WorldWideScience

Sample records for enhances hepatic glucose

  1. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  2. Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice

    NARCIS (Netherlands)

    Bandsma, RHJ; Grefhorst, A; van Dijk, TH; van der Sluijs, FH; Hammer, A; Reijngoud, DJ; Kuipers, F

    2004-01-01

    Aims/hypothesis. Leptin-deficient ob/ob mice are hyperinsulinaemic and hyperglycaemic; however, the cause of hyperglycaemia remains largely unknown. Methods. Glucose metabolism in vivo in 9-h fasted ob/ob mice and lean littermates was studied by infusing [U-C-13]-glucose, [2-C-13]-glycerol,

  3. Free fatty acids or high-concentration glucose enhances hepatitis A virus replication in association with a reduction in glucose-regulated protein 78 expression.

    Science.gov (United States)

    Nwe Win, Nan; Kanda, Tatsuo; Nakamura, Masato; Nakamoto, Shingo; Okamoto, Hiroaki; Yokosuka, Osamu; Shirasawa, Hiroshi

    2017-01-29

    Although the interaction between host and hepatitis A virus (HAV) factors could lead to severe hepatitis A, the exact mechanism of acute liver failure caused by HAV infection is not yet fully understood. The effects of metabolic diseases such as dyslipidemia or diabetes mellitus on HAV replication are still unknown. Here, we examined the effects of free fatty acids or high-concentration glucose on HAV replication and the effects on mitogen-activated protein kinase signaling pathway-related genes in human hepatocytes. We discovered a novel effect of free fatty acids or high-concentration glucose on HAV replication in association with a reduction in the expression of glucose-regulated protein 78 (GRP78). We also observed that thapsigargin induced GRP78 expression and inhibited HAV replication. These findings may provide a new interpretation of the relationship between metabolic diseases and severity of hepatitis A and suggest a new understanding of the mechanism of severe HAV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Kenmochi, Hiroki; Miyashita, Yusuke; Sasaki, Motohiro; Ojima, Minoru; Sasahara, Masakiyo; Koya, Daisuke; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2010-05-01

    Recent evidence suggests that treatment with mineralocorticoid receptor antagonist suppressed local inflammation in vascular tissues or cardiomyocytes; therefore, we examined the effect of spironolactone on glucose and lipid metabolism in a mouse model with diet-induced diabetes and nonalcoholic fatty liver disease. C57BL/6 mice were fed either the control diet, 60% fat diet with 30% fructose water (HFFD), or HFFD with spironolactone for 8 wk. HFFD mice demonstrated apparent phenotypes of metabolic syndrome, including insulin resistance, hypertension, dyslipidemia, and fatty liver. Although treatment with spironolactone did not affect the increased calorie intake and body weight by HFFD, the increments of epididymal fat weight, blood pressure, serum triglyceride, free fatty acids, leptin, and total cholesterol levels were significantly suppressed. Elevation of blood glucose during glucose and insulin tolerance tests in HFFD mice was significantly lowered by spironolactone. Notably, increased glucose levels during pyruvate tolerance test in HFFD mice were almost completely ameliorated to control levels by the treatment. Staining with hematoxylin-eosin (HE) and Oil-red-O demonstrated marked accumulation of triglycerides in the centrilobular part of the hepatic lobule in HFFD mice, and these accumulations were effectively improved by spironolactone. Concomitantly HFFD feeding markedly up-regulated hepatic mRNA expression of proinflammatory cytokines (TNFalpha, IL-6, and monocyte chemoattractant protein-1), gluconeogenic gene phosphoenolpyruvate carboxykinase, transcription factor carbohydrate response element binding protein, and its downstream lipogenic enzymes, all of which were significantly suppressed by spironolactone. These results indicate that inhibition of mineralocorticoid receptor might be a beneficial therapeutic approach for diet-induced phenotypes of metabolic syndrome and fatty liver.

  5. Signalling mechanisms linking hepatic glucose and lipid metabolism.

    Science.gov (United States)

    Weickert, M O; Pfeiffer, A F H

    2006-08-01

    Fatty liver and hepatic triglyceride accumulation are strongly associated with obesity, insulin resistance and type 2 diabetes, and are subject to nutritional influences. Hepatic regulation of glucose and lipid homeostasis is influenced by a complex system of hormones, hormonally regulated signalling pathways and transcription factors. Recently, considerable progress has been made in elucidating molecular pathways and potential factors that are affected in insulin-resistant states. In this review we discuss some of the key factors that are involved in both the regulation of glucose and lipid metabolism in the liver. Understanding the molecular network that links hepatic lipid accumulation and impaired glucose metabolism may provide targets for dietary or pharmacological interventions.

  6. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels.

    Directory of Open Access Journals (Sweden)

    Jiesi Xu

    Full Text Available Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1 is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL, an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.

  7. Hepatic Carboxylesterase 1 Is Induced by Glucose and Regulates Postprandial Glucose Levels

    Science.gov (United States)

    Xu, Jiesi; Yin, Liya; Xu, Yang; Li, Yuanyuan; Zalzala, Munaf; Cheng, Gang; Zhang, Yanqiao

    2014-01-01

    Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels. PMID:25285996

  8. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    Science.gov (United States)

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  9. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  10. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    Energy Technology Data Exchange (ETDEWEB)

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  11. Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Lawan, Ahmed; Zhang, Lei; Gatzke, Florian; Min, Kisuk; Jurczak, Michael J; Al-Mutairi, Mashael; Richter, Patric; Camporez, Joao Paulo G; Couvillon, Anthony; Pesta, Dominik; Roth Flach, Rachel J; Shulman, Gerald I; Bennett, Anton M

    2015-01-01

    The liver plays a critical role in glucose metabolism and communicates with peripheral tissues to maintain energy homeostasis. Obesity and insulin resistance are highly associated with nonalcoholic fatty liver disease (NAFLD). However, the precise molecular details of NAFLD remain incomplete. The p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) regulate liver metabolism. However, the physiological contribution of MAPK phosphatase 1 (MKP-1) as a nuclear antagonist of both p38 MAPK and JNK in the liver is unknown. Here we show that hepatic MKP-1 becomes overexpressed following high-fat feeding. Liver-specific deletion of MKP-1 enhances gluconeogenesis and causes hepatic insulin resistance in chow-fed mice while selectively conferring protection from hepatosteatosis upon high-fat feeding. Further, hepatic MKP-1 regulates both interleukin-6 (IL-6) and fibroblast growth factor 21 (FGF21). Mice lacking hepatic MKP-1 exhibit reduced circulating IL-6 and FGF21 levels that were associated with impaired skeletal muscle mitochondrial oxidation and susceptibility to diet-induced obesity. Hence, hepatic MKP-1 serves as a selective regulator of MAPK-dependent signals that contributes to the maintenance of glucose homeostasis and peripheral tissue energy balance. These results also demonstrate that hepatic MKP-1 overexpression in obesity is causally linked to the promotion of hepatosteatosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    Science.gov (United States)

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  13. Control of Hepatic Glucose Metabolism by the Oral Hypoglycemic Sulfonylureas

    Science.gov (United States)

    1984-05-11

    observed were specific for the hypo- glycemic sulfonylureas and could not be extended to Include other para-substltuted sulfonamides. The inhibition...tolbutamide in glucose-free medium (Kaldor and Pogasta, 1960). In vivo measurements in dogs (Shambye and Tarding, 1957) and man (Recant and Fischer, 1957) of...accepted as the most appropriate model for the study of hepatic carbohydrate metabolism. 2) The evaluation of ̂ vitro potencies of the sulfonylureas in

  14. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  15. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-05-01

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because the fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3 h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and the glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4 , an inhibitor of glucose oxidation, nearly twofold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of the lactate transporter gene ( MCT1) , protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1 , LDHA , and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism. Copyright © 2017 the American Physiological Society.

  16. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, D.G. (Shriners Burns Institute, Galveston, TX (USA))

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with ({sup 14}C)glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant ({sup 14}C)glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, ({sup 14}C)glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6.

  18. Deletion of hepatic carbohydrate response element binding protein (ChREBP impairs glucose homeostasis and hepatic insulin sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Tara Jois

    2017-11-01

    Conclusions: Overall, hepatic ChREBP is protective in regards to hepatic insulin sensitivity and whole body glucose homeostasis. Hepatic ChREBP action can influence other peripheral tissues and is likely essential in coordinating the body's response to different feeding states.

  19. Regulation of hepatic pyruvate dehydrogenase phosphorylation in offspring glucose intolerance induced by intrauterine hyperglycemia.

    Science.gov (United States)

    Zhang, Yong; Zhang, Ying; Ding, Guo-Lian; Liu, Xin-Mei; Ye, Jianping; Sheng, Jian-Zhong; Fan, Jianxia; Huang, He-Feng

    2017-02-28

    Gestational diabetes mellitus (GDM) has been shown to be associated with a high risk of diabetes in offspring. In mitochondria, the inhibition of pyruvate dehydrogenase (PDH) activity by PDH phosphorylation is involved in the development of diabetes. We aimed to determine the role of PDH phosphorylation in the liver in GDM-induced offspring glucose intolerance. PDH phosphorylation was increased in lymphocytes from the umbilical cord blood of the GDM patients and in high glucose-treated hepatic cells. Both the male and female offspring from GDM mice had elevated liver weights and glucose intolerance. Further, PDH phosphorylation was increased in the livers of both the male and female offspring from GDM mice, and elevated acetylation may have contributed to this increased phosphorylation. We obtained lymphocytes from umbilical cord blood collected from both normal and GDM pregnant women. In addition, we obtained the offspring of streptozotocin-induced GDM female pregnant mice. The glucose tolerance test was performed to assess glucose tolerance in the offspring. Further, Western blotting was conducted to detect changes in protein levels. Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.

  20. Enhancement of 4-chlorophenol biodegradation using glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tarighian, Alireza; Hill, Gordon; Headley, John [Division of Environmental Engineering, University of Saskatchewan, 105 Maintenance Road, S7N 5C5, Saskatoon, SK (Canada); Pedras, Soledad [Department of Chemistry, University of Saskatchewan, 110 Science Place, S7N 5C9, Saskatoon, SK (Canada)

    2003-03-01

    Toxic, xenobiotic chemicals present challenging problems for the environment since they are normally resistant to biodegradation. Sometimes it is possible to induce biodegradation activity by the use of growth cosubstrates. In this study, pure solutions and binary mixtures of glucose, phenol and 4-chlorophenol have been metabolized in batch cultures by a pure strain of Pseudomonas putida. Following a lag period during which slow growth and low production of biomass occurred, phenol was metabolized according to the Monod model. Glucose was also metabolized according to the Monod model but exponential growth commenced immediately after inoculation with no noticeable lag phase. Biokinetic behavior for growth on a mixture of phenol and glucose paralleled the behavior on individual substrates with simultaneous consumption of both substrates. 4-chlorophenol was not consumed as a sole substrate by Pseudomonas putida but was consumed as a cometabolite with either glucose or phenol acting as the primary growth cosubstrate. Surprisingly, glucose was found to be the superior growth cosubstrate, suggesting that inexpensive sugars can be used to enhance the biodegradation of chlorophenol-contaminated sites. Glucose and the excreted metabolic products of the biodegradation process, including a bright yellow pigment, demonstrated negligible toxicity towards Artemia salina, unlike the phenol and 4-chlorophenol substrates. (orig.)

  1. Enhanced muscle glucose metabolism after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N

    1984-01-01

    Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase in the pr......Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase...... in the presence of insulin is found. To determine whether these alterations and in particular those mediated by insulin are due to local or systemic factors, one hindlimb of an anesthetized rat was electrically stimulated, and both hindlimbs were perfused immediately thereafter. Glucose and glycogen metabolism...... in the stimulated leg closely mimicked that observed previously after voluntary exercise on a treadmill. With no insulin added to the perfusate, glucose incorporation into glycogen was markedly enhanced in muscles that were glycogen depleted as were the uptake of 2-deoxyglucose and 3-O-methylglucose. Likewise...

  2. Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance.

    Science.gov (United States)

    Alves, Tiago C; Befroy, Douglas E; Kibbey, Richard G; Kahn, Mario; Codella, Roberto; Carvalho, Rui A; Falk Petersen, Kitt; Shulman, Gerald I

    2011-04-01

    Pyruvate dehydrogenase plays a critical role in the regulation of hepatic glucose and fatty acid oxidation; however, surprisingly little is known about its regulation in vivo. In this study we examined the individual effects of insulin and substrate availability on the regulation of pyruvate dehydrogenase flux (V(PDH) ) to tricarboxylic acid flux (V(TCA) ) in livers of awake rats with lipid-induced hepatic insulin resistance. V(PDH) /V(TCA) flux was estimated from the [4-(13) C]glutamate/[3-(13) C]alanine enrichments in liver extracts and assessed under conditions of fasting and during a hyperinsulinemic-euglycemic clamp, whereas the effects of increased plasma glucose concentration on V(PDH) /V(TCA) flux was assessed during a hyperglycemic clamp in conjunction with infusions of somatostatin and insulin to maintain basal concentrations of insulin. The effects of increases in both glucose and insulin on V(PDH) /V(TCA) were examined during a hyperinsulinemic-hyperglycemic clamp. The effects of chronic lipid-induced hepatic insulin resistance on this flux were also examined by performing these measurements in rats fed a high-fat diet for 3 weeks. Using this approach we found that fasting V(PDH) /V(TCA) was reduced by 95% in rats with hepatic insulin resistance (from 17.2 ± 1.5% to 1.3 ± 0.7%, P increase V(PDH) /V(TCA) flux. Only under conditions of combined hyperglycemia and hyperinsulinemia did V(PDH) /V(TCA) flux increase (44.6 ± 3.2%, P fat fed animals but not in rats with chronic lipid-induced hepatic insulin resistance. These studies demonstrate that the combination of both hyperinsulinemia and hyperglycemia are required to increase V(PDH) /V(TCA) flux in vivo and that this flux is severely diminished in rats with chronic lipid-induced hepatic insulin resistance. 2011 American Association for the Study of Liver Diseases.

  3. Contrast enhanced ultrasound features of hepatic cystadenoma and hepatic cystadenocarcinoma.

    Science.gov (United States)

    Dong, Yi; Wang, Wen-Ping; Mao, Feng; Fan, Mei; Ignee, Andre; Serra, Carla; Sparchez, Zeno; Sporea, Ioan; Braden, Barbara; Dietrich, Christoph F

    2017-03-01

    Hepatic (biliary) cystic tumor (HBCT) is a rare focal cystic liver lesion, which has been rarely described in the literature. In our current multicenter, retrospective study, we aimed to analyze contrast enhanced ultrasound (CEUS) features and its diagnostic performance in histologically proved HBCT. Twenty-three patients with single HBCT were retrospectively analyzed. Histologically, 17 (73.9%) were benign hepatic (biliary) cystadenoma (HBCA), 6 (26.1%) were hepatic (biliary) cystadenocarcinoma (HBCAC). All CEUS examinations were assessed by two independent radiologists in consensus. Criteria of CEUS imaging evaluation included the contrast enhancement pattern of lesion (hypoenhancing, hyperenhancing, isoenhancing in comparison to the surrounding liver parenchyma) during the arterial, portal venous and late phases. After injection of ultrasound contrast agents, most of the HBCTs (78.3%, 18/23) had typical honeycomb enhancement pattern of the cystic wall, septa or mural nodules. Comparing between HBCA and HBCAC, hyperenhancement of the honeycomb septa during the arterial phase was more common in HBCA (p = .047). However, hypoenhancement during the portal venous and late phases was the characteristic of HBCAC (p = .041). The EFSUMB algorithm for CEUS for characterization of solid focal liver lesions is also applicable to HBCT. CEUS evaluation can avoid further diagnostic investigations or invasive biopsy procedure.

  4. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  5. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis.

    Science.gov (United States)

    Zhuo, Shu; Yang, Mengmei; Zhao, Yanan; Chen, Xiaofang; Zhang, Feifei; Li, Na; Yao, Pengle; Zhu, Tengfei; Mei, Hong; Wang, Shanshan; Li, Yu; Chen, Shiting; Le, Yingying

    2016-11-01

    MicroRNAs (miRNAs) are a new class of regulatory molecules implicated in type 2 diabetes, which is characterized by insulin resistance and hepatic glucose overproduction. We show that miRNA-451 (miR-451) is elevated in the liver tissues of dietary and genetic mouse models of diabetes. Through an adenovirus-mediated gain- and loss-of-function study, we found that miR-451 negatively regulates hepatic gluconeogenesis and blood glucose levels in normal mice and identified glycerol kinase (Gyk) as a direct target of miR-451. We demonstrate that miR-451 and Gyk regulate hepatic glucose production, the glycerol gluconeogenesis axis, and the AKT-FOXO1-PEPCK/G6Pase pathway in an opposite manner; Gyk could reverse the effect of miR-451 on hepatic gluconeogenesis and AKT-FOXO1-PEPCK/G6Pase pathway. Moreover, overexpression of miR-451 or knockdown of Gyk in diabetic mice significantly inhibited hepatic gluconeogenesis, alleviated hyperglycemia, and improved glucose tolerance. Further studies showed that miR-451 is upregulated by glucose and insulin in hepatocytes; the elevation of hepatic miR-451 in diabetic mice may contribute to inhibiting Gyk expression. This study provides the first evidence that miR-451 and Gyk regulate the AKT-FOXO1-PEPCK/G6Pase pathway and play critical roles in hepatic gluconeogenesis and glucose homeostasis and identifies miR-451 and Gyk as potential therapeutic targets against hyperglycemia in diabetes. © 2016 by the American Diabetes Association.

  6. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    Energy Technology Data Exchange (ETDEWEB)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-(3-/sup 3/H)glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml/sup -1/ during continuous infusion and varied between 95 and 501 pg x ml/sup -1/ during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production.

  8. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  9. Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating Tff3 Expression.

    Science.gov (United States)

    Zhu, Yi; Zhao, Shangang; Deng, Yingfeng; Gordillo, Ruth; Ghaben, Alexandra L; Shao, Mengle; Zhang, Fang; Xu, Ping; Li, Yang; Cao, Huachuan; Zagnitko, Olga; Scott, David A; Gupta, Rana K; Xing, Chao; Zhang, Bei B; Lin, Hua V; Scherer, Philipp E

    2017-11-01

    Transcripts of key enzymes in the Leloir pathway of galactose metabolism in mouse livers are significantly increased after chronic high-fat/high-sucrose feeding. UDP-galactose-4-epimerase (GALE) is the last enzyme in this pathway that converts UDP-galactose to UDP-glucose and was previously identified as a downstream target of the endoplasmic reticulum (ER) stress effector spliced X-box binding protein 1, suggesting an interesting cross talk between galactose and glucose metabolism in the context of hepatic ER stress and whole-body metabolic fitness. However, its specific role in glucose metabolism is not established. Using an inducible and tissue-specific mouse model, we report that hepatic overexpression of Gale increases gluconeogenesis from pyruvate and impairs glucose tolerance. Conversely, genetic reduction of Gale in liver improves glucose tolerance. Transcriptional profiling identifies trefoil factor 3 (Tff3) as one of the downstream targets of GALE. Restoration of Tff3 expression corrects glucose intolerance in Gale-overexpressing mice. These studies reveal a new link between hepatic GALE activity and whole-body glucose homeostasis via regulation of hepatic Tff3 expression. © 2017 by the American Diabetes Association.

  10. Chronic central leptin infusion modulates the glycemia response to insulin administration in male rats through regulation of hepatic glucose metabolism

    OpenAIRE

    Burgos Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Laura M. Frago; Chowen, Julie; Frühbeck, Gema; Argente, J.; Barrios, Vicente

    2015-01-01

    Leptin and insulin use overlapping signaling mechanisms to modify hepatic glucose metabolism, which is critical in maintaining normal glycemia. We examined the effect of an increase in central leptin and insulin on hepatic glucose metabolism and its influence on serum glucose levels. Chronic leptin infusion increased serum leptin and reduced hepatic SH-phosphotyrosine phosphatase 1, the association of suppressor of cytokine signaling 3 to the insulin receptor in liver and the rise in glycemia...

  11. Glycogen phosphorylase inhibitor N-(3,5-dimethyl-Benzoyl-N'-(β-D-glucopyranosylurea improves glucose tolerance under normoglycemic and diabetic conditions and rearranges hepatic metabolism.

    Directory of Open Access Journals (Sweden)

    Lilla Nagy

    Full Text Available Glycogen phosphorylase (GP catalyzes the breakdown of glycogen and largely contributes to hepatic glucose production making GP inhibition an attractive target to modulate glucose levels in diabetes. Hereby we present the metabolic effects of a novel, potent, glucose-based GP inhibitor (KB228 tested in vitro and in vivo under normoglycemic and diabetic conditions. KB228 administration enhanced glucose sensitivity in chow-fed and obese, diabetic mice that was a result of higher hepatic glucose uptake. Besides improved glucose sensitivity, we have observed further unexpected metabolic rearrangements. KB228 administration increased oxygen consumption that was probably due to the overexpression of uncoupling protein-2 (UCP2 that was observed in animal and cellular models. Furthermore, KB228 treatment induced mammalian target of rapamycin complex 2 (mTORC2 in mice. Our data demonstrate that glucose based GP inhibitors are capable of reducing glucose levels in mice under normo and hyperglycemic conditions. Moreover, these GP inhibitors induce accommodation in addition to GP inhibition--such as enhanced mitochondrial oxidation and mTORC2 signaling--to cope with the glucose influx and increased glycogen deposition in the cells, however the molecular mechanism of accommodation is unexplored.

  12. The influence of social status on hepatic glucose metabolism in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Gilmour, Kathleen M; Kirkpatrick, Sheryn; Massarsky, Andrey; Pearce, Brenda; Saliba, Sarah; Stephany, Céleste-Élise; Moon, Thomas W

    2012-01-01

    The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data

  13. Response variability to glucose facilitation of cognitive enhancement.

    Science.gov (United States)

    Owen, Lauren; Scholey, Andrew; Finnegan, Yvonne; Sünram-Lea, Sandra I

    2013-11-01

    Glucose facilitation of cognitive function has been widely reported in previous studies (including our own). However, several studies have also failed to detect glucose facilitation. There is sparsity of research examining the factors that modify the effect of glucose on cognition. The aims of the present study were to (1) demonstrate the previously observed enhancement of cognition through glucose administration and (2) investigate some of the factors that may exert moderating roles on the behavioural response to glucose, including glucose regulation, body composition (BC) and hypothalamic–pituitary–adrenal axis response. A total of twenty-four participants took part in a double-blind, placebo-controlled, randomised, repeated-measures study, which examined the effect of 25 and 60 g glucose compared with placebo on cognitive function. At 1 week before the study commencement, all participants underwent an oral glucose tolerance test. Glucose facilitated performance on tasks of numeric and spatial working memory, verbal declarative memory and speed of recognition. Moderating variables were examined using several indices of glucoregulation and BC. Poorer glucoregulation predicted improved immediate word recall accuracy following the administration of 25 g glucose compared with placebo. Those with better glucoregulation showed performance decrements on word recall accuracy following the administration of 25 g glucose compared with placebo. These findings are in line with accumulating evidence that glucose load may preferentially enhance cognition in those with poorer glucoregulation. Furthermore, the finding that individuals with better glucoregulation may suffer impaired performance following a glucose load is novel and requires further substantiation.

  14. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by 13C and 2H isotopomer analysis

    NARCIS (Netherlands)

    Reis, C.P.; Neufeld, R.; Veiga, F.; Figueiredo, I.V.; Jones, J.; Soares, A.F.; Nunes, P.M.; Damg\\'e, C.; Carvalho, R.A.

    2012-01-01

    The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-‘‘C] glucose and ‘H2O. Plasma glucose ‘H and ‘‘C enrichments

  15. Direct muscarinic cholinergic inhibition of hepatic glucose production in humans.

    OpenAIRE

    Boyle, P. J.; Liggett, S B; Shah, S D; Cryer, P E

    1988-01-01

    To explore the potential role of the parasympathetic nervous system in human glucoregulatory physiology, responses to the muscarinic cholinergic agonist bethanechol (5.0 mg s.c.) and antagonist atropine (1.0 mg i.v.) were measured in normal humans. There were no changes in the plasma glucose concentration or rates of glucose production or utilization following atropine administration. After bethanechol administration there were no changes in the plasma glucose concentration or fluxes despite ...

  16. Effect of interferon treatment on glucose metabolism in children with chronic hepatitis B infection.

    Science.gov (United States)

    Kuloğlu, Zarife; Kansu, Aydan; Berberoğlu, Merih; Demirçeken, Fulya; Ocal, Gönül; Girgin, Nurten

    2004-03-01

    Interferon is known to have some effects on glucose metabolism, but this issue has not been investigated in children with chronic hepatitis B infection. The aim of this study was to investigate the impact of interferon on glucose metabolism and to investigate whether autoimmunity has a role in the pathogenesis. Fourteen patients (9 male, 6.3+/-2.7 years) with children with chronic hepatitis B infection were prospectively evaluated. They received interferon 10 MU/m2 for six months. Vral glucose tolerance test, fasting insulin and C-peptide, postprandial insulin and C-peptide, anti-GAD antibody, HOMA-IR and glucose/insulin ratio were measured before and after treatment. Before interferon, oral glucose tolerance test showed glucose intolerance in two patients (14.5%) and hypoglycemia in one patient (7.1%). One patient had hyperinsulinemia and insulin resistance (7.1%), and four patients had hypoinsulinemia and insulin hypersensitivity (28.5%). After interferon, oral glucose tolerance test was normal in 13 patients (92.8%). Abnormal oral glucose tolerance test persisted in the same patient, but no difference was found in insulin resistance. Hypoinsulinemia and insulin hypersensitivity were present in five patients (35.7%). DM related autoantibodies were negative in all patients before interferon; however, one patient, whose glucose metabolism was within normal limits, developed anti-GAD antibody after interferon. Children with children with chronic hepatitis B infection were shown to have hypoinsulinemia and insulin hypersensitivity. These children may have risk of progresssing to insuline dependent drabetes mellitus. We demonstrated that interferon did not seem to worsen glucose metabolism, but it had minimal positive impact on it. These results should be supported with other studies and interferon should be used carefully, especially in children with decreased beta cell reserve.

  17. Hepatic Glucose Production Increases in Response to Metformin Treatment in the Glycogen-depleted State

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole

    Metformin is believed to reduce glucose levels primarily by inhibiting hepatic glucose production, but at the same time do not cause hypoglycemia. Recent data indicate that metformin antagonizes the major glucose counterregulatory hormone, glucagon suggesting that other mechanisms protect against...... hypoglycemia. Here, we examined the effect of metformin on whole-body glucose metabolism after a glycogen-depleting 40 h fast and the role of reduced-function alleles in OCT1. In a randomized cross-over trial, 34 healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9...... with two reduced-function alleles) were fasted for 42 h twice. In one of the periods, before the fasting, the volunteers were titrated to steady-state with 1 g metformin twice daily for seven days. Parameters of whole-body glucose metabolism were assessed using [3-3^H] glucose, indirect calorimetry...

  18. Increased Hepatic Glucose Production in Fetal Sheep With Intrauterine Growth Restriction Is Not Suppressed by Insulin

    Science.gov (United States)

    Thorn, Stephanie R.; Brown, Laura D.; Rozance, Paul J.; Hay, William W.; Friedman, Jacob E.

    2013-01-01

    Intrauterine growth restriction (IUGR) increases the risk for metabolic disease and diabetes, although the developmental origins of this remain unclear. We measured glucose metabolism during basal and insulin clamp periods in a fetal sheep model of placental insufficiency and IUGR. Compared with control fetuses (CON), fetuses with IUGR had increased basal glucose production rates and hepatic PEPCK and glucose-6-phosphatase expression, which were not suppressed by insulin. In contrast, insulin significantly increased peripheral glucose utilization rates in CON and IUGR fetuses. Insulin robustly activated AKT, GSK3β, and forkhead box class O (FOXO)1 in CON and IUGR fetal livers. IUGR livers, however, had increased basal FOXO1 phosphorylation, nuclear FOXO1 expression, and Jun NH2-terminal kinase activation during hyperinsulinemia. Expression of peroxisome proliferator–activated receptor γ coactivator 1α and hepatocyte nuclear factor-4α were increased in IUGR livers during basal and insulin periods. Cortisol and norepinephrine concentrations were positively correlated with glucose production rates. Isolated IUGR hepatocytes maintained increased glucose production in culture. In summary, fetal sheep with IUGR have increased hepatic glucose production, which is not suppressed by insulin despite insulin sensitivity for peripheral glucose utilization. These data are consistent with a novel mechanism involving persistent transcriptional activation in the liver that seems to be unique in the fetus with IUGR. PMID:22933111

  19. Epigenomic derangement of hepatic glucose metabolism by feeding of high fructose diet and its prevention by Rosiglitazone in rats.

    Science.gov (United States)

    Yadav, H; Jain, S; Yadav, M; Sinha, P R; Prasad, G B K S; Marotta, F

    2009-07-01

    The high consumption of fructose leads to the increasing incidence of insulin resistance by several unknown mechanisms. Hepatic glucose metabolism may also be an important target of fructose-induced-metabolic alterations. The aim of present study was to investigate alterations in hepatic glycogenolysis, glycogenesis and gluconeogenic fluxes by feeding of 21% high fructose diet and the effects of Rosiglitazone treatment to prevent these derangements in rats. Rats were maintained on normal chow and high fructose diet with or without Rosiglitazone for 8 weeks and various biochemical and gene expression measures were estimated. The feeding of high fructose diet impaired glucose, insulin and pyruvate tolerance tests and increased blood HbA(1c), insulin, triglyceride, free fatty acids and homeostasis model assessment after 8 weeks. In addition, high fructose diet feeding increased expression of phosphoenol-pyruvatecorboxykinase, glucose-6-phosphatase, sterol regulatory element binding proteins-1 and fatty acid synthase through enhanced expression of fork-head receptor, peroxisome proliferator activated receptor-gamma-co-activator 1 and cAMP reactive element binding protein. The treatment with Rosiglitazone inhibited all these derangements, i.e. hepato-lipogenic and gluconeogenic effects of high fructose diet feeding in rats. Together these findings suggest that high fructose diet induced hepatic gluconeogenic and lipogenic rate, and increased circulating triglycerides and free fatty acids, which may be the major risk factors for glucose intolerance, hyperglycemia and insulin resistance in rats. In such situations high fructose flux also induces transcriptional cascade of gluconeogenic enzymes through the modulation of various associated transcriptional factors.

  20. Enhanced production of glucose oxidase from UV- mutant of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... UV rays were used as mutagen in wild type strain of Aspergillus niger for enhanced production of glucose oxidase. After mutangenization and selection, mutant A. niger strains, resistant to 2-deoxy-D- glucose were obtained. The mutants showed 1.57 and 1.98 fold increase in activities of extra and intra.

  1. Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect.

    Science.gov (United States)

    Smith, Michael A; Riby, Leigh M; Eekelen, J Anke M van; Foster, Jonathan K

    2011-01-01

    The brain relies upon glucose as its primary fuel. In recent years, a rich literature has developed from both human and animal studies indicating that increases in circulating blood glucose can facilitate cognitive functioning. This phenomenon has been termed the 'glucose memory facilitation effect'. The purpose of this review is to discuss a number of salient studies which have investigated the influence of glucose ingestion on neurocognitive performance in individuals with (a) compromised neurocognitive capacity, as well as (b) normally functioning individuals (with a focus on research conducted with human participants). The proposed neurocognitive mechanisms purported to underlie the modulatory effect of glucose on neurocognitive performance will also be considered. Many theories have focussed upon the hippocampus, given that this brain region is heavily implicated in learning and memory. Further, it will be suggested that glucose is a possible mechanism underlying the phenomenon that enhanced memory performance is typically observed for emotionally laden stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1.

    Science.gov (United States)

    Luo, Ailing; Yan, Haibo; Liang, Jichao; Du, Chunyuan; Zhao, Xuemei; Sun, Lijuan; Chen, Yong

    2017-09-05

    Abnormal activation of hepatic gluconeogenesis is a major contributor to fasting hyperglycemia in type 2 diabetes; however, the potential role of microRNAs in gluconeogenesis remains unclear. Here, we showed that hepatic expression levels of microRNA-21 (miR-21) were decreased in db/db and high-fat diet (HFD)-induced diabetic mice. Adenovirus-mediated overexpression of miR-21 decreased the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and inhibited glucose production in primary mouse hepatocytes. Silencing of miR-21 reversed this effect. Overexpression of miR-21 in the livers of db/db and HFD-induced mice was able to suppress hepatic gluconeogenesis, subsequently decreasing blood glucose levels and improving glucose and insulin intolerance. Furthermore, overexpression of miR-21 in primary mouse hepatocytes and mouse livers decreased the protein levels of FOXO1 and increased hepatic insulin sensitivity. By contrast, silencing of miR-21 increased the protein levels of FOXO1, subsequently leading to a decrease in insulin sensitivity and impaired glucose intolerance in C57BL/6 mice fed with high-fat diet for 4weeks. Finally, we confirmed that FOXO1 was a potential target of miR-21. These results suggest that miR-21 is a critical regulator in hepatic gluconeogenesis and may provide a novel therapeutic target for treating insulin resistance and type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Integrated model of insulin and glucose kinetics describing both hepatic glucose and pancreatic insulin regulation

    DEFF Research Database (Denmark)

    Erlandsen, Mogens; Martinussen, Christoffer; Gravholt, Claus Højbjerg

    2018-01-01

    AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter-individual varia......AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter......-individual variations and not intra-individual variations in the parameters. Here we present an integrated whole-body model of glucose and insulin kinetics which extends the well-known two-compartment glucose minimal model. The population-based estimation technique allow for quantification of both random inter......- and intra-individual variation in selected parameters using simultaneous data series on glucose and insulin. Methods We extend the two-compartment glucose model into a whole-body model for both glucose and insulin using a simple model for the pancreas compartment which includes feedback of glucose on both...

  4. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  6. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production.

    Science.gov (United States)

    Cao, Haiming; Sekiya, Motohiro; Ertunc, Meric Erikci; Burak, M Furkan; Mayers, Jared R; White, Ariel; Inouye, Karen; Rickey, Lisa M; Ercal, Baris C; Furuhashi, Masato; Tuncman, Gürol; Hotamisligil, Gökhan S

    2013-05-07

    Proper control of hepatic glucose production is central to whole-body glucose homeostasis, and its disruption plays a major role in diabetes. Here, we demonstrate that although established as an intracellular lipid chaperone, aP2 is in fact actively secreted from adipocytes to control liver glucose metabolism. Secretion of aP2 from adipocytes is regulated by fasting- and lipolysis-related signals, and circulating aP2 levels are markedly elevated in mouse and human obesity. Recombinant aP2 stimulates glucose production and gluconeogenic activity in primary hepatocytes in vitro and in lean mice in vivo. In contrast, neutralization of secreted aP2 reduces glucose production and corrects the diabetic phenotype of obese mice. Hyperinsulinemic-euglycemic and pancreatic clamp studies upon aP2 administration or neutralization demonstrated actions of aP2 in liver. We conclude that aP2 is an adipokine linking adipocytes to hepatic glucose production and that neutralizing secreted aP2 may represent an effective therapeutic strategy against diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The Effect of Phloroglucinol, A Component of Ecklonia cava Extract, on Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Ji-Young Yoon

    2017-04-01

    Full Text Available Phloroglucinol is a phenolic compound that is one of the major compounds in Ecklonia cava (brown alga. It has many pharmacological activities, but its anti-diabetic effect is not yet fully explored. In this study, we investigated the effect of phloroglucinol on the control of blood glucose levels and the regulation of hepatic glucose production. Phloroglucinol significantly improved glucose tolerance in male C57BL/6J mice fed a high fat diet (HFD and inhibited glucose production in mouse primary hepatocytes. The expression of phosphoenol pyruvate carboxykinase (PEPCK and glucose-6-phosphatase mRNA and protein (G6Pase, enzymes involved in gluconeogenesis, were inhibited in liver tissue from phloroglucinol-treated mice and in phloroglucinol-treated HepG2 cells. In addition, phloroglucinol treatment increased phosphorylated AMP-activated protein kinase (AMPKα in HepG2 cells. Treatment with compound C, an AMPKα inhibitor, inhibited the increase of phosphorylated AMPKα and the decrease of PEPCK and G6Pase expression caused by phloroglucinol treatment. We conclude that phloroglucinol may inhibit hepatic gluconeogenesis via modulating the AMPKα signaling pathway, and thus lower blood glucose levels.

  8. Hepatic ZIP14-mediated Zinc Transport Contributes to Endosomal Insulin Receptor Trafficking and Glucose Metabolism.

    Science.gov (United States)

    Aydemir, Tolunay Beker; Troche, Catalina; Kim, Min-Hyun; Cousins, Robert J

    2016-11-11

    Zinc influences signaling pathways through controlled targeted zinc transport. Zinc transporter Zip14 KO mice display a phenotype that includes impaired intestinal barrier function with low grade chronic inflammation, hyperinsulinemia, and increased body fat, which are signatures of diet-induced diabetes (type 2 diabetes) and obesity in humans. Hyperglycemia in type 2 diabetes and obesity is caused by insulin resistance. Insulin resistance results in inhibition of glucose uptake by liver and other peripheral tissues, principally adipose and muscle and with concurrently higher hepatic glucose production. Therefore, modulation of hepatic glucose metabolism is an important target for antidiabetic treatment approaches. We demonstrate that during glucose uptake, cell surface abundance of zinc transporter ZIP14 and mediated zinc transport increases. Zinc is distributed to multiple sites in hepatocytes through sequential translocation of ZIP14 from plasma membrane to early and late endosomes. Endosomes from Zip14 KO mice were zinc-deficient because activities of the zinc-dependent insulin-degrading proteases insulin-degrading enzyme and cathepsin D were impaired; hence insulin receptor activity increased. Transient increases in cytosolic zinc levels are concurrent with glucose uptake and suppression of glycogen synthesis. In contrast, Zip14 KO mice exhibited greater hepatic glycogen synthesis and impaired gluconeogenesis and glycolysis related to low cytosolic zinc levels. We can conclude that ZIP14-mediated zinc transport contributes to regulation of endosomal insulin receptor activity and glucose homeostasis in hepatocytes. Therefore, modulation of ZIP14 transport activity presents a new target for management of diabetes and other glucose-related disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Emotionally arousing pictures increase blood glucose levels and enhance recall.

    Science.gov (United States)

    Blake, T M; Varnhagen, C K; Parent, M B

    2001-05-01

    Arousal enhances memory in human participants and this enhancing effect is likely due to the release of peripheral epinephrine. As epinephrine does not readily enter the brain, one way that peripheral epinephrine may enhance memory is by increasing circulating blood glucose levels. The present study investigated the possibility that emotionally arousing color pictures would improve memory and elevate blood glucose levels in human participants. Blood glucose levels were measured before, 15 min, and 30 min after male university students viewed 60 emotionally arousing or relatively neutral pictures. Participants viewed each picture for 6 s and then had 10 s to rate the arousal (emotional intensity) and valence (pleasantness) of each picture. A free-recall memory test was given 30 min after the last picture was viewed. Although the emotionally arousing and neutral picture sets were given comparable valence ratings, participants who viewed the emotionally arousing pictures rated the pictures as being more arousing, recalled more pictures, and had higher blood glucose levels after viewing the pictures than did participants who viewed the neutral pictures. These findings indicate that emotionally arousing pictures increase blood glucose levels and enhance memory, and that this effect is not due to differences in the degree of pleasantness of the stimuli. These findings support the possibility that increases in circulating blood glucose levels in response to emotional arousal may be part of the biological mechanism that allows emotional arousal to enhance memory. Copyright 2001 Academic Press.

  10. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an approximately 20-fold increase (P ... blockade; 0.74 +/- 0.14 l/min, control), whereas splanchnic glucose production (at rest: 0.50 +/- 0.06, ACE blockade; 0.68 +/- 0.10 mmol/min, control) increased during moderate exercise (1.97 +/- 0.29, ACE blockade; 1.91 +/- 0.41 mmol/min, control). Refuting a major role of the RAS for these responses...

  11. A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads

    DEFF Research Database (Denmark)

    Rose, C S; Grarup, N; Krarup, N T

    2009-01-01

    An association between elevated fasting plasma glucose and the common rs560887 G allele in the G6PC2/ABCB11 locus has been reported. In Danes we aimed to examine rs560887 in relation to plasma glucose and serum insulin responses following oral and i.v. glucose loads and in relation to hepatic...

  12. Bisphenol A impairs hepatic glucose sensing in C57BL/6 male mice.

    Directory of Open Access Journals (Sweden)

    Leigh Perreault

    Full Text Available AIMS/HYPOTHESIS: Glucose sensing (eg. glucokinase activity becomes impaired in the development of type 2 diabetes, the etiology of which is unclear. Estrogen can stimulate glucokinase activity, whereas the pervasive environmental pollutant bisphenol A (BPA can inhibit estrogen action, hence we aimed to determine the effect of BPA on glucokinase activity directly. METHODS: To evaluate a potential acute effect on hepatic glucokinase activity, BPA in water (n = 5 vs. water alone (n = 5 was administered at the EPA's purported "safe dose" (50 µg/kg by gavage to lean 6-month old male C57BL/6 mice. Two hours later, animals were euthanized and hepatic glucokinase activity measured over glucose levels from 1-20 mmol/l in liver homogenate. To determine the effect of chronic BPA exposure on hepatic glucokinase activity, lean 6-month old male C57BL/6 mice were provided with water (n = 15 or water with 1.75 mM BPA (∼50 µg/kg/day; n = 14 for 2 weeks. Following the 2-week exposure, animals were euthanized and glucokinase activity measured as above. RESULTS: Hepatic glucokinase activity was signficantly suppressed after 2 hours in animals given an oral BPA bolus compared to those who received only water (p = 0.002-0.029 at glucose 5-20 mmol/l; overall treatment effect p<0.001. Exposure to BPA over 2 weeks also suppressed hepatic glucokinase activity in exposed vs. unexposed mice (overall treatment effect, p = 0.003. In both experiments, the Hill coefficient was higher and Vmax lower in mice treated with BPA. CONCLUSIONS/INTERPRETATION: Both acute and chronic exposure to BPA significantly impair hepatic glucokinase activity and function. These findings identify a potential mechanism for how BPA may increase risk for diabetes.

  13. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity

    Science.gov (United States)

    Ozcan, Lale; Wong, Catherine C.L.; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R.; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A.; Yates, John R.; Accili, Domenico; Tabas, Ira

    2012-01-01

    SUMMARY Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary HCs and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. PMID:22503562

  14. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  15. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in...

  16. Hepatic glucose metabolism in late pregnancy: normal versus high-fat and -fructose diet.

    Science.gov (United States)

    Coate, Katie C; Smith, Marta S; Shiota, Masakazu; Irimia, Jose M; Roach, Peter J; Farmer, Ben; Williams, Phillip E; Moore, Mary Courtney

    2013-03-01

    Net hepatic glucose uptake (NHGU) is an important contributor to postprandial glycemic control. We hypothesized that NHGU is reduced during normal pregnancy and in a pregnant diet-induced model of impaired glucose intolerance/gestational diabetes mellitus (IGT/GDM). Dogs (n = 7 per group) that were nonpregnant (N), normal pregnant (P), or pregnant with IGT/GDM (pregnant dogs fed a high-fat and -fructose diet [P-HFF]) underwent a hyperinsulinemic-hyperglycemic clamp with intraportal glucose infusion. Clamp period insulin, glucagon, and glucose concentrations and hepatic glucose loads did not differ among groups. The N dogs reached near-maximal NHGU rates within 30 min; mean ± SEM NHGU was 105 ± 9 µmol·100 g liver⁻¹·min⁻¹. The P and P-HFF dogs reached maximal NHGU in 90-120 min; their NHGU was blunted (68 ± 9 and 16 ± 17 µmol·100 g liver⁻¹·min⁻¹, respectively). Hepatic glycogen synthesis was reduced 20% in P versus N and 40% in P-HFF versus P dogs. This was associated with a reduction (>70%) in glycogen synthase activity in P-HFF versus P and increased glycogen phosphorylase (GP) activity in both P (1.7-fold greater than N) and P-HFF (1.8-fold greater than P) dogs. Thus, NHGU under conditions mimicking the postprandial state is delayed and suppressed in normal pregnancy, with concomitant reduction in glycogen storage. NHGU is further blunted in IGT/GDM. This likely contributes to postprandial hyperglycemia during pregnancy, with potential adverse outcomes for the fetus and mother.

  17. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p RSS group had significantly lower blood glucose levels from 90 to 180 min (p RSS group were significantly lower than those in the water group (p RSS group than that in the other groups. After glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  18. Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism Through 11β-Hydroxysteroid Dehydrogenase 1

    Science.gov (United States)

    Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.

    2012-01-01

    Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855

  19. Portal vein glucose entry triggers a coordinated cellular response that potentiates hepatic glucose uptake and storage in normal but not high-fat/high-fructose-fed dogs.

    Science.gov (United States)

    Coate, Katie C; Kraft, Guillaume; Irimia, Jose M; Smith, Marta S; Farmer, Ben; Neal, Doss W; Roach, Peter J; Shiota, Masakazu; Cherrington, Alan D

    2013-02-01

    The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed dogs. In CTR dogs, we demonstrated that PoG infusion in the presence of hyperinsulinemia and hyperglycemia triggered an increase in the activity of hepatic glucokinase (GK) and glycogen synthase (GS), which occurred in association with further augmentation in HGU and glycogen synthesis (GSYN) in vivo. In contrast, 4 weeks of HFFD feeding markedly reduced GK protein content and impaired the activation of GS in association with diminished HGU and GSYN in vivo. Furthermore, the enzymatic changes associated with PoG sensing in chow-fed animals were abolished in HFFD-fed animals, consistent with loss of the stimulatory effects of PoG delivery. These data reveal new insight into the molecular physiology of the portal glucose signaling mechanism under normal conditions and to the pathophysiology of aberrant postprandial hepatic glucose disposition evident under a diet-induced glucose-intolerant condition.

  20. High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Varticovski, Lyuba; Yang, Shutong

    2017-01-01

    of chow, to identify HFD-mediated changes to the hepatic transcriptional program that may persist after weight loss. Mice fed a HFD displayed increased fasting insulin levels, hepatosteatosis and major changes in hepatic gene transcription associated with modulation of H3K27Ac at enhancers......, but no significant changes in chromatin accessibility, indicating that HFD-regulated gene transcription is primarily controlled by modulating the activity of pre-established enhancers. After return to the same body weight as chow fed control mice, the fasting insulin, glucose, and hepatic triglyceride levels were...... for efficient treatment of early obesity-associated changes to hepatic complications by simple weight loss intervention without persistent reprograming of the liver transcriptome....

  1. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    2011-02-01

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  2. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats.

    Science.gov (United States)

    Duca, Frank A; Côté, Clémence D; Rasmussen, Brittany A; Zadeh-Tahmasebi, Melika; Rutter, Guy A; Filippi, Beatrice M; Lam, Tony K T

    2015-05-01

    Metformin is a first-line therapeutic option for the treatment of type 2 diabetes, even though its underlying mechanisms of action are relatively unclear. Metformin lowers blood glucose levels by inhibiting hepatic glucose production (HGP), an effect originally postulated to be due to a hepatic AMP-activated protein kinase (AMPK)-dependent mechanism. However, studies have questioned the contribution of hepatic AMPK to the effects of metformin on lowering hyperglycemia, and a gut-brain-liver axis that mediates intestinal nutrient- and hormone-induced lowering of HGP has been identified. Thus, it is possible that metformin affects HGP through this inter-organ crosstalk. Here we show that intraduodenal infusion of metformin for 50 min activated duodenal mucosal Ampk and lowered HGP in a rat 3 d high fat diet (HFD)-induced model of insulin resistance. Inhibition of duodenal Ampk negated the HGP-lowering effect of intraduodenal metformin, and both duodenal glucagon-like peptide-1 receptor (Glp-1r)-protein kinase A (Pka) signaling and a neuronal-mediated gut-brain-liver pathway were required for metformin to lower HGP. Preabsorptive metformin also lowered HGP in rat models of 28 d HFD-induced obesity and insulin resistance and nicotinamide (NA)-streptozotocin (STZ)-HFD-induced type 2 diabetes. In an unclamped setting, inhibition of duodenal Ampk reduced the glucose-lowering effects of a bolus metformin treatment in rat models of diabetes. These findings show that, in rat models of both obesity and diabetes, metformin activates a previously unappreciated duodenal Ampk-dependent pathway to lower HGP and plasma glucose levels.

  3. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N

    1984-01-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle gl...

  4. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism.

    Science.gov (United States)

    Liu, Qingqing; Yuan, Bingbing; Lo, Kinyui Alice; Patterson, Heide Christine; Sun, Yutong; Lodish, Harvey F

    2012-09-04

    The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.

  5. PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis.

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Cheng

    2015-10-01

    Full Text Available In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state.

  6. Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus.

    Science.gov (United States)

    Pal, M; Gupta, S

    2016-12-12

    Clinical studies have revealed that testosterone supplementation had a positive effect on glucose homeostasis in type 2 diabetes mellitus (T2DM), but did not address how testosterone supplementation affected insulin responsiveness in the liver, a key glucose homeostatic organ. In this study, we aimed to study the effect of testosterone supplementation on hepatic insulin responsiveness and glucose homeostasis through liver in male high-fat diet-induced T2DM mice. Testosterone treatment to T2DM animals showed reduced hepatic glucose output. Testosterone inhibited the insulin signaling in liver, thus increased insulin resistance. However, testosterone treatment inactivated GSK3α independent of PI3K/AKT pathway and inhibited FOXO1 By interaction of androgen receptor to FOXO1 and downregulated PEPCK, causing repression of gluconeogenic pathway, which is otherwise upregulated in T2DM, resulted in better glucose homeostasis.

  7. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  8. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon.

    Science.gov (United States)

    Mutel, Elodie; Gautier-Stein, Amandine; Abdul-Wahed, Aya; Amigó-Correig, Marta; Zitoun, Carine; Stefanutti, Anne; Houberdon, Isabelle; Tourette, Jean-André; Mithieux, Gilles; Rajas, Fabienne

    2011-12-01

    Since the pioneering work of Claude Bernard, the scientific community has considered the liver to be the major source of endogenous glucose production in all postabsorptive situations. Nevertheless, the kidneys and intestine can also produce glucose in blood, particularly during fasting and under protein feeding. The aim of this study was to better define the importance of the three gluconeogenic organs in glucose homeostasis. We investigated blood glucose regulation during fasting in a mouse model of inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc(-/-) mice), encoding a mandatory enzyme for glucose production. Furthermore, we characterized molecular mechanisms underlying expression changes of gluconeogenic genes (G6pc, Pck1, and glutaminase) in both the kidneys and intestine. We show that the absence of hepatic glucose release had no major effect on the control of fasting plasma glucose concentration. Instead, compensatory induction of gluconeogenesis occurred in the kidneys and intestine, driven by glucagon, glucocorticoids, and acidosis. Moreover, the extrahepatic action of glucagon took place in wild-type mice. Our study provides a definitive quantitative estimate of the capacity of extrahepatic gluconeogenesis to sustain fasting endogenous glucose production under the control of glucagon, regardless of the contribution of the liver. Thus, the current dogma relating to the respective role of the liver and of extrahepatic gluconeogenic organs in glucose homeostasis requires re-examination.

  9. Enhancement patterns and pseudo-washout of hepatic haemangiomas on gadoxetate disodium-enhanced liver MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohyun [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Ajou University School of Medicine, Department of Radiology, Suwon (Korea, Republic of); Byun, Jae Ho; Kim, Hyoung Jung; Won, Hyung Jin; Kim, So Yeon; Shin, Yong Moon; Kim, Pyo Nyun [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2016-01-15

    To compare the enhancement patterns and prevalence of pseudo-washout between rapidly and slowly enhancing hepatic haemangiomas on gadoxetate disodium-enhanced MRI in patients with chronic liver disease (CLD) and healthy liver (HL). On gadoxetate disodium-enhanced MRI, the extent of intralesional arterial enhancement >50 % and ≤50 % of lesions was defined as rapid and slow enhancement, respectively. The enhancement patterns and presence of pseudo-washout during the portal venous phase (PVP) and transitional phase (TP) of 74 hepatic haemangiomas were retrospectively evaluated in the CLD and HL groups. Sequential changes of signal-to-noise ratio (SNR) were measured in unenhanced phase, PVP and TP. Irrespective of hepatic health status, pseudo-washout in TP was significantly more common in the rapidly enhancing haemangiomas (p ≤ 0.026). In both groups, rapidly enhancing haemangiomas showed complete or progressive incomplete enhancement in PVP, which either lasted or transformed to pseudo-washout in TP, whereas slowly enhancing haemangiomas showed progressive incomplete enhancement in PVP and TP. SNR of hepatic parenchyma continued to rise until TP, whereas that of portal vein and haemangioma falls in TP. Regardless of CLD, pseudo-washout in TP was more common in rapidly than in slowly enhancing haemangiomas, with enhancement patterns differing in the two subgroups. (orig.)

