with acetate and no oxidoreductase expression had the highest level of HBP production. For all carbon sources, the DBT removal rate was faster and the HBP generation rate slower with the expression of the oxidoreductase. Analysis of desulfurization intermediates indicates that the last enzyme in the pathway may be limiting. Copyright 2000 John Wiley & Sons, Inc.

  9. Dynamic Displays Enhance the Ability to Discriminate Genuine and Posed Facial Expressions of Emotion

    Science.gov (United States)

    Namba, Shushi; Kabir, Russell S.; Miyatani, Makoto; Nakao, Takashi

    2018-01-01

    Accurately gauging the emotional experience of another person is important for navigating interpersonal interactions. This study investigated whether perceivers are capable of distinguishing between unintentionally expressed (genuine) and intentionally manipulated (posed) facial expressions attributed to four major emotions: amusement, disgust, sadness, and surprise. Sensitivity to this discrimination was explored by comparing unstaged dynamic and static facial stimuli and analyzing the results with signal detection theory. Participants indicated whether facial stimuli presented on a screen depicted a person showing a given emotion and whether that person was feeling a given emotion. The results showed that genuine displays were evaluated more as felt expressions than posed displays for all target emotions presented. In addition, sensitivity to the perception of emotional experience, or discriminability, was enhanced in dynamic facial displays, but was less pronounced in the case of static displays. This finding indicates that dynamic information in facial displays contributes to the ability to accurately infer the emotional experiences of another person. PMID:29896135

  10. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Directory of Open Access Journals (Sweden)

    Christopher D Johnston

    2014-09-01

    Full Text Available It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of two MAP genes (MAP2121c and MAP3733c can enhance the heterologous expression of two antigens (MMP and MptD respectively, analogous to the form to which they are produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, codon optimised MptD displayed the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adhered with the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne’s disease.

  11. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius.

    Science.gov (United States)

    Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.

  12. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    Science.gov (United States)

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  13. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening).

    Science.gov (United States)

    Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude

    2015-01-01

    Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  14. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening.

    Directory of Open Access Journals (Sweden)

    Manjul Dutt

    Full Text Available Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB, a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2 promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  15. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression

    International Nuclear Information System (INIS)

    Gutschalk, Claudia M; Yanamandra, Archana K; Linde, Nina; Meides, Alice; Depner, Sofia; Mueller, Margareta M

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor progression in different tumor models in an autocrine and paracrine manner. However, at the same time GM-CSF is used in cancer therapies to ameliorate neutropenia. We have previously shown in GM-CSF and G-CSF expressing or negative skin or head and neck squamous cell carcinoma that GM-CSF expression is associated with a highly angiogenic and invasive tumor phenotype. To determine the functional contribution of GM-CSF to tumor invasion, we stably transfected a GM-CSF negative colon adenocarcinoma cell line HT-29 with GM-CSF or treated the same cell line with exogenous GM-CSF. While GM-CSF overexpression and treatment reduced tumor cell proliferation and tumor growth in vitro and in vivo, respectively, it contributed to tumor progression. Together with an enhanced migratory capacity in vitro, we observed a striking increase in tumor cell invasion into the surrounding tissue concomitant with the induction of an activated tumor stroma in GM-CSF overexpressing or GM-CSF treated tumors. In a complex 3D in vitro model, enhanced GM-CSF expression was associated with a discontinued basement membrane deposition that might be mediated by the increased expression and activation of MMP-2, -9, and -26. Treatment with GM-CSF blocking antibodies reversed this effect. The increased presence and activity of these tumor cell derived proteases was confirmed in vivo. Here, expression of MMP-26 protein was predominantly located in pre- and early-invasive areas suggesting MMP-26 expression as an early event in promoting GM-CSF dependent tumor invasion

  16. Mutual repression enhances the steepness and precision of gene expression boundaries.

    Directory of Open Access Journals (Sweden)

    Thomas R Sokolowski

    Full Text Available Embryonic development is driven by spatial patterns of gene expression that determine the fate of each cell in the embryo. While gene expression is often highly erratic, embryonic development is usually exceedingly precise. In particular, gene expression boundaries are robust not only against intra-embryonic fluctuations such as noise in gene expression and protein diffusion, but also against embryo-to-embryo variations in the morphogen gradients, which provide positional information to the differentiating cells. How development is robust against intra- and inter-embryonic variations is not understood. A common motif in the gene regulation networks that control embryonic development is mutual repression between pairs of genes. To assess the role of mutual repression in the robust formation of gene expression patterns, we have performed large-scale stochastic simulations of a minimal model of two mutually repressing gap genes in Drosophila, hunchback (hb and knirps (kni. Our model includes not only mutual repression between hb and kni, but also the stochastic and cooperative activation of hb by the anterior morphogen Bicoid (Bcd and of kni by the posterior morphogen Caudal (Cad, as well as the diffusion of Hb and Kni between neighboring nuclei. Our analysis reveals that mutual repression can markedly increase the steepness and precision of the gap gene expression boundaries. In contrast to other mechanisms such as spatial averaging and cooperative gene activation, mutual repression thus allows for gene-expression boundaries that are both steep and precise. Moreover, mutual repression dramatically enhances their robustness against embryo-to-embryo variations in the morphogen levels. Finally, our simulations reveal that diffusion of the gap proteins plays a critical role not only in reducing the width of the gap gene expression boundaries via the mechanism of spatial averaging, but also in repairing patterning errors that could arise because of the

  17. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not.

    Science.gov (United States)

    Tao, Wen; Evans, Barbara-Graham; Yao, Jing; Cooper, Scott; Cornetta, Kenneth; Ballas, Christopher B; Hangoc, Giao; Broxmeyer, Hal E

    2007-03-01

    Validated gene transfer and expression tracers are essential for elucidating functions of mammalian genes. Here, we have determined the suitability and unintended side effects of enhanced green fluorescent protein (EGFP) and DsRed-Express fluorescent protein as expression tracers in long-term hematopoietic stem cells (HSCs). Retrovirally transduced mouse bone marrow cells expressing either EGFP or DsRed-Express in single or mixed dual-color cell populations were clearly discerned by flow cytometry and fluorescence microscopy. The results from in vivo competitive repopulation assays demonstrated that EGFP-expressing HSCs were maintained nearly throughout the lifespan of the transplanted mice and retained long-term multilineage repopulating potential. All mice assessed at 15 months post-transplantation were EGFP positive, and, on average, 24% total peripheral white blood cells expressed EGFP. Most EGFP-expressing recipient mice lived at least 22 months. In contrast, Discosoma sp. red fluorescent protein (DsRed)-expressing donor cells dramatically declined in transplant-recipient mice over time, particularly in the competitive setting, in which mixed EGFP- and DsRed-expressing cells were cotransplanted. Moreover, under in vitro culture condition favoring preservation of HSCs, purified EGFP-expressing cells grew robustly, whereas DsRed-expressing cells did not. Therefore, EGFP has no detectable deteriorative effects on HSCs, and is nearly an ideal long-term expression tracer for hematopoietic cells; however, DsRed-Express fluorescent protein is not suitable for these cells.

  18. DEVELOPING VISUAL NOVEL GAME WITH SPEECH-RECOGNITION INTERACTIVITY TO ENHANCE STUDENTS’ MASTERY ON ENGLISH EXPRESSIONS

    Directory of Open Access Journals (Sweden)

    Elizabeth Anggraeni Amalo

    2017-11-01

    Full Text Available The teaching of English-expressions has always been done through conversation samples in form of written texts, audio recordings, and videos. In the meantime, the development of computer-aided learning technology has made autonomous language learning possible. Game, as one of computer-aided learning technology products, can serve as a medium to provide educational contents like that of language teaching and learning. Visual Novel is considered as a conversational game that is suitable to be combined with English-expressions material. Unlike the other click-based interaction Visual Novel Games, the visual novel game in this research implements speech recognition as the interaction trigger. Hence, this paper aims at elaborating how visual novel games are utilized to deliver English-expressions with speech recognition command for the interaction. This research used Research and Development (R&D method with Experimental design through control and experimental groups to measure its effectiveness in enhancing students’ English-expressions mastery. ANOVA was utilized to prove the significant differences between the control and experimental groups. It is expected that the result of this development and experiment can devote benefits to the English teaching and learning, especially on English-expressions.

  19. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    David Goldeck

    Full Text Available Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells and CCR5 (Th1 cells and dendritic cells was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  20. Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival

    Science.gov (United States)

    Kozlowski, Elyse; Matsuura, Kori Y.; Ferrari, Joseph D.; Morris, Samantha A.; Powers, John T.; Daley, George Q.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression. PMID:23209448

  1. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival.

    Directory of Open Access Journals (Sweden)

    Matthew R Jones

    Full Text Available The Zcchc11 enzyme is implicated in microRNA (miRNA regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3' terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression.

  2. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    Full Text Available We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2 in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2 and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2 generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms.We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. The streptozotocin (STZ murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study.Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold. Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively.The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for the treatment of diabetic renal

  3. Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Saioa Márquez

    2017-06-01

    Full Text Available Human monocyte-derived dendritic cells (DCs exposed to pathogen-associated molecular patterns (PAMPs undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.

  4. Microarray Gene Expression Analysis of Murine Tumor Heterogeneity Defined by Dynamic Contrast-Enhanced MRI

    Directory of Open Access Journals (Sweden)

    Nick G. Costouros

    2002-07-01

    Full Text Available Current methods of studying angiogenesis are limited in their ability to serially evaluate in vivo function throughout a target tissue. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI and pharmacokinetic modeling provide a useful method for evaluating tissue vasculature based on contrast accumulation and washout. While it is often assumed that areas of high contrast enhancement and washout comprise areas of increased angiogenesis and tumor activity, the actual molecular pathways that are active in such areas are poorly understood. Using DCE-MRI in a murine subcutaneous tumor model, we were able to perform pharmacokinetic functional analysis of a tumor, coregistration of MRI images with histological cross-sections, immunohistochemistry, laser capture microdissection, and genetic profiling of tumor heterogeneity based on pharmacokinetic parameters. Using imaging as a template for biologic investigation, we have not found evidence of increased expression of proangiogenic modulators at the transcriptional level in either distinct pharmacokinetic region. Furthermore, these regions show no difference on histology and CD31 immunohistochemistry. However, the expression of ribosomal proteins was greatly increased in high enhancement and washout regions, implying increased protein translation and consequent increased cellular activity. Together, these findings point to the potential importance of posttranscriptional regulation in angiogenesis and the need for the development of angiogenesis-specific contrast agents to evaluate in vivo angiogenesis at a molecular level.

  5. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    Directory of Open Access Journals (Sweden)

    Mark S. Gresnigt

    2017-12-01

    Full Text Available One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA. Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the

  6. Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us GETDB Expression image data of Drosophila GAL4 enhancer trap lines Data detail Data name Exp...ta contents 3,075 expression image data by developmental stages of Drosophila Images are classified into the...escription Download License Update History of This Database Site Policy | Contact Us Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive ... ...ression image data of Drosophila GAL4 enhancer trap lines DOI 10.18908/lsdba.nbdc00236-004 Description of da

  7. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

    Directory of Open Access Journals (Sweden)

    Guillaume Dalmasso

    Full Text Available BACKGROUND: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. RESULTS: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1 promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by approximately 2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. CONCLUSIONS: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.

  8. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Valdivia, Natalia; Bravo, Denisse; Huerta, Hernán; Henriquez, Soledad; Gabler, Fernando; Vega, Margarita; Romero, Carmen; Calderon, Claudia; Owen, Gareth I.; Leyton, Lisette; Quest, Andrew F. G.

    2015-01-01

    Caveolin-1 (CAV1) has been implicated both in tumor suppression and progression, whereby the specific role appears to be context dependent. Endometrial cancer is one of the most common malignancies of the female genital tract; however, little is known about the role of CAV1 in this disease. Here, we first determined by immunohistochemistry CAV1 protein levels in normal proliferative human endometrium and endometrial tumor samples. Then using two endometrial cancer cell lines (ECC: Ishikawa and Hec-1A) we evaluated mRNA and protein levels of CAV1 by real time qPCR and Western blot analysis, respectively. The role of CAV1 expression in ECC malignancy was further studied by either inducing its expression in endometrial cancer cells with the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (4β-TPA) or decreasing expression using short-hairpin RNA constructs, and then evaluating the effects of these changes on ECC proliferation, transmigration, matrigel invasion, and colony formation in soft agar. Immunohistochemical analysis of endometrial epithelia revealed that substantially higher levels of CAV1 were present in endometrial tumors than the normal proliferative epithelium. Also, in Ishikawa and Hec-1A endometrial cancer cells CAV1 expression was readily detectable. Upon treatment with 4β-TPA CAV1 levels increased and coincided with augmented cell transmigration, matrigel invasion, as well as colony formation in soft agar. Reduction of CAV1 expression using short-hairpin RNA constructs ablated these effects in both cell types whether treated or not with 4β-TPA. Alternatively, CAV1 expression appeared not to modulate significantly proliferation of these cells. Our study shows that elevated CAV1, observed in patients with endometrial cancer, is linked to enhanced malignancy of endometrial cancer cells, as evidenced by increased migration, invasion and anchorage-independent growth. The online version of this article (doi:10.1186/s12885-015-1477-5) contains

  9. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract

    DEFF Research Database (Denmark)

    Connell, Hugh; Agace, William; Klemm, Per

    1996-01-01

    of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory responce to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1...... negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived inhigher...... urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract....

  10. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  11. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum.

    Science.gov (United States)

    Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava

    2012-03-09

    The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  12. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Han Jigang

    2012-03-01

    Full Text Available Abstract Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  13. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies.

    Science.gov (United States)

    Maggi, Maristella; Scotti, Claudia

    2017-08-01

    Single domain antibodies (sdAbs) are small antigen-binding domains derived from naturally occurring, heavy chain-only immunoglobulins isolated from camelid and sharks. They maintain the same binding capability of full-length IgGs but with improved thermal stability and permeability, which justifies their scientific, medical and industrial interest. Several described recombinant forms of sdAbs have been produced in different hosts and with different strategies. Here we present an optimized method for a time-saving, high yield production and extraction of a poly-histidine-tagged sdAb from Escherichia coli classical inclusion bodies. Protein expression and extraction were attempted using 4 different methods (e.g. autoinducing or IPTG-induced soluble expression, non-classical and classical inclusion bodies). The best method resulted to be expression in classical inclusion bodies and urea-mediated protein extraction which yielded 60-70 mg/l bacterial culture. The method we here describe can be of general interest for an enhanced and efficient heterologous expression of sdAbs for research and industrial purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    Science.gov (United States)

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  15. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  16. Let the Avatar Brighten Your Smile: Effects of Enhancing Facial Expressions in Virtual Environments.

    Directory of Open Access Journals (Sweden)

    Soo Youn Oh

    Full Text Available Previous studies demonstrated the positive effects of smiling on interpersonal outcomes. The present research examined if enhancing one's smile in a virtual environment could lead to a more positive communication experience. In the current study, participants' facial expressions were tracked and mapped on a digital avatar during a real-time dyadic conversation. The avatar's smile was rendered such that it was either a slightly enhanced version or a veridical version of the participant's actual smile. Linguistic analyses using the Linguistic Inquiry Word Count (LIWC revealed that participants who communicated with each other via avatars that exhibited enhanced smiles used more positive words to describe their interaction experience compared to those who communicated via avatars that displayed smiling behavior reflecting the participants' actual smiles. In addition, self-report measures showed that participants in the 'enhanced smile' condition felt more positive affect after the conversation and experienced stronger social presence compared to the 'normal smile' condition. These results are particularly striking when considering the fact that most participants (>90% were unable to detect the smiling manipulation. This is the first study to demonstrate the positive effects of transforming unacquainted individuals' actual smiling behavior during a real-time avatar-networked conversation.

  17. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  18. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P. [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Eapen, Susan, E-mail: eapenhome@yahoo.com [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-08-15

    Highlights: {yields} Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. {yields} Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. {yields} Using in vitro T{sub 1} seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. {yields} This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of {sup 14}C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T{sub 0} and T{sub 1}) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  19. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    International Nuclear Information System (INIS)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P.; Eapen, Susan

    2011-01-01

    Highlights: → Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. → Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. → Using in vitro T 1 seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. → This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of 14 C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T 0 and T 1 ) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  20. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  1. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression.

    Science.gov (United States)

    Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A

    2009-12-30

    Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements

  2. Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression

    Science.gov (United States)

    2009-01-01

    Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T

  3. Ionizing radiation enhances immunogenicity of cells expressing a tumor-specific T-cell epitope

    International Nuclear Information System (INIS)

    Ciernik, Ilja F.; Romero, Pedro; Berzofsky, Jay A.; Carbone, David P.

    1999-01-01

    Background: p53 point mutations represent potential tumor-specific cytolytic T lymphocyte (CTL) epitopes. Whether ionizing radiation (IR) alters the immunological properties of cells expressing mutant p53 in respect of the CTL epitope generated by a defined point mutation has not been evaluated. Methods: Mutant p53-expressing syngeneic, nontumor forming BALB/c 3T3 fibroblasts, tumor forming ras-transfected BALB/c 3T3 sarcomas, and DBA/2-derived P815 mastocytoma cells, which differ at the level of minor histocompatibility antigens, were used as cellular vaccines. Cells were either injected with or without prior IR into naive BALB/c mice. Cellular cytotoxicity was assessed after secondary restimulation of effector spleen cells in vitro. Results: Injection of P815 mastocytoma cells expressing the mutant p53 induced mutation-specific CTL in BALB/c mice irrespective of prior irradiation. However, syngeneic fibroblasts or fibrosarcomas endogenously expressing mutant p53 were able to induce significant mutation-specific CTL only when irradiated prior to injection into BALB/c mice. IR of fibroblasts did not detectably alter the expression of cell surface molecules involved in immune response induction, nor did it alter the short-term in vitro viability of the fibroblasts. Interestingly, radioactively-labeled fibroblasts injected into mice after irradiation showed altered organ distribution, suggesting that the in vivo fate of these cells may play a crucial role in their immunogenicity. Conclusions: These findings indicate that IR can alter the immunogenicity of syngeneic normal as well as tumor forming fibroblasts in vivo, and support the view that ionizing radiation enhances immunogenicity of cellular tumor vaccines

  4. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo

    International Nuclear Information System (INIS)

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O 6 -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy

  5. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection.

    Science.gov (United States)

    Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K; Koroleva, Ekaterina P; Tumanov, Alexei V; Cooper, Andrea M; Bliska, James B; Smiley, Stephen T; Lin, Jr-Shiuan

    2014-05-01

    Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69-77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69-77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69-77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69-77-mediated protection. In contrast, YopE69-77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.

  6. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    Science.gov (United States)

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  7. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    Directory of Open Access Journals (Sweden)

    Nilay J Lakhkar

    2015-11-01

    Full Text Available In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5 that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.

  8. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    Science.gov (United States)

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  9. Ethnicity moderates the outcomes of self-enhancement and self-improvement themes in expressive writing.

    Science.gov (United States)

    Tsai, William; Lau, Anna S; Niles, Andrea N; Coello, Jordan; Lieberman, Matthew D; Ko, Ahra C; Hur, Christopher; Stanton, Annette L

    2015-10-01

    The current study examined whether writing content related to self-enhancing (viz., downward social comparison and situational attributions) and self-improving (viz., upward social comparison and persistence) motivations were differentially related to expressive writing outcomes among 17 Asian American and 17 European American participants. Content analysis of the essays revealed no significant cultural group differences in the likelihood of engaging in self-enhancing versus self-improving reflections on negative personal experiences. However, cultural group differences were apparent in the relation between self-motivation processes and changes in anxiety and depressive symptoms at 3-month follow-up. Among European Americans, writing that reflected downward social comparison predicted positive outcomes, whereas persistence writing themes were related to poorer outcomes. For Asian Americans, writing about persistence was related to positive outcomes, whereas downward social comparison and situational attributions predicted poorer outcomes. Findings provide evidence suggesting culturally distinct mechanisms for the effects of expressive disclosure. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  10. CCAAT/Enhancer Binding Protein β Regulates Expression of Indian Hedgehog during Chondrocytes Differentiation

    Science.gov (United States)

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Ishihara, Kohei; Doi, Toshio; Iwamoto, Yukihide

    2014-01-01

    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh) also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2) was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation. Methodology/Results Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between −214 and −210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression. Conclusions C

  11. CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Takahiro Ushijima

    Full Text Available CCAAT/enhancer binding protein β (C/EBPβ is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2 was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation.Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between -214 and -210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA and a chromatin immunoprecipitation (ChIP assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression.C/EBPβ and RUNX2 cooperatively stimulate

  12. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Science.gov (United States)

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  13. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ. Medical Center, Maywood, IL (United States); Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Chung, Jen; Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic and thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.

  14. Expanding the Repertoire of Optogenetically Targeted Cells with an Enhanced Gene Expression System

    Directory of Open Access Journals (Sweden)

    Kenji F. Tanaka

    2012-08-01

    Full Text Available Optogenetics has been enthusiastically pursued in recent neuroscience research, and the causal relationship between neural activity and behavior is becoming ever more accessible. Here, we established knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction (KENGE-tet and succeeded in generating transgenic mice expressing a highly light-sensitive channelrhodopsin-2 mutant at levels sufficient to drive the activities of multiple cell types. This method requires two lines of mice: one that controls the pattern of expression and another that determines the protein to be produced. The generation of new lines of either type readily expands the repertoire to choose from. In addition to neurons, we were able to manipulate the activity of nonexcitable glial cells in vivo. This shows that our system is applicable not only to neuroscience but also to any biomedical study that requires understanding of how the activity of a selected population of cells propagates through the intricate organic systems.

  15. Enhanced regulatory gene expressions in the blood and articular cartilage of patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Elena Vasilyevna Chetina

    2012-01-01

    accompanied by the elevated concentrations of the corresponding proteins in the cell lysates of the patients with RA compared to the controls. Conclusion. The findings suggest for the first time that regulatory mTOR, ATG1, p21, and TNFа gene expressions are enhanced in the blood and articular cartilage of RA patients. These changes are accompanied by the increased expression of MMP 13 gene that is responsible for articular cartilage resorption. Therefore, the higher expression of the examined regulatory genes in the blood of RA patients may be indicative of articular cartilage degradation.

  16. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  17. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. Copyright © 2014 Mosby, Inc. All rights reserved.

  18. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  19. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression.

    Science.gov (United States)

    Hussan, F; Teoh, S Lin; Muhamad, N; Mazlan, M; Latiff, A A

    2014-08-01

    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract. Fifty-six male Sprague-Dawley rats were divided into a normal control group and five diabetic groups of ten rats each. Intravenous streptozotocin (50mg/kg) was given to induce diabetes in the diabetic groups. Full thickness excision wounds were created on the thoracodorsal region of the animals, and these wounds were then treated with vehicle, MC powder, MC ointment and povidone ointment or ointment base for ten days. Wound healing was determined by the rate of wound closure, total protein content and TGF-β expression in the wounds, and histological observation. Diabetic groups showed delayed wound closure rates compared to the control group. The wound closure rate in the MC ointment group was significantly faster than that of the untreated diabetic group (p<0.05). The MC ointment group also showed intense TGF-β expression and a high level of total protein content. MC ointment has a promising potential for use as an alternative topical medication for diabetic wounds. This work has shown that it accelerates wound healing in diabetic rats, and it is suggested here that this occurs by enhancing TGF-β expression. Further work is recommended to explore this effect.

  20. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4.

    Science.gov (United States)

    Barhanpurkar-Naik, Amruta; Mhaske, Suhas T; Pote, Satish T; Singh, Kanupriya; Wani, Mohan R

    2017-07-14

    Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions. MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice. We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards

  1. Sustained enhancement of OCTN1 transporter expression in association with hydroxyurea induced gamma-globin expression in erythroid progenitors

    OpenAIRE

    Walker, Aisha L.; Ofori-Acquah, Solomon

    2016-01-01

    The clinical benefits of hydroxyurea treatment in patients with sickle cell disease (SCD) are due largely to increased gamma-globin expression. However, mechanisms that control gamma-globin expression by hydroxyurea in erythroid progenitors are incompletely understood. Here, we investigated the role of two hydroxyurea transporters, urea transporter B (UTB) and organic cation/carnitine transporter 1 (OCTN1), in this process. Endogenous expression of both transporters peaked towards the end of ...

  2. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein.

    Science.gov (United States)

    Rotermund, Carola; Reolon, Gustavo K; Leixner, Sarah; Boden, Cindy; Bilbao, Ainhoa; Kahle, Philipp J

    2017-11-01

    α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD. © 2017 International Society for Neurochemistry.

  3. FAT/CD36 expression alone is insufficient to enhance cellular uptake of oleate

    International Nuclear Information System (INIS)

    Eyre, Nicholas S.; Cleland, Leslie G.; Mayrhofer, Graham

    2008-01-01

    Fatty acid translocase (FAT/CD36) is one of several proteins implicated in receptor-mediated uptake of long-chain fatty acids (LCFAs). We have tested whether levels of FAT/CD36 correlate with cellular oleic acid import, using a Tet-Off inducible transfected CHO cell line. Consistent with our previous findings, FAT/CD36 was enriched in lipid raft-derived detergent-resistant membranes (DRMs) that also contained caveolin-1, the marker protein of caveolae. Furthermore in transfected cells, plasma membrane FAT/CD36 co-localized extensively with the lipid raft-enriched ganglioside GM1, and partially with a caveolin-1-EGFP fusion protein. Nevertheless, even at high levels of expression, FAT/CD36 did not affect uptake of oleic acid. We propose that the ability of FAT/CD36 to mediate enhanced uptake of LCFAs is dependent on co-expression of other proteins or factors that are lacking in CHO cells

  4. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24.

