WorldWideScience

Sample records for enhanced thermoelectric properties

  1. Enhanced thermoelectric properties in boron nitride quantum-dot

    Directory of Open Access Journals (Sweden)

    Changning Pan

    Full Text Available We have investigated the ballistic thermoelectric properties in boron nitride quantum dots by using the nonequilibrium Green’s function approach and the Landauer transport theory. The result shows that the phonon transport is substantially suppressed by the interface in the quantum dots. The resonant tunneling effect of electron leads to the fluctuations of the electronic conductance. It enhances significantly the Seebeck coefficient. Combined with the low thermal conductance of phonon, the high thermoelectric figure of merit ZT ∼0.78 can be obtained at room temperature T = 300 K and ZT ∼0.95 at low temperature T = 100 K. It is much higher than that of graphene quantum dots with the same geometry parameters, which is ZT ∼0.29 at room temperature T = 300 K and ZT ∼0.48 at low temperature T = 100 K. The underlying mechanism is that the boron nitride quantum dots possess higher thermopower and lower phonon thermal conductance than the graphene quantum dots. Thus the results indicate that the thermoelectric properties of boron nitride can be significantly enhanced by the quantum dot and are better than those of graphene. Keywords: Thermoelectric properties, Boron nitride quantum dot, Electron transport, Phonon transport

  2. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  3. Enhanced thermoelectric properties of penta-graphene by strain effects process

    Science.gov (United States)

    Chen, Chun-Ping; Liu, Chang; Liu, Lin-Lin; Zhao, Lu-Si; Wang, Xiao-Chun

    2017-10-01

    Using the Boltzmann theory and first-principles electronic structure calculations, we investigated the thermal transport of penta-graphene (PG) without and with biaxial tensile strain effects. The results show that PG has desirable features of good thermoelectric. We predict that the carrier relaxation time of hole is longer than that of electron, implying better thermoelectric performance of p-type PG. The Seebeck coefficient of penta-graphene is 36 times as large as graphene, which is attributed to the existence of bandgap in the PG. In addition, the thermoelectric figure of merit (ZT) of PG is obtained, with optimized value (about 0.053) at room temperature, which is 5.9 times much higher than that of graphene. Moreover, we show that tensile strain effects on the thermoelectric properties of PG. It is found that tensile strain can induce significantly enhanced n- and p-type power factors. Extremely prominent, at room temperature, the ZT of p-type PG at the strain of 11% is 0.481, which is 9.1 times higher than that of unstrained one. The calculated results show that tensile strain is indeed a very effective strategy to achieve enhanced thermoelectric properties.

  4. Improved thermoelectric properties of TiNiSn through enhancing strain field fluctuation

    Science.gov (United States)

    Lkhagvasuren, Enkhtaivan; Fu, Chenguang; Fecher, Gerhard H.; Auffermann, Gudrun; Kreiner, Guido; Schnelle, Walter; Felser, Claudia

    2017-10-01

    MNiSn (M  =  Hf, Zr, Ti) -based half Heusler compounds have attracted extensive attention as promising materials in thermoelectric power generation. In this work, the thermoelectric properties of the cheapest composition TiNiSn from this system are investigated. Isoelectronic substitutions of Si and Ge on Sn site are employed to reduce the lattice thermal conductivity. It is found that Si substitution leads to simultaneously enhanced mass and strain field fluctuations in TiNiSn, while the strain field fluctuation dominates the decrease of thermal conductivity in Ge substituted TiNiSn. A maximum ZT of 0.48 at 740 K is obtained in TiNiSn0.975 Ge0.025 , which is a 23% increase compared to TiNiSn. This result highlights the role of strain field fluctuation in suppressing lattice thermal conductivity and improving the thermoelectric performance of half-Heusler compounds.

  5. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    Science.gov (United States)

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  6. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    Science.gov (United States)

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm-1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m-1 K-2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  7. Superparamagnetic enhancement of thermoelectric performance

    Science.gov (United States)

    Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing

    2017-09-01

    The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles—in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)—lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.

  8. Enhancement of thermoelectric properties in benzene molecule junction by the magnetic flux

    Science.gov (United States)

    Li, Haidong; Wang, Yuan; kang, Xiubao; Liu, Shaohui; Li, Ruixue

    2017-02-01

    The thermoelectric properties through a benzene molecule with two metal leads are theoretically studied. The results reveal that the thermoelectric properties are strongly influenced by the magnetic flux. The reason for such a behavior is that the quantum interference caused by the magnetic field leads to the anti-resonance effect, which results in obvious thermoelectric effects. The value of Z T with a period of 1 for the magnetic flux and the magnitude of Z T may exceed 2 under some specific magnetic flux and onsite Coulomb interaction.

  9. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  10. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Science.gov (United States)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Chen, Xiaomei; Salleh, Muhamad Mat; Oyama, Munetaka

    2016-02-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  11. Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs

    Science.gov (United States)

    Dongmo, Pernell; Zhong, Yujun; Attia, Peter; Bomberger, Cory; Cheaito, Ramez; Ihlefeld, Jon F.; Hopkins, Patrick E.; Zide, Joshua

    2012-11-01

    We report room temperature electronic and thermoelectric properties of Si-doped In0.52Ga0.48BiyAs1-y with varying Bi concentrations. These films were grown epitaxially on a semi-insulating InP substrate by molecular beam epitaxy. We show that low Bi concentrations are optimal