  10. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

    Science.gov (United States)

    He, Ling; Chang, Evan; Peng, Jinghua; An, Hongying; McMillin, Sara M; Radovick, Sally; Stratakis, Constantine A; Wondisford, Fredric E

    2016-05-13

    Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes.

    Directory of Open Access Journals (Sweden)

    Maxwell A Ruby

    Full Text Available Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1. Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP, perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251 and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control, IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2, which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50% the majority (303 of 533 of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and

  12. Net portal-drained visceral and hepatic metabolism of glucose, L-lactate, and nitrogenous compounds in lactating holstein cows.

    Science.gov (United States)

    Reynolds, C K; Huntington, G B; Tyrrell, H F; Reynolds, P J

    1988-07-01

    Net portal-drained visceral and hepatic flux of glucose, L-lactate, alpha-amino N, NH3N, urea N, glutamate, and glutamine were measured in four Holstein cows. Cows were fed a 60:40 corn silage: concentrate diet ad libitum and milked at 12-h intervals. Six to 16 d postpartum chronic catheters were established in hepatic portal, hepatic, and mesenteric veins and a carotid artery was elevated. Twelve Measurements of net flux, the mathematical product of blood flow (measured by p-aminohippurate dilution) and venous-arterial concentration difference, were obtained for each cow at hourly intervals during 1 d of wk 4 and 8 postpartum. Dry matter, N, and energy digestion trials began 1 to 2 d after blood sampling. Dry matter intake and milk yield averaged 15.6 and 32.2 kg/d. Portal-drained visceral blood flow averaged 80% of hepatic blood flow (2041 L/h). Net flux of NH3N, urea N, and alpha-amino N across portal-drained viscera represented 68, 54, and 51% of N apparently digested. There was net use of glucose by portal-drained viscera. Hepatic glucose production (3.1 kg/d) exceeded calculated mammary glucose requirements. Net hepatic removal of L-lactate, alpha-amino N, and NH3N represented 115, 43, and 101%, respectively, of their net absorption by portal-drained viscera. Net hepatic L-lactate and alpha-amino N removal could account maximally for 17.4 and 16.5% of glucose produced.

  13. Acute inhibition of glucose-6-phosphate translocator activity leads to increased de novo lipogenesis and development of hepatic steatosis without affecting VLDL production in rats

    NARCIS (Netherlands)

    Bandsma, RHJ; Wiegman, CH; Herling, AW; Burger, HJ; Meijer, AJ; Romijn, JA; Reijngoud, DJ; Kuipers, F

    2001-01-01

    Glucose-6-phosphatase (G6Pase) is a key enzyme in hepatic glucose metabolism. Altered G6Pase activity in glycogen storage disease and diabetic states is associated with disturbances in lipid metabolism. We studied the effects of acute inhibition of G6Pase activity on hepatic lipid metabolism in

  14. Hepatic rather than cardiac steatosis relates to glucose intolerance in women with prior gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Yvonne Winhofer

    Full Text Available BACKGROUND: Increased myocardial lipid accumulation has been described in patients with pre- and overt type 2 diabetes and could underlie the development of left-ventricular dysfunction in metabolic diseases (diabetic cardiomyopathy. Since women with prior gestational diabetes (pGDM display a generally young population at high risk of developing diabetes and associated cardiovascular complications, we aimed to assess whether myocardial lipid accumulation can be detected at early stages of glucose intolerance and relates to markers of hepatic steatosis (Fatty Liver Index, cardiac function, insulin sensitivity and secretion. METHODS: Myocardial lipid content (MYCL, left-ventricular function (1H-magnetic-resonance-spectroscopy and -imaging, insulin sensitivity/secretion (oral glucose tolerance test and the fatty liver index (FLI were assessed in 35 pGDM (45.6±7.0 years, 28.3±4.8 kg/m2 and 14 healthy control females (CON; 44.7±9.8 years, 26.1±2.5 kg/m2, matching for age and body-mass-index (each p>0.1. RESULTS: Of 35 pGDM, 9 displayed normal glucose tolerance (NGT, 6 impaired glucose regulation (IGR and 20 had been already diagnosed with type 2 diabetes (T2DM. MYCL and cardiac function were comparable between pGDM and CON; in addition, no evidence of left-ventricular dysfunction was observed. MYCL was inversely correlated with the ejection fraction in T2DM (R = -0.45, p<0.05, while the FLI was tightly correlated with metabolic parameters (such as HbA1C, fasting plasma glucose and HDL-cholesterol and rose along GT-groups. CONCLUSIONS: There is no evidence of cardiac steatosis in middle-aged women with prior gestational diabetes, suggesting that cardiac complications might develop later in the time-course of diabetes and may be accelerated by the co-existence of further risk factors, whereas hepatic steatosis remains a valid biomarker for metabolic diseases even in this rather young female cohort.

  15. Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling.

    Science.gov (United States)

    Langlet, Fanny; Haeusler, Rebecca A; Lindén, Daniel; Ericson, Elke; Norris, Tyrrell; Johansson, Anders; Cook, Joshua R; Aizawa, Kumiko; Wang, Ling; Buettner, Christoph; Accili, Domenico

    2017-11-02

    Insulin resistance is a hallmark of diabetes and an unmet clinical need. Insulin inhibits hepatic glucose production and promotes lipogenesis by suppressing FOXO1-dependent activation of G6pase and inhibition of glucokinase, respectively. The tight coupling of these events poses a dual conundrum: mechanistically, as the FOXO1 corepressor of glucokinase is unknown, and clinically, as inhibition of glucose production is predicted to increase lipogenesis. Here, we report that SIN3A is the insulin-sensitive FOXO1 corepressor of glucokinase. Genetic ablation of SIN3A abolishes nutrient regulation of glucokinase without affecting other FOXO1 target genes and lowers glycemia without concurrent steatosis. To extend this work, we executed a small-molecule screen and discovered selective inhibitors of FOXO-dependent glucose production devoid of lipogenic activity in hepatocytes. In addition to identifying a novel mode of insulin action, these data raise the possibility of developing selective modulators of unliganded transcription factors to dial out adverse effects of insulin sensitizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Glycogen storage disease type Ia mice with less than 2% of normal hepatic glucose-6-phosphatase-α activity restored are at risk of developing hepatic tumors.

    Science.gov (United States)

    Kim, Goo-Young; Lee, Young Mok; Kwon, Joon Hyun; Cho, Jun-Ho; Pan, Chi-Jiunn; Starost, Matthew F; Mansfield, Brian C; Chou, Janice Y

    2017-03-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown. In this study, we constructed rAAV-co-G6PC, a rAAV vector expressing a codon-optimized (co) G6Pase-α and showed that rAAV-co-G6PC was more efficacious than rAAV-G6PC in directing hepatic G6Pase-α expression. Over an 88-week study, we showed that both rAAV-G6PC- and rAAV-co-G6PC-treated G6pc-/- mice expressing 3-33% of normal hepatic G6Pase-α activity (AAV mice) maintained glucose homeostasis, lacked HCA/HCC, and were protected against age-related obesity and insulin resistance. Of the eleven rAAV-G6PC/rAAV-co-G6PC-treated G6pc-/- mice harboring 0.9-2.4% of normal hepatic G6Pase-α activity (AAV-low mice), 3 expressing 0.9-1.3% of normal hepatic G6Pase-α activity developed HCA/HCC, while 8 did not (AAV-low-NT). Finally, we showed that the AAV-low-NT mice exhibited a phenotype indistinguishable from that of AAV mice expressing ≥3% of normal hepatic G6Pase-α activity. The results establish the threshold of hepatic G6Pase-α activity required to prevent HCA/HCC and show that GSD-Ia mice harboring <2% of normal hepatic G6Pase-α activity are at risk of tumor development. Published by Elsevier Inc.

  17. EFFECTS OF GLUCOSE-INFUSION ON HORMONE-SECRETION AND HEPATIC GLUCOSE-PRODUCTION DURING HEAVY EXERCISE

    NARCIS (Netherlands)

    WIERSMA, MML; VISSING, J; STEFFENS, AB; GALBO, H

    1993-01-01

    Blood-borne metabolic feedback vs. neural feedforward regulation of glucose homeostasis during exercise was investigated by infusing glucose and [H-3]glucose for glucose appearance determination intravenously in rats running for 20 min at 28 m/min [almost-equal-to 85% of maximal 02 consumption

  18. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal.

    Science.gov (United States)

    Cleasby, M E; Jarmin, S; Eilers, W; Elashry, M; Andersen, D K; Dickson, G; Foster, K

    2014-04-01

    Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated peptide (ProMyo) results in both muscle hypertrophy and reduced obesity and IR. We aimed to establish whether local myostatin inhibition would have a paracrine/autocrine effect to enhance glucose disposal beyond that simply generated by increased muscle mass, and the mechanisms involved. We directly injected adeno-associated virus expressing ProMyo in right tibialis cranialis/extensor digitorum longus muscles of rats and saline in left muscles and compared the effects after 17 days. Both test muscles were increased in size (by 7 and 11%) and showed increased radiolabeled 2-deoxyglucose uptake (26 and 47%) and glycogen storage (28 and 41%) per unit mass during an intraperitoneal glucose tolerance test. This was likely mediated through increased membrane protein levels of GLUT1 (19% higher) and GLUT4 (63% higher). Interestingly, phosphorylation of phosphoinositol 3-kinase signaling intermediates and AMP-activated kinase was slightly decreased, possibly because of reduced expression of insulin-like growth factor-I in these muscles. Thus, myostatin inhibition has direct effects to enhance glucose disposal in muscle beyond that expected of hypertrophy alone, and this approach may offer potential for the therapy of IR syndromes.

  19. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response.

    Science.gov (United States)

    Goldstein, Ido; Baek, Songjoon; Presman, Diego M; Paakinaho, Ville; Swinstead, Erin E; Hager, Gordon L

    2017-03-01

    Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. Published by Cold Spring Harbor Laboratory Press.

  20. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response

    Science.gov (United States)

    Goldstein, Ido; Baek, Songjoon; Presman, Diego M.; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.

    2017-01-01

    Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. PMID:28031249

  1. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice.

    Science.gov (United States)

    Sharara-Chami, Rana I; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A

    2012-06-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice.

    Science.gov (United States)

    Nunes, Patricia M; Wright, Alan J; Veltien, Andor; van Asten, Jack J A; Tack, Cees J; Jones, John G; Heerschap, Arend

    2014-05-01

    Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced hepatic triglyceride (HTG) accumulation can be attributed to both DNL stimulation and dietary lipid absorption. The aim of this study was to assess the effects of fructose diet on HTG and ATP content and the contributions of dietary lipids and DNL to HTG. Measurements were performed in vivo in mice by magnetic resonance imaging (MRI) and novel magnetic resonance spectroscopy (MRS) approaches. Abdominal adipose tissue volume and intramyocellular lipid levels were comparable between 8-wk fructose- and glucose-fed mice. HTG levels were ∼1.5-fold higher in fructose-fed than in glucose-fed mice (PHTG was, after 5 h, 1.60 ± 0.23% for fructose and 2.16 ± 0.35% for glucose diets (P=0.26), whereas that of DNL was higher in fructose than in glucose diets (2.55±0.51 vs.1.13±0.24%, P=0.01). Hepatic energy status, assessed by (31)P MRS, was similar for fructose- and glucose-fed mice. Fructose-induced HTG accumulation is better explained by DNL and not by dietary lipid uptake, while not compromising ATP homeostasis.

  3. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Joung, Hyunchae; Kim, Bobae; Park, Hyunjoon; Lee, Kyuyeon; Kim, Hee-Hoon; Sim, Ho-Cheol; Do, Hyun-Jin; Hyun, Chang-Kee; Do, Myoung-Sool

    2017-05-01

    Metabolic diseases, such as glucose intolerance and nonalcoholic fatty-liver disease (NAFLD), are primary risk factors for life-threatening conditions such as diabetes, heart attack, stroke, and hepatic cancer. Extracts from the tropical tree Moringa oleifera show antidiabetic, antioxidant, anti-inflammatory, and anticancer effects. Fermentation can further improve the safety and nutritional value of certain foods. We investigated the efficacy of fermented M. oleifera extract (FM) against high-fat diet (HFD)-induced glucose intolerance and hepatic lipid accumulation and investigated the underlying mechanisms by analyzing expression of proteins and genes involved in glucose and lipid regulation. C57BL/6 mice were fed with normal chow diet (ND) or HFD supplemented with distilled water (DW, control), nonfermented M. oleifera extract (NFM), or FM for 10 weeks. Although body weights were similar among HFD-fed treatment groups, liver weight was decreased, and glucose tolerance test (GTT) results improved in the FM group compared with DW and NFM groups. Hepatic lipid accumulation was also lower in the FM group, and expressions of genes involved in liver lipid metabolism were upregulated. In addition, HFD-induced endoplasmic reticulum (ER) stress, oxidative stress, and lipotoxicity in quadriceps muscles were decreased by FM. Finally, proinflammatory cytokine mRNA expression was decreased by FM in the liver, epididymal adipose tissue, and quadriceps of HFD-fed mice. FMs may decrease glucose intolerance and NAFLD under HFD-induced obesity by decreasing ER stress, oxidative stress, and inflammation.

  4. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression.

    Directory of Open Access Journals (Sweden)

    Huabing Zhang

    Full Text Available Abnormal hepatic gluconeogenesis is related to hyperglycemia in mammals with insulin resistance. Despite the strong evidences linking Krüppel-like factor 11 (KLF11 gene mutations to development of Type 2 diabetes, the precise physiological functions of KLF11 in vivo remain largely unknown.In current investigation, we showed that KLF11 is involved in modulating hepatic glucose metabolism in mice. Overexpression of KLF11 in primary mouse hepatocytes could inhibit the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase (cytosolic isoform, PEPCK-C and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, subsequently decreasing the cellular glucose output. Diabetic mice with overexpression of KLF11 gene in livers significantly ameliorated hyperglycemia and glucose intolerance; in contrast, the knockdown of KLF11 expression in db/m and C57BL/6J mice livers impaired glucose tolerance.Our data strongly indicated the involvement of KLF11 in hepatic glucose homeostasis via modulating the expression of PEPCK-C.

  5. Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling.

    Science.gov (United States)

    Wanders, Desiree; Stone, Kirsten P; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within 5 to 7 days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of fibroblast growth factor 21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissues, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and LR cause opposite effects on tissue lipid levels and expression of lipogenic genes. Altogether, these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine. © 2015 International Union of Biochemistry and Molecular Biology.

  6. Atypically enhanced cavernous hemangiomas of the liver: centrifugal enhancement does not preclude the diagnosis of hepatic hemangioma.

    Science.gov (United States)

    Matsushita, Masahiro; Takehara, Yasuo; Nasu, Hatsuko; Hirai, Yuki; Yamashita, Shuhei; Souda, Kenichi; Kobayashi, Yoshimasa; Miura, Katsutoshi

    2006-12-01

    The imaging features of an atypically enhanced hepatic hemangioma have not been well described in the literature, and the presence of such atypia may sometimes cause clinical problems in the differential diagnosis. Herein, we report a case of hepatic hemangioma demonstrating a previously unreported atypical enhancement pattern. On dynamic computed tomography during hepatic arteriography, a centrifugal enhancement pattern and subsequent peritumoral ring-shaped enhancement mimicking corona enhancement were found in cavernous hemangiomas of the liver in a 68-year-old Japanese man. Histopathological diagnosis of cavernous hemangioma of the liver was made on a biopsy specimen. Considering the importance of differentiating benign hepatic tumor from various forms of malignancy, radiologists and hepatologists should be aware of rare enhancement patterns sometimes seen in hepatic hemangioma. Establishing knowledge of the entire spectrum of atypical hepatic hemangioma may benefit the rational approach to future cases.

  7. Cannabinoid CB1 receptor inverse agonist MJ08 stimulates glucose production via hepatic sympathetic innervation in rats.

    Science.gov (United States)

    Chen, Wei; Liu, Hongying; Guan, Hua; Xue, Nina; Wang, Lili

    2017-11-05

    As a key insulin target tissue for maintaining systemic glucose homeostasis, the liver plays important roles in improving obesity-associated insulin intolerance via selective cannabinoid CB1 receptor antagonism/inverse agonism. However, it is unclear whether this receptor inverse agonism affects hepatic glucose metabolism. MJ08 is a novel cannabinoid CB1 receptor antagonist/inverse agonist that has superior inverse agonism over the well-known antagonist/inverse agonist, SR141716 (rimonabant). MJ08 remarkably elevates fasting blood glucose independent of inhibition of insulin release in mice. In the current study, MJ08 was used to investigate the mechanism by which liver cannabinoid CB1 receptor inverse activation regulates hepatic glucose metabolism. MJ08 stimulated hepatic glucose production (HGP) in a dose-dependent manner and promoted gluconeogenic gene expression in perfused rat liver. SR141716 exhibited similar but weaker effects. The cannabinoid CB1 receptor agonist (WIN 55,212-2), Gs protein-cyclic AMP (cAMP)-dependent pathway inhibitors (NF449 and H89), β-adrenoceptor antagonist (propranolol), and peripheral sympathetic inhibitor (reserpine) could antagonize MJ08-induced HGP. Furthermore, MJ08 and SR141716 induced monoamine neurotransmitter (noradrenaline) release and increased cAMP content significantly in perfused liver, although only a slight increase was observed in primary cultured hepatocytes. These results indicate that local liver cannabinoid CB1 receptor inverse agonism via hepatic sympathetic innervation is responsible for the HGP induced by MJ08. Thus, high inverse agonistic activity could increase fasting blood glucose levels and should be avoided in the development of peripheral cannabinoid CB1 receptor-targeted weight-loss drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lupinus albus Conglutin Gamma Modifies the Gene Expressions of Enzymes Involved in Glucose Hepatic Production In Vivo.

    Science.gov (United States)

    González-Santiago, Ana E; Vargas-Guerrero, Belinda; García-López, Pedro M; Martínez-Ayala, Alma L; Domínguez-Rosales, José A; Gurrola-Díaz, Carmen M

    2017-06-01

    Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.

  9. Etiology of hemolysis in two patients with hepatitis A infection: glucose-6-phosphate dehydrogenase deficiency or autoimmune hemolytic anemia.

    Science.gov (United States)

    Ozbay Hosnut, Ferda; Ozcay, Figen; Selda Bayrakci, Umut; Avci, Zekai; Ozbek, Namik

    2008-12-01

    We report two children with hemolytic anemia during the course of hepatitis A infection. On admission, the patients had high blood urea nitrogen, creatinine, and uric acid levels, as well as anemia, leucocytosis, and direct and indirect hyperbilirubinemia. Both patients had a glucose-6-phosphate dehydrogenase deficiency (G6PD) and autoimmune antibodies. They were given vitamin K on admission. Inadvertent administration of vitamin K could have been related to an acute reduction in hemoglobin concentration. To prevent renal damage, plasmapheresis with fresh frozen plasma was done to clear bilirubin and plasma hemoglobin. The hyperbilirubinemia responded to plasmapheresis. However, acute tubular necrosis complicated the clinical course in one patient, and several sessions of hemodialysis were required. In conclusion, intravascular hemolysis should be considered in patients with hepatitis A infection, marked hyperbilirubinemia, and anemia. Although hepatitis A vaccination is not yet recommended for routine administration, high-risk patients, including those with a G6PD deficiency, should be vaccinated against hepatitis A.

  10. Contrast-enhanced ultrasonographic findings of hepatic paragonimiasis.

    Science.gov (United States)

    Lu, Qiang; Ling, Wen-Wu; Ma, Lin; Huang, Zi-Xing; Lu, Chang-Li; Luo, Yan

    2013-04-07

    To investigate the features of hepatic paragonimiasis on contrast-enhanced ultrasound (CEUS) imaging. Fifteen patients with hepatic paragonimiasis who were admitted to our hospital between March 2008 and August 2012 were enrolled to this study. The conventional ultrasound and CEUS examinations were performed with a Philips IU22 scanner with a 1-5-MHz convex transducer. After conventional ultrasound scanning was completed, the CEUS study was performed. Pulse inversion harmonic imaging was used for CEUS. A bolus injection of 2.4 mL of a sulfur hexafluoride-filled microbubble contrast agent (SonoVue) was administered. CEUS features were retrospectively reviewed and correlated with pathological findings. In total, 16 lesions were detected on CEUS. The mean size of the lesions was 4.4 ± 1.6 cm (range, 1.7-6.6 cm). Subcapsular location was found in 12 lesions (75%). All the lesions were hypoechoic. Six lesions (37.5%) were of mixed content, seven (43.8%) were solid with small cystic areas, and the other three (18.8%) were completely solid. Ten lesions (62.5%) were rim enhanced with irregular tract-like nonenhanced internal areas. Transient wedge-shaped hyperenhancement of the surrounding liver parenchyma was seen in seven lesions (43.8%). Areas with hyper- or iso-enhancement in the arterial phase showed contrast wash-out and appeared hypoenhanced in the late phase. The main pathological findings included: (1) coagulative or liquefactive necrosis within the lesion, infiltration of a large number of eosinophils with the formation of chronic eosinophilic abscesses and sporadic distribution of Charcot-Leyden crystals; and (2) hyperplasia of granulomatous and fibrous tissue around the lesion. Subcapsular location, hypoechogenicity, rim enhancement and tract-like nonenhanced areas could be seen as the main CEUS features of hepatic paragonimiasis.

  11. Contrast-enhanced ultrasonographic findings of hepatic paragonimiasis

    Science.gov (United States)

    Lu, Qiang; Ling, Wen-Wu; Ma, Lin; Huang, Zi-Xing; Lu, Chang-Li; Luo, Yan

    2013-01-01

    AIM: To investigate the features of hepatic paragonimiasis on contrast-enhanced ultrasound (CEUS) imaging. METHODS: Fifteen patients with hepatic paragonimiasis who were admitted to our hospital between March 2008 and August 2012 were enrolled to this study. The conventional ultrasound and CEUS examinations were performed with a Philips IU22 scanner with a 1-5-MHz convex transducer. After conventional ultrasound scanning was completed, the CEUS study was performed. Pulse inversion harmonic imaging was used for CEUS. A bolus injection of 2.4 mL of a sulfur hexafluoride-filled microbubble contrast agent (SonoVue) was administered. CEUS features were retrospectively reviewed and correlated with pathological findings. RESULTS: In total, 16 lesions were detected on CEUS. The mean size of the lesions was 4.4 ± 1.6 cm (range, 1.7-6.6 cm). Subcapsular location was found in 12 lesions (75%). All the lesions were hypoechoic. Six lesions (37.5%) were of mixed content, seven (43.8%) were solid with small cystic areas, and the other three (18.8%) were completely solid. Ten lesions (62.5%) were rim enhanced with irregular tract-like nonenhanced internal areas. Transient wedge-shaped hyperenhancement of the surrounding liver parenchyma was seen in seven lesions (43.8%). Areas with hyper- or iso-enhancement in the arterial phase showed contrast wash-out and appeared hypoenhanced in the late phase. The main pathological findings included: (1) coagulative or liquefactive necrosis within the lesion, infiltration of a large number of eosinophils with the formation of chronic eosinophilic abscesses and sporadic distribution of Charcot-Leyden crystals; and (2) hyperplasia of granulomatous and fibrous tissue around the lesion. CONCLUSION: Subcapsular location, hypoechogenicity, rim enhancement and tract-like nonenhanced areas could be seen as the main CEUS features of hepatic paragonimiasis. PMID:23599629

  12. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.

    Science.gov (United States)

    Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka

    2014-02-01

    Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Ring-Larsen, H; Christensen, N J

    1987-01-01

    spillover represents a minimum value. Our results indicate that the augmented circulating catecholamines in cirrhosis do not result from diminished removal but are contributed to from increased sympathetic nervous activity in the hepatic intestinal area (enhanced mesenteric sympathetic nervous activity)....

  14. Contrast-Enhanced Sonography for Diagnosing Collateral Transformation of the Hepatic Artery After Liver Transplantation.

    Science.gov (United States)

    Lyu, Su-Qin; Ren, Jie; Zheng, Rong-Qin; Meng, Xiao-Chun; Huang, Ming-Sheng; Wang, Ping

    2015-09-01

    To determine the contrast-enhanced sonographic features of hepatic artery collateral transformation in patients with hepatic artery complications after liver transplantation. Ninety-nine liver transplant recipients who underwent contrast-enhanced sonography were recruited from April 2004 to May 2014. The reference standards were conventional angiography and computed tomographic angiography. The contrast-enhanced sonographic features of the hepatic artery in patients with and without collateral arteries were retrospectively analyzed. All 15 patients with hepatic artery collateral transformation had hepatic artery thrombosis (10 of 15) or hepatic artery stenosis (5 of 15). The collateral artery detection rate on contrast-enhanced sonography was 100%. The peripheral hepatic artery could not be visualized by contrast-enhanced sonography in most of the patients with hepatic artery collateral transformation (14 of 15). Additionally, many small tortuous collateral arteries in the porta hepatis region were visualized during the arterial and early portal phases, showing reticulated/patchy (15 of 15) and striped (3 of 15) enhancement patterns on contrast-enhanced sonography. Collateral transformation of the hepatic artery in patients with hepatic artery complications after liver transplantation appears to have characteristic features on contrast-enhanced sonography, especially a reticulated or patchy enhancement pattern in the porta hepatis region during the arterial and early portal phases combined with the absence of the peripheral hepatic artery. Contrast-enhanced sonography may be a novel method for diagnosing hepatic artery collateral transformation, which may be a highly specific sign of hepatic artery thrombosis or stenosis. © 2015 by the American Institute of Ultrasound in Medicine.

  15. Embryonic liver fordin is involved in glucose glycolysis of hepatic stellate cell by regulating PI3K/Akt signaling.

    Science.gov (United States)

    Tu, Wei; Ye, Jin; Wang, Zhi-Jun

    2016-10-14

    To investigate the role of embryonic liver fordin (ELF) in liver fibrosis by regulating hepatic stellate cells (HSCs) glucose glycolysis. The expression of ELF and the glucose glycolysis-related proteins were evaluated in activated HSCs. siRNA was used to silence ELF expression in activated HSCs in vitro and the subsequent changes in PI3K/Akt signaling and glucose glycolysis-related proteins were observed. The expression of ELF increased remarkably in HSCs of the fibrosis mouse model and HSCs that were cultured for 3 wk in vitro . Glucose glycolysis-related proteins showed an obvious increase in the activated HSCs, such as phosphofructokinase, platelet and glucose transporter 1. ELF-siRNA, which perfectly silenced the expression of ELF in activated HSCs, led to the induction of glucose glycolysis-related proteins and extracellular matrix (ECM) components. Moreover, pAkt, which is an important downstream factor in PI3K/Akt signaling, showed a significant change in response to the ELF silencing. The expression of glucose glycolysis-related proteins and ECM components decreased remarkably when the PI3K/Akt signaling was blocked by Ly294002 in the activated HSCs. ELF is involved in HSC glucose glycolysis by regulating PI3K/Akt signaling.

  16. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Abir Nachar

    2013-01-01

    Full Text Available We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase and glycogen synthase (GS activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK, Akt, and Glycogen synthase kinase-3 (GSK-3 were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines.

  17. Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes

    Science.gov (United States)

    Drougard, Anne; Duparc, Thibaut; Brenachot, Xavier; Carneiro, Lionel; Gouazé, Alexandra; Fournel, Audren; Geurts, Lucie; Cadoudal, Thomas; Prats, Anne-Catherine; Pénicaud, Luc; Vieau, Didier; Lesage, Jean; Leloup, Corinne; Benani, Alexandre; Cani, Patrice D.; Valet, Philippe

    2014-01-01

    Abstract Aims: We have previously demonstrated that central apelin is implicated in the control of peripheral glycemia, and its action depends on nutritional (fast versus fed) and physiological (normal versus diabetic) states. An intracerebroventricular (icv) injection of a high dose of apelin, similar to that observed in obese/diabetic mice, increase fasted glycemia, suggesting (i) that apelin contributes to the establishment of a diabetic state, and (ii) the existence of a hypothalamic to liver axis. Using pharmacological, genetic, and nutritional approaches, we aim at unraveling this system of regulation by identifying the hypothalamic molecular actors that trigger the apelin effect on liver glucose metabolism and glycemia. Results: We show that icv apelin injection stimulates liver glycogenolysis and gluconeogenesis via an over-activation of the sympathetic nervous system (SNS), leading to fasted hyperglycemia. The effect of central apelin on liver function is dependent of an increased production of hypothalamic reactive oxygen species (ROS). These data are strengthened by experiments using lentiviral vector-mediated over-expression of apelin in hypothalamus of mice that present over-activation of SNS associated to an increase in hepatic glucose production. Finally, we report that mice fed a high-fat diet present major alterations of hypothalamic apelin/ROS signaling, leading to activation of glycogenolysis. Innovation/Conclusion: These data bring compelling evidence that hypothalamic apelin is one master switch that participates in the onset of diabetes by directly acting on liver function. Our data support the idea that hypothalamic apelin is a new potential therapeutic target to treat diabetes. Antioxid. Redox Signal. 20, 557–573. PMID:23879244

  18. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  19. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress.

    Science.gov (United States)

    Petersen, Pia S; Lei, Xia; Wolf, Risa M; Rodriguez, Susana; Tan, Stefanie Y; Little, Hannah C; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E; Wong, G William

    2017-04-01

    Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. Copyright © 2017 the American Physiological Society.

  20. Evidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia

    Science.gov (United States)

    Meek, Thomas H.; Dorfman, Mauricio D.; Matsen, Miles E.; Fischer, Jonathan D.; Cubelo, Alexis; Kumar, Monica R.; Taborsky, Gerald J.

    2015-01-01

    Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days. As expected, plasma glucagon levels were elevated in STZ-DM rats, and although liraglutide treatment lowered glucagon levels to those of nondiabetic controls, it failed to attenuate diabetic hyperglycemia, elevated rates of glucose appearance (Ra), or increased hepatic gluconeogenic gene expression. In contrast, it markedly reduced levels of both plasma ketone bodies and hepatic expression of the rate-limiting enzyme involved in ketone body production. To independently confirm this finding, in a separate study, treatment of STZ-DM rats with a glucagon-neutralizing antibody was sufficient to potently lower plasma ketone bodies but failed to normalize elevated levels of either blood glucose or Ra. These data suggest that in rats with uDM, hyperglucagonemia is required for ketosis but not for increased HGP or hyperglycemia. PMID:25633417

  1. Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice.

    Science.gov (United States)

    Jeong, Kyong Ju; Kim, Do Yeon; Quan, Hai-Yan; Jo, Hee Kyung; Kim, Go Woon; Chung, Sung Hyun

    2014-03-01

    Eugenol is a phenylpropanoid with many pharmacological activities, but its anti-hyperglycemic activity is not yet fully explored. For in vitro study, HepG2 cells and primary rat hepatocytes were used, and glucose production was induced by adding 100 nM of glucagon in the presence of gluconeogenic substrates. In animal study, hyperglycemia was induced by high fat diet (HFD) in male C57BL/6J mice, and eugenol was orally administered at 20 or 40 mg per kg (E20, E40) for 15 weeks. Eugenol significantly inhibited glucagon-induced glucose production and phosphorylated AMPK in the HepG2 and primary rat hepatocytes, and these effects were reversed in the presence of compound C (an AMPK inhibitor) or STO-609 (a CAMKK inhibitor). In addition, the protein and gene expression levels of CREB, CRTC2·CREB complex, PGC-1α, PEPCK and G6Pase were all significantly suppressed. Moreover, inhibition of AMPK by over-expression of dominant negative AMPK prevented eugenol from suppressions of gluconeogenic gene expression and hepatic glucose production. In animal study, plasma glucose and insulin levels of the E40 group were decreased by 31% and 63%, respectively, when compared to those of HFD control. In pyruvate tolerance tests, pyruvate-induced glucose excursions were decreased, indicating that the anti-hyperglycemic activity of eugenol is primarily due to the suppression of hepatic gluconeogenesis. In summary, eugenol effectively ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis via modulating CAMKK-AMPK-CREB signaling pathway. Eugenol or eugenol-containing medicinal plants could represent a promising therapeutic agent to prevent type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Hepatic scar in a case of healed candidiasis showing prolonged enhancement on CT

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Yuji; Yashiro, Naobumi

    1987-08-01

    A patient with acute myelocytic leukemia recovering from hepatic candidiasis after long-term administration of amphotericin B had large scar in the liver which showed prominent prolonged enhancement on postcontrast CT. Prolonged enhancement can occur in regions other than hepatic masses.

  3. Non-enzymatic glucose sensing by enhanced Raman spectroscopy on flexible 'as-grown' CVD graphene.

    Science.gov (United States)

    Chattopadhyay, Surojit; Li, Mau-Shiun; Kumar Roy, Pradip; Wu, C T

    2015-06-21

    Unmodified, as-grown few layered graphene on copper substrates have been used for glucose sensing using Raman spectroscopy. Graphene with a stronger 2D band is a better Raman enhancer with significant fluorescence suppression and finer line widths of the Raman signals. The origin of the graphene enhanced Raman spectroscopy (GERS) signal of glucose is attributed to a fractional charge transfer (calculated to be 0.006 using electrochemical parameters) between glucose and graphene aided by a possible π-π interaction. Physiological concentrations of glucose (10-500 mg dl(-1)) in PBS have been used for the study. For each glucose concentration, the spectral reproducibility is within 5-25% as calculated by the relative standard deviation of several measurements. The intensity ratio of the 1122 cm(-1) peak of glucose and the 2D peak of graphene varied linearly with the glucose concentration and can be used as a calibration curve for unknown sample measurements.

  4. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher

    2015-01-01

    -induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation...

  5. The effect of short chain fatty acid administration on hepatic glucose, phosphate, magnesium and calcium metabolism.

    Science.gov (United States)

    Veech, R L; Gitomer, W L; King, M T; Balaban, R S; Costa, J L; Eanes, E D

    1986-01-01

    Intra peritoneal administration of the short chain fatty acids, acetate, propionate and butyrate, in amounts calculated to reach 20 mM in total body water were given to fed and 48 hour starved male Wistar rats. One half hour after administration, the livers were freeze-clamped and the hepatic contents of various intermediary metabolites were measured. The liver content of total glycolytic intermediates was elevated by short chain fatty acids. In fed animals, the portion of glycolysis from fructose 1,6-bisphosphate (FBP) to PEP was elevated 2 to 4 fold. In 48 hour starved animals, where gluconeogenesis is active, the portion of the gluconeogenetic pathway from FBP to glucose was elevated 1.5 to 3.5 fold with the exception of the butyrate treated animals where blood glucose was not elevated. The metabolites of the hexose-monophosphate pathway that were measured, namely 6-phosphogluconate, ribulose 5-phosphate and xylose 5-phosphate were increased in both fed and starved animals. The free cytoplasmic [NAD+]/[NADH], [NADP+]/[NADPH], and [epsilon ATP]/[epsilon ADP] X [epsilon Pi] ratios were all decreased in both fed and starved animals after short chain fatty acid administration. The liver content of calcium increased 1.2 to 2 fold in fed animals and 2 to 3 fold in starved animals while total liver magnesium was either unchanged or increased only 1.2 times. The liver pyrophosphate (PPi) content increased a minimum of 10 fold in fed animals and over 100 fold in starved animals. In all cases no PPi could be detected in vivo by 31P NMR even though in the starved rats the PPi levels approached those of ATP. The liver content of inorganic Pi increased 1.3 to 1.5 fold in fed animals and 1.5 to 2 fold in starved animals. The total "rapidly metabolizing" Pi pool, that includes adenine and guanine nucleotides, glycolytic and shunt intermediates, Pi and PPi increased 1.3 times in fed animals (from 13.8 mumole/g fresh weight) and 1.5 to 1.7 fold in starved animals (from 15

  6. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates.......The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  7. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Rossi, Elio; Longo, Francesca; Barbagallo, Marialuisa; Peano, Clelia; Consolandi, Clarissa; Pietrelli, Alessandro; Jaillon, Sebastian; Garlanda, Cecilia; Landini, Paolo

    2016-01-01

    Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.

  8. Triterpenoids Isolated from Ziziphus jujuba Enhance Glucose Uptake Activity in Skeletal Muscle Cells.

    Science.gov (United States)

    Kawabata, Kyuichi; Kitamura, Kenji; Irie, Kazuhiro; Naruse, Shoma; Matsuura, Tomohiro; Uemae, Tomoyuki; Taira, Shu; Ohigashi, Hajime; Murakami, Shigeru; Takahashi, Masakazu; Kaido, Yoko; Kawakami, Bunsei

    2017-01-01

    Jujube (Ziziphus jujuba Mill.), a traditional folk medicine and functional food in China and South Korea, is known for its beneficial properties, which include anti-cancer, anti-oxidative, and anti-obesity effects. To assess the anti-hyperglycemic effect of jujube in this study, we investigated the glucose uptake-promoting activity of jujube in rat L6 myotubes. After determining that the jujube extract induces muscle glucose uptake, we identified the following active compounds by bioassay-guided fractionation: betulonic acid, betulinic acid, and oleanonic acid. Ursonic acid, known to be present in jujube, was semi-synthesized from ursolic acid and also observed to enhance glucose uptake. These four triterpenic acids induced glucose uptake in a glucose transporter 4-dependent manner. Comparison experiments of jujube fruits from three countries, namely, China, South Korea, and Japan, revealed that Japanese jujube has a higher content of active triterpenoids and is the most potent enhancer of glucose uptake.

  9. Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production.

    Science.gov (United States)

    Alam, Tausif; Wai, Philip; Held, Dustie; Vakili, Sahar Taba Taba; Forsberg, Erik; Sollinger, Hans

    2013-01-01

    Type 1 diabetes mellitus (T1DM) is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m) treated streptozotocin (STZ)-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT) demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.

  10. Hepatic autoregulation

    DEFF Research Database (Denmark)

    Staehr, Peter; Hother-Nielsen, Ole; Beck-Nielsen, Henning

    2007-01-01

    The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1...

  11. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Science.gov (United States)

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  12. Evidence That in Uncontrolled Diabetes, Hyperglucagonemia Is Required for Ketosis but Not for Increased Hepatic Glucose Production or Hyperglycemia.

    Science.gov (United States)

    Meek, Thomas H; Dorfman, Mauricio D; Matsen, Miles E; Fischer, Jonathan D; Cubelo, Alexis; Kumar, Monica R; Taborsky, Gerald J; Morton, Gregory J

    2015-07-01

    Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days. As expected, plasma glucagon levels were elevated in STZ-DM rats, and although liraglutide treatment lowered glucagon levels to those of nondiabetic controls, it failed to attenuate diabetic hyperglycemia, elevated rates of glucose appearance (Ra), or increased hepatic gluconeogenic gene expression. In contrast, it markedly reduced levels of both plasma ketone bodies and hepatic expression of the rate-limiting enzyme involved in ketone body production. To independently confirm this finding, in a separate study, treatment of STZ-DM rats with a glucagon-neutralizing antibody was sufficient to potently lower plasma ketone bodies but failed to normalize elevated levels of either blood glucose or Ra. These data suggest that in rats with uDM, hyperglucagonemia is required for ketosis but not for increased HGP or hyperglycemia. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells

    Science.gov (United States)

    Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-01-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. PMID:27144291

  14. Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism.

    OpenAIRE

    Holness, M J; Sugden, M C

    1987-01-01

    The effects of hyperthyroidism to elicit glucose intolerance after glucose administration were decreased under conditions where hepatic glucose output was suppressed. It is concluded that continued hepatic glucose output contributes to abnormal glucose tolerance in hyperthyroidism.

  15. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Thomas Galbo

    Full Text Available In type 2 Diabetes (T2D free fatty acids (FFAs in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1 was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs. The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity.

  16. Growth factors enhance endothelial progenitor cell proliferation under high-glucose conditions.

    Science.gov (United States)

    Li, Wei; Yang, Shiyu Y; Hu, Zhong F; Winslet, Marc C; Wang, Wen; Seifalian, Alexander M

    2009-12-01

    The purpose of this study was to investigate the impact of growth regulators, including growth hormone (GH), insulin-like growth factor 1 (IGF-1), and mechano growth factor (MGF), on endothelial progenitor cell (EPC) proliferation at different glucose concentrations. EPCs were isolated and cultured from peripheral blood samples of healthy volunteers and immunocytochemically characterized after 7 days. The effects of glucose and growth regulators on EPC proliferation were determined with the Alamar Blue and Trypan Blue assays. The effect of glucose supplementation at 2.5, 11.1, and 25.0 mM was examined using cells seeded at densities of 15000, 30000, and 45000 cells/ml. For the GH-treated cells, enhancement of EPC proliferation was detected in the samples supplemented with 11.1 and 25.0 mM glucose. A slight elevation in EPC proliferation was only observed in the IGF-1-treated cells supplemented with 25.0 mM glucose. Significant enhancement of EPC proliferation was observed in MGF-treated cells supplemented with 11.1 and 25.0 mM glucose. All three growth factors demonstrated enhancement of cellular proliferation when the cells were supplemented with 25.0 mM glucose. No enhancement of EPC proliferation by the growth factors was detected in any of the cells supplemented with 2.5 mM glucose. GH, IGF-1, and MGF enhance EPC proliferation under 25.0 mM glucose conditions. The presence of these growth regulators in EPC culture may contribute to protecting EPCs from high-glucose conditions. This action may be of therapeutic relevance contributing to beneficial cardiovascular effects for diabetic patient.

  17. Hepatitis

    Science.gov (United States)

    ... yourself against hepatitis A is by vaccination. Other ways to protect yourself include avoiding rimming and other anal and oral contact. While condom use is essential in preventing the spread of HIV, hepatitis B and other STDs, it does not ...

  18. Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS

    Directory of Open Access Journals (Sweden)

    Raju Botta

    2016-07-01

    Full Text Available The detection of glucose by Surface Enhanced Raman Scattering (SERS is a challenging problem because glucose molecules have a small Raman scattering cross-section and they have a low affinity for adsorption on metal nanoparticle surfaces. In this study we used 2-Thienylboronic acid (2-TBA as a bridge or linker molecule between the metal surface and the glucose molecule and observed an intense Raman line at 986 cm−1 that was used to quantify the glucose concentration in the molar concentration range 1 μM–500 μM. A good correlation was observed between the intensity of this line and molar concentration of glucose. These results would find applications in the development of a non-invasive glucose sensor for diabetic patients using saliva as the body fluid instead of blood serum.

  19. An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers.

    Science.gov (United States)

    Wenk, G L

    1989-01-01

    This review presents evidence that some cognition enhancing drugs produce their beneficial effects on learning and memory by increasing the availability of glucose for uptake and utilization into the brain. The hypothesis further suggests that many cognition enhancing drugs act through a peripheral mechanism rather than directly on the brain. The general hypothesis is supported by four independent and converging pieces of evidence: 1) Some cognition enhancing drugs may not cross the blood-brain barrier, but can still facilitate memory; 2) Some cognition enhancing drugs are effective only when injected peripherally, but not when injected directly into the brain; 3) Many cognition enhancing drugs are not effective after adrenalectomy; 4) Cognitive function is correlated with glucose regulation in aged animals and humans. These four lines of research have implications for the role of glucose in the action of specific cognitive enhancers.

  20. Cerebral Glucose Utilisation in Hepatitis C Virus Infection-Associated Encephalopathy

    National Research Council Canada - National Science Library

    Heeren, Meike; Weissenborn, Karin; Arvanitis, Dimitrios; Bokemeyer, Martin; Goldbecker, Annemarie; Tountopoulou, Argyro; Peschel, Thomas; Grosskreutz, Julian; Hecker, Hartmut; Buchert, Ralph; Berding, Georg

    2011-01-01

    ... resonance imaging, 18F-fluoro-deoxy-glucose positron emission tomography of the brain, and single photon emission tomography of striatal dopamine and midbrain serotonin transporter (SERT) availability...

  1. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism.

    Science.gov (United States)

    Tang, Yuefeng; Wallace, Martina; Sanchez-Gurmaches, Joan; Hsiao, Wen-Yu; Li, Huawei; Lee, Peter L; Vernia, Santiago; Metallo, Christian M; Guertin, David A

    2016-04-21

    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis.

  2. Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period.

    Science.gov (United States)

    Xie, Chunyan; Wang, Qinhua; Wang, Jing; Tan, Bie; Fan, Zhiyong; Deng, Ze-yuan; Wu, Xin; Yin, Yulong

    2016-02-19

    The liver glucose metabolism, supplying sufficient energy for glucose-dependent tissues, is important in suckling or weaned animals, although there are few studies with piglet model. To better understand the development of glucose metabolism in the piglets during suckling period and early weaning period, we determined the hepatic glycogen content, and investigated the relative protein expression of key enzymes of glucogenesis (GNG) and mRNA levels of some glucose metabolism-related genes. During suckling period, the protein level of G6Pase in the liver of suckling piglets progressively declined with day of age compared with that of newborn piglets (at 1 day of age), whereas the PEPCK level stabilized until day 21 of age, indicating that hepatic GNG capacity gradually weakened in suckling piglets. The synthesis of hepatic glycogen, which was consistent with the fluctuation of glycolytic key genes PFKL and PKLR that gradually decreased after birth and was more or less steady during latter suckling period, although both the mRNA levels of GCK and key glucose transporter GLUT2 presented uptrend in suckling piglets. However, early weaning significantly suppressed the hepatic GNG in the weaned piglets, especially at d 3-5 of weaning period, then gradually recovered at d 7 of weaning period. Meanwhile, PFKL, PKLR and GLUT2 showed the similar trend during weaning period. On the contrast, the hepatic glycogen reached the maximum value when the G6Pase and PEPCK protein expression were at the lowest level, although the GCK level maintained increasing through 7 days of weaning period. Altogether, our study provides evidence that hepatic GNG and glycolysis in newborn piglets were more active than other days during suckling period, and early weaning could significantly suppressed glucose metabolism in liver, but this inhibition would progressively recover at day 7 after weaning. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Wedge-shaped parenchymal enhancement peripheral to the hepatic hemangioma : two-phase spiral CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Won; Kim, Tae Kyoung; Han, Joon Koo [College of Medicine and The Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, Ah Young; Lee, Hyun Ju [Asan Medical Center, University of Ulsan , Asan (Korea, Republic of); Song, Chi Sung; Choi, Byung Ihn [Seoul City Boramae Hospital, Seoul (Korea, Republic of)

    2000-02-01

    To determine the incidence of hepatic hemangiomas associated with wedge-shaped parenchymal enhancements adjacent to the tumors as seen on two-phase spiral CT images obtained during the hepatic arterial phase and to characterize the two-phase spiral CT findings of those hemangiomas. One hundred and eight consecutive hepatic hemangiomas in 63 patients who underwent two-phase spiral CT scanning during an 11-month period were included in this study. Two-phase spiral CT scans were obtained during the hepatic arterial phase (30-second delay) and portal venous phase (65-second delay) after injection of 120 mL of contrast material at a rate of 3 mL/sec. We evaluated the frequency with which wedge-shaped parenchymal enhancement was adjacent to the hemangiomas during the hepatic arterial phase and divided hemangiomas into two groups according to whether or not wedge-shaped parenchymal enhancement was noted (Group A and Group B). The presence of such enhancement in hemangiomas was correlated with tumor size and the grade of intratumoral enhancement. In 24 of 108 hemangiomas, wedge-shaped parenchymal enhancement adjacent to hepatic tumors was seen on two-phase CT images obtained during the hepatic arterial phase. Mean hemangioma size was 22mm in group A and 24mm in group B. There was no statistically significant relationship between lesion size and the presence of wedge-shaped parenchymal enhancement adjacent to a hemangioma. In 91.7% and 100% of tumors in Group A, and in 9.6% and 17.8% in Group B, hemangiomas showed more than 50% intratumoral enhancement during the arterial and portal venous phase, respectively. Wedge-shaped parenchymal enhancements peripheral to hepatic hemangiomas was more frequently found in tumors showing more than 50% intratumoral enhancement during these two phases (p less than 0.01). Wedge-shaped parenchymal enhancements is not uncommonly seen adjacent to hepatic hemangiomas on two-phase spiral CT images obtained during the hepatic arterial phase. A

  4. Prediction of net hepatic release of glucose using a “hybrid” mechanistic model in ruminants applied to positive energy balance

    OpenAIRE

    Bahloul, Lahlou; Ortigues, Isabelle; Vernet, Jean; Lapierre, Helène; Noziere, Pierre; Sauvant, Daniel

    2013-01-01

    Ruminants depend on hepatic gluconeogenesis to meet most of their metabolic demand for glucose which relies on availability of precursors from diet supply and animal requirements (Loncke et al., 2010). Several mechanistic models of the metabolic fate of nutrients across the liver exist that have been parameterized for dairy cows. They cannot be directly used to predict hepatic gluconeogenesis in all types of ruminants in different physiological status. A hybrid mechanistic model of nutrient f...

  5. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    Science.gov (United States)

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-06

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of dry period length on milk production, body condition, metabolites, and hepatic glucose metabolism in dairy cows.

    Science.gov (United States)

    Weber, C; Losand, B; Tuchscherer, A; Rehbock, F; Blum, E; Yang, W; Bruckmaier, R M; Sanftleben, P; Hammon, H M

    2015-03-01

    Dry period (DP) length affects energy metabolism around calving in dairy cows as well as milk production in the subsequent lactation. The aim of the study was to investigate milk production, body condition, metabolic adaptation, and hepatic gene expression of gluconeogenic enzymes in Holstein cows (>10,000 kg milk/305 d) with 28- (n=18), 56- (n=18), and 90-d DP (n=22) length (treatment groups) in a commercial farm. Cows were fed total mixed rations ad libitum adjusted for far-off (not for 28-d DP) and close-up DP and lactation. Milk yield was recorded daily and body condition score (BCS), back fat thickness (BFT), and body weight (BW) were determined at dry off, 1 wk before expected and after calving, and on wk 2, 4, and 8 postpartum (pp). Blood samples were taken on d -56, -28, -7, 1, 7, 14, 28, and 56 relative to calving to measure plasma concentrations of metabolites and hormones. Liver biopsies (n=11 per treatment) were taken on d -10 and 10 relative to calving to determine glycogen and total liver fat concentration (LFC) and to quantify mRNA levels of pyruvate carboxylase (PC), cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase. Time course of milk yield during first 8 wk in lactation differed among treatment. Milk protein content was higher in 28-d than in 90-d DP cows. Milk fat to protein ratio was highest and milk urea was lowest in 90-d DP cows. Differences in BW, BFT, and BCS were predominantly seen before calving with greatest BW, BFT, and BCS in 90-d DP cows. Plasma concentrations of NEFA and BHBA were elevated during the transition period in all cows, and the greatest increase pp was seen in 90-d DP cows. Plasma glucose concentration decreased around calving and was greater in 28-d than in 90-d DP cows. Dry period length also affected plasma concentrations of urea, cholesterol, aspartate transaminase, and glutamate dehydrogenase. Plasma insulin concentration decreased around calving in all cows, but insulin concentration pp was

  7. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.

    Science.gov (United States)

    Xiao, Chun; Wu, Qingping; Zhang, Jumei; Xie, Yizhen; Cai, Wen; Tan, Jianbin

    2017-01-20

    Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These

  8. Acute treatment with XMetA activates hepatic insulin receptors and lowers blood glucose in normal mice

    Science.gov (United States)

    It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose tran...

  9. Hepatic hemangioma and metastasis: differentiation with gadoxetate disodium-enhanced 3-T MRI.

    Science.gov (United States)

    Goshima, Satoshi; Kanematsu, Masayuki; Watanabe, Haruo; Kondo, Hiroshi; Shiratori, Yoshimune; Onozuka, Minoru; Moriyama, Noriyuki

    2010-10-01

    The purpose of this study was to evaluate the gadoxetate disodium-enhanced MRI findings of hepatic hemangioma and to investigate the diagnostic performance in differentiating hepatic hemangioma and metastasis. Images of 32 hepatic hemangiomas in 25 patients and of 29 hepatic metastatic lesions in 20 patients were retrospectively reviewed. Two independent readers interpreted hepatobiliary phase images alone, dynamic extracellular phase images alone, and combined hepatobiliary and dynamic extracellular phase images. MRI findings and performance with respect to the differential diagnosis of hemangioma and metastasis were assessed. During the hepatic arterial phase, 11 of the 32 hemangiomas (34%) exhibited early total enhancement, and nine (28%) exhibited peripheral nodular enhancement. A bright dot sign or minimal peripheral enhancement during the late dynamic phase was observed for a small number of lesions (6% and 28%, respectively). Twenty-three of the 29 metastatic lesions (79%) exhibited ring enhancement during the hepatic arterial phase. Twenty-nine hemangiomas (91%) and all of the metastatic lesions exhibited homogeneous or heterogeneous hypointensity during the hepatobiliary phase. The sensitivity, specificity, and area under the receiver operating characteristic curve for the detection of hemangioma were 76%, 81%, and 0.87 for the hepatobiliary phase alone; 97%, 88%, and 0.97 for the dynamic extracellular phase alone; and 97%, 88%, and 0.98 for the combination. Five nodules smaller than 1 cm (four hemangiomas, one metastatic lesion) that exhibited no enhancement during the arterial phase and minimal enhancement during the late dynamic phase were not differentiated. Gadoxetate disodium-enhanced MRI was found useful for differentiating hepatic hemangiomas and metastatic lesions, especially during the dynamic extracellular phase. Only a limited number of lesions smaller than 1 cm in diameter, which exhibited minimal enhancement on late dynamic phase images, were

  10. The enhancing effects of hippocampal infusions of glucose are not restricted to spatial working memory.

    Science.gov (United States)

    Krebs, Desiree L; Parent, Marise B

    2005-03-01

    Extensive evidence shows that hippocampal infusions of glucose enhance spontaneous alternation (SA) performance or reverse deficits in this task. The current experiments determined whether the enhancing effects of hippocampal infusions of glucose are restricted to spatial working memory. Specifically we tested whether hippocampal infusions of glucose would reverse deficits in an emotional reference memory task (continuous multiple trial inhibitory avoidance [CMIA]) produced by septal infusions of the gamma-aminobutyric acid agonist muscimol. Male Sprague-Dawley rats were given septal infusions of vehicle or muscimol (0.15 nmol: SA; 5 nmol: CMIA) combined with hippocampal infusions of vehicle or glucose (50 nmol) 15 min prior to assessing SA or CMIA training. CMIA retention was tested 48 h later. Muscimol infusions decreased percent alternation scores and avoidance retention latencies. Importantly, hippocampal infusions of glucose reversed the deficits produced by the septal muscimol infusions on both tasks. These findings show for the first time that hippocampal glucose infusions also influence emotional memory, indicating that the enhancing effects of glucose generalize to memory tasks that vary in motivational and cognitive demand.