    Science.gov (United States)

    Huang, Xuan; Wang, Jian; Du, Zhen; Zhang, Chen; Li, Lan; Xu, Ziqin

    2013-10-01

    Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27-36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.

  5. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Ide, Hisamitsu; Nakagawa, Takashi; Terado, Yuichi; Kamiyama, Yutaka; Muto, Satoru; Horie, Shigeo

    2008-01-01

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  6. A new approach to enhance the performance of decision tree for classifying gene expression data.

    Science.gov (United States)

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  7. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    Science.gov (United States)

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  9. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  10. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    Science.gov (United States)

    Besson, Marie Thérèse; Alegría, Karin; Garrido-Gerter, Pamela; Barros, Luis Felipe; Liévens, Jean-Charles

    2015-01-01

    Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3

  11. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    Directory of Open Access Journals (Sweden)

    Marie Thérèse Besson

    Full Text Available Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93. We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD, the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to

  12. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2008-09-01

    Full Text Available Abstract Background MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2. Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. Methods and result Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1, the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. Conclusion Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.

  13. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Science.gov (United States)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  14. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    International Nuclear Information System (INIS)

    Barkhouse, Darryll A.; Faber, Milosz; Hooper, D. Craig

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression

  15. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, Darryll A. [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Faber, Milosz [Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Microbiology and Immunology 1020 Locust St., Jefferson Alumni Hall, Room 465, Philadelphia, PA 19107 (United States); Hooper, D. Craig, E-mail: douglas.hooper@jefferson.edu [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Neurological Surgery, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States)

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression.

  16. Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing

    2017-12-01

    The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.

  17. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2015-01-01

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10 −6 M to 1 × 10 −5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  18. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum.

    Science.gov (United States)

    van Eldik, G J; Ruiter, R K; Colla, P H; van Herpen, M M; Schrauwen, J A; Wullems, G J

    1997-03-01

    Successful sexual reproduction relies on gene products delivered by the pistil to create an environment suitable for pollen tube growth. These compounds are either produced before pollination or formed during the interactions between pistil and pollen tubes. Here we describe the pollination-enhanced expression of the cp100 gene in pistils of Solanum tuberosum. Temporal analysis of gene expression revealed an enhanced expression already one hour after pollination and lasts more than 72 h. Increase in expression also occurred after touching the stigma and was not restricted to the site of touch but spread into the style. The predicted CP100 protein shows similarity to leguminous isoflavone reductases (IFRs), but belongs to a family of IFR-like NAD(P)H-dependent oxidoreductases present in various plant species.

  19. The frequency of A91V in the perforin gene and the effect of tumor necrosis factor-α promoter polymorphism on acquired hemophagocytic lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Hamza Okur

    2011-06-01

    Full Text Available Objective: Numerous acquired etiological factors, such as infections, malignancies, and collagen tissue disorders, are involved in the development of acquired hemophagocytic lymphohistiocytosis (AHLH. Not everyone with the same etiological factors developments AHLH, which suggests the role of additional genetic or environmental predisposing factors that remain to be identified. Materials and Methods: Perforin gene A91V missense transition (C>T change at position 272 in exon 2 of the perforin gene and TNF-α gene promoter-1031 T>C nucleotide substitution are 2 candidate genetic predisposing factors due to their potential to alter inflammatory responses. In the present study these changes were investigated in healthy controls and AHLH patients.Results: A91V transition was observed in 7 of the 159 (4.4% controls. Among the 44 AHLH patients, 5 (11.3% were heterozygous and the difference in the frequency of A91V transition, although striking (odds ratio: 2.8, was not statistically significant (p=0.09. All A91V-positive patients had infection. TNF-α-1031 T>C polymorphism was examined in 164 healthy controls and 40 AHLH patients, and the CC risk-elevating genotype was noted in 7 (4.3% of the controls and 1 (2.5% of the AHLH patients. The frequency of C and T alleles was 22.5% (n=18 and 77.5% (n=62 among the AHLH patients, and 22% (n=72 and 78% (n=259 among the controls, respectively. There wasn’t a statistically significant difference between the groups in terms of allele frequencies (p>0.05.Conclusion: The present results indicate that compared to controls, A91V mutation was 2.8-fold more prevalent (according to the odds ratio in the AHLH patients. A91V mutation is not uncommon in the general population and increases the risk of AHLH in patients with an underlying condition, especially those with an underlying infection.

  20. Titania nanotube delivery fetal bovine serum for enhancing MC3T3-E1 activity and osteogenic gene expression

    International Nuclear Information System (INIS)

    Peng, Jing; Zhang, Xinming; Li, Zhaoyang; Liu, Yunde; Yang, Xianjin

    2015-01-01

    Titania nanotube (TNT) delivery of fetal bovine serum (FBS) was conducted on titanium (Ti) to enhance bone tissue repair. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) showed FBS increased the tube wall thickness and decreased the tube diameter. Attenuated total reflectance Fourier transform infrared further confirmed that FBS completely covered the TNT and changed the surface composition. Water contact angle tests showed TNT/FBS possessed hydrophilic properties. Compared to original Ti, the TNT/FBS group had more attached osteoblasts after 2 h and enhanced filopodia growth at 0.5 h. Significantly, more osteoblasts were also observed on TNT/FBS after 7 d culturing. FBS was released steadily from TNT; about 70% of FBS had been released at 3 d and 90% at 5 d, as shown by the bicinchoninic acid method. TNT/FBS also enhanced subsequent osteoblast differentiation and gene expression; the quantum real-time polymerase chain reaction test showed that TNT/FBS up-regulated alkaline phosphatase and osteocalcin gene expression at 7 d and 14 d. Therefore, TNT/FBS delivered sustained in situ nutrition and enhanced osteoblast activity and osteogenic gene expression. - Highlights: • Fetal Bovine Serum (FBS) was filled in titania nanotube (TNT) structures. • FBS provided sustained-release in situ nutrition for surface osteoblast growth. • TNT/FBS enhanced osteoblast activity and osteogenic gene expression

  1. Titania nanotube delivery fetal bovine serum for enhancing MC3T3-E1 activity and osteogenic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jing, E-mail: pengjingtd@163.com [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Zhang, Xinming, E-mail: xinmingmail@163.com [Tianjin Product Quality Inspection Technology Research Institute, Tianjin 300384 (China); School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde [School of Medical Laboratory, Tianjin Medical University, Tianjin 300203 (China); Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-11-01

    Titania nanotube (TNT) delivery of fetal bovine serum (FBS) was conducted on titanium (Ti) to enhance bone tissue repair. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) showed FBS increased the tube wall thickness and decreased the tube diameter. Attenuated total reflectance Fourier transform infrared further confirmed that FBS completely covered the TNT and changed the surface composition. Water contact angle tests showed TNT/FBS possessed hydrophilic properties. Compared to original Ti, the TNT/FBS group had more attached osteoblasts after 2 h and enhanced filopodia growth at 0.5 h. Significantly, more osteoblasts were also observed on TNT/FBS after 7 d culturing. FBS was released steadily from TNT; about 70% of FBS had been released at 3 d and 90% at 5 d, as shown by the bicinchoninic acid method. TNT/FBS also enhanced subsequent osteoblast differentiation and gene expression; the quantum real-time polymerase chain reaction test showed that TNT/FBS up-regulated alkaline phosphatase and osteocalcin gene expression at 7 d and 14 d. Therefore, TNT/FBS delivered sustained in situ nutrition and enhanced osteoblast activity and osteogenic gene expression. - Highlights: • Fetal Bovine Serum (FBS) was filled in titania nanotube (TNT) structures. • FBS provided sustained-release in situ nutrition for surface osteoblast growth. • TNT/FBS enhanced osteoblast activity and osteogenic gene expression.

  2. Correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ce Zhang

    2017-01-01

    Objective: To study the correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer. Methods: Breast cancer lesions and benign breast lesions surgically removed in Zigong Third People's Hospital between May 2014 and February 2017 were selected, contrast-enhanced ultrasound was done before operation to draw the time-intensity curve and calculate the area under the curve (AUC), and the expression of proliferation molecules and tumor suppressor genes were detected after operation. Results:The contrast-enhanced ultrasound parameter AUC of the breast cancer lesion was greatly higher than that of the benign breast lesion; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions were obviously higher than those in benign breast lesions whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in benign breast lesions; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions with high AUC were greatly higher than those in breast cancer lesions with low AUC whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in breast cancer lesions with low AUC. Conclusion: The contrast-enhanced ultrasound parameter AUC of breast cancer lesion significantly increases and is closely related to the higher expression of pro-proliferation molecules and the lower expression of tumor suppressor genes.

  3. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    International Nuclear Information System (INIS)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. -- Highlights: ► IRS1 enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. ► This sensitivity is abrogated by the expression of IRS2. ► Expressing IRS1 in 32D cells increased levels of Annexin A2. ► Both IRS1 and Annexin A2 were located in cytoplasmic and membrane fractions. ► Decreasing Annexin A2 in 32D-IRS1 cells abated their sensitivity to chemotherapy.

  4. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening

    OpenAIRE

    Xue, Jingqi; Li, Yunhui; Tan, Hui; Yang, Feng; Ma, Nan; Gao, Junping

    2008-01-01

    Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1?4 and Rh-ACO1) and receptor (Rh-ETR1?5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the ...

  5. Frontline Science: Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression.

    Science.gov (United States)

    Guha, Prajna; Cunetta, Marissa; Somasundar, Ponnandai; Espat, N Joseph; Junghans, Richard P; Katz, Steven C

    2017-08-01

    Chimeric antigen receptor expressing T cells (CAR-T) are a promising form of immunotherapy, but the influence of age-related immune changes on CAR-T production remains poorly understood. We showed that CAR-T cells from geriatric donors (gCAR-T) are functionally impaired relative to CAR-T from younger donors (yCAR-T). Higher transduction efficiencies and improved cell expansion were observed in yCAR-T cells compared with gCAR-T. yCAR-T demonstrated significantly increased levels of proliferation and signaling activation of phosphorylated (p)Erk, pAkt, pStat3, and pStat5. Furthermore, yCAR-T contained higher proportions of CD4 and CD8 effector memory (EM) cells, which are known to have enhanced cytolytic capabilities. Accordingly, yCAR-T demonstrated higher levels of tumor antigen-specific cytotoxicity compared with gCAR-T. Enhanced tumor killing by yCAR-T correlated with increased levels of perforin and granzyme B. yCAR-T had increased α5β1 integrin expression, a known mediator of retroviral transduction. We found that treatment with M-CSF or TGF-β1 rescued the impaired transduction efficiency of the gCAR-T by increasing the α5β1 integrin expression. Neutralization of α5β1 confirmed that this integrin was indispensable for CAR expression. Our study suggests that the increase of α5β1 integrin expression levels enhances CAR expression and thereby improves tumor killing by gCAR-T. © Society for Leukocyte Biology.

  6. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    Science.gov (United States)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453

  7. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  8. Nicotine enhances skin necrosis and expression of inflammatory mediators in a rat pressure ulcer model.

    Science.gov (United States)

    Tsutakawa, S; Kobayashi, D; Kusama, M; Moriya, T; Nakahata, N

    2009-11-01

    Many bedridden patients develop pressure ulcers, not only in hospital but also at home. Clinical studies have indicated cigarette smoking to be a risk factor for pressure ulcers. However, the contribution of nicotine to pressure ulcer formation has not been identified. We aimed to clarify the effect of nicotine on pressure ulcer formation, and its mechanism. Ischaemia-reperfusion (I/R) was performed in rat dorsal skin to induce pressure ulcers. The extent of the resulting necrotic area was determined. To clarify the mechanism of the effect of nicotine, mRNA levels of cyclooxygenase-2 (COX-2), interleukin (IL)-1beta, IL-6 and inducible nitric oxide synthase (iNOS) and protein expression of COX-2 and iNOS in the necrotic area were investigated by real-time reverse transcription-polymerase chain reaction and Western blotting, respectively. Furthermore, the effects of the COX-2 inhibitor NS-398 and the iNOS inhibitor aminoguanidine on necrosis were examined. Skin necrosis in the I/R-treated area was significantly increased by intraperitoneal administration of nicotine (0.175 mg kg(-1) daily). Repeated nicotine administration had little effect on systolic and diastolic blood pressure. I/R treatment increased mRNA levels of COX-2, IL-1beta, IL-6 and iNOS, which were further augmented by nicotine in a dose-dependent manner. Correspondingly, nicotine (0.35 mg kg(-1) daily) markedly enhanced the protein expression of COX-2 and iNOS. Moreover, NS-398 and aminoguanidine showed a tendency to abrogate the increase of I/R-induced skin necrosis caused by nicotine. These results suggest that the increased risk of pressure ulcers due to cigarette smoking is mediated, in part, by nicotine. They also indicated that the effect of nicotine is not mediated by a change in blood pressure, but is elicited via an increase of inflammatory mediators in the I/R-treated skin.

  9. Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    International Nuclear Information System (INIS)

    Zou, Chun-Fang; Yu, Yinhua; Jia, Luoqi; Jin, Hongyan; Yao, Ming; Zhao, Naiqing; Huan, Jin; Lu, Zhen; Bast, Robert C Jr; Feng, Youji

    2011-01-01

    ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel. Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts. ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest. ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest

  10. CRFR1 in the ventromedial caudate putamen modulates acute stress-enhanced expression of cocaine locomotor sensitization.

    Science.gov (United States)

    Liu, Shuli; Wang, Zhiyan; Li, Yijing; Sun, Xiaowei; Ge, Feifei; Yang, Mingda; Wang, Xinjuan; Wang, Na; Wang, Junkai; Cui, Cailian

    2017-07-15

    Repeated exposure to psychostimulants induces a long-lasting enhancement of locomotor activity called behavioral sensitization, which is often reinforced by stress after drug withdrawal. The mechanisms underlying these phenomena remain elusive. Here we explored the effects of acute stress 3 or 14 days after the cessation of chronic cocaine treatment on the expression of locomotor sensitization induced by a cocaine challenge in rats and the key brain region and molecular mechanism underlying the phenomenon. A single session of forced swimming, as an acute stress (administered 2 days after the cessation of cocaine), significantly enhanced the expression of cocaine locomotor sensitization 14 days after the final cocaine injection (challenge at 12 days after acute stress) but not 3 days after the cessation of cocaine (challenge at 1 day after acute stress). The result indicated that acute stress enhanced the expression of cocaine locomotor sensitization after incubation for 12 days rather than 1 day after the last cocaine injection. Moreover, the enhancement in locomotor sensitization was paralleled by a selective increase in the number of the c-Fos + cells, the level of CRFR1 mRNA in the ventromedial caudate putamen (vmCPu). Furthermore, the enhancement was significantly attenuated by CRFR1 antagonist NBI-27914 into the vmCPu, implying that the up-regulation of CRFR1 in the vmCPu seems to be critical in the acute stress-enhanced expression of cocaine locomotor sensitization. The findings demonstrate that the long-term effect of acute stress on the expression of cocaine locomotor sensitization is partially mediated by CRFR1 in the vmCPu. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics.

    Science.gov (United States)

    Dave, Shruti

    2013-11-01

    Diabetes mellitus (DM) is considered to be an autoimmune disorder leading to destruction of beta-cells resulting in to a loss of blood sugar control. Attempts using many pharmacological compositions including exogenous insulin have failed to show tight control of glycemia and associated manifestations. Stem cells are considered a potential tool for the supply of insulin-producing cells (IPC) generation in vitro. Stem cell differentiation in to pancreatic lineages requires influence of both intrinsic and extrinsic factors. Application of islet growth factors is considered to be potential for enhancement of beta-cell replication, function and survival. Use of certain extrinsic factors is known to facilitate expression of transcription factors known to be important for beta-cell differentiation and production of insulin enabling IPC generation. Hierarchies of secreted signals and transcription factors have been identified by studies from several laboratories that guide cell differentiation in to IPC. This knowledge provides insights for in vitro IPC differentiation from stem cells. Current advancement in medical knowledge promises an insulin independency for DM patients. The review sheds light on few specific extrinsic factors which facilitate differentiation of stem cells in to IPC in vitro have been discussed; which can be proven as a potential therapeutic option for treatment of DM and associated diseases.

  12. Enhanced expression of melanoma progression markers in mouse model of sleep apnea

    Directory of Open Access Journals (Sweden)

    S. Perini

    2016-07-01

    Full Text Available Introduction: Obstructive sleep apnea has been associated with higher cancer incidence and mortality. Increased melanoma aggressivity was reported in obstructive sleep apnea patients. Mice exposed to intermittent hypoxia (IH mimicking sleep apnea show enhanced melanoma growth. Markers of melanoma progression have not been investigated in this model. Objective: The present study examined whether IH affects markers of melanoma tumor progression. Methods: Mice were exposed to isocapnic IH to a nadir of 8% oxygen fraction for 14 days. One million B16F10 melanoma cells were injected subcutaneously. Immunohistochemistry staining for Ki-67, PCNA, S100-beta, HMB-45, Melan-A, TGF-beta, Caspase-1, and HIF-1alpha were quantified using Photoshop. Results: Percentage of positive area stained was higher in IH than sham IH group for Caspase-1, Ki-67, PCNA, and Melan-A. The greater expression of several markers of tumor aggressiveness, including markers of ribosomal RNA transcription (Ki-67 and of DNA synthesis (PCNA, in mice exposed to isocapnic IH than in controls provide molecular evidence for a apnea–cancer relationship. Conclusions: These findings have potential repercussions in the understanding of differences in clinical course of tumors in obstructive sleep apnea patients. Further investigation is necessary to confirm mechanisms of these descriptive results. Keywords: Apnea, Melanoma, Biological markers

  13. Neutrophil Interactions with Epithelial Expressed ICAM-1 Enhances Intestinal Mucosal Wound Healing

    Science.gov (United States)

    Sumagin, R; Brazil, JC; Nava, P; Nishio, H; Alam, A; Luissint, AC; Weber, DA; Neish, AS; Nusrat, A; Parkos, CA

    2015-01-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. While epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 plays an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing. PMID:26732677

  14. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.

    Science.gov (United States)

    Sumagin, R; Brazil, J C; Nava, P; Nishio, H; Alam, A; Luissint, A C; Weber, D A; Neish, A S; Nusrat, A; Parkos, C A

    2016-09-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.

  15. Fractal structure in the volumetric contrast enhancement of malignant gliomas as a marker of oxidative metabolic pathway gene expression

    NARCIS (Netherlands)

    Miller, Kai J.; Berendsen, Sharon; Seute, Tatjana; Yeom, Kristen; Gephardt, Melanie H.; Grant, Gerald A.; Robe, Pierre A.

    2017-01-01

    Background: Fractal structure is found throughout many processes in nature, and often arises from sets of simple rules. We examined MRI contrast enhancement patterns from glioblastoma patients for evidence of fractal structure and correlated these with gene expression patterns. Methods: For 39

  16. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression

    Science.gov (United States)

    Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.

    2018-01-01

    Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907

  17. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  19. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  20. The hemostatic agent ethamsylate enhances P-selectin membrane expression in human platelets and cultured endothelial cells.

    Science.gov (United States)

    Alvarez-Guerra, Miriam; Hernandez, Maria Rosa; Escolar, Ginés; Chiavaroli, Carlo; Garay, Ricardo P; Hannaert, Patrick

    2002-09-15

    Ethamsylate possesses antihemorrhagic properties, but whether or not it directly activates blood platelets is unclear. Here we investigated the platelet activation potential of ethamsylate, by measuring membrane P-selectin expression with flow cytometry in human whole blood and also by immunofluorescence imaging of isolated human platelets. Moreover, we measured membrane P-selectin expression in the SV40-transformed aortic rat endothelial cell line (SVAREC) and 14C-ethamsylate membrane binding and/or uptake in platelets and endothelial cells. Whole blood flow cytometry showed a modest, but statistically significant increase by ethamsylate in the percentage of platelets expressing P-selectin (from 2% to 4-5%, p ethamsylate tested (1 microM), with maximal enhancement of P-selectin expression (75-90%) at 10 microM ethamsylate. Similar results were obtained in SVAREC endothelial cells. 14C-ethamsylate specifically bound to platelets and endothelial cell membranes, without significant uptake into the cell interior. In conclusion, ethamsylate enhances membrane P-selectin expression in human platelets and in cultured endothelial cells. Ethamsylate specifically binds to some protein receptor in platelet and endothelial cell membranes, receptor which can signal for membrane P-selectin expression. These results support the view that ethamsylate acts on the first step of hemostasis, by improving platelet adhesiveness and restoring capillary resistance. Copyright 2002 Elsevier Science Ltd.

  1. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    Science.gov (United States)

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  2. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  3. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  4. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    ), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. CONCLUSION: Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced...... the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. METHODS AND RESULT: Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression...... of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed...

  5. Ribavirin enhances IFN-α signalling and MxA expression: a novel immune modulation mechanism during treatment of HCV.

    Directory of Open Access Journals (Sweden)

    Nigel J Stevenson

    Full Text Available The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV.

  6. Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis.

    Science.gov (United States)

    Qin, Mei; Tang, Xinming; Yin, Guangwen; Liu, Xianyong; Suo, Jingxia; Tao, Geru; Ei-Ashram, Saeed; Li, Yuan; Suo, Xun

    2016-03-21

    Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.

  7. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    Science.gov (United States)

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model

    Science.gov (United States)

    2013-01-01

    Background COX-2 inhibitors have an antitumor potential and have been verified by many researchers. Treatment of cancer cells with external stressors such as irradiation can stimulate the over-expression of COX-2 and possibly confer radiation resistance. In this study, we tested if topical diclofenac, which inhibits both COX-1 and COX-2, administration rendered prostate tumor cells sensitize to the effects of radiation. Methods LNCaP-COX-2 and LNCaP-Neo cells were treated with 0 to 1000 μM diclofenac. Next, a clonogenic assay was performed in which cells were subjected to irradiation (0 to 4 Gy) with or without diclofenac. COX-2 expression and other relevant molecules were measured by real-time PCR and immunohistochemistry after irradiation and diclofenac treatment. In addition, we assessed the tumor volumes of xenograft LNCaP-COX-2 cells treated with topical diclofenac with or without radiation therapy (RT). Results LNCaP-COX-2 and LNCaP-Neo cell lines experienced cytotoxic effects of diclofenac in a dose related manner. Clonogenic assays demonstrated that LNCaP-COX-2 cells were significantly more resistant to RT than LNCaP-Neo cells. Furthermore, the addition of diclofenac sensitized LNCaP-COX-2 not but LNCaP-Neo cells to the cytocidal effects of radiation. In LNCaP-COX-2 cells, diclofenac enhanced radiation-induced apoptosis compared with RT alone. This phenomenon might be attributed to enhancement of RT-induced TRAIL expression as demonstrated by real-time PCR analysis. Lastly, tumor volumes of LNCaP-COX-2 cells xenograft treated with diclofenac or RT alone was >4-fold higher than in mice treated with combined diclofenac and radiation (pdiclofenac enhances the effect of RT on prostate cancer cells that express COX-2. Thus, diclofenac may have potential as radiosensitizer for treatment of prostate cancer. PMID:23289871

  9. Identification of an enhancer that increases miR-200b~200a~429 gene expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joanne L Attema

    Full Text Available The miR-200b~200a~429 gene cluster is a key regulator of EMT and cancer metastasis, however the transcription-based mechanisms controlling its expression during this process are not well understood. We have analyzed the miR-200b~200a~429 locus for epigenetic modifications in breast epithelial and mesenchymal cell lines using chromatin immunoprecipitation assays and DNA methylation analysis. We discovered a novel enhancer located approximately 5.1kb upstream of the miR-200b~200a~429 transcriptional start site. This region was associated with the active enhancer chromatin signature comprising H3K4me1, H3K27ac, RNA polymerase II and CpG dinucleotide hypomethylation. Luciferase reporter assays revealed the upstream enhancer stimulated the transcription of the miR-200b~200a~429 minimal promoter region approximately 27-fold in breast epithelial cells. Furthermore, we found that a region of the enhancer was transcribed, producing a short, GC-rich, mainly nuclear, non-polyadenylated RNA transcript designated miR-200b eRNA. Over-expression of miR-200b eRNA had little effect on miR-200b~200a~429 promoter activity and its production did not correlate with miR-200b~200a~429 gene expression. While additional investigations of miR-200b eRNA function will be necessary, it is possible that miR-200b eRNA may be involved in the regulation of miR-200b~200a~429 gene expression and silencing. Taken together, these findings reveal the presence of a novel enhancer, which contributes to miR-200b~200a~429 transcriptional regulation in epithelial cells.

  10. MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells.

    Science.gov (United States)

    Liu, Jing; Qu, Cheng-Bin; Xue, Yi-Xue; Li, Zhen; Wang, Ping; Liu, Yun-hui

    Therapeutic applications of microRNAs (miRNAs) in chemotherapy were confirmed to be valuable, but there is rare to identify their specific roles and functions in shikonin treatment toward tumors. Here, for the first time, we reported that miR-143 played a critical role in the antitumor activity of shikonin in glioblastoma stem cells (GSCs). The results showed that the expression of miR-143 was downregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly enhanced the inhibitory effect of shikonin toward GSCs on cell viability. Besides, miR-143 overexpression caused a significant increase in the apoptotic fraction and made apoptosis occur earlier. Further investigation identified that BAG3, an apoptotic regulator, was a functional target of miR-143 in shikonin treated GSCs. The expression of BAG3 was upregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly reversed the high expression of BAG3 in shikonin treated GSCs. Moreover, it was confirmed that the enhanced cytotoxicity of shikonin by miR-143 overexpression was reversed by BAG3 overexpression both in vitro and in vivo, suggesting that the enhanced tumor suppressive effects by miR-143 overexpression was at least partly through the regulation of BAG3. Taken together, for the first time, our results demonstrate that miR-143 could enhance the antitumor activity of shikonin toward GSCs through reducing BAG3 expression, which may provide a novel therapeutic strategy for enhancing the treatment efficacy of shikonin toward GSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  12. Suppression of LFA-1 expression by spermine is associated with enhanced methylation of ITGAL, the LFA-1 promoter area.