  11. Qiliqiangxin Enhances Cardiac Glucose Metabolism and Improves Diastolic Function in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Jingfeng Wang

    2017-01-01

    Full Text Available Cardiac diastolic dysfunction has emerged as a growing type of heart failure. The present study aims to explore whether Qiliqiangxin (QL can benefit cardiac diastolic function in spontaneously hypertensive rat (SHR through enhancement of cardiac glucose metabolism. Fifteen 12-month-old male SHRs were randomly divided into QL-treated, olmesartan-treated, and saline-treated groups. Age-matched WKY rats served as normal controls. Echocardiography and histological analysis were performed. Myocardial glucose uptake was determined by 18F-FDG using small-animal PET imaging. Expressions of several crucial proteins and key enzymes related to glucose metabolism were also evaluated. As a result, QL improved cardiac diastolic function in SHRs, as evidenced by increased E′/A′and decreased E/E′ (P<0.01. Meanwhile, QL alleviated myocardial hypertrophy, collagen deposits, and apoptosis (P<0.01. An even higher myocardial glucose uptake was illustrated in QL-treated SHR group (P<0.01. Moreover, an increased CS activity and ATP production was observed in QL-treated SHRs (P<0.05. QL enhanced cardiac glucose utilization and oxidative phosphorylation in SHRs by upregulating AMPK/PGC-1α axis, promoting GLUT-4 expression, and regulating key enzymes related to glucose aerobic oxidation such as HK2, PDK4, and CS (P<0.01. Our data suggests that QL improves cardiac diastolic function in SHRs, which may be associated with enhancement of myocardial glucose metabolism.

  12. Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation.

    Science.gov (United States)

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Osteopontin-enhanced hepatic metastasis of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Jianjin Huang

    Full Text Available Liver metastasis is a major cause of mortality from colorectal cancer (CRC. However, mechanisms underlying this process are largely unknown. Osteopontin (OPN is a secreted phosphorylated glycoprotein that is involved in tumor migration and metastasis. The role of OPN in cancer is currently unclear. In this study, OPN mRNA was examined in tissues from CRC, adjacent normal mucosa, and liver metastatic lesions using quantitative real-time PCR analysis. The protein expression of OPN and its receptors (integrin αv and CD44 v6 was detected by using an immunohistochemical (IHC method. The role of OPN in liver metastasis was studied in established colon cancer Colo-205 and SW-480 cell lines transfected with sense- or antisense-OPN eukaryotic expression plasmids by flow cytometry and cell adhesion assay. Fluorescence redistribution after photobleaching (FRAP was used to study gap functional intercellular communication (GJIC among OPN-transfected cells. It was found that OPN was highly expressed in metastatic hepatic lesions from CRC compared to primary CRC tissue and adjacent normal mucosa. The expression of OPN mRNA in tumor tissues was significantly related with the CRC stages. OPN expression was also detected in normal hepatocytes surrounding CRC metastatic lesions. Two known receptors of OPN, integrin αv and CD44v6 proteins, were strongly expressed in hepatocytes from normal liver. CRC cells with forced OPN expression exhibited increased heterotypic adhesion with endothelial cells and weakened intercellular communication. OPN plays a significant role in CRC metastasis to liver through interaction with its receptors in hepatocytes, decreased homotypic adhesion, and enhanced heterotypic adhesion.

  14. Segmental Difference of the Hepatic Fibrosis from Chronic Viral Hepatitis due to Hepatitis B versus C Virus Infection: Comparison Using Dual Contrast Material-Enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Ho; Yu, Jeong Sik; Chung, Jae Joon; Kim, Joo Hee; Kim, Ki Whang [Gangnam Severance Hospital, Yensei University College of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    We wanted to identify the geographic differences in hepatic fibrosis and their associations with the atrophy-hypertrophy complex in patients with chronic viral hepatitis using the dual-contrast material-enhanced MRI (DC-MRI) with gadopentetate dimeglumine and ferucarbotran. Patients with chronic C (n = 22) and B-viral hepatitis (n = 35) were enrolled for determining the subjective grade of fibrosis (the extent and thickness of fibrotic reticulations) in the right lobe (RL), the caudate lobe (CL), the medial segment (MS) and the lateral segment (LS) of the liver, with using a 5-grade scale, on the gradient echo T2-weighted images of DC-MRI. The fibrosis grades of different segments were compared using the Kruskal-Wallis test followed by post-hoc analysis to establish the segment-by-segment differences. The incidences of two pre-established morphologic signs of cirrhosis were also compared with each other between the two groups of patients. There were significant intersegmental differences in fibrosis grades of the C-viral group (p = 0.005), and the CL showed lower fibrosis grades as compared with the grades of the RL and MS, whereas all lobes were similarly affected in the B-viral group (p = 0.221). The presence of a right posterior hepatic notch was significantly higher in the patients with intersegmental differences of fibrosis between the RL and the CL (19 out of 25, 76%) than those without such differences (6 out of 32, 19%) (p < 0.001). An expanded gallbladder fossa showed no significant relationship (p = 0.327) with the segmental difference of the fibrosis grades between the LS and the MS. The relative lack of fibrosis in the CL with more advanced fibrosis in the RL can be a distinguishing feature to differentiate chronic C-viral hepatitis from chronic B-viral hepatitis and this is closely related to the presence of a right posterior hepatic notch.

  15. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  16. Ability of higenamine and related compounds to enhance glucose uptake in L6 cells.

    Science.gov (United States)

    Kato, Eisuke; Kimura, Shunsuke; Kawabata, Jun

    2017-12-15

    β2-Adrenergic receptor (β2AR) agonists are employed as bronchodilators to treat pulmonary disorders, but are attracting attention for their modulation of glucose handling and energy expenditure. Higenamine is a tetrahydroisoquinoline present in several plant species and has β2AR agonist activity, but the involvement of each functional groups in β2AR agonist activity and its effectiveness compared with endogenous catecholamines (dopamine, epinephrine, and norepinephrine) has rarely been studied. Glucose uptake of muscle cells are known to be induced through β2AR activation. Here, the ability to enhance glucose uptake of higenamine was compared with that of several methylated derivatives of higenamine or endogenous catecholamines. We found that: (i) the functional groups of higenamine except for the 4'-hydroxy group are required to enhance glucose uptake; (ii) higenamine shows a comparable ability to enhance glucose uptake with that of epinephrine and norepinephrine; (iii) the S-isomer shows a greater ability to enhance glucose uptake compared with that of the R-isomer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Kondeti, Vinay Kumar; Badri, Kameswara Rao; Maddirala, Dilip Rajasekhar; Thur, Sampath Kumar Mekala; Fatima, Shaik Sameena; Kasetti, Ramesh Babu; Rao, Chippada Appa

    2010-05-01

    The present study was designed to investigate the effect of bark of Pterocarpus santalinus, an ethnomedicinal plant, on blood glucose, plasma insulin, serum lipids and the activities of hepatic glucose metabolizing enzymes in streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were treated (acute/short-term and long-term) with ethyl acetate:methanol fractions of ethanolic extract of the bark of P. santalinus. Fasting blood glucose, HbA(1C), plasma insulin and protein were estimated before and after the treatment, along with hepatic glycogen, and activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase. Further anti-hyperlipidemic activity was studied by measuring the levels of serum lipids and lipoproteins. Phytochemical analysis of active fraction showed the presence of flavonoids, glycosides and phenols. Biological testing of the active fraction demonstrated a significant antidiabetic activity by reducing the elevated blood glucose levels and glycosylated hemoglobin, improving hyperlipidemia and restoring the insulin levels in treated experimental induced diabetic rats. Further elucidation of mechanism of action showed improvement in the hepatic carbohydrate metabolizing enzymes after the treatment. Our present investigation suggests that active fraction of ethanolic extract of bark of P. santalinus decreases streptozotocin induced hyperglycemia by increasing glycolysis and decreasing gluconeogenesis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo

    National Research Council Canada - National Science Library

    Titchenell, Paul M; Chu, Qingwei; Monks, Bobby R; Birnbaum, Morris J

    2015-01-01

    .... Liver-specific deletion of Foxo1 (L-IRFoxo1DKO) rescues glucose tolerance and allows for normal suppression of HGP and gluconeogenic gene expression in response to insulin, despite lack of autonomous liver insulin signalling...

  19. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  20. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  1. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  2. Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation.

    Science.gov (United States)

    Harada, Shinichi; Nozaki, Yudai; Matsuura, Wataru; Yamazaki, Yui; Tokuyama, Shogo

    2017-04-15

    Activation of vagus nerve exerts orexin-A (OXA)-mediated suppression of post-ischemic glucose intolerance and cerebral ischemic neuronal damage. Cerebral ischemia induces hepatic inflammatory factors and contributes to the development of hepatic insulin resistance by activating sympathetic nerves. However, it is not enough to understand whether OXA regulates these phenomena through activation of vagus nerve. In this study, we demonstrated that the involvement of OXA-induced activation of vagus nerve in the induction of hepatic inflammatory factors by cerebral ischemia. Focal cerebral ischemic model construction was performed by 2h of middle cerebral artery occlusion (MCAO) in ddY male mice. OXA-positive neurons were visualized using the retrograde tracer Fluoro-Gold™. Intrahypothalamic OXA (5pmol/mouse) administration significantly suppressed the MCAO-induced post-ischemic glucose intolerance and neuronal damage. The MCAO-induced decrease in hepatic insulin receptors and increase in hepatic gluconeogenic enzymes were suppressed by OXA administration. These effects were canceled by N-butylscopolamine (a muscarinic receptor antagonist). MCAO-induced increases in hepatic F4/80, tumor necrosis factor-α, and interleukin-1β on day 1 after MCAO were reversed by OXA administration. These effects were abolished by N-butylscopolamine or hepatic vagotomy. These results suggest that OXA-induced activation of vagus nerve regulates the post-ischemic elevation of hepatic inflammatory factors, and which may be contributed to part of OXA-mediated regulation of post-ischemic glucose intolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Diagnosis of hepatic hemangioma by parametric imaging using sonazoid-enhanced US.

    Science.gov (United States)

    Wakui, Noritaka; Takayama, Ryuji; Kamiyama, Naohisa; Takahashi, Masayoshi; Shiozawa, Kazue; Nagai, Hidenari; Watanabe, Manabu; Ishii, Koji; Iida, Kazunari; Igarashi, Yoshinori; Sumino, Yasukiyo

    2011-01-01

    Comparison of Parametric Imaging (PI) using Sonazoid-enhanced ultrasonography (US) and microflow imaging (MFI) to determine the possibility of hepatic hemangioma diagnosis using PI. Twenty-two hepatic hemangioma nodules (mean±SD diameter: 31.6±19.1mm) undergoing Sonazoid-enhanced US between February 2008 and March 2009. After Sonazoid-enhanced US, COMMUNE ultrasonographic image analysis software was used for analysis of tumor imaging dynamics in the vascular phase using PI and MFI. In PI, 0s was set as the time contrast agent reached the tumor. Imaging within the tumor after 0s was color-coded according to time, and the images were displayed in color. In MFI, 0s was set as the time contrast agent reached the tumor. The path of microbubbles as it flowed through blood vessels was superimposed on the original B-mode images. Three trained physicians used these methods to analyze tumor imaging dynamics. All physicians concluded all cases were hepatic hemangioma regardless of method used. However, compared to MFI, PI allowed determination of more detailed blood flow dynamics in high-flow hepatic hemangioma, where blood flow speed was faster than in normal hepatic hemangioma. It is possible to diagnose hepatic hemangioma using PI using sonazoid-enhanced US.

  4. Transcriptional Regulation of the Human Hepatic Lipase Gene: Relation to Glucose and Lipid Metabolism

    NARCIS (Netherlands)

    D. van Deursen (Diederik)

    2012-01-01

    textabstractHepatic Lipase (HL; EC 3.1.1.3) is an extracellular glycoprotein with phospholipase A1 and triacylglycerol hydrolase activity. The human HL protein is encoded by the LIPC gene on chromosome 15q21. Most of this protein is synthesized in the parenchymal cells of the liver and secreted into

  5. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    Science.gov (United States)

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Investigation of repressive and enhancive effects of fruit extracts on the activity of glucose-6-phophatase.

    Science.gov (United States)

    Zahoor, Muhammad; Jan, Muhammad Rasul; Naz, Sumaira

    2016-11-01

    Glucose-6-phosphatase is a key enzyme of glucose metabolic pathways. Deficiency of this enzyme leads to glycogen storage disease. This enzyme also plays a negative role in diabetes mellitus disorder in which the catalytic activity of this enzyme increases. Thus there is need for activators to enhance the activity of glucose-6-phosphatase in glycogen storage disease of type 1b while in diabetes mellitus repressors are needed to reduce its activity. Crude extracts of apricot, fig, mulberry and apple fruits were investigated for their repressive/enhancive effects on glucose-6-phosphatase in vivo. Albino mice were used as experimental animal. All the selected extracts showed depressive effects on glucose-6-phosphatase, which shows that all these extracts can be used as antidiabetic supplement of food. The inhibitory pattern was competitive one, which was evident from the effect of increasing dose from 1g/Kg body weight to 3g/Kg body weight for all the selected fruit extracts. However fig and apple fruit extracts showed high repressive effects for high doses as compared to apricot and mulberry fruit extracts. None of these selected fruit extracts showed enhancive effect on glucose-6-phosphatase activity. All these fruits or their extracts can be used as antidiabetic dietary supplement for diabetes mellitus.

  7. Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals.

    Science.gov (United States)

    Wang, Kun; Liu, Qian; Guan, Qing-Meng; Wu, Jun; Li, He-Nan; Yan, Jia-Jia

    2011-01-15

    Integrating graphene-based composites with enzyme provides a potent strategy to enhance biosensor performance due to their unique physicochemical properties. Herein we report on the utilization of graphene-CdS (G-CdS) nanocomposite as a novel immobilization matrix for the enzymes, which glucose oxidase (GOD) was chosen as model enzyme. In comparison with the graphene sheet and CdS nanocrystal, G-CdS nanocomposite exhibited excellent electron transfer properties for GOD with the rate constant (k(s)) of 5.9 s(-1) due to the synergy effect of graphene sheet and CdS nanocrystals. Further, based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the obtained glucose biosensor displays satisfactory analytical performance over an acceptable linear range from 2.0 to 16 mM with a detection limit of 0.7 mM, and also prevents the effects of interfering species, which is suitable for glucose determination by real samples. These results mean that this immobilization matrix not only can be used for immobilizing GOD, but also can be extended to other enzymes and bioactive molecules, thus providing a promising platform for the development of biosensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Tissue Inhibitor Of Matrix Metalloproteinase-1 Is Required for High-Fat Diet-Induced Glucose Intolerance and Hepatic Steatosis in Mice.

    Directory of Open Access Journals (Sweden)

    Even Fjære

    Full Text Available Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet-induced glucose intolerance and hepatic steatosis using the Timp1 null mice.Timp1 knockout (TKO and wild type (TWT mice were fed chow, high-fat diet (HFD or intermediate fat and sucrose diet (IFSD. We determined body weight, body composition, lipid content of the liver, energy intake, energy expenditure, oral glucose tolerance, as well as insulin tolerance. In addition, the histology of liver and adipose tissues was examined and expression of selected genes involved in lipid metabolism and inflammation in liver and adipose tissues was determined by RT-qPCR.TKO mice gained less weight and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation.Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target.

  9. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice.

    Science.gov (United States)

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-12-25

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  10. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes.

    Science.gov (United States)

    Yuan, Xiaoyang; Huang, Huijing; Huang, Yi; Wang, Jinli; Yan, Jinhua; Ding, Ling; Zhang, Cuntai; Zhang, Le

    2017-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce the expression of a variety of antioxidant and detoxification genes. Recently, increasing evidence has revealed roles for Nrf2 in glucose, lipid, and energy metabolism; however, the exact functions of Nrf2 in hepatocyte biology are largely unclear. In the current study, the transient knockdown of Nrf2 via siRNA transfection enhanced the glucose uptake of fasting AML12 hepatocytes to 325.3 ± 11.1% ( P glucose metabolism were then examined in AML12 cells under both high-glucose (33 mmol/L) and low-glucose (4.5 mmol/L) conditions. NK lowered the gene and protein expression of the anti-oxidases heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 and increased p-eukaryotic initiation factor-2α S51 , p-nuclear factor-κB p65 S276 , and its downstream proinflammatory factors, including interleukin-1 beta, tumor necrosis factor-α, matrix metalloproteinase 2, and matrix metalloproteinase 9, at the protein level. NK also altered the protein expression of fibroblast growth factor 21, glucose transporter type 4, insulin-like growth factor 1, forkhead box protein O1, p-AKT S473 , and p-GSK3α/β Y279/Y216 , which are involved in glucose uptake, glycogenesis, and gluconeogenesis in AML12 cells. Our results provide a comprehensive understanding of the central role of Nrf2 in the regulation of glucose metabolism in AML12 hepatocytes, in addition to its classical roles in the regulation of redox signaling, endoplasmic reticulum stress and proinflammatory responses, and support the potential of Nrf2 as a therapeutic target for the prevention and treatment of obesity and other associated metabolic syndromes. Impact statement Increasing evidence supports the complexity of Nrf2 functions beyond the antioxidant and detoxification response. Previous in vivo studies employing either Nrf2-knockout or Nrf2-activated mice have achieved a similar endpoint: protection against an obese and

  11. Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase–Dependent Manner in Diabetic Mice

    Science.gov (United States)

    Abudukadier, Abulizi; Fujita, Yoshihito; Obara, Akio; Ohashi, Akiko; Fukushima, Toru; Sato, Yuichi; Ogura, Masahito; Nakamura, Yasuhiko; Fujimoto, Shimpei; Hosokawa, Masaya; Hasegawa, Hiroyuki; Inagaki, Nobuya

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) dysfunction induces insulin resistance and glucose intolerance. Tetrahydrobiopterin (BH4) is an essential cofactor of eNOS that regulates eNOS activity. In the diabetic state, BH4 is oxidized to 7,8-dihydrobiopterin, which leads to eNOS dysfunction owing to eNOS uncoupling. The current study investigates the effects of BH4 on glucose metabolism and insulin sensitivity in diabetic mice. Single administration of BH4 lowered fasting blood glucose levels in wild-type mice with streptozotocin (STZ)-induced diabetes and alleviated eNOS dysfunction by increasing eNOS dimerization in the liver of these mice. Liver has a critical role in glucose-lowering effects of BH4 through suppression of hepatic gluconeogenesis. BH4 activated AMP kinase (AMPK), and the suppressing effect of BH4 on gluconeogenesis was AMPK-dependent. In addition, the glucose-lowering effect and activation of AMPK by BH4 did not appear in mice with STZ-induced diabetes lacking eNOS. Consecutive administration of BH4 in ob/ob mice ameliorated glucose intolerance and insulin resistance. Taken together, BH4 suppresses hepatic gluconeogenesis in an eNOS-dependent manner, and BH4 has a glucose-lowering effect as well as an insulin-sensitizing effect in diabetic mice. BH4 has potential in the treatment of type 2 diabetes. PMID:23649519

  12. Diagnosis of hepatic steatosis by contrast-enhanced abdominal computed tomography

    Directory of Open Access Journals (Sweden)

    Rodrigo da Fonseca Monjardim

    2013-06-01

    Full Text Available Objective To evaluate the diagnostic capacity of abdominal computed tomography in the assessment of hepatic steatosis using the portal phase with a simplified calculation method as compared with the non-contrast-enhanced phase. Materials and Methods In the present study, 150 patients were retrospectively evaluated by means of non-contrast-enhanced and contrast-enhanced computed tomography. One hundred patients had hepatic steatosis and 50 were control subjects. For the diagnosis of hepatic steatosis in the portal phase, the authors considered a result of < 104 HU calculated by the formula [L - 0.3 × (0.75 × P + 0.25 × A] / 0.7, where L, P and A represent the attenuation of the liver, of the main portal vein and abdominal aorta, respectively. Sensitivity, specificity, positive and negative predictive values were calculated, using non-contrast-enhanced computed tomography as the reference standard. Results The simplified calculation method with portal phase for the diagnosis of hepatic steatosis showed 100% sensitivity, 36% specificity, negative predictive value of 100% and positive predictive value of 75.8%. The rate of false positive results was 64%. False negative results were not observed. Conclusion The portal phase presents an excellent sensitivity in the diagnosis of hepatic steatosis, as compared with the non-contrast-enhanced phase of abdominal computed tomography. However, the method has low specificity.

  13. Acute inhibition of hepatic beta-oxidation in APOE*3Leiden mice does not affect hepatic VLDL secretion or insulin sensitivity

    NARCIS (Netherlands)

    Duivenvoorden, [No Value; Teusink, B; Rensen, PCN; Kuipers, F; Romijn, JA; Havekes, LM; Voshol, PJ

    Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic steatosis. Whether the derangements in hepatic metabolism are attributable to steatosis or to the increased availability of FA metabolites is not known. We used methyl palmoxirate ( MP), an inhibitor of

  14. Acute inhibition of hepatic beta-oxidation in APOE*3Leiden mice does not affect hepatic VLDL secretion or insulin sensitivity

    NARCIS (Netherlands)

    Duivenvoorden, Ilse; Teusink, Bas; Rensen, Patrick C. N.; Kuipers, Folkert; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2005-01-01

    Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic steatosis. Whether the derangements in hepatic metabolism are attributable to steatosis or to the increased availability of FA metabolites is not known. We used methyl palmoxirate (MP), an inhibitor of

  15. Mahanine enhances the glucose-lowering mechanisms in skeletal muscle and adipocyte cells.

    Science.gov (United States)

    Nooron, Nattakarn; Athipornchai, Anan; Suksamrarn, Apichart; Chiabchalard, Anchalee

    2017-12-09

    Insulin resistance is a major defect underlying type 2 diabetes development. Skeletal muscle tissue and adipocyte tissue are the major sites of postprandial glucose disposal, and enhancing glucose uptake into this tissue may decrease insulin resistance in type 2 diabetes patients. Mahanine (3,11-dihydro-3,5-dimethyl-3-(4-methyl-3-pentenyl)pyrano[3,2-a]carbazol-9-ol) has been reported to be a major bioactive carbazole alkaloid that has many biological activities including antitumor, anti-inflammatory, antioxidant and anti-diabetic activities. However, the molecular mechanism and signaling pathways mediating the anti-diabetic effects of mahanine require further investigation. Therefore, the aim of this study was to investigate the effects of mahanine, a carbazole alkaloid from Murraya koenigii, on glucose uptake and glucose transporter 4 (GLUT4) translocation in skeletal muscle and adipocyte cells. Mahanine treatment promoted a dose dependent increased in glucose uptake in L6 myotubes and adipocyte cells via activation of the Akt signaling pathway. Mahanine induced Akt-activation was reversed by co-treatment with wortmannin, an Akt inhibitor. Moreover, it was found that mahanine significantly enhanced GLUT4 translocation to the plasma membrane in L6 myotubes. These results suggest that increased activation of the Akt signaling pathway lead to increased plasma membrane GLUT4 content and increased glucose uptake. These data strongly suggest that mahanine has anti-diabetic potential for treating diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose

    DEFF Research Database (Denmark)

    Bülow, J; Simonsen, L; Wiggins, D

    1999-01-01

    The integration of lipid metabolism in the splanchnic bed and in subcutaneous adipose tissue before and after ingestion of a 75 g glucose load was studied by Fick's principle in seven healthy subjects. Six additional subjects were studied during a hyperinsulinemic euglycemic clamp. Release of non...

  17. Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates.

    Science.gov (United States)

    Marandel, Lucie; Lepais, Olivier; Arbenoits, Eva; Véron, Vincent; Dias, Karine; Zion, Marie; Panserat, Stéphane

    2016-08-26

    The rainbow trout, a carnivorous fish, displays a 'glucose-intolerant' phenotype revealed by persistent hyperglycaemia when fed a high carbohydrate diet (HighCHO). Epigenetics refers to heritable changes in gene activity and is closely related to environmental changes and thus to metabolism adjustments governed by nutrition. In this study we first assessed in the trout liver whether and how nutritional status affects global epigenome modifications by targeting DNA methylation and histone marks previously reported to be affected in metabolic diseases. We then examined whether dietary carbohydrates could affect the epigenetic landscape of duplicated gluconeogenic genes previously reported to display changes in mRNA levels in trout fed a high carbohydrate diet. We specifically highlighted global hypomethylation of DNA and hypoacetylation of H3K9 in trout fed a HighCHO diet, a well-described phenotype in diabetes. g6pcb2 ohnologs were also hypomethylated at specific CpG sites in these animals according to their up-regulation. Our findings demonstrated that the hepatic epigenetic landscape can be affected by both nutritional status and dietary carbohydrates in trout. The mechanism underlying the setting up of these epigenetic modifications has now to be explored in order to improve understanding of its impact on the glucose intolerant phenotype in carnivorous teleosts.

  18. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Jørgensen, Nils Bruun

    2014-01-01

    after RYGB. Participants were included after a preoperative diet induced total weight loss of -9.2±1.2%. Hepatic and peripheral insulin sensitivity were assessed using the hyperinsulinemic euglycemic clamp combined with glucose tracer technique and beta-cell function evaluated in response...... to an intravenous glucose-glucagon challenge as well as an oral glucose load. Already within 1 week, RYGB reduced basal glucose production, improved basal hepatic insulin sensitivity and increased insulin clearance highlighting the liver as an important organ responsible for the early effects on glucose metabolism...... in response to oral glucose, underscoring the importance of the changed gut anatomy....

  19. Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids.

    Science.gov (United States)

    Parrilla, Marc; Cánovas, Rocío; Andrade, Francisco J

    2017-04-15

    A novel paper-based potentiometric sensor with an enhanced response for the detection of glucose in biological fluids is presented. The electrode consists on platinum sputtered on a filter paper and a Nafion membrane to immobilize the enzyme glucose oxidase. The response obtained is proportional to the logarithm of the concentration of glucose, with a sensitivity of -119±8mV·decade-1, a linear range that spans from 10-4M to 10-2.5 M and a limit of detection of 10-4.5 M of glucose. It is shown that Nafion increases the sensitivity of the technique while minimizing interferences. Validation with human serum samples shows an excellent agreement when compared to standard methods. This approach can become an interesting alternative for the development of simple and affordable devices for point of care and home-based diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The outcomes of glucose abnormalities in chronic hepatitis C patients receiving interferon-free direct antiviral agents

    Directory of Open Access Journals (Sweden)

    Jee-Fu Huang

    2017-11-01

    Full Text Available Direct-acting antiviral agents (DAAs have been widely used for chronic hepatitis C (CHC treatment recently. The characteristics of glucose abnormalities after DAAs therapy however, remain elusive. We aimed to elucidate the mutual impact between treatment response and parameters of glucose abnormalities after DAAs therapy in CHC patients. CHC patients who received DAAs therapy were recruited. The primary outcome measurements were their insulin resistance (IR and beta-cell function assessed by the homeostasis model assessment (HOMA method before treatment and at end-of-follow-up (EOF. Sixty-five CHC patients (19 males, mean age = 59.8 ± 10.3 years were consecutively enrolled. They included 47 (72.3% patients of genotype-1 infection. The treatment regimens among patients were sofosbuvir in 30 patients, paritaprevir-ritonavir/ombitasvir/dasabuvir in 23 patients, and asunaprevir/daclatasvir in 12 patients respectively. The overall sustained virological response rate was 98.5%. The mean IR at EOF was 2.6 ± 1.8, which was not significantly different from baseline level (2.7 ± 2.9, P = 0.75. There was a significant improvement of beta-cell function at EOF compared to baseline (107.7 ± 86.8 to 86.7 ± 44.5, P = 0.05. The amelioration of beta-cell function at EOF was significantly observed among 23 patients of high baseline IR (166.7 ± 111.3 of baseline vs 105.7 ± 48.2 of EOF, P = 0.04. Six (60% of the 10 pre-diabetic patients at baseline achieved a normoglycemic state at EOF. Successful eradication of HCV by DAAs might improve glucose abnormalities in CHC patients, particularly among those who had high IR.

  1. Washout Ratio in the Hepatic Vein Measured by Contrast-Enhanced Ultrasonography to Distinguish Between Inflammatory and Noninflammatory Hepatic Disorders in Dogs.

    Science.gov (United States)

    Morishita, K; Hiramoto, A; Michishita, A; Takagi, S; Osuga, T; Lim, S Y; Nakamura, K; Sasaki, N; Ohta, H; Takiguchi, M

    2017-05-01

    Perflubutane microbubbles, a second-generation ultrasound contrast agent, are phagocytized by Kupffer cells. This characteristic may be useful to differentiate diffuse hepatic diseases in dogs. To determine whether the washout ratio in the hepatic vein (HV) measured by contrast-enhanced ultrasonography (CEUS) can distinguish between inflammatory and noninflammatory hepatic disorders in dogs. Forty-one client-owned dogs with hepatic disorders including 14 with hepatitis, 7 with primary hypoplasia of the portal vein (PHPV), 9 with congenital portosystemic shunt (cPSS), and 11 with other hepatopathy were enrolled. Six dogs without hepatic disease also were evaluated as healthy controls. Dogs with hepatic disorders were prospectively included. Contrast-enhanced ultrasonography of the HV was performed for 2 minutes. Washout ratio was defined as the attenuation rate from peak intensity to the intensity at the end of the CEUS study. Washout ratio in the hepatitis group (median, 18.0%; range, 2.0-37.0%) was significantly lower than that of the PHPV (median, 52.2%; range, 11.5-86.3%), cPSS (median, 60.0%; range, 28.6-77.4%), other hepatopathy (median, 70.5%; range, 26.6-88.4%), and normal (median, 78.0%; range, 60.7-91.7%) groups. The area under the receiver operating characteristic curve for hepatitis was 0.960, with a 95% confidence interval (CI) of 0.853-0.990. Washout ratio ≤37.1% resulted in a sensitivity of 100% (95% CI, 78.5-100%) and specificity of 85.2% (95% CI, 67.5-94.1%) for the prediction of hepatitis. Washout ratio can distinguish hepatitis from the other noninflammatory disorders with high accuracy. This result might reflect impaired Kupffer cell phagocytosis in dogs with hepatitis. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose.

    Science.gov (United States)

    Begum, Shamim A; Batista, Jacimaria R

    2012-05-01

    The microbial selection on an enhanced biological phosphorus removal (EBPR) system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with glucose as the carbon source. Fluorescence In Situ Hybridization analysis was performed to target two polyphosphate accumulating organisms (PAOs) (i.e., Candidatus Accumulibacter phosphatis and Microlunatus phosphovorus) and two glycogen accumulating organisms (GAOs) (i.e., Candidatus Competibacter phosphatis and Micropruina glycogenica). The results show that glucose might not select for Candidatus Accumulibacter phosphatis. However, Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica might be selected. The highest percent relative abundance (% RA) of Candidatus Accumulibacter phosphatis was about 42%; this occurred at the beginning of the experimental period when phosphorus removal was efficient. However, the % RA of these bacteria decreased, reaching below 4% at the end of the run. The maximum % RA of Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica was about 21, 37, 17%, respectively. It appears that a higher glucose concentration might be detrimental for Microlunatus phosphovorus and Micropruina glycogenica. Results also indicate a dominance of GAOs over PAOs when EBPR systems are fed with glucose. It is possible that the GAOs outcompete the PAOs at low pH values; it has been reported that at low pH, GAOs use glycogen as the energy source to uptake glucose. As a result, P-removal deteriorated. Therefore, glucose is not a strong candidate as a carbon source to supplement EBPR systems that do not contain sufficient volatile fatty acids.

  3. Effects of β-hydroxy β-methyl butyrate supplementation to sows in late gestation on absorption and hepatic metabolism of glucose and amino acids during transition

    DEFF Research Database (Denmark)

    Flummer, Christine; Lyby, H; Storli, K S

    2012-01-01

    indwelling catheters in an artery and in the portal, hepatic, and mesenteric veins. Eight hourly sets of blood samples were taken starting 30 min before the morning meal on day –3 and day 3 relative to parturition. Four control (CON) sows were fed a standard lactation diet from day –15 and throughout......, except for Gly and Tyr, were affected the Trt × time interaction (P rates appeared to be more stable for HMB than for CON sows. Net hepatic flux of glucose was not affected by Trt...

  4. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise.

    Science.gov (United States)

    Chen, Hsuan-Ying; Cheng, Fu-Chou; Pan, Huan-Chuan; Hsu, Jaw-Cheng; Wang, Ming-Fu

    2014-01-01

    Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg) is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p.) 30 min before treadmill exercise (20 m/min for 60 min). Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (Pbrain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (Pexercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.

  5. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise.

    Directory of Open Access Journals (Sweden)

    Hsuan-Ying Chen

    Full Text Available Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p. 30 min before treadmill exercise (20 m/min for 60 min. Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (P<0.05 in the Mg group. Lactate levels in the muscle, blood, and brain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (P<0.05 than those in the control group during exercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.

  6. [The new technology of enhanced radiofrequency ablation is safe and effective for treating giant hepatic hemangioma].

    Science.gov (United States)

    Zou, Hua; Yan, Jun; Wu, Yan-xia; Ou, Xia; Li, Xiao-wu; Xia, Feng; Ma, Kuan-sheng; Bie, Ping

    2012-04-01

    To determine the safety and efficacy of the enhanced radiofrequency ablation (RFA) new technology for treatment of giant hepatic hemangiomas. From August 2010 to September 2011, 30 patients with giant hepatic hemangiomas (average diameter: 7.7+/-1.9 cm, range: 5.0 to 12.8 cm) were treated with enhanced RFA. The original lesion diameter, enhanced radiofrequency duration, and cases of RFA-induced burning were recorded. Cases requiring a second RFA treatment were also recorded. Correlation analysis was carried out to determine the association of enhanced RFA with adverse events and change in lesion diameter. The rate of completely destroyed lesions by enhanced RFA was 70.96%, and the total rate of reduced lesions was 87.1%. No severe adverse events occurred. The duration of enhanced radiofrequency correlated positively with the original lesion diameter (r=0.687, P less than 0.01). The enhanced RFA treatment significantly reduced the average lesion diameter (follow-up: 6.2+/-1.8 cm; t=6.417, P less than 0.01). The new minimally-invasive technology of enhanced radiofrequency ablation is effective and safe for treating giant hepatic hemangiomas and produces an obvious, short-term curative effect.

  7. Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice

    DEFF Research Database (Denmark)

    Sørensen, Heidi; Brand, Christian L; Neschen, Susanne

    2006-01-01

    In type 2 diabetes, glucagon levels are elevated in relation to the prevailing insulin and glucose levels. The relative hyperglucagonemia is linked to increased hepatic glucose output (HGO) and hyperglycemia. Antagonizing the effects of glucagon is therefore considered an attractive target...... for treatment of type 2 diabetes. In the current study, effects of eliminating glucagon signaling with a glucagon monoclonal antibody (mAb) were investigated in the diabetic ob/ob mouse. Acute effects of inhibiting glucagon action were studied by an oral glucose tolerance test (OGTT) and by measurement of HGO...... synthesis. Glucagon mAb treatment for 5 days lowered plasma glucose and triglyceride levels, whereas 14 days of glucagon mAb treatment reduced A1C. In conclusion, acute and subchronic neutralization of endogenous glucagon improves glycemic control, thus supporting the contention that glucagon antagonism may...

  8. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats.

    Science.gov (United States)

    Oyenihi, Ayodeji B; Chegou, Novel N; Oguntibeju, Oluwafemi O; Masola, Bubuya

    2017-12-01

    Neutralizing the over-activation of oxidative stress and inflammation remains an important goal in the management of type 2 diabetes mellitus (T2DM). Centella asiatica (L.) Urban (Apiaceae) (CA) has been used in traditional folklore in Africa and Asia to treat various ailments including diabetes. We investigated the hepatic antioxidant and anti-inflammatory potential of methanol extract of CA leaves in T2DM. T2DM was induced in male Sprague-Dawley rats with 10% fructose in drinking water for 14 days followed by a single intraperitoneal injection of streptozotocin (40 mg/kg b.wt). Hepatic oxidant/antioxidant status was assessed by measuring the concentrations of malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC), reduced glutathione (GSH) and activities of glutathione S-transferase (GST) and glutathione peroxidase (GPX). The concentrations of cytokines IL-1β, IL-4, IL-6, IL-10, MCP-1 and TNF-α in the liver were determined. Diabetes increased MDA formed (47%) and reduced FRAP (20%), TEAC (15%), GSH levels (32%), significantly; decreased GST and GPX activities in the liver and elevated levels of cytokines studied. Treatment of diabetic rats with 500 mg/kg b.wt CA for 14 days decreased MDA (44%); elevated FRAP (15%) and GSH (131%) levels and increased the activities of GST and GPX by 16%. Hepatic concentrations of IL-1β, MCP-1 and TNF-α in DCA group were reduced to 68%, 75% and 63% of DC values, respectively. The antioxidant and anti-inflammatory properties of CA may protect tissues such as the liver from diabetes-induced oxidative damage.

  9. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol.

    Directory of Open Access Journals (Sweden)

    Mark K Nøhr

    Full Text Available Low-grade inflammation is seen with obesity and is suggested to be a mediator of insulin resistance. The eliciting factor of low-grade inflammation is unknown but increased permeability of gut bacteria-derived lipopolysaccharides (LPS resulting in endotoxemia could be a candidate. Here we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b, whereas the increased macrophage infiltration was unaltered without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during an oral glucose tolerance test was increased despite similar plasma glucose level resulting in an increase in the insulinogenic index (IGI; delta0-15insulin/delta0-15glucose from 13.73 to 22.40 pmol/mmol (P < 0.001. This aberration in insulin and glucose homeostasis was normalized by resveratrol.Low-dose LPS enhanced the glucose-stimulated insulin secretion without affecting the blood glucose suggesting increased insulin resistance. Resveratrol restored LPS-induced alteration of the insulin secretion and demonstrated anti-inflammatory effects specifically in epididymal adipose tissue possibly due to preferential accumulation of resveratrol metabolites pointing towards a possible important involvement of this tissue for the effects on insulin resistance and insulin secretion.

  10. Ocimum basilicum extract exhibits antidiabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes.

    Science.gov (United States)

    Ezeani, Chinelo; Ezenyi, Ifeoma; Okoye, Theophine; Okoli, Charles

    2017-01-01

    Ocimum basilicum L (Lamiaceae) is used as a traditional remedy for different ailments, including diabetes mellitus. This study investigated the antidiabetic effects of an extract of aerial parts of O. basilicum. Antihyperglycemic effect of the extract was determined by its effects on α-amylase and α-glucosidase in vitro, while antidiabetic properties were studied in alloxan induced diabetic rats treated for 28 days with extract and compared to those treated with oral metformin (150 mg/kg). The study and analysis was conducted between 2014 and 2015. The treatment with 100 and 200 mg/kg extract significantly (P < 0.05) reduced fasting blood glucose concentration and slightly increased mean body weight in treated groups. Oral glucose tolerance was also significantly (P < 0.05, 0.001) improved in 100 and 400 mg/kg extract-treated groups. The extract caused a dose-dependent increase in liver glycogen content, while it decreased alanine transferase (18.9-30.56%) and aspartate transferase (6.48-34.3%) levels in a non-dose-dependent manner. A dose of 100 mg/kg also reduced serum cholesterol and triglycerides by 19.3 and 39.54%, compared to a 2.6% reduction of cholesterol seen in the metformin-treated group. The extract was observed to produce significant (P < 0.001) concentration-dependent inhibition of α-glucosidase (35.71-100%) and also α-amylase (23.55-81.52%), with estimated inhibitory concentration values of 1.62 and 3.86 mg/mL, respectively. The antidiabetic properties of the extract may be due to its ability to suppress endogenous glucose release, inhibit glycogenolysis and/or stimulate glycogenesis.

  11. Aegle marmelos differentially affects hepatic markers of glycolysis, insulin signalling pathway, hypoxia, and inflammation in HepG2 cells grown in fructose versus glucose-rich environment.

    Science.gov (United States)

    Aggarwal, H; Nair, J; Sharma, P; Sehgal, R; Naeem, U; Rajora, P; Mathur, R

    2017-08-01

    Fructose consumption is responsible for the onset of insulin resistance (IR), and metabolic syndrome. It possesses no functional utility in body and its detrimental effects on hepatic metabolic milieu are beyond those produced by glucose. The need of the hour is to identify fructose-induced IR as an unique pathological state to be managed differentially. The effect of aqueous leaf extract of Aegle marmelos (AM) on hepatic markers of insulin resistance using HepG2 cells cultured in either fructose or glucose-rich environment is investigated. Human hepatocellular carcinoma cells (HepG2) were grown under standard conditions in either-DMEM without glucose (NC), DMEM with high glucose 25 mM (Glu), DMEM-glucose+0.55 mM fructose (FC1), DMEM-glucose+1 mM fructose (FC2) or DMEM-glucose+1 mM fructose+0.1 µM insulin (FC3). The cells were treated with either AM, rutin, quercetin, metformin or pioglitazone and assessed for levels of hexokinase, phosphofructokinase (PFK), aldehyde dehydrogenase, phosphatidylinositol kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3), mitochondrial target of rapamycin (mTOR), hypoxia-induced factor (HIF-1α), vascular endothelial growth factor (VEGF) and tumour necrosis factor (TNF-α). Summarily, when results from fructose- and glucose-rich environment were compared, then (1) IR was more pronounced in former; (2) AM performed better in former; (3) metformin and pioglitazone were equivocal in either; (4) rutin and quercetin showed deviant effects from AM; and lastly (5) effects of rutin were closer to AM than quercetin. We hypothesize that AM ameliorates fructose-induced IR through a mechanism which is distinct from standard drugs and not shared by individual phytoconstituents in toto.

  12. Comparative Evaluation of Whole Body and Hepatic Insulin Resistance Using Indices from Oral Glucose Tolerance Test in Morbidly Obese Subjects with Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Kamran Qureshi

    2010-01-01

    Full Text Available Nonalcoholic Fatty Liver Disease (NAFLD is the hepatic manifestation of metabolic syndrome and is a marker of Insulin Resistance (IR. Euglycemic-hyperinsulinemic clamp is the gold standard for measuring whole body IR (hepatic + peripheral IR. However, it is an invasive and expensive procedure. Homeostasis Model Assessment Index for Insulin Sensitivity (HOMA-IS, Quantitative Insulin Sensitivity Check Index (QUICKI for hepatic IR and Insulin Sensitivity Index (ISI0,120, and Whole Body Insulin Sensitivity Index (WBISI for whole body IR are the indices calculated after Oral Glucose Tolerance Test (OGTT. We used these indices as noninvasive methods of IR (inverse of insulin sensitivity estimation and compared hepatic/peripheral components of whole body IR in NAFLD. Methods. 113 morbidly obese, nondiabetic subjects who underwent gastric bypass surgery and intraoperative liver biopsy were included in the study. OGTT was performed preoperatively and the indices were calculated. Subjects were divided into closely matched groups as normal, fatty liver (FL and Non-Alcoholic Steatohepatitis (NASH based on histology. Results. Whole body IR was significantly higher in both FL and NASH groups (NAFLD as compared to Normal, while hepatic IR was higher only in NASH from Normal. Conclusions. FL is a manifestation of peripheral IR but not hepatic IR.

  13. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study.

    Science.gov (United States)

    Beysen, C; Murphy, E J; Deines, K; Chan, M; Tsang, E; Glass, A; Turner, S M; Protasio, J; Riiff, T; Hellerstein, M K

    2012-02-01

    The primary aim of this completed multicentre randomised, parallel, double-blind placebo-controlled study was to elucidate the mechanisms of glucose-lowering with colesevelam and secondarily to investigate its effects on lipid metabolism (hepatic de novo lipogenesis, cholesterol and bile acid synthesis). Participants with type 2 diabetes (HbA(1c) 6.7-10.0% [50-86 mmol/mol], fasting glucose 1.55 mmol/l) treated with diet and exercise, sulfonylurea, metformin or a combination thereof, were randomised by a central coordinator to either 3.75 g/day colesevelam (n = 30) or placebo (n = 30) for 12 weeks at three clinical sites in the USA. The primary measure was the change from baseline in glucose kinetics with colesevelam compared to placebo treatment. Fasting and postprandial glucose, lipid and bile acid pathways were measured at baseline and post-treatment using stable isotope techniques. Plasma glucose, insulin, total glucagon-like peptide-1 (GLP-1), total glucose-dependent insulinotropic polypeptide (GIP), glucagon and fibroblast growth factor-19 (FGF-19) concentrations were measured during the fasting state and following a meal tolerance test. Data was collected by people blinded to treatment. Compared with placebo, colesevelam improved HbA(1c) (mean change from baseline of 0.3 [SD 1.1]% for placebo [n = 28] and -0.3 [1.1]% for colesevelam [n = 26]), glucose concentrations, fasting plasma glucose clearance and glycolytic disposal of oral glucose. Colesevelam did not affect gluconeogenesis or appearance rate (absorption) of oral glucose. Fasting endogenous glucose production and glycogenolysis significantly increased with placebo but were unchanged with colesevelam (treatment effect did not reach statistical significance). Compared with placebo, colesevelam increased total GLP-1 and GIP concentrations and improved HOMA-beta cell function while insulin, glucagon and HOMA-insulin resistance were unchanged. Colesevelam increased cholesterol and bile acid synthesis and

  14. The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis.

    Science.gov (United States)

    Shen, Ning; Jiang, Shan; Lu, Jia-Ming; Yu, Xiao; Lai, Shan-Shan; Zhang, Jing-Zi; Zhang, Jin-Long; Tao, Wei-Wei; Wang, Xiu-Xing; Xu, Na; Xue, Bin; Li, Chao-Jun

    2015-02-01

    The sequential secretion of insulin and glucagon delicately maintains glucose homeostasis by inhibiting or enhancing hepatic gluconeogenesis during postprandial or fasting states, respectively. Increased glucagon/insulin ratio is believed to be a major cause of the hyperglycemia seen in type 2 diabetes. Herein, we reveal that the early growth response gene-1 (Egr-1) can be transiently activated by glucagon in hepatocytes, which mediates glucagon-regulated gluconeogenesis by increasing the expression of gluconeogenesis genes. Blockage of Egr-1 function in the liver of mice led to lower fasting blood glucose, better pyruvate tolerance, and higher hepatic glycogen content. The mechanism analysis demonstrated that Egr-1 can directly bind to the promoter of C/EBPa and regulate the expression of gluconeogenesis genes in the later phase of glucagon stimulation. The transient increase of Egr-1 by glucagon kept the glucose homeostasis after fasting for longer periods of time, whereas constitutive Egr-1 elevation found in the liver of db/db mice and high serum glucagon level overactivated the C/EBPa/gluconeogenesis pathway and resulted in hyperglycemia. Blockage of Egr-1 activation in prediabetic db/db mice was able to delay the progression of diabetes. Our results suggest that dysregulation of Egr-1/C/EBPa on glucagon stimulation may provide an alternative mechanistic explanation for type 2 diabetes. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Kelly J Gauger

    Full Text Available The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1, is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO. Sfrp1(-/- mice fed a high fat diet (HFD exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1 and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3 in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1, and glucose transporters are repressed (Slc2a2 and Slc2a4 in Sfrp1(-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1(-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1(-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.

  16. Enhanced hepatic insulin signaling in the livers of high altitude native rats under basal conditions and in the livers of low altitude native rats under insulin stimulation: a mechanistic study.

    Science.gov (United States)

    Al Dera, Hussain; Eleawa, Samy M; Al-Hashem, Fahaid H; Mahzari, Moeber M; Hoja, Ibrahim; Al Khateeb, Mahmoud

    2017-07-01

    This study was designed to investigate the role of the liver in lowering fasting blood glucose levels (FBG) in rats native to high (HA) and low altitude (LA) areas. As compared with LA natives, besides the improved insulin and glucose tolerance, HA native rats had lower FBG, at least mediated by inhibition of hepatic gluconeogenesis and activation of glycogen synthesis. An effect that is mediated by the enhancement of hepatic insulin signaling mediated by the decreased phosphorylation of TSC induced inhibition of mTOR function. Such effect was independent of activation of AMPK nor stabilization of HIF1α, but most probably due to oxidative stress induced REDD1 expression. However, under insulin stimulation, and in spite of the less activated mTOR function in HA native rats, LA native rats had higher glycogen content and reduced levels of gluconeogenic enzymes with a more enhanced insulin signaling, mainly due to higher levels of p-IRS1 (tyr612).

  17. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR.

    Directory of Open Access Journals (Sweden)

    Zhao Yang Wang

    Full Text Available Glucokinase (GCK plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard or mutated (mammals GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.

  19. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production

    DEFF Research Database (Denmark)

    Lee, Ying Shiuan; De Vadder, Filipe; Tremaroli, Valentina

    2016-01-01

    OBJECTIVE: Insulin-like peptide 5 (INSL5) is a recently identified gut hormone that is produced predominantly by L-cells in the colon, but its function is unclear. We have previously shown that colonic expression of the gene for the L-cell hormone GLP-1 is high in mice that lack a microbiota......-D) and antibiotic-treated mice, and also assessed the effect of dietary changes on colonic Insl5 expression. In addition, we characterized the metabolic phenotype of Insl5-/- mice. RESULTS: We showed that colonic Insl5 expression was higher in GF and antibiotic-treated mice than in CONV-R mice, whereas Insl5...... expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5...

  20. Hepatic hemangioma: Correlation of enhancement types with diffusion-weighted MR findings and apparent diffusion coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Goshima, Satoshi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan)], E-mail: gossy@par.odn.ne.jp; Kanematsu, Masayuki [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kondo, Hiroshi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Yokoyama, Ryujiro; Kajita, Kimihiro [Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Tsuge, Yusuke [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Shiratori, Yoshimune [Department of Medical Informatics, Gifu University School of Medicine, Gifu (Japan); Onozuka, Minoru [Department of Physiology and Neuroscience, Kanagawa Dental College, Yokosuka (Japan); Moriyama, Noriyuki [Research Center for Cancer Prevention and Screening, National Cancer Center Hospital, Tsukiji (Japan)

    2009-05-15

    Purpose: To correlate hepatic hemangioma enhancement types in gadolinium-enhanced magnetic resonance (MR) images with diffusion-weighted MR findings and apparent diffusion coefficients (ADCs). Materials and methods: Respiratory-triggered diffusion-weighted MR images (TR/TE, 2422/46 ms; parallel imaging factor, 2; b factor, 500 s/mm{sup 2}; number of averaging, 6) obtained in 35 patients with 44 hepatic hemangiomas diagnosed by gadolinium-enhanced MR and by follow-up imaging were retrospectively evaluated. Hemangiomas were classified into three enhancement types based on gadolinium-enhanced MR imaging findings: type I, early-enhancement type; type II, peripheral nodular enhancement type; type III, delayed enhancement type. Two blinded readers qualitatively assessed lesion sizes and signal intensities on T2-weighted turbo spin-echo and diffusion-weighted images. The ADCs of hemangiomas were also measured. Results: No significant difference was observed between the three enhancement types in terms of signal intensities on T2-weighted images. Signal intensities on diffusion-weighted images were lower in the order type I to III (P < .01), and mean ADCs were 2.18 x 10{sup -3}, 1.86 x 10{sup -3}, and 1.71 x 10{sup -3} mm{sup 2}/s for types I, II, and III, respectively (P < .01). No correlation was found between lesion sizes and ADCs. Conclusion: Hepatic hemangiomas were found to have enhancement type dependent signal intensities and ADCs on diffusion-weighted MR images. Further studies will have to substantiate that these diffusion patterns might reflect intratumoral blood flow or perfusion.

  1. Hepatic hemangioma: correlation of enhancement types with diffusion-weighted MR findings and apparent diffusion coefficients.

    Science.gov (United States)

    Goshima, Satoshi; Kanematsu, Masayuki; Kondo, Hiroshi; Yokoyama, Ryujiro; Kajita, Kimihiro; Tsuge, Yusuke; Shiratori, Yoshimune; Onozuka, Minoru; Moriyama, Noriyuki

    2009-05-01

    To correlate hepatic hemangioma enhancement types in gadolinium-enhanced magnetic resonance (MR) images with diffusion-weighted MR findings and apparent diffusion coefficients (ADCs). Respiratory-triggered diffusion-weighted MR images (TR/TE, 2422/46 ms; parallel imaging factor, 2; b factor, 500 s/mm(2); number of averaging, 6) obtained in 35 patients with 44 hepatic hemangiomas diagnosed by gadolinium-enhanced MR and by follow-up imaging were retrospectively evaluated. Hemangiomas were classified into three enhancement types based on gadolinium-enhanced MR imaging findings: type I, early-enhancement type; type II, peripheral nodular enhancement type; type III, delayed enhancement type. Two blinded readers qualitatively assessed lesion sizes and signal intensities on T2-weighted turbo spin-echo and diffusion-weighted images. The ADCs of hemangiomas were also measured. No significant difference was observed between the three enhancement types in terms of signal intensities on T2-weighted images. Signal intensities on diffusion-weighted images were lower in the order type I to III (P<.01), and mean ADCs were 2.18 x 10(-3), 1.86 x 10(-3), and 1.71 x 10(-3) mm(2)/s for types I, II, and III, respectively (P<.01). No correlation was found between lesion sizes and ADCs. Hepatic hemangiomas were found to have enhancement type dependent signal intensities and ADCs on diffusion-weighted MR images. Further studies will have to substantiate that these diffusion patterns might reflect intratumoral blood flow or perfusion.

  2. Gadobenate-dimeglumine-enhanced magnetic resonance imaging for hepatic lesions in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Mann, Erika [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); Kamath, Binita M. [The Hospital for Sick Children and University of Toronto, Division of Gastroenterology, Hepatology and Nutrition, Toronto (Canada); Babyn, Paul S. [Royal University Hospital, Department of Medical Imaging, Saskatoon (Canada)

    2014-10-15

    Magnetic resonance imaging enhanced by hepatocyte-specific contrast media has been found useful to characterize liver lesions in adults and children. To present our experience with gadobenate dimeglumine (Gd-BOPTA)-enhanced MRI for evaluation of focal liver lesions in children. We retrospectively reviewed gadobenate-dimeglumine-enhanced MR images obtained for evaluation of suspected hepatic lesions in 30 children. Signal characteristics on various sequences including 45- to 60-min hepatobiliary phase images were noted by two radiologists. Chart review identified relevant clinical details including history of cancer treatment, available pathology and stability of lesion size on follow-up imaging. Of the 30 children who had gadobenate-enhanced MRI, 26 showed focal lesions. Diagnoses in 26 children were focal nodular hyperplasia (FNH) in 15, hemangiomas in 3, regenerating nodules in 3, focal fatty infiltration in 2, indeterminate lesions in 3, and one patient each with adenomas, hepatoblastoma and metastasis. Two patients had multiple diagnoses. All FNH lesions (39), all regenerative nodules (19) and an indeterminate lesion were iso- or hyperintense on hepatobiliary-phase images while all other lesions (28) were hypointense to hepatic parenchyma. The average follow-up period was 21.7 months. Our experience with gadobenate-enhanced MRI indicates potential utility of gadobenate in the evaluation of pediatric hepatic lesions in differentiating FNH and regenerating nodules from other lesions. (orig.)

  3. Hepatic gene expression involved in glucose and lipid metabolism in transition cows: effects of fat mobilization during early lactation in relation to milk performance and metabolic changes.

    Science.gov (United States)

    Weber, C; Hametner, C; Tuchscherer, A; Losand, B; Kanitz, E; Otten, W; Sauerwein, H; Bruckmaier, R M; Becker, F; Kanitz, W; Hammon, H M

    2013-09-01

    Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and

  4. Enhanced Laws textures: A potential MRI surrogate marker of hepatic fibrosis in a murine model.

    Science.gov (United States)

    Li, Baojun; Jara, Hernan; Yu, Heishun; O'Brien, Michael; Soto, Jorge; Anderson, Stephan W

    2017-04-01

    To compare enhanced Laws textures derived from parametric proton density (PD) maps to other MRI surrogate markers (T 2 , PD, apparent diffusion coefficient (ADC)) in assessing degrees of liver fibrosis in an ex vivo murine model of hepatic fibrosis imaged using 11.7T MRI. This animal study was IACUC approved. Fourteen male, C57BL/6 mice were divided into control and experimental groups. The latter were fed a 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC) supplemented diet to induce hepatic fibrosis. Ex vivo liver specimens were imaged using an 11.7T scanner, from which the parametric PD, T 2 , and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. A sequential enhanced Laws texture analysis was applied to the PD maps: automated dual-clustering algorithm, optimal thresholding algorithm, global grayscale correction, and Laws texture features extraction. Degrees of fibrosis were independently assessed by digital image analysis (a.k.a. %Area Fibrosis). Scatterplot graphs comparing enhanced Laws texture features, T 2 , PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Hepatic fibrosis and the enhanced Laws texture features were strongly correlated with higher %Area Fibrosis associated with higher Laws textures (r=0.89). Without the proposed enhancements, only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture features (r=0.70). Correlation also existed between %Area Fibrosis and ADC (r=0.86), PD (r=0.65), and T 2 (r=0.66). Higher degrees of hepatic fibrosis are associated with increased Laws textures. The proposed enhancements could improve the accuracy of Laws texture features significantly. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.

    Science.gov (United States)

    He, Li; Chen, De

    2012-03-12

    Concerning energy and environmental sustainability, it is appealing to produce hydrogen from sugars or sugar alcohols that are readily obtained from the hydrolysis of cellulosic biomass. Nevertheless, the conversion of such compounds for hydrogen production poses great technical challenges. In this paper, we report that hydrogen purity and yield can be significantly improved by integrating in situ CO(2) capture into the steam reforming reaction of the model compounds-glucose and sorbitol. The experimental assessment was conducted at a steam-to-carbon ratio of 1.8 for sorbitol and 6 for glucose from 450-625 °C. As predicted by thermodynamic analysis, combining CO(2) capture and reforming reactions at favorable operating conditions yielded very high purity hydrogen, for instance, 98.8 mol % from sorbitol and 99.9 mol % from glucose. However, there are trade-offs between hydrogen purity and yield in practice. The lower operating temperatures in the examined range helped to increase the hydrogen purity and reduce the CO content in the gas product, whereas a high hydrogen yield was more likely to be obtained at higher temperatures. Coupling CO(2) capture lowered the risk of coke formation during the steam reforming of glucose. Coke accumulated in the reactor for the sorption-enhanced steam reforming of glucose was mostly from the slow pyrolysis of glucose before it came into contact with the catalyst-acceptor bed. This problem may be solved by improving heat transfer or reconstructing the reactor, for instance, by using a fluidized-bed reactor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats.

    Science.gov (United States)

    Rutten, Kris; Van Donkelaar, Eva L; Ferrington, Linda; Blokland, Arjan; Bollen, Eva; Steinbusch, Harry Wm; Kelly, Paul At; Prickaerts, Jos Hhj

    2009-07-01

    Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [14C]-iodoantipyrine and [14C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.

  7. Regulation of glucose metabolism via hepatic forkhead transcription factor 1 (FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice.

    Science.gov (United States)

    Nerurkar, Pratibha V; Nishioka, Adrienne; Eck, Philip O; Johns, Lisa M; Volper, Esther; Nerurkar, Vivek R

    2012-07-01

    Renewed interest in alternative medicine among diabetic individuals prompted us to investigate anti-diabetic effects of Morinda citrifolia (noni) in high-fat diet (HFD)-fed mice. Type 2 diabetes is associated with increased glucose production due to the inability of insulin to suppress hepatic gluconeogenesis and promote glycolysis. Insulin inhibits gluconeogenesis by modulating transcription factors such as forkhead box O (FoxO1). Based on microarray analysis data, we tested the hypothesis that fermented noni fruit juice (fNJ) improves glucose metabolism via FoxO1 phosphorylation. C57BL/6 male mice were fed a HFD and fNJ for 12 weeks. Body weights and food intake were monitored daily. FoxO1 expression was analysed by real-time PCR and Western blotting. Specificity of fNJ-associated FoxO1 regulation of gluconeogenesis was confirmed by small interfering RNA (siRNA) studies using human hepatoma cells, HepG2. Supplementation with fNJ inhibited weight gain and improved glucose and insulin tolerance and fasting glucose in HFD-fed mice. Hypoglycaemic properties of fNJ were associated with the inhibition of hepatic FoxO1 mRNA expression, with a concomitant increase in FoxO1 phosphorylation and nuclear expulsion of the proteins. Gluconeogenic genes, phosphoenolpyruvate C kinase (PEPCK) and glucose-6-phosphatase (G6P), were significantly inhibited in mice fed a HFD+fNJ. HepG2 cells demonstrated more than 80 % inhibition of PEPCK and G6P mRNA expression in cells treated with FoxO1 siRNA and fNJ. These data suggest that fNJ improves glucose metabolism via FoxO1 regulation in HFD-fed mice.

  8. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  9. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  10. Contrast-enhanced ultrasonography of the hepatic vein in normal dogs.

    Science.gov (United States)

    Morishita, Keitaro; Hiramoto, Akira; Osuga, Tatsuyuki; Lim, Sue Yee; Khoirun, Nisa; Sasaki, Noboru; Nakamura, Kensuke; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2017-01-10

    Contrast-enhanced ultrasonography (CEUS) of the hepatic vein can assess intrahepatic hemodynamic changes and has been studied as a noninvasive method to assess the severity of portal hypertension and hepatic fibrosis in humans. However, few reports have described its usefulness in veterinary medicine. The purpose of this study was to characterize CEUS findings of the hepatic vein in normal dogs and assess the repeatability of this method both in a conscious group (n=6) and a sedated group (n=6). Sonazoid ® (0.01 ml/kg) was used as a contrast agent, and scanning of the hepatic vein was performed for 2 min. Time-intensity curves were generated from regions of interest in the hepatic vein. Four perfusion parameters were measured for quantitative analysis: hepatic vein arrival time (HVAT), time to peak (TTP), time to peak phase (TTPP) and wash-out ratio (WR). CEUS examinations were performed three times in each dog. The median (range) values of HVAT, TTP, TTPP and WR in the conscious group were 13.5 sec (9-22 sec), 12.5 sec (6-24 sec), 8 sec (6-13 sec) and 78.0% (60.7-91.7%), respectively. Median (range) values of HVAT, TTP, TTPP and WR in the sedated group were 12 sec (8-17 sec), 12.5 sec (9-17 sec), 9 sec (7-13 sec) and 84.1% (63.0-94.4%), respectively. The coefficients of variation of these parameters in the conscious and sedated groups were 7.6-29.7% and 11.8-14.8%, respectively.

  11. Ethanolic Extract of Butea monosperma Leaves Elevate Blood Insulin Level in Type 2 Diabetic Rats, Stimulate Insulin Secretion in Isolated Rat Islets, and Enhance Hepatic Glycogen Formation

    Directory of Open Access Journals (Sweden)

    Mehdi Bin Samad

    2014-01-01

    Full Text Available We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity of Butea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P<0.05. Improved serum lipid profile via reduced low density lipoprotein (LDL, cholesterol, triglycerides (TG, and increased high density lipoprotein (HDL was also reestablished (P<0.05. Significant insulin secretagogue activity of B. monosperma was found in serum insulin assay of B. monosperma treated type 2 diabetic rats (P<0.01. This was further ascertained by our study on insulin secretion on isolated rat islets (P<0.05. Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P<0.05. Hence, we concluded that antihyperglycemic activity of B. monosperma was mediated by enhanced insulin secretion and enhanced glycogen formation in the liver.

  12. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis

    DEFF Research Database (Denmark)

    Vilstrup, Hendrik; Gluud, C; Hardt, F

    1990-01-01

    . In the glucose group ten died, three developed renal and two respiratory failure, and one remained encephalopathic. The coma score worsened in three of the patients who died in the amino acid group, but in all patients who died in the glucose group. The negative nitrogen balance on entry reversed in the amino......We studied the effects of infusion of a branched chain enriched amino acid mixture versus glucose on acute hepatic encephalopathy in patients with cirrhosis. Sixty-five patients were randomly treated with 1 g/kg per day of an amino acid mixture with 40% branched chain contents (32 patients......), or isocaloric glucose (33 patients) for a maximum of 16 days. The regimens further included glucose infusion to a total of 26.5 kcal/kg per day and lactulose. The patients took part in the study for 5-6 days. In each group 17 patients woke up. In the amino acid group eleven died and four developed renal failure...

  13. Maternal High-Fat Diet Modulates Hepatic Glucose, Lipid Homeostasis and Gene Expression in the PPAR Pathway in the Early Life of Offspring

    Directory of Open Access Journals (Sweden)

    Jia Zheng

    2014-08-01

    Full Text Available Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.

  14. (S)-[6]-Gingerol enhances glucose uptake in L6 myotubes by activation of AMPK in response to [Ca2+]i.

    Science.gov (United States)

    Li, Yiming; Tran, Van H; Koolaji, Nooshin; Duke, Colin; Roufogalis, Basil D

    2013-01-01

    The aim of this study was to investigate the mechanism of (S)-[6]-gingerol in promoting glucose uptake in L6 skeletal muscle cells. The effect of (S)-[6]-gingerol on glucose uptake in L6 myotubes was examined using 2-[1,2-3H]-deoxy-D-glucose. Intracellular Ca2+ concentration was measured using Fluo-4. Phosphorylation of AMPKα was determined by Western blotting analysis. (S)-[6]-Gingerol time-dependently enhanced glucose uptake in L6 myotubes. (S)-[6]-Gingerol elevated intracellular Ca2+ concentration and subsequently induced a dose- and time-dependent enhancement of threonine172 phosphorylated AMPKα in L6 myotubes via modulation by Ca2+/calmodulin-dependent protein kinase kinase. The results indicated that (S)-[6]-gingerol increased glucose uptake in L6 skeletal muscle cells by activating AMPK. (S)-[6]-gingerol, a major component of Zingiber officinale, may have potential for development as an antidiabetic agent.

  15. Safety of an Enhanced Recovery Pathway for Patients Undergoing Open Hepatic Resection.

    Directory of Open Access Journals (Sweden)

    Clancy J Clark

    Full Text Available Enhanced recovery pathways (ERP have not been widely implemented for hepatic surgery. The aim of this study was to evaluate the safety of an ERP for patients undergoing open hepatic resection.A single-surgeon, retrospective observational cohort study was performed comparing the clinical outcomes of patients undergoing open hepatic resection treated before and after implementation of an ERP. Morbidity, mortality, and length of hospital stay (LOS were compared between pre-ERP and ERP groups.126 patients (pre-ERP n = 73, ERP n = 53 were identified for the study. Patient characteristics and operative details were similar between groups. Overall complication rate was similar between pre-ERP and ERP groups (37% vs. 28%, p = 0.343. Before and after pathway implementation, the median LOS was similar, 5 (IQR 4-7 vs. 5 (IQR 4-6 days, p = 0.708. After adjusting for age, type of liver resection, and ASA, the ERP group had no increased risk of major complication (OR 0.38, 95% CI 0.14-1.02, p = 0.055 or LOS greater than 5 days (OR 1.21, 95% CI 0.56-2.62, p = 0.627.Routine use of a multimodal ERP is safe and is not associated with increased postoperative morbidity after open hepatic resection.

  16. Insights into the Hexose Liver Metabolism—Glucose versus Fructose

    Directory of Open Access Journals (Sweden)

    Bettina Geidl-Flueck

    2017-09-01

    Full Text Available High-fructose intake in healthy men is associated with characteristics of metabolic syndrome. Extensive knowledge exists about the differences between hepatic fructose and glucose metabolism and fructose-specific mechanisms favoring the development of metabolic disturbances. Nevertheless, the causal relationship between fructose consumption and metabolic alterations is still debated. Multiple effects of fructose on hepatic metabolism are attributed to the fact that the liver represents the major sink of fructose. Fructose, as a lipogenic substrate and potent inducer of lipogenic enzyme expression, enhances fatty acid synthesis. Consequently, increased hepatic diacylglycerols (DAG are thought to directly interfere with insulin signaling. However, independently of this effect, fructose may also counteract insulin-mediated effects on liver metabolism by a range of mechanisms. It may drive gluconeogenesis not only as a gluconeogenic substrate, but also as a potent inducer of carbohydrate responsive element binding protein (ChREBP, which induces the expression of lipogenic enzymes as well as gluconeogenic enzymes. It remains a challenge to determine the relative contributions of the impact of fructose on hepatic transcriptome, proteome and allosterome changes and consequently on the regulation of plasma glucose metabolism/homeostasis. Mathematical models exist modeling hepatic glucose metabolism. Future models should not only consider the hepatic adjustments of enzyme abundances and activities in response to changing plasma glucose and insulin/glucagon concentrations, but also to varying fructose concentrations for defining the role of fructose in the hepatic control of plasma glucose homeostasis.

  17. A weak neutralizing antibody response to hepatitis C virus envelope glycoprotein enhances virus infection.

    Directory of Open Access Journals (Sweden)

    Keith Meyer

    Full Text Available We have completed a phase 1 safety and immunogenicity trial with hepatitis C virus (HCV envelope glycoproteins, E1 and E2, with MF59 adjuvant as a candidate vaccine. Neutralizing activity to HCV genotype 1a was detected in approximately 25% of the vaccinee sera. In this study, we evaluated vaccinee sera from poor responders as a potential source of antibody dependent enhancement (ADE of HCV infection. Sera with poor neutralizing activity enhanced cell culture grown HCV genotype 1a or 2a, and surrogate VSV/HCV pseudotype infection titer, in a dilution dependent manner. Surrogate pseudotypes generated from individual HCV glycoproteins suggested that antibody to the E2 glycoprotein; but not the E1 glycoprotein, was the principle target for enhancing infection. Antibody specific to FcRII expressed on the hepatic cell surface or to the Fc portion of Ig blocked enhancement of HCV infection by vaccinee sera. Together, the results from in vitro studies suggested that enhancement of viral infectivity may occur in the absence of a strong antibody response to HCV envelope glycoproteins.

  18. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Haus, Jacob M; Solomon, Thomas; Marchetti, Christine M

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans.......The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans....

  19. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high-fat diet.

    Science.gov (United States)

    Mendes, Iara Karise Santos; Matsuura, Cristiane; Aguila, Marcia Barbosa; Daleprane, Julio Beltrame; Martins, Marcela Anjos; Mury, Wanda Vianna; Brunini, Tatiana Marlowe Cunha

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a benign condition that can progress to more severe liver damage in a process mediated, in part, by disturbances in redox balance. Additionally, some argue that it is set to become the main cause of end-stage liver disease in the near future. Here, we investigated whether diet-induced weight loss is able to reverse hepatic lipid accumulation and reduce oxidative stress in liver from C57BL/6 mice fed a high-fat (HF) diet. Male C57BL/6 mice were divided into 4 groups: standard chow (SC; 10% energy from fat, 16 weeks); HF (50% energy from fat, 16 weeks); SC-HF (SC for 8 weeks followed by HF for 8 weeks); and HF-SC (HF for 8 weeks followed by SC for 8 weeks). The HF diet during 8 (SC-HF) and 16 weeks (HF) downregulated messenger RNA levels and protein expression of Nrf2 and endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) in the liver; caused liver steatosis; affected liver function markers; increased intra-abdominal and subcutaneous adipose tissue; and induced glucose intolerance and hypercholesterolemia compared with controls (SC). Diet-induced weight loss significantly reduced the intrahepatic lipid accumulation, improved glucose tolerance, and restored both gene and protein expression of the antioxidant enzymes. Our findings suggest that a dietary intervention aimed to induce weight loss may exert protective effects in NAFLD as it can reduce hepatic oxidative stress and intrahepatic lipid accumulation, which can hinder the progression of this condition to more severe states.

  20. Caffeine intake enhances the benefits of sodium glucose transporter 2 inhibitor.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Tanaka, Muhei; Yamazaki, Masahiro; Nakano, Koji; Ushigome, Emi; Okada, Hiroshi; Oda, Yohei; Nakamura, Naoto; Fukui, Michiaki

    2016-10-01

    The effect of sodium glucose transporter 2 (SGLT-2) inhibitors is dependent on the glomerular filtration rate. It has been reported that caffeine intake increases glomerular filtration rate. However, the effect of caffeine intake on urinary glucose excretion in patients who take SGLT-2 inhibitors is unclear. Six patients with type 2 diabetes took part in a randomized, open-label, crossover pilot study. The patients took SGLT-2 inhibitors (ipragliflozin) for 9 days. On day 3, 6 and 9, the patients were assigned to one of three studies: Water 500, patients drank 500 mL of water in 3 h; Water 1500, patients drank 1500 mL of water in 3 h; and Caffeine 500, patients drank 500 mL of water with 400 mg of caffeine in 3 h. In all of the studies, the patients' urine was collected over a 6-h period. In addition, we enrolled 60 patients with type 2 diabetes who newly took SGLT-2 inhibitors in a 3-month follow-up cohort study to investigate the effect of caffeine intake on glucose control. Caffeine intake was evaluated using questionnaires. The 6-h median (interquartile range) urinary glucose excretion was 9.5 (8.5-9.7) g in Water 500, 12.2 (10.3-27.2) g in Water 1500 and 15.7 (11.4-21.4) g in Caffeine 500 (p = 0.005 vs Water 500). In the cohort study, multiple regression analysis demonstrated that log (caffeine intake) was associated with a change in HbA 1c (β = -0.299, p = 0.043) after adjusting for covariates. Caffeine intake enhanced the effect of SGLT-2 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1999-02-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas.

  2. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade

    Science.gov (United States)

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry

    2016-12-01

    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.

  3. Blood Serum Alpha Fetoprotein Enhancer Binding Protein, a Tumor Suppressor, Decreases in Chronic HBV Hepatitis Patients as Hepatocellular Cancer Appears

    Directory of Open Access Journals (Sweden)

    James N. Riggins

    2010-01-01

    Full Text Available Chronic hepatitis increases the risk of hepatocellular carcinoma (HCC. To test whether circulating proteins reflect hepatic carcinogenesis, sera from patients and controls were albumin depleted, enriched for glycoproteins, digested with trypsin, and subjected to reverse phase chromatography and tandem mass spectrometry. Alpha-fetoprotein enhancer binding protein (AFPebp, a tumor suppressor, was repeatedly identified in sera from chronic HBV hepatitis patients. We independently identified and quantified AFPebp with a deuterated, phenylisocyanate-labeled synthetic peptide standard. Elevated AFPebp levels in sera from chronic HBV hepatitis patients decreased as cancer developed. These data suggest that rising AFPebp levels in chronic HBV hepatitis may be protective, while falling levels may contribute to HCC development.

  4. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yongxian Zhuang

    Full Text Available Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM, high fructose (25 mM or galactose (25 mM. Reductions in ATP levels were not observed with high glucose (25 mM. This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced

  5. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo.

    Science.gov (United States)

    Zhuang, Yongxian; Chan, Daniel K; Haugrud, Allison B; Miskimins, W Keith

    2014-01-01

    Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM), high fructose (25 mM) or galactose (25 mM). Reductions in ATP levels were not observed with high glucose (25 mM). This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced cytotoxicity of metformin

  6. Western diet enhances hepatic inflammation in mice exposed to cecal ligation and puncture

    Directory of Open Access Journals (Sweden)

    Houghton Jeff

    2010-10-01

    Full Text Available Abstract Background Obese patients display an exaggerated morbidity during sepsis. Since consumption of a western-style diet (WD is a major factor for obesity in the United States, the purpose of the present study was to examine the influence of chronic WD consumption on hepatic inflammation in mice made septic via cecal ligation and puncture (CLP. Feeding mice diets high in fat has been shown to enhance evidence of TLR signaling and this pathway also mediates the hepatic response to invading bacteria. Therefore, we hypothesized that the combined effects of sepsis and feeding WD on TRL-4 signaling would exacerbate hepatic inflammation. Male C57BL/6 mice were fed purified control diet (CD or WD that was enriched in butter fat (34.4% of calories for 3 weeks prior to CLP. Intravital microscopy was used to evaluate leukocyte adhesion in the hepatic microcirculation. To demonstrate the direct effect of saturated fatty acid on hepatocytes, C3A human hepatocytes were cultured in medium containing 100 μM palmitic acid (PA. Quantitative real-time PCR was used to assess mRNA expression of tumor necrosis factor-alpha (TNF-α, monocyte chemotactic protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, toll-like receptor-4 (TLR-4 and interleukin-8 (IL-8. Results Feeding WD increased firm adhesion of leukocytes in the sinusoids and terminal hepatic venules by 8-fold six hours after CLP; the increase in platelet adhesion was similar to the response observed with leukocytes. Adhesion was accompanied by enhanced expression of TNF-α, MCP-1 and ICAM-1. Messenger RNA expression of TLR-4 was also exacerbated in the WD+CLP group. Exposure of C3A cells to PA up-regulated IL-8 and TLR-4 expression. In addition, PA stimulated the static adhesion of U937 monocytes to C3A cells, a phenomenon blocked by inclusion of an anti-TLR-4/MD2 antibody in the culture medium. Conclusions These findings indicate a link between obesity-enhanced susceptibility to sepsis and

  7. The value of gadoxetic acid-enhanced MRI for differentiation between hepatic microabscesses and metastases in patients with periampullary cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Youn [Soonchunhyang University College of Medicine, Bucheon Hospital, Department of Radiology, Bucheon (Korea, Republic of); Kim, Young Kon; Cha, Dong Ik; Jeong, Woo Kyoung; Lee, Won Jae [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Min, Ji Hye [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea, Republic of); Chungnam National University Hospital, Chungnam National University College of Medicine, Department of Radiology, Daejeon (Korea, Republic of)

    2017-10-15

    We aimed to identify features that differentiate hepatic microabscess from hepatic metastasis on gadoxetic acid-enhanced MRI in patients with periampullary cancer. We included 72 patients (31 patients with 83 hepatic microabscesses and 41 patients with 71 hepatic metastases) who had a history of periampullary cancer and underwent gadoxetic acid-enhanced MRI. Image analysis was performed for margin, signal intensity, rim enhancement, perilesional hyperaemia, pattern on DWI and dynamic phases, and size discrepancy between sequences by consensus of two observers. Multivariate analysis revealed that the following significant parameters favour microabscess: a history of bile duct cancer, perilesional hyperaemia, persistent arterial rim enhancement through the transitional phase (TP), and size discrepancy between T1WI and T2WI and between T1WI and hepatobiliary phase image (HBPI). The diagnostic accuracy for microabscess was highest (90.9%) when showing a size discrepancy ≥30% between T1WI and HBPI or persistent arterial rim enhancement through the TP. When the lesion was positive for both these variables, specificity reached 100%. The combination of a size discrepancy between T1WI and HBPI and persistent arterial rim enhancement through the TP represents a reliable MRI feature for distinguishing between hepatic microabscess and metastasis in patients with periampullary cancer. (orig.)

  8. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows.

    Science.gov (United States)

    Mathews, A T; Rico, J E; Sprenkle, N T; Lock, A L; McFadden, J W

    2016-11-01

    Feeding saturated fatty acids may enhance milk yield in part by decreasing insulin sensitivity and shifting glucose utilization toward the mammary gland. Our objective was to evaluate the effects of palmitic acid (C16:0) on milk production and insulin sensitivity in cows. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows received a common sorghum silage-based diet and were randomly assigned to a diet containing no supplemental fat (control; n=10; 138±45d in milk) or C16:0 at 4% of ration DM (PALM; 98% C16:0; n=10; 136±44d in milk). Blood and milk were collected at routine intervals. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield by wk 7. Furthermore, PALM increased milk fat yield and energy-corrected milk at wk 3 and 7. Changes in milk production occurred in parallel with enhanced energy intake. Increased milk fat yield during PALM treatment was due to increased C16:0 and C16:1 incorporation; PALM had no effect on concentration of milk components, BW, or body condition score. Two weeks posttreatment, energy-corrected milk and milk fat yield remained elevated in PALM-fed cows whereas yields of milk were similar between treatments. Increased milk fat yield after PALM treatment was due to increased de novo lipogenesis and uptake of preformed fatty acids. The basal concentration of nonesterified fatty acids (NEFA) in plasma increased by d 4, 6, and 8 of PALM treatment, a response not observed thereafter. Although PALM supplementation did not modify insulin, glucose, or triacylglycerol levels in plasma, total cholesterol in plasma was elevated by wk 3. Estimated insulin sensitivity was lower during the

  9. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter

    2014-01-01

    signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot......Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  10. Gd-EOB-DTPA-enhanced magnetic resonance imaging features of hepatic hemangioma compared with enhanced computed tomography.

    Science.gov (United States)

    Tateyama, Akihiro; Fukukura, Yoshihiko; Takumi, Koji; Shindo, Toshikazu; Kumagae, Yuichi; Kamimura, Kiyohisa; Nakajo, Masayuki

    2012-11-21

    To clarify features of hepatic hemangiomas on gadolinium-ethoxybenzyl-diethylenetriaminpentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) compared with enhanced computed tomography (CT). Twenty-six patients with 61 hepatic hemangiomas who underwent both Gd-EOB-DTPA-enhanced MRI and enhanced CT were retrospectively reviewed. Hemangioma appearances (presence of peripheral nodular enhancement, central nodular enhancement, diffuse homogenous enhancement, and arterioportal shunt during the arterial phase, fill-in enhancement during the portal venous phase, and prolonged enhancement during the equilibrium phase) on Gd-EOB-DTPA-enhanced MRI and enhanced CT were evaluated. The degree of contrast enhancement at the enhancing portion within the hemangioma was visually assessed using a five-point scale during each phase. For quantitative analysis, the tumor-muscle signal intensity ratio (SIR), the liver-muscle SIR, and the attenuation value of the tumor and liver parenchyma were calculated. The McNemar test and the Wilcoxon's signed rank test were used to assess the significance of differences in the appearances of hemangiomas and in the visual grade of tumor contrast enhancement between Gd-EOB-DTPA-enhanced MRI and enhanced CT. There was no significant difference between Gd-EOB-DTPA-enhanced MRI and enhanced CT in the presence of peripheral nodular enhancement (85% vs 82%), central nodular enhancement (3% vs 3%), diffuse enhancement (11% vs 16%), or arterioportal shunt (23% vs 34%) during arterial phase, or fill-in enhancement (79% vs 80%) during portal venous phase. Prolonged enhancement during equilibrium phase was observed less frequently on Gd-EOB-DTPA-enhanced MRI than on enhanced CT (52% vs 100%, P < 0.001). On visual inspection, there was significantly less contrast enhancement of the enhancing portion on Gd-EOB-DTPA-enhanced MRI than on enhanced CT during the arterial (3.94 ± 0.98 vs 4.57 ± 0.64, respectively, P < 0.001), portal venous (3.72

  11. Glucose metabolism in chronic lung disease

    NARCIS (Netherlands)

    Sauerwein, H. P.; Schols, A. M. W. J.

    2002-01-01

    Chronic disease in general induces insulin resistance on glucose metabolism on hepatic and peripheral levels. Hypoxia in healthy subjects, induced by chronic altitude exposure, stimulates glucose production with decreased hepatic insulin sesitivity, but increases peripheral insulin sensitivity.

  12. Higher glucose level can enhance the H. pylori adhesion and virulence related with type IV secretion system in AGS cells.

    Science.gov (United States)

    Sheu, Shew-Meei; Cheng, Hsin; Kao, Cheng-Ye; Yang, Yao-Jong; Wu, Jiunn-Jong; Sheu, Bor-Shyang

    2014-10-09

    Hyperglycemia increases the risk of gastric cancer in H. pylori-infected patients. High glucose could increase endothelial permeability and cancer-associated signaling. These suggest high glucose may affect H. pylori or its infected status.We used two strains to investigate whether H. pylori growth, viability, adhesion and CagA-phosphorylation level in the infected-AGS cells were influenced by glucose concentration (100, 150, and 200 mg/dL). The growth curves of both strains in 200 mg/dL of glucose were maintained at the highest optimal density after 48 h and the best viability of both strains were retained in the same glucose condition at 72 h. Furthermore, adhesion enhancement of H. pylori was significantly higher in 200 mg/dL of glucose as compared to that in 100 and 150 mg/dL (p H. pylori growth and viability after 48 h. H. pylori adhesion and CagA increased to further facilitate the enhancement of cell-associated CagA and phosphorylated CagA in higher glucose conditions.

  13. Central Composite Design (CCD) applied for statistical optimization of glucose and sucrose binary carbon mixture in enhancing the denitrification process

    Science.gov (United States)

    Lim, Jun-Wei; Beh, Hoe-Guan; Ching, Dennis Ling Chuan; Ho, Yeek-Chia; Baloo, Lavania; Bashir, Mohammed J. K.; Wee, Seng-Kew

    2017-11-01

    The present study provides an insight into the optimization of a glucose and sucrose mixture to enhance the denitrification process. Central Composite Design was applied to design the batch experiments with the factors of glucose and sucrose measured as carbon-to-nitrogen (C:N) ratio each and the response of percentage removal of nitrate-nitrogen (NO3 --N). Results showed that the polynomial regression model of NO3 --N removal had been successfully derived, capable of describing the interactive relationships of glucose and sucrose mixture that influenced the denitrification process. Furthermore, the presence of glucose was noticed to have more consequential effect on NO3 --N removal as opposed to sucrose. The optimum carbon sources mixture to achieve complete removal of NO3 --N required lesser glucose (C:N ratio of 1.0:1.0) than sucrose (C:N ratio of 2.4:1.0). At the optimum glucose and sucrose mixture, the activated sludge showed faster acclimation towards glucose used to perform the denitrification process. Later upon the acclimation with sucrose, the glucose uptake rate by the activated sludge abated. Therefore, it is vital to optimize the added carbon sources mixture to ensure the rapid and complete removal of NO3 --N via the denitrification process.

  14. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    Science.gov (United States)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  15. Anti-CD3 antibody treatment induces hypoglycemia and super tolerance to glucose challenge in mice through enhancing glucose consumption by activated lymphocytes.

    Science.gov (United States)

    Xia, Chang-Qing; Chernatynskaya, Anna V; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J

    2014-01-01

    Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes.

  16. Building a Community - Academic Partnership to Enhance Hepatitis C Virus Screening.

    Science.gov (United States)

    Irvin, R; McAdams-Mahmoud, A; Hickman, D; Wilson, J; Fenwick, W; Chen, I; Irvin, N; Falade-Nwulia, O; Sulkowski, M; Chaisson, R; Thomas, D L; Mehta, S H

    2016-06-01

    An estimated 3.5 million Americans are chronically infected with hepatitis C virus (HCV). However, the majority are unaware of their HCV diagnosis and few are treated. New models are required to diagnose and link HCV infected patients to HCV care. This paper describes an innovative partnership between Sisters Together and Reaching (STAR), Inc., a community organization, and Johns Hopkins University (JHU), an academic institution, for the identification of HCV cases. STAR and JHU identified a mutual interest in increasing hepatitis C screening efforts and launched an HCV screening program which was designed to enhance STAR's existing HIV efforts. STAR and JHU used the Bergen Model of Collaborative Functioning as theoretical framework for the partnership. We used descriptive statistics to characterize the study population and correlates of HCV antibody positivity were reported in univariable/multivariable logistic regression. From July 2014 to June 2015, 325 rapid HCV antibody tests were performed in community settings with 49 (15%) positive HCV antibody tests. 33 of the 49 HCV antibody positive individuals answered questions about their HCV testing history and 42% reported a prior positive result but were not engaged in care and 58% reported that they were unaware of their HCV status. In multivariable analysis, factors that were significantly associated with screening HCV antibody positive were increasing age (AOR: 1.06, 95% CI 1.02-1.10), male sex (AOR: 5.56, 95% CI 1.92-14.29), and history of injection drug use (AOR: 39.3, 95% CI 15.20-101.49). The community-academic partnership was successful in identifying individuals with hepatitis C infection through a synergistic collaboration. The program data suggests that community screening may improve the hepatitis C care continuum by identifying individuals unaware of their HCV status or aware of their HCV status but not engaged in care and linking them to care.

  17. Non-invasive estimation of hepatic glucose uptake from [{sup 18}F]FDG PET images using tissue-derived input functions

    Energy Technology Data Exchange (ETDEWEB)

    Kudomi, N.; Jaervisalo, M.J.; Borra, R.; Viljanen, A.; Viljanen, T.; Knuuti, J. [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); Kiss, J.; Savunen, T. [University of Turku, Department of Surgery, Turku (Finland); Iida, H. [National Cardiovascular Center-Research Institute, Department of Investigative Radiology, Advanced Medical Engineering Center, Suita, Osaka (Japan); Nuutila, P. [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); University of Turku, Department of Medicine, Turku (Finland); Iozzo, P. [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); National Research Council, Institute of Clinical Physiology, Pisa (Italy)

    2009-12-15

    The liver is perfused through the portal vein and hepatic artery. Quantification of hepatic glucose uptake (HGU) using PET requires the use of an input function for both the hepatic artery and portal vein. The former can be generally obtained invasively, but blood withdrawal from the portal vein is not practical in humans. The aim of this study was to develop and validate a new technique to obtain quantitative HGU by estimating the input function from PET images. Normal pigs (n = 12) were studied with [{sup 18}F]FDG PET, in which arterial and portal blood time-activity curves (TAC) were determined invasively to serve as reference measurements. The present technique consisted of two characteristics, i.e. using a model input function and simultaneously fitting multiple liver tissue TACs from images by minimizing the residual sum of square between the tissue TACs and fitted curves. The input function was obtained from the parameters determined from the fitting. The HGU values were computed by the estimated and measured input functions and compared between the methods. The estimated input functions were well reproduced. The HGU values, ranging from 0.005 to 0.02 ml/min per ml, were not significantly different between the two methods (r = 0.95, p < 0.001). A Bland-Altman plot demonstrated a small overestimation by the image-derived method with a bias of 0.00052 ml/min per g for HGU. The results presented demonstrate that the input function can be estimated directly from the PET image, supporting the fully non-invasive assessment of liver glucose metabolism in human studies. (orig.)

  18. Sodium-glucose transporter-2 (SGLT2; SLC5A2 enhances cellular uptake of aminoglycosides.

    Directory of Open Access Journals (Sweden)

    Meiyan Jiang

    Full Text Available Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2 in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino-2-deoxyglucose (2-NBDG, a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls; and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/- mice, but not in Sglt2-/- mice. However, serum GTTR levels were elevated in Sglt2-/- mice compared to Sglt2+/- mice, and in phlorizin-treated Sglt2+/- mice compared to vehicle-treated Sglt2+/- mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity.

  19. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Xuemei Shi

    2017-11-01

    Conclusions: We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity.

  20. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  1. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets.

    Science.gov (United States)

    Zidani, Sofiane; Benakmoum, Amar; Ammouche, Ali; Benali, Yasmine; Bouhadef, Anissa; Abbeddou, Souheila

    2017-02-01

    Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin.

    Science.gov (United States)

    Gao, Yan; Su, Qiudong; Yi, Yao; Jia, Zhiyuan; Wang, Hao; Lu, Xuexin; Qiu, Feng; Bi, Shengli

    2015-01-01

    Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368-607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1-198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.

  3. Abscisic acid enhances glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo.

    Science.gov (United States)

    Sturla, Laura; Mannino, Elena; Scarfì, Sonia; Bruzzone, Santina; Magnone, Mirko; Sociali, Giovanna; Booz, Valeria; Guida, Lucrezia; Vigliarolo, Tiziana; Fresia, Chiara; Emionite, Laura; Buschiazzo, Ambra; Marini, Cecilia; Sambuceti, Gianmario; De Flora, Antonio; Zocchi, Elena

    2017-02-01

    Abscisic acid (ABA) is a plant hormone also present in animals, where it is involved in the regulation of innate immune cell function and of glucose disposal, through its receptor LANCL2. ABA stimulates glucose uptake by myocytes and pre-adipocytes in vitro and oral ABA improves glycemic control in rats and in healthy subjects. Here we investigated the role of the ABA/LANCL2 system in the regulation of glucose uptake and metabolism in adipocytes. Silencing of LANCL2 abrogated both the ABA- and insulin-induced increase of glucose transporter-4 expression and of glucose uptake in differentiated 3T3-L1 murine adipocytes; conversely, overexpression of LANCL2 enhanced basal, ABA- and insulin-stimulated glucose uptake. As compared with insulin, ABA treatment of adipocytes induced lower triglyceride accumulation, CO 2 production and glucose-derived fatty acid synthesis. ABA per se did not induce pre-adipocyte differentiation in vitro, but stimulated adipocyte remodeling in terminally differentiated cells, with a reduction in cell size, increased mitochondrial content, enhanced O 2 consumption, increased transcription of adiponectin and of brown adipose tissue (BAT) genes. A single dose of oral ABA (1μg/kg body weight) increased BAT glucose uptake 2-fold in treated rats compared with untreated controls. One-month-long ABA treatment at the same daily dose significantly upregulated expression of BAT markers in the WAT and in WAT-derived preadipocytes from treated mice compared with untreated controls. These results indicate a hitherto unknown role of LANCL2 in adipocyte sensitivity to insulin-stimulated glucose uptake and suggest a role for ABA in the induction and maintenance of BAT activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Recombinant Uncarboxylated Osteocalcin Per Se Enhances Mouse Skeletal Muscle Glucose Uptake in both Extensor Digitorum Longus and Soleus Muscles

    Directory of Open Access Journals (Sweden)

    Xuzhu Lin

    2017-11-01

    Full Text Available Emerging evidence suggests that undercarboxylated osteocalcin (ucOC improves muscle glucose uptake in rodents. However, whether ucOC can directly increase glucose uptake in both glycolytic and oxidative muscles and the possible mechanisms of action still need further exploration. We tested the hypothesis that ucOC per se stimulates muscle glucose uptake via extracellular signal-regulated kinase (ERK, adenosine monophosphate-activated protein kinase (AMPK, and/or the mechanistic target of rapamycin complex 2 (mTORC2-protein kinase B (AKT-AKT substrate of 160 kDa (AS160 signaling cascade. Extensor digitorum longus (EDL and soleus muscles from male C57BL/6 mice were isolated, divided into halves, and then incubated with ucOC with or without the pretreatment of ERK inhibitor U0126. ucOC increased muscle glucose uptake in both EDL and soleus. It also enhanced phosphorylation of ERK2 (Thr202/Tyr204 and AS160 (Thr642 in both muscle types and increased mTOR phosphorylation (Ser2481 in EDL only. ucOC had no significant effect on the phosphorylation of AMPKα (Thr172. The inhibition of ucOC-induced ERK phosphorylation had limited effect on ucOC-stimulated glucose uptake and AS160 phosphorylation in both muscle types, but appeared to inhibit the elevation in AKT phosphorylation only in EDL. Taken together, ucOC at the physiological range directly increased glucose uptake in both EDL and soleus muscles in mouse. The molecular mechanisms behind this ucOC effect on muscle glucose uptake seem to be muscle type-specific, involving enhanced phosphorylation of AS160 but limitedly modulated by ERK phosphorylation. Our study suggests that, since ucOC increases muscle glucose uptake without insulin, it could be considered as a potential agent to improve muscle glucose uptake in insulin resistant conditions.

  5. Electrochemical Surface Plasmon Resonance (EC-SPR) and Waveguide Enhanced Glucose Biosensing with N-Alkylaminated Polypyrrole/Glucose Oxidase Multilayers

    Science.gov (United States)

    Baba, Akira; Taranekar, Prasad; Ponnapati, Ramakrishna R.; Knoll, Wolfgang; Advincula, Rigoberto C.

    2010-01-01

    In this work, we report an electrochemical surface plasmon resonance/waveguide (EC-SPR/waveguide) glucose biosensor, which could detect enzymatic reactions in a conducting polymer/glucose oxidase (GOx) multilayer thin film. In order to achieve a controlled enzyme electrode and waveguide mode, GOx (negatively charged) was immobilized with a water-soluble conducting N-alkylaminated polypyrrole (positively charged) using the layer-by-layer (LbL) electrostatic self-assembly technique. The electrochemical and optical signals were simultaneously obtained from the composite LbL enzyme electrode upon addition of glucose as mediated by the electroactivity and electrochromic property of the polypyrrole layers. The signal enhancement in the EC-SPR detection is obtained by monitoring the doping-dedoping events on the polypyrrole. The real time optical signal could be distinguished between the change in the dielectric constant of the enzyme layer and other non-enzymatic reaction events such as adsorption of glucose and change of refractive index of solution. This was possible by a correlation of both the SPR mode, m=0, and m=1 mode of the waveguide in an SPR/waveguide spectroscopy experiment. PMID:20666478

  6. Enhanced Hepatic Functions of Genetically Modified Mouse Hepatoma Cells by Spheroid Culture for Drug Toxicity Screening.

    Science.gov (United States)

    Sarkar, Joyita; Kumari, Jyoti; Tonello, Jane M; Kamihira, Masamichi; Kumar, Ashok

    2017-10-01

    While hepatic cell lines are mainly used for in vitro drug induced toxicity studies, they exhibit limited functionalities. To overcome this, the authors have employed genetically engineered mouse hepatoma cells, Hepa/8F5, wherein expression of liver enriched transcription factors is induced by doxycycline leading to increased functionality. Further enhancement in functionality is achieved by spheroid culture in a previously developed 3D cell culture platform. Cells are seeded in presence of temperature-responsive poly(N-isopropylacrylamide) on poly(N-isopropylacrylamide--co-gelatin) cryogel scaffold based high throughput platform. Cells seeded in presence of poly(N-isopropylacrylamide) and induced with doxycycline exhibited highest functionalities. There is an increase of ≈26, 36, and 39% in albumin secretion, ammonia removal, and CYP3A4 activity, respectively. Morphological analysis showed arrest in cell proliferation and enlarged nucleus in presence of doxycyline and spheroid formation in presence of poly(N-isopropylacrylamide). Drug induced liver toxicity studies revealed that cells induced with doxycycline are resistive to tamoxifen but sensitive to acetaminophen whereas, cultures initiated in presence of poly(N-isopropylacrylamide) are resistive to both the drugs which is indicative of diffusional barrier of the spheroids. The authors conclude that Hepa/8F5 cells show enhanced functionality in cryogel based spheroid culture platform which can be successfully used for high throughput screening of hepatic toxicity in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  8. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle.

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T; Schjerling, Peter; Goodyear, Laurie; Wojtaszewski, Jørgen F P

    2014-05-15

    Metformin-induced activation of the 5'-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. Copyright © 2014 the American Physiological Society.

  9. "Pseudo washout" sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor.

    Science.gov (United States)

    Doo, Kyung Won; Lee, Chang Hee; Choi, Jae Woong; Lee, Jongmee; Kim, Kyeong Ah; Park, Cheol Min

    2009-12-01

    The purpose of this article is to describe the "pseudo washout" sign of high-flow hepatic hemangioma that mimics hypervascular tumor on gadoxetic acid-enhanced MRI. High-flow hemangiomas might show relatively low signal intensity because of gadoxetic acid contrast uptake in the surrounding normal liver parenchyma during the equilibrium (3-minute delay) phase. Such findings are called pseudo washout and can mimic hypervascular hepatic tumors. However, high-flow hemangioma can be diagnosed by observing bright signal intensity on T2-weighted imaging, arterial phase-dominant enhancement, pseudo washout sign during the equilibrium phase, and isointense or slightly increased signal intensity on subtraction images.

  10. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  11. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice

    NARCIS (Netherlands)

    Nunes, P.M.; Wright, A.J.; Veltien, A.A.; Asten, J.J.A. van; Tack, C.J.J.; Jones, J.G.; Heerschap, A.

    2014-01-01

    Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced

  12. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  13. Enhanced glucose sensing based on a novel composite CoII-MOF/Acb modified electrode.

    Science.gov (United States)

    Wen, Yuanyuan; Meng, Wei; Li, Chen; Dai, Lei; He, Zhangxing; Wang, Ling; Li, Ming; Zhu, Jing

    2018-02-16

    In this work, we demonstrate the synthesis and application of a novel Co II -based metal-organic framework {[Co 2 (Dcpp)(Bpe) 0.5 (H 2 O)(μ 2 -H 2 O)]·(Bpe) 0.5 } n (Co II -MOF, H 4 Dcpp = 4,5-bis(4'-carboxylphenyl)-phthalic acid, Bpe = 1,2-bis(4-pyridyl)ethane) as an electrochemical sensor for glucose detection. Single-crystal X-ray diffraction analysis shows that the Co II -MOF has a two-dimensional (2D) bilayer structure composed of Co 2 units and Dcpp 4- ligands. There are two kinds of Bpe in the structure: one serves as a bidentate ligand linking two Co1 atoms in each 2D layer; the other is just free in the lattice. The Co II -MOF modified glassy carbon electrode (GCE) shows good electrocatalytic activity towards glucose oxidation. To further improve the catalytic activity of the electrode, a new composite of Co II -MOF/acetylene black (Co II -MOF/Acb) was constructed. The Co II -MOF/Acb modified electrode exhibits enhanced sensing behavior for glucose detection. The sensing performance of Co II -MOF/Acb/GCE with different Acb loadings was investigated in detail. The results demonstrate that Co II -MOF/GCE with 2% Acb (Co II -MOF/Acb-2%/GCE) exhibits the best sensing behavior, including a high sensitivity of 0.255 μA μM -1 cm -2 and a wide linear range of 5-1000 μM, as well as a low detection limit of 1.7 μM (S/N = 3). It's worth noting that the linear range of Co II -MOF/Acb-2%/GCE was extended by more than ten times when compared to that of Co II -MOF/GCE without Acb addition. In addition, Co II -MOF/Acb-2%/GCE shows good selectivity and stability in the sensing process.

  14. Hepatic hemangiomas with peritumoral sparing of fatty infiltration in hepatic steatosis: findings on contrast-enhanced MR imaging and on sonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jeong; Kim, Kyoung Won; Won, Hyung Jin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2006-12-15

    We wanted to determine the frequency of peritumoral sparing of fatty infiltration (PTSF) around hepatic hemangioma in hepatic steatosis and to evaluate the finding of these tumors on dynamic contrast-enhanced MR imaging and on sonography. This study included 76 hemangiomas in 67 patients suffering with hepatic steatosis. A diagnosis of hemangioma was based on the histologic findings, hemangioma SPECT or a compatible enhancement pattern on the dynamic contrast-enhanced MR study. For chemical shifting, PTSF was defined when there wasn't any decrease in signal intensity of the liver parenchyma on the opposed-phase images as compared with the in-phase images, and this intensity appeared as a hyperintense area around the tumor. We evaluated the frequency of PTSF and we analyzed if the presence of PTSF was related to the tumor size, the rapidity of enhancement or an associated arterioportal shunt. Among those, sonographic images were available in 55 hemangiomas. We also evaluated the sonographic appearances of hemangiomas with PTSF. Of the 76 hemangiomas, PTSF was noted on the MR chemical-shift images in 57 hemangiomas (75%). There was no significant relationship between tumor size and the presence of PTSF ({rho} = .578). However, this finding was more frequently found in high-flow hemangiomas than in the slow-flow ones ({rho} = .0038) and it was also related to the presence of associated arterioportal shunt ({rho} = .0158). Sonographically, hemangiomas with PTSF were commonly surrounded by a peritumoral low-echoic area (28/41, 68%); these tumors more frequently showed a thin high-echoic rim on sonography than did the tumors without this finding ({rho} = .0055). PTSF is commonly seen in hemangiomas in hepatic steatosis patients. Hepatic hemangiomas with PTSF tend to show rapid enhancement on dynamic MR imaging and this is accompanied by arterioportal shunt. They tend to be seen as an iso-or low-echoic mass with a thin high-echoic rim on sonography, and the mass is

  15. RAISED GLUCOSE-LEVELS ENHANCE SCOPOLAMINE-INDUCED ACETYLCHOLINE OVERFLOW FROM THE HIPPOCAMPUS - AN INVIVO MICRODIALYSIS STUDY IN THE RAT

    NARCIS (Netherlands)

    DURKIN, TP; MESSIER, C; DEBOER, P; WESTERINK, BHC

    1992-01-01

    Behavioural studies in both humans and animals have shown that an acute rise in circulating glucose levels at or around the time of training enhances subsequent retention performance and can also afford protection from the amnesia produced by posttraining injections of scopolamine. In an attempt to

  16. Ultrasonido con contraste de masas hepáticas Contrast-enhanced ultrasonography in hepatic masses

    Directory of Open Access Journals (Sweden)

    Hojun Yu

    2009-06-01

    patterns of masses. These benefits enable more accurate and confident diagnosis of liver lesions allowing CEUS to be a problem solving imaging modality for indeterminate hepatic lesions on previous CT or MR. In this article, we describe the basic principles of CEUS, practical issues in performing the studies, strengths and weaknesses compared to CT and MR imaging, and patterns of enhancement seen in the 5 common hepatic masses: hemangioma, focal nodular hyperplasia, hepatic adenoma, hepatocellular carcinoma, and metastasis.