    Directory of Open Access Journals (Sweden)

    Yoshihiko Kano

    Full Text Available Spermine and spermidine, natural polyamines, suppress lymphocyte function-associated antigen 1 (LFA-1 expression and its associated cellular functions through mechanisms that remain unknown. Inhibition of ornithine decarboxylase, which is required for polyamine synthesis, in Jurkat cells by 3 mM D,L-alpha-difluoromethylornithine hydrochloride (DFMO significantly decreased spermine and spermidine concentrations and was associated with decreased DNA methyltransferase (Dnmt activity, enhanced demethylation of the LFA-1 gene (ITGAL promoter area, and increased CD11a expression. Supplementation with extracellular spermine (500 µM of cells pretreated with DFMO significantly increased polyamine concentrations, increased Dnmt activity, enhanced methylation of the ITGAL promoter, and decreased CD11a expression. It has been shown that changes in intracellular polyamine concentrations affect activities of -adenosyl-L-methionine-decaroboxylase, and, as a result, affect concentrations of the methyl group donor, S-adenosylmethionine (SAM, and of the competitive Dnmt inhibitor, decarboxylated SAM. Additional treatments designed to increase the amount of SAM and decrease the amount of decarboxylated SAM-such as treatment with methylglyoxal bis-guanylhydrazone (an inhibitor of S-adenosyl-L-methionine-decaroboxylase and SAM supplementation-successfully decreased CD11a expression. Western blot analyses revealed that neither DFMO nor spermine supplementation affected the amount of active Ras-proximate-1, a member of the Ras superfamily of small GTPases and a key protein for regulation of CD11a expression. The results of this study suggest that polyamine-induced suppression of LFA-1 expression occurs via enhanced methylation of ITGAL.

  13. Increased expression of enhancer of Zeste Homolog 2 (EZH2) differentiates squamous cell carcinoma from normal skin and actinic keratosis.

    Science.gov (United States)

    Xie, Qiang; Wang, Hongbei; Heilman, Edward R; Walsh, Michael G; Haseeb, M A; Gupta, Raavi

    2014-01-01

    Enhancer of Zeste Homolog 2 (EZH2) is a polycomb group protein that has been shown to be involved in the progression of multiple human cancers including melanoma. The expression of EZH2 in normal skin and in pre-malignant and malignant cutaneous squamous cell carcinoma (SCC) has not been studied. We examined the expression of EZH2 in normal skin, actinic keratosis (AK), SCC in situ, well-differentiated (SCC-WD), moderately-differentiated (SCC-MD) and poorly-differentiated SCC (SCC-PD) to ascertain whether EZH2 expression differentiates these conditions. Immunohistochemical staining for EZH2 was performed on formalin-fixed paraffin-embedded biopsies and a tissue microarray containing normal skin, AK, SCC in situ, and SCC of different grades. In comparison to the normal skin, EZH2 expression in actinic keratosis was increased (p=0.03). Similarly, EZH2 expression in all of the neoplastic conditions studied (SCC in situ, SCC-WD, SCC-MD and SCC-PD) was greatly increased in comparison to both the normal skin and actinic keratosis (p≤0.001). EZH2 expression increases incrementally from normal skin to AK and further to SCC, suggesting a role for EZH2 in the progression and differentiation of SCC. EZH2 expression may be used as a diagnostic marker for differentiating SCC from AK or normal skin.

  14. Lobular carcinoma in situ and invasive lobular breast cancer are characterized by enhanced expression of transcription factor AP-2β.

    Science.gov (United States)

    Raap, Mieke; Gronewold, Malte; Christgen, Henriette; Glage, Silke; Bentires-Alj, Mohammad; Koren, Shany; Derksen, Patrick W; Boelens, Mirjam; Jonkers, Jos; Lehmann, Ulrich; Feuerhake, Friedrich; Kuehnle, Elna; Gluz, Oleg; Kates, Ronald; Nitz, Ulrike; Harbeck, Nadia; Kreipe, Hans H; Christgen, Matthias

    2018-01-01

    Transcription factor AP-2β (TFAP2B) regulates embryonic organ development and is overexpressed in alveolar rhabdomyosarcoma, a rare childhood malignancy. Gene expression profiling has implicated AP-2β in breast cancer (BC). This study characterizes AP-2β expression in the mammary gland and in BC. AP-2β protein expression was assessed in the normal mammary gland epithelium, in various reactive, metaplastic and pre-invasive neoplastic lesions and in two clinical BC cohorts comprising >2000 patients. BCs from various genetically engineered mouse (GEM) models were also evaluated. Human BC cell lines served as functional models to study siRNA-mediated inhibition of AP-2β. The normal mammary gland epithelium showed scattered AP-2β-positive cells in the luminal cell layer. Various reactive and pre-invasive neoplastic lesions, including apocrine metaplasia, usual ductal hyperplasia and lobular carcinoma in situ (LCIS) showed enhanced AP-2β expression. Cases of ductal carcinoma in situ (DCIS) were more often AP-2β-negative (Pinvasive BC cohorts, AP-2β-positivity was associated with the lobular BC subtype (Plobular BC cell lines in vitro. In summary, AP-2β is a new mammary epithelial differentiation marker. Its expression is preferentially retained and enhanced in LCIS and invasive lobular BC and has prognostic implications. Our findings indicate that AP-2β controls tumor cell proliferation in this slow-growing BC subtype.

  15. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation.

    Science.gov (United States)

    Wu, Qingyu; Shigaki, Toshiro; Williams, Kimberly A; Han, Jeung-Sul; Kim, Chang Kil; Hirschi, Kendal D; Park, Sunghun

    2011-01-15

    Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate Cd. An Arabidopsis CAX1 mutant (CAXcd), which confers enhanced Cd transport in yeast, was ectopically expressed in petunia to evaluate whether the CAXcd expression would enhance Cd tolerance and accumulation in planta. The CAXcd-expressing petunia plants showed significantly greater Cd tolerance and accumulation than the controls. After being treated with either 50 or 100μM CdCl(2) for 6 weeks, the CAXcd-expressing plants showed more vigorous growth compared with controls, and the transgenic plants accumulated significantly more Cd (up to 2.5-fold) than controls. Moreover, the accumulation of Cd did not affect the development and morphology of the CAXcd-expressing petunia plants until the flowering and ultimately the maturing of seeds. Therefore, petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. ATNT: an enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger.

    Science.gov (United States)

    Geib, Elena; Brock, Matthias

    2017-01-01

    Fungi are treasure chests for yet unexplored natural products. However, exploitation of their real potential remains difficult as a significant proportion of biosynthetic gene clusters appears silent under standard laboratory conditions. Therefore, elucidation of novel products requires gene activation or heterologous expression. For heterologous gene expression, we previously developed an expression platform in Aspergillus niger that is based on the transcriptional regulator TerR and its target promoter P terA . In this study, we extended this system by regulating expression of terR  by the doxycycline inducible Tet-on system. Reporter genes cloned under the control of the target promoter P terA remained silent in the absence of doxycycline, but were strongly expressed when doxycycline was added. Reporter quantification revealed that the coupled system results in about five times higher expression rates compared to gene expression under direct control of the Tet-on system. As production of secondary metabolites generally requires the expression of several biosynthetic genes, the suitability of the self-cleaving viral peptide sequence P2A was tested in this optimised expression system. P2A allowed polycistronic expression of genes required for Asp-melanin formation in combination with the gene coding for the red fluorescent protein tdTomato. Gene expression and Asp-melanin formation was prevented in the absence of doxycycline and strongly induced by addition of doxycycline. Fluorescence studies confirmed the correct subcellular localisation of the respective enzymes. This tightly regulated but strongly inducible expression system enables high level production of secondary metabolites most likely even those with toxic potential. Furthermore, this system is compatible with polycistronic gene expression and, thus, suitable for the discovery of novel natural products.

  17. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Jordy, Andreas B; Sjøberg, Kim A

    2012-01-01

    ; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were......FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA). These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation...

  18. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    Science.gov (United States)

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  19. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium.

    Science.gov (United States)

    Peng, Lin; Yu, Xiao; Li, Chengyuan; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2016-04-01

    Signal peptides play an important role in directing and efficiently transporting secretory proteins to their proper locations in the endoplasmic reticulum of mammalian cells. The aim of this study was to enhance the expression of recombinant coagulation factor VII (rFVII) in CHO cells by optimizing the signal peptides and type of fed-batch culture medium used. Five sub-clones (O2, I3, H3, G2 and M3) with different signal peptide were selected by western blot (WB) analysis and used for suspension culture. We compared rFVII expression levels of 5 sub-clones and found that the highest rFVII expression level was obtained with the IgK signal peptide instead of Ori, the native signal peptide of rFVII. The high protein expression of rFVII with signal peptide IgK was mirrored by a high transcription level during suspension culture. After analyzing culture and feed media, the combination of M4 and F4 media yielded the highest rFVII expression of 20 mg/L during a 10-day suspension culture. After analyzing cell density and cell cycle, CHO cells feeding by F4 had a similar percentage of cells in G0/G1 and a higher cell density compared to F2 and F3. This may be the reason for high rFVII expression in M4+F4. In summary, rFVII expression was successfully enhanced by optimizing the signal peptide and fed-batch medium used in CHO suspension culture. Our data may be used to improve the production of other therapeutic proteins in fed-batch culture.

  20. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress.

    Science.gov (United States)

    Fouad, W M; Altpeter, F

    2009-10-01

    Metabolic engineering for beta-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli L-aspartate-alpha-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of L-aspartate to generate beta-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. beta-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45 degrees C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO(2) assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30-40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the beta-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

  1. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    John Karijolich

    Full Text Available Short interspersed nuclear elements (SINEs are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68 infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.

  2. Duplicated Enhancer Region Increases Expression of CTSB and Segregates with Keratolytic Winter Erythema in South African and Norwegian Families.

    Science.gov (United States)

    Ngcungcu, Thandiswa; Oti, Martin; Sitek, Jan C; Haukanes, Bjørn I; Linghu, Bolan; Bruccoleri, Robert; Stokowy, Tomasz; Oakeley, Edward J; Yang, Fan; Zhu, Jiang; Sultan, Marc; Schalkwijk, Joost; van Vlijmen-Willems, Ivonne M J J; von der Lippe, Charlotte; Brunner, Han G; Ersland, Kari M; Grayson, Wayne; Buechmann-Moller, Stine; Sundnes, Olav; Nirmala, Nanguneri; Morgan, Thomas M; van Bokhoven, Hans; Steen, Vidar M; Hull, Peter R; Szustakowski, Joseph; Staedtler, Frank; Zhou, Huiqing; Fiskerstrand, Torunn; Ramsay, Michele

    2017-05-04

    Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Directory of Open Access Journals (Sweden)

    Hermanova Marketa

    2010-05-01

    Full Text Available Abstract Background We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2 and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA and inhibitors of lipoxygenases (LOX and cyclooxygenases (COX. This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Methods Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Results Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2 or SH-SY5Y after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX in combination with ATRA in both cell lines. Conclusions Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  4. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    Science.gov (United States)

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  5. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer.

    Science.gov (United States)

    Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia

    2018-04-01

    The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.

  6. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  7. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Science.gov (United States)

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-01-01

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E 2 ), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  11. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression.

    Science.gov (United States)

    Diani, Erica; Avesani, Francesca; Bergamo, Elisa; Cremonese, Giorgia; Bertazzoni, Umberto; Romanelli, Maria Grazia

    2015-02-01

    The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Expression of Recombinant Human Alpha-Lactalbumin in the Milk of Transgenic Goats Using a Hybrid Pomoter/Enhancer

    Directory of Open Access Journals (Sweden)

    Yu-Guo Yuan

    2014-01-01

    Full Text Available To improve nutrient content of goat milk, we describe the construction of a vector (pBLAC containing a hybrid goat β-lactoglobulin (BLG promoter/cytomegalovirus (CMV enhancer. We also describe the generation of transgenic goats expressing rhLA by somatic cell nuclear transfer (SCNT. Of 334 one-cell stage embryos derived from three transgenic cell lines and 99 embryos derived from non-transgenic (NT cells surgically transferred to the oviducts of 37 recipients, two recipients delivered two kids (2% from the non-transfected line and five recipients delivered six kids (1.8% from transgenic cell lines, three of which died within 2 days. Compared to the NT donor cells, transfection of donor cells does not negatively affect the development of nuclear transfer embryos into viable transgenic offspring. However, the clone efficiency in cell line number 1 was lower than that in numbers 2 and 3, and in the NT lines (0.9% versus 1.9% 2.4% and 2%; P<0.05. Two transgenic cloned goats expressed rhLA in the milk at 0.1–0.9 mg/mL. The mammary gland-specific expression vector pBLAC with hybrid BLG/CMV can drive the hLA gene to express in vitro and in vivo. These data establish the basis for use of a hybrid promoter/enhancer strategy to produce rhLA transgenic goats.

  13. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    Science.gov (United States)

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  14. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Yao Pan

    2015-08-01

    Full Text Available Trichloroethylene (TCE is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA and dichloroacetic acid (DCA, on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  15. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    Science.gov (United States)

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Science.gov (United States)

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Enhancement of cell wall protein SRPP expression during emergent root hair development in Arabidopsis.

    Science.gov (United States)

    Uno, Hiroshi; Tanaka-Takada, Natsuki; Sato, Ryosuke; Maeshima, Masayoshi

    2017-10-03

    SRPP is a protein expressed in seeds and root hairs and is significantly induced in root hairs under phosphate (Pi)-deficient conditions. Root hairs in the knockout mutant srpp-1 display defects, i.e., suppression of cell growth and cell death. Here, we analyzed the expression profile of SRPP during cell elongation of root hairs and compared the transcript levels in several mutants with short root hairs. The mRNA level was increased in wild-type plants and decreased in mutants with short root hairs. Induction of SRPP expression by Pi starvation occurred one or two days later than induction of Pi-deficient sensitive genes, such as PHT1 and PHF1. These results indicate that the expression of SRPP is coordinated with root hair elongation. We hypothesize that SRPP is essential for structural robustness of the cell walls of root hairs.

  18. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

    Science.gov (United States)

    Awe, Jason P; Crespo, Agustin Vega; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-02-06

    The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.

  19. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions

    NARCIS (Netherlands)

    McReynolds, Jayme R.; Donowho, Kyle; Abdi, Amin; McGaugh, James L.; Roozendaal, Benno; McIntyre, Christa K.

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a

  1. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    Science.gov (United States)

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Expression and Purification of Glycosyltransferases in Pichia Pastoris: Towards Improving the Migration of Stem Cells by Enhancing Surface Expression of Sialyl Lewis X

    KAUST Repository

    Al-Amoodi, Asma S.

    2017-05-01

    Recruitment of circulating cells towards target sites is primarily dependent on E-selectin receptor/ligand adhesive interactions. Glycosyltransferase (GTs) are involved in the creation of E-selectin ligands. A sialofucosylated terminal tetrasaccharide like glycan structure known as sialyl Lewis x (sLex), is the most recognized ligand by selectins. This structure is found on the surface of cancer cells and leukocytes but is often absent on the surface of many adult stem cell populations. In order to synthesize sLex, GTs must be endogenously expressed and remain active within the cells. Generally, these stem cells express terminal sialylated lactosamine structures on their glycoproteins which require the addition of alpha-(1,3)-fucose to be converted into an E-selectin ligand. There are a number of fucosyltransferases (FUTs) that are able to modify terminal lactosamine structures to create sLex such as FUT6. In this work we focused on expressing and purifying active recombinant FUTs as a tool to help create sLex structures on the surface of adult stem cells in order to enhance their migration.

  3. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor.

    Science.gov (United States)

    Cheng, Yu-Jie; Kim, Myoung-Duck; Deng, Xi-Ping; Kwak, Sang-Soo; Chen, Wei

    2013-12-01

    IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

  4. 7-ketocholesteryl-9-carboxynonanoate enhances ATP binding cassette transporter A1 expression mediated by PPARγ in THP-1 macrophages.

    Science.gov (United States)

    Chi, Yan; Wang, Le; Liu, Yuanyuan; Ma, Yanhua; Wang, Renjun; Han, Xiaofei; Qiao, Hui; Lin, Jiabin; Matsuura, Eiji; Liu, Shuqian; Liu, Qingping

    2014-06-01

    ATP binding cassette transporter A1 (ABCA1) is a member of the ATP-binding cassette transporter family. It plays an essential role in mediating the efflux of excess cholesterol. It is known that peroxisome proliferator-activated receptor gamma (PPARγ) promoted ABCA1 expression. We previously found 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) upregulated ABCA1 partially through CD36 mediated signals. In the present study, we intended to test if PPARγ signally is involved in the upregulation mediated by oxLig-1. First, we docked oxLig-1 and the ligand-binding domain (LBD) of PPARγ by using AutoDock 3.05 and subsequently confirmed the binding by ELISA assay. Western blotting analyses showed that oxLig-1 induces liver X receptor alpha (LXRα), PPARγ and consequently ABCA1 expression. Furthermore, oxLig-1 significantly enhanced ApoA-I-mediated cholesterol efflux. Pretreatment with an inhibitor for PPARγ (GW9662) or/and LXRα (GGPP) attenuated oxLig-1-induced ABCA1 expression. Under PPARγ knockdown by using PPARγ-shRNA, oxLig-1-induced ABCA1 expression and cholesterol efflux in THP-1 macrophages was blocked by 62% and 25% respectively. These observations suggest that oxLig-1 is a novel PPARγ agonist, promoting ApoA-I-mediated cholesterol efflux from THP-1 macrophages by increasing ABCA1 expression via induction of PPARγ. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. A novel mammal-specific three partite enhancer element regulates node and notochord-specific Noto expression.

    Directory of Open Access Journals (Sweden)

    Leonie Alten

    Full Text Available The vertebrate organizer and notochord have conserved, essential functions for embryonic development and patterning. The restricted expression of developmental regulators in these tissues is directed by specific cis-regulatory modules (CRMs whose sequence conservation varies considerably. Some CRMs have been conserved throughout vertebrates and likely represent ancestral regulatory networks, while others have diverged beyond recognition but still function over a wide evolutionary range. Here we identify and characterize a mammalian-specific CRM required for node and notochord specific (NNC expression of NOTO, a transcription factor essential for node morphogenesis, nodal cilia movement and establishment of laterality in mouse. A 523 bp enhancer region (NOCE upstream the Noto promoter was necessary and sufficient for NNC expression from the endogenous Noto locus. Three subregions in NOCE together mediated full activity in vivo. Binding sites for known transcription factors in NOCE were functional in vitro but dispensable for NOCE activity in vivo. A FOXA2 site in combination with a novel motif was necessary for NOCE activity in vivo. Strikingly, syntenic regions in non-mammalian vertebrates showed no recognizable sequence similarities. In contrast to its activity in mouse NOCE did not drive NNC expression in transgenic fish. NOCE represents a novel, mammal-specific CRM required for the highly restricted Noto expression in the node and nascent notochord and thus regulates normal node development and function.

  6. A novel mammal-specific three partite enhancer element regulates node and notochord-specific Noto expression.

    Science.gov (United States)

    Alten, Leonie; Schuster-Gossler, Karin; Eichenlaub, Michael P; Wittbrodt, Beate; Wittbrodt, Joachim; Gossler, Achim

    2012-01-01

    The vertebrate organizer and notochord have conserved, essential functions for embryonic development and patterning. The restricted expression of developmental regulators in these tissues is directed by specific cis-regulatory modules (CRMs) whose sequence conservation varies considerably. Some CRMs have been conserved throughout vertebrates and likely represent ancestral regulatory networks, while others have diverged beyond recognition but still function over a wide evolutionary range. Here we identify and characterize a mammalian-specific CRM required for node and notochord specific (NNC) expression of NOTO, a transcription factor essential for node morphogenesis, nodal cilia movement and establishment of laterality in mouse. A 523 bp enhancer region (NOCE) upstream the Noto promoter was necessary and sufficient for NNC expression from the endogenous Noto locus. Three subregions in NOCE together mediated full activity in vivo. Binding sites for known transcription factors in NOCE were functional in vitro but dispensable for NOCE activity in vivo. A FOXA2 site in combination with a novel motif was necessary for NOCE activity in vivo. Strikingly, syntenic regions in non-mammalian vertebrates showed no recognizable sequence similarities. In contrast to its activity in mouse NOCE did not drive NNC expression in transgenic fish. NOCE represents a novel, mammal-specific CRM required for the highly restricted Noto expression in the node and nascent notochord and thus regulates normal node development and function.

  7. TWEAK enhances E-selectin and ICAM-1 expression, and may contribute to the development of cutaneous vasculitis.

    Directory of Open Access Journals (Sweden)

    Tao Chen

    Full Text Available Our previous work indicated that TWEAK is associated with various types of cutaneous vasculitis (CV. Herein, we investigate the effects of TWEAK on vascular injury and adhesion molecule expression in CV mice. We showed that TWEAK priming in mice induced a local CV. Furthermore, TWEAK priming also increased the extravasation of FITC-BSA, myeloperoxidase activity and the expression of E-selectin and ICAM-1. Conversely, TWEAK blockade ameliorated the LPS-induced vascular damage, leukocyte infiltrates and adhesion molecules expression in LPS-induced CV. In addition, TWEAK treatment of HDMECs up-regulated E-selectin and ICAM-1 expression at both mRNA and protein levels. TWEAK also enhanced the adhesion of PMNs to HDMECs. Finally, western blot data revealed that TWEAK can induce phosphorylation of p38, JNK and ERK in HDMECs. These data suggest that TWEAK acted as an inducer of E-selectin and ICAM-1 expression in CV mice and HDMECs, may contribute to the development of CV.

  8. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats.

    Science.gov (United States)

    Chow, S K H; Leung, K S; Qin, J; Guo, A; Sun, M; Qin, L; Cheung, W H

    2016-10-01

    Estrogen receptor (ER) in ovariectomy-induced osteoporotic fracture was reported to exhibit delayed expression. Mechanical stimulation enhanced ER-α expression in osteoporotic fracture callus at the tissue level. ER was also found to be required for the effectiveness of vibrational mechanical stimulation treatment in osteoporotic fracture healing. Estrogen receptor(ER) is involved in mechanical signal transduction in bone metabolism. Its expression was reported to be delayed in osteoporotic fracture healing. The purpose of this study was to investigate the roles played by ER during osteoporotic fracture healing enhanced with mechanical stimulation. Ovariectomy-induced osteoporotic SD rats that received closed femoral fractures were divided into five groups, (i) SHAM, (ii) SHAM-VT, (iii) OVX, (iv) OVX-VT, and (v) OVX-VT-ICI, where VT stands for whole-body vibration treatment and ICI for ER antagonization by ICI 182,780. Callus formation and gene expression were assessed at 2, 4, and 8 weeks postfracture. In vitro osteoblastic differentiation, mineralization, and ER-α expression were assessed. The delayed ER expression was found to be enhanced by vibration treatment. Callus formation enhancement was shown by callus morphometry and micro-CT analysis. Enhancement effects by vibration were partially abolished when ER was modulated by ICI 182,780, in terms of callus formation capacity at 2-4 weeks and ER gene and protein expression at all time points. In vitro, ER expression in osteoblasts was not enhanced by VT treatment, but osteoblastic differentiation and mineralization were enhanced under estrogen-deprived condition. When osteoblastic cells were modulated by ICI 182,780, enhancement effects of VT were eliminated. Vibration was able to enhance ER expression in ovariectomy-induced osteoporotic fracture healing. ER was essential in mechanical signal transduction and enhancement in callus formation effects during osteoporotic fracture healing enhanced by vibration

  9. Enhancement of antiproliferative activity of interferons by RNA interference-mediated silencing of SOCS gene expression in tumor cells.

    Science.gov (United States)

    Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2008-08-01

    The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.

  10. Enhanced Expression of Sodium Hydrogen Exchanger (NHE)-1, 2 and 4 in the Cervix of Ovariectomised Rats by Phytoestrogen Genistein.

    Science.gov (United States)

    Ismail, Nurain; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2015-01-01

    Restoring the pH of cervicovaginal fluid is important for the cervicovaginal health after menopause. Genistein, which is a widely consumed dietary health supplement to overcome the post-menopausal complications could help to restore the cervicovaginal fluid pH. We hypothesized that genistien effect involves changes in expression of NHE-1, 2 and 4 proteins and mRNAs in the cervix. This study investigated effect of genistein on NHE-1, 2 and 4 protein and mRNA expression in the cervix in order to elucidate the mechanisms underlying possible effect of this compound on cervicovaginal fluid pH after menopause. Ovariectomised adult female rats received 25, 50 and 100 mg/kg/day genistein for seven consecutive days. At the end of the treatment, animals were sacrificed and cervix was harvested. Expression of Nhe-1, 2 and 4 mRNA were analyzed by Real-time PCR while distribution of NHE-1, 2 and 4 protein were observed by immunohistochemistry. Treatment with 50 and 100 mg/kg/day genistein caused marked increase in the levels of expression and distribution of NHE-1, 2 and 4 proteins in the endocervical epithelia. Levels of Nhe-1, 2 and 4 mRNA in the cervix were also increased. Coadministration of ICI 182 780 and genistein reduced the expression levels of NHE-1, 2 and 4 proteins and mRNAs in the cervix. Enhanced expression of NHE-1, 2 and 4 proteins and mRNAs expression in cervix under genistein influence could help to restore the cervicovaginal fluid pH that might help to prevent cervicovaginal complications related to menopause.