  17. Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI

    Energy Technology Data Exchange (ETDEWEB)

    Matoori, Simon [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); Froehlich, Johannes M. [Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich (Switzerland); Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Breitenstein, Stefan [Cantonal Hospital Winterthur, Department of Surgery, Clinic for Visceral and Thoracic Surgery, Winterthur (Switzerland); Doert, Aleksis [Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Pozdniakova, Viktoria [Stavanger University Hospital, Department of Radiology, Stavanger (Norway); Koh, Dow-Mu [Royal Marsden Hospital, Department of Radiology, Surrey, England (United Kingdom); Gutzeit, Andreas [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland)

    2016-06-15

    To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients. A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age. Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606). The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods. (orig.)

  18. Contrast enhanced ultrasound in the evaluation and percutaneous treatment of hepatic and renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, Maria Franca, E-mail: meloni.mariafranca@gmail.com [Department of Radiology, Ospedale Valduce, Como (Italy); Smolock, Amanda [Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States); Cantisani, Vito; Bezzi, Mario; D' Ambrosio, Ferdinando [Department of Radiology, Oncology and Anatomo-Pathology “Sapienza” University of Rome, Rome (Italy); Proiti, Maria [Department of Internal Medicine, Vittorio-Emanuele University Hospital, Catania (Italy); Lee, Fred [Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States); Aiani, Luca [Department of Radiology, Ospedale Valduce, Como (Italy); Calliada, Fabrizio [Department of Radiology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia (Italy); Ferraioli, Giovanna [Ultrasound Unit, Infectious Diseases Department, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia (Italy)

    2015-09-15

    Highlights: • Image-guided percutaneous ablation techniques are increasingly being used for the treatment of malignant tumors of the liver and kidney when surgery is not indicated. • Percutaneous ablation relies on imaging at every step of the process in order to detect, guide, and confirm complete tumor coagulation. • CEUS is a real-time dynamic imaging technique that plays an important role in the management of patients treated with ablation for malignant tumors. • This review focuses on the role of CEUS in the evaluation of patients undergoing percutaneous treatments for hepatic and renal tumors. - Abstract: Image-guided percutaneous ablation techniques are increasingly being used for the treatment of malignant tumors of the liver and kidney. Contrast enhanced ultrasound (CEUS) is a real-time dynamic imaging technique that plays an important role in the pre-, intra-, and post-procedural management of these patients. This review will focus on the role of CEUS in the evaluation of patients undergoing treatment with percutaneous ablation for hepatic or renal tumors.

  19. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    Science.gov (United States)

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  20. Evaluation of White Sesame Seed Oil on Glucose Control and Biomarkers of Hepatic, Cardiac, and Renal Functions in Male Sprague-Dawley Rats with Chemically Induced Diabetes.

    Science.gov (United States)

    Aslam, Farhan; Iqbal, Sanaullah; Nasir, Muhammad; Anjum, Aftab Ahmad; Swan, Pamela; Sweazea, Karen

    2017-05-01

    White sesame seed oil (WSSO) has been used in cooking and food preparations for centuries. It has many purported health benefits and may be a promising nutraceutical. The primary purpose of this study was to examine the effects of WSSO on fasting blood glucose (GLU) and insulin (INS) in male Sprague-Dawley rats with chemically induced diabetes. A secondary aim was to explore other hematological biomarkers of hepatic, cardiac, and renal function. Sixty-three male Sprague-Dawley rats were randomized into standard diet groups, normal control (NCON) (n = 21) and diabetic control (DCON) (n = 21), and a diabetic sesame oil (DSO) (n = 21) group, which were fed a diet containing 12% WSSO. Blood samples were analyzed at 0, 30, and 60 days. Differences between groups and across days were assessed with two-way repeated measures analysis of variance. At baseline, GLU and INS were similar in both diabetic groups, mean 248.4 ± 2.8 mg/dL and mean 23.4 ± 0.4 μU/mL, respectively. At 60 days, GLU was significantly (P < .05) higher in DCON (298.0 ± 2.3 mg/dL) compared with DSO (202.1 ± 1.0 mg/dL). INS showed similar favorable trends after WSSO supplementation. Consumption of WSSO significantly improved glucose control and other biomarkers of hepatic stress, as well as cardiac and renal health. WSSO may be a viable functional food to help reduce the detrimental effects of diabetes.

  1. Preoperative radiological characterization of hepatic angiomyolipoma using magnetic resonance imaging and contrast-enhanced ultrasonography: a case report

    Directory of Open Access Journals (Sweden)

    Schmid Roland M

    2011-09-01

    Full Text Available Abstract Introduction A hepatic angiomyolipoma is a rare benign tumor of the liver composed of a mixture of smooth muscle cells, blood vessels and a variable amount of adipose tissue. Differentiating them from malignant liver tumors can often be very difficult. Case presentation We report the case of a 43-year-old Caucasian man presenting with a large liver mass in the right lobe. The results of magnetic resonance imaging and contrast-enhanced ultrasonography were consistent with a well-demarcated adipose tissue- containing tumor, showing prolonged hyperperfusion in comparison with the surrounding liver tissue. Surgery was performed and the diagnosis of hepatic angiomyolipoma was made with histopathology. Conclusion Preoperative radiological characterization using magnetic resonance imaging and contrast-enhanced ultrasonography may improve diagnostic accuracy of hepatic angiomyolipoma. Identification of smooth muscle cells, blood vessels and adipose tissue with a positive immunohistochemical reaction for HMB-45 is the final evidence for an angiomyolipoma.

  2. Effect of exogenous leptin on serum levels of lipids, glucose, renal and hepatic variables in both genders of obese and streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Parichehr Hayatdavoudi

    2015-11-01

    Full Text Available Objective(s: Leptin exerts various effects on appetite and body weight. Disruption of the obesitygene is precedent to fatness. Insulin or glucose elevates leptin, but streptozotocin reduces it. However, controversial data exist for the effects of leptin on diabetes and leptin level in each gender. Leptin can damage the kidney function but little evidence exists for its hepatic effects. The aim of this study was to investigate the probable sex-dependent differences in blood sugar levels, lipid profile, and renal and hepatic biochemical factors in the obesity and streptozotocin-induced diabetic rats after leptin administration. Materials and Methods: Wistar rats of both sexes were randomly divided into two groups, namely obese and diabetic rats. Each group was further divided into male and female subgroups. Extra fat and carbohydrate was added to the diet to induce obesity. Furthermore, streptozotocin (55 mg/kg, IP was injected to induce diabetes. The treatment groups received leptin (0.1 mg/kg SC for 10 days, and then, blood samples were taken from the orbital sinus for laboratory evaluations. Results: Leptin resulted in a significant weight loss in both sexes (P

  3. The reduction in hepatic insulin clearance after oral glucose is not mediated by gastric inhibitory polypeptide (GIP)

    DEFF Research Database (Denmark)

    Meier, Juris J; Gallwitz, Baptist; Siepmann, Nina

    2003-01-01

    -eight healthy subjects (27 male, 51 female, 43+/-11 years) were subjected to (a). an oral glucose tolerance test and (b). an intravenous injection of 20 pmol GIP/kg body weight, with capillary and venous blood samples collected over 30 min for insulin, C-peptide and GIP (specific immunoassays). Following GIP...... administration, plasma concentrations of total and intact GIP reached to peak levels of 80+/-7 and 54+/-5 pmol/l, respectively (prise in insulin after oral glucose and after intravenous GIP administration significantly exceeded the rise in C-peptide (p

  4. Glucose enhancement of recognition memory: differential effects on effortful processing but not aspects of 'remember-know' responses.

    Science.gov (United States)

    Scholey, Andrew; Macpherson, Helen; Sünram-Lea, Sandra; Elliott, Jade; Stough, Con; Kennedy, David

    2013-01-01

    The administration of a glucose drink has been shown to enhance cognitive performance with effect sizes comparable with those from pharmaceutical interventions in human trials. In the memory domain, it is currently debated whether glucose facilitation of performance is due to differential targeting of hippocampal memory or whether task effort is a more important determinant. Using a placebo-controlled, double-blind, crossover 2(Drink: glucose/placebo) × 2(Effort: ± secondary task) design, 20 healthy young adults' recognition memory performance was measured using the 'remember-know' procedure. Two high effort conditions (one for each drink) included secondary hand movements during word presentation. A 25 g glucose or 30 mg saccharine (placebo) drink was consumed 10 min prior to the task. The presence of a secondary task resulted in a global impairment of memory function. There were significant Drink × Effort interactions for overall memory accuracy but no differential effects for 'remember' or 'know' responses. These data suggest that, in some circumstances, task effort may be a more important determinant of the glucose facilitation of memory effect than hippocampal mediation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Glucose significantly enhances enterotoxigenic Escherichia coli adherence to intestinal epithelial cells through its effects on heat-labile enterotoxin production.

    Directory of Open Access Journals (Sweden)

    Prageeth Wijemanne

    Full Text Available The present study tested whether exposure of enterotoxigenic Escherichia coli (ETEC to glucose at different concentrations in the media results in increased bacterial adherence to host cells through increased heat-labile enterotoxin (LT production, thereby suggesting the effects are physiological. Porcine-origin ETEC strains grown in Casamino acid yeast extract medium containing different concentrations of glucose were washed and inoculated onto IPEC-J2 porcine intestinal epithelial cells to test for effects on adherence and host cell cAMP concentrations. Consistent with previous studies, all LT+ strains had higher ETEC adherence to IPEC-J2 cells than did LT- strains. Adherence of the LT- but not the LT+ strains was increased by pre-incubating the IPEC-J2 cells with LT and decreased by co-incubation with GM1 ganglioside in a dose-dependent manner (P<0.05. To determine whether the glucose concentration of the cell culture media has an effect on adherence, IPEC-J2 cells were inoculated with LT+ or LT- strains in cell culture media containing a final glucose concentration of 0, 0.25, 0.5, 1.0 or 2.0%, and incubated for 4 h. Only media containing 0.25% glucose resulted in increased adherence and cAMP levels, and this was limited to IPEC-J2 cells inoculated with LT+ strains. This study supports the hypothesis that glucose, at a concentration optimal for LT expression, enhances bacterial adherence through the promotion of LT production. Hence, these results establish the physiological relevance of the effects of glucose on LT production and provide a basis for how glucose intake may influence the severity of ETEC infection.

  6. Difference of contrast enhancement characteristics of hepatic hemangiomas according to lesion size on two-phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Sung Hye; Yoon, Suk Kwon; Yang, Dal Mo; Yoon, Myung Hwan; Kim, Hak Soo; Kim, Hyung Sik; Chung, Jin Woo [Chungang Gil Hospital, Incheon (Korea, Republic of)

    1998-06-01

    The purpose of this study is to determine the different of enhancement patterns of hepatic hemangioma according to the lesion size, using dual-phase spiral CT. Fifty-nine lesions in 45 patients with hepatic hemangiomas were subjected to spiral CT. According to size, the lesions were divided into two groups (<2.5 cm : n=34;> {>=} 2.5 cm : n=25). The enhancement patterns of the lesions were classified as one of four types (homogeneous hyperdense, peripheral hyperdense, central hyperdense, peripheral hyperdense, central hyperdense, or hypodense) during the early phase, and as one of five types (homogeneous hyperdense, peripheral hyperdense, central hyperdense, hypodense of isodense) during the delayed phase. We evaluated differences in enhancement patterns during the early and delayed phase according to lesion size. During the early phase, the enhancement patterns of lesions large than 2.5 cm were peripheral hyperdense (96%) or homogeneous hyperdense (4%); those of less than 2.5 cm were peripheral hyperdense (53%), homogenous hyperdense (26%), hypodense (18%), or central hyperdense (3%). Thus, hemangiomas in these two groups usually showed a peripheral enhancement patterns were more common. During the delayed phase, the enhancement patterns of lesions larger than 2.5 cm were peripheral hyperdense (3%), or isodense (3%). Thus, the enhancement patterns of lesions larger than 2.5 cm showed a homogeneous enhancement pattern. The enhancement patterns of hepatic hemangiomas differ according to lesion size. A knowledge of these differences is helpful in the diagnosis of hepatic hemangioma. (author). 16 refs., 2 tabs., 3 figs.

  7. Glucose enhances collectrin protein expression in insulin-producing MIN6 {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Saisho, Kenji; Fukuhara, Atsunori [Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka (Japan); Yasuda, Tomoko [Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Sato, Yoshifumi; Fukui, Kenji; Iwahashi, Hiromi; Imagawa, Akihisa [Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka (Japan); Hatta, Mitsutoki [Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Shimomura, Iichiro [Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka (Japan); Yamagata, Kazuya, E-mail: k-yamaga@kumamoto-u.ac.jp [Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan)

    2009-11-06

    Collectrin is a novel target gene of hepatocyte nuclear factor-1{alpha} in pancreatic {beta}-cells and controls insulin exocytosis. Although glucose is known to stimulate the expression of genes of the insulin secretory pathway, there is no information on how glucose regulates collectrin expression. We investigated the effects of glucose on the expression of collectrin in MIN6 {beta}-cell line. Glucose, in a dose-dependent manner, increased collectrin protein levels without changing collectrin mRNA levels and protein stability, indicating that glucose stimulation of collectrin protein expression is primarily mediated at a translational level. Although mannose and pyruvate also increased collectrin protein expression level, neither 2-deoxyglucose, mitochondrial fuels leucine and glutamate, sulphonylurea nor Ca{sup 2+} channel blockers, mimicked the effects of glucose. These data indicate the involvement of mitochondrial TCA cycle intermediates, distal to pyruvate, in the regulation of collectrin protein expression in {beta}-cells.

  8. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Martinussen, Christoffer; Bojsen-Moller, Kirstine N; Dirksen, Carsten

    2015-01-01

    testing, GLP-1 responses and insulin secretion increased regardless of glucose tolerance. Therefore, in addition to increased insulin sensitivity and exaggerated postprandial GLP-1 levels, diabetes remission after RYGB involves early improvement of pancreatic β-cell function per se, reflected in enhanced......Roux-en-Y gastric bypass surgery (RYGB) in patients with type 2 diabetes often leads to early disease remission, and it is unknown to what extent this involves improved pancreatic β-cell function per se and/or enhanced insulin- and non-insulin-mediated glucose disposal (glucose effectiveness). We...... studied 30 obese patients, including 10 with type 2 diabetes, 8 with impaired glucose tolerance and 12 with normal glucose tolerance, before, 1 week and 3 months after RYGB, using an intravenous glucose tolerance test to estimate first-phase insulin response, insulin sensitivity (Si) and glucose...

  9. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism.

  10. Theophylline enhances glucose recovery after hypoglycemia in healthy man and in type I diabetic patients

    DEFF Research Database (Denmark)

    Hvidberg, A; Rasmussen, M H; Christensen, N J

    1994-01-01

    The principal mediators of glucose counterregulation (glucagon and epinephrine) use intracellular cyclic adenosine monophosphate (cAMP) to mediate glucose release. Since theophylline increases cAMP (by inhibiting its decomposition), we investigated the effect of theophylline on glucose recovery......). The incremental AUC for cAMP was larger with theophylline for diabetic patients (P = .01). For healthy subjects, cAMP was greater with theophylline 30 minutes after insulin (P = .03). In conclusion, glucose recovery after hypoglycemia is significantly increased when theophylline is administered in an asthma...

  11. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Directory of Open Access Journals (Sweden)

    Minjeong Jung

    Full Text Available Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  12. Enhancing energy and glucose metabolism by disrupting triglyceride synthesis: Lessons from mice lacking DGAT1

    Directory of Open Access Journals (Sweden)

    Chen Hubert C

    2006-01-01

    Full Text Available Abstract Although the ability to make triglycerides is essential for normal physiology, excess accumulation of triglycerides results in obesity and is associated with insulin resistance. Inhibition of triglyceride synthesis, therefore, may represent a feasible strategy for the treatment of obesity and type 2 diabetes. Acyl CoA:diacylglycerol acyltransferase 1 (DGAT1 is one of two DGAT enzymes that catalyze the final reaction in the known pathways of mammalian triglyceride synthesis. Mice lacking DGAT1 have increased energy expenditure and insulin sensitivity and are protected against diet-induced obesity and glucose intolerance. These metabolic effects of DGAT1 deficiency result in part from the altered secretion of adipocyte-derived factors. Studies of DGAT1-deficient mice have helped to provide insights into the mechanisms by which cellular lipid metabolism modulates systemic carbohydrate and insulin metabolism, and a better understanding of how DGAT1 deficiency enhances energy expenditure and insulin sensitivity may identify additional targets or strategies for the treatment of obesity and type 2 diabetes.

  13. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway.

    Science.gov (United States)

    Mokashi, Priyanka; Khanna, Aparna; Pandita, Nancy

    2017-06-01

    Diabetes mellitus has spread over the world with 347 million people affected. Insulin resistance is a main pathogenic event in Type 2 Diabetes Mellitus (T2DM) leading to a reduction in glucose uptake by peripheral tissue and increased hepatic glucose output. In this study, we have isolated four flavonoid rich fractions fraction A (FA), fraction B (FB), fraction C (FC) and fraction D (FD) from Enicostema littorale. All the fractions were preliminary screened for TLC fingerprinting, total flavonoid content. Total eight flavonoids were identified by LC/MS. Insulin resistant HepG2 (IR/HepG2) model was established by inducing insulin resistance in HepG2 cells to investigate the effect of these fractions on IR/HepG2 cell line for their glucose uptake. The results showed the significant dose dependant increase in glucose uptake of cells treated with FD. It showed significant activity at a concentration of 10μg/ml. The LC/MS results of FD demonstrated the presence of C-glycoside Swertisin which could be responsible for the effect. Further, to investigate the mechanism of action, gene expression for insulin receptor substrate 1 (IRS-1), protein kinase B (Akt-2) and glucose transporter 4 (GLUT-4) genes were evaluated by real time PCR. A significant upregulation of these genes was observed in FD treated samples, thereby indicating the enhancement of glucose uptake rate of cells via IRS-1/PI3K/Akt pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing.

    Science.gov (United States)

    Nielsen, Jeppe Lund; Nguyen, Hien; Meyer, Rikke Louise; Nielsen, Per Halkjær

    2012-07-01

    Microbiology in wastewater treatment has mainly been focused on problem-causing filamentous bacteria or bacteria directly involved in nitrogen and phosphorus removal, and to a lesser degree on flanking groups, such as hydrolysing and fermenting bacteria. However, these groups constitute important suppliers of readily degradable substrates for the overall processes in the plant. This study aimed to identify glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plant (WWTP), and to determine their abundance in similar WWTPs. Glucose-fermenting micro-organisms were identified by an in situ approach using RNA-based stable isotope probing. Activated sludge was incubated anaerobically with (13)C(6)-labelled glucose, and (13)C-enriched rRNA was subsequently reverse-transcribed and used to construct a 16S rRNA gene clone library. Phylogenetic analysis of the library revealed the presence of two major phylogenetic groups of gram-positive bacteria affiliating with the genera Tetrasphaera, Propionicimonas (Actinobacteria), and Lactococcus and Streptococcus (Firmicutes). Specific oligonucleotide probes were designed for fluorescence in situ hybridization (FISH) to specifically target the glucose-fermenting bacteria identified in this study. The combination of FISH with microautoradiography confirmed that Tetrasphaera, Propionicimonas and Streptococcus were the dominant glucose fermenters. The probe-defined fermenters were quantified in 10 full-scale EBPR plants and averaged 39 % of the total biovolume. Tetrasphaera and Propionicimonas were the most abundant glucose fermenters (average 33 and 4 %, respectively), while Streptococcus and Lactococcus were present only in some WWTPs (average 1 and 0.4 %, respectively). Thus the population of actively metabolizing glucose fermenters seems to occupy a relatively large component of the total biovolume.

  15. Peripheral low intensity sign in hepatic hemangioma: diagnostic pitfall in hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI of the liver.

    Science.gov (United States)

    Tamada, Tsutomu; Ito, Katsuyoshi; Ueki, Ai; Kanki, Akihiko; Higaki, Atsushi; Higashi, Hiroki; Yamamoto, Akira

    2012-04-01

    To describe the presence of "peripheral low intensity sign" in hepatic hemangioma in the hepatobiliary phase (HP) of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and to compare the frequency of this sign between hepatic hemangiomas and hepatic metastases. The Institutional Review Board approved this study and waived the requirement for informed consent. Sixty-four patients with 51 hepatic hemangiomas (n = 31 patients) and with 58 hepatic metastases (n = 33 patients) underwent Gd-EOB-DTPA-enhanced MRI. In all hepatic hemangiomas, 41 lesions were the typical type and 10 were the high flow type. HP images were qualitatively evaluated for the frequency of peripheral low intensity sign in hepatic hemangiomas and hepatic metastases using a four-point scale. Statistical evaluations were performed with a Mann-Whitney U-test. Peripheral low intensity signs were demonstrated in 24 (47%) of 51 hepatic hemangiomas, while they were seen in 27 (47%) of 58 hepatic metastases. There was no significant difference in the mean visual score of peripheral low intensity sign between all hepatic hemangiomas (0.84 ± 1.03) and hepatic metastases (0.76 ± 0.92). The mean visual score of peripheral low intensity sign in typical hemangiomas (1.02 ± 1.06) was significantly higher than that in high flow hemangiomas (0.10 ± 0.32) (P = 0.008). Peripheral low intensity sign is not specific for malignant tumors, and can be seen even in hepatic hemangiomas on HP of Gd-EOB-DTPA-enhanced MRI. Copyright © 2011 Wiley Periodicals, Inc.

  16. Hypoglycemic effects of Zanthoxylum alkylamides by enhancing glucose metabolism and ameliorating pancreatic dysfunction in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    You, Yuming; Ren, Ting; Zhang, Shiqi; Shirima, Gerald Gasper; Cheng, YaJiao; Liu, Xiong

    2015-09-01

    This study aimed to evaluate the hypoglycemic effect of Zanthoxylum alkylamides and explore the potential mechanism in streptozotocin (STZ)-induced diabetic rats. Diabetic rats were orally treated with 3, 6, and 9 mg per kg bw alkylamides daily for 28 days. As the alkylamide dose increased, the relative weights of the liver and kidney, fasting blood glucose, and fructosamine levels were significantly decreased. The alkylamides also significantly increased the body weight and improved the oral glucose tolerance of the rats. Likewise, the alkylamides significantly increased the levels of liver and muscle glycogen and plasma insulin. These substances further alleviated the histopathological changes in the pancreas of the diabetic rats. The beneficial effects of high-dose alkylamides showed a comparable activity to the anti-diabetic drug glibenclamide. Western blot and real-time PCR results revealed that the alkylamide treatment significantly decreased the expression levels of the key enzymes (phosphoenolpyruvate caboxykinase and glucose-6-phosphatase) involved in gluconeogenesis and increased the glycolysis enzyme (glucokinase) in the liver, and enhanced the expression levels of pancreatic duodenal homeobox-1, glucokinase, and glucose transporter 2 in the pancreas. In addition, it was also observed that the alkylamides, unlike glibenclamide, increased the transient receptor potential cation channel subfamily V member 1 and decreased cannabinoid receptor 1 expressions in the liver and pancreas. Therefore, alkylamides can prevent STZ-induced hyperglycemia by altering the expression levels of the genes related to glucose metabolism and by ameliorating pancreatic dysfunction.

  17. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential.

    Science.gov (United States)

    Mu, Ying; Jia, Dongling; He, Yayun; Miao, Yuqing; Wu, Hai-Long

    2011-02-15

    Development of fast and sensitive sensors for glucose determination is important in food industry, clinic diagnostics, biotechnology and many other areas. In these years, considerable attention has been paid to develop non-enzymatic electrodes to solve the disadvantages of the enzyme-modified electrodes, such as instability, high cost, complicated immobilization procedure and critical operating situation et al. Nano nickel oxide (NiO) modified non-enzymatic glucose sensors with enhanced sensitivity were investigated. Potential scanning nano NiO modified carbon paste electrodes up to high potential in alkaline solution greatly increases the amount of redox couple Ni(OH)(2)/NiOOH derived from NiO, and thus improves their electrochemical properties and electrocatalytical performance toward the oxidation of glucose. The non-enzymatic sensors response quickly to glucose and the response time is less than 5s, demonstrating excellent electrocatalytical activity and assay performance. The calibration plot is linear over the wide concentration range of 1-110 μM with a sensitivity of 43.9 nA/μM and a correlation coefficient of 0.998. The detection limit of the electrode was found to be 0.16 μM at a signal-to-noise ratio of 3. The proposed non-enzymatic sensors can be used for the assay of glucose in real sample. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Increased hepatic blood flow during enteral immune-enhancing diet gavage requires intact enterohepatic bile cycling.

    Science.gov (United States)

    Nagengast, Andrea K; Hurt, Ryan T; Downard, Cynthia D; Smith, Jason W; Garrison, R Neal; Matheson, Paul J

    2014-03-01

    Total hepatic blood flow (HBF) via the hepatic artery and portal vein is highly dependent on gastrointestinal perfusion. During postprandial hyperemia, intestinal blood flow depends on nutrient composition, gastrointestinal location, and time. Immune-enhancing diets (IEDs) containing n-3 polyunsaturated fatty acids (PUFAs) selectively augment blood flow in the ileum at 60-120 min via a bile-dependent mechanism. My colleagues and I hypothesized that liver blood flow would be similarly affected by IEDs containing n-3 PUFAs. Mean arterial blood pressure, heart rate, and effective HBF (galactose clearance) were measured in anesthetized male Sprague-Dawley rats after gastric gavage of either a control diet (CD, Boost, Novartis) or an IED (Impact, Nestle Nutrition), with or without bile-duct ligation (BDL), and with or without supplemental bile (bovine, dried, unfractionated). Significance was assessed by 2-way ANOVA for repeated measures with the Tukey-Kramer honestly significant difference test. Compared with baseline levels, a CD increased HBF (peak at 40 min , *P < 0.05) whereas an IED increased HBF in two distinct peaks at 40 min (*P < 0.05) and 120 min (*P < 0.05), but BDL prevented both the early (CD and IED, †P < 0.05) and late peaks (IED, †P < 0.05). Bile supplementation in the CD + BDL or IED + BDL groups restored neither the CD peak nor the early or late IED peaks. HBF during absorptive intestinal hyperemia is modulated by a mechanism that requires an intact enterohepatic circulation. The early peaks at 40 min (CD or IED) were prevented by BDL, even though fat absorption in the proximal gut occurs by bile-independent direct absorption. Bile supplementation with the diet (CD + BDL or IED + BDL) was insufficient to restore HBF hyperemia, which implies that a relationship exists between intestinal and hepatic blood flow that is not solely dependent on bile-mediated intestinal fat absorption and bile recirculation. Copyright © 2014 Elsevier Inc. All rights

  19. Hydrolysis enhances bioavailability of proanthocyanidin-derived metabolites and improves β-cell function in glucose intolerant rats.

    Science.gov (United States)

    Yang, Kaiyuan; Hashemi, Zohre; Han, Wei; Jin, Alena; Yang, Han; Ozga, Jocelyn; Li, Liang; Chan, Catherine B

    2015-08-01

    Proanthocyanidins (PAC) are a highly consumed class of flavonoids and their consumption has been linked to beneficial effects in type 2 diabetes. However, limited gastrointestinal absorption occurs due to the polymeric structure of PAC. We hypothesized that hydrolysis of the PAC polymer would increase bioavailability, thus leading to enhanced beneficial effects on glucose homeostasis and pancreatic β-cell function. PAC-rich pea seed coats (PSC) were supplemented to a high-fat diet (HFD) either in native (PAC) or hydrolyzed (HPAC) form fed to rats for 4 weeks. HFD or low-fat diet groups were controls. PAC-derived compounds were characterized in both PSC and serum. Glucose and insulin tolerance tests were conducted. Pancreatic α-cell and β-cell areas and glucose-stimulated insulin secretion (GSIS) from isolated islets were measured. Increased PAC-derived metabolites were detected in the serum of HPAC-fed rats compared to PAC-fed rats, suggesting hydrolysis of PSC-enhanced PAC bioavailability. This was associated with ~18% less (P<.05) weight gain compared to HFD without affecting food intake, as well as improvement in glucose disposal in vivo. There was a 2-fold decrease of α/β-cell area ratio and a 2.5-fold increase in GSIS from isolated islets of HPAC-fed rats. These results demonstrate that hydrolysis of PSC-derived PAC increased the bioavailability of PAC-derived products, which is critical for enhancing beneficial effects on glucose homeostasis and pancreatic β-cell function. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Feigh, Michael; Hjuler, Sara T; Andreassen, Kim V

    2014-01-01

    We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present...... was enhanced in conjunction with protection of pancreatic insulin content. The results of the present study indicate that oral sCT exerts a novel insulin-sensitizing effect to improve glucose metabolism in obesity and type 2 diabetes....... study we hypothesized that oral sCT as pharmacological intervention 1) exerted anti-hyperglycemic efficacy, and 2) enhanced insulin action in DIO-streptozotocin (DIO-STZ) diabetic rats. Diabetic hyperglycemia was induced in male selectively bred DIO rats by a single low dose (30mg/kg) injection of STZ....... Oral sCT by gavage was delivered as once-daily administration with lead-in (2mg/kg) and maintenance (0.5mg/kg) dose of oral sCT for a total of 21 days. Food intake, body weight, blood glucose, HbA1c, glucose and insulin tolerance test, and parameters of insulin sensitivity were investigated. Plasma...

  1. Diagnosis and management of giant hepatic hemangioma: the usefulness of contrast-enhanced ultrasonography.

    Science.gov (United States)

    Maruyama, Masaki; Isokawa, Osamu; Hoshiyama, Koki; Hoshiyama, Ayako; Hoshiyama, Mari; Hoshiyama, Yoshihiro

    2013-01-01

    Giant hepatic hemangiomas, though often asymptomatic, may require intervention if rapid growth occurs. The imaging studies including the computed tomography, magnetic resonance imaging, and ultrasonography, and so on are effective for the diagnosis and the management of this tumor; however, due to its size and various patterns of these studies, we need to carefully consider the therapeutic methods. Compared to the cost needed for these modalities, recently developed and approved Perflubutane- (Sonazoid-) based contrast agent enhanced ultrasonography is reasonable and safe. The major advantage is the real-time observation of the vascular structure and function of the Kupffer cells. By this procedure, we can carefully follow the tumor growth or character change in a hemangioma and decide the timing of therapeutic intervention, since abdominal pain, abdominal mass, consumptive coagulopathy, and hemangioma growth are the signs for the therapeutic intervention. We reviewed recent reports about Sonazoid-based enhancement and also showed the representative images collected in our department. This is the first review showing the detailed findings of the giant hemangiomas using Perflubutane (Sonazoid). This review will help the physician in making the decision, and we hope that Sonazoid will gain widespread acceptance in the near future.

  2. Diagnosis and Management of Giant Hepatic Hemangioma: The Usefulness of Contrast-Enhanced Ultrasonography

    Directory of Open Access Journals (Sweden)

    Masaki Maruyama

    2013-01-01

    Full Text Available Giant hepatic hemangiomas, though often asymptomatic, may require intervention if rapid growth occurs. The imaging studies including the computed tomography, magnetic resonance imaging, and ultrasonography, and so on are effective for the diagnosis and the management of this tumor; however, due to its size and various patterns of these studies, we need to carefully consider the therapeutic methods. Compared to the cost needed for these modalities, recently developed and approved Perflubutane- (Sonazoid- based contrast agent enhanced ultrasonography is reasonable and safe. The major advantage is the real-time observation of the vascular structure and function of the Kupffer cells. By this procedure, we can carefully follow the tumor growth or character change in a hemangioma and decide the timing of therapeutic intervention, since abdominal pain, abdominal mass, consumptive coagulopathy, and hemangioma growth are the signs for the therapeutic intervention. We reviewed recent reports about Sonazoid-based enhancement and also showed the representative images collected in our department. This is the first review showing the detailed findings of the giant hemangiomas using Perflubutane (Sonazoid. This review will help the physician in making the decision, and we hope that Sonazoid will gain widespread acceptance in the near future.

  3. Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.

    Science.gov (United States)

    Koutny, Tomas

    2016-09-01

    We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Irbesartan enhances GLUT4 translocation and glucose transport in skeletal muscle cells.

    Science.gov (United States)

    Kobayashi, Tatsuo; Akiyama, Yuko; Akiyama, Nobuteru; Katoh, Hideaki; Yamamoto, Sachiko; Funatsuki, Kenzo; Yanagimoto, Toru; Notoya, Mitsuru; Asakura, Kenji; Shinosaki, Toshihiro; Hanasaki, Kohji

    2010-12-15

    Irbesartan, an angiotensin II type 1 receptor blocker has been reported to alleviate metabolic disorder in animal studies and human clinical trials. Although this effect may be related to the ability of irbesartan to serve as a partial agonist for the peroxisome proliferator-activated receptor (PPAR)-γ, the target tissues on which irbesartan acts remain poorly defined. As muscle glucose transport plays a major role in maintaining systemic glucose homeostasis, we investigated the effect of irbesartan on glucose uptake in skeletal muscle cells. In C2C12 myotubes, 24-h treatment with irbesartan significantly promoted both basal and insulin-stimulated glucose transport. In L6-GLUT4myc myoblasts, irbesartan caused a significant increase in glucose transport and GLUT4 translocation to the cell surface in a concentration-dependent manner. Valsartan, another angiotensin II type 1 receptor blocker had no effect on either glucose uptake or GLUT4 translocation, implying that these actions on glucose transport are independent of angiotensin II receptor blockade. Moreover, irbesartan exerted these effects in an additive manner with insulin, but not with acute treatment for 3 h, suggesting that they may require the synthesis of new proteins. Finally, in insulin-resistant Zucker fatty rat, irbesartan (50 mg/kg/day for 3 weeks) significantly ameliorated insulin resistance without increasing weight gain. We conclude that irbesartan has a direct action, which can be additive to insulin, of promoting glucose transport in skeletal muscle. This may be beneficial for ameliorating obesity-related glucose homeostasis derangement. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions

    Science.gov (United States)

    Ohnishi, Mutsuko; Kato, Shigeko; Akiyoshi, Junko; Atfi, Azeddine; Razzaque, M. Shawkat

    2011-01-01

    Klotho is a multifunctional protein involved in numerous biological functions, ranging from mineral ion metabolism to signaling activities. Recent studies have identified klotho as a target gene for peroxisome proliferator-activated receptor-γ (PPAR-γ), a master regulator of adipocyte differentiation, and an adipogenesis-promoting factor. In a similar line of observation, eliminating klotho function from mice resulted in the generation of lean mice with almost no detectable fat tissue. In contrast to the klotho-knockout mice (11.7±0.3 g at 9 wk), leptin-deficient (ob/ob) mice are severely obese (49.3±0.6 g at 9 wk), due to excessive fat accumulation. To study the in vivo role of klotho in obesity, we have generated and characterized ob/ob mice lacking klotho activity [ob/ob-klotho double-knockout (DKO) mice]. The ob/ob mice started to get bigger from 3 wk onward and gained almost 2 times more weight than their wild-type (WT) counterparts (WT vs. ob/ob: 34.8±1.3 vs. 65.5±1.2 g at 21 wk). The generated ob/ob-klotho DKO mice were not only viable throughout their adulthood but also showed markedly reduced fat tissue accumulation compared to their ob/ob littermates. The ob/ob-klotho DKO mice had significantly (PAtfi, A., Razzaque, M. S. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions. PMID:21382979

  6. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Yang, H-C; Chen, T-L; Wu, Y-H; Cheng, K-P; Lin, Y-H; Cheng, M-L; Ho, H-Y; Lo, S J; Chiu, D T-Y

    2013-01-01

    Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans

  7. Continuous enhancement of iturin A production by Bacillus subtilis with a stepwise two-stage glucose feeding strategy.

    Science.gov (United States)

    Jin, Hu; Li, Kunpeng; Niu, Yanxing; Guo, Mian; Hu, Chuanjiong; Chen, Shouwen; Huang, Fenghong

    2015-06-09

    The lipopeptide antibiotic iturin A is an attractive biopesticide with the potential to replace chemical-based pesticides for controlling plant pathogens. However, its industrial fermentation has not been realized due to the high production costs and low product concentrations. This study aims to enhance iturin A production by performing a novel fermentation process with effective glucose feeding control using rapeseed meal as a low-cost nitrogen source. We demonstrated that continuous and significant enhancement of iturin A production could be achieved by a novel two-stage glucose-feeding strategy with a stepwise decrease in feeding rate. Using this strategy, the ratio of spores to total cells could be maintained at a desirable/stable level of 0.80-0.86, and the reducing sugar concentration could be controlled at a low level of 2-3 g/L so that optimal substrate balance could be maintained throughout the feeding phase. As a result, the maximum iturin A concentration reached 1.12 g/L, which was two-fold higher than that of batch culture. This is the first report which uses control of the glucose supply to improve iturin A production by fed-batch fermentation and identifies some important factors necessary to realize industrial iturin A production. This approach may also enhance the production of other useful secondary metabolites by Bacillus subtilis.

  8. Enhanced peroxisomal β-oxidation is associated with prevention of obesity and glucose intolerance by fish oil-enriched diets.

    Science.gov (United States)

    Fiamoncini, J; Turner, N; Hirabara, S M; Salgado, T M L; Marçal, A C; Leslie, S; da Silva, S M A; Deschamps, F C; Luz, J; Cooney, G J; Curi, R

    2013-06-01

    The effects of different amounts of omega 3-polyunsaturated fatty acids in diets with normal or high content of fat on lipid and carbohydrate metabolism were investigated. Mice were fed for 8 weeks on diets enriched with fish oil or lard at 10% or 60% of energy. Energy balance and energy expenditure were analyzed. Fatty acid (FA) oxidative capacity of the liver and the activity of enzymes involved in this pathway were assessed. Fish oil-fed mice had lower body weight and adiposity compared with lard-fed animals, despite having lower rates of oxygen consumption. Mice fed diets containing fish oil also displayed lower glycemia, reduced fat content in the liver, and improved glucose tolerance compared with lard-fed animals. The fish oil-containing diets increased markers of hepatic peroxisomal content and increased the generation of metabolites derived from FA β-oxidation in liver homogenates. In contrast, no changes were observed in the content of mitochondrial electron transport chain proteins or carnitine palmitoyl transferase-1 in the liver, indicating little direct effect of fish oil on mitochondrial metabolism. Collectively, our findings suggest that the energy inefficient oxidation of FAs in peroxisomes may be an important mechanism underlying the protection against obesity and glucose intolerance of fish oil administration. Copyright © 2013 The Obesity Society.

  9. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2012-06-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.

  10. Enhanced Fasting Glucose Turnover in Mice with Disrupted Action of TUG Protein in Skeletal Muscle*

    Science.gov (United States)

    Löffler, Michael G.; Birkenfeld, Andreas L.; Philbrick, Katerina M.; Belman, Jonathan P.; Habtemichael, Estifanos N.; Booth, Carmen J.; Castorena, Carlos M.; Choi, Cheol Soo; Jornayvaz, Francois R.; Gassaway, Brandon M.; Lee, Hui-Young; Cartee, Gregory D.; Philbrick, William; Shulman, Gerald I.; Samuel, Varman T.; Bogan, Jonathan S.

    2013-01-01

    Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12–13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet

  11. Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle.

    Science.gov (United States)

    Löffler, Michael G; Birkenfeld, Andreas L; Philbrick, Katerina M; Belman, Jonathan P; Habtemichael, Estifanos N; Booth, Carmen J; Castorena, Carlos M; Choi, Cheol Soo; Jornayvaz, Francois R; Gassaway, Brandon M; Lee, Hui-Young; Cartee, Gregory D; Philbrick, William; Shulman, Gerald I; Samuel, Varman T; Bogan, Jonathan S

    2013-07-12

    Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12-13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet

  12. Effect of obstructive jaundice on hepatic hemodynamics: use of Sonazoid-enhanced ultrasonography in a prospective study of the blood flow balance between the hepatic portal vein and hepatic artery.

    Science.gov (United States)

    Wakui, Noritaka; Takeda, Yuki; Nishinakagawa, Shuta; Ueki, Nobuo; Otsuka, Takafumi; Oba, Nobuyuki; Hashimoto, Hiroshi; Kamiyama, Naohisa; Sumino, Yasukiyo; Kojima, Tatsuya

    2015-10-01

    To prospectively clarify the effects of obstructive jaundice (OJ) on hepatic hemodynamics using contrast-enhanced ultrasonography (US). Subjects comprised 14 patients admitted to our hospital for OJ between April 2013 and March 2014. Contrast-enhanced US was performed using the LOGIQ E9 ultrasound device during the jaundice phase, before biliary drainage, and again after improvement of jaundice. After injecting the Sonazoid contrast agent, contrast dynamics were recorded in the right kidney and liver segments 5 or 6. Prototype software was used to calculate mean arrival time (AT) of the contrast agent in the liver parenchyma. Statistical analysis was performed to compare the mean AT in the jaundice and improved jaundice phases. We were unable to follow up three of the 14 patients after biliary drainage; thus, we included 11 patients for further analysis. The mean AT of the contrast agent was 2.0 ± 1.8 and 6.1 ± 2.3 s in the jaundice and improved jaundice phases, respectively, showing significantly shorter AT in the jaundice phase (p = 0.0033). Our findings indicate that OJ may influence the blood flow balance between the hepatic portal vein and hepatic artery.

  13. Effect of enhanced iron chelation therapy on glucose metabolism in patients with beta-thalassaemia major.

    Science.gov (United States)

    Farmaki, Kalistheni; Angelopoulos, Nicholas; Anagnostopoulos, George; Gotsis, Efstathios; Rombopoulos, Grigorios; Tolis, George

    2006-08-01

    Recently introduced chelation regimens that combine deferoxamine (DFO) and deferiprone have been shown to have greater efficacy in promoting iron excretion than either chelator alone and have been associated with rapid reduction of the iron load in the heart and liver, and with reversal of cardiac dysfunction. It is unclear whether this combined therapy could be associated with a reduction in iron load or decline in the severity of iron-induced endocrinopathies. Starting in January 2001, 42 patients with beta-thalassaemia major, previously maintained on subcutaneous DFO only, were switched to combined treatment with DFO and deferiprone. The primary endpoint was to investigate the effects of this therapy on the glucose metabolism characteristics of this population. Combination therapy markedly decreased ferritin levels (638 +/- 1345 vs. 2991 +/- 2093 microg/l, P < 0.001). Glucose responses were improved at all times during an oral glucose tolerance test, particularly in patients in early stages of glucose intolerance. Glucose quantitative secretion also decreased significantly with combined therapy, while no significant change occurred in insulin levels in any group. Insulin secretion, according to the homeostasis assessment model, markedly increased in all groups, while overall reduction in insulin sensitivity did not reach statistical significance. This study showed that the combination of DFO and deferiprone was associated with an improvement in liver iron deposition and glucose intolerance.

  14. Early assessment of coagulation necrosis after hepatic microwave ablation: a comparison of non-enhanced and enhanced T1-weighted images.

    Science.gov (United States)

    Jia, Zhen-Yu; Chen, Qi-Feng; Yang, Zheng-Qiang; Wu, Wen-Tao; Shi, Hai-Bin; Liu, Sheng

    2017-06-01

    To compare the technical success and accuracy of hepatic microwave ablation (MWA) using non-enhanced and enhanced T1-weighted imaging early after ablation. Patients were evaluated with regard to the ablation zone and local tumor progression (LTP). This retrospective study conducted between September 2014 and December 2015 which consisted of 56 patients with 56 hepatic malignant lesions who underwent percutaneous MWA. Non-enhanced and contrast-enhanced T1-weighted imagings were performed within 2 days after tumor ablation. The efficacy of ablation assessed according to the hyperintense middle zone on non-enhanced T1-weighted images and the non-enhanced area on contrast-enhanced T1-weighted images were compared. The development of LTP during ≥7 months of follow-up served as the end point. On the non-enhanced T1-weighted images, the ablated region had a characteristic two-zone structure featuring a hyperintense middle zone and a surrounding hypointense band. Among the 56 patients, LTP developed in ten including seven lesions, in which both the non-enhanced T1-weighted and portal-phase images showed incomplete tumor ablation. In two of the remaining three patients, incomplete tumor ablation was detected on the non-enhanced T1-weighted images, whereas the corresponding portal-phase images showed complete ablation. In the remaining patient, no residual tumor was detected on either the non-enhanced T1-weighted or the portal-phase images. In the 46 patients without LTP, there was no evidence of residual tumor on the non-enhanced T1-weighted or portal-phase images obtained early after ablation. Non-enhanced T1-weighted images are useful in assessing the therapeutic efficacy of MWA of liver tumors early after the procedure.

  15. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose.

    Science.gov (United States)

    Sanny, Tony; Arnaldos, Marina; Kunkel, Stephanie A; Pagilla, Krishna R; Stark, Benjamin C

    2010-11-01

    Escherichia coli strain FBR5, which has been engineered to direct fermentation of sugars to ethanol, was further engineered, using three different constructs, to contain and express the Vitreoscilla hemoglobin gene (vgb). The three resulting strains expressed Vitreoscilla hemoglobin (VHb) at various levels, and the production of ethanol was inversely proportional to the VHb level. High levels of VHb were correlated with an inhibition of ethanol production; however, the strain (TS3) with the lowest VHb expression (approximately the normal induced level in Vitreoscilla) produced, under microaerobic conditions in shake flasks, more ethanol than the parental strain (FBR5) with glucose, xylose, or corn stover hydrolysate as the predominant carbon source. Ethanol production was dependent on growth conditions, but increases were as high as 30%, 119%, and 59% for glucose, xylose, and corn stover hydrolysate, respectively. Only in the case of glucose, however, was the theoretical yield of ethanol by TS3 greater than that achieved by others with FBR5 grown under more closely controlled conditions. TS3 had no advantage over FBR5 regarding ethanol production from arabinose. In 2 L fermentors, TS3 produced about 10% and 15% more ethanol than FBR5 for growth on glucose and xylose, respectively. The results suggest that engineering of microorganisms with vgb/VHb could be of significant use in enhancing biological production of ethanol.

  16. The Expression of the Hepatocyte SLAMF3 (CD229) Receptor Enhances the Hepatitis C Virus Infection

    Science.gov (United States)

    Cartier, Flora; Marcq, Ingrid; Douam, Florian; Ossart, Christèle; Regnier, Aline; Debuysscher, Véronique; Lavillette, Dimitri; Bouhlal, Hicham

    2014-01-01

    Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3) in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes. PMID:24927415

  17. The expression of the hepatocyte SLAMF3 (CD229 receptor enhances the hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Flora Cartier

    Full Text Available Hepatitis C virus (HCV is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3 in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes.

  18. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication

    Directory of Open Access Journals (Sweden)

    Christopher M. Murphy

    2016-09-01

    Full Text Available The hepatitis B virus (HBV regulatory protein X (HBx activates gene expression from the HBV covalently closed circular DNA (cccDNA genome. Interaction of HBx with the DDB1-CUL4-ROC1 (CRL4 E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified the structural maintenance of chromosomes (SMC complex proteins SMC5 and SMC6 as CRL4HBx substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the CRL4HBx E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV (mcHBV reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhance HBx null mcHBV-Gluc gene expression. Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV replication by inhibiting HBV gene expression.

  19. Enhanced recovery after surgery program in patients from Tibet Plateau undergoing surgeries for hepatic alveolar echinococcosis.

    Science.gov (United States)

    Yang, Mengchang; Su, Wenjie; Deng, Xiaofan; Deng, Jia; Li, Peng; Li, Xiangkui

    2017-11-01

    Hepatic alveolar echinococcosis (HAE) is a severe and common parasitic disease in Tibetan Plateau of China. The infected patients have to move to plain areas to receive treatments due to the poor medical conditions in plateau areas. Our aim was to investigate the application of Enhanced Recovery after Surgery (ERAS) program in perioperative management for HAE patients from Tibet Plateau and the notes for patients with landform changes. A total of 89 HAE patients from Tibet Plateau (altitude: average of 4500 m) prior received adaptive treatments at the cooperative hospital (altitude: 1500-2000 m) and accepted surgery at plain regions (altitude: 200-400 m). The patients in ERAS group received ERAS program care and patients in conventional management group received conventional care during perioperative period. Patients in ERAS group displayed significant shorter hospital stay and shorter time for recovery of gurgling compared with conventional management group (ERAS group versus conventional management group: 10.48 ± 3.525 d versus 20.29 ± 8.632 d; 1.56 ± 1.236 d versus 2.8 ± 1.19 d; all P Plateau need to receive adaptive treatments for landform changes before receiving surgeries at plain regions. ERAS program is effective and safe for Tibetan HAE patients during perioperative period. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Octreotide Attenuates Acute Kidney Injury after Hepatic Ischemia and Reperfusion by Enhancing Autophagy.

    Science.gov (United States)

    Sun, Huiping; Zou, Shuangfa; Candiotti, Keith A; Peng, Yanhua; Zhang, Qinya; Xiao, Weiqiang; Wen, Yiyun; Wu, Jiao; Yang, Jinfeng

    2017-02-16

    Octreotide exerts a protective effect in hepatic ischemia-reperfusion (HIR) injury. However, whether octreotide preconditioning could also reduce acute kidney injury (AKI) after HIR is unknown. This study was designed to investigate the role of octreotide in AKI after HIR. Male Sprague-Dawley rats were pretreated with octreotide or octreotide combined with 3-methyladenine (autophagy inhibitor, 3MA). Plasma creatinine, inflammation markers (e.g., TNF-α and IL-6 etc.), apoptosis, autophagy and phosphorylation of protein kinase B/mammalian target of rapamycin/p70 ribosomal S6 kinase (Akt/mTOR/p70S6K) in the kidney were measured after 60 minutes of liver ischemia and 24 hours of reperfusion for each rat. Octreotide pretreatment significantly preserved renal function and reduced the severity of renal injury. Moreover, octreotide alleviated inflammation and apoptosis in the kidney after HIR. Additionally, octreotide induced autophagy and autophagy inhibition with 3MA markedly reversed the renoprotective, anti-inflammatory and anti-apoptotic effects of octreotide after HIR. Finally, octreotide abrogated the activation of phosphorylation of Akt, mTOR and p70S6K in the kidney after HIR. Our results indicate that octreotide reduced renal injury after HIR due to its induction of autophagy. The enhancement of autophagy may be potentially linked to the octreotide mediated Akt/mTOR/p70S6K pathway deactivation and reduction of kidney inflammation and apoptosis after HIR.

  1. A Newly Identified Natural Splice Variant ASN Enhances Hepatitis B Virus Amplification.

    Science.gov (United States)

    Zhang, Xiumin; Zhu, Sibo; Zhu, Wei; Li, Aijun; Zhu, Naishuo

    2016-01-01

    Chronic hepatitis B virus (HBV) infection causes approximately one-third of all the cases of liver cirrhosis and more than three-quarters of hepatocellular carcinoma (HCC) worldwide. There are eight different genotypes (A-H) of HBV, among which B and C are the major types of HBV in China. There is a positive correlation between viral load and level of viral splicing variants and the high risk of HCC. The aim of this study was to investigate the splicing variants of HBV circulating in HCC patients. Twenty-four carcinoma and adjacent liver tissues collected from HCC patients were studied. Using reverse transcription-polymerase chain reaction (RT-PCR) and sequencing, we identified a new type of natural splice variant with nucleotides 2448-489 and 910-2120 deleted, and we named it ASN. We also found that a higher viral load and splicing variant level existed in liver carcinoma tissues compared to paracarcinoma tissues. In the investigation of our splicing variant, we found its enhancing effect on HBV replication in vitro. Although splicing variants are not essential for the replication of HBV, they may have an important influence.

  2. Fermented milk, Kefram-Kefir enhances glucose uptake into insulin-responsive muscle cells.

    Science.gov (United States)

    Teruya, Kiichiro; Yamashita, Maiko; Tominaga, Rumi; Nagira, Tsutomu; Shim, Sun-Yup; Katakura, Yoshinori; Tokumaru, Sennosuke; Tokumaru, Koichiro; Barnes, David; Shirahata, Sanetaka

    2002-11-01

    Diminution of insulin-responses in the target organ is the primary cause of non-insulin dependent diabetes mellitus (NIDDM).It is thought to be correlated to the excessive production of reactive oxygen species (ROS). In this article, we attempted to evaluate whether fermented milk, Kefram-Kefir known as an antioxidant, reduces the cellular ROS levels and can stimulate the glucose uptake in L6 skeletal muscle cells. Water-soluble or chloroform/methanol-extracted fractions from Kefram-Kefir were examined to evaluate the glucose uptake ability of L6 myotubes.As a result, the water-soluble fraction augmented the uptake of glucose in L6 myotubes both in the presence and absence of insulin stimulation. Estimation of intracellular ROS level revealed that the water-soluble fraction of Kefram-Kefir reduced the intracellular ROS level on both the undifferentiated and differentiated L6 cells. Especially, glucose uptake was augmented up to six times with the addition of water-soluble fraction in the insulin-stimulated L6 myotubes. Glucose transport determination revealed that the active agent in Kefram-Kefir was resistant to autoclave and stable in pH range from 4 to 10, and the small molecule below the molecular weight of 1000. Furthermore, this augmentation was inhibited in the presence of phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin. Considering together with the reports that PI 3-kinase is locatedin the insulin signaling pathway and the participation in the translocation of glucose transporter 4 to the cell membrane, it is suggested that the water-soluble fraction of Kefram-Kefir activates PI 3-kinase or other upstream molecules in the insulin signaling pathway, which resulted in the augmentation of glucose uptake and its specific inhibition by wortmannin.