  11. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Mohammad Vatanparast

    Full Text Available Double-stranded RNA (dsRNA has been applied to control insect pests due to its induction of RNA interference (RNAi of a specific target gene expression. However, developing dsRNA-based insecticidal agent has been a great challenge especially against lepidopteran insect pests due to variations in RNAi efficiency. The objective of this study was to screen genes of chymotrypsins (SeCHYs essential for the survival of the beet armyworm, Spodoptera exigua, to construct insecticidal dsRNA. In addition, an optimal oral delivery method was developed using recombinant bacteria. At least 7 SeCHY genes were predicted from S. exigua transcriptomes. Subsequent analyses indicated that SeCHY2 was widely expressed in different developmental stages and larval tissues by RT-PCR and its expression knockdown by RNAi caused high mortality along with immunosuppression. However, a large amount of dsRNA was required to efficiently kill late instars of S. exigua because of high RNase activity in their midgut lumen. To minimize dsRNA degradation, bacterial expression and formulation of dsRNA were performed in HT115 Escherichia coli using L4440 expression vector. dsRNA (300 bp specific to SeCHY2 overexpressed in E. coli was toxic to S. exigua larvae after oral administration. To enhance dsRNA release from E. coli, bacterial cells were sonicated before oral administration. RNAi efficiency of sonicated bacteria was significantly increased, causing higher larval mortality at oral administration. Moreover, targeting young larvae possessing weak RNase activity in the midgut lumen significantly enhanced RNAi efficiency and subsequent insecticidal activity against S. exigua.

  12. Myofibroblast Expression in Skin Wounds Is Enhanced by Collagen III Suppression

    Directory of Open Access Journals (Sweden)

    Mohammed M. Al-Qattan

    2015-01-01

    Full Text Available Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities to prevent hypertrophic scars. In this paper, we injected the rabbit ear wound model of hypertrophic scarring with two doses of a protein called nAG, which is known to reduce collagen expression and to suppress hypertrophic scarring in that animal model. The higher nAG dose was associated with significantly less collagen III expression and concurrent higher degree of myofibroblast expression. We concluded that collagen III content of the extracellular matrix may have a direct or an indirect effect on myofibroblast differentiation. However, further research is required to investigate the pathogenesis of this paradoxical phenomenon.

  13. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    Science.gov (United States)

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  14. Enhanced Vascular Endothelial Growth Factor Gene Expression in Ischaemic Skin of Critical Limb Ischaemia Patients

    Directory of Open Access Journals (Sweden)

    Silvia Bleda

    2012-01-01

    Full Text Available Objectives. To perform a quantitative analysis of the vascular endothelial growth factor (VEGF gene transcription in the skin of ischemic legs and provide information for VEGF in the pathogenesis in critical limb ischemia (CLI. Methods. Skin biopsies were obtained from 40 patients with CLI. Control samples came from 44 patients with chronic venous disease. VEGF gene expression was analysed using quantitative polymerase chain reaction. Results. Patients with CLI had higher skin VEGF expression than control group (RQ: 1.3 ± 0.1 versus 1, P=0.04. Conclusions. We found an association between ischemic skin and an elevated VEGF expression in legs from patients with CLI. These data support that the mechanism for VEGF upregulation in hypoxia conditions is intact and acts appropriately in the ischaemic limbs from patients with CLI.

  15. Expression of rabbit IL-4 by recombinant myxoma viruses enhances virulence and overcomes genetic resistance to myxomatosis.

    Science.gov (United States)

    Kerr, P J; Perkins, H D; Inglis, B; Stagg, R; McLaughlin, E; Collins, S V; Van Leeuwen, B H

    2004-06-20

    Rabbit IL-4 was expressed in the virulent standard laboratory strain (SLS) and the attenuated Uriarra (Ur) strain of myxoma virus with the aim of creating a Th2 cytokine environment and inhibiting the development of an antiviral cell-mediated response to myxomatosis in infected rabbits. This allowed testing of a model for genetic resistance to myxomatosis in wild rabbits that have undergone 50 years of natural selection for resistance to myxomatosis. Expression of IL-4 significantly enhanced virulence of both virulent and attenuated virus strains in susceptible (laboratory) and resistant (wild) rabbits. SLS-IL-4 completely overcame genetic resistance in wild rabbits. The pathogenesis of SLS-IL-4 was compared in susceptible and resistant rabbits. The results support a model for resistance to myxomatosis of an enhanced innate immune response controlling virus replication and allowing an effective antiviral cell-mediated immune response to develop in resistant rabbits. Expression of IL-4 did not overcome immunity to myxomatosis induced by immunization.

  16. EGCG Enhances Cisplatin Sensitivity by Regulating Expression of the Copper and Cisplatin Influx Transporter CTR1 in Ovary Cancer.

    Directory of Open Access Journals (Sweden)

    Xuemin Wang

    Full Text Available Cisplatin is one of the first-line platinum-based chemotherapeutic agents for treatment of many types of cancer, including ovary cancer. CTR1 (copper transporter 1, a transmembrane solute carrier transporter, has previously been shown to increase the cellular uptake and sensitivity of cisplatin. It is hypothesized that increased CTR1 expression would enhance the sensitivity of cancer cells to cisplatin (cDDP. The present study demonstrates for the first time that (--epigallocatechin-3-gallate (EGCG, a major polyphenol from green tea, can enhance CTR1 mRNA and protein expression in ovarian cancer cells and xenograft mice. EGCG inhibits the rapid degradation of CTR1 induced by cDDP. The combination of EGCG and cDDP increases the accumulation of cDDP and DNA-Pt adducts, and subsequently enhances the sensitivity of ovarian cancer SKOV3 and OVCAR3 cells to the chemotherapeutic agent. In the OVCAR3 ovarian cancer xenograft nude mice model, the combination of the lower concentration of cDDP and EGCG strongly repressed the tumor growth and exhibited protective effect on the nephrotoxicity induced by cisplatin. Overall, these findings uncover a novel chemotherapy mechanism of EGCG as an adjuvant for the treatment of ovarian cancer.

  17. Enhanced itaconic acid production in Aspergillus with increased LaeA expression

    Science.gov (United States)

    Dai, Ziyu; Baker, Scott E.

    2018-03-06

    Fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (LaeA), or both, are described. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also described, as are compositions and kits including the disclosed fungi. Further described are Aspergillus terreus fungi overexpressing the LaeA gene and the use of such fungi for the production of itaconic acid.

  18. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Boato, Francesco; Schwengel, Katja

    2013-01-01

    -culture of GFP-positive entorhinal cortices with hippocampal target tissue served to evaluate the impact of C21 on reinnervation. Neuronal differentiation, apoptosis and expression of neurotrophins were investigated in primary murine astrocytes and neuronal cells. C21 significantly improved functional recovery...... outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth...

  19. Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance

    Science.gov (United States)

    Abiotic stresses are a major factor limiting crop growth and productivity. Our previous studies revealed that Arabidopsis thaliana glutaredoxin S17 (AtGRXS17) has conserved functions in plant tolerance to heat and chilling stress in tomato. Here, we report that ectopic expression of AtGRXS17 in toma...

  20. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats.

    Directory of Open Access Journals (Sweden)

    Yuping Wang

    Full Text Available To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense.Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA and collagen III (Col III were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD and malondialdehyde (MDA in liver homogenates were determined. Metallothionein (MT expression was detected by real-time RT-PCR and immunohistochemical techniques.Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT, increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver.Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.

  1. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    Science.gov (United States)

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  2. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  3. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  4. Diction and Expression in Error Analysis Can Enhance Academic Writing of L2 University Students

    Science.gov (United States)

    Sajid, Muhammad

    2016-01-01

    Without proper linguistic competence in English language, academic writing is one of the most challenging tasks, especially, in various genre specific disciplines by L2 novice writers. This paper examines the role of diction and expression through error analysis in English language of L2 novice writers' academic writing in interdisciplinary texts…

  5. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the pfmdr1 gene

    NARCIS (Netherlands)

    van Es, H. H.; Renkema, H.; Aerts, H.; Schurr, E.

    1994-01-01

    Expression of the pfmdr1-encoded Pgh1 protein of Plasmodium falciparum in CHO cells confers a phenotype of increased sensitivity to chloroquine due to an increased Pgh1-mediated accumulation of this antimalarial. Pgh1 carrying amino acid substitutions associated with chloroquine resistance in P.

  6. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration

    Czech Academy of Sciences Publication Activity Database

    Sun, X.; Cahill, J.; Van Hautegem, T.; Feys, K.; Whipple, C.; Novák, Ondřej; Delbare, S.; Versteele, C.; Demuynck, C.; De Block, J.; Storme, V.; Claeys, H.; Van Lijsebettens, M.; Coussens, G.; Ljung, K.; De Vliegher, A.; Muszynski, M.; Inzé, D.; Nelissen, H.

    2017-01-01

    Roč. 8, MAR 16 (2017), č. článku 14752. ISSN 2041-1723 Institutional support: RVO:61389030 Keywords : organ size * arabidopsis-thaliana * gene-expression * leaf size * growth * cytochrome-p450 * protein * plants * inference * mechanism Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 12.124, year: 2016

  7. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    NARCIS (Netherlands)

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy; Nourshargh, Sussan

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils

  8. Do Dynamic Compared to Static Facial Expressions of Happiness and Anger Reveal Enhanced Facial Mimicry?

    Directory of Open Access Journals (Sweden)

    Krystyna Rymarczyk

    Full Text Available Facial mimicry is the spontaneous response to others' facial expressions by mirroring or matching the interaction partner. Recent evidence suggested that mimicry may not be only an automatic reaction but could be dependent on many factors, including social context, type of task in which the participant is engaged, or stimulus properties (dynamic vs static presentation. In the present study, we investigated the impact of dynamic facial expression and sex differences on facial mimicry and judgment of emotional intensity. Electromyography recordings were recorded from the corrugator supercilii, zygomaticus major, and orbicularis oculi muscles during passive observation of static and dynamic images of happiness and anger. The ratings of the emotional intensity of facial expressions were also analysed. As predicted, dynamic expressions were rated as more intense than static ones. Compared to static images, dynamic displays of happiness also evoked stronger activity in the zygomaticus major and orbicularis oculi, suggesting that subjects experienced positive emotion. No muscles showed mimicry activity in response to angry faces. Moreover, we found that women exhibited greater zygomaticus major muscle activity in response to dynamic happiness stimuli than static stimuli. Our data support the hypothesis that people mimic positive emotions and confirm the importance of dynamic stimuli in some emotional processing.

  9. Cardiac-Specific Gene Expression Facilitated by an Enhanced Myosin Light Chain Promoter

    Directory of Open Access Journals (Sweden)

    Wolfgang Boecker

    2004-04-01

    Full Text Available Background: Adenoviral gene transfer has been shown to be effective in cardiac myocytes in vitro and in vivo. A major limitation of myocardial gene therapy is the extracardiac transgene expression. Methods: To minimize extracardiac gene expression, we have constructed a tissue-specific promoter for cardiac gene transfer, namely, the 250-bp fragment of the myosin light chain-2v (MLC-2v gene, which is known to be expressed in a tissue-specific manner in ventricular myocardium followed by a luciferase (luc reporter gene (Ad.4 × MLC250.Luc. Rat cardiomyocytes, liver and kidney cells were infected with Ad.4 × MLC.Luc or control vectors. For in vivo testing, Ad.4 × MLC250.Luc was injected into the myocardium or in the liver of rats. Kinetics of promoter activity were monitored over 8 days using a cooled CCD camera. Results: In vitro: By infecting hepatic versus cardiomyocyte cells, we found that the promoter specificity ratio (luc activity in cardiomyocytes per liver cells was 20.4 versus 0.9 (Ad.4 × MLC250.Luc vs. Ad.CMV. In vivo: Ad.4 × MLC250.Luc significantly reduced luc activity in liver (38.4-fold, lung (16.1-fold, and kidney (21.8-fold versus Ad.CMV (p = .01; whereas activity in the heart was only 3.8-fold decreased. The gene expression rate of cardiomyocytes versus hepatocytes was 7:1 (Ad.4 × MLC.Luc versus 1:1.4 (Ad.CMV.Luc. Discussion: This new vector may be useful to validate therapeutic approaches in animal disease models and offers the perspective for selective expression of therapeutic genes in the diseased heart.

  10. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  11. Enhanced A-FABP expression in visceral fat: potential contributor to the progression of NASH

    Directory of Open Access Journals (Sweden)

    Min Yong Yoon

    2012-09-01

    Full Text Available Background/AimsAdipose tissue is an active endocrine organ that secretes various metabolically important substances including adipokines, which represent a link between insulin resistance and nonalcoholic steatohepatitis (NASH. The factors responsible for the progression from simple steatosis to steatohepatitis remain elusive, but adipokine imbalance may play a pivotal role. We evaluated the expressions of adipokines such as visfatin, adipocyte-fatty-acid-binding protein (A-FABP, and retinol-binding protein-4 (RBP-4 in serum and tissue. The aim was to discover whether these adipokines are potential predictors of NASH.MethodsPolymerase chain reaction, quantification of mRNA, and Western blots encoding A-FABP, RBP-4, and visfatin were used to study tissue samples from the liver, and visceral and subcutaneous adipose tissue. The tissue samples were from biopsy specimens obtained from patients with proven NASH who were undergoing laparoscopic cholecystectomy due to gallbladder polyps.ResultsPatients were classified into two groups: NASH, n=10 and non-NASH, n=20 according to their nonalcoholic fatty liver disease Activity Score. Although serum A-FABP levels did not differ between the two groups, the expressions of A-FABP mRNA and protein in the visceral adipose tissue were significantly higher in NASH group than in non-NASH group (104.34 vs. 97.05, P<0.05, and 190.01 vs. 95.15, P<0.01, respectively. Furthermore, the A-FABP protein expression ratio between visceral adipose tissue and liver was higher in NASH group than in non-NASH group (4.38 vs. 1.64, P<0.05.ConclusionsNASH patients had higher levels of A-FABP expression in their visceral fat compared to non-NASH patients. This differential A-FABP expression may predispose patients to the progressive form of NASH.

  12. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer

    Directory of Open Access Journals (Sweden)

    Park Jung-Jin

    2012-03-01

    Full Text Available Abstract Background KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM, KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1, which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression. Methods We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8 and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6 were picked after stable transfection with KAI1 cDNA and selection in 800 μg/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth in vivo and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level. Results We demonstrated that Hypoxia-inducible factor 1α (HIF-1α and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL protein was significantly increased. In an in vivo xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α. Conclusions These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF

  13. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  14. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins.

    Science.gov (United States)

    Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan

    2014-08-01

    In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  15. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  16. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  17. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Meena

    2015-09-01

    Full Text Available Calcium signaling plays an important role in adaptation and developmental processes in plants and animals. A class of calcium sensors, known as Calcineurin B-like (CBL proteins sense specific temporal changes in cytosolic Ca2+ concentration and regulate activities of a group of ser/thr protein kinases called CBL-interacting protein kinases (CIPKs. Although a number of CIPKs have been shown to play crucial roles in the regulation of stress signaling, no study on the function of CIPK25 or its orthologues has been reported so far. In the present study, an orthologue of Arabidopsis CIPK25 was cloned from chickpea (Cicer arietinum. CaCIPK25 gene expression in chickpea increased upon salt, dehydration, and different hormonal treatments. CaCIPK25 gene showed differential tissue-specific expression. 5'-upstream activation sequence (5'-UAS of the gene and its different truncated versions were fused to a reporter gene and studied in Arabidopsis to identify promoter regions directing its tissue-specific expression. Replacement of a conserved threonine residue with an aspartic acid at its catalytic site increased the kinase activity of CaCIPK25 by 2.5-fold. Transgenic tobacco plants overexpressing full-length and the high active versions of CaCIPK25 displayed a differential germination period and longer root length in comparison to the control plants. Expression of CaCIPK25 and its high active form differentially increased salt and water-deficit tolerance demonstrated by improved growth and reduced leaf chlorosis suggesting that the kinase activity of CaCIPK25 was required for these functions. Expressions of the abiotic stress marker genes were enhanced in the CaCIPK25-expressing tobacco plants. Our results suggested that CaCIPK25 functions in root development and abiotic stress tolerance.

  18. Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells.

    Science.gov (United States)

    Borges, L G; Seifert, R A; Grant, F J; Hart, C E; Disteche, C M; Edelhoff, S; Solca, F F; Lieberman, M A; Lindner, V; Fischer, E H; Lok, S; Bowen-Pope, D F

    1996-09-01

    We have cloned from cultured vascular smooth muscle cells a protein tyrosine phosphatase, rat density-enhanced phosphatase-1 (rDEP-1), which is a probable rat homologue of DEP-1/HPTP eta. rDEP-1 is encoded by an 8.7-kb transcript and is expressed as a 180- to 220-kD protein. The rDEP-1 gene is located on human chromosome 11 (region p11.2) and on mouse chromosome 2 (region 2E). The cDNA sequence predicts a transmembrane protein consisting of a single phosphatase catalytic domain in the intracellular region, a single transmembrane domain, and eight fibronectin type III repeats in the extracellular region (GenBank accession number U40790). In situ hybridization analysis demonstrates that rDEP-1 is widely expressed in vivo but that expression is highest in cells that form epithelioid monolayers. In cultured cells with epitheliod morphology, including endothelial cells and newborn smooth muscle cells, but not in fibroblast-like cells, rDEP-1 transcript levels are dramatically upregulated as population density increases. In vivo, quiescent endothelial cells in normal arteries express relatively high levels of rDEP-1. During repair of vascular injury, expression of rDEP-1 is downregulated in migrating and proliferating endothelial cells. In vivo, rDEP-1 transcript levels are present in very high levels in megakaryocytes, and circulating plates have high levels of the rDEP-1 protein. In vitro, initiation of differentiation of the human megakaryoblastic cell line CHRF-288-11 with phorbol 12-myristate 13-acetate leads to a very strong upregulation of rDEP-1 transcripts. The deduced structure and the regulation of expression of rDEP-1 suggest that it may play a role in adhesion and/or signaling events involving cell-cell and cell-matrix contact.

  19. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available Fusobacterium nucleatum (F. nucleatum plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α and reactive oxygen species (ROS in Caco-2 colorectal adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1 or RNA interference in essential autophagy genes (ATG5 or ATG12 in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.

  20. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B.

    Science.gov (United States)

    Saito, Takeshi; Abe, Daigo; Nogata, Yoichi

    2015-01-16

    Polymethoxylated flavones (PMFs) are found in the peel tissues of some citrus species. Here, we report that PMFs, such as nobiletin, potentiate the cytolytic activity of KHYG-1 natural killer (NK) leukemia cells. Nobiletin markedly enhanced the expression of granzyme B, a serine protease that plays critical roles in the cytolytic activity of NK cells. The potentiated cytolytic activity induced by nobiletin was canceled by the granzyme B inhibitor Z-AAD-CMK. Nobiletin also increased the levels of phosphorylated CREB, ERK1/2, and p38 MAPK in KHYG-1 cells, which are known to participate in NK cell function. Inhibition of an upstream kinase of ERK1/2 failed to reduce the granzyme B expression and KHYG-1 cytolytic activity. Meanwhile, inhibition of p38 MAPK attenuated both granzyme B expression and KHYG-1 cytolytic activity. These results suggest that the primary role of nobiletin in KHYG-1 cytolytic activity lies in upregulation of granzyme B expression, at least in part, mediated through p38 MAPK function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  2. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    Science.gov (United States)

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth in Mice.

    Science.gov (United States)

    Li, Bo; Chen, Shuqiang; Tang, Na; Xiao, Xifeng; Huang, Jianlei; Jiang, Feng; Huang, Xiuying; Sun, Fangzhen; Wang, Xiaohong

    2016-02-01

    Alteration of intrauterine growth trajectory is linked to metabolic diseases in adulthood. In mammalian and, specifically, human species, pregnancies through assisted reproductive technology (ART) are associated with changes in intrauterine growth trajectory. However, it is still unclear how ART alters intrauterine growth trajectory, especially reduced fetal growth in early to midgestation. In this study, using a mouse model, it was found that ART procedures reduce fetal and placental growth at Embryonic Day 10.5. Furthermore, ART leads to decreased methylation levels at H19, KvDMR1, and Snrpn imprinting control regions in the placentae, instead of fetuses. Furthermore, in the placenta, ART downregulated a majority of parentally expressed imprinted genes, which enhance fetal growth, whereas it upregulated a majority of maternally expressed genes which repress fetal growth. Additionally, the expression of genes that regulate placental development was also affected by ART. ART also downregulated a majority of placental nutrient transporters. Disruption of genomic imprinting and abnormal expression of developmentally and functionally relevant genes in placenta may influence the placental development and function, which affect fetal growth and reprogramming. © 2016 by the Society for the Study of Reproduction, Inc.

  4. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China); Xiang, Yongsheng [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, First Affiliated Hospital of Jinan University, Guangzhou (China); Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Chen, Zhenzhou, E-mail: czz1020@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Xu, Ruxiang, E-mail: zjxuruxiang@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China)

    2013-11-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients.

  5. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma

    Science.gov (United States)

    Frederick, Dennie Tompers; Piris, Adriano; Cogdill, Alexandria P.; Cooper, Zachary A.; Lezcano, Cecilia; Ferrone, Cristina R.; Mitra, Devarati; Boni, Andrea; Newton, Lindsay P.; Liu, Chengwen; Peng, Weiyi; Sullivan, Ryan J; Lawrence, Donald P.; Hodi, F. Stephen; Overwijk, Willem W.; Lizée, Gregory; Murphy, George F.; Hwu, Patrick; Flaherty, Keith T.; Fisher, David E.; Wargo, Jennifer A.

    2013-01-01

    Purpose To evaluate the effects BRAF inhibition on the tumor microenvironment in patients with metastatic melanoma. Experimental Design Thirty-five biopsies were collected from 16 patients with metastatic melanoma pretreatment (day 0) and at 10-14 days after initiation of treatment with either BRAF inhibitor alone (vemurafenib) or BRAF + MEK inhibition (dabrafenib + trametinib), and were also taken at time of progression. Biopsies were analyzed for melanoma antigens, T cell markers, and immunomodulatory cytokines. Results Treatment with either BRAF inhibitor alone or BRAF + MEK inhibitor was associated with an increased expression of melanoma antigens and an increase in CD8+ T cell infiltrate. This was also associated with a decrease in immunosuppressive cytokines (IL-6 & IL-8) and an increase in markers of T cell cytotoxicity. Interestingly, expression of exhaustion markers TIM-3 and PD1 and the immunosuppressive ligand PDL1 were increased on treatment. A decrease in melanoma antigen expression and CD8 T cell infiltrate was noted at time of progression on BRAF inhibitor alone, and was reversed with combined BRAF and MEK inhibition. Conclusions Together, this data suggests that treatment with BRAF inhibition enhances melanoma antigen expression and facilitates T cell cytotoxicity and a more favorable tumor microenvironment, providing support for potential synergy of BRAF-targeted therapy and immunotherapy. Interestingly, markers of T cell exhaustion and the immunosuppressive ligand PDL1 are also increased with BRAF inhibition, further implying that immune checkpoint blockade may be critical in augmenting responses to BRAF-targeted therapy in patients with melanoma. PMID:23307859

  6. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    International Nuclear Information System (INIS)

    Tang, Hao; Xiang, Yongsheng; Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian; Chen, Zhenzhou; Xu, Ruxiang

    2013-01-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients

  7. n-Butyl benzyl phthalate promotes breast cancer progression by inducing expression of lymphoid enhancer factor 1.

    Directory of Open Access Journals (Sweden)

    Tsung-Hua Hsieh

    Full Text Available Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP, on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d. A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.

  8. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  9. Cloning of radiation-induced new gene RS1 expressed in mouse intestinal epithelium by enhanced RACE

    International Nuclear Information System (INIS)

    Wang Fengchao; Wang Junping; Su Yongping; Gao Jinsheng; Lou Shufen; Liu Xiaohong; Ren Jiong; Zhang Bo

    2003-01-01

    Objective: To obtain full-length cDNA of radiation-induced new gene RS1 expressed in mouse intestinal epithelium. Methods: The tissue expression profile of RS1 was analyzed by semi-quantitative RT-PCR to find the target tissue which highly expresses RS1. The total RNA extracted from the corresponding tissue was taken as the template for reverse-transcription. Enhanced RACE PCR was used to clone the full-length cDNA of RS1, including enrichment of the target gene through biotin-labeled probe for magnetic bead purification and nested PCR. Results: About a 2 kb long 3' end was successfully cloned and cloning of the 5' end proceeded well. Conclusion: The result is consistent with our experiment design. The set of combined techniques has been identified with the cloning of full-length cDNA from EST sequence especially when the optimal gene-specific primers are not available or the expression level of target gene is low

  10. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  11. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression.

    Science.gov (United States)

    Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg

    2015-09-29

    The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression

    Directory of Open Access Journals (Sweden)

    Janneke G.C. Peeters

    2015-09-01

    Full Text Available The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4+ memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases.

  14. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation.

    Science.gov (United States)

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo.

  15. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  16. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    Science.gov (United States)

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  17. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA.

    Science.gov (United States)

    Sarro, E C; Sullivan, R M; Barr, G

    2014-01-31

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpaired odor-shock conditioning for 5 days, which produces deficits in adult behavior and amygdala dysfunction. In adulthood, we used the Light/Dark box test to measure anxiety-related behaviors, measuring the latency to enter the lit area and quantified urination and defecation. The amygdala was then dissected and a microarray analysis was performed to examine changes in gene expression. Animals that had received early unpredictable trauma displayed significantly longer latencies to enter the lit area and more defecation and urination. The microarray analysis revealed over-represented genes related to learning and memory, synaptic transmission and trans-membrane transport. Gene ontology and pathway analysis identified highly represented disease states related to anxiety phenotypes, including social anxiety, obsessive-compulsive disorders, post-traumatic stress disorder and bipolar disorder. Addiction-related genes were also overrepresented in this analysis. Unpredictable shock during early development increased anxiety-like behaviors in adulthood with concomitant changes in genes related to neurotransmission, resulting in gene expression patterns similar to anxiety-related psychiatric disorders. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat.

    Science.gov (United States)

    Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.

  19. DEVELOPING VISUAL NOVEL GAME WITH SPEECH-RECOGNITION INTERACTIVITY TO ENHANCE STUDENTS’ MASTERY ON ENGLISH EXPRESSIONS

    OpenAIRE

    Elizabeth Anggraeni Amalo; Imam Dui Agusalim; Citra Devi Murdaningtyas

    2017-01-01

    The teaching of English-expressions has always been done through conversation samples in form of written texts, audio recordings, and videos. In the meantime, the development of computer-aided learning technology has made autonomous language learning possible. Game, as one of computer-aided learning technology products, can serve as a medium to provide educational contents like that of language teaching and learning. Visual Novel is considered as a conversational game that is suitable to be c...

  20. Yueju Pill Rapidly Induces Antidepressant-Like Effects and Acutely Enhances BDNF Expression in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Wenda Xue

    2013-01-01

    Full Text Available The traditional antidepressants have a major disadvantage in delayed onset of efficacy, and the emerging fast-acting antidepressant ketamine has adverse behavioral and neurotoxic effects. Yueju pill, an herb medicine formulated eight hundred years ago by Doctor Zhu Danxi, has been popularly prescribed in China for alleviation of depression-like symptoms. Although several clinical outcome studies reported the relative short onset of antidepressant effects of Yueju, this has not been scientifically investigated. We, therefore, examined the rapid antidepressant effect of Yueju in mice and tested the underlying molecular mechanisms. We found that acute administration of ethanol extract of Yueju rapidly attenuated depressive-like symptoms in learned helpless paradigm, and the antidepressant-like effects were sustained for at least 24 hours in tail suspension test in ICR mice. Additionally, Yueju, like ketamine, rapidly increased the expression of brain-derived neurotrophic factor (BDNF in the hippocampus, whereas the BDNF mRNA expression remained unaltered. Yueju rapidly reduced the phosphorylation of eukaryotic elongation factor 2 (eEF2, leading to desuppression of BDNF synthesis. Unlike ketamine, both the BDNF expression and eEF2 phosphorylation were revered at 24 hours after Yueju administration. This study is the first to demonstrate the rapid antidepressant effects of an herb medicine, offering an opportunity to improve therapy of depression.

  1. Enhanced specificity in immunoscreening of expression cDNA clones using radiolabeled antigen overlay

    International Nuclear Information System (INIS)

    Chao, S.; Chao, L.; Chao, J.

    1989-01-01

    A highly sensitive and specific method has been developed for immunoscreening clones from an expression cDNA library. The procedures utilize a radiolabeled antigen detection method described originally for the immunoblotting of plasma proteins. Screening of rat alpha 1-antitrypsin clones was used. Comparison between Western blots of alpha 1-antitrypsin using both labeled antigen and protein A detection methods showed that the former yielded lower background and greater sensitivity than the latter. Further, this technique was shown to have a lower detection limit of less than 20 ng through Western blot analysis of varying concentrations of alpha 1-antitrypsin. The procedures are based on the expression of the protein by cDNA clones containing the DNA inserts in the correct reading frame. Following the transfer of phage proteins to nitrocellulose membranes, the bivalent antibodies bind monovalently to both nitrocellulose-bound-antigen in the phage lysates and radiolabeled antigen. The radiolabeled antigen overlay method is superior to the protein A detection method in sensitivity, specificity and reproducibility. This improved method can be applied in general for screening expression cDNA libraries, provided that the specific antiserum and radiolabeled antigen are available

  2. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    Science.gov (United States)

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    Science.gov (United States)

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  5. Insulin-like growth factor 1 (IGF-1 enhances the protein expression of CFTR.

    Directory of Open Access Journals (Sweden)

    Ha Won Lee

    Full Text Available Low levels of insulin-like growth factor 1 (IGF-1 have been observed in the serum of cystic fibrosis (CF patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR, whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  6. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-08-29

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in

  7. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    International Nuclear Information System (INIS)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh; Elmets, Craig A.; Athar, Mohammad

    2014-01-01

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34 + /K15 + /p63 + keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced

  8. Enhanced expression in vivo of HLA-ABC antigens and beta 2-microglobulin on human lymphoid cells induced by human interferon-alpha in patients with lung cancer. Enhanced expression of class I major histocompatibility antigens prior to treatment

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Plesner, T; Larsen, J K

    1985-01-01

    than 0.5, respectively) by day-to-day analysis of an untreated healthy control group. An increased expression of both HLA-ABC (mean 55%, P less than 0.0005) and beta 2m (mean 23%, P less than 0.01) was also observed prior to treatment in the lung cancer patients when compared to a group of age matched......The effect of cloned human interferon-alpha (IFN-alpha) on the expression of HLA-ABC antigens (HLA-ABC) and beta 2-microglobulin (beta 2m) on human peripheral lymphoid cells in vivo was studied by cytofluorometry using monoclonal antibodies and fluorescein-labelled rabbit anti-mouse immunoglobulin....... A significant increase in the mean fluorescence intensity of HLA-ABC (median 59%, P less than 0.001) and beta 2m (median 57%, P less than 0.001) on small lymphoid cells was observed 24 h after initiation of IFN-alpha treatment (50 X 10(6) units IFN-alpha/m2 three times a week). The enhanced expression...

  9. Enhancer of the rudimentary gene homologue (ERH expression pattern in sporadic human breast cancer and normal breast tissue

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-05-01

    Full Text Available Abstract Background The human gene ERH (Enhancer of the Rudimentary gene Homologue has previously been identified by in silico analysis of four million ESTs as a gene differentially expressed in breast cancer. The biological function of ERH protein has not been fully elucidated, however functions in cell cycle progression, pyrimidine metabolism a possible interaction with p21(Cip1/Waf1 via the Ciz1 zinc finger protein have been suggested. The aim of the present study was a systematic characterization of ERH expression in human breast cancer in order to evaluate possible clinical applications of this molecule. Methods The expression pattern of ERH was analyzed using multiple tissue northern blots (MTN on a panel of 16 normal human tissues and two sets of malignant/normal breast and ovarian tissue samples. ERH expression was further analyzed in breast cancer and normal breast tissues and in tumorigenic as well as non-tumorigenic breast cancer cell lines, using quantitative RT-PCR and non-radioisotopic in situ hybridization (ISH. Results Among normal human tissues, ERH expression was most abundant in testis, heart, ovary, prostate, and liver. In the two MTN sets of malignant/normal breast and ovarian tissue,ERH was clearly more abundantly expressed in all tumours than in normal tissue samples. Quantitative RT-PCR analyses showed that ERH expression was significantly more abundant in tumorigenic than in non-tumorigenic breast cancer cell lines (4.5-fold; p = 0.05, two-tailed Mann-Whitney U-test; the same trend was noted in a set of 25 primary invasive breast cancers and 16 normal breast tissue samples (2.5-fold; p = 0.1. These findings were further confirmed by non-radioisotopic ISH in human breast cancer and normal breast tissue. Conclusion ERH expression is clearly up-regulated in malignant as compared with benign breast cells both in primary human breast cancer and in cell models of breast cancer. Since similar results were obtained for ovarian

  10. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pan, Zemin; Shao, Renfu; Zheng, Weinan; Zhang, Jinli; Gao, Rui; Li, Dongmei; Guo, Xiaoqing; Han, Hu; Li, Feng; Qu, Shen

    2014-01-01

    Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma

  11. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) enhances testicular gene expression of 3β-hydroxysteroid dehydrogenase in rats.

    Science.gov (United States)

    Ohta, Y; Kawate, N; Inaba, T; Morii, H; Takahashi, K; Tamada, H

    2017-12-01

    Although feeding diets containing the extract powder of Lepidium meyenii (maca), a plant growing in Peru's Central Andes, increases serum testosterone concentration associated with enhanced ability of testosterone production by Leydig cells in male rats, changes in testicular steroidogenesis-related factors by the maca treatment are not known. This study examined the effects of maca on testicular gene expressions for luteinizing hormone receptor, steroidogenic acute regulatory protein and steroidogenic enzymes. Eight-week-old male rats were given the diets with or without (control) the maca extract powder (2%) for 6 weeks, and mRNA levels were determined by reverse transcription quantitative real-time PCR. The results showed that the testicular mRNA level of HSD3B1 (3β-hydroxysteroid dehydrogenase; 3β-HSD) increased by the treatment, whereas the levels of the other factors examined did not change. These results suggest that increased expression of 3β-HSD gene may be involved in the enhanced steroidogenic ability by the maca treatment in rat testes. © 2017 Blackwell Verlag GmbH.

  12. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  13. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    Science.gov (United States)

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  14. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Matsuoka, Junki; Tsubota, Maho; Tomita, Shiori; Sekiguchi, Fumiko; Minami, Takeshi; Kawabata, Atsufumi

    2018-01-15

    Ca v 3.2 T-type Ca 2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Ca v 3.2, and enhanced by H 2 S that interacts with zinc. Ca v 3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Ca v 3.2 activity by H 2 S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Ca v 3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Ca v 3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Ca v 3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Ca v 3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Ca v 3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Ca v 3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Ca v 3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    Science.gov (United States)

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  16. Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    Directory of Open Access Journals (Sweden)

    Xiaoliang Duan

    2018-03-01

    Full Text Available Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa, a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta. The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104 by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.

  17. Enhancement of creative expression and entoptic phenomena as after-effects of repeated ayahuasca ceremonies.

    Science.gov (United States)

    Frecska, Ede; Móré, Csaba E; Vargha, András; Luna, Luis E

    2012-01-01

    Studying the effect of psychedelic substances on expression of creativity is a challenging problem. Our primary objective was to study the psychometric measures of creativity after a series of ayahuasca ceremonies at a time when the acute effects have subsided. The secondary objective was to investigate how entoptic phenomena emerge during expression of creativity. Forty individuals who were self-motivated participants of ayahuasca rituals in Brazil completed the visual components of the Torrance Tests of Creative Thinking before and the second day after the end of a two-week long ceremony series. Twenty-one comparison subjects who did not participate in recent psychedelic use also took the Torrance tests twice, two weeks apart. Repeated ingestion of ayahuasca in the ritual setting significantly increased the number of highly original solutions and phosphenic responses. However, participants in the ayahuasca ceremonies exhibited more phosphenic solutions already at the baseline, probably due to the fact that they had more psychedelic experiences within six months prior to the study than the comparison subjects did. This naturalistic study supports the notion that some measures of visual creativity may increase after ritual use of ayahuasca, when the acute psychoactive effects are receded. It also demonstrates an increased entoptic activity after repeated ayahuasca ingestion.

  18. Enhanced gene ranking approaches using modified trace ratio algorithm for gene expression data

    Directory of Open Access Journals (Sweden)

    Shruti Mishra

    Full Text Available Microarray technology enables the understanding and investigation of gene expression levels by analyzing high dimensional datasets that contain few samples. Over time, microarray expression data have been collected for studying the underlying biological mechanisms of disease. One such application for understanding the mechanism is by constructing a gene regulatory network (GRN. One of the foremost key criteria for GRN discovery is gene selection. Choosing a generous set of genes for the structure of the network is highly desirable. For this role, two suitable methods were proposed for selection of appropriate genes. The first approach comprises a gene selection method called Information gain, where the dataset is reformed and fused with another distinct algorithm called Trace Ratio (TR. Our second method is the implementation of our projected modified TR algorithm, where the scoring base for finding weight matrices has been re-designed. Both the methods' efficiency was shown with different classifiers that include variants of the Artificial Neural Network classifier, such as Resilient Propagation, Quick Propagation, Back Propagation, Manhattan Propagation and Radial Basis Function Neural Network and also the Support Vector Machine (SVM classifier. In the study, it was confirmed that both of the proposed methods worked well and offered high accuracy with a lesser number of iterations as compared to the original Trace Ratio algorithm. Keywords: Gene regulatory network, Gene selection, Information gain, Trace ratio, Canonical correlation analysis, Classification

  19. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  20. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    Science.gov (United States)

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  1. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  2. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage

    Directory of Open Access Journals (Sweden)

    Thaura Ghneim-Herrera

    2017-06-01

    Full Text Available We evaluated the yields of Oryza sativa L. ‘Nipponbare’ rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT and wild-type (WT controls, providing 50–90% increases in grain yield (GY. Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

  3. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Andrew Collins

    Full Text Available We have shown previously that exercise benefits stress resistance and stress coping capabilities. Furthermore, we reported recently that epigenetic changes related to gene transcription are involved in memory formation of stressful events. In view of the enhanced coping capabilities in exercised subjects we investigated epigenetic, gene expression and behavioral changes in 4-weeks voluntarily exercised rats.Exercised and control rats coped differently when exposed to a novel environment. Whereas the control rats explored the new cage for the complete 30-min period, exercised animals only did so during the first 15 min after which they returned to sleeping or resting behavior. Both groups of animals showed similar behavioral responses in the initial forced swim session. When re-tested 24 h later however the exercised rats showed significantly more immobility behavior and less struggling and swimming. If rats were killed at 2 h after novelty or the initial swim test, i.e. at the peak of histone H3 phospho-acetylation and c-Fos induction, then the exercised rats showed a significantly higher number of dentate granule neurons expressing the histone modifications and immediate-early gene induction.Thus, irrespective of the behavioral response in the novel cage or initial forced swim session, the impact of the event at the dentate gyrus level was greater in exercised rats than in control animals. Furthermore, in view of our concept that the neuronal response in the dentate gyrus after forced swimming is involved in memory formation of the stressful event, the observations in exercised rats of enhanced neuronal responses as well as higher immobility responses in the re-test are consistent with the reportedly improved cognitive performance in these animals. Thus, improved stress coping in exercised subjects seems to involve enhanced cognitive capabilities possibly resulting from distinct epigenetic mechanisms in dentate gyrus neurons.

  4. Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression

    International Nuclear Information System (INIS)

    Yang, Shan; Kawamura, Kiyoko; Okamoto, Shinya; Yamauchi, Suguru; Shingyoji, Masato; Sekine, Ikuo; Kobayashi, Hiroshi; Tada, Yuji; Tatsumi, Koichiro; Hiroshima, Kenzo; Shimada, Hideaki; Tagawa, Masatoshi

    2015-01-01

    Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized

  5. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    Science.gov (United States)

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  6. Self-expression assignment as a teaching approach to enhance the interest of Kuwaiti women in biological sciences.

    Science.gov (United States)

    El-Sabban, Farouk

    2008-06-01

    Stimulating the interest of students in biological sciences necessitates the use of new teaching methods and motivating approaches. The idea of the self-expression assignment (SEA) has evolved from the prevalent environment at the College for Women of Kuwait University (Safat, State of Kuwait), a newly established college where the number of students is low and where students have varied backgrounds and interests and are being instructed biological sciences in English for the first time. This SEA requires each student to choose a topic among a long list of topics and interact with it in any way to produce a finished product without the interference of the course instructor. Students are told that the SEA will be graded based on their commitment, creative thinking, innovation in developing the idea, and finishing up of the chosen assignment. The SEA has been implemented in three introductory courses, namely, Biology, Introduction to Human Nutrition and Food Science, and The Human Body. Many interesting projects resulted from the SEA, and, based on an administered survey, students assessed this assignment very favorably. Students expressed their pleasure of experiencing freedom in choosing their own topics, interacting with such topics, learning more about them, and finishing up their projects. Students appreciated this type of exposure to biological sciences and expressed that such an experience enhanced their interest in such sciences.

  7. Enhanced Expression of Interferon-γ-Induced Antigen-Processing Machinery Components in a Spontaneously Occurring Cancer

    Directory of Open Access Journals (Sweden)

    Fulvia Cerruti

    2007-11-01

    Full Text Available In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM. Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informative model for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction.

  8. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    Directory of Open Access Journals (Sweden)

    Huiyan Guo

    2015-09-01

    Full Text Available Gibberellin (GA is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC, seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  9. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  10. Schiff Base Metal Derivatives Enhance the Expression of HSP70 and Suppress BAX Proteins in Prevention of Acute Gastric Lesion

    Directory of Open Access Journals (Sweden)

    Shahram Golbabapour

    2013-01-01

    Full Text Available Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg, the positive control (Tween 20 5% v/v, 5 mL/kg, and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg. After 1 h, all of the groups received ethanol 95% (5 mL/kg but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg. The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E, immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.

  11. Glutamate reduces glucose utilization while concomitantly enhancing AQP9 and MCT2 expression in cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Fabio eTescarollo

    2014-08-01

    Full Text Available The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 µM for 1 hour led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.

  12. Schiff base metal derivatives enhance the expression of HSP70 and suppress BAX proteins in prevention of acute gastric lesion.

    Science.gov (United States)

    Golbabapour, Shahram; Gwaram, Nura Suleiman; Al-Obaidi, Mazen M Jamil; Soleimani, A F; Ali, Hapipah Mohd; Abdul Majid, Nazia

    2013-01-01

    Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.

  13. The defense-responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Bin(周斌); PENG; Kaiman(彭开蔓); CHU; Zhaohui(储昭晖); WANG; Shiping(王石平); ZHANG; Qifa(张启发)

    2002-01-01

    Despite large numbers of studies about defense response, processes involved in the resistance of plants to incompatible pathogens are still largely uncharacterized. The objective of this study was to identify genes involved in defense response by cDNA array analysis and to gain knowledge about the functions of the genes involved in defense response. Approximately 20000 rice cDNA clones were arrayed on nylon filters. RNA samples isolated from different rice lines after infection with incompatible strains or isolates of Xanthomonas oryzae pv. oryzae or Pyricularia grisea, respectively, were used to synthesize cDNA as probes for screening the cDNA arrays. A total of 100 differentially expressed unique sequences were identified from 5 pathogen-host combinations. Fifty-three sequences were detected as showing enhanced expression and 47 sequences were detected as showing repressed expression after pathogen infection. Sequence analysis revealed that most of the 100 sequences had various degrees of homology with genes in databases which encode or putatively encode transcription regulating proteins, translation regulating proteins, transport proteins, kinases, metabolic enzymes, and proteins involved in other functions. Most of the genes have not been previously reported as being involved in the disease resistance response in rice. The results from cDNA arrays, reverse transcription-polymerase chain reaction, and RNA gel blot analysis suggest that activation or repression of most of these genes might occur commonly in the defense response.

  14. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Mogy

    2017-06-01

    Full Text Available The adenovirus major late promoter (MLP and its translational regulator – the tripartite leader (TPL sequence – can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds than translation (11 folds. Even with adenovirus infection to provide additional elements (in trans, CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.

  15. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  16. Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes.

    Directory of Open Access Journals (Sweden)

    Gary P Dillon

    2008-05-01

    Full Text Available Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified.We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO and subsequent Gene Set Enrichment Analysis (GSEA proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli.The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus explain the efficacy of the irradiated vaccine.

  17. Dietary supplementation with arginine and glutamic acid enhances key lipogenic gene expression in growing pigs.

    Science.gov (United States)

    Hu, C J; Jiang, Q Y; Zhang, T; Yin, Y L; Li, F N; Su, J Y; Wu, G Y; Kong, X F

    2017-12-01

    Our previous study showed dietary supplementation with Arg and Glu increased intramuscular fat deposition and decreased back fat thickness in pigs, suggesting that the genes involved in lipid metabolism might be regulated differently in muscle and s.c. adipose (SA) tissues. Sixty Duroc × Large White × Landrace pigs with an average initial BW of 77.1 ± 1.3 kg were randomly assigned to 1 of 5 treatment groups (castrated male to female ratio = 1:1). Pigs in the control group were fed a basic diet, and those in experimental groups were fed the basic diet supplemented with 2.05% alanine (isonitrogenous group), 1.00% arginine (Arg group), 1.00% glutamic acid + 1.44% alanine (Glu group), or 1.00% arginine + 1.00% glutamic acid (Arg+Glu group). Fatty acid percentages and mRNA expression levels of the genes involved in lipid metabolism in muscle and SA tissues were examined. The percentages of C14:0 and C16:0 in the SA tissue of Glu group pigs and C14:0 in the longissimus dorsi (LD) muscle of Glu and Arg+Glu groups decreased ( acid synthase in the Arg+Glu group was more upregulated ( < 0.05) than that of the Arg group. An increase in the mRNA level of in the biceps femoris muscle was also observed in the Arg+Glu group ( < 0.05) compared with the basic diet and isonitrogenous groups. Collectively, these findings suggest that dietary supplementation with Arg and Glu upregulates the expression of genes involved in adipogenesis in muscle tissues and lipolysis in SA tissues.

  18. Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

    Science.gov (United States)

    Pascussi, Jean Marc; Robert, Agnes; Nguyen, Minh; Walrant-Debray, Odile; Garabedian, Michèle; Martin, Pascal; Pineau, Thierry; Saric, Jean; Navarro, Fréderic; Maurel, Patrick; Vilarem, Marie Josè

    2005-01-01

    Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16α-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16α-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D3. Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D3 hormonal activity and calcium homeostasis through the activation of PXR. PMID:15630458

  19. Enhanced cell surface expression, immunogenicity and genetic stability resulting from a spontaneous truncation of HIV Env expressed by a recombinant MVA

    International Nuclear Information System (INIS)

    Wyatt, Linda S.; Belyakov, Igor M.; Earl, Patricia L.; Berzofsky, Jay A.; Moss, Bernard

    2008-01-01

    During propagation of modified vaccinia virus Ankara (MVA) encoding HIV 89.6 Env, a few viral foci stained very prominently. Virus cloned from such foci replicated to higher titers than the parent and displayed enhanced genetic stability on passage. Sequence analysis showed a single nucleotide deletion in the 89.6 env gene of the mutant that caused a frame shift and truncation of 115 amino acids from the cytoplasmic domain. The truncated Env was more highly expressed on the cell surface, induced higher antibody responses than the full-length Env, reacted with HIV neutralizing monoclonal antibodies and mediated CD4/co-receptor-dependent fusion. Intramuscular (IM), intradermal (ID) needleless, and intrarectal (IR) catheter inoculations gave comparable serum IgG responses. However, intraoral (IO) needleless injector route gave the highest IgA in lung washings and IR gave the highest IgA and IgG responses in fecal extracts. Induction of CTL responses in the spleens of individual mice as assayed by intracellular cytokine staining was similar with both the full-length and truncated Env constructs. Induction of acute and memory CTL in the spleens of mice immunized with the truncated Env construct by ID, IO, and IR routes was comparable and higher than by the IM route, but only the IR route induced CTL in the gut-associated lymphoid tissue. Thus, truncation of Env enhanced genetic stability as well as serum and mucosal antibody responses, suggesting the desirability of a similar modification in MVA-based candidate HIV vaccines

  20. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression.

    Science.gov (United States)

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-04-04

    Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder cancer tissues and cell lines. HMGB1 protein levels were tested by western blot assays. Different doses of X-ray were used for radiation treatment of bladder cancer cells. Colony survival and cell viability were detected by clonogenic assay and CCK-8 Kit, respectively. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was constructed to observe the effect of TUG1 on tumor growth in vivo. The levels of TUG1 and HMGB1 were remarkably increased in bladder cancer tissues and cell lines. Radiation treatment markedly elevated the expression of TUG1 and HMGB1. TUG1 knockdown inhibited cell proliferation, promoted cell apoptosis and decreased colony survival in SW780 and BIU87 cells under radiation. Moreover, TUG1 depletion suppressed the HMGB1 mRNA and protein levels. Furthermore, overexpression of HMGB1 reversed TUG1 knockdown-induced effect in bladder cancer cells. Radiation treatment dramatically reduced the tumor volume and weight in xenograft model, and this effect was more obvious when combined with TUG1 silencing. LncRNA TUG1 knockdown enhances radiosensitivity of bladder cancer by suppressing HMGB1 expression. TUG1 acts as a potential regulator of radioresistance of bladder cancer, and it may represent a promising therapeutic target for bladder cancer patients.