  3. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice.

    Science.gov (United States)

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Diabetes mellitus is the most rampant metabolic pandemic of the 21(st) century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14(th) and 28(th) day (P Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine in combination with subtherapeutic dose of metformin also showed better effect

  4. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    Science.gov (United States)

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Common ultrasound and contrast-enhanced ultrasonography in the diagnosis of hepatic artery pseudoaneurysm after liver transplantation

    OpenAIRE

    Ren, Xiuyun; Luo, Yukun; Gao, Nong; Niu, Hong; Tang, Jie

    2016-01-01

    The diagnostic value of common ultrasound and contrast-enhanced ultrasonography (CEUS) in hepatic artery pseudoaneurysm (HAP) after liver transplantation was investigated. From January 2005 to November 2015, information was collected on 2,085 cases of orthotopic liver transplantation. The cases included 1,617 men and 468 women. Common ultrasound and CEUS were used to monitor arterial blood flow following surgery, and the complications were assessed. Instruments used included Acuson Sequoia 51...

  6. MATLAB-implemented estimation procedure for model-based assessment of hepatic insulin degradation from standard intravenous glucose tolerance test data.

    Science.gov (United States)

    Di Nardo, Francesco; Mengoni, Michele; Morettini, Micaela

    2013-05-01

    Present study provides a novel MATLAB-based parameter estimation procedure for individual assessment of hepatic insulin degradation (HID) process from standard frequently-sampled intravenous glucose tolerance test (FSIGTT) data. Direct access to the source code, offered by MATLAB, enabled us to design an optimization procedure based on the alternating use of Gauss-Newton's and Levenberg-Marquardt's algorithms, which assures the full convergence of the process and the containment of computational time. Reliability was tested by direct comparison with the application, in eighteen non-diabetic subjects, of well-known kinetic analysis software package SAAM II, and by application on different data. Agreement between MATLAB and SAAM II was warranted by intraclass correlation coefficients ≥0.73; no significant differences between corresponding mean parameter estimates and prediction of HID rate; and consistent residual analysis. Moreover, MATLAB optimization procedure resulted in a significant 51% reduction of CV% for the worst-estimated parameter by SAAM II and in maintaining all model-parameter CV% MATLAB-based procedure was suggested as a suitable tool for the individual assessment of HID process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Effects of hydroalcoholic extract ofRhus coriariaseed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  8. Self-assembled NiFe{sub 2}O{sub 4}/carbon nanotubes sponge for enhanced glucose biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingchun; Zhao, Minggang, E-mail: zhaomg@ouc.edu.cn; Chen, Jing; Fan, Sisi; Liang, Jingjing; Ding, Longjiang; Chen, Shougang, E-mail: sgchen@ouc.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Self-assembled NiFe{sub 2}O{sub 4}/CNTs sponge was prepared by ice-templating method. • The mechanism of NiFe{sub 2}O{sub 4} modified CNTs relied on π-π interactions and static cling. • The porous structure made for GO{sub x} load, electrons transport and reactants diffusion. • Double catalysis and enhanced glucose sensing were achieved with elements Ni and Fe. - Abstract: In this work, self-assembled NiFe{sub 2}O{sub 4}/carbon nanotubes (CNTs) sponge was prepared by ice-templating method. The device synergized the advantageous features of both the 3D porous nanostructure and the catalytic properties of CNTs with GOx and NiFe{sub 2}O{sub 4} nanoparticles. The porous network construction of the NiFe{sub 2}O{sub 4}/CNTs sheets offered enlarged specific surface for GOx immobilization and opened channels for facilitating the electrons transport and reactants diffusion. With the help of the abnormal-valence elements Ni and Fe, double catalysis has happened and the enhanced glucose biosensing performance has been achieved. The fabricated glucose biosensor exhibited two large linear ranges (0–3.0 and 3.2–12.4 mM) and distinct sensitivities (84.1 and 24.6 μA mM{sup −1} cm{sup −2}).

  9. Mass-forming intrahepatic cholangiocarcinoma: Enhancement patterns in the arterial phase of dynamic hepatic CT - Correlation with clinicopathological findings

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Nobuhiro; Asayama, Yoshiki; Nishie, Akihiro; Ishigami, Kousei; Ushijima, Yasuhiro; Okamoto, Daisuke; Moirta, Koichiro; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan); Takayama, Yukihisa [Kyushu University, Department of Radiology Informatics and Network, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan); Shirabe, Ken [Kyushu University, Department of Surgery and Science, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan); Aishima, Shinichi [Saga University Hospital, Department of Pathology and Microbiology, Faculty of Medicine, Saga City, Saga (Japan); Wang, Huanlin; Oda, Yoshinao [Kyushu University, Department of Anatomic Pathology, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan)

    2017-02-15

    To evaluate the relationship between the enhancement pattern of intrahepatic cholangiocarcinomas (ICCs) in the hepatic arterial phase (HAP) of dynamic hepatic CT and the clinicopathological findings with special reference to the perihilar type and the peripheral type. Forty-seven patients with pathologically proven ICCs were enrolled. Based on the enhancement pattern in the HAP, the lesions were classified into three groups: a hypovascular group (n=13), rim-enhancement group (n=18), and hypervascular group (n=16). The clinicopathological findings were compared among the three groups. Perihilar-type ICCs were significantly more frequently observed in the hypovascular group than in the rim-enhancement and hypervascular groups (p=0.006 and p <0.001, respectively). Lymphatic invasion, perineural invasion, and biliary invasion were significantly more frequent in the hypovascular group than the rim- enhancement group (p=0.001, p=0.025 and p=0.029, respectively) or hypervascular group (p <0.001, p <0.001 and p=0.025, respectively). Patients with hypovascular lesions showed significantly poorer disease-free survival than patients with rim-enhancing or hypervascular lesions (p=0.001 and p=0.001, respectively). Hypovascularity was an independent preoperative prognostic factor for disease-free survival (p<0.001). Hypovascular ICCs in the HAP tend to be of perihilar type and to have more malignant potential than other ICCs. (orig.)

  10. Enhanced Predictive Capability of a 1-Hour Oral Glucose Tolerance Test

    DEFF Research Database (Denmark)

    Pareek, Manan; Bhatt, Deepak L; Nielsen, Mette L

    2018-01-01

    OBJECTIVE: To examine whether the 1-h blood glucose measurement would be a more suitable screening tool for assessing the risk of diabetes and its complications than the 2-h measurement. RESEARCH DESIGN AND METHODS: We conducted a prospective population-based cohort study of 4,867 men, randomly......-h (≥7.8 mmol/L) glucose for predicting incident type 2 diabetes, vascular complications, and mortality were compared using Kaplan-Meier analysis, Cox proportional hazards regression, and net reclassification improvement. RESULTS: Median age was 48 years (interquartile range [IQR] 48-49). During...... follow-up (median 33 years [IQR 24-37]), 636 (13%) developed type 2 diabetes. Elevated 1-h glucose was associated with incident diabetes (hazard ratio 3.40 [95% CI 2.90-3.98], P

  11. Synergistic effect of green tea, cinnamon and ginger combination on enhancing postprandial blood glucose.

    Science.gov (United States)

    Azzeh, Firas Sultan

    2013-01-15

    This study was maintained to determine the immediate effect of green tea, cinnamon, ginger and combination of them on postprandial glucose levels. The Glycemic Index (GI) for previous treatments was measured as an indicator for postprandial glucose pattern. Twenty-two healthy volunteers from both genders were enrolled in this study. Mean age was 21.3 years and mean BMI was 24.6 kg m(-2). For each herb and combination treatment, a concentration of 2.5% aqueous tea extract was prepared. The GI of green tea, cinnamon and ginger were 79, 63 and 72 respectively. Herbs combination exerted GI of 60, which was the lowest. Combination of these herbs showed the best lowering effect on postprandial glucose levels as compared with each herb alone. A potential synergism from the active ingredients of blended herbs was determined.

  12. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus.

  13. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2015-08-01

    Full Text Available Pregnant rats were fed a high fat diet (HFD for the first (HF1, second (HF2, third (HF3 or all three weeks (HFG of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Model Assessment (HOMA-insulin resistance were also determined. HF3 fetuses were heaviest concomitant with elevated glycemia and insulin resistance (p < 0.05. HFG fetuses had elevated plasma linoleic (18:2 n-6 and arachidonic (20:4 n-6 acid proportions (p < 0.05. In the liver, HF3 fetuses displayed elevated linoleic, eicosatrienoic (20:3 n-6 and arachidonic acid proportions (p < 0.05. HFG fetuses had reduced hepatic docosatrienoic acid (22:5 n-3 proportions (p < 0.05. High fat maintenance during the final week of fetal life enhances hepatic omega-6 FA profiles in fetuses concomitant with hyperglycemia and insulin resistance thereby presenting a metabolically compromised phenotype.

  14. Evaluation of hepatic contrast enhancement with a hepatocyte-specific magnetic resonance imaging contrast agent (gadoxetic acid) in healthy dogs.

    Science.gov (United States)

    Bratton, Alexandra K; Nykamp, Stephanie G; Gibson, Thomas W G; Cruz-Arámbulo, Robert; Kruth, Stephen A

    2015-03-01

    To determine, by means of MRI, the time to maximal contrast enhancement in T1-weighted images following IV administration of gadoxetic acid in healthy dogs and assess the impact of gadoxetic acid on the signal intensity of T2-weighted images. 7 healthy dogs. No hepatic abnormalities were detected during ultrasonographic examination. Each dog was anesthetized and positioned in dorsal recumbency for MRI. Transverse T1- and T2-weighted images of the liver were acquired prior to and following (at 5-minute intervals) IV injection of 0.1 mL of gadoxetic acid/kg. Signal intensity of the liver parenchyma was measured in 3 regions of interest in the T1- and T2-weighted images before and at various times point after contrast agent administration. Time versus signal-to-noise ratio curves were plotted to determine time to maximal contrast enhancement and contrast agent-related changes in signal intensity in T2-weighted images. Analysis of T1-weighted images revealed that mean ± SD time to maximal enhancement after gadoxetic acid injection was 10.5 ± 3.99 minutes. Signal intensity of T2-weighted images was not significantly affected by gadoxetic acid administration. No injection-related adverse effects were observed in any dog. Results indicated that gadoxetic acid can be used for hepatic MRI in healthy dogs and the resultant hepatic enhancement patterns are similar to those described for humans. Maximal contrast enhancement occurred between 10 and 15 minutes after contrast agent injection; thus, T2-weighted images may be obtained in the interval between injection and maximal enhancement for a more time-efficient clinical protocol.

  15. Co-administration of paroxetine and pravastatin causes deregulation of glucose homeostasis in diabetic rats via enhanced paroxetine exposure.

    Science.gov (United States)

    Li, Feng; Zhang, Mian; Xu, Dan; Liu, Can; Zhong, Ze-Yu; Jia, Ling-Ling; Hu, Meng-Yue; Yang, Yang; Liu, Li; Liu, Xiao-Dong

    2014-06-01

    Clinical evidence shows that co-administration of pravastatin and paroxetine deregulates glucose homeostasis in diabetic patients. The aim of this study was to verify this phenomenon in diabetic rats and to elucidate the underlying mechanisms. Diabetes mellitus was induced in male SD rats by a high-fat diet combined with a low-dose streptozotocin injection. The rats were orally administered paroxetine (10 mg/kg) and pravastatin (10 mg/d) or both the drugs daily for 28 d. The pharmacokinetics of paroxetine and pravastatin were examined on d 1 and d 28. Biochemical parameters including serum insulin, glucose and lipids were monitored during the treatments. An insulin-secreting cell line (INS-1) was used for measuring insulin secretion. In diabetic rats, co-administration of paroxetine and pravastatin markedly increased the concentrations of both the drugs compared with administration of each drug alone. Furthermore, co-administration severely impaired glucose homeostasis in diabetic rats, as demonstrated by significantly increased serum glucose level, decreased serum and pancreatic insulin levels, and decreased pancreatic Insulin-2 mRNA and tryptophan hydroxylase-1 (Tph-1) mRNA levels. Treatment of INS-1 cells with paroxetine (5 and 10 μmol/L) significantly inhibited insulin secretion, decreased the intracellular insulin, 5-HT, Insulin-2 mRNA and Tph-1 mRNA levels. Treatment of the cells with pravastatin (10 μmol/L) significantly stimulated insulin secretion, which was weakened by co-treatment with paroxetine. Paroxetine inhibits insulin secretion at least via decreasing intracellular 5-HT and insulin biosynthesis. The deregulation of glucose homeostasis by co-administration of paroxetine and pravastatin in diabetic rats can be attributed to enhanced paroxetine exposure.

  16. Bitargeted microemulsions based on coix seed ingredients for enhanced hepatic tumor delivery and synergistic therapy.

    Science.gov (United States)

    Qu, Ding; Sun, Wenjie; Liu, Mingjian; Liu, Yuping; Zhou, Jing; Chen, Yan

    2016-04-30

    A hepatic tumor bitargeted microemulsions drug delivery system using coix seed oil and coix seed polysaccharide (CP) acting as anticancer components, as well as functional excipients, was developed for enhanced tumor-specific accumulation by CP-mediated enhancement on passive tumor targeting and modification of galactose stearate (tumor-targeted ligand). In the physicochemical characteristics studies, galactose stearate-modified coix seed multicomponent microemulsions containing 30% CP (w%) (Gal-C-MEs) had a well-defined spherical shape with a small size (47.63 ± 1.41 nm), a narrow polydispersity index (PDI, 0.101 ± 0.002), and a nearly neutral surface charge (-4.37 ± 1.76 mV). The half-maximal inhibitory concentration (IC50) of Gal-C-MEs against HepG2 cells was 70.2 μg/mL, which decreased by 1.8-fold in comparison with that of coix seed multicomponent microemulsions (C-MEs). The fluorescence intensity of fluorescein isothiocyanate (FITC)-loaded Gal-C-MEs (FITC-Gal-C-MEs) internalized by HepG2 cells was 1.8-fold higher than that of FITC-loaded C-MEs (FIT C-C-MEs), but the cellular uptake of the latter became reduce by 1.6-fold when the weight ratio of CP decreased up to 10%. In the cell apoptosis studies, C-MEs (containing 30% CP) did not show a significant difference with Gal-C-MEs, but exhibited 3.3-fold and 1.5-fold increase relative to C-MEs containing 10% CP and 20% CP, respectively. In the in vivo tumor targeting studies, Cy5-loaded Gal-C-MEs (Cy5-Gal-C-MEs), notably distributed in the tumor sites and still found even at 48 h post-administration, displayed the strongest capability of tumor tissue accumulation and retention among all the test groups. Most importantly, Gal-C-MEs had stronger inhibition of tumor growth, prolonged survival time and more effectively tumor cell apoptosis induction in comparison with C-MEs containing different amounts of CP, which further confirmed that a certain amount of CP and tumor-targeted ligand were of great importance to

  17. Enhanced production and characterization of a novel β- D-glucose ...

    African Journals Online (AJOL)

    oxidoreductase by using Aspergillus niger UV-180-C mutant strain. ... Optimum production of glucose oxidase from A. niger UV-180-C was carried out by using CSL (2%), fermentation period (36 h), pH (5.5 and 4.5 for wild and mutant respectively) ...

  18. Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity.

    Science.gov (United States)

    Kim, Jung Dae; Toda, Chitoku; Ramírez, Cristina M; Fernández-Hernando, Carlos; Diano, Sabrina

    2017-08-01

    The Lin28a/Let-7 axis has been studied in peripheral tissues for its role in metabolism regulation. However, its central function remains unclear. Here we found that Lin28a is highly expressed in the hypothalamus compared with peripheral tissues. Its expression is positively correlated with positive energy balance, suggesting a potential central role for Lin28a in metabolism regulation. Thus, we targeted the hypothalamic ventromedial nucleus (VMH) to selectively overexpress (Lin28aKI(VMH) ) or downregulate (Lin28aKD(VMH) ) Lin28a expression in mice. With mice on a standard chow diet, body weight and glucose homeostasis were not affected in Lin28aKI(VMH) or Lin28aKD(VMH) mice. On a high-fat diet, although no differences in body weight and composition were observed, Lin28aKI(VMH) mice showed improved glucose tolerance and insulin sensitivity compared with controls. Conversely, Lin28aKD(VMH) mice displayed glucose intolerance and insulin resistance. Changes in VMH AKT activation of diet-induced obese Lin28aKI(VMH) or Lin28aKD(VMH) mice were not associated with alterations in Let-7 levels or insulin receptor activation. Rather, we observed altered expression of TANK-binding kinase-1 (TBK-1), which was found to be a direct Lin28a target mRNA. VMH-specific inhibition of TBK-1 in mice with diet-induced obesity impaired glucose metabolism and AKT activation. Altogether, our data show a TBK-1-dependent role for central Lin28a in glucose homeostasis. © 2017 by the American Diabetes Association.

  19. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect.

    Science.gov (United States)

    Damiani, Chiara; Colombo, Riccardo; Gaglio, Daniela; Mastroianni, Fabrizia; Pescini, Dario; Westerhoff, Hans Victor; Mauri, Giancarlo; Vanoni, Marco; Alberghina, Lilia

    2017-09-01

    Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth.

  20. Hepatic Blood Perfusion Estimated by Dynamic Contrast-Enhanced Computed Tomography in Pigs Limitations of the Slope Method

    Science.gov (United States)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Susanne; Mortensen, Frank V.; Alstrup, Aage K. O.; Hansen, Søren B.; Munk, Ole L.

    2012-01-01

    Objective To determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates. Materials and Methods Ten anesthetized 40-kg pigs underwent DCE-CT during periods of normocapnia (normal flow), hypocapnia (decreased flow), and hypercapnia (increased flow), which was induced by adjusting the ventilation. Reference blood flows in HA and PV were measured continuously by surgically-placed ultrasound transit-time flowmeters. For each capnic condition, the DCE-CT estimated absolute hepatic blood perfusion from HA and PV were calculated using the slope method and compared with flowmeter based absolute measurements of hepatic perfusions and relative errors were analyzed. Results The relative errors (mean±SEM) of the DCE-CT based perfusion estimates were −21±23% for HA and 81±31% for PV (normocapnia), 9±23% for HA and 92±42% for PV (hypocapnia), and 64±28% for HA and −2±20% for PV (hypercapnia). The mean relative errors for HA were not significantly different from zero during hypo- and normocapnia, and the DCE-CT slope method could detect relative changes in HA perfusion between scans. Infusion of contrast agent led to significantly increased hepatic blood perfusion, which biased the PV perfusion estimates. Conclusions Using the DCE-CT slope method, HA perfusion estimates were accurate at low and normal flow rates whereas PV perfusion estimates were inaccurate and imprecise. At high flow rate, both HA perfusion estimates were significantly biased. PMID:22836307

  1. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs: limitations of the slope method.

    Science.gov (United States)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Susanne; Mortensen, Frank V; Alstrup, Aage K O; Hansen, Søren B; Munk, Ole L

    2012-10-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates. Ten anesthetized 40-kg pigs underwent DCE-CT of the liver during periods of normocapnia (normal flow), hypocapnia (decreased flow), and hypercapnia (increased flow), which were induced by adjusting the ventilation. Reference blood flows in the HA and PV were measured continuously by surgically placed ultrasound transit-time flowmeters. For each capnic condition, the DCE-CT-estimated absolute hepatic blood perfusion from the HA and PV were calculated using the slope method and compared with flowmeter-based absolute measurements of hepatic perfusions and relative errors were analyzed. The relative errors (mean ± SEM) of the DCE-CT based perfusion estimates were -21% ± 23% for HA and 81% ± 31% for PV during normocapnia, 9% ± 23% for HA and 92% ± 42% for PV during hypocapnia, and 64% ± 28% for HA and -2% ± 20% for PV during hypercapnia. The mean relative errors for HA were not significantly different from 0 during hypocapnia and normocapnia, and the DCE-CT slope method could detect relative changes in HA perfusion between scans. Infusion of contrast agent led to significantly increased hepatic blood perfusion, which biased the PV perfusion estimates. Using the DCE-CT slope method, HA perfusion estimates were accurate at low and normal flow rates, whereas PV perfusion estimates were inaccurate and imprecise. At high flow rate, both HA perfusion estimates were significantly biased.

  2. Social capital strategies to enhance hepatitis C treatment awareness and uptake among men in prison.

    Science.gov (United States)

    Lafferty, L; Treloar, C; Guthrie, J; Chambers, G M; Butler, T

    2017-02-01

    Prisoner populations are characterized by high rates of hepatitis C (HCV), up to thirty times that of the general population in Australia. Within Australian prisons, less than 1% of eligible inmates access treatment. Public health strategies informed by social capital could be important in addressing this inequality in access to HCV treatment. Twenty-eight male inmates participated in qualitative interviews across three correctional centres in New South Wales, Australia. All participants had recently tested as HCV RNA positive or were receiving HCV treatment. Analysis was conducted with participants including men with experiences of HCV treatment (n=10) (including those currently accessing treatment and those with a history of treatment) and those who were treatment naïve (n=18). Social capital was a resourceful commodity for inmates considering and undergoing treatment while in custody. Inmates were a valuable resource for information regarding HCV treatment, including personal accounts and reassurance (bonding social capital), while nurses a resource for the provision of information and care (linking social capital). Although linking social capital between inmates and nurses appeared influential in HCV treatment access, there remained opportunities for increasing linking social capital within the prison setting (such as nurse-led engagement within the prisons). Bonding and linking social capital can be valuable resources in promoting HCV treatment awareness, uptake and adherence. Peer-based programmes are likely to be influential in promoting HCV outcomes in the prison setting. Engagement in prisons, outside of the clinics, would enhance opportunities for linking social capital to influence HCV treatment outcomes. © 2016 John Wiley & Sons Ltd.

  3. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  4. Hepatitis B virus modulates store-operated calcium entry to enhance viral replication in primary hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jessica C Casciano

    Full Text Available Many viruses modulate calcium (Ca2+ signaling to create a cellular environment that is more permissive to viral replication, but for most viruses that regulate Ca2+ signaling, the mechanism underlying this regulation is not well understood. The hepatitis B virus (HBV HBx protein modulates cytosolic Ca2+ levels to stimulate HBV replication in some liver cell lines. A chronic HBV infection is associated with life-threatening liver diseases, including hepatocellular carcinoma (HCC, and HBx modulation of cytosolic Ca2+ levels could have an important role in HBV pathogenesis. Whether HBx affects cytosolic Ca2+ in a normal hepatocyte, the natural site of an HBV infection, has not been addressed. Here, we report that HBx alters cytosolic Ca2+ signaling in cultured primary hepatocytes. We used single cell Ca2+ imaging of cultured primary rat hepatocytes to demonstrate that HBx elevates the cytosolic Ca2+ level in hepatocytes following an IP3-linked Ca2+ response; HBx effects were similar when expressed alone or in the context of replicating HBV. HBx elevation of the cytosolic Ca2+ level required extracellular Ca2+ influx and store-operated Ca2+ (SOC entry and stimulated HBV replication in hepatocytes. We used both targeted RT-qPCR and transcriptome-wide RNAseq analyses to compare levels of SOC channel components and other Ca2+ signaling regulators in HBV-expressing and control hepatocytes and show that the transcript levels of these various proteins are not affected by HBV. We also show that HBx regulation of SOC-regulated Ca2+ accumulation is likely the consequence of HBV modulation of a SOC channel regulatory mechanism. In support of this, we link HBx enhancement of SOC-regulated Ca2+ accumulation to Ca2+ uptake by mitochondria and demonstrate that HBx stimulates mitochondrial Ca2+ uptake in primary hepatocytes. The results of our study may provide insights into viral mechanisms that affect Ca2+ signaling to regulate viral replication and virus

  5. Associations between Forkhead Box O1 (FoxO1 Expression and Indicators of Hepatic Glucose Production in Transition Dairy Cows Supplemented with Dietary Nicotinic Acid.

    Directory of Open Access Journals (Sweden)

    Asako Kinoshita

    Full Text Available Forkhead box protein O1 (FoxO1 is a transcription factor which promotes hepatic glucose production (HGP by up-regulating the transcription of gluconeogenic enzymes in monogastric species. The activity of FoxO1 is inhibited by insulin-induced phosphorylation. The aims of the present study were to find associations between FoxO1 expression and variables associated with HGP as affected by feeding regimen in dairy cows during the transition period. Twenty one healthy German Holstein cows were allocated to four groups (LC-CON, HC-CON, LC-NA with 5 cows/group and HC-NA with 6 cows/group, respectively. Cows received 0 (LC-CON and HC-CON or 24 (LC-NA and HC-NA g/d nicotinic acid with high (HC or low (LC concentrate proportion from -42 days (-41.8 + 4.8; mean + standard deviation relative to expected calving date (d-42 to d24. Liver biopsy was taken at d-42, 1, 21, and 100. The total protein expression of FoxO1 (tFoxO1 and the extent of phosphorylation of FoxO1 at serine 256 (pFoxO1 were analysed semiquantitatively by Western Blotting. The expression of hepatic mRNA of FoxO1 and seven genes associated with HGP was measured by real-time RT-PCR. Mixed model and Pearson's correlation were used for statistical evaluation with the level of significance at P<0.05. No dietary effect was observed either on feed intake, energy balance, or on the concentration of blood metabolites. Neither time nor diet affected the expression of FoxO1 total protein and mRNA. A NA × concentrate interaction was found in pFoxO1. However, no corresponding dietary effect was found in the mRNA expression of investigated genes. Different patterns of correlations between FoxO1-related variables and investigated indicators for HGP were found at d21 and 100. The results indicated that the regulation of HGP did not take place on the levels of mRNA and protein expression and the phosphorylation of FoxO1 in dairy cows in early lactation.

  6. Associations between Forkhead Box O1 (FoxO1) Expression and Indicators of Hepatic Glucose Production in Transition Dairy Cows Supplemented with Dietary Nicotinic Acid.

    Science.gov (United States)

    Kinoshita, Asako; Locher, Lena; Tienken, Reka; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    Forkhead box protein O1 (FoxO1) is a transcription factor which promotes hepatic glucose production (HGP) by up-regulating the transcription of gluconeogenic enzymes in monogastric species. The activity of FoxO1 is inhibited by insulin-induced phosphorylation. The aims of the present study were to find associations between FoxO1 expression and variables associated with HGP as affected by feeding regimen in dairy cows during the transition period. Twenty one healthy German Holstein cows were allocated to four groups (LC-CON, HC-CON, LC-NA with 5 cows/group and HC-NA with 6 cows/group, respectively). Cows received 0 (LC-CON and HC-CON) or 24 (LC-NA and HC-NA) g/d nicotinic acid with high (HC) or low (LC) concentrate proportion from -42 days (-41.8 + 4.8; mean + standard deviation) relative to expected calving date (d-42) to d24. Liver biopsy was taken at d-42, 1, 21, and 100. The total protein expression of FoxO1 (tFoxO1) and the extent of phosphorylation of FoxO1 at serine 256 (pFoxO1) were analysed semiquantitatively by Western Blotting. The expression of hepatic mRNA of FoxO1 and seven genes associated with HGP was measured by real-time RT-PCR. Mixed model and Pearson's correlation were used for statistical evaluation with the level of significance at P<0.05. No dietary effect was observed either on feed intake, energy balance, or on the concentration of blood metabolites. Neither time nor diet affected the expression of FoxO1 total protein and mRNA. A NA × concentrate interaction was found in pFoxO1. However, no corresponding dietary effect was found in the mRNA expression of investigated genes. Different patterns of correlations between FoxO1-related variables and investigated indicators for HGP were found at d21 and 100. The results indicated that the regulation of HGP did not take place on the levels of mRNA and protein expression and the phosphorylation of FoxO1 in dairy cows in early lactation.

  7. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice.

    Science.gov (United States)

    DeBosch, Brian J; Chen, Zhouji; Finck, Brian N; Chi, Maggie; Moley, Kelle H

    2013-11-01

    Members of the glucose transporter (GLUT) family of membrane-spanning hexose transporters are subjects of intensive investigation for their potential as modifiable targets to treat or prevent obesity, metabolic syndrome, and type 2 diabetes mellitus. Mounting evidence suggests that the ubiquitously expressed class III dual-specificity glucose and fructose transporter, GLUT8, has important metabolic homeostatic functions. We therefore tested the hypothesis that GLUT8 mediates the deleterious metabolic effects of chronic high-fructose diet exposure. Here we demonstrate resistance to high-fructose diet-induced glucose intolerance and dyslipidemia concomitant with enhanced oxygen consumption and thermogenesis in GLUT8-deficient male mice. Independent of diet, significantly lower systolic blood pressure both at baseline and after high-fructose diet feeding was also observed by tail-cuff plethysmography in GLUT8-deficient mice vs wild-type controls. Resistance to fructose-induced metabolic dysregulation occurred in the context of enhanced hepatic peroxisome proliferator antigen receptor-γ (PPARγ) protein abundance, whereas in vivo hepatic adenoviral GLUT8 overexpression suppressed hepatic PPARγ expression. Taken together, these findings suggest that GLUT8 blockade prevents fructose-induced metabolic dysregulation, potentially by enhancing hepatic fatty acid metabolism through PPARγ and its downstream targets. We thus establish GLUT8 as a promising target in the prevention of diet-induced obesity, metabolic syndrome, and type 2 diabetes mellitus in males.

  8. Dietary Methionine Restriction Alleviates Hyperglycemia in Pigs with Intrauterine Growth Restriction by Enhancing Hepatic Protein Kinase B Signaling and Glycogen Synthesis.

    Science.gov (United States)

    Ying, Zhixiong; Zhang, Hao; Su, Weipeng; Zhou, Le; Wang, Fei; Li, Yue; Zhang, Lili; Wang, Tian

    2017-10-01

    Background: Individuals with intrauterine growth restriction (IUGR) are prone to developing type 2 diabetes mellitus (T2DM). Dietary methionine restriction (MR) improves insulin sensitivity and glucose homeostasis in individuals with normal birth weight (NBW).Objective: This study investigated the effects of MR on plasma glucose concentration and hepatic and muscle glucose metabolism in pigs with IUGR.Methods: Thirty female NBW and 60 same-sex spontaneous IUGR piglets (Landrace × Yorkshire) were selected. After weaning (day 21), the piglets were fed diets with adequate methionine (NBW-CON and IUGR-CON) or 30% less methionine (IUGR-MR) (n = 6). At day 180, 1 pig with a body weight near the mean of each replication was selected for biochemical analysis.Results: The IUGR-CON group showed 41.6%, 68.6%, and 67.1% higher plasma glucose concentration, hepatic phosphoenolpyruvate carboxykinase activity, and glucose-6-phosphatase activity, respectively, than the NBW-CON group (P glycogen content and glycogen synthase activity were 36.9% and 38.8% lower, respectively, in the IUGR-CON than the NBW-CON group (P glycogen content and glycogen synthase activity of the IUGR-MR pigs were 62.9% and 50.8% higher than those of the IUGR-CON pigs (P glycogen synthesis, implying a potential nutritional strategy to prevent type 2 diabetes mellitus in IUGR offspring. © 2017 American Society for Nutrition.

  9. Outbreak of hepatitis B virus infections associated with assisted monitoring of blood glucose in an assisted living facility-Virginia, 2010.

    Directory of Open Access Journals (Sweden)

    Thomas John Bender

    Full Text Available INTRODUCTION: In January 2010, the Virginia Department of Health received reports of 2 hepatitis B virus (HBV infections (1 acute, 1 chronic among residents of a single assisted living facility (ALF. Both infected residents had diabetes and received assisted monitoring of blood glucose (AMBG at the facility. An investigation was initiated in response. OBJECTIVE: To determine the extent and mechanism of HBV transmission among ALF residents. DESIGN: Retrospective cohort study. SETTING: An ALF that primarily housed residents with neuropsychiatric disorders in 2 adjacent buildings in Virginia. PARTICIPANTS: Residents of the facility as of March 2010. MEASUREMENTS: HBV serologic testing, relevant medical history, and HBV genome sequences. Risk ratios (RR and 95% confidence intervals (CIs were used to identify risk factors for HBV infection. RESULTS: HBV serologic status was determined for 126 (91% of 139 residents. Among 88 susceptible residents, 14 became acutely infected (attack rate, 16%, and 74 remained uninfected. Acute HBV infection developed among 12 (92% of 13 residents who received AMBG, compared with 2 (3% of 75 residents who did not (RR  = 35; 95% CI, 8.7, 137. Identified infection control breaches during AMBG included shared use of fingerstick devices for multiple residents. HBV genome sequencing demonstrated 2 building-specific phylogenetic infection clusters, each having 99.8-100% sequence identity. LIMITATIONS: Transfer of residents out of the facility prior to our investigation might have contributed to an underestimate of cases. Resident interviews provided insufficient information to fully assess behavioral risk factors for HBV infection. CONCLUSIONS: Failure to adhere to safe practices during AMBG resulted in a large HBV outbreak. Protection of a growing and vulnerable ALF population requires improved training of staff and routine facility licensing inspections that scrutinize infection control practices.

  10. Outbreak of hepatitis B virus infections associated with assisted monitoring of blood glucose in an assisted living facility-Virginia, 2010.

    Science.gov (United States)

    Bender, Thomas John; Wise, Matthew E; Utah, Okey; Moorman, Anne C; Sharapov, Umid; Drobeniuc, Jan; Khudyakov, Yury; Fricchione, Marielle; White-Comstock, Mary Beth; Thompson, Nicola D; Patel, Priti R

    2012-01-01

    In January 2010, the Virginia Department of Health received reports of 2 hepatitis B virus (HBV) infections (1 acute, 1 chronic) among residents of a single assisted living facility (ALF). Both infected residents had diabetes and received assisted monitoring of blood glucose (AMBG) at the facility. An investigation was initiated in response. To determine the extent and mechanism of HBV transmission among ALF residents. Retrospective cohort study. An ALF that primarily housed residents with neuropsychiatric disorders in 2 adjacent buildings in Virginia. Residents of the facility as of March 2010. HBV serologic testing, relevant medical history, and HBV genome sequences. Risk ratios (RR) and 95% confidence intervals (CIs) were used to identify risk factors for HBV infection. HBV serologic status was determined for 126 (91%) of 139 residents. Among 88 susceptible residents, 14 became acutely infected (attack rate, 16%), and 74 remained uninfected. Acute HBV infection developed among 12 (92%) of 13 residents who received AMBG, compared with 2 (3%) of 75 residents who did not (RR  = 35; 95% CI, 8.7, 137). Identified infection control breaches during AMBG included shared use of fingerstick devices for multiple residents. HBV genome sequencing demonstrated 2 building-specific phylogenetic infection clusters, each having 99.8-100% sequence identity. Transfer of residents out of the facility prior to our investigation might have contributed to an underestimate of cases. Resident interviews provided insufficient information to fully assess behavioral risk factors for HBV infection. Failure to adhere to safe practices during AMBG resulted in a large HBV outbreak. Protection of a growing and vulnerable ALF population requires improved training of staff and routine facility licensing inspections that scrutinize infection control practices.

  11. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  12. Contrast-enhanced US with Levovist for the diagnosis of hepatic hemangioma: time-related changes of enhancement appearance and the hemodynamic background.

    Science.gov (United States)

    Kobayashi, Satoshi; Maruyama, Hitoshi; Okugawa, Hidehiro; Yoshizumi, Hiroaki; Matsutani, Shoichi; Ebara, Masaaki; Yokosuka, Osamu

    2008-01-01

    To elucidate the diagnostic confidence of contrast-enhanced ultrasound (CEUS) with Levovist for hepatic hemangioma. The subjects were 34 patients with 38 hemangiomas and 12 patients with 15 hypervascular hepatocellular carcinomas. The early-phase (15-60 second) and liver-specific phase (after 5 min) were observed by the first injection. The 2nd injection was done for solo-phase method to observe liver-specific phase images without taking early-phase sonograms. The 3rd injection was done for changing posture method to observe liver-specific sonograms under left lateral ducubitus position. In the early-phase of hemangioma, nodular enhancement (NE) was found transiently in 13 lesions (34%) and continuously in 25 lesions (66%), while hepatocellular carcinoma (HCC, n = 15) did not show this pattern. Intratumoral arterioportal shunt was closely related to the short duration of NE. Two enhancement patterns were observed in the liver-specific phase of hemangioma, diffuse in 12 lesions (31%) and partial in 26 lesions (69%), which were dependent on the early-phase enhancement. Liver-specific findings were also affected by taking early-phase sonograms or changing the posture of the patient. This method provided sensitivity of 79% and specificity of 100% for the diagnosis of hemangioma. CEUS with Levovist may be promising method for the diagnosis of hepatic hemangioma.

  13. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    Science.gov (United States)

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Enhanced glucagon-like peptide-1 (GLP-1) response to oral glucose in glucose-intolerant HIV-infected patients on antiretroviral therapy

    DEFF Research Database (Denmark)

    Andersen, O; Haugaard, S B; Holst, Jens Juul

    2005-01-01

    concentrations of GLP-1 and GIP were determined frequently during a 3-h, 75-g glucose tolerance test. Insulin secretion rates (ISRs) were calculated by deconvolution of C-peptide concentrations. RESULTS: The incremental area under the curve (incrAUC) for GLP-1 was increased by 250% in IGT patients compared......OBJECTIVES: We investigated whether the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which are major regulators of glucose tolerance through the stimulation of insulin secretion, contribute to impaired glucose tolerance (IGT) among HIV......-infected patients on highly active antiretroviral therapy (HAART). METHODS: Eighteen HIV-infected male patients (six lipodystrophic and 12 nonlipodystrophic) with normal glucose tolerance (NGT) were compared with 10 HIV-infected male patients (eight lipodystrophic and two nonlipodystrophic) with IGT. Plasma...

  15. Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis.

    Science.gov (United States)

    Zhang, Jing; Li, Yuan; Jiang, Shujun; Yu, Hao; An, Wei

    2014-02-01

    Although the potential pathogenesis of nonalcoholic fatty liver disease (NAFLD) is unclear, increasing evidence indicates that endoplasmic reticulum (ER) stress may link free fatty acids to NAFLD. Since we previously reported that hepatic stimulator substance (HSS) could protect the liver from steatosis, this study is aimed to investigate whether HSS protection could be related with its inhibition on ER stress. The HSS gene was stably transfected into BEL-7402 hepatoma cells and effectively expressed in ER. The palmitic acid (PA)-induced heptocyte lipotoxicity was reproduced in the HSS-transfected cells, and HSS alleviation of the ER stress and apoptosis were subsequently examined. The results showed that PA treatment led to a heavy accumulation of fatty acids within the cells and a remarkable increase in reactive oxygen species (ROS). However, in the HSS-expressing cells, production of ROS was inhibited and ER stress-related marker glucose-regulated protein 78 (GRP-78), sterol regulatory element-binding protein (SREBP), anti-phospho-PRK-1ike ER kinase (p-PERK), anti-phospho-eukaryotic initiation factor 2α (p-eIF2α), and anti-C/EBP homologous protein (CHOP) were downregulated compared with the wild-type or mutant HSS-transfected cells. Furthermore, PA treatment severely impaired the activity of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), leading to imbalanced calcium homeostasis during ER stress, which could be rescued in the HSS-trasfected cells. The protection provided by HSS to the SERCA is identical to that observed with N-acetyl-l-cysteine (NAC) and sodium dimercaptopropane sulfonate (Na-DMPS), which are two typical free radical scavengers. As a consequence, the rate of ER stress-mediated apoptosis in the HSS-expressing cells was significantly reduced. In conclusion, the protective effect of HSS against ER stress may be associated with the removal of ROS to restore the activity of the SERCA.

  16. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...

  17. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    Science.gov (United States)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  18. Glucose, memory, and aging.

    Science.gov (United States)

    Korol, D L; Gold, P E

    1998-04-01

    Circulating glucose concentrations regulate many brain functions, including learning and memory. Much of the evidence for this view comes from experiments assessing stress-related release of epinephrine with subsequent increases in blood glucose concentrations. One application of this work has been to investigate whether age-related memory impairments result from dysfunctions in the neuroendocrine regulation of the brain processes responsible for memory. Like humans, aged rodents exhibit some memory impairments that can be reversed by administration of epinephrine or glucose. In elderly humans, ingestion of glucose enhances some cognitive functions, with effects best documented thus far on tests of verbal contextual and noncontextual information. Glucose also effectively enhances cognition in persons with Alzheimer disease or Down syndrome. Although earlier evidence suggested that glucose does not enhance cognitive function in healthy young adults, more recent findings suggest that glucose is effective in this population, provided the tests are sufficiently difficult. In college students, glucose consumption significantly enhanced memory of material in a paragraph. Glucose also appeared to enhance attentional processes in these students. Neither face and word recognition nor working memory was influenced by treatment with glucose. The neurobiological mechanisms by which glucose acts are under current investigation. Initial evidence suggests that glucose or a metabolite may activate release of the neurotransmitter acetylcholine in rats when they are engaged in learning. Consequently, the issue of nutrition and cognition becomes increasingly important in light of evidence that circulating glucose concentrations have substantial effects on brain and cognitive functions.

  19. Added value of contrast-enhanced ultrasound on biopsies of focal hepatic lesions invisible on fusion imaging guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.

  20. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    Science.gov (United States)

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  1. Taurine depresses cardiac contractility and enhances systemic heart glucose utilization in the cuttlefish, Sepia officinalis.

    Science.gov (United States)

    MacCormack, Tyson J; Callaghan, N I; Sykes, A V; Driedzic, W R

    2016-02-01

    Taurine is the most abundant amino acid in the blood of the cuttlefish, Sepia officinalis, where levels can exceed 200 mmol L(-1). In mammals, intracellular taurine modulates cardiac Ca(2+) handling and carbohydrate metabolism at much lower concentrations but it is not clear if it exerts similar actions in cephalopods. Blood Ca(2+) levels are high in cephalopods and we hypothesized that taurine would depress cardiac Ca(2+) flux and modulate contractility in systemic and branchial hearts of cuttlefish. Heart performance was assessed with an in situ perfused systemic heart preparation and contractility was evaluated using isometrically contracting systemic and branchial heart muscle rings. Stroke volume, cardiac output, and Ca(2+) sensitivity were significantly lower in systemic hearts perfused with supplemental taurine (100 mmol L(-1)) than in controls. In muscle ring preparations, taurine impaired relaxation at high contraction frequencies, an effect abolished by supra-physiological Ca(2+) levels. Taurine did not affect oxygen consumption in non-contracting systemic heart muscle, but extracellular glucose utilization was twice that of control preparations. Collectively, our results suggest that extracellular taurine depresses cardiac Ca(2+) flux and potentiates glucose utilization in cuttlefish. Variations in taurine levels may represent an important mechanism for regulating cardiovascular function and metabolism in cephalopods.

  2. Diagnosis of hepatic steatosis by contrast-enhanced abdominal computed tomography; Diagnostico da esteatose hepatica pela tomografia computadorizada de abdome com meio de contraste intravenoso

    Energy Technology Data Exchange (ETDEWEB)

    Monjardim, Rodrigo da Fonseca; Costa, Danilo Manuel Cerqueira; Romano, Ricardo Francisco Tavares; Salvadori, Priscila Silveira; Santos, Jaime de Vargas Conde dos; Atzingen, Augusto Castelli Von; Shigueoka, David Carlos; D' Ippolito, Giuseppe, E-mail: giuseppe_dr@uol.com.br [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    2013-05-15

    Objective: to evaluate the diagnostic capacity of abdominal computed tomography in the assessment of hepatic steatosis using the portal phase with a simplified calculation method as compared with the non-contrast-enhanced phase. Materials and methods: in the present study, 150 patients were retrospectively evaluated by means of non-contrast-enhanced and contrast-enhanced computed tomography. One hundred patients had hepatic steatosis and 50 were control subjects. For the diagnosis of hepatic steatosis in the portal phase, the authors considered a result of < 104 HU calculated by the formula [L - 0.3 Multiplication-Sign (0.75 Multiplication-Sign P + 0.25 Multiplication-Sign A)] / 0.7, where L, P and A represent the attenuation of the liver, of the main portal vein and abdominal aorta, respectively. Sensitivity, specificity, positive and negative predictive values were calculated, using non-contrast-enhanced computed tomography as the reference standard. Results: the simplified calculation method with portal phase for the diagnosis of hepatic steatosis showed 100% sensitivity, 36% specificity, negative predictive value of 100% and positive predictive value of 75.8%. The rate of false positive results was 64%. False negative results were not observed. Conclusion: The portal phase presents an excellent sensitivity in the diagnosis of hepatic steatosis, as compared with the non-contrast-enhanced phase of abdominal computed tomography. However, the method has low specificity. (author)

  3. Bone marrow stromal cell transplantation enhances recovery of local glucose metabolism after cerebral infarction in rats: a serial 18F-FDG PET study.

    Science.gov (United States)

    Miyamoto, Michiyuki; Kuroda, Satoshi; Zhao, Songji; Magota, Keiichi; Shichinohe, Hideo; Houkin, Kiyohiro; Kuge, Yuji; Tamaki, Nagara

    2013-01-01

    This study aimed to assess whether (18)F-FDG PET could serially monitor the beneficial effects of bone marrow stromal cells (BMSC) on cerebral glucose metabolism when transplanted into the infarct brain of rats. The BMSC from green fluorescent protein transgenic rats or vehicle was stereotactically transplanted into the ipsilateral striatum at 7 d after permanent middle cerebral artery occlusion of rats. Local glucose metabolism was semiquantitatively measured at 6 and 35 d after ischemia using (18)F-FDG PET. Motor function was serially evaluated throughout the experiments. At 35 d after ischemia, immunohistochemistry was performed to evaluate the phenotype of BMSC and their effects on the expression of brain-type glucose transporters. BMSC transplantation not only enhanced functional recovery but also promoted the recovery of glucose utilization in the periinfarct area when stereotactically transplanted at 1 wk after ischemia. The engrafted cells were widely distributed, and most expressed a neuron-specific protein, NeuN. BMSC transplantation also prevented the pathologic upregulation of glucose transporters in the periinfarct neocortex. The present findings strongly suggest that the BMSC may enhance functional recovery by promoting the recovery of local glucose metabolism in the periinfarct area when directly transplanted into the infarct brain at clinically relevant timing. The BMSC also inhibit the pathologic upregulation of brain-isoform glucose transporters type 1 and 3. (18)F-FDG PET may be a valuable modality to scientifically prove the beneficial effects of BMSC transplantation on the host brain in clinical situations.

  4. Methanolic extract of Momordica cymbalaria enhances glucose uptake in L6 myotubes in vitro by up-regulating PPAR-γ and GLUT-4.

    Science.gov (United States)

    Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V; Manjunath, Kirangadur; Viswanatha, Gollapalle L; Ashok, Godavarthi

    2014-12-01

    The present study was undertaken to evaluate the influence of the methanolic fruit extract of Momordica cymbalaria (MFMC) on PPARγ (Peroxisome Proliferator Activated Receptor gamma) and GLUT-4 (Glucose transporter-4) with respect to glucose transport. Various concentrations of MFMC ranging from 62.5 to 500 μg·mL(-1) were evaluated for glucose uptake activity in vitro using L6 myotubes, rosiglitazone was used as a reference standard. The MFMC showed significant and dose-dependent increase in glucose uptake at the tested concentrations, further, the glucose uptake activity of MFMC (500 μg·mL(-1)) was comparable with rosigilitazone. Furthermore, MFMC has shown up-regulation of GLUT-4 and PPARγ gene expressions in L6 myotubes. In addition, the MFMC when incubated along with cycloheximide (CHX), which is a protein synthesis inhibitor, has shown complete blockade of glucose uptake. This indicates that new protein synthesis is required for increased GLUT-4 translocation. In conclusion, these findings suggest that MFMC is enhancing the glucose uptake significantly and dose dependently through the enhanced expression of PPARγ and GLUT-4 in vitro. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    Science.gov (United States)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  6. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    Science.gov (United States)

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  7. Capacity Enhancement of Hepatitis C Virus Treatment through Integrated, Community-Based Care

    Directory of Open Access Journals (Sweden)

    Warren D Hill

    2008-01-01

    Full Text Available BACKGROUND: An estimated 250,000 Canadians are infected with the hepatitis C virus (HCV. The present study describes a cohort of individuals with HCV referred to community-based, integrated prevention and care projects developed in British Columbia. Treatment outcomes are reported for a subset of individuals undergoing antiviral therapy at four project sites.

  8. Thermodynamic Analysis of the Selectivity Enhancement Obtained by Using Smart Hydrogels That Are Zwitterionic When Detecting Glucose With Boronic Acid Moieties

    Science.gov (United States)

    Horkay, F.; Cho, S. H.; Tathireddy, P.; Rieth, L.; Solzbacher, F.; Magda, J.

    2011-01-01

    Because the boronic acid moiety reversibly binds to sugar molecules and has low cytotoxicity, boronic acid-containing hydrogels are being used in a variety of implantable glucose sensors under development, including sensors based on optical, fluorescence, and swelling pressure measurements. However, some method of glucose selectivity enhancement is often necessary, because isolated boronic acid molecules have a binding constant with glucose that is some forty times smaller than their binding constant with fructose, the second most abundant sugar in the human body. In many cases, glucose selectivity enhancement is obtained by incorporating pendant tertiary amines into the hydrogel network, thereby giving rise to a hydrogel that is zwitterionic at physiological pH. However, the mechanism by which incorporation of tertiary amines confers selectivity enhancement is poorly understood. In order to clarify this mechanism, we use the osmotic deswelling technique to compare the thermodynamic interactions of glucose and fructose with a zwitterionic smart hydrogel containing boronic acid moieties. We also investigate the change in the structure of the hydrogel that occurs when it binds to glucose or to fructose using the technique of small angle neutron scattering. PMID:22190765

  9. Angiotensin IV and LVV-haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow.

    Science.gov (United States)

    De Bundel, Dimitri; Smolders, Ilse; Yang, Rui; Albiston, Anthony L; Michotte, Yvette; Chai, Siew Yeen

    2009-07-01

    The IRAP ligands Angiotensin IV (Ang IV) and LVV-haemorphin 7 (LVV-H7) enhance performance in a range of memory paradigms in normal rats and ameliorate memory deficits in rat models for amnesia. The mechanism by which these peptides facilitate memory remains to be elucidated. In recent in vitro experiments, we demonstrated that Ang IV and LVV-H7 potentiate activity-evoked glucose uptake into hippocampal neurons. This raises the possibility that IRAP ligands may facilitate memory in hippocampus-dependent tasks through enhancement of hippocampal glucose uptake. Acute intracerebroventricular (i.c.v.) administration of 1nmol Ang IV or 0.1nmol LVV-H7 in 3 months-old Sprague-Dawley rats enhanced spatial working memory in the plus maze spontaneous alternation task. Extracellular hippocampal glucose levels were monitored before, during and after behavioral testing using in vivo microdialysis. Extracellular hippocampal glucose levels decreased significantly to about 70% of baseline when the animals explored the plus maze, but remained constant when the animals were placed into a novel control chamber. Ang IV and LVV-H7 did not significantly alter hippocampal glucose levels compared to control animals in the plus maze or control chamber. Both peptides had no effect on hippocampal blood flow as determined by laser Doppler flowmetry, excluding that either peptide increased the hippocampal supply of glucose. We demonstrated for the first time that Ang IV and LVV-H7 enhance spatial working memory in the plus maze spontaneous alternation task but no in vivo evidence was found for enhanced hippocampal glucose uptake or blood flow.

  10. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  11. Common ultrasound and contrast-enhanced ultrasonography in the diagnosis of hepatic artery pseudoaneurysm after liver transplantation.

    Science.gov (United States)

    Ren, Xiuyun; Luo, Yukun; Gao, Nong; Niu, Hong; Tang, Jie

    2016-08-01

    The diagnostic value of common ultrasound and contrast-enhanced ultrasonography (CEUS) in hepatic artery pseudoaneurysm (HAP) after liver transplantation was investigated. From January 2005 to November 2015, information was collected on 2,085 cases of orthotopic liver transplantation. The cases included 1,617 men and 468 women. Common ultrasound and CEUS were used to monitor arterial blood flow following surgery, and the complications were assessed. Instruments used included Acuson Sequoia 512 and Mylab Twice, and the contrast agent was SonoVue. The standard of common ultrasound in the diagnosis of HAP was follicular structure, which had arterial blood flow signal present beside the hepatic artery. The diagnostic criteria of HAP using CEUS were abnormal and round contrast enhancement zone and perfusion of the contrast agent in the zone near the hepatic artery. The diagnostic standard of HAP was computed tomographic angiography (CTA) and emergency operation. Eight cases of HAP were diagnosed in 2,085 patients after liver transplantation (0.38%). Three cases of HAP were diagnosed successfully by common ultrasound while 5 cases were missed. Sensitivity, specificity and diagnostic accuracy for common ultrasound was 37.5, 100 and 99.76%, respectively. Six cases of HAP were diagnosed by CEUS and 2 cases were missed. Sensitivity, specificity and diagnostic accuracy for CEUS was 75, 100 and 99.9%, respectively. Collectively, CEUS is a convenient and effective diagnostic method for HAP following liver transplantation, the diagnostic sensitivity was obviously higher than that of the common ultrasound, and it was more convenient than CTA. Nevertheless, the diagnosis of pseudoaneurysm with deep location, and unsatisfactory grayscale images were easily missed.

  12. Mutagenic Effects of Ribavirin on Hepatitis E Virus—Viral Extinction versus Selection of Fitness-Enhancing Mutations

    Science.gov (United States)

    Todt, Daniel; Walter, Stephanie; Brown, Richard J. P.; Steinmann, Eike

    2016-01-01

    Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis. PMID:27754363

  13. Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations.

    Science.gov (United States)

    Todt, Daniel; Walter, Stephanie; Brown, Richard J P; Steinmann, Eike

    2016-10-13

    Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis.

  14. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    Science.gov (United States)

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hepatic adenomatosis: rapid sequence MR imaging following gadolinium enhancement: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Brummett, D. [Dept. of Radiology, Medical College of Georgia, Augusta (United States); Burton, E.M. [Dept. of Radiology, Medical College of Georgia, Augusta (United States)]|[Dept. of Pediatrics, Medical College of Georgia, Augusta (United States); Sabio, H. [Dept. of Pediatrics, Medical College of Georgia, Augusta (United States)

    1999-04-01

    Hepatic adenomas are primary liver tumors usually associated with underlying metabolic disease or with anabolic steroid or oral contraceptive use. Hepatic adenomatosis (HA) is defined as the presence of more than four adenomas. Only 13 cases of HA have been reported in patients without glycogen storage disease or steroid use. We report a case of HA imaged by postcontrast T1-weighted images obtained during a breath-holding series. The lesions were most conspicuous 3-4 min after contrast administration; 4 of the 5 tumors were not identified on T2-weighted images. Unlike previous reports of HA in which the lesions remained hyperintense during sequential postcontrast imaging, the smaller lesions in this case demonstrated contrast washout, thereby distinguishing them from hemangiomata. (orig.) With 3 figs., 10 refs.

  16. Molecular mechanisms of enhanced [18F] fluorodeoxy glucose (FDG) uptake in isochemically injured myocardium: the role of glucose transporter and hexokinase expression. Final technical report for period August 1, 1993--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brosius, F.C. III

    1999-08-01

    We determined that there were no regional differences in GLUT1 or GLUT4 expression in normal dog heart. We demonstrated that glucose uptake was relatively enhanced in regions of severe ischemia in this model. We showed that GLUT1 mRNA and polypeptide expression but not GLUT4 expression were substantially and significantly increased in both ischemic and nonischemic myocardial regions after 6 hours. We also found that GLUT4 translocation and glucose uptake induced by ischemia in perfused rat hearts were not inhibited by Wortmannin, a PI3 kinase inhibitor, whereas insulin-stimulatd increases in GLUT4 translocation and glucose uptake were inhibited. To determine whether some of the same phenomena occurred in humans with chronic myocardial ischemia, we investigated myocardial GLUT mRNA expression in 11 patients who underwent coronary artery bypass surgery. We have cultured neonatal rat cardiomyocytes and tested the effects of several factors including hypoxia and insulin.

  17. A case report of localized hepatic sinusoidal dilatation: The diagnostic usefulness of the hepatobiliary phase of Gd-EOB-DTPA-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Min; Kim, Seong Hoon [Dept. of Radiology, Daegu Fatima Hospital, Daegu (Korea, Republic of)

    2015-09-15

    Hepatic sinusoidal dilatation (HSD) is a rare vascular disorder characterized by focal dilatation of the sinusoidal spaces in the liver. In most cases, it may be associated with venous outflow impairment. In addition, this histological change could occur in a number of systemic and hepatic conditions in the absence of hepatic venous obstruction. However, the pathogenesis has not yet been elucidated. To the best of our knowledge, imaging findings in a case of localized HSD without any additional medical disorder or oral contraceptive therapy have not been described previously in the literature written in English. Here, we describe imaging findings in a case of localized HSD mimicking a hepatic tumor, focusing on the useful findings on the gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced hepatobiliary phase MR image.

  18. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles.

    Science.gov (United States)

    Wang, Ai-Jun; Li, Yong-Fang; Li, Zhong-Hua; Feng, Jiu-Ju; Sun, Yan-Li; Chen, Jian-Rong

    2012-08-01

    Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4@silica@Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92×10(-9) mol·cm(-2), and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98±0.6 s(-1). The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM(-1) cm(-2) and fast response (less than 5s). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Dammarane-type triterpene extracts of Panax notoginseng root ameliorates hyperglycemia and insulin sensitivity by enhancing glucose uptake in skeletal muscle.

    Science.gov (United States)

    Kitamura, Kumiko; Takamura, Yusuke; Iwamoto, Taku; Nomura, Mitsuru; Iwasaki, Hideaki; Ohdera, Motoyasu; Murakoshi, Michiaki; Sugiyama, Keikichi; Matsuyama, Kazuki; Manabe, Yasuko; Fujii, Nobuharu L; Fushiki, Tohru

    2017-02-01

    Skeletal muscle is an important organ for controlling the development of type 2 diabetes. We discovered Panax notoginseng roots as a candidate to improve hyperglycemia through in vitro muscle cells screening test. Saponins are considered as the active ingredients of ginseng. However, in the body, saponins are converted to dammarane-type triterpenes, which may account for the anti-hyperglycemic activity. We developed a method for producing a dammarane-type triterpene extract (DTE) from Panax notoginseng roots and investigated the extract's potential anti-hyperglycemic activity. We found that DTE had stronger suppressive activity on blood glucose levels than the saponin extract (SE) did in KK-Ay mice. Additionally, DTE improved oral glucose tolerance, insulin sensitivity, glucose uptake, and Akt phosphorylation in skeletal muscle. These results suggest that DTE is a promising agent for controlling hyperglycemia by enhancing glucose uptake in skeletal muscle.

  20. Enhanced hepatic uptake and processing of cholesterol esters from low density lipoprotein by specific lactosaminated Fab fragments.

    Science.gov (United States)

    Bijsterbosch, M K; Bernini, F; Bakkeren, H F; Gotto, A M; Smith, L C; van Berkel, T J

    1991-01-01

    Reduction of the blood levels of low density lipoprotein (LDL) is important for lowering the incidence of atherosclerosis. In this study, LDL was directed to rat parenchymal liver cells by lactosaminated Fab fragments of anti-apolipoprotein B antibodies (LacFab). We followed the fate of intravenously injected complexes of LacFab and [3H]cholesteryl oleate-labeled LDL. Complexing of LacFab to LDL led to rapid disappearance of LDL from the circulation. At 30 minutes after injection, the liver contained 58.5 +/- 9.0% of the injected dose (at that time the liver contained only 5.7 +/- 2.2% of an injected dose of free LDL). Liver uptake was blocked by N-acetylgalactosamine but not by N-acetylglucosamine, which indicates that galactose-specific recognition sites are responsible for the LacFab-induced hepatic uptake. By isolating liver cells, it was found that parenchymal, endothelial, and Kupffer cells account for 87%, 3%, and 10% of the total hepatic uptake, respectively. Subcellular fractionation of the liver indicated that the complexes are rapidly internalized and transported to lysosomes. Within 1 hour after injection, virtually all the [3H]cholesteryl oleate of the internalized LDL was hydrolyzed; hydrolysis was followed by excretion of radioactivity into the bile. Compared with rats injected with native [3H]cholesteryl oleate-labeled LDL, eight times as much radioactivity was excreted into the bile during the first 4 hours after the injection of LacFab-complexed [3H]cholesteryl oleate-labeled LDL. Thus, LacFab induces enhanced hepatic uptake of LDL via galactose receptors on the parenchymal cells, followed by processing in lysosomes and excretion into the bile. In this way, LacFab induces an increased irreversible removal of LDL cholesterol from the body.

  1. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  2. Evaluation of hepatic vascular endothelial injury during liver storage by molecular detection and targeted contrast-enhanced ultrasound imaging.

    Science.gov (United States)

    Xie, Fang; Zhang, Shu-Hua; Cheng, Jia; Wang, Hong-Wei; Fei, Xiang; Jiao, Zi-Yu; Tang, Jie; Luo, Yu-Kun

    2016-01-01

    We hypothesized that lack of the high-energy phosphates during liver storage may potentially cause persistent injury to the vascular endothelium. Biopsies were obtained from livers obtained from beating heart human donors, stored either in the standard storage solution, that is, University of Wisconsin solution (UWS) or Celsior, and examined for various markers related to progressive endothelial injury. The expression of P2Y1 receptor, the major signal transduction machinery for adenosine triphosphate/adenosine diphosphate, decreased in hepatic vascular endothelial cells over time. Despite unaltered endothelial nitric oxide synthase (eNOS) levels, serine1177-phosphorylated eNOS, the active form of eNOS, progressively decreased with time. The production of nitric oxide enzyme decreased with time when liver tissues were examined in vitro. This also coincided with decreased interaction of eNOS with actin nucleating proteins like myristoylated alanine-rich C kinase substrate and Rac1, which plays a role in modulating the cytoskeleton and helps position eNOS in a favorable cytosolic position for active enzymatic activity. Conversely, the interaction of eNOS with caveolin1 was significantly increased 6 H after ex vivo storage. Finally, we demonstrated by targeted contrast-enhanced ultrasound that membrane-bound vascular cell adhesion molecule-1 in the hepatic vascular endothelial cell increased after 6 H of ex vivo storage. Overall, the results of this study provide evidence of a progressive hepatic vascular endothelial injury during the ex vivo storage. This may be a causative factor for ischemic cholangiopathy and delayed graft function post liver transplantation. © 2015 IUBMB Life, 68(1):51-57, 2015. © 2015 International Union of Biochemistry and Molecular Biology.

  3. Enhancement of glomerular filtration rate and renal plasma flow by oral glucose load in well controlled insulin-dependent diabetics

    DEFF Research Database (Denmark)

    Sandahl Christiansen, J; Christensen, C K; Hermansen, K

    1986-01-01

    Glomerular filtration rate (GFR) and renal plasma flow (RPF) were measured in 27 patients with uncomplicated insulin-dependent diabetes (IDDM) before and after an oral glucose load of 1.1 g glucose/kg body wt. In the 18 patients showing near-normoglycaemia (blood glucose less than or equal to 8 m...

  4. Glucagon like receptor 1/ glucagon dual agonist acutely enhanced hepatic lipid clearance and suppressed de novo lipogenesis in mice.

    Science.gov (United States)

    More, Vijay R; Lao, Julie; McLaren, David G; Cumiskey, Anne-Marie; Murphy, Beth Ann; Chen, Ying; Previs, Stephen; Stout, Steven; Patel, Rajesh; Satapati, Santhosh; Li, Wenyu; Kowalik, Edward; Szeto, Daphne; Nawrocki, Andrea; Pocai, Alessandro; Wang, Liangsu; Carrington, Paul

    2017-01-01

    Lipid lowering properties of glucagon have been reported. Blocking glucagon signaling leads to rise in plasma LDL levels. Here, we demonstrate the lipid lowering effects of acute dosing with Glp1r/Gcgr dual agonist (DualAG). All the experiments were performed in 25 week-old male diet-induced (60% kCal fat) obese mice. After 2 hrs of fasting, mice were injected subcutaneously with vehicle, liraglutide (25nmol/kg) and DualAG (25nmol/kg). De novo cholesterol and palmitate synthesis was measured by deuterium incorporation method using D2O. 13C18-oleate infusion was used for measuring fatty acid esterification. Simultaneous activation of Glp1r and Gcgr resulted in decrease in plasma triglyceride and cholesterol levels. DualAG enhanced hepatic LDLr protein levels, along with causing decrease in content of plasma ApoB48 and ApoB100. VLDL secretion, de novo palmitate synthesis and fatty acid esterification decreased with acute DualAG treatment. On the other hand, ketone levels were elevated with DualAG treatment, indicating increased fatty acid oxidation. Lipid relevant changes were absent in liraglutide treated group. In an acute treatment, DualAG demonstrated significant impact on lipid homeostasis, specifically on hepatic uptake, VLDL secretion and de novo synthesis. These effects collectively reveal that lipid lowering abilities of DualAG are primarily through glucagon signaling and are liver centric.

  5. Glucagon like receptor 1/ glucagon dual agonist acutely enhanced hepatic lipid clearance and suppressed de novo lipogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Vijay R More

    Full Text Available Lipid lowering properties of glucagon have been reported. Blocking glucagon signaling leads to rise in plasma LDL levels. Here, we demonstrate the lipid lowering effects of acute dosing with Glp1r/Gcgr dual agonist (DualAG. All the experiments were performed in 25 week-old male diet-induced (60% kCal fat obese mice. After 2 hrs of fasting, mice were injected subcutaneously with vehicle, liraglutide (25nmol/kg and DualAG (25nmol/kg. De novo cholesterol and palmitate synthesis was measured by deuterium incorporation method using D2O. 13C18-oleate infusion was used for measuring fatty acid esterification. Simultaneous activation of Glp1r and Gcgr resulted in decrease in plasma triglyceride and cholesterol levels. DualAG enhanced hepatic LDLr protein levels, along with causing decrease in content of plasma ApoB48 and ApoB100. VLDL secretion, de novo palmitate synthesis and fatty acid esterification decreased with acute DualAG treatment. On the other hand, ketone levels were elevated with DualAG treatment, indicating increased fatty acid oxidation. Lipid relevant changes were absent in liraglutide treated group. In an acute treatment, DualAG demonstrated significant impact on lipid homeostasis, specifically on hepatic uptake, VLDL secretion and de novo synthesis. These effects collectively reveal that lipid lowering abilities of DualAG are primarily through glucagon signaling and are liver centric.

  6. Clinical utility of microbubble contrast-enhanced ultrasound in the diagnosis of hepatic artery occlusion after liver transplantation.

    Science.gov (United States)

    Berstad, Audun Elnaes; Brabrand, Knut; Foss, Aksel

    2009-10-01

    To evaluate the frequency of use and the diagnostic accuracy of real-time contrast-enhanced ultrasound (CEUS) in the diagnosis of hepatic artery occlusion after liver transplantation. One hundred and fifty-two liver transplantations in 142 adult subjects, comprising 80 male patients and 62 female patients, were studied. After surgery, liver circulation was routinely assessed by conventional Doppler ultrasound (US). Wherever the examiners were not confident about the state of the circulation, CEUS was performed with one or more doses of a sulfur hexafluoride (SF-6)-containing second-generation contrast agent intravenously. Clinical follow up including repeat Doppler US, computed tomographic angiography (CTA) or magnetic resonance angiography (MRA) of the liver vasculature were used as reference standards. During the first month after transplantation, Doppler US was inconclusive with regard to patency of the hepatic artery (HA) circulation in 20 (13 %) of 152 transplantations. CEUS was performed in these patients, and detected six cases of HA thrombosis (HAT) in five transplants. CEUS correctly ruled out HA occlusion in 15 transplants. All HA occlusions occurred during the first 14 days after transplantation. In the subset of transplantations examined with CEUS, the sensitivity, specificity and accuracy of CEUS were 100%. In approximately 13% of cases, conventional Doppler US did not provide sufficient visualization of the HA after liver transplantation. In these cases, correct diagnosis was achieved by supplementary CEUS.

  7. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei.

    Science.gov (United States)

    Wu, Yilan; Sun, Xianhua; Xue, Xianli; Luo, Huiying; Yao, Bin; Xie, Xiangming; Su, Xiaoyun

    2017-11-01

    Vast interest exists in developing T. reesei for production of heterologous proteins. Although rich genomic and transcriptomic information has been uncovered for the T. reesei secretion pathway, little is known about whether engineering its key components could enhance expression of a heterologous gene. In this study, snc1, a v-SNARE gene, was first selected for overexpression in T. reesei. In engineered T. reesei with additional copies of snc1, the Aspergillus niger glucose oxidase (AnGOD) was produced to a significantly higher level (2.2-fold of the parental strain). hac1 and bip1, two more component genes in the secretion pathway, were further tested for overexpression and found to be also beneficial for AnGOD secretion. The overexpression of one component gene more or less affected the expression of the other two genes, suggesting a complex regulating mechanism. Our study demonstrates the potential of engineering the secretion pathway for enhancing heterologous gene production in T. reesei. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling.

    Science.gov (United States)

    Zhou, Zi-Yu; Ren, Li-Wei; Zhan, Ping; Yang, Han-Yan; Chai, Dan-Dan; Yu, Zhi-Wen

    2016-08-01

    Accumulating evidence shows that lipopolysaccharides (LPS) derived from gut gram-negative bacteria can be absorbed, leading to endotoxemia that triggers systemic inflammation and insulin resistance. In this study we examined whether metformin attenuated endotoxemia, thus improving insulin signaling in high-fat diet fed mice. Mice were fed a high-fat diet for 18 weeks to induce insulin resistance. One group of the mice was treated with oral metformin (100 mg·kg(-1)·d(-1)) for 4 weeks. Another group was treated with LPS (50 μg·kg(-1)·d(-1), sc) for 5 days followed by the oral metformin for 10 d. Other two groups received a combination of antibiotics for 7 d or a combination of antibiotics for 7 d followed by the oral metformin for 4 weeks, respectively. Glucose metabolism and insulin signaling in liver and muscle were evaluated, the abundance of gut bacteria, gut permeability and serum LPS levels were measured. In high-fat fed mice, metformin restored the tight junction protein occludin-1 levels in gut, reversed the elevated gut permeability and serum LPS levels, and increased the abundance of beneficial bacteria Lactobacillus and Akkermansia muciniphila. Metformin also increased PKB Ser473 and AMPK T172 phosphorylation, decreased MDA contents and redox-sensitive PTEN protein levels, activated the anti-oxidative Nrf2 system, and increased IκBα in liver and muscle of the mice. Treatment with exogenous LPS abolished the beneficial effects of metformin on glucose metabolism, insulin signaling and oxidative stress in liver and muscle of the mice. Treatment with antibiotics alone produced similar effects as metformin did. Furthermore, the beneficial effects of antibiotics were addictive to those of metformin. Metformin administration attenuates endotoxemia and enhances insulin signaling in high-fat fed mice, which contributes to its anti-diabetic effects.

  9. Periportal lymphatic system on post-hepatobiliary phase Gd-EOB-DTPA-enhanced MR imaging in normal subjects and patients with chronic hepatitis C.

    Science.gov (United States)

    Yamada, Yasunari; Matsumoto, Shunro; Mori, Hiromu; Takaji, Ryo; Kiyonaga, Maki; Hijiya, Naoki; Tanoue, Rika; Tomonari, Kenichiro; Tanoue, Shuichi; Hongo, Norio; Ohta, Masayuki; Seike, Masataka; Inomata, Masafumi; Murakami, Kazunari; Moriyama, Masatsugu

    2017-10-01

    We sought to evaluate visualization of periportal lymphatics and lymph nodes (lymphatic system) on Gd-EOB-DTPA-enhanced magnetic resonance (MR) images using a fat-suppressed T2-weighted sequence with 3-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) at 3.0 T in normal subjects and patients with chronic hepatitis C. MR imaging was performed in 254 subjects between June 2013 and May 2016. After applying inclusion and exclusion criteria, the final population was 31 normal subjects and 34 patients with chronic hepatitis C. Images were acquired after the hepatobiliary phase following intravenous administration of Gd-EOB-DTPA, which causes signal loss in the bile ducts, to facilitate the visualization of the periportal lymphatic system. Two radiologists assessed the visualization of the periportal lymphatic system in 31 normal subjects. The axial dimensions of the main periportal lymphatic system in normal subjects were measured and compared with those of 34 patients with chronic hepatitis C using the Mann-Whitney U-test, and their correlation with a hepatic fibrosis marker, the Fibrosis-4 (FIB-4), was assessed using Spearman's rank correlation test. The periportal lymphatic system was detected as high signal intensity areas surrounding the portal vein up to the third branches by each reader in all normal subjects. The axial dimensions of the main periportal lymphatic system in patients with chronic hepatitis C were significantly larger than those in normal subjects (p system and the degree of hepatic fibrosis.

  10. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Hypoglycemic Effect of Opuntia ficus-indica var. saboten Is Due to Enhanced Peripheral Glucose Uptake through Activation of AMPK/p38 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Kang-Hyun Leem

    2016-12-01

    Full Text Available Opuntia ficus-indica var. saboten (OFS has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na+-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C and p38 MAPK (SB203580 abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4 translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.

  12. Hypoglycemic Effect of Opuntia ficus-indica var. saboten Is Due to Enhanced Peripheral Glucose Uptake through Activation of AMPK/p38 MAPK Pathway.

    Science.gov (United States)

    Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung

    2016-12-09

    Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na⁺-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.

  13. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats.

    Science.gov (United States)

    Hashemi, Zohre; Yang, Kaiyuan; Yang, Han; Jin, Alena; Ozga, Jocelyn; Chan, Catherine B

    2015-04-01

    Pulses, including dried peas, are nutrient- and fibre-rich foods that improve glucose control in diabetic subjects compared with other fibre sources. We hypothesized feeding cooked pea seed coats to insulin-resistant rats would improve glucose tolerance by modifying gut responses to glucose and reducing stress on pancreatic islets. Glucose intolerance induced in male Sprague-Dawley rats with high-fat diet (HFD; 10% cellulose as fibre) was followed by 3 weeks of HFD with fibre (10%) provided by cellulose, raw-pea seed coat (RP), or cooked-pea seed coat (CP). A fourth group consumed low-fat diet with 10% cellulose. Oral and intraperitoneal glucose tolerance tests (oGTT, ipGTT) were done. CP rats had 30% and 50% lower glucose and insulin responses in oGTT, respectively, compared with the HFD group (P < 0.05) but ipGTT was not different. Plasma islet and incretin hormone concentrations were measured. α- and β-cell areas in the pancreas and density of K- and L-cells in jejunum and ileum were quantified. Jejunal expression of hexose transporters was measured. CP feeding increased fasting glucagon-like peptide 1 and glucose-stimulated gastric inhibitory polypeptide responses (P < 0.05), but K- and L-cells densities were comparable to HFD, as was abundance of SGLT1 and GLUT2 mRNA. No significant difference in β-cell area between diet groups was observed. α-cell area was significantly smaller in CP compared with RP rats (P < 0.05). Overall, our results demonstrate that CP feeding can reverse adverse effects of HFD on glucose homeostasis and is associated with enhanced incretin secretion and reduced α-cell abundance.

  14. Enhanced rat beta-cell proliferation in 60% pancreatectomized islets by increased glucose metabolic flux through pyruvate carboxylase pathway.

    Science.gov (United States)

    Liu, Y Q; Han, J; Epstein, P N; Long, Y S

    2005-03-01

    Islet beta-cell proliferation is a very important component of beta-cell adaptation to insulin resistance and prevention of type 2 diabetes mellitus. However, we know little about the mechanisms of beta-cell proliferation. We now investigate the relationship between pyruvate carboxylase (PC) pathway activity and islet cell proliferation 5 days after 60% pancreatectomy (Px). Islet cell number, protein, and DNA content, indicators of beta-cell proliferation, were increased two- to threefold 5 days after Px. PC and pyruvate dehydrogenase (PDH) activities increased only approximately 1.3-fold; however, islet pyruvate content and malate release from isolated islet mitochondria were approximately threefold increased in Px islets. The latter is an indicator of pyruvate-malate cycle activity, indicating that most of the increased pyruvate was converted to oxaloacetate (OAA) through the PC pathway. The contents of OAA and malate, intermediates of the pyruvate-malate cycle, were also increased threefold. PDH and citrate content were only slightly increased. Importantly, the changes in cell proliferation parameters, glucose utilization, and oxidation and malate release were partially blocked by in vivo treatment with the PC inhibitor phenylacetic acid. Our results suggest that enhanced PC pathway in Px islets may have an important role in islet cell proliferation.

  15. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.

    Science.gov (United States)

    Kondo, Takashi; Tezuka, Hironori; Ishii, Jun; Matsuda, Fumio; Ogino, Chiaki; Kondo, Akihiko

    2012-05-31

    The production of higher alcohols by engineered bacteria has received significant attention. The budding yeast, Saccharomyces cerevisiae, has considerable potential as a producer of higher alcohols because of its capacity to naturally fabricate fusel alcohols, in addition to its robustness and tolerance to low pH. However, because its natural productivity is not significant, we considered a strategy of genetic engineering to increase production of the branched-chain higher alcohol isobutanol, which is involved in valine biosynthesis. Initially, we overexpressed 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) in S. cerevisiae to enhance the endogenous activity of the Ehrlich pathway. We then overexpressed Ilv2, which catalyzes the first step in the valine synthetic pathway, and deleted the PDC1 gene encoding a major pyruvate decarboxylase with the intent of altering the abundant ethanol flux via pyruvate. Through these engineering steps, along with modification of culture conditions, the isobutanol titer of S. cerevisiae was elevated 13-fold, from 11 mg/l to 143 mg/l, and the yield was 6.6 mg/g glucose, which is higher than any previously reported value for S. cerevisiae. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation.

    Directory of Open Access Journals (Sweden)

    Steven Haney

    Full Text Available Genome-wide association (GWA studies have described a large number of new candidate genes that contribute to of Type 2 Diabetes (T2D. In some cases, small clusters of genes are implicated, rather than a single gene, and in all cases, the genetic contribution is not defined through the effects on a specific organ, such as the pancreas or liver. There is a significant need to develop and use human cell-based models to examine the effects these genes may have on glucose regulation. We describe the development of a primary human hepatocyte model that adjusts glucose disposition according to hormonal signals. This model was used to determine whether candidate genes identified in GWA studies regulate hepatic glucose disposition through siRNAs corresponding to the list of identified genes. We find that several genes affect the storage of glucose as glycogen (glycolytic response and/or affect the utilization of pyruvate, the critical step in gluconeogenesis. Of the genes that affect both of these processes, CAMK1D, TSPAN8 and KIF11 affect the localization of a mediator of both gluconeogenesis and glycolysis regulation, CRTC2, to the nucleus in response to glucagon. In addition, the gene CDKAL1 was observed to affect glycogen storage, and molecular experiments using mutant forms of CDK5, a putative target of CDKAL1, in HepG2 cells show that this is mediated by coordinate regulation of CDK5 and PKA on MEK, which ultimately regulates the phosphorylation of ribosomal protein S6, a critical step in the insulin signaling pathway.

  17. Enhanced HBsAg synthesis correlates with increased severity of fibrosis in chronic hepatitis B patients.

    Directory of Open Access Journals (Sweden)

    Mei-Zhu Hong

    Full Text Available BACKGROUND AND AIMS: Little is known about whether low serum HBsAg levels result from impaired HBsAg synthesis or a reduced number of hepatocytes caused by advanced liver fibrosis. Therefore, we investigated the capacity for HBsAg synthesis in a cross-sectional cohort of treatment-naïve chronic hepatitis B patients. METHODS: Chronic hepatitis B patients (n = 362 were enrolled; liver biopsies were performed and liver histology was scored, and serum HBsAg and HBV DNA levels were investigated. In the enrolled patients, 183 out of 362 have quantitative serum HBsAg levels. Tissue HBsAg was determined by immunohistochemistry. RESULTS: A positive correlation between serum HBsAg and HBV DNA levels was revealed in HBeAg(+ patients (r = 0.2613, p = 0.0050. In HBeAg(+ patients, serum HBsAg and severity of fibrosis were inversely correlated (p = 0.0094, whereas tissue HBsAg levels correlated positively with the stage of fibrosis (p = 0.0280. After applying the mean aminopyrine breath test as a correction factor, adjusted serum HBsAg showed a strong positive correlation with fibrosis severity in HBeAg(+ patients (r = 0.5655, p<0.0001. The adjusted serum HBsAg values predicted 'moderate to severe' fibrosis with nearly perfect performance in both HBeAg(+ patients (area under the curve: 0.994, 95% CI: 0.983-1.000 and HBeAg(- patients (area under the curve: 1.000, 95% CI: 1.000-1.000. CONCLUSIONS: Although serum HBsAg levels were negatively correlated with fibrosis severity in HBeAg(+ patients, aminopyrine breath test-adjusted serum HBsAg and tissue HBsAg, two indices that are unaffected by the number of residual hepatocytes, were positively correlated with fibrosis severity. Furthermore, adjusted serum HBsAg has an accurate prediction capability.

  18. Role of contrast-enhanced ultrasound in decision support for diagnosis and treatment of hepatic artery thrombosis after liver transplantation.

    Science.gov (United States)

    Lu, Qiang; Zhong, Xiao Fei; Huang, Zi Xing; Yu, Bo Yang; Ma, Bu Yun; Ling, Wen Wu; Wu, Hong; Yang, Jia Ying; Luo, Yan

    2012-03-01

    To assess role of contrast-enhanced ultrasound (CEUS) in decision support for diagnosis and treatment of hepatic artery thrombosis (HAT) after liver transplantation. Between January 2005 and January 2011, 605 patients underwent liver transplantation in our medical center. All the liver transplant recipients received Doppler ultrasound scanning and CEUS examination was performed in 45 patients with suspected HAT on Doppler ultrasound. Sensitivity, specificity, accuracy, positive predict value and negative predictive value of CEUS in diagnosing HAT were determined based on the results from angiography, surgery and clinical follow-up. Fourteen HATs, including one late HAT, were diagnosed by CEUS. Twelve HAT cases were confirmed by angiographic and/or surgical findings, while the late HAT and other 31 patients with negative CEUS finding were confirmed by the clinical follow-up. There was a false positive HAT diagnosed by CEUS in which angiography revealed a patent hepatic artery. The sensitivity, specificity, accuracy, positive predict value and negative predictive value of CEUS in diagnosing HAT were 100%, 96.9%, 97.8%, 92.9% and 100%, respectively. In our series of 605 liver transplants, the incidence and mortality of HAT was 2.2% (13/605) and 53.8% (7/13), respectively. Our study demonstrates the important role of CEUS in decision support for diagnosis and treatment of HAT after liver transplantation. When HAT is suspected by Doppler ultrasound, CEUS shall immediately be performed to elucidate its nature. A negative CEUS finding shall avoid invasive angiography. Such as, CEUS may alter the clinical workflow on HAT detection after liver transplantation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Pegylated interferon α enhances recovery of memory T cells in e antigen positive chronic hepatitis B patients.

    Science.gov (United States)

    Liu, Yong Zhe; Hou, Feng Qin; Ding, Peng; Ren, Yuan Yuan; Li, Shi Hong; Wang, Gui Qiang

    2012-11-16

    Interferons (IFNs) are a group of cytokines commonly used in the clinical treatment of chronic hepatitis B (CHB) patients. Their therapeutic effects are highly correlated with recovery of host antiviral immunity. Clearance of hepatitis B virus (HBV) is mediated partially by activated functional memory T cells. The aims of the present study were to investigate memory T cell status in patients with different outcomes following pegylated interferon-α (IFN-α) therapy and to identify new biomarkers for predicting antiviral immune responses. Peripheral blood cells were isolated from 23 CHB patients who were treated with pegylated IFN-α at week 0 (baseline) and week 24. Co-expression of programmed death-1 (PD-1) and CD244 in CD45RO positive T cells, as well as a subset of CD127 and CXCR4 positive memory T cells were assessed. In addition, perforin, granzyme B, and interferon-γ (IFN-γ) expressions were also analyzed by flow cytometric analysis after intracytoplasmic cytokine staining (ICCS). Peripheral blood mononuclear cells (PBMC) isolated at week 24 were re-challenged with exogenous HBV core antigen, and the percentage of IFN-γ expression, serum HBV DNA loads, and ALT (alanine aminotransferase) levels were evaluated. At week 24, PD-1 and CD244 expression in CD8 memory T cells were down-regulated (P memory T cells was up-regulated (P memory T cells after pegylated IFN-α treatment (P memory T cells than the non-responders did after HBV antigen re-stimulation in vitro. Pegylated IFN-α treatment enhanced recovery of memory T cells in CHB patients by down-regulating inhibitory receptors and up-regulating effector molecules. The expressions of CXCR4 and CD127 in CD8 memory T cell may be used as biomarkers for predicting the outcome of treatment.

  20. Adenoviral-mediated placental gene transfer of IGF-1 corrects placental insufficiency via enhanced placental glucose transport mechanisms.

    Directory of Open Access Journals (Sweden)

    Helen N Jones

    Full Text Available Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor -1 (hIGF-1 in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined glucose transporter expression and localization in both a mouse model of IUGR and a model of human trophoblast, the BeWo Choriocarcinoma cell line.At gestational day 18, animals were divided into four groups; sham-operated controls, uterine artery branch ligation (UABL, UABL+Ad-hIGF-1 (10(8 PFU, UABL+Ad-LacZ (10(8 PFU. At gestational day 20, pups and placentas were harvested by C-section. For human studies, BeWo choriocarcinoma cells were grown in F12 complete medium +10%FBS. Cells were incubated in serum-free control media ± Ad-IGF-1 or Ad-LacZ for 48 hours. MOIs of 10∶1 and 100∶1 were utilized. The RNA, protein expression and localization of glucose transporters GLUT1, 3, 8, and 9 were analyzed by RT-PCR, Western blot and immunohistochemistry.In both the mouse placenta and BeWo, GLUT1 regulation was linked to altered protein localization. GLUT3, localized to the mouse fetal endothelial cells, was reduced in placental insufficiency but maintained with Ad-I GF-1 treatment. Interestingly, GLUT8 expression was reduced in the UABL placenta but up-regulated following Ad-IGF-1 in both mouse and human systems. GLUT9 expression in the mouse was increased by Ad-IGF-1 but this was not reflected in the BeWo, where Ad-IGF-1 caused moderate membrane relocalization.Enhanced GLUT isoform transporter expression and relocalization to the membrane may be an important mechanism in Ad-hIGF-1mediated correction of placental insufficiency.

  1. Quantitative measurement of hepatic fibrosis with gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic hepatitis B infection: A comparative study on aspartate aminotransferase to platelet ratio index and fibrosis-4 index

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Guy Mok; Kim, Youe Ree; Cho, Eun Young; Lee, Young Hwan; Yoon, Kwon Ha [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Jong Hyun; Kim, Tae Hoon [Imaging Science Research Center, Wonkwang University, Iksan (Korea, Republic of)

    2017-06-15

    To quantitatively measure hepatic fibrosis on gadoxetic acid-enhanced magnetic resonance (MR) in chronic hepatitis B (CHB) patients and identify the correlations with aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) values. This study on gadoxetic acid-enhanced 3T MR imaging included 81 patients with CHB infection. To quantitatively measure hepatic fibrosis, MR images were analyzed with an aim to identify inhomogeneous signal intensities calculated from a coefficient of variation (CV) map in the liver parenchyma. We also carried out a comparative analysis between APRI and FIB-4 based on metaregression results. The diagnostic performance of the CV map was evaluated using a receiver-operating characteristic (ROC) curve. In the MR images, the mean CV values in control, groups I, II, and III based on APRI were 4.08 ± 0.92, 4.24 ± 0.80, 5.64 ± 1.11, and 5.73 ± 1.28, respectively (p < 0.001). In CHB patients grouped by FIB-4, the mean CV values of groups A, B, and C were 4.22 ± 0.95, 5.40 ± 1.19, and 5.71 ± 1.17, respectively (p < 0.001). The mean CV values correlated well with APRI (r = 0.392, p < 0.001) and FIB-4 (r = 0.294, p < 0.001). In significant fibrosis group, ROC curve analysis yielded an area under the curve of 0.875 using APRI and 0.831 using FIB-4 in HB, respectively. Gadoxetic acid-enhanced MR imaging for calculating a CV map showed moderate correlation with APRI and FIB-4 values and could be employed to quantitatively measure hepatic fibrosis in patients with CHB.

  2. An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application

    NARCIS (Netherlands)

    Moon, B.-U.; Koster, S.; Wientjes, K.J.C.; Kwapiszewski, R.M.; Schoonen, A.J.M.; Westerink, B.H.C.; Verpoorte, E.

    2010-01-01

    The development of continuous glucose monitoring systems is a major trend in diabetes-related research. Small, easy-to-wear systems which are robust enough to function over many days without maintenance are the goal. We present a new sensing system for continuous glucose monitoring based on a

  3. An Enzymatic Microreactor Based on Chaotic Micromixing for Enhanced Amperometric Detection in a Continuous Glucose Monitoring Application

    NARCIS (Netherlands)

    Moon, Byeong-Ui; Koster, Sander; Wientjes, Klaas J. C.; Kwapiszewski, Radoslaw M.; Schoonen, Adelbert J. M.; Westerink, Ben H. C.; Verpoorte, Elisabeth

    2010-01-01

    The development of continuous glucose monitoring systems is a major trend in diabetes-related research. Small, easy-to-wear systems which are robust enough to function over many days without maintenance are the goal. We present a new sensing system for continuous glucose monitoring based on a

  4. Apolipoprotein O expression in mouse liver enhances hepatic lipid accumulation by impairing mitochondrial function.

    Science.gov (United States)

    Tian, Feng; Wu, Chen-Lu; Yu, Bi-Lian; Liu, Ling; Hu, Jia-Rui

    2017-09-09

    Apolipoprotein O (ApoO) was recently observed in the cellular mitochondrial inner membrane, which plays a role in mitochondrial function and is associated with myocardiopathy. Empirical information on the physiological functions of apoO is therefore limited. In this study, we aimed to elucidate the effect of apoO on hepatic fatty acid metabolism. An adenoviral vector expressing hApoO was constructed and introduced into chow diet and high-fat diet induced mice and the L02 human hepatoma cell line. High levels of hApoO mRNA and protein were detected in the liver, and the expression of lipid metabolism genes was significantly altered compared with negative controls. The liver function indices (serum ALT and AST) were clearly elevated, and the ultrastructure of cellular mitochondria was distinctly altered in the liver after apoO overexpression. Further, mitochondrial membrane potential decreased with hApoO treatment in L02 cells. These results establish a link between apoO and lipid accumulation and could suggest a new pathway for regulating non-alcoholic fatty liver disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dietary taurine reduces hepatic secretion of cholesteryl ester and enhances fatty acid oxidation in rats fed a high-cholesterol diet.

    Science.gov (United States)

    Fukuda, Nobuhiro; Yoshitama, Ayako; Sugita, Satomi; Fujita, Michiko; Murakami, Shigeru

    2011-01-01

    We investigated the fate of exogenous fatty acid in connection with decreased hepatic accumulation and secretion of cholesteryl esters in rats fed diets containing taurine. Providing taurine as 5% of the diet for 14 d significantly decreased concentrations of cholesterol, especially cholesteryl esters in both serum and liver. Ketone body production and incorporation of exogenous [1-(14)C]oleate into ketone bodies in liver perfusate were consistently higher during a 4-h perfusion period in taurine-fed rats than in control rats. The elevation was accompanied by increased activity of liver mitochondrial carnitine palmitoyltransferase, a rate-limiting enzyme for fatty acid oxidation. Dietary taurine significantly reduced hepatic secretion of cholesteryl ester and decreased incorporation of exogenous oleic acid substrate into this lipid molecule. Further, the extent of reduction in hepatic secretion of cholesteryl ester was closely related to its diminished accumulation in the liver. The conversion pattern of exogenous [1-(14)C]oleic acid substrate suggested a decreased esterification-to-oxidation ratio in the taurine group compared with the control. These results suggest that taurine-induced reduction in hepatic accumulation of cholesteryl ester was associated with reduced hepatic secretion of this lipid molecule, and was inversely related to enhanced ketone body production and fatty acid oxidation.

  6. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men

    DEFF Research Database (Denmark)

    Pilgaard, K; Jensen, C B; Schou, J H

    2009-01-01

    AIMS/HYPOTHESIS: We studied the physiological, metabolic and hormonal mechanisms underlying the elevated risk of type 2 diabetes in carriers of TCF7L2 gene. METHODS: We undertook genotyping of 81 healthy young Danish men for rs7903146 of TCF7L2 and carried out various beta cell tests including: 24...... and peripheral insulin action. RESULTS: Carriers of the T allele were characterised by reduced 24 h insulin concentrations (p p ...-phase insulinotropic action of GLP-1 (p = 0.03) and GIP (p = 0.07) during a 7 mmol/l hyperglycaemic clamp. Secretion of GLP-1 and GIP during the mixed meal test was normal. Despite elevated hepatic glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations (p

  7. Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction

    Directory of Open Access Journals (Sweden)

    Karissa Satomi Haida

    2012-06-01

    Full Text Available The effect of infliximab on gluconeogenesis in an animal model of diet-induced liver glucose overproduction was investigated. The mice were treated with standard diet (SD group or high fat diet (HFD group. HFD group were randomly divided and treated either with saline (100 µl/dose, ip, twice a day or infliximab (10 µg in 100 µl saline per dose, ip, twice a day, i.e., 0.5 mg/kg per day. SD group also received saline. The treatment with infliximab or saline started on the first day of the introduction of the HFD and was maintained during two weeks. After this period, the mice were fasted (15 h and anesthetized. After laparotomy, blood was collected for glucose determination followed by liver perfusion in which L-alanine (5 mM was used as gluconeogenic substrate. HFD group treated with saline showed higher (p < 0.05 liver glucose production from L-alanine and fasting hyperglycemia. However, these metabolic changes were prevented by infliximab treatment. Therefore, this study suggested that infliximab could prevent the glucose overproduction and hyperglycemia related with glucose intolerance and type 2 diabetes.

  8. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  9. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    Science.gov (United States)

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-06-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.

  10. Hepatic hemangioma: contrast enhancement patterns on two-phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Eun Joo; Choi, Byung Ihn; Han, Joon Koo; Jang, Hyun Jung; Kim, Tae Kyoung; Kim, Ah Young; Lee, Ki Yeol [Seoul National Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To evaluate contrast enhancement patterns of hemangioma according to size, as seen during the arterial and portal venous phase of spiral CT. Overall, the most common enhancement pattern was peripheral high (44/82, 53.7%), during the arterial and portal venous phase. The second and third most common patterns were uniform high (11/82, 13.4%) and peripheral high-uniform high (9/82, 11.0%), also during the arterial and portal venous phase. In tumors smaller than 20 mm, low-low attenuation was seen in eight (9.8%), and iso-low attenuation in two (2.4%), during the arterial and portal venous phase, respectively. On two-phase spiral CT, the most common enhancement pattern of hemangioma was peripheral high, seen during the arterial and portal venous phase. However, a small hemangioma less than 2cm may show atypical patterns, including low and iso attenuation. (author). 23 refs., 1 tab., 4 figs.

  11. Assessment of contrast-enhanced ultrasonography of the hepatic vein for detection of hemodynamic changes associated with experimentally induced portal hypertension in dogs.

    Science.gov (United States)

    Morishita, Keitaro; Hiramoto, Akira; Michishita, Asuka; Takagi, Satoshi; Hoshino, Yuki; Itami, Takaharu; Lim, Sue Yee; Osuga, Tatsuyuki; Nakamura, Sayuri; Ochiai, Kenji; Nakamura, Kensuke; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2017-04-01

    OBJECTIVE To assess the use of contrast-enhanced ultrasonography (CEUS) of the hepatic vein for the detection of hemodynamic changes associated with experimentally induced portal hypertension in dogs. ANIMALS 6 healthy Beagles. PROCEDURES A prospective study was conducted. A catheter was surgically placed in the portal vein of each dog. Hypertension was induced by intraportal injection of microspheres (10 to 15 mg/kg) at 5-day intervals via the catheter. Microsphere injections were continued until multiple acquired portosystemic shunts were created. Portal vein pressure (PVP) was measured through the catheter. Contrast-enhanced ultrasonography was performed before and after establishment of hypertension. Time-intensity curves were generated from the region of interest in the hepatic vein. Perfusion variables measured for statistical analysis were hepatic vein arrival time, time to peak, time to peak phase (TTPP), and washout ratio. The correlation between CEUS variables and PVP was assessed by use of simple regression analysis. RESULTS Time to peak and TTPP were significantly less after induction of portal hypertension. Simple regression analysis revealed a significant negative correlation between TTPP and PVP. CONCLUSIONS AND CLINICAL RELEVANCE CEUS was useful for detecting hemodynamic changes associated with experimentally induced portal hypertension in dogs, which was characterized by a rapid increase in the intensity of the hepatic vein. Furthermore, TTPP, a time-dependent variable, provided useful complementary information for predicting portal hypertension. IMPACT FOR HUMAN MEDICINE Because the method described here induced presinusoidal portal hypertension, these results can be applied to idiopathic portal hypertension in humans.

  12. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice.

    Science.gov (United States)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-05-24

    The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Enhanced anti-fibrogenic effects of novel oridonin derivative CYD0692 in hepatic stellate cells.

    Science.gov (United States)

    Bohanon, Fredrick J; Wang, Xiaofu; Graham, Brittany M; Prasai, Anesh; Vasudevan, Sadhashiva J; Ding, Chunyong; Ding, Ye; Radhakrishnan, Geetha L; Rastellini, Cristiana; Zhou, Jia; Radhakrishnan, Ravi S

    2015-12-01

    Oridonin, isolated from Rabdosia rubescens, has been proven to possess various anti-neoplastic and anti-inflammatory properties. Previously, we reported the anti-fibrogenic effects of oridonin for liver in vitro. In the present study, we investigated the effects of a newly designed analog CYD0692 in vitro. Cell viability was measured by Alamar Blue assay. Cell apoptosis was assessed by Cell Death ELISA and Yo-Pro-1 staining. Western blots were performed for cellular proteins. Flow cytometry was used to measure cell cycle regulation. CYD0692 significantly inhibited LX-2 cells proliferation in a dose- and time-dependent manner with an IC50 value of ~0.7 μM for 48 h, ~tenfold greater potency than oridonin. Similar results were observed in HSC-T6 cells. In contrast, on the human hepatocyte cell line C3A, only 12 % of the cell growth was inhibited with 5 μM of CYD0692 treatment for 48 h, while 30 % inhibited at 10 μM. After CYD0692 treatment on LX-2 cells, apoptosis and S-phase cell cycle arrest were induced; cleaved-PARP, p21, and p53 were activated while cyclin-B1 levels declined. In addition, α-smooth muscle actin, type I Collagen, and fibronectin (FN) were markedly down regulated. Transforming growth factor β1 (TGF β1) has been identified as a dominant stimulator for ECM production in HSC. Our results indicated that pretreatment with CYD0692 blocked TGF β1-induced FN expression, thereby decreasing the downstream factors of TGF β1 signaling, such as Phospho-Smad2/3 and phospho-ERK. In comparison with oridonin, its novel derivative CYD0692 has demonstrated to be a more potent and potentially safer anti-fibrogenic agent for the treatment of hepatic fibrosis.

  14. Enhanced hepatic apoA-I secretion and peripheral efflux of cholesterol and phospholipid in CD36 null mice.

    Directory of Open Access Journals (Sweden)

    Pin Yue

    2010-03-01

    Full Text Available CD36 facilitates oxidized low density lipoprotein uptake and is implicated in development of atherosclerotic lesions. CD36 also binds unmodified high and very low density lipoproteins (HDL, VLDL but its role in the metabolism of these particles is unclear. Several polymorphisms in the CD36 gene were recently shown to associate with serum HDL cholesterol. To gain insight into potential mechanisms for these associations we examined HDL metabolism in CD36 null (CD36(-/- mice. Feeding CD36(-/- mice a high cholesterol diet significantly increased serum HDL, cholesterol and phospholipids, as compared to wild type mice. HDL apolipoproteins apoA-I and apoA-IV were increased and shifted to higher density HDL fractions suggesting altered particle maturation. Clearance of dual-labeled HDL was unchanged in CD36(-/- mice and cholesterol uptake from HDL or LDL by isolated CD36(-/- hepatocytes was unaltered. However, CD36(-/- hepatocytes had higher cholesterol and phospholipid efflux rates. In addition, expression and secretion of apoA-I and apoA-IV were increased reflecting enhanced PXR. Similar to hepatocytes, cholesterol and phospholipid efflux were enhanced in CD36(-/- macrophages without changes in protein levels of ABCA1, ABCG1 or SR-B1. However, biotinylation assays showed increased surface ABCA1 localization in CD36(-/- cells. In conclusion, CD36 influences reverse cholesterol transport and hepatic ApoA-I production. Both pathways are enhanced in CD36 deficiency, increasing HDL concentrations, which suggests the potential benefit of CD36 inhibition.

  15. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  16. AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents.

    Directory of Open Access Journals (Sweden)

    Daniel C-H Lin

    Full Text Available Agonists of GPR40 (FFA1 have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to understand the preclinical pharmacological properties of AMG 837. The activity of AMG 837 on GPR40 was characterized through GTPγS binding, inositol phosphate accumulation and Ca(2+ flux assays. Activity of AMG 837 on insulin release was assessed on isolated primary mouse islets. To determine the anti-diabetic activity of AMG 837 in vivo, we tested AMG 837 using a glucose tolerance test in normal Sprague-Dawley rats and obese Zucker fatty rats. AMG 837 was a potent partial agonist in the calcium flux assay on the GPR40 receptor and potentiated glucose stimulated insulin secretion in vitro and in vivo. Acute administration of AMG 837 lowered glucose excursions and increased glucose stimulated insulin secretion during glucose tolerance tests in both normal and Zucker fatty rats. The improvement in glucose excursions persisted following daily dosing of AMG 837 for 21-days in Zucker fatty rats. Preclinical studies demonstrated that AMG 837 was a potent GPR40 partial agonist which lowered post-prandial glucose levels. These studies support the potential utility of AMG 837 for the treatment of type 2 diabetes.

  17. AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents.

    Science.gov (United States)

    Lin, Daniel C-H; Zhang, Jane; Zhuang, Run; Li, Frank; Nguyen, Kathy; Chen, Michael; Tran, Thanhvien; Lopez, Edwin; Lu, Jenny Ying Lin; Li, Xiaoyan Nina; Tang, Liang; Tonn, George R; Swaminath, Gayathri; Reagan, Jeff D; Chen, Jin-Long; Tian, Hui; Lin, Yi-Jyun; Houze, Jonathan B; Luo, Jian

    2011-01-01

    Agonists of GPR40 (FFA1) have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to understand the preclinical pharmacological properties of AMG 837. The activity of AMG 837 on GPR40 was characterized through GTPγS binding, inositol phosphate accumulation and Ca(2+) flux assays. Activity of AMG 837 on insulin release was assessed on isolated primary mouse islets. To determine the anti-diabetic activity of AMG 837 in vivo, we tested AMG 837 using a glucose tolerance test in normal Sprague-Dawley rats and obese Zucker fatty rats. AMG 837 was a potent partial agonist in the calcium flux assay on the GPR40 receptor and potentiated glucose stimulated insulin secretion in vitro and in vivo. Acute administration of AMG 837 lowered glucose excursions and increased glucose stimulated insulin secretion during glucose tolerance tests in both normal and Zucker fatty rats. The improvement in glucose excursions persisted following daily dosing of AMG 837 for 21-days in Zucker fatty rats. Preclinical studies demonstrated that AMG 837 was a potent GPR40 partial agonist which lowered post-prandial glucose levels. These studies support the potential utility of AMG 837 for the treatment of type 2 diabetes.

  18. Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Cuthbertson, Daniel J; Shojaee-Moradie, Fariba; Sprung, Victoria S; Jones, Helen; Pugh, Christopher J A; Richardson, Paul; Kemp, Graham J; Barrett, Mark; Jackson, Nicola C; Thomas, E Louise; Bell, Jimmy D; Umpleby, A Margot

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is associated with multi-organ (hepatic, skeletal muscle, adipose tissue) insulin resistance (IR). Exercise is an effective treatment for lowering liver fat but its effect on IR in NAFLD is unknown. We aimed to determine whether supervised exercise in NAFLD would reduce liver fat and improve hepatic and peripheral (skeletal muscle and adipose tissue) insulin sensitivity. Sixty nine NAFLD patients were randomized to 16 weeks exercise supervision (n=38) or counselling (n=31) without dietary modification. All participants underwent MRI/spectroscopy to assess changes in body fat and in liver and skeletal muscle triglyceride, before and following exercise/counselling. To quantify changes in hepatic and peripheral insulin sensitivity, a pre-determined subset (n=12 per group) underwent a two-stage hyperinsulinaemic euglycaemic clamp pre- and post-intervention. Results are shown as mean [95% confidence interval (CI)]. Fifty participants (30 exercise, 20 counselling), 51 years (IQR 40, 56), body mass index (BMI) 31 kg/m(2) (IQR 29, 35) with baseline liver fat/water % of 18.8% (IQR 10.7, 34.6) completed the study (12/12 exercise and 7/12 counselling completed the clamp studies). Supervised exercise mediated a greater reduction in liver fat/water percentage than counselling [Δ mean change 4.7% (0.01, 9.4); Pliver fat, improving peripheral IR in NAFLD, the reduction in liver fat was insufficient to improve hepatic IR. © 2016 Authors; published by Portland Press Limited.