  1. Over-expression of CXCR4, a stemness enhancer, in human blastocysts by low level laser irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available The key role of chemokine receptor CXCR4 in the maintenance of stemness property of stem cells has been shown recently. The low level laser irradiation (LLLI is being used currently in a wide variety of clinical cases as a therapeutic tool for wound healing, relieving pain and destroying tumor cells. The aim of this study was to evaluate the effect of LLLI mimicking low level laser therapy (LLLT on the expression level of CXCR4 gene a few hours after irradiation on human blastocysts. After the development of human embryos to the first grade blastocyst stage, they were irradiated with a low power Ga-Al-As laser at a continuous wavelength of 650 nm and a power output of 30 mW. The total RNA of the irradiated blastocysts and control groups were isolated in groups of 1x2 J/cm2, 2x2 J/cm2, 1x4 J/cm2 and 2x4 J/cm2 LLLI. Specific Real-Time PCR primers were designed to amplify all the two CXCR4 isoforms yet identified. RNA amplifications were done for all the groups. We showed for the first time that LLLI makes the human blastocysts to increase the expression level of CXCR4 a few hours after irradiation. Moreover, it was shown that two irradiation doses with one day interval can cause a significant increase in CXCR4 expression level in human blastocysts. This study revealed that LLLI could be a proliferation motivator for embryonic cell divisions through enhanced over-expression of CXCR4 level.

  2. The prescriptions from Shenghui soup enhanced neurite growth and GAP-43 expression level in PC12 cells.

    Science.gov (United States)

    Zhang, Qi; Zhang, Zi-Jian; Wang, Xing-Hua; Ma, Jie; Song, Yue-Han; Liang, Mi; Lin, Sen-Xiang; Zhao, Jie; Zhang, Ao-Zhe; Li, Feng; Hua, Qian

    2016-09-20

    Shenghui soup is a traditional Chinese herbal medicine used in clinic for the treatment of forgetfulness. In order to understanding the prescription principle, the effects of "tonifying qi and strengthening spleen" group (TQSS) including Poria cocos (Schw.) Wolf. and Panax ginseng C.A.Mey and "eliminating phlegm and strengthening intelligence" group (EPSI) composed of Polygala tenuifolia Willd., Acorus calamus L. and Sinapis alba L from the herb complex on neurite growth in PC12 cells, two disassembled prescriptions derived from Shenghui soup and their molecular mechanisms were investigated. Firstly, CCK-8 kit was used to detect the impact of the two prescriptions on PC12 cell viability; and Flow cytometry was performed to measure the cell apoptosis when PC12 cells were treated with these drugs. Secondly, the effect of the two prescriptions on the differentiation of PC12 cells was observed. Finally, the mRNA and protein expression levels of GAP-43 were analyzed by RT-PCR and western blot, respectively. "Tonifying qi and strengthening spleen" prescription decreased cell viability in a dose-dependent manner, but had no significant effect on cell apoptosis. Meanwhile, it could improve neurite growth and elevate the mRNA and protein expression level of GAP-43. "Eliminating phlegm and strengthening intelligence" prescription also exerted the similar effects on cell viability and apoptosis. Furthermore, it could also enhance cell neurite growth, with a higher expression level of GAP-43 mRNA and protein. "Tonifying qi and strengthening spleen" and "eliminating phlegm and strengthening intelligence" prescriptions from Shenghui soup have a positive effect on neurite growth. Their effects are related to the up-regulating expression of GAP-43.

  3. Effects of hyperbaric oxygen therapy in enhancing expressions of e-NOS, TNF-α and VEGF in wound healing

    Science.gov (United States)

    Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo

    2017-05-01

    Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO

  4. Dysregulated IER3 Expression is Associated with Enhanced Apoptosis in Titin-Based Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2017-03-01

    Full Text Available Apoptosis (type I programmed cell death of cardiomyocytes is a major process that plays a role in the progression of heart failure. The early response gene IER3 regulates apoptosis in a wide variety of cells and organs. However, its role in heart failure is largely unknown. Here, we investigate the role of IER3 in an inducible heart failure mouse model. Heart failure was induced in a mouse model that imitates a human titin truncation mutation we found in a patient with dilated cardiomyopathy (DCM. Transferase dUTP nick end labeling (TUNEL and ssDNA stainings showed induction of apoptosis in titin-deficient cardiomyocytes during heart failure development, while IER3 response was dysregulated. Chromatin immunoprecipitation and knock-down experiments revealed that IER3 proteins target the promotors of anti-apoptotic genes and act as an anti-apoptotic factor in cardiomyocytes. Its expression is blunted during heart failure development in a titin-deficient mouse model. Targeting the IER3 pathway to reduce cardiac apoptosis might be an effective therapeutic strategy to combat heart failure.

  5. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons

    Directory of Open Access Journals (Sweden)

    Anne Abot

    2018-04-01

    Full Text Available Objective: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. Methods: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut–brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism were assessed. Results: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. Conclusion: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D. Keywords: Galanin, Enteric nervous system, Diabetes

  6. An enhanced topologically significant directed random walk in cancer classification using gene expression datasets

    Directory of Open Access Journals (Sweden)

    Choon Sen Seah

    2017-12-01

    Full Text Available Microarray technology has become one of the elementary tools for researchers to study the genome of organisms. As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analysis, cancerous classification is an emerging important trend. Significant directed random walk is proposed as one of the cancerous classification approach which have higher sensitivity of risk gene prediction and higher accuracy of cancer classification. In this paper, the methodology and material used for the experiment are presented. Tuning parameter selection method and weight as parameter are applied in proposed approach. Gene expression dataset is used as the input datasets while pathway dataset is used to build a directed graph, as reference datasets, to complete the bias process in random walk approach. In addition, we demonstrate that our approach can improve sensitive predictions with higher accuracy and biological meaningful classification result. Comparison result takes place between significant directed random walk and directed random walk to show the improvement in term of sensitivity of prediction and accuracy of cancer classification.

  7. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  8. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Zhou, Mingfang

    2003-01-01

    OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood into the prechiasm......OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood...... into the prechiasmatic cistern. After 2 days, the middle cerebral artery, basilar artery, and posterior communicating artery were harvested. Pharmacological studies were performed in vitro, and levels of messenger ribonucleic acid (mRNA) were quantified in real-time reverse transcriptase-polymerase chain reaction assays....... RESULTS: In the middle cerebral artery and basilar artery from rats with induced SAH, enhanced biphasic responses to ET-1 were observed. The -log(50% effective concentration) value for the high-affinity phase was approximately 12, compared with approximately 8.5 for sham-operated animals...

  9. Negative Facial Expressions - But Not Visual Scenes - Enhance Human Working Memory in Younger and Older Participants.

    Science.gov (United States)

    Belham, Flávia Schechtman; Tavares, Maria Clotilde H; Satler, Corina; Garcia, Ana; Rodrigues, Rosângela C; Canabarro, Soraya L de Sá; Tomaz, Carlos

    2017-01-01

    Many studies have investigated the influence of emotion on memory processes across the human lifespan. Some results have shown older adults (OA) performing better with positive stimuli, some with negative items, whereas some found no impact of emotional valence. Here we tested, in two independent studies, how younger adults (YA) and OA would perform in a visuospatial working memory (VSWM) task with positive, negative, and neutral images. The task consisted of identifying the new location of a stimulus in a crescent set of identical stimuli presented in different locations in a touch-screen monitor. In other words, participants should memorize the locations previously occupied to identify the new location. For each trial, the number of occupied locations increased until 8 or until a mistake was made. In study 1, 56 YA and 38 OA completed the task using images from the International Affective Picture System (IAPS). Results showed that, although YA outperformed OA, no effects of emotion were found. In study 2, 26 YA and 25 OA were tested using facial expressions as stimuli. Data from this study showed that negative faces facilitated performance and this effect did not differ between age groups. No differences were found between men and women. Taken together, our findings suggest that YA and OA's VSWM can be influenced by the emotional valence of the information, though this effect was present only for facial stimuli. Presumably, this may have happened due to the social and biological importance of such stimuli, which are more effective in transmitting emotions than IAPS images. Critically, our results also indicate that the mixed findings in the literature about the influence of aging on the interactions between memory and emotion may be caused by the use of different stimuli and methods. This possibility should be kept in mind in future studies about memory and emotion across the lifespan.

  10. Scorpion neurotoxin AaIT-expressing Beauveria bassiana enhances the virulence against Aedes albopictus mosquitoes.

    Science.gov (United States)

    Deng, Sheng-Qun; Cai, Qun-Di; Deng, Ming-Zhi; Huang, Qiang; Peng, Hong-Juan

    2017-12-01

    To improve the insecticidal efficacy of this entomopathogen Beauveria bassiana, the fungus was genetically modified to express an insect-specific scorpion neurotoxin AaIT. The virulence of the recombinant B. bassiana strain (Bb-AaIT) against Aedes albopictus adults (which occurs via penetration through the cuticle during spore germination or by conidia ingestion), and the larvae (by conidia ingestion) was measured with bioassays. The median lethal concentration (LC 50 ) of Bb-AaIT against A. albopictus larvae was 313.3-fold lower on day 4 and 11.3-fold lower on day 10 than that of the wild type (WT). Through conidia feeding or body contact, Bb-AaIT killed 50% of adult female mosquitoes at 3.9- or 1.9-fold reduced concentrations on day 4 and at 2.1- or 2.4-fold reduced concentrations on day 10. Compared with the results for the WT, the median lethal time (LT 50 ) of Bb-AaIT was reduced by 28.6% at 1 × 10 7 conidia ml -1 and 34.3% at 1 × 10 6 conidia ml -1 in the larvae bioassay by conidia ingestion, while it decreased 32.3% at 1 × 10 7 conidia ml -1 by conidia ingestion and 24.2% at 1 × 10 8 conidia ml -1 by penetrating through the cuticle in the adult bioassay. All the differences were significant. Our findings indicated that Bb-AaIT had higher virulence and faster action than the WT in killing the larval and adult mosquitoes, and therefore, it is valuable for development as a commercial mosquito pesticide.

  11. Enhanced degradation of haloacid by heterologous expression in related Burkholderia species.

    Science.gov (United States)

    Su, Xianbin; Deng, Liyu; Kong, Ka Fai; Tsang, Jimmy S H

    2013-10-01

    Haloacids are environmental pollutant and can be transformed to non-toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono-chloroacetate (MCA), mono-bromoacetate (MBA), 2-mono-chloropropionate, and 2-mono-bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process. The growth of MBA4 on haloacid also relies on the presence of a haloacid-uptake system. Similar dehalogenase genes can be found in the genome of many related species. However, wildtype Burkholderia caribensis MWAP64, Burkholderia phymatum STM815, and Burkholderia xenovorans LB400 were not able to grow on MCA. When a plasmid containing the regulatory and structural gene of Deh4a was transformed to these species, they were able to grow on haloacid. The specific enzyme activities in these recombinants ranges from 2- to 30-fold that of MBA4 in similar condition. Reverse transcription-quantitative real-time PCR showed that the relative transcript levels in these recombinant strains ranges from 9 to over 1,600 times that of MBA4 in similar condition. A recombinant has produced nearly five times of dehalogenase that MBA4 could ever achieve. While the expressions of Deh4a were more relaxed in these phylogenetically related species, an MCA-uptake activity was found to be inducible. These metabolically engineered strains are better degraders than the haloacid-enriched MBA4. Copyright © 2013 Wiley Periodicals, Inc.

  12. Enhanced expression of transferrin receptor confers UV-resistance in human and monkey cells

    International Nuclear Information System (INIS)

    Chen, Zheng; Nomura, Jun; Suzuki, Toshikazu; Suzuki, Nobuo

    2005-01-01

    One of the most intriguing biological subjects is cell-surface molecules that regulate the susceptibility of human cells to cell-killing effects after irradiation with far-ultraviolet light (UV, principally 254 nm wavelength). Human RSa cells have unusual sensitivity to UV-induced cell-killing. We searched for molecules on the cell-surface of RSa cells that were present in different amounts as compared to a variant of these cells, UV r -1 cells, which have increased resistance to UV cell-killing. Among the 21 molecules examined, the amount of transferrin receptor (TfR) protein was found to be 2-fold higher in UV r -1 cells compared with in RSa cells. The amounts of this protein were also higher in the UV-resistant hematopoietic cell lines, CEM6 and Daudi, as compared to the UV-sensitive cell lines, Molt4 and 697. Culturing of UV r -1 cells in a medium containing anti-transferrin antibodies resulted in sensitization of the cells to UV cell-killing as demonstrated by colony formation assay. Similar results were observed by treatment of the cells with TfR siRNA. In contrast, overexpression of TfR protein led to a resistance to UV cell-killing in RSa cells and monkey COS7 cells as demonstrated by both colony formation and apoptosis assay. In TfR-overexpressing cells, reduction of p53 and Bax protein was observed after UV-irradiation. Thus, TfR expression appears to be involved in the regulation of UV-resistance, possibly via modulation of the amount of p53 and Bax protein. (author)

  13. Gene expression profiling in cells with enhanced gamma-secretase activity.

    Directory of Open Access Journals (Sweden)

    Alexandra I Magold

    2009-09-01

    Full Text Available Processing by gamma-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of gamma-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of gamma-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways.To identify genes and molecular functions transcriptionally affected by gamma-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO cells with enhanced and inhibited gamma-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to gamma-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by gamma-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices.Investigating the effects of gamma-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant

  14. Phenotypic expression in hypertrophic cardiomyopathy and late gadolinium enhancement on cardiac magnetic resonance.

    Science.gov (United States)

    Caetano, Francisca; Botelho, Ana; Trigo, Joana; Silva, Joana; Almeida, Inês; Venâncio, Margarida; Pais, João; Sanches, Conceição; Leitão Marques, António

    2014-05-01

    The prognostic value of late gadolinium enhancement (LGE) for risk stratification of hypertrophic cardiomyopathy (HCM) patients is the subject of disagreement. We set out to examine the association between clinical and morphological variables, risk factors for sudden cardiac death and LGE in HCM patients. From a population of 78 patients with HCM, we studied 53 who underwent cardiac magnetic resonance. They were divided into two groups according to the presence or absence of LGE. Ventricular arrhythmias and morbidity and mortality during follow-up were analyzed. Patients with LGE were younger at the time of diagnosis (p=0.046) and more often had a family history of sudden death (p=0.008) and known coronary artery disease (p=0.086). On echocardiography they had greater maximum wall thickness (p=0.007) and left atrial area (p=0.037) and volume (p=0.035), and more often presented a restrictive pattern of diastolic dysfunction (p=0.011) with a higher E/É ratio (p=0.003) and left ventricular systolic dysfunction (p=0.038). Cardiac magnetic resonance supported the association between LGE and previous echocardiographic findings: greater left atrial area (p=0.029) and maximum wall thickness (p<0.001) and lower left ventricular ejection fraction (p=0.056). Patients with LGE more often had an implantable cardioverter-defibrillator (ICD) (p=0.015). At follow-up, no differences were found in the frequency of ventricular arrhythmias, appropriate ICD therapies or mortality. The presence of LGE emerges as a risk marker, associated with the classical predictors of sudden cardiac death in this population. However, larger studies are required to confirm its independent association with clinical events. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  15. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    Science.gov (United States)

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P arctigenin (P arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC. © 2013 Wiley Periodicals, Inc.

  16. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  17. Increase in Docetaxel-Resistance of Ovarian Carcinoma-Derived RMG-1 Cells with Enhanced Expression of Lewis Y Antigen

    Directory of Open Access Journals (Sweden)

    Bei Lin

    2011-10-01

    Full Text Available Epithelial carcinomas of the ovary exhibit the highest mortality rate among gynecologic malignancies. Studies found that the metabolism of glycolipids or carbohydrates is associated with acquirement of anticancer drug-resistance by cancer cells. This study was to characterize possible involvement of Lewis Y (LeY antigen in the drug-resistance of cancer cells. We transfected the α1,2-fucosyltransferase gene into human ovarian carcinoma-derived RMG-1 cells and established RMG-1-hFUT cells with enhanced expression of LeY. We determined the effects of docetaxel on the survival of cells by MTT assaying and observed the apoptosis of cells in the presence of docetaxel by flow cytometric analysis and by transmission electron microscopy. Plasma membranes and intracellular granules in RMG-1-hFUT cells were stained with anti-LeY antibody, the intensity of the staining was higher than that in control cells. The RMG-1-hFUT cells exhibited higher resistance to docetaxel than the control cells with regard to the docetaxel concentration and time course. After treatment with 10 μg/mL docetaxel for 72 h, the control cells, but not RMG-1-hFUT, contained abundant positively stained cell debris due to disintegration of the cytoskeleton. On transmission electron microscopy, although the control cells treated with docetaxel as above showed the following morphology, i.e., absence of villi, cells shrunken in size, pyknosis, agglutinated chromatin and cell buds containing nuclei in the process of apoptosis, the RMG-1-hFUT cells showed only agglutinated chromatin and vacuoles in the cytoplasm. In summary, cells with enhanced expression of LeY were shown to acquire docetaxel-resistance, indicating the possible involvement of glycoconjugates in the drug-resistance.

  18. Dietary acidification enhances phosphorus digestibility but decreases H+/K+-ATPase expression in rainbow trout.

    Science.gov (United States)

    Sugiura, Shozo H; Roy, Prabir K; Ferraris, Ronaldo P

    2006-10-01

    Oxynticopeptic cells of fish stomach are thought to secrete less acid than the specialized parietal cells of mammalian stomach. Gastric acidity, however, has not been directly compared between fish and mammals. We therefore fed rainbow trout and rats the same meal, and found that the lowest postprandial pH of trout stomach was 2.7, which was only transiently sustained for 1 h, whereas that of rat stomach was 1.3, which was sustained for 3 h. Postprandial pH of the small intestine was slightly higher in trout (approximately 8.0) than in rats (approximately 7.6), but pH of the large intestine was similar (approximately 8.0). Addition of acids to fish feeds, in an attempt to aid the weak acidity of fish stomach, has been known to improve phosphorus digestibility, but its physiological effect on fish stomach is not known. Exogenous acids did improve phosphorus digestibility but also decreased steady-state mRNA expression of trout H(+)/K(+)-ATPase (ATP4A, the proton pump) as well as Na(+)/bicarbonate cotransporter (NBC), and had no effect on gastrin-like mRNA and somastostatin (SST) mRNA abundance. Gastrin-like mRNA and SST-2 mRNA were equally distributed between corpus and antrum. ATP4A mRNA and NBC mRNA were in the corpus, whereas SST-1 mRNA was in the antrum. Trout gastrin-like EST had modest homology to halibut and pufferfish gastrin, whereas trout ATP4A mRNA had > or = 95% amino acid homology with mammalian, Xenopus and flounder ATP4A. Although ATP4A seems highly conserved among vertebrates, gastric acidity is much less in trout than in rats, explaining the low digestibility of bone phosphorus, abundant in fish diets. Dietary acidification does not reduce acidity enough to markedly improve phosphorus digestibility, perhaps because exogenous acids may inhibit endogenous acid production.

  19. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion

    International Nuclear Information System (INIS)

    Cai, Kun; Mulatz, Kirk; Ard, Ryan; Nguyen, Thanh; Gee, Stephen H

    2014-01-01

    their invasiveness. Elevated DGKζ expression contributes to increased Rho GTPase activation and the enhanced motility of metastatic cancer cells. These findings warrant further investigation of the clinical relevance of DGKζ upregulation in colon and other cancers. Interfering with DGKζ function could provide a means of inhibiting invasion and metastasis

  20. VEGFR-2 expression in HCC, dysplastic and regenerative liver nodules, and correlation with pre-biopsy Dynamic Contrast Enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Thaiss, W.M., E-mail: wolfgang.thaiss@med.uni-tuebingen.de [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen (Germany); Kaufmann, S., E-mail: sascha.kaufmann@med.uni-tuebingen.de [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen (Germany); Kloth, C., E-mail: christopher.kloth@med.uni-tuebingen.de [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen (Germany); Nikolaou, K., E-mail: konstantin.nikolaou@med.uni-tuebingen.de [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen (Germany); Bösmüller, H., E-mail: hans.boesmueller@med.uni-tuebingen.de [Eberhard Karls University, Department of Pathology, Liebermeisterstraße 8, D-72076 Tuebingen (Germany); Horger, M., E-mail: Marius.Horger@med.uni-tuebingen.de [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen (Germany)

    2016-11-15

    Highlights: • VEGFR-2-expression levels vary between HCC, dysplastic and regenerative liver nodules. • Perfusion parameters vary between these groups in blood flow, blood volume and HPI. • Strong correlations were observed between perfusion parameters and VEGFR-2-expression. • The results might influence diagnosis and therapy of anti-vascular therapeutic regimes. - Abstract: Purpose: To evaluate whether VEGFR-2-expression in hepatocellular carcinoma (HCC), dysplastic (DLN) and regenerative liver nodules (RLN) correlates with pre-histology, in vivo Dynamic Contrast Enhanced-Computed Tomography (DCE-CT) data as VEGFR-2-expression affects prognosis and therapeutic options. Materials and methods: 34 patients (63.6 ± 8.9 years, 7 females) underwent liver biopsy or surgery due to suspected HCC or dysplastic nodules after DCE-CT between 2009 and 2015 with no previous chemo- or interventional therapy. Immunohistochemistry staining for VEGFR-2 was performed using Immunoreactive-Remmele-Stegner-Score (IRS) for quantification. A 128-row CT-scanner was used for DCE-CT with assessment of perfusion parameters blood flow (BF), blood volume (BV), arterial liver perfusion (ALP), portal venous perfusion (PVP), and hepatic perfusion index (HPI). Results: Histology confirmed HCC (n = 10), DLN (n = 7) and RLN (n = 34). Mean IRS for VEGFR-2 in HCCs was 9.1 ± 3.0, 7.3 ± 1.6 for DLN and 5.2 ± 2.8 for RLN (p = 0.0004 for HCC vs. RLN). Perfusion values varied significantly between all three groups for BF and HPI (p < 0.001 and p < 0.0001) and for BV in HCC vs. RLN (p < 0.0001) and DLN vs. RLN (p = 0.0019). Strong correlations between VEGFR-2-IRS and perfusion parameters were observed for BF in HCC (r = 0.88, p < 0.01) and HPI in HCC and DLN (r = 0.85, p < 0.04; r = 0.9, p < 0.01). Conclusion: Immunostaining revealed different VEGFR-2-expression levels in HCC, dysplastic and regenerative liver nodules. Perfusion markers blood flow, blood volume and hepatic perfusion index

  1. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Expression and characterization of insulin growth factor-I-enhanced green fluorescent protein fused protein as a tracer for immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shi Ruina [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang Yong [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang Dan [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhao Meiping [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Yuanzong [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)]. E-mail: yzli@pku.edu.cn

    2006-09-25

    The insulin-like growth factor-I (IGF-I) is an important polypeptide hormone under investigation for body metabolism study and for doping detection. Here, we describe for the first time the expression of a recombinant fusion protein of IGF-I and the enhanced green fluorescent protein (EGFP). The genetic fusion approach enables preparation of conjugates with 1:1 stoichiometry and homogeneous structure. The fused protein (EGFP-IGF-I) was expressed as a soluble protein in cytoplasm of Escherichia coli and its fluorescence and immunoreaction properties were thoroughly characterized. Finally, we demonstrated the utility of the EGFP-IGF-I fusion protein for the fluorescence immunoassay of IGF-1. The linear range of the assay is 1.6 x 10{sup -8} to 2.0 x 10{sup -6} M with a detection limit of 1.6 x 10{sup -8} M. To our knowledge, this is the first time that EGFP has been used as a quantitative label in a fusion protein to develop a quantitative assay for IGF-I. Furthermore, the use of genetically engineered fusion proteins, which combine peptide hormones with fluorescent protein, can lead to a new labeling approach to a number of bioanalytical applications.

  3. Expression and characterization of insulin growth factor-I-enhanced green fluorescent protein fused protein as a tracer for immunoassay

    International Nuclear Information System (INIS)

    Shi Ruina; Huang Yong; Wang Dan; Zhao Meiping; Li Yuanzong

    2006-01-01

    The insulin-like growth factor-I (IGF-I) is an important polypeptide hormone under investigation for body metabolism study and for doping detection. Here, we describe for the first time the expression of a recombinant fusion protein of IGF-I and the enhanced green fluorescent protein (EGFP). The genetic fusion approach enables preparation of conjugates with 1:1 stoichiometry and homogeneous structure. The fused protein (EGFP-IGF-I) was expressed as a soluble protein in cytoplasm of Escherichia coli and its fluorescence and immunoreaction properties were thoroughly characterized. Finally, we demonstrated the utility of the EGFP-IGF-I fusion protein for the fluorescence immunoassay of IGF-1. The linear range of the assay is 1.6 x 10 -8 to 2.0 x 10 -6 M with a detection limit of 1.6 x 10 -8 M. To our knowledge, this is the first time that EGFP has been used as a quantitative label in a fusion protein to develop a quantitative assay for IGF-I. Furthermore, the use of genetically engineered fusion proteins, which combine peptide hormones with fluorescent protein, can lead to a new labeling approach to a number of bioanalytical applications

  4. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  5. Graft Product for Autologous Peripheral Blood Stem Cell Transplantation Enhances Thrombin Generation and Expresses Procoagulant Microparticles and Tissue Factor.

    Science.gov (United States)

    Sidibe, Fatoumata; Spanoudaki, Anastasia; Vanneaux, Valerie; Mbemba, Elisabeth; Larghero, Jerome; Van Dreden, Patrick; Lotz, Jean-Pierre; Elalamy, Ismail; Larsen, Annette K; Gerotziafas, Grigoris T

    2018-05-01

    The beneficial effect of autologous peripheral blood stem cell transplantation (APBSCT) may be compromised by acute vascular complications related to hypercoagulability. We studied the impact of graft product on thrombin generation of normal plasma and the expression of tissue factor (TF) and procoagulant platelet-derived procoagulant microparticles (Pd-MPs) in samples of graft products. Graft products from 10 patients eligible for APBSCT were mixed with platelet-poor plasma (PPP) or platelet-rich plasma (PRP) from healthy volunteers and assessed for in vitro thrombin generation. In control experiments, thrombin generation was assessed in (1) PPP and PRP without any exogenous TF and/or procoagulant phospholipids, (2) PPP with the addition of TF (5 pM) and procoagulant phospholipids (4 μM), (3) in PRP with the addition of TF (5 pM). Graft products were assessed with Western blot assay for TF expression, with a specific clotting assay for TF activity and with flow cytometry assay for Pd-MPs. The graft product enhanced thrombin generation and its procoagulant activity was related to the presence of Pd-MPs and TF. The concentration of Pd-MPs in the graft product was characterized by a significant interindividual variability. The present study reveals the need for a thorough quality control of the graft products regarding their procoagulant potential.

  6. Molecular imaging of enhanced Na + expression in the liver of total sleep deprived rats by TOF-SIMS

    Science.gov (United States)

    Chang, Hung-Ming; Chen, Bo-Jung; Wu, Un-In; Huang, Yi-Lun; Mai, Fu-Der

    2008-12-01

    Sleep disorder is associated with metabolic disturbances, which was related to oxidative stress and subsequently sodium overload. Since liver plays important roles in metabolic regulation, present study is aimed to determine whether hepatic sodium, together with oxidative stress, would significantly alter after total sleep deprivation (TSD). Sodium ion was investigated by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Parameter for oxidative stress was examined by heat shock protein-25 (HSP-25) immunohistochemistry. TOF-SIMS spectrum indicated that hepatic Na +/K + ratio counting as 82.41 ± 9.5 was obtained in normal rats. Sodium ions were distributed in hepatocytes with several aggregations. However, following TSD, the intensity for Na +/K + ratio was relatively increased (101.94 ± 6.9) and signals for sodium image were strongly expressed throughout hepatocytes without spatial localization. Quantitative analysis revealed that HSP-25 staining intensity is 1.78 ± 0.27 in TSD rats, which was significantly higher than that of normal ones (0.68 ± 0.15). HSP-25 augmentation suggests that hepatocytes suffer from oxidative stress following TSD. Concerning oxidative stress induced sodium overload would impair metabolic function; enhanced hepatic sodium expression after TSD may be a major cause of TSD relevant metabolic diseases.

  7. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  8. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  9. MicroRNA-661 Enhances TRAIL or STS Induced Osteosarcoma Cell Apoptosis by Modulating the Expression of Cytochrome c1

    Directory of Open Access Journals (Sweden)

    Lin Fan

    2017-04-01

    Full Text Available Aim: Osteosarcoma (OS is an aggressive bone malignancy that affects rapidly growing bones and is associated with a poor prognosis. Our previous study showed that cytochrome c1 (CYC1, a subunit of the cytochrome bc1 complex (complex III of the mitochondrial electron chain, is overexpressed in human OS tissues and cell lines and its silencing induces apoptosis in vitro and inhibits tumor growth in vivo. Here, we investigated the mechanism underlying the modulation of CYC1 expression in OS and its role in the resistance of OS to apoptosis. Methods: qRT-PCR, luciferase reporter assay, western blotting, fow cytometry, and animal experiments were performed in this study. Results: MicroRNA (miR-661 was identified as a downregulated miRNA in OS tissues and cells and shown to directly target CYC1. Ectopically expressed miR-661 inhibited OS cell growth, promoted apoptosis, and reduced the activity of mitochondrial complex III. miR-661 overexpression enhanced TRAIL or STS induced apoptosis and promoted the release of cytochrome c into the cytosol, which induced caspase-9 activation, and these effects were abolished by a caspase-3 inhibitor. Overexpression of CYC1 rescued the effects of miR-661 on sensitizing OS cells to TRAIL or STS induced apoptosis, indicating that the antitumor effect of miR-661 is mediated by the downregulation of CYC1. In vivo, miR-661 overexpression sensitized tumors to TRAIL or STS induced apoptosis in a xenograft mouse model, and these effects were attenuated by co-expression of CYC1. Conclusion: Taken together, our results indicate that miR-661 plays a tumor suppressor role in OS mediated by the downregulation of CYC1, suggesting a potential mechanism underlying cell death resistance in OS.

  10. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  11. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  12. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nan-Yang Li

    2018-02-01

    Full Text Available Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR-encoding gene GbaNA1 that confers resistance to the highly virulent V. dahliae isolate Vd991. In this study, we expressed cotton GbaNA1 in the heterologous system of Arabidopsis thaliana and investigated the defense response mediated by GbaNA1 following inoculations with V. dahliae. Heterologous expression of GbaNA1 conferred Verticillium wilt resistance in A. thaliana. Moreover, overexpression of GbaNA1 enabled recovery of the resistance phenotype of A. thaliana mutants that had lost the function of GbaNA1 ortholog gene. Investigations of the defense response in A. thaliana showed that the reactive oxygen species (ROS production and the expression of genes associated with the ethylene signaling pathway were enhanced significantly following overexpression of GbaNA1. Intriguingly, overexpression of the GbaNA1 ortholog from Gossypium hirsutum (GhNA1 in A. thaliana did not induce the defense response of ROS production due to the premature termination of GhNA1, which lacks the encoded NB-ARC and LRR motifs. GbaNA1 therefore confers Verticillium wilt resistance in A. thaliana by the activation of ROS production and ethylene signaling. These results demonstrate the functional conservation of the NBS-LRR-encoding GbaNA1 in a heterologous system, and the mechanism of this resistance, both of which may prove valuable in incorporating GbaNA1-mediated resistance into other plant species.

  13. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.

    Science.gov (United States)

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-09-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.

  14. BAG3 increases the invasiveness of uterine corpus carcinoma cells by suppressing miR-29b and enhancing MMP2 expression.

    Science.gov (United States)

    Habata, Shutaro; Iwasaki, Masahiro; Sugio, Asuka; Suzuki, Miwa; Tamate, Masato; Satohisa, Seiro; Tanaka, Ryoichi; Saito, Tsuyoshi

    2015-05-01

    Approximately 30% of uterine corpus carcinomas are diagnosed at an advanced stage and have a poor prognosis. Our previous study indicated that BCL2-associated athanogene 3 (BAG3) enhances matrix metalloproteinase-2 (MMP2) expression and binds to MMP2 to positively regulate the process of cell invasion in ovarian cancer cells. Recently, altered miRNA expression patterns were observed in several groups of patients with endometrial cancers. One of the altered miRNAs, miR-29b, reportedly reduces tumor invasiveness by suppressing MMP2 expression. Our aim in the present study was to examine the relationships among BAG3, miR-29b and MMP2 in endometrioid adenocarcinoma cells. We found that BAG3 suppresses miR-29b expression and enhances MMP2 expression, which in turn increases cell motility and invasiveness. Moreover, restoration of miR-29b through BAG3 knockdown reduced MMP2 expression, as well as cell motility and invasiveness. Collectively, our findings indicate that BAG3 enhances MMP2 expression by suppressing miR-29b, thereby increasing the metastatic potential of endometrioid adenocarcinomas.

  15. Evolution of Bacillus subtilis to enhanced hypobaric growth: global alterations in gene expression

    Science.gov (United States)

    Nicholson, Wayne; Robles-Martinez, Jose; Rivas-Castillo, Andrea; Schuerger, Andrew

    Much astrobiology research is concerned with defining the environmental limits for life in the universe. Because Mars currently is the primary target for life detection missions, it is important to understand how terrestrial microbes might survive, proliferate, and evolve in martian envi-ronments. This issue is relevant in three distinct but related contexts: (i) testing panspermia hypotheses [1], (ii) mitigating the forward contamination of Mars [2], and (iii) understanding the molecular mechanisms leading to microbial growth in extreme extraterrestrial environments [3]. Prime candidates for Earth-to-Mars transfer include bacteria of the genus Bacillus, spores of which are significant contaminants of Mars-bound spacecraft and which are considered good candidates for lithopanspermia [1-4]. It is thus relevant to assess the potential for such microbes to survive and proliferate in the martian environment. The martian atmosphere poses a significant barrier to growth of terrestrial microbes, due to its low pressure (1-10 mbar; average 7 mbar) and anoxic (˜95% CO2) composition. In an earlier study [5] we showed that low pressures approaching those found on the surface of Mars exhibited an inhibitory effect on the germination and vegetative growth of several Bacillus spp. isolated from spacecraft or their assembly facilities. Even in an Earth-like 80%N2/20%O2 atmosphere, growth of B. subtilis cells was nearly completely inhibited at pressures below 35 mbar, well above the highest pressure on the martian surface [5]. The purpose of the present investigation was to use low pressure as a selective agent to test the hypothesis that a terrestrial microorganism, Bacillus subtilis, could evolve the ability for enhanced growth under hypobaric conditions approaching those of Mars. B. subtilis wild-type strains WN624 (SpcR) and WN628 (CmR) have been described previously [6] and were used as ancestral strains. Strains were propagated in LB liquid medium containing the appropriate

  16. A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons.

    Directory of Open Access Journals (Sweden)

    Kensuke Tashiro

    Full Text Available Short interspersed repetitive elements (SINEs are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered "junk DNA". However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2(+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2(+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1(-/NPY(+ portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum

  17. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    DEFF Research Database (Denmark)

    Maddahi, Aida; Chen, Qingwen; Edvinsson, Lars

    2009-01-01

    . Immunocytochemistry showed no overlap in expression between MMP-9/TIMP-1 and the astrocyte/glial cell marker GFAP in the vessel walls. CONCLUSION: These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia......BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression...... microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume...

  18. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    DEFF Research Database (Denmark)

    Maddahi, Aida; Chen, Qingwen; Edvinsson, Lars

    2009-01-01

    BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metallopr......BACKGROUND: Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression...

  19. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  20. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.

    Science.gov (United States)

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra

    2016-05-01

    PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better

  1. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji; Klaassen, Curtis D.

    2010-01-01

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstα1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.

  2. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes

    International Nuclear Information System (INIS)

    Shibata, Toru; Akiyama, Nobutake; Noda, Makoto; Sasai, Keisuke; Hiraoka, Masahiro

    1998-01-01

    Purpose: Selective gene expression in response to tumor hypoxia may provide new avenues, not only for radiotherapy and chemotherapy, but also for gene therapy. In this study, we have assessed the extent of hypoxia responsiveness of various DNA constructs by the luciferase assay to help design vectors suitable for cancer therapy. Materials and Methods: Reporter plasmids were constructed with fragments of the human vascular endothelial growth factor (VEGF) and the erythropoietin (Epo) genes encompassing the putative hypoxia-responsive elements (HRE) and the pGL3 promoter vector. Test plasmids and the control pRL-CMV plasmid were cotransfected into tumor cells by the calcium phosphate method. After 6 h hypoxic treatment, the reporter assay was performed. Results: The construct pGL3/VEGF containing the 385 bp fragment of the 5' flanking region in human VEGF gene showed significant increases in luciferase activity in response to hypoxia. The hypoxic/aerobic ratios were about 3-4, and 8-12 for murine and human tumor cells, respectively. Despite the very high degree of conservation among the HREs of mammalian VEGF genes, murine cells showed lower responsiveness than human cells. We next tested the construct pGL3/Epo containing the 150 bp fragment of the 3' flanking region in the Epo gene. Luciferase activity of pGL3/Epo was increased with hypoxia only in human cell lines. The insertion of 5 copies of the 35-bp fragments derived from the VEGF HREs and 32 bp of the E1b minimal promoter resulted in maximal enhancement of hypoxia responsiveness. Conclusions: The constructs with VEGF or Epo fragments containing HRE may be useful for inducing specific gene expression in hypoxic cells. Especially, the application of multiple copies of the HREs and an E1b minimal promoter appears to have the advantage of great improvement in hypoxia responsiveness

  3. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Science.gov (United States)

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  4. A SEP tag enhances the expression, solubility and yield of recombinant TEV protease without altering its activity.

    Science.gov (United States)

    Nautiyal, Kalpana; Kuroda, Yutaka

    2018-05-25

    Tobacco Etch Virus (TEV) protease is used in the purification of recombinant proteins, but its usage is often hampered by solubility issues. Here, we report a short, 12-residue solubility enhancing peptide (SEP) tag attached at the C-terminus of TEV (TEV-C9R). We assessed the effects of the C9R tag on the biophysical and biochemical characteristics of TEV. The yield of HPLC purified TEV-C9R expressed in E. coli grown in 200 mL LB or TB media was between 10 and 13 mg, which was up to 6.5 times higher than the yield of the untagged TEV (untagged-TEV). TEV-C9R was active over a pH range of 5-8, which was wider than that of the commonly used thrombin, and it remained active upon incubation at 60 °C much longer than the untagged-TEV, which aggregated at this temperature. Static and dynamic light scattering demonstrated the higher solubility of purified TEV-C9R. Furthermore, the thermal unfolding of TEV-C9R, as assessed by circular dichroism at pH 4.7, was almost perfectly reversible, in contrast to that of untagged-TEV, which aggregated at high temperature. These results demonstrate the improved biophysical and biochemical characteristics of TEV-C9R originating from higher solubility and provide another example of how SEP tags can enhance enzyme solubility without altering its activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    Science.gov (United States)

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  7. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  8. Enhanced expression of Stim, Orai, and TRPC transcripts and proteins in endothelial progenitor cells isolated from patients with primary myelofibrosis.

    Directory of Open Access Journals (Sweden)

    Silvia Dragoni

    Full Text Available BACKGROUND: An increase in the frequency of circulating endothelial colony forming cells (ECFCs, the only subset of endothelial progenitor cells (EPCs truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF. Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs and subjects suffering from renal cellular carcinoma (RCC-ECFCs. SOCE is up-regulated in RCC-ECFCs due to the over-expression of its underlying molecular components, namely Stim1, Orai1, and TRPC1. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Ca2+ imaging, real-time polymerase chain reaction, western blot analysis and functional assays to evaluate molecular structure and the functional role of SOCE in ECFCs derived from PMF patients (PMF-ECFCs. SOCE, induced by either pharmacological (i.e. cyclopiazonic acid or CPA or physiological (i.e. ATP stimulation, was significantly higher in PMF-ECFCs. ATP-induced SOCE was inhibited upon blockade of the phospholipase C/InsP3 signalling pathway with U73111 and 2-APB. The higher amplitude of SOCE was associated to the over-expression of the transcripts encoding for Stim2, Orai2-3, and TRPC1. Conversely, immunoblotting revealed that Stim2 levels remained constant as compared to N-ECFCs, while Stim1, Orai1, Orai3, TRPC1 and TRPC4 proteins were over-expressed in PMF-ECFCs. ATP-induced SOCE was inhibited by BTP-2 and low micromolar La3+ and Gd3+, while CPA-elicited SOCE was insensitive to Gd3+. Finally, BTP-2 and La3+ weakly blocked PMF-ECFC proliferation, while Gd3+ was ineffective. CONCLUSIONS: Two distinct signalling pathways mediate SOCE in PMF-ECFCs; one is activated by passive store depletion and is Gd3+-resistant, while the other one is regulated by the InsP3

  9. Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability.

    Directory of Open Access Journals (Sweden)

    Anna Lavut

    Full Text Available Transcriptome analyses indicate that a core 10%-15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical

  10. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  11. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  12. Trigonellae Semen Enhances Sperm Motility and the Expression of the Cation Sperm Channel Proteins in Mouse Testes

    Directory of Open Access Journals (Sweden)

    Do Rim Kim

    2015-01-01

    Full Text Available Genetic defects during spermatogenesis can lead to a reduction in sperm motility and cause male infertility. The cation channels of sperm (CatSper play a role in the regulation of hyperactivated sperm motility in mouse testes. The effect of Trigonellae Semen (TS on the male reproductive system and CatSper protein in mouse testes during spermatogenesis was examined. C57BL/c mice were divided into the following five groups: normal, cyclophosphamide- (CP- only treated (control group, and three groups treated with varying concentrations of TS with CP (100, 500, and 1000 mg/kg TS and 100 mg/kg CP. Real-time PCR, western blot analysis, and a testosterone immunoassay were performed to assess CatSper protein levels in the five groups. Additionally, sperm cell counts and motility were examined. Results indicate that sperm motility and sperm counts increased in the TS treated groups in a dose-dependent manner (p<0.01. CatSper levels were also significantly higher in the TS treated groups compared to that of the control group (p<0.001. Therefore, TS treatment could enhance sperm function by promoting spermatogenesis and the expression of CatSper proteins in mouse testes.

  13. Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant.

    Science.gov (United States)

    Prieto, José P; Galvalisi, Martín; López-Hill, Ximena; Meikle, María N; Abin-Carriquiry, Juan A; Scorza, Cecilia

    2015-08-01

    Caffeine is an active adulterant found in several drugs of abuse including coca paste (CP). We had previously demonstrated that caffeine potentiated the acute stimulant effect induced by CP seized samples. The role of caffeine in the expression of sensitization elicited by a CP seized sample (CP1) was here evaluated. CP1 (equivalent dose of 10 mg/kg of cocaine), cocaine (pure, 10 mg/kg), a combination of cocaine 10 mg/kg plus caffeine 2.5 mg/kg (CP1-surrogate) and saline (control) were intraperitoneally injected in male rats under two different sensitization schedules. Ambulatory locomotion was recorded in 58 animals. After five daily CP1 injections and 5 days of withdrawal, CP1-challenged animals displayed a more robust sensitization than cocaine-treated animals. When a 3 injections-regime of CP1-surrogate or cocaine was assayed, only CP1-surrogate was able to elicit sensitization. Caffeine enhances and accelerates the CP1-induced sensitization. Results may shed light on the fast and high dependence observed in CP users. © American Academy of Addiction Psychiatry.

  14. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen.

    Science.gov (United States)

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-07-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.

  15. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The pluripotency of embryonic stem cells (ESCs is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  16. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  17. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  18. Petunia AGAMOUS enhancer-derived chimeric promoters specify a carpel-, stamen- and petal-specific expression pattern sufficient for engineering male and female sterility in tobacco

    Science.gov (United States)

    Previous studies have shown that the AtAGIP promoter derived from the Arabidopsis AGAMOUS (AG) second intron/enhancer specifies a carpel- and stamen-specific pattern of expression in its native host species but not in heterologous species, such as tobacco which restricts its application in the engin...

  19. Enhancement of inflammatory protein expression and nuclear factor Κb (NF-Κb) activity by trichostatin A (TSA) in OP9 preadipocytes.

    Science.gov (United States)

    Sato, Taiki; Kotake, Daisuke; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2013-01-01

    The production of inflammatory proteins such as interleukin-6 (IL-6) by preadipocytes and mature adipocytes is closely associated with the impairment of systemic glucose homeostasis. However, precisely how the production is regulated and the roles of histone deacetylases (HDACs) remain largely unknown. The aim of this study was to establish whether HDAC inhibitors affect the expression of inflammatory proteins in pre/mature adipocytes, and, if so, to determine the mechanism involved. Trichostatin A (TSA), an HDAC inhibitor, enhanced lipopolysaccharide (LPS)-induced production of IL-6 in OP9 preadipocytes but not the mature adipocytes. Moreover, TSA also enhanced palmitic acid-induced IL-6 production and the expression of inflammatory genes induced by LPS in preadipocytes. Although TSA did not affect TLR4 mRNA expression or the activation of MAPKs, a reporter gene assay revealed that the LPS-induced increase in nuclear factor κB (NF-κB) activity was enhanced by TSA. Moreover, TSA increased the level of NF-κB p65 acetylation at lysine 310 and duration of its translocation into the nucleus, which leads to enhancement of NF-κB activity and subsequently expression of inflammatory genes. These findings shed new light on the regulatory roles of HDACs in preadipocytes in the production of inflammatory proteins.

  20. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  1. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism.

    Science.gov (United States)

    Ring, Rebecca M; Regan, Ciaran M

    2013-10-01

    The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.

  3. Selectively enhanced expression of prophenoloxidase activating enzyme 1 (PPAE1 at a bacteria clearance site in the white shrimp, Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Jang In-Kwon

    2011-12-01

    Full Text Available Abstract Background The prophenoloxidase-activating (PO activating system plays an important role in the crustacean innate immunity, particularly in wound healing and pathogen defense. A key member of this system is prophenoloxidase-activating enzyme (PPAE, which is the direct activator of prophenoloxidase (proPO. Despite their importance in crustacean PO activating system, the studies on them remain limited. Results Here we report on a PPAE of white shrimp, Litopenaeus vannamei (lvPPAE1, which showed 94% similarity to PPAE1 of Penaeus monodon. We found that lvPPAE1 in fluid hemocytes was down regulated after challenge by Vibrio harveyi but was enhanced when shrimps were exposed to a bacteria-rich environment for long-term. In vivo gene silence of lvPPAE1 by RNAi can significantly reduce the phenoloxidase activity (PO and increase the susceptibility of shrimps to V. harveyi. Although lvPPAE1 was down-regulated in fluid hemocytes by Vibrio challenge, its expression increased significantly in gill after bacteria injection, which is the primary bacteria-clearance tissue. Conclusion Suppressed expression in fluid hemocytes and enhanced expression in gill indicates selectively enhanced expression at the bacterial clearance site. This is a novel feature for PPAE expression. The results will contribute to our understanding of the PO activating system in crustaceans.

  4. Visualization of cytolytic T cell differentiation and granule exocytosis with T cells from mice expressing active fluorescent granzyme B.

    Directory of Open Access Journals (Sweden)

    Pierre Mouchacca

    Full Text Available To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI mice expressing Granzyme B (GZMB as a fusion protein with red fluorescent tdTomato (GZMB-Tom. As for GZMB in wild type (WT lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells' plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC, as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo.

  5. Genistein enhances the effect of trichostatin A on inhibition of A549 cell growth by increasing expression of TNF receptor-1

    International Nuclear Information System (INIS)

    Wu, Tzu-Chin; Yang, Ying-Chihi; Huang, Pei-Ru; Wen, Yu-Der; Yeh, Shu-Lan

    2012-01-01

    Our previous study has shown that genistein enhances apoptosis in A549 lung cancer cells induced by trichostatin A (TSA). The precise molecular mechanism underlying the effect of genistein, however, remains unclear. In the present study, we investigated whether genistein enhances the anti-cancer effect of TSA through up-regulation of TNF receptor-1 (TNFR-1) death receptor signaling. We incubated A549 cells with TSA (50 ng/mL) alone or in combination with genistein and then determined the mRNA and protein expression of TNFR-1 as well as the activation of downstream caspases. Genistein at 5 and 10 μM significantly enhanced the TSA-induced decrease in cell number and apoptosis in a dose-dependent manner. The combined treatment significantly increased mRNA and protein expression of TNFR-1 at 6 and 12 h, respectively, compared with that of the control group; while TSA alone had no effect. TSA in combination with 10 μM of genistein increased TNFR-1 mRNA and protein expression by about 70% and 40%, respectively. The underlying mechanism for this effect of genistein may be partly associated with the estrogen receptor pathway. The combined treatment also increased the activation of caspase-3 and ‐10 as well as p53 protein expression in A549 cells. The enhancing effects of genistein on the TSA-induced decrease in cell number and on the expression of caspase-3 in A549 cells were suppressed by silencing TNFR-1 expression. These data demonstrated that the upregulation of TNFR-1 death receptor signaling plays an important role, at least in part, in the enhancing effect of genistein on TSA-induced apoptosis in A549 cells. -- Highlights: ► TSA combined with genistein rather than TSA alone increases the expression of TNFR-1. ► Genistein may exert such an effect partly through estrogen receptor pathway. ► The combined treatment increases the activation of caspase-10 and caspase-3. ► The combined treatment also increases the expression of p53 protein. ► TNFR-1 si

  6. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation

    International Nuclear Information System (INIS)

    Moen, Ingrid; Øyan, Anne M; Stuhr, Linda EB; Jevne, Charlotte; Wang, Jian; Kalland, Karl-Henning; Chekenya, Martha; Akslen, Lars A; Sleire, Linda; Enger, Per Ø; Reed, Rolf K

    2012-01-01

    The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment. 4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O 2 , à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis. The purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors. The present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway

  7. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  8. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  9. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia.

    Science.gov (United States)

    Oram, S H; Thoms, J; Sive, J I; Calero-Nieto, F J; Kinston, S J; Schütte, J; Knezevic, K; Lock, R B; Pimanda, J E; Göttgens, B

    2013-06-01

    LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.

  10. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers

    International Nuclear Information System (INIS)

    Peterson, V.M.; Adamovicz, J.J.; Madonna, G.S.; Gause, W.C.; Elliott, T.B.; Moore, M.M.; Ledney, G.D.; Jackson, W.E. III

    1994-01-01

    Prompt, cytokine-mediated restoration of hematopoiesis is a prerequisite for survival after irradiation. Therapy with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dicrynomycolate (S-TDCM) presumably accelerates hematopoietic recovery after irradiation are poorly defined. One hour after sublethal (7.0 Gy) 60 Co gamma irradiation, B6D2F1/J female mice received a single i.p. injection of LPS, MPL, S-TDCM, an extract from Serratia marcescens (Sm-BRM), or Tween 80 in saline (TS). Five hours later, a quantitative reverse transcription-PCR assay demonstrated marked splenic gene expression for IL-1β, IL-3, IL-6, and granulocyte-CSF (G-CSF). Enhanced gene expression for TNF-α, macrophage-CSF (M-CSF), and stem cell factor (SCF) was not detected. Injection of any BRM further enhanced cytokine gene expression and plasma levels of CSF activity within 24 h after irradiation and hastened bone marrow recovery. Mice injected with S-TDCM or Sm-BRM sustained expression of the IL-6 gene for at least 24 h after irradiation. Sm-BRM-treated mice exhibited greater gene expression for IL-1β, IL-3, TNF-α, and G-CSF at day 1 than any other BRM. When challenged with 2 LD 50/30 of Klebsiella pneumoniae 4 days after irradiation, 100% of Sm-BRM-treated mice and 70% of S-TDCM-treated mice survived, whereas ≤30% of mice treated with LPS, MPL, or TS survived. Thus, sublethal irradiation induces transient, splenic cytokine gene expression that can be differentially amplified and prolonged by BRMs. BRMs that sustained and/or enhanced irradiation-induced expression of specific cytokine genes improved survival after experimental infection. 67 refs., 7 figs., 1 tab

  11. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone.

    Science.gov (United States)

    Gonen, Nitzan; Quinn, Alexander; O'Neill, Helen C; Koopman, Peter; Lovell-Badge, Robin

    2017-01-01

    During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.

  12. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone.

    Directory of Open Access Journals (Sweden)

    Nitzan Gonen

    2017-01-01

    Full Text Available During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES, which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.

  13. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  14. Gata4 expression in lateral mesoderm is downstream of BMP4 and isactivated directly by Forkhead and GATA transcription factors through adistal enhancer element

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Anabel; De Val, Sarah; Heidt, Analeah B.; Xu, Shan-Mei; Bristow, James; Black, Brian L.

    2005-05-20

    The GATA family of zinc-finger transcription factors plays key roles in the specification and differentiation of multiple cell types during development. GATA4 is an early regulator of gene expression during the development of endoderm and mesoderm, and genetic studies in mice have demonstrated that GATA4 is required for embryonic development.Despite the importance of GATA4 in tissue specification and differentiation, the mechanisms by which Gata4 expression is activated and the transcription factor pathways upstream of GATA4 remain largely undefined. To identify transcriptional regulators of Gata4 in the mouse,we screened conserved noncoding sequences from the mouse Gata4 gene for enhancer activity in transgenic embryos. Here, we define the regulation of a distal enhancer element from Gata4 that is sufficient to direct expression throughout the lateral mesoderm, beginning at 7.5 days of mouse embryonic development. The activity of this enhancer is initially broad but eventually becomes restricted to the mesenchyme surrounding the liver. We demonstrate that the function of this enhancer in transgenic embryos is dependent upon highly conserved Forkhead and GATA transcription factor binding sites, which are bound by FOXF1 and GATA4,respectively. Furthermore, the activity of the Gata4 lateral mesoderm enhancer is attenuated by the BMP antagonist Noggin, and the enhancer is not activated in Bmp4-null embryos. Thus, these studies establish that Gata4 is a direct transcriptional target of Forkhead and GATA transcription factors in the lateral mesoderm, and demonstrate that Gata4lateral mesoderm enhancer activation requires BMP4, supporting a model in which GATA4 serves as a downstream effector of BMP signaling in the lateral mesoderm.

  15. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    Science.gov (United States)

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  16. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    Science.gov (United States)

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  18. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available The proliferating cell nuclear antigen (PCNA is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2 enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2.Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays.We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  19. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Science.gov (United States)

    Wang, Cheng; Yu, Jie; Kallen, Caleb B

    2008-01-01

    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  20. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory.

    Directory of Open Access Journals (Sweden)

    Melissa S Monsey

    Full Text Available Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs in the lateral nucleus of the amygdala (LA. Rats received chronic exposure to CORT (50 μg/ml in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM is not affected, while long-term memory (LTM is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.

  1. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory.

    Science.gov (United States)

    Monsey, Melissa S; Boyle, Lara M; Zhang, Melinda L; Nguyen, Caroline P; Kronman, Hope G; Ota, Kristie T; Duman, Ronald S; Taylor, Jane R; Schafe, Glenn E

    2014-01-01

    Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT) on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs) in the lateral nucleus of the amygdala (LA). Rats received chronic exposure to CORT (50 μg/ml) in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM) is not affected, while long-term memory (LTM) is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.

  2. Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners.

    Science.gov (United States)

    Moran, Andrew W; Al-Rammahi, Miran A; Arora, Daleep K; Batchelor, Daniel J; Coulter, Erin A; Daly, Kristian; Ionescu, Catherine; Bravo, David; Shirazi-Beechey, Soraya P

    2010-09-01

    In an intensive livestock production, a shorter suckling period allows more piglets to be born. However, this practice leads to a number of disorders including nutrient malabsorption, resulting in diarrhoea, malnutrition and dehydration. A number of strategies have been proposed to overcome weaning problems. Artificial sweeteners, routinely included in piglets' diet, were thought to enhance feed palatability. However, it is shown in rodent models that when included in the diet, they enhance the expression of Na+/glucose co-transporter (SGLT1) and the capacity of the gut to absorb glucose. Here, we show that supplementation of piglets' feed with a combination of artificial sweeteners saccharin and neohesperidin dihydrochalcone enhances the expression of SGLT1 and intestinal glucose transport function. Artificial sweeteners are known to act on the intestinal sweet taste receptor T1R2/T1R3 and its partner G-protein, gustducin, to activate pathways leading to SGLT1 up-regulation. Here, we demonstrate that T1R2, T1R3 and gustducin are expressed together in the enteroendocrine cells of piglet intestine. Furthermore, gut hormones secreted by the endocrine cells in response to dietary carbohydrates, glucagon-like peptides (GLP)-1, GLP-2 and glucose-dependent insulinotrophic peptide (GIP), are co-expressed with type 1 G-protein-coupled receptors (T1R) and gustducin, indicating that L- and K-enteroendocrine cells express these taste elements. In a fewer endocrine cells, T1R are also co-expressed with serotonin. Lactisole, an inhibitor of human T1R3, had no inhibitory effect on sweetener-induced SGLT1 up-regulation in piglet intestine. A better understanding of the mechanism(s) involved in sweetener up-regulation of SGLT1 will allow the identification of nutritional targets with implications for the prevention of weaning-related malabsorption.

  3. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Fan; Wang, Chao; Zhu, Jianshu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Wang, Yi

    2018-06-01

    TpRNAMP5 is mainly expressed in the plasma membrane of roots and basal stems. It functions as a metal transporter for Cd, Mn and Co accumulation. Numerous natural resistance-associated macrophage proteins (NRAMPs) have been functionally identified in various plant species, including Arabidopsis, rice, soybean and tobacco, but no information is available on NRAMP genes in wheat. In this study, we isolated a TpNRAMP5 from dwarf Polish wheat (DPW, Triticum polonicum L.), a species with high tolerance to Cd and Zn. Expression pattern analysis revealed that TpNRAMP5 is mainly expressed in roots and basal stems of DPW. TpNRAMP5 was localized at the plasma membrane of Arabidopsis leaf protoplast. Expression of TpNRAMP5 in yeast significantly increased yeast sensitivity to Cd and Co, but not Zn, and enhanced Cd and Co concentrations. Expression of TpNRAMP5 in Arabidopsis significantly increased Cd, Co and Mn concentrations in roots, shoots and whole plants, but had no effect on Fe and Zn concentrations. These results indicate that TpNRAMP5 is a metal transporter enhancing the accumulation of Cd, Co and Mn, but not Zn and Fe. Genetic manipulation of TpNRAMP5 can be applied in the future to limit the transfer of Cd from soil to wheat grains, thereby protecting human health.

  4. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    Science.gov (United States)

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Intensity and Pattern of Enhancement on CESM: Prognostic Significance and its Relation to Expression of Podoplanin in Tumor Stroma - A Preliminary Report.

    Science.gov (United States)

    Luczynska, Elzbieta; Niemiec, Joanna; Heinze, Sylwia; Adamczyk, Agnieszka; Ambicka, Aleksandra; Marcyniuk, Paulina; Rudnicki, Wojciech; Mitus, Jerzy W; Dyczek, Sonia; Rys, Janusz; Sas-Korczynska, Beata

    2018-02-01

    It is possible that the degree of enhancement on contrast-enhanced spectral mammography (CESM), a new diagnostic method, might provide prognostic information for breast cancer patients. Therefore, in a group of 82 breast cancer patients, we analyzed the prognostic significance of degree and pattern of enhancement on CESM as well as its relation to: (a) breast cancer immunophenotype (based on ER/PR/HER2 status) (b) podoplanin expression in cancer stroma (lymphatic vessel density plus podoplanin-positivity of cancer-associated fibroblasts), and (c) other histological parameters. For each tumor the intensity of enhancement on CESM was qualitatively assessed as strong or weak/medium, while the pattern - as homogenous and heterogenous. Herein we report, for the first time, that strong and heterogenous enhancement on CESM was related to unfavorable disease-free survival of breast cancer patients (p=0.005). Moreover, the strong enhancement was more frequent in large and node-positive tumors (pT>1, pN>0) (p=0.002), as well as in carcinomas with podoplanin-sparse stroma (p=0.008). Intensity and pattern of enhancement on CESM might provide (together with the results of other diagnostic imaging methods) not only the confirmation of presence or absence of tumor, but also prognostic information. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available MicroRNAs (miRNAs can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05, which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy.

  7. CIRCULATING CD11B EXPRESSION CORRELATES WITH THE NEUTROPHIL RESPONSE AND AIRWAY MCD-14 EXPRESSION IS ENHANCED FOLLOWING OZONE EXPOSURE IN HUMANS

    Science.gov (United States)

    We recently reported that baseline expression of circulating CD11b is associated with the magnitude of the neutrophil response following inhaled endotoxin. In this study, we examined whether circulating CD11b plays a similar role in the inflammatory response following inhaled ozo...

  8. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences.

    OpenAIRE

    Milla, M. E.; Brown, B. M.; Sauer, R. T.

    1993-01-01

    Many mutant variants of the P22 Arc repressor are subject to intracellular proteolysis in Escherichia coli, which precludes their expression at levels sufficient for purification and subsequent biochemical characterization. Here we examine the effects of several different C-terminal extension sequences on the expression and activity of a set of Arc mutants. We show that two tail sequences, KNQHE (st5) and H6KNQHE (st11), increase the expression levels of most mutants from 10- to 20-fold and, ...

  9. Adenovirus-mediated IL-24 expression enhances the chemosensitivity of multidrug-resistantgastric cancer cells to cisplatin.

    Science.gov (United States)

    Mao, Zonglei; Bian, Guochun; Sheng, Weihua; He, Songbin; Yang, Jicheng; Dong, Xiaoqiang

    2013-11-01

    Chemotherapy is one of the commonly used strategies in gastric cancer, especially for unresectable patients, but it becomes insensitive to repeated administration of even the most effective chemotherapeutic agents, such as cisplatin. Given this, there is an urgent need for developing chemosensitizers to overcome acquired resistance to chemotherapeutic agents. Interleukin-24 (IL-24), a cytokine-tumor suppressor, shows broad-spectrum and tumor-specific antitumor properties, and studies have demonstrated that IL-24 could conspicuously restore the chemosensitivity of MDR cancer cells. Herein, we developed a human MDR gastric cancer cell subline, SGC7901/CDDP, by repeated selection of resistant clones of parental sensitive cells, and further investigated the chemosensitizing effects and the underlying mechanisms of adenovirus-mediated IL-24 (Ad-IL-24) gene therapy plus CDDP for the human MDR gastric cancer cells SGC7901/CDDP in vitro and in vivo. The results demonstrated that the expression of IL-24 mRNA and protein was profoundly downregulated in SGC7901/CDDP cells by RT-PCR and western blot analysis. In addition, the cell viability assay showed that the IC50 of SGC7901/CDDP cells to CDDP, 5-FU, ADM and MTX was significantly enhanced compared to parental sensitive SGC7901 cells. Ad-IL-24-induced IL-24 overexpression decreased the IC50 of the above agents (not MTX), induced G2/M cell cycle arrest, and Ad-IL-24 plus CDDP elicited significant apoptosis and tumor suppression of SGC7901/CDDP cells in vitro and SGC7901/CDDP cell xenograft tumors in vivo, respectively. Moreover, our results demonstrated that the mechanisms of Ad-IL-24-elicited chemosensitizing effects were closely associated with a substantial upregulation of Bax and downregulation of P-gp and Bcl-2 in SGC7901/CDDP cells in vitro and SGC7901/CDDP xenograft tissues in vivo. Thus, this study indicates that overexpression of IL-24 gene can significantly promote chemosensitivity in MDR phenotype SGC7901

  10. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. IFN-γ-producing NKT cells exacerbate sepsis by enhancing C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils.

    Science.gov (United States)

    Kim, Ji Hyung; Oh, Sae Jin; Ahn, Sehee; Chung, Doo Hyun

    2014-07-01

    A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT-cell-deficient mice of C57BL/6 background during cecal ligation and puncture-induced sepsis. The levels of C5a, IFN-γ, and IL-10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d(-/-) mice, while the mortality rate was lower in CD1d(-/-) mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d(-/-) mice. As assessed by intracellular staining, NKT cells expressed IFN-γ, while neutrophils expressed IL-10. Upon coculture, IL-10-deficient NKT cells enhanced IL-10 production by WT, but not IFN-γR-deficient, neutrophils. Meanwhile, CD1d(-/-) mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL-10 administration into CD1d(-/-) mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN-γ-deficient, NKT cells into CD1d(-/-) mice suppressed CD55 expression on neutrophils, but increased IL-10 and C5a levels. Taken together, IFN-γ-producing NKT cells enhance C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    1999-01-01

    3,3',4,4',5-Pentachlorobiphenyl (PenCB), one of the most toxic co-planar polychlorinated biphenyl congeners, specifically induces class Pi glutathione S-transferase (GSTP1) as well as cytochrome P-450 1A1 in primary cultured rat liver parenchymal cells [Aoki, Matsumoto and Suzuki (1993) FEBS Lett. 333, 114-118]. However, the 5'-flanking sequence of the GSTP1 gene does not contain a xenobiotic responsive element, to which arylhydrocarbon receptor binds. Using a chloramphenicol acetyltransferase assay we demonstrate here that the enhancer termed GSTP1 enhancer I (GPEI) is necessary for the stimulation by PenCB of GSTP1 gene expression in primary cultured rat liver parenchymal cells. GPEI is already known to contain a dyad of PMA responsive element-like elements oriented palindromically. It is suggested that a novel signal transduction pathway activated by PenCB contributes to the stimulation of GSTP1 expression. PMID:10051428

  13. [Small interfering RNA-mediated COX-2 gene silencing enhances chemosensitivity of KB/VCR cells by suppressing MDR-1 gene expression and P-glycoprotein activity].

    Science.gov (United States)

    Mo, Xianchao; Li, Weizhong

    2014-05-01

    To investigate the effect of small interfering RNA (siRNA)-mediated COX-2 gene silencing in enhancing the chemosensitivity of KB/VCR cell lines. KB/VCR cells were trasnfected with COX-2 siRNA were examined for expressions of COX-2 and MDR-1 mRNAs with RT-PCR and for Rho-123 accumulation using flow cytometry. MTT assay was used to analyze the proliferation of the transfected KB/VCR cells. Compared with the negative and blank control groups, COX-2 siRNA transfection resulted in significant growth inhibition of KB/VCR cells exposed to vincristine (PKB/VCR cells. COX-2 gene silencing can enhance the chemosensitivity of KB/VCR cells to vincristine, the mechanism of which may involve down-regulated MDR-1 gene expression and inhibition of P-glycoprotein activity.

  14. Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells

    OpenAIRE

    Zhang, Yingpei; Katakura, Yoshinori; Seto, Perry; Shirahata, Sanetaka

    1997-01-01

    The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinas...

  15. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  16. Expression of the NRF2 Target Gene NQO1 Is Enhanced in Mononuclear Cells in Human Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Shen, Jianlin; Rasmussen, Marianne; Dong, Qi-Rong

    2017-01-01

    increase in NQO1 gene expression in CKD 1-5 (n = 29; 3.5 for NQO1/ribosomal protein L41; p disease prevalence was higher in CKD 1-5 patients with higher compared to those with lower NQO1 gene expression (p = 0...

  17. Functional enhancement of AT1R potency in the presence of the TPαR is revealed by a comprehensive 7TM receptor co-expression screen.

    Directory of Open Access Journals (Sweden)

    Jonas Tind Hansen

    Full Text Available BACKGROUND: Functional cross-talk between seven transmembrane (7TM receptors can dramatically alter their pharmacological properties, both in vitro and in vivo. This represents an opportunity for the development of novel therapeutics that potentially target more specific biological effects while causing fewer adverse events. Although several studies convincingly have established the existence of 7TM receptor cross-talk, little is known about the frequencey and biological significance of this phenomenon. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the extent of synergism in 7TM receptor signaling, we took a comprehensive approach and co-expressed 123 different 7TM receptors together with the angiotensin II type 1 receptor (AT1R and analyzed how each receptor affected the angiotensin II (AngII response. To monitor the effect we used integrative receptor activation/signaling assay called Receptor Selection and Amplification Technology (R-SAT. In this screen the thromboxane A2α receptor (TPαR was the only receptor which significantly enhanced the AngII-mediated response. The TPαR-mediated enhancement of AngII signaling was significantly reduced when a signaling deficient receptor mutant (TPαR R130V was co-expressed instead of the wild-type TPαR, and was completely blocked both by TPαR antagonists and COX inhibitors inhibiting formation of thromboxane A2 (TXA2. CONCLUSIONS/SIGNIFICANCE: We found a functional enhancement of AT1R only when co-expressed with TPαR, but not with 122 other 7TM receptors. In addition, the TPαR must be functionally active, indicating the AT1R enhancement is mediated by a paracrine mechanism. Since we only found one receptor enhancing AT1R potency, our results suggest that functional augmentation through 7TM receptor cross-talk is a rare event that may require specific conditions to occur.

  18. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  19. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  20. Enhanced heterologous expression of biologically active human granulocyte colony stimulating factor in transgenic tobacco BY-2 cells by localization to endoplasmic reticulum.

    Science.gov (United States)

    Nair, Nisha R; Chidambareswaren, M; Manjula, S

    2014-09-01

    Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.

  1. Heterologous expression of a rice metallothionein isoform (OsMTI-1b in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance

    Directory of Open Access Journals (Sweden)

    Zahra Ansarypour

    Full Text Available Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.

  2. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  3. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    Science.gov (United States)

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

  4. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    Science.gov (United States)

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex.

  5. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.

    Science.gov (United States)

    Liu, X Z; Sang, M; Zhang, X A; Zhang, T K; Zhang, H Y; He, X; Li, S X; Sun, X D; Zhang, Z M

    2017-05-01

    Saccharomyces uvarum is a good wine yeast species that may have great potential for the future. However, sulfur tolerance of most S. uvarum strains is very poor. In addition there is still little information about the SSU1 gene of S. uvarum, which encodes a putative transporter conferring sulfite tolerance. In order to analyze the function of the SSU1 gene, two expression vectors that contained different SSU1 genes were constructed and transferred into a sulfite-tolerant S. uvarum strain, A9. Then sulfite tolerance, SO2 production, and PCR, sequencing, RT-qPCR and transcriptome analyses were used to access the function of the S. uvarum SSU1 gene. Our results illustrated that enhancing expression of the SSU1 gene can promote sulfite resistance in S. uvarum, and an insertion fragment ahead of the additional SSU1 gene, as seen in some alleles, could affect the expression of other genes and the sulfite tolerance level of S. uvarum. This is the first report on enhancing the expression of the SSU1 gene of S. uvarum. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    International Nuclear Information System (INIS)

    Miyatake, Kazumasa; Tsuji, Kunikazu; Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Muneta, Takeshi

    2013-01-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis

  7. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    Science.gov (United States)

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  8. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, Kazumasa [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); Tsuji, Kunikazu, E-mail: ktsuji.gcoe@tmd.ac.jp [International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo (Japan); Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); Sekiya, Ichiro [Section of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo (Japan); Muneta, Takeshi [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo (Japan)

    2013-02-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.

  9. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  10. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  11. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Noriko [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Yao, Hisayuki [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Iwasa, Masaki; Fujishiro, Aya [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192 (Japan); Fujii, Sumie [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Hirai, Hideyo [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Takaori-Kondo, Akifumi [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ichinohe, Tatsuo [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Maekawa, Taira [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2016-01-22

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment

  12. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  13. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway.

    Science.gov (United States)

    Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae

    2017-09-01

    Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research

  14. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    DEFF Research Database (Denmark)

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall

    2016-01-01

    -PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS: We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET......, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch...... and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β...

  15. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco

    DEFF Research Database (Denmark)

    Jach, G; Görnhardt, B; Mundy, J

    1995-01-01

    cDNAs encoding three proteins from barley (Hordeum vulgare), a class-II chitinase (CHI), a class-II beta-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes...... was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original...... cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani, which infects a range of plant species including tobacco...

  16. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  17. Heterologous Expression of AtBBX21 Enhances the Rate of Photosynthesis and Alleviates Photoinhibition in Solanumtuberosum.

    Science.gov (United States)

    Crocco, Carlos D; Ocampo, Gabriel Gomez; Ploschuk, Edmundo L; Mantese, Anita; Botto, Javier F

    2018-05-01

    B-box (BBX) proteins are zinc-finger transcription factors containing one or two B-box motifs. BBX proteins act as key factors in the networks regulating growth and development. The relevance of BBX21 to light and abscisic acid signaling in seedling development is well established; however, its importance in adult plant development and agronomic species is poorly understood. Therefore, we studied the effect of heterologous expression of Arabidopsis ( Arabidopsis thaliana ) BBX21 in potato ( Solanum tuberosum ) var Spunta. Three independent AtBBX21- expressing lines and the wild-type control were cultivated under sunlight and at controlled temperatures in a greenhouse. By anatomical, physiological, biochemical, and gene expression analysis, we demonstrated that AtBBX21 -expressing plants were more robust and produced more tubers than wild-type plants. Interestingly, AtBBX21- expressing plants had higher rates of photosynthesis, with a significant increase in photosynthetic gene expression, and higher stomatal conductance, with increased size of the stomatal opening, without any associated decline in water use efficiency. Furthermore, AtBBX21 -expressing potato plants had reduced photoinhibition associated with higher production of anthocyanins and phenolic compounds, and higher expression of genes in the phenylpropanoid biosynthesis pathway. To gain insights into the mechanism of BBX21, we evaluated the molecular, morphological, metabolic, and photosynthetic behavior in adult BBX21- overexpressing Arabidopsis. We conclude that BBX21 overexpression improved morphological and physiological attributes, and photosynthetic rates in nonoptimal, high-irradiance conditions, without associated impairment of water use efficiency. These characteristics of BBX21 may be useful for increasing production of potatoes, and potentially of other crops. © 2018 American Society of Plant Biologists. All Rights Reserved.

  18. Reduced expression IRF7 in nasal epithelial cells from smokers as a potential mechanism mediating enhanced susceptibility to influenza

    Science.gov (United States)

    Rationale: Smokers are more susceptible to viral infections, including influenza virus, yet the mechanisms mediating this effect are not known. Methods: We have established an in vitro model of differentiated nasal epithelial cells from smokers, which maintain enhanced levels...

  19. [Electroacupuncture Intervention Enhances Splenic Natural Killer Cell Activity via Inhibiting Phosphorylation of ERK 5 in the Hypothalamus of Surgically Traumatized Rats].

    Science.gov (United States)

    Chen, Yan; Li, Jing; Zhu, Ke-ying; Xiao, Sheng; Wang, Yan-qing; Wu, Gen-cheng; Wang, Jun

    2015-06-01

    To observe the effect of electroacupuncture (EA) on cytotoxic activity of splenic natural killer (NK) cells after surgical trauma via extracellular signal-regulated kinase (ERK) 5 pathway in the rats' hypothalamus, so as to explore its mechanism underlying improving immune disorders after surgery. Sprague-Dawley rats were randomly divided into the following 6 groups: control, trauma model, EA, sham EA, 4 nmol-BIX 02188 (an inhibitor for ERK 5 catalytic activity) and 20 nmol-BIX 02188 (n = 6 rats per group). The surgical trauma model was established by making a longitudinal incision (6 cm in length) along the median line of the back to expose the spinal column and another longitudinal incision along the abdominal median line. EA (2 Hz/15 Hz, 1 - 2 mA) was applied to bilateral "Zusanli" (ST 36) for 30 min immediately after surgery. For rats of the BIX groups, intra-lateral ventricular microinjection of BIX 02188 (10 µL, 4 nmol or 20 nmol, or saline for control rats) was conducted 30 min before the surgery. The expression level and protein of phosphorylated ERK 5 (p-ERK 5) and corticotropin-releasing factor (CRF) protein were measured by immunohistochemistry and Western blot, respectively. The cytotoxicity of splenic NK cells and the expression of splenic Perforin and Granzyme-B genes were measured by lactate dehydrogenase (LDH) release assay and real-time PCR, respectively. In comparison with the control group, hypothalamic p-ERK 5 immunoactivity, p-ERK 5 protein and CRF protein expression levels were significantly up-regulated in the model group (Psplenic NK cell cytotoxicity and Perforin mRNA and Granzyme-B mRNA expression levels were notably down-regulated in the model group (P 0. 05) except the increased p-ERK 5 protein in the 4 nmol-BIX 02188 group. In addition, the down-regulated NK cell activity, Perforin mRNA and Granzyme-B mRNA expression levels were significantly reversed in the EA and 20 nmol-BIX 02188 groups (Psplenic NK cytotoxicity and Perforin and

  20. Class A scavenger receptor prom