  19. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I. [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Watson, Walter H. [Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Zhong, Hai [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); States, J. Christopher [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Arteel, Gavin E., E-mail: gavin.arteel@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States)

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet ({+-} arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: Black-Right-Pointing-Pointer Characterizes a mouse model of arsenic enhanced NAFLD. Black-Right-Pointing-Pointer Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. Black-Right-Pointing-Pointer This effect is associated with increased inflammation.

  20. Hepatitis E

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Hepatitis E Fact sheet Updated July 2017 Key facts ... in 2005 . Report Global hepatitis report, 2017 World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  1. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  2. Hepatitis A

    Science.gov (United States)

    ... or care for someone who has hepatitis A People who travel to developing countries are more likely to get hepatitis A. What are the complications of hepatitis A? People typically recover from hepatitis A without complications. In ...

  3. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: Correlation between glucose metabolism and apparent diffusion coefficient.

    Science.gov (United States)

    Kong, Eunjung; Chun, Kyung Ah; Cho, Ihn Ho

    2017-01-01

    Metabolism and water diffusion may have a relationship or an effect on each other in the same tumor. Knowledge of their relationship could expand the understanding of tumor biology and serve the field of oncologic imaging. This study aimed to evaluate the relationship between metabolism and water diffusivity in hepatic tumors using a simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) system with F-18 fluorodeoxyglucose (FDG) and to reveal the metabolic and diffusional characteristics of each type of hepatic tumor. Forty-one patients (mean age 63 ± 13 years, 31 male) with hepatic tumors (18 hepatocellular carcinoma [HCC], six cholangiocarcinoma [CCC], 10 metastatic tumors, one neuroendocrine malignancy, and six benign lesions) underwent FDG PET/MRI before treatment. Maximum standard uptake (SUVmax) values from FDG PET and the apparent diffusion coefficient (ADC) from the diffusion-weighted images were obtained for the tumor and their relationships were examined. We also investigated the difference in SUVmax and ADC for each type of tumor. SUVmax showed a negative correlation with ADC (r = -0.404, p = 0.009). The median of SUVmax was 3.22 in HCC, 6.99 in CCC, 6.30 in metastatic tumors, and 1.82 in benign lesions. The median of ADC was 1.039 × 10-3 mm/s2 in HCC, 1.148 × 10-3 mm/s2 in CCC, 0.876 × 10-3 mm/s2 in metastatic tumors, and 1.323 × 10-3 mm/s2 in benign lesions. SUVmax was higher in metastatic tumors than in benign lesions (p = 0.023). Metastatic tumors had a lower ADC than CCC (p = 0.039) and benign lesions (p = 0.004). HCC had a lower ADC than benign lesions, with a suggestive trend (p = 0.06). Our results indicate that SUVmax is negatively correlated with ADC in hepatic tumors, and each group of tumors has different metabolic and water diffusivity characteristics. Evaluation of hepatic tumors by PET/MRI could be helpful in understanding tumor characteristics.

  4. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes.

    Science.gov (United States)

    Temizkan, S; Deyneli, O; Yasar, M; Arpa, M; Gunes, M; Yazici, D; Sirikci, O; Haklar, G; Imeryuz, N; Yavuz, D G

    2015-02-01

    Artificial sweeteners were thought to be metabolically inactive, but after demonstrating that the gustatory mechanism was also localized in the small intestine, suspicions about the metabolic effects of artificial sweeteners have emerged. The objective of this study was to determine the effect of artificial sweeteners (aspartame and sucralose) on blood glucose, insulin, c-peptide and glucagon-like peptide-1 (GLP-1) levels. Eight newly diagnosed drug-naive type 2 diabetic patients (mean age 51.5±9.2 years; F/M: 4/4) and eight healthy subjects (mean age 45.0±4.1 years; F/M: 4/4) underwent 75 g oral glucose tolerance test (OGTT). During OGTT, glucose, insulin, c-peptide and GLP-1 were measured at 15- min intervals for 120 min. The OGTTs were performed at three settings on different days, where subjects were given 72 mg of aspartame and 24 mg of sucralose in 200 ml of water or 200 ml of water alone 15 min before OGTT in a single-blinded randomized order. In healthy subjects, the total area under the curve (AUC) of glucose was statistically significantly lower in the sucralose setting than in the water setting (P=0.002). There was no difference between the aspartame setting and the water setting (P=0.53). Total AUC of insulin and c-peptide was similar in aspartame, sucralose and water settings. Total AUC of GLP-1 was significantly higher in the sucralose setting than in the water setting (P=0.04). Total AUC values of glucose, insulin, c-peptide and GLP-1 were not statistically different in three settings in type 2 diabetic patients. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in newly diagnosed type 2 diabetic patients.

  5. Impact of contrast-enhanced ultrasound in the study of hepatic artery hypoperfusion shortly after liver transplantation: contribution to the diagnosis of artery steal syndrome.

    Science.gov (United States)

    García-Criado, Angeles; Gilabert, Rosa; Bianchi, Luis; Vilana, Ramón; Burrel, Marta; Barrufet, Marta; Oliveira, Rafael; García-Valdecasas, Juan Carlos; Brú, Concepción

    2015-01-01

    To assess the value of contrast-enhanced ultrasound (CEUS) in the absence of hepatic artery signal on Doppler ultrasound (DUS) in the immediate postoperative period after liver transplant. This prospective study included 675 consecutive liver transplants. Patients without hepatic artery signal by DUS within 8 days post-transplant were studied with CEUS. If it remained undetectable, a thrombosis was suspected. In patent hepatic artery, a DUS was performed immediately after CEUS; if low resistance flow was detected, an arteriography was indicated. Patients with high resistance waveform underwent DUS+/CEUS follow-up. Arteriography was indicated when abnormal flow persisted for more than 5 days or liver dysfunction appeared. Thirty-four patients were studied with CEUS. In 11 patients CEUS correctly diagnosed hepatic artery thrombosis. In two out of 23 non-occluded arteries, a low resistance flow lead to a diagnosis of stenosis/proximal thrombosis. Twenty-one patients had absence of diastolic flow, which normalized in the follow-up in 13 patients. In the remaining eight patients, splenic artery steal syndrome (ASS) was diagnosed. CEUS allows us to avoid invasive tests in the diagnostic work-up shortly after liver transplant. It identifies the hepatic artery thrombosis and points to a diagnosis of ASS. • CEUS is useful in the diagnostic work-up shortly after liver transplant • CEUS identifies the hepatic artery thrombosis with reliability • There is little information about DUS and CEUS findings in the ASS • DUS and CEUS offer functional information useful in the diagnosis of ASS.

  6. Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery.

    Science.gov (United States)

    Yu, Jicheng; Qian, Chenggen; Zhang, Yuqi; Cui, Zheng; Zhu, Yong; Shen, Qundong; Ligler, Frances S; Buse, John B; Gu, Zhen

    2017-02-08

    A glucose-responsive closed-loop insulin delivery system mimicking pancreas activity without long-term side effect has the potential to improve diabetic patients' health and quality of life. Here, we developed a novel glucose-responsive insulin delivery device using a painless microneedle-array patch containing insulin-loaded vesicles. Formed by self-assembly of hypoxia and H2O2 dual-sensitive diblock copolymer, the glucose-responsive polymersome-based vesicles (d-GRPs) can disassociate and subsequently release insulin triggered by H2O2 and hypoxia generated during glucose oxidation catalyzed by glucose specific enzyme. Moreover, the d-GRPs were able to eliminate the excess H2O2, which may lead to free radical-induced damage to skin tissue during the long-term usage and reduce the activity of GOx. In vivo experiments indicated that this smart insulin patch could efficiently regulate the blood glucose in the chemically induced type 1 diabetic mice for 10 h.

  7. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1

    Science.gov (United States)

    Wu, Ning; Zheng, Bin; Shaywitz, Adam; Dagon, Yossi; Tower, Christine; Bellinger, Gary; Shen, Che-Hung; Wen, Jennifer; Asara, John; McGraw, Timothy E.; Kahn, Barbara B.; Cantley, Lewis C.

    2013-01-01

    Summary TXNIP is an α-arrestin family protein that is induced in response to glucose elevation. It has been shown to provide a negative feedback loop to regulate glucose uptake into cells, though the biochemical mechanism of action has been obscure. Here, we report that TXNIP suppresses glucose uptake directly by binding to the glucose transporter, Glut1, inducing Glut1 internalization through clathrin coated pits, as well as indirectly by reducing the level of Glut1 mRNA. In addition, we show that energy stress results in phosphorylation of TXNIP by AMP-dependent protein kinase (AMPK), leading to its rapid degradation. This suppression of TXNIP results in an acute increase in Glut1 function and an increase in Glut1 mRNA (hence total protein levels) for long-term adaptation. The glucose influx through GLUT1 restores ATP/ADP ratios in the short run and ultimately induces TXNIP protein production to suppress glucose uptake once energy homeostasis is reestablished. PMID:23453806

  8. Hepatic focal nodular hyperplasia: contrast-enhanced ultrasound findings with emphasis on lesion size, depth and liver echogenicity.

    Science.gov (United States)

    Bartolotta, Tommaso Vincenzo; Taibbi, Adele; Matranga, Domenica; Malizia, Giovanni; Lagalla, Roberto; Midiri, Massimo

    2010-09-01

    To correlate contrast-enhanced ultrasound (CEUS) findings of hepatic focal nodular hyperplasia (FNH) with lesion size, depth and liver echogenicity and to compare CEUS with baseline US. Two radiologists evaluated baseline US and CEUS examinations of 92 FNHs (mean size: 3.1 +/- 1.7 cm) in 71 patients (59 women and 12 men) to detect the "spoke-wheel" sign, central scar and feeding vessel. The FNHs were grouped and analysed by dimension, depth and liver echogenicity. At least one sign could be detected at CEUS in 27 out of 36 (75%) FNHs larger than 3 cm and in 17 out of 56 (30%) FNH measuring 3 cm or less (p 0.05) as well as between CEUS or baseline US/CD with regard to lesion size, depth or liver echogenicity (p > 0.05). The detection rate of the central scar and spoke-wheel sign in FNH at CEUS is strongly dependent on lesion size and CEUS can confidently diagnose most FNHs larger than 3 cm.

  9. Different Regions of Hepatitis B Virus X Protein Are Required for Enhancement of bZip-Mediated Transactivation versus Transrepression

    Science.gov (United States)

    Barnabas, Sangeeta; Andrisani, Ourania M.

    2000-01-01

    The hepatitis B virus X protein (pX) interacts directly with the bZip transactivator CREB and the bZip repressors ICERIIγ and ATF3, increasing their DNA-binding affinity in vitro and their transcriptional efficacy in vivo. However, the mechanism of bZip-pX interaction and of the pX-mediated increase in the bZip transcriptional efficacy remains to be understood. In this study with deletion mutants of pX, we delineated a 67-amino-acid region spanning residues 49 to 115 required for direct CREB, ATF3, and ICER IIγ interaction in vitro and in vivo and increased bZip/CRE binding in vitro. Transient transfections of the pX deletion mutants in AML12 hepatocytes demonstrate that pX49–115 is as effective as the full-length pX in enhancing the ATF3- and ICERIIγ-mediated transrepression. However, this pX region is inactive in increasing the transactivation efficacy of CREB; additional amino acid residues present in pX49–140 are required to mediate the increased transactivation efficacy of CREB in vivo. This requirement for different regions of pX in affecting CREB transactivation suggests that amino acid residues 115 to 140 integrate additional events in effecting pX-mediated transactivation, such as concomitant interactions with select components of the basal transcriptional apparatus. PMID:10590094

  10. Inclusion of the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances AAV2-Driven Transduction of Mouse and Human Retina

    Directory of Open Access Journals (Sweden)

    Maria I. Patrício

    2017-03-01

    Full Text Available The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE has been included in the transgene cassette of adeno-associated virus (AAV in several gene therapy clinical trials, including those for inherited retinal diseases. However, the extent to which WPRE increases transgene expression in the retina is still unclear. To address this question, AAV2 vectors containing a reporter gene with and without WPRE were initially compared in vitro and subsequently in vivo by subretinal delivery in mice. In both instances, the presence of WPRE led to significantly higher levels of transgene expression as measured by fundus fluorescence, western blot, and immunohistochemistry. The two vectors were further compared in human retinal explants derived from patients undergoing clinically indicated retinectomy, where again the presence of WPRE resulted in an enhancement of reporter gene expression. Finally, an analogous approach using a transgene currently employed in a clinical trial for choroideremia delivered similar results both in vitro and in vivo, confirming that the WPRE effect is transgene independent. Our data fully support the inclusion of WPRE in ongoing and future AAV retinal gene therapy trials, where it may allow a therapeutic effect to be achieved at an overall lower dose of vector.

  11. Factors in enhancing blood safety by nucleic acid technology testing for human immunodeficiency virus, hepatitis C virus and hepatitis B virus

    Science.gov (United States)

    Shyamala, Venkatakrishna

    2014-01-01

    In the last few decades through an awareness of transfusion transmitted infections (TTI), a majority of countries have mandated serology based blood screening assays for Human immunodeficiency virus (HIV), Hepatitis C virus (HCV), and Hepatitis B virus (HBV). However, despite improved serology assays, the transfusion transmission of HIV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP) and occult HBV infections (OBI). Effective mode of nucleic acid technology (NAT) testing of the viruses can be used to minimize the risk of TTIs. This review compiles the examples of NAT testing failures for all three viruses; analyzes the causes for failure, and the suggestions from retrospective studies to minimize such failures. The results suggest the safest path to be individual donation testing (ID) format for highest sensitivity, and detection of multiple regions for rapidly mutating and recombining viruses. The role of blood screening in the context of the donation and transfusion practices in India, the donor population, and the epidemiology is also discussed. World wide, as the public awareness of TTIs increases, as the recipient rights for safe blood are legally upheld, as the possibility to manage diseases such as hepatitis through expensive and prolonged treatment becomes accessible, and the societal responsibility to shoulder the health costs as in the case for HIV becomes routine, there is much to gain by preventing infections than treating diseases. PMID:24678167

  12. Factors in enhancing blood safety by nucleic acid technology testing for human immunodeficiency virus, hepatitis C virus and hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Venkatakrishna Shyamala

    2014-01-01

    Full Text Available In the last few decades through an awareness of transfusion transmitted infections (TTI, a majority of countries have mandated serology based blood screening assays for Human immunodeficiency virus (HIV, Hepatitis C virus (HCV, and Hepatitis B virus (HBV. However, despite improved serology assays, the transfusion transmission of HIV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP and occult HBV infections (OBI. Effective mode of nucleic acid technology (NAT testing of the viruses can be used to minimize the risk of TTIs. This review compiles the examples of NAT testing failures for all three viruses; analyzes the causes for failure, and the suggestions from retrospective studies to minimize such failures. The results suggest the safest path to be individual donation testing (ID format for highest sensitivity, and detection of multiple regions for rapidly mutating and recombining viruses. The role of blood screening in the context of the donation and transfusion practices in India, the donor population, and the epidemiology is also discussed. World wide, as the public awareness of TTIs increases, as the recipient rights for safe blood are legally upheld, as the possibility to manage diseases such as hepatitis through expensive and prolonged treatment becomes accessible, and the societal responsibility to shoulder the health costs as in the case for HIV becomes routine, there is much to gain by preventing infections than treating diseases.

  13. Mesenchymal Stem Cells with Enhanced Bcl-2 Expression Promote Liver Recovery in a Rat Model of Hepatic Cirrhosis

    Directory of Open Access Journals (Sweden)

    Shizhu Jin

    2016-12-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC transplantation has emerged as an option for the treatment of chronic hepatic cirrhosis, while its therapeutic efficacy could be improved. The bcl-2 gene is anti-apoptotic and can help cell survival and proliferation. Therefore, we explored whether transplanted MSCs with enhanced bcl-2 expression may be beneficial in the treatment of experimental cirrhosis in rats. Methods: MSCs were isolated from rat bone marrow, expanded in vitro and transfected with adeno-associated virus (AAV engineered the bcl-2 gene (AAV-bcl-2. Rats with cirrhosis induced by carbon tetrachloride (CCl4 were treated with AAV-bcl-2 infected BMSCs-AAV-bcl-2, with the cells traced in vivo post transplantation. Liver pathology and function were evaluated 7, 14, 21, and 28 days post transplantation, respectively. Results: On day 7 post transplantation, the infused AAV-bcl-2 had integrated into the hepatocyte-like cells (HLCs that expressed albumin (ALB, Cytokeratin 18 (CK18, and hepatocytes nuclear factor 4a (HNF4a. On day 28 post transplantation, rats in the cirrhosis + BMSCs-AAV-bcl-2 group showed the most dense HLCs, highest mRNA and protein levels of ALB, CK18, and HNF4a, compared to the other groups. Their liver function recovered most rapidly in 4 week observation, while histological sign of cirrhosis remained at the end of this period. Conclusion: BMSCs over expressing bcl-2 gene showed better survival, and enhanced the differentiation into hepatocytes-like cells, and appeared to promote the recovery of liver function in rats with experimental cirrhosis.

  14. Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters.

    Directory of Open Access Journals (Sweden)

    Ashraf Ul Kabir

    Full Text Available The study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris.Aqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg. Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1, Gastric Inhibitory Peptide (GIP, Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP, Insulin Like Growth Factor-1 (IGF-1, Pancreatic Polypeptides (PP, and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (p<0.05. Principal signaling molecules were quantified in isolated mice islets for the respective pathways to elucidate their activities. Elevated concentrations of Acetylcholine and GLP-1 in B. Vulgaris treated mice were found to be sufficient to activate the respective pathways for insulin secretion (p<0.05. The amount of membrane bound GLUT1 and GLUT4 transporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (p<0.05.Findings of the present study clearly prove the role of Acetylcholine and GLP-1 in the Insulin secreting activity of B. Vulgaris. Increased glucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in the anti-hyperglycemic activity of B. Vulgaris.

  15. Comparison of imaging characteristics between hepatic benign regenerative nodules and hepatocellular carcinomas associated with Budd-Chiari syndrome by contrast enhanced ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruifang, E-mail: zhangruifang999@hotmail.com [Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou, Henan Province 450052 (China); Qin, Shicheng, E-mail: qsc@zzu.edu.cn [Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou, Henan Province 450052 (China); Zhou, Yuanyuan, E-mail: yuanyuanzhou288@126.com [Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou, Henan Province 450052 (China); Song, Yi, E-mail: twinkle_song@126.com [Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou, Henan Province 450052 (China); Sun, Lulu, E-mail: sunluyytr@163.com [Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou, Henan Province 450052 (China)

    2012-11-15

    Purpose: To compare different imaging characteristics between hepatic benign regenerative nodules and hepatocellular carcinomas (HCCs) associated with Budd-Chiari syndrome (BCS) by contrast enhanced ultrasound (CEUS). Materials and methods: A total of 32 chronic BCS patients (mean age, 42 years; age range, 18-59 years) with hepatic nodules who underwent CEUS were retrospectively studied. All patients had no the history of viral hepatitis. There were 23 patients with benign regenerative nodules (22 {+-} 9 mm; range, 8-42 mm) and 9 patients with HCCs (63 {+-} 21 mm; range, 26-90 mm). Lesion characteristics, including number, size, vascularization on color Doppler flow imaging, echogenicity, peripheral hypoechoic rim, and enhancement patterns in arterial, portal, and late phases on CEUS, were analyzed. Results: There were significant differences in number and size of the lesions between two groups. No significant differences were observed in vascularity, echogenicity, and peripheral hypoechoic rim. Overall, there were significant differences in enhancement patterns in arterial, portal, and late phases between them on CEUS. Of 23 patients with benign regenerative nodules, 16 (70%) were center-to-periphery hyperenhanced and 7 patients (30%) were homogeneously hyperenhanced in arterial phase; the majority were homogeneously hyperenhanced in portal and late phases. Of 9 patients with HCCs, 8 (89%) were heterogeneously hyperenhanced in arterial phase and most of them were hypoenhanced in portal and late phases. Conclusion: CEUS imaging characteristics of benign regenerative nodules radically differ from that of HCCs in BCS patients.

  16. Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters.

    Science.gov (United States)

    Ul Kabir, Ashraf; Samad, Mehdi Bin; Ahmed, Arif; Jahan, Mohammad Rajib; Akhter, Farjana; Tasnim, Jinat; Hasan, S M Nageeb; Sayfe, Sania Sarker; Hannan, J M A

    2015-01-01

    The study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris. Aqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg). Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1), Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP), Insulin Like Growth Factor-1 (IGF-1), Pancreatic Polypeptides (PP), and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (ptransporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (pglucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in the anti-hyperglycemic activity of B. Vulgaris.

  17. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Pharmaceutical Engineering, International University of Korea, Jinju (Korea, Republic of); Choi, Jae Ho; Kim, Hyung Gyun; Khanal, Tilak; Song, Gye Young [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Myoung Soo [College of Agriculture and Life Sciences, Chungnam National University, Daejeon (Korea, Republic of); Lee, Hyun-Sun [Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young Chul; Lee, Young Chun [Division of Food Science, International University of Korea, Jinju (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-03-01

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.

  18. Adding glucose to food and solutions to enhance fructose absorption is not effective in preventing fructose-induced functional gastrointestinal symptoms: randomised controlled trials in patients with fructose malabsorption.

    Science.gov (United States)

    Tuck, C J; Ross, L A; Gibson, P R; Barrett, J S; Muir, J G

    2017-02-01

    In healthy individuals, the absorption of fructose in excess of glucose in solution is enhanced by the addition of glucose. The present study aimed to assess the effects of glucose addition to fructose or fructans on absorption patterns and genesis of gastrointestinal symptoms in patients with functional bowel disorders. Randomised, blinded, cross-over studies were performed in healthy subjects and functional bowel disorder patients with fructose malabsorption. The area-under-the-curve (AUC) was determined for breath hydrogen and symptom responses to: (i) six sugar solutions (fructose in solution) (glucose; sucrose; fructose; fructose + glucose; fructan; fructan + glucose) and (ii) whole foods (fructose in foods) containing fructose in excess of glucose given with and without additional glucose. Intake of fermentable short chain carbohydrates (FODMAPs; fermentable, oligo-, di-, monosaccharides and polyols) was controlled. For the fructose in solution study, in 26 patients with functional bowel disorders, breath hydrogen was reduced after glucose was added to fructose compared to fructose alone [mean (SD) AUC 92 (107) versus 859 (980) ppm 4 h(-1) , respectively; P = 0.034). Glucose had no effect on breath hydrogen response to fructans (P = 1.000). The six healthy controls showed breath hydrogen patterns similar to those with functional bowel disorders. No differences in symptoms were experienced with the addition of glucose, except more nausea when glucose was added to fructose (P = 0.049). In the fructose in foods study, glucose addition to whole foods containing fructose in excess of glucose in nine patients with functional bowel disorders and nine healthy controls had no significant effect on breath hydrogen production or symptom response. The absence of a favourable response on symptoms does not support the concomitant intake of glucose with foods high in either fructose or fructans in patients with functional bowel disorders. © 2016 The British Dietetic

  19. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Shanshan Sun

    2017-04-01

    Full Text Available Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD, a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen–glucose-deprivation/reperfusion (OGD/R model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XFe24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP+ ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.

  20. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons.

    Science.gov (United States)

    Sun, Shanshan; Hu, Fangyuan; Wu, Jihong; Zhang, Shenghai

    2017-04-01

    Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XF e 24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP + ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Glucose- but not rice-based oral rehydration therapy enhances the production of virulence determinants in the human pathogen Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Juliane Kühn

    2014-12-01

    Full Text Available Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT, whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings.

  2. Glucose- but not rice-based oral rehydration therapy enhances the production of virulence determinants in the human pathogen Vibrio cholerae.

    Science.gov (United States)

    Kühn, Juliane; Finger, Flavio; Bertuzzo, Enrico; Borgeaud, Sandrine; Gatto, Marino; Rinaldo, Andrea; Blokesch, Melanie

    2014-12-01

    Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings.

  3. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes.

    Science.gov (United States)

    Sharma, Bhesh Raj; Rhyu, Dong Young

    2014-07-01

    To evaluate anti-diabetic effect of Caulerpa lentillifera (C. lentillifera). The inhibitory effect of C. lentillifera extract on dipeptidyl peptidase-IV and α-glucosidase enzyme was measured in a cell free system. Then, interleukin-1β and interferon-γ induced cell death and insulin secretion were measured in rat insulinoma (RIN) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and ELISA kit, respectively. Glucose uptake and glucose transporter expression were measured by fluorometry and western blotting, using 3T3-L1 adipocytes. C. lentillifera extract significantly decreased dipeptidyl peptidase-IV and α-glucosidase enzyme activities, and effectively inhibited cell death and iNOS expression in interleukin-1β and interferon-γ induced RIN cells. Furthermore, C. lentillifera extract significantly enhanced insulin secretion in RIN cells and glucose transporter expression and glucose uptake in 3T3-L1 adipocytes. Thus, our results suggest that C. lentillifera could be used as a potential anti-diabetic agent.

  4. 3D Spheroid Culture Enhances the Expression of Antifibrotic Factors in Human Adipose-Derived MSCs and Improves Their Therapeutic Effects on Hepatic Fibrosis.

    Science.gov (United States)

    Zhang, Xuan; Hu, Ming-Gen; Pan, Ke; Li, Chong-Hui; Liu, Rong

    2016-01-01

    Three-dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). However, the action mechanisms of 3D MSCs vary greatly and are far from being thoroughly investigated. In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose-derived MSCs for hepatic fibrosis. Our results showed that 3D culture enhanced the expression of antifibrotic factors by MSCs, including insulin growth factor 1 (IGF-1), interleukin-6 (IL-6), and hepatocyte growth factor (HGF). In vitro studies indicated conditioned medium of 3D cultured MSCs protected hepatocytes from cell injury and apoptosis more effectively compared with 2D cultured cells. More importantly, when transplanted into model mice with hepatic fibrosis, 3D spheroids of MSCs were more beneficial in ameliorating hepatic fibrosis and improving liver function than 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs and might be promising for treatment of hepatic fibrosis.

  5. 2-Isocyano glucose used in Ugi four-component reaction: An approach to enhance inhibitory effect against DNA oxidation.

    Science.gov (United States)

    Zhao, Peng-Fei; Liu, Zai-Qun

    2017-07-28

    The Ugi four-component-reaction (Ugi 4CR) allowed synthesizing bisamide from carboxylic acid, aldehyde, amine, and isocyanide in one-pot operation. However, introducing 2-isocyano glucose into the Ugi 4CR and investigating the inhibitory effects of Ugi adducts against radical-induced oxidation of DNA remained technical challenges. We herein applied 2-isocyano glucose (acetylation of hydroxy groups) to perform a catalyst-free Ugi 4CR at room temperature. The gallic, ferulic, caffeic, or p-hydroxybenzoic acids, aniline (or benzylamine and p-aminophenol), and formaldehyde acted as reagents. In the case of inhibiting DNA oxidations induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), hydroxy radical, and Cu 2+ /glutathione, the Ugi adduct containing glucose moiety exhibited higher antioxidative activities than the structural analog without glucose moiety involved. It was also proved that high antioxidative property was owing to hydroxy groups in glucose moiety. Therefore, sugar-appended Ugi adducts might hold promising inhibitors for DNA oxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  7. Bile enhances glucose uptake, reduces permeability, and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue.

    Science.gov (United States)

    Bakke, Anne Marie; Chikwati, Elvis M; Venold, Fredrik F; Sahlmann, Christian; Holm, Halvor; Penn, Michael H; Oropeza-Moe, Marianne; Krogdahl, Åshild

    2014-02-01

    Antinutritional factors (ANFs) can disrupt digestive and other intestinal functions. ANFs in soybean meal (SBM) are implicated in proliferative and inflammatory responses in the intestine of various (functionally) monogastric animals, including Atlantic salmon (Salmo salar L.). The goal of the current study was to investigate the effect of ex vivo exposure of mid and distal intestinal tissue of salmon to soybean saponins (SAP), lectin (LEC) and Kunitz' trypsin inhibitor (KTI), singly and in combination, on epithelial function, as assessed by measuring in vitro glucose uptake pathways along a glucose concentration gradient. As solubilization of SAP in the calcium-containing Ringer's solution was problematic but resolved with the addition of a physiological concentration of bile collected from the gall bladder of salmon, an evaluation of bile effects became an added element. Results indicated that bile increased baseline glucose absorption and possibly transport, and also had a protective effect on the epithelial barrier, at least partially due to taurocholate. Compared to controls, tissues exposed to LEC+bile, KTI+bile and LEC+KTI+bile exhibited increased glucose uptake at the higher glucose concentrations, apparently due to markedly increased tissue permeability. Addition of SAP, however, attenuated the response, possibly by binding bile components. SAP+bile, also in combination with LEC and/or KTI, as well as LEC, KTI and LEC+KTI without bile often reduced transcellular glucose uptake pathways, while maintaining low tissue permeability. SAP+LEC+KTI+bile, LEC and KTI caused the most marked reductions. The distal intestine was more affected, reflecting the restriction of in vivo SBM-induced inflammatory changes to this region. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Amantadine reduces glucagon and enhances insulin secretion throughout the oral glucose tolerance test: central plus peripheral nervous system mechanisms

    Directory of Open Access Journals (Sweden)

    Fuad Lechin

    2009-12-01

    Full Text Available Fuad Lechin1, Bertha van der Dijs1, Betty Pardey-Maldonado1, Jairo E Rivera1, Marcel E Lechin2, Scarlet Baez11Department of Physiological Sciences, Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela; 2Department of Internal Medicine, Texas A & M Health Science Center, College of Medicine, TX, USAObjective: The purpose of the trial was to examine the effects of amantadine, a N-methyl-D-aspartate (NMDA antagonist, on the oral glucose tolerance test (OGTT plus insulin, glucagon and neurotransmitters circulating levels. Previous findings showed that hyperinsulinism and type 2 diabetes are positively associated with neural sympathetic and adrenal sympathetic activities, respectively. These peripheral sympathetic branches depend on the pontine (A5-noradrenergic and the rostral ventrolateral (C1-adrenergic medullary nuclei. They are excited by glutamate axons which act at NMDA postsynaptic receptors.Research design and methods: One OGTT plus placebo and one OGTT plus oral amantadine test were carried out two weeks apart in 15 caucasic normal voluntary humans. Noradrenaline, adrenaline, dopamine, plasma-free serotonin, platelet serotonin, glucose, glucagon, and insulin were measured throughout the 180-minute testing period.Results: Maximal reductions of plasma glucose and glucagon plus exacerbated insulin rises were significantly greater throughout the oral glucose plus amantadine test than those registered throughout the oral glucose plus placebo challenge. The above findings were paralleled by greater than normal noradrenaline/adrenaline plasma ratio increases. In addition, maximal reductions of the platelet serotonin and plasma serotonin circulating values contrasted with the normal rises of these parameters, always registered during the glucose load plus placebo challenge.Conclusion: This study supports the theory that

  9. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. (Karolinska Hospital, Stockholm (Sweden))

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  10. Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kim, Jeong Hwan; Kim, Jong Sang; Kim, Hyo Jung

    2012-02-01

    Our previous in vitro study demonstrated that glyceollins help normalize glucose homeostasis by potentiating β-cell function and survival in insulinoma cells as well as improving glucose utilization in adipocytes. Here, we investigated whether fermented soybeans containing glyceollins had an antidiabetic action in type 2 diabetic animals. The diabetic mice, their diabetes induced by intraperitoneal injections of streptozotocin (20 mg/kg bw), were administered a high fat diet with no soybeans (control), 10% unfermented soybeans and 10% fermented soybeans containing glyceollins, respectively, (FSG) for 8 weeks. As positive controls, rosiglitazone (20 mg/kg/bw) was given to diabetic mice fed a no soybean diet and non-diabetic mice were also placed on the same diet. Among the diabetic mice, FSG-treated mice exhibited the lowest peak for blood glucose levels with an elevation of serum insulin levels during the first part of oral glucose tolerance testing. FSG also made blood glucose levels drop quickly after the peak and it decreased blood glucose levels more than the control during insulin tolerance testing. This improvement was associated with increased hepatic glycogen accumulation and decreased triglyceride storage. The phosphorylation of Akt, AMP-kinase, and acetyl-CoA carboxylase in the liver was potentiated by FSG, whereas phosphoenolpyruvate carboxykinase expression decreased. The enhancement of glucose homeostasis was comparable to the effect induced by rosiglitazone, a commercial peroxisome proliferator-activated receptor-γ agonist, but it did not match the level of glucose homeostasis in the non-diabetic mice. Glyceollin-containing FSG improves glucose homeostasis, partly by enhancing hepatic insulin sensitivity in type 2 diabetic mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect.

    Science.gov (United States)

    Lu, Xinyao; Ren, Shunli; Lu, Jingzheng; Zong, Hong; Song, Jian; Zhuge, Bin

    2018-01-03

    This study aimed to strengthen the reducing equivalent regeneration in Klebsiella pneumoniae for improving 1,3-propanediol (PDO) production. Disruption of the arcA gene activated the transcription levels of the TCA cycle genes and thus increased the NADH/NAD+ ratio by 54.2%, leading to the improved PDO titer and yield per cell from 16.1 g l-1 and 4.0 g gDCW-1 to 18.8 g l-1 and 6.4 g gDCW-1 , respectively. Further ldhA gene deletion eliminated lactate accumulation and promoted the PDO titer to 19.9 g l-1 . Finally, the glucose effect was weakened by deleting the crr gene to enhance the co-utilization of glucose and glycerol, resulting in the increased PDO production to 23.8 g l-1 with the glycerol conversion rate of 59.5%. The PDO titer in bioreactor was promoted from 61.2 g l-1 to 78.1 g l-1 . Deletions of the arcA and the crr genes showed positive effects on the TCA cycle activity and the co-utilization of glucose and glycerol, leading to the strengthened reducing equivalent generation and the improved PDO titer by 47.8% in shaker. The PDO titer in bioreactor was enhanced to 78.1 g l-1 . This study provided novel information on generating reducing equivalent for the PDO biosynthesis by strengthening the TCA cycle and weakening the glucose effect in K. pneumoniae. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Anti-proliferative activity of oral anti-hyperglycemic agents on human vascular smooth muscle cells: thiazolidinediones (glitazones have enhanced activity under high glucose conditions

    Directory of Open Access Journals (Sweden)

    de Dios Stephanie T

    2007-10-01

    ]-thymidine incorporation or cell numbers. Conclusion TZDs but not sulfonylureas nor biguanides (except phenformin at high concentrations show favorable vascular actions assessed as inhibition of vSMC proliferation. The activity of rosiglitazone and pioglitazone is enhanced under high glucose conditions. These data provide further in vitro evidence for the potential efficacy of TZDs in preventing multiple cardiovascular diseases. However, the plethora of potentially beneficial actions of TZDs in cell and animal models have not been reflected in the results of major clinical trials and a greater understanding of these complex drugs is required to delineate their ultimate clinical utility in preventing macrovascular disease in diabetes.

  13. Clinical utility of microbubble contrast-enhanced ultrasound in the diagnosis of hepatic artery occlusion after liver transplantation

    National Research Council Canada - National Science Library

    Berstad, Audun Elnaes; Brabrand, Knut; Foss, Aksel

    2009-01-01

    ...) in the diagnosis of hepatic artery occlusion after liver transplantation. One hundred and fifty-two liver transplantations in 142 adult subjects, comprising 80 male patients and 62 female patients, were studied...

  14. Non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses: comparison at 1.5 Tesla and 3 Tesla.

    Science.gov (United States)

    Ohno, Tsuyoshi; Isoda, Hiroyoshi; Furuta, Akihiro; Togashi, Kaori

    2015-05-01

    A 3 Tesla (3 T) magnetic resonance (MR) scanner is a promising tool for upper abdominal MR angiography. However, there is no report focused on the image quality of non-contrast-enhanced MR portography and hepatic venography at 3 T. To compare and evaluate images of non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses (Time-SLIP) at 1.5 Tesla (1.5 T) and 3 T. Twenty-five healthy volunteers were examined using respiratory-triggered three-dimensional balanced steady-state free-precession (bSSFP) with Time-SLIP. For portography, we used one tagging pulse (selective inversion recovery) and one non-selective inversion recovery pulse; for venography, two tagging pulses were used. The relative signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified, and the quality of visualization was evaluated. The CNRs of the main portal vein, right portal vein, and left portal vein at 3 T were better than at 1.5 T. The image quality scores for the portal branches of segment 4, 5, and 8 were significantly higher at 3 T than at 1.5 T. The CNR of the right hepatic vein (RHV) at 3 T was significantly lower than at 1.5 T. The image quality scores of RHV and the middle hepatic vein were higher at 1.5 T than at 3 T. For RHV visualization, the difference was statistically significant. Non-contrast-enhanced MR portography with Time-SLIP at 3 T significantly improved visualization of the peripheral branch in healthy volunteers compared with1.5 T. Non-contrast-enhanced MR hepatic venography at 1.5 T was better than at 3 T.

  15. Three-dimensional Co3O4@MWNTs nanocomposite with enhanced electrochemical performance for nonenzymatic glucose biosensors and biofuel cells

    Science.gov (United States)

    Jiao, Kailong; Jiang, Yu; Kang, Zepeng; Peng, Ruiyun; Jiao, Shuqiang; Hu, Zongqian

    2017-12-01

    Three-dimensional nanoarchitectures of Co3O4@multi-walled carbon nanotubes (Co3O4@MWNTs) were synthesized via a one-step process with hydrothermal growth of Co3O4 nanoparticles onto MWNTs. The structure and morphology of the Co3O4@MWNTs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, scanning electron microscopy and transmission electron microscopy. The electrocatalytic mechanism of the Co3O4@MWNTs was studied by X-ray photoelectron spectroscopy and cyclic voltammetry. Co3O4@MWNTs exhibited high electrocatalytic activity towards glucose oxidation in alkaline medium and could be used in nonenzymatic electrochemical devices for glucose oxidation. The open circuit voltage of the nonenzymatic glucose/O2 fuel cell was 0.68 V, with a maximum power density of 0.22 mW cm-2 at 0.30 V. The excellent electrochemical properties, low cost, and facile preparation of Co3O4@MWNTs demonstrate the potential of strongly coupled oxide/nanocarbon hybrid as effective electrocatalyst in glucose fuel cells and biosensors.

  16. Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yoshida, Aya; Wei, Dandan; Nomura, Wataru; Izawa, Shingo; Inoue, Yoshiharu

    2012-01-02

    Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it remains to be elucidated whether such factors are a cause, or consequence, of diabetes. Here, we show that methylglyoxal inhibits the activity of mammalian glucose transporters using recombinant Saccharomyces cerevisiae cells genetically lacking all hexose transporters but carrying cDNA for human GLUT1 or rat GLUT4. We found that methylglyoxal inhibits yeast hexose transporters also. Glucose uptake was reduced in a stepwise manner following treatment with methylglyoxal, i.e. a rapid reduction within 5 min, followed by a slow and gradual reduction. The rapid reduction was due to the inhibitory effect of methylglyoxal on hexose transporters, whereas the slow and gradual reduction seemed due to endocytosis, which leads to a decrease in the amount of hexose transporters on the plasma membrane. We found that Rsp5, a HECT-type ubiquitin ligase, is responsible for the ubiquitination of hexose transporters. Intriguingly, Plc1 (phospholipase C) negatively regulated the endocytosis of hexose transporters in an Rsp5-dependent manner, although the methylglyoxal-induced endocytosis of hexose transporters occurred irrespective of Plc1. Meanwhile, the internalization of hexose transporters following treatment with methylglyoxal was delayed in a mutant defective in protein kinase C.

  17. Pentavalent vanadium at concentration of the underground water level enhances the sweet taste sense to glucose in college students.

    Science.gov (United States)

    Nagai, Masanori; Saitoh, Junko; Ohno, Hiromi; Hitomi, Chiaki; Wada, Maki

    2006-02-01

    Underground water in volcanic areas contains vanadium when the basalt layer exists among igneous rocks. The concentration of vanadium in drinking water sometimes exceeds 0.8 microM in these areas, however, the physiological effects of vanadium, especially non-toxic effects, at concentrations lower than 1 microM are unknown. In the present experiments, we examined the effect of pentavalent vanadium and tetravalent vanadium at 0.8 and 8.0 microM concentrations on the recognition threshold to taste substances in healthy college students. Pentavalent vanadium, ammonium vanadate, lowered the sweet taste threshold to glucose at 0.8 and 8.0 microM as well. Tetravalent vanadium, vanadium sulfate, did not alter the threshold to glucose either at 8.0 microM or at 0.8 microM. Ammonium vanadate also decreased the sweet taste threshold to L-proline at 8.0 microM. Ammonium vanadate did not influence the sour taste threshold to hydrogen chloride. Neither ammonium sulfate nor ammonium bicarbonate altered the sweet taste threshold to glucose. Therefore, the effect of ammonium vanadate on the sweet taste threshold is attained by vanadium but not by ammonium. It was concluded that pentavalent vanadium at 0.8 microM intensifies the sweet taste sense to glucose rather specifically. We have first shown the physiological effect of vanadium at the concentration of the underground water level.

  18. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Simonsen, Lene; Madsbad, Sten

    2010-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) has been implicated in lipid metabolism in animals. In humans, however, there is no clear evidence of GIP effecting lipid metabolism. The present experiments were performed in order to elucidate the effects of GIP on regional adipose tissue metab...

  19. Glucose utilization and anti-oxidative mechanisms of the aqueous ...

    African Journals Online (AJOL)

    olayemitoyin

    recorded in this study suggest that the glycemic control achieved by HU was probably mediated via decreased release of glucose from hepatic tissue glycogen and increased hepatic glycogen deposition/storage due to decreased glucose-6- phosphatase activity through inhibition of glycolysis. Also, literature has it that an ...

  20. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo.

    Science.gov (United States)

    Wu, Na; Shen, Haitao; Liu, Henan; Wang, Yanjun; Bai, Yu; Han, Ping

    2016-08-05

    Complications of diabetes mellitus (DM) are related not only to elevated plasma glucose, but also plasma glucose fluctuations. However, the specific mechanism underlying the role of plasma glucose fluctuation in the pathogenesis of DM complications remains poorly understood. In the present study, the influence of acute fluctuant hyperglycemia and persistent hyperglycemia on vascular endothelial cell apoptosis, function, oxidative stress and inflammation was examined in vivo. Rats were assigned to three different groups (n = 10/group) that received 48-h infusions of saline (SAL group), continuous 50 % glucose (constant high glucose group [CHG]), or intermittent 50 % glucose (acute blood glucose fluctuation group [AFG]). Plasma 8-isoprostaglandin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were quantified by using enzyme-linked immunosorbent assay (ELISA) commercial kits. Plasma insulin levels were measured by radioimmunoassays (RIAs) using kits. The aortic segment was collected. The levels of malondialdehyde (MDA) and activity of glutathione peroxidase (GSH-PX) were measured in endothelial homogenates prepared from endothelial cells harvested from the aorta using colorimetric kits. Apoptosis of vascular endothelial cells was determined with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Endothelial dysfunction was assessed by isometric tension recording to evaluate the endothelial function. The expression of B cell lymphoma-2 (Bcl-2), Bcl-2 Associated X protein (Bax), pro caspase-3, caspase-3 p17, 3-nitrotyrosine (3-NT) and p47phox protein in rat aortic endothelial cells were tested with Western blot analysis. Endothelial cells reactive oxygen species (ROS) formation was determined using dihydroethidium-dependent fluorescence microtopography in aortic cryo-sections. Expression of IL-6, TNF-α and ICAM-1 mRNAs in vascular endothelial cells were determined by real

  1. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  2. Hexachlorobenzene impairs glucose metabolism in a rat model of porphyria cutanea tarda: a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazzetti, Marta Blanca; Taira, Maria Cristina; Lelli, Sandra Marcela; Viale, Leonor Carmen San Martin de [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGA, Ciudad Autonoma Buenos Aires (Argentina); Dascal, Eduardo; Basabe, Juan Carlos [Centro de Investigaciones Endocrinologicas (CEDIE). Hospital de Ninos, Dr. Ricardo Gutierrez, C1425EDF, Ciudad Autonoma Buenos Aires (Argentina)

    2004-01-01

    response of the organism to stimulate gluconeogenesis. They showed for the first time that HCB causes impairment of the gluconeogenic pathway. Therefore, the reduced levels of glucose would thus be the consequence of decreased gluconeogenesis, enhanced glucose storage, and unaffected glycolysis. The impairment of gluconeogenesis (especially for PEPCK) and the related variation in glucose levels caused by HCB treatment could be a consequence of the oxidative stress produced by the fungicide. Tryptophan adds its effect to this decrease in the higher phases of HCB intoxication, where its levels overcome the control values possibly owing to the drastic decline of URO-D. This derangement of carbohydrates leads porphyric hepatocytes to have lower levels of free glucose. These results contribute to our understanding of the protective and modulatory effect that diets rich in carbohydrates have in hepatic porphyria disease. (orig.)

  3. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

    Science.gov (United States)

    Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2016-02-01

    A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight.

    Science.gov (United States)

    Petsiou, Eleni I; Mitrou, Panayota I; Raptis, Sotirios A; Dimitriadis, George D

    2014-10-01

    The aim of this review is to summarize the effects of vinegar on glucose and lipid metabolism. Several studies have demonstrated that vinegar can help reduce hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity. Other studies, however, have shown no beneficial effect on metabolism. Several mechanisms have been proposed to explain these metabolic effects, including delayed gastric emptying and enteral absorption, suppression of hepatic glucose production, increased glucose utilization, upregulation of flow-mediated vasodilation, facilitation of insulin secretion, reduction in lipogenesis, increase in lipolysis, stimulation of fecal bile acid excretion, increased satiety, and enhanced energy expenditure. Although some evidence supports the use of vinegar as a complementary treatment in patients with glucose and lipid abnormalities, further large-scale long-term trials with impeccable methodology are warranted before definitive health claims can be made. © 2014 International Life Sciences Institute.

  5. Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system.

    Science.gov (United States)

    Xie, Ting; Mo, Chuangrong; Li, Xiaoming; Zhang, Jian; An, Hongxue; Yang, Qi; Wang, Dongbo; Zhao, Jianwei; Zhong, Yu; Zeng, Guangming

    2017-02-01

    In this study, the effects of different ratios of glucose to acetate on enhanced biological phosphorus removal (EBPR) were investigated with regard to the changes of intercellular polyhydroxyalkanoates (PHAs) and glycogen, as well as microbial community. The experiments were carried out in five sequencing batch reactors (SBRs) fed with glucose and/or acetate as carbon sources at the ratios of 0:100 %, 25:75 %, 50:50 %, 75:25 %, and 100:0 %. The experimental results showed that a highest phosphorus removal efficiency of 96.3 % was obtained with a mixture of glucose and acetate at the ratio of 50:50 %, which should be attributed to more glycogen and polyhydroxyvalerate (PHV) transformation in this reactor during the anaerobic condition. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of sludge samples taken from different anaerobic/aerobic (A/O) SBRs revealed that microbial community structures were distinctively different with a low similarity between each other.

  6. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as a sole carbon substrate, but its effect is inferior to that of the mixture of glycerol and glucose. The effect of glycerol and glucose could enhance the algal cell growth rate, biomass content and volumetric productivity, and overcome the lower biomass production on glycerol as the sole organic carbon source in mixotrophic culture medium. The utilization of complex organic carbon substrate can stimulate the biosynthesis of lipids and soluble carbohydrates as the raw materials for biodiesel and bioethanol production, and reduce the anabolism of photosynthetic pigments and proteins. This study provides a promising niche for reducing the overall cost of biodiesel and bioethanol production from microalgae as it investigates the by-products of algal biodiesel production and algal cell hydrolysis as possible raw materials (lipids and carbohydrates and organic carbon substrates (soluble carbohydrates and glycerol for mixotrophic cultivation of microalgae.

  7. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM

  8. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  9. Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A.

    Science.gov (United States)

    Hua, Guojun; Liu, Yunpeng; Li, Xiangyong; Xu, Peirong; Luo, Yuchun

    2014-06-01

    Chondrosarcoma is a malignant cartilage-forming cancer composed of cells derived from transformed cells that produce cartilage. Conventional chemotherapy and radiotherapy have very limited efficacy in patients with advanced chondrosarcoma. In the present study, we reported a novel therapeutic approach in the treatment of chondrosarcoma cells. We detected that lactate dehydrogenase-A (LDHA) is highly active in chondrosarcoma cells and chondrosarcoma patient samples compared with normal chondrocyte cell lines and primary human chondrocyte. Moreover, chondrosarcoma cells exhibited elevated levels of LDHA expression under doxorubicin treatment. To further explore the mechanisms, we generated doxorubicin-resistant cells from SW1353 chondrosarcoma cell line. Notably, the activity and expression of LDHA are upregulated in doxorubicin-resistant cells. Moreover, our data showed a strong correlation between glucose metabolism and doxorubicin resistance in chondrosarcoma cells; doxorubicin-resistant cells displayed highly activated glucose metabolism and depended more on glucose supply. Finally, we reported a synergistic effect produced by incorporating doxorubicin with glycolysis inhibitors-oxamate in the combined treatment of chondrosarcoma cells in vitro and in vivo. In summary, the present study may aid in the development of new approaches using the combination of chemotherapeutic agents for the treatment of chondrosarcoma patients.

  10. Enhancing hepatic fibrosis in spontaneously hypertensive rats fed a choline-deficient diet: a follow-up report on long-term effects of oxidative stress in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Yamamoto, Hiroya; Kanno, Keishi; Ikuta, Takuya; Arihiro, Koji; Sugiyama, Akiko; Kishikawa, Nobusuke; Tazuma, Susumu

    2016-05-01

    We previously reported a model of non-alcoholic fatty liver disease (NAFLD) using spontaneously hypertensive rats (SHRs), fed a choline-deficient (CD) diet for 5 weeks, that hepatic steatosis but not fibrosis is developed through oxidative stress. To determine the relationship between hypertension and hepatic fibrosis in NAFLD, we examined whether long-term CD diet leads to hepatic fibrosis through oxidative stress. Eight-week-old male SHR and normotensive Wistar Kyoto rats (WKYs) were fed a CD diet for 5 or 20 weeks, then liver histology and hepatic expression of genes related to lipid metabolism, fibrosis, and oxidative stress were assessed. Oxidative stress was assessed by hepatic thiobarbituric acid reactive substance (TBARS) levels. After 5 weeks on CD diet, prominent hepatic steatosis and decrease in expression of genes for lipid metabolism were observed in SHRs as compared with WKYs. SHRs on a CD diet demonstrated a downregulated expression of genes for antioxidants, along with significant increases in hepatic TBARS. After 20 weeks on CD diet, SHRs demonstrated severe liver fibrosis and upregulated expressions of genes for fibrosis when compared with WKY. Hypertension precipitated hepatic steatosis, and further, acts as an enhancer in NAFLD progression to liver fibrosis through oxidative stress. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Phthalazinone Pyrazole Enhances the Hepatic Functions of Human Embryonic Stem Cell-Derived Hepatocyte-Like Cells via Suppression of the Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Song, Chang-Woo; Kim, Dae-Sung; Yoon, Seokjoo; Park, Han-Jin

    2017-12-13

    During liver development, nonpolarized hepatic progenitor cells differentiate into mature hepatocytes with distinct polarity. This polarity is essential for maintaining the intrinsic properties of hepatocytes. The balance between the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) plays a decisive role in differentiation of polarized hepatocytes. In this study, we found that phthalazinone pyrazole (PP), a selective inhibitor of Aurora-A kinase (Aurora-A), suppressed the EMT during the differentiation of hepatocyte-like cells (HLCs) from human embryonic stem cells. The differentiated HLCs treated with PP at the hepatoblast stage showed enhanced hepatic morphology and functions, particularly with regard to the expression of drug metabolizing enzymes. Moreover, we found that these effects were mediated though suppression of the AKT pathway, which is involved in induction of the EMT, and upregulation of hepatocyte nuclear factor 4α expression rather than Aurora-A inhibition. In conclusion, these findings provided insights into the regulatory role of the EMT on in vitro hepatic maturation, suggesting that inhibition of the EMT may drive transformation of hepatoblast cells into mature and polarized HLCs.

  12. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids.

    Science.gov (United States)

    Fu, Xianghui; Dong, Bingning; Tian, Yan; Lefebvre, Philippe; Meng, Zhipeng; Wang, Xichun; Pattou, François; Han, Weidong; Wang, Xiaoqiong; Lou, Fang; Jove, Richard; Staels, Bart; Moore, David D; Huang, Wendong

    2015-06-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and increased hepatic glucose production, yet the molecular mechanisms underlying these abnormalities are poorly understood. MicroRNAs (miRs) are a class of small, noncoding RNAs that have been implicated in the regulation of human diseases, including T2D. miR-26a is known to play a critical role in tumorigenesis; however, its function in cellular metabolism remains unknown. Here, we determined that miR-26a regulates insulin signaling and metabolism of glucose and lipids. Compared with lean individuals, overweight humans had decreased expression of miR-26a in the liver. Moreover, miR-26 was downregulated in 2 obese mouse models compared with control animals. Global or liver-specific overexpression of miR-26a in mice fed a high-fat diet improved insulin sensitivity, decreased hepatic glucose production, and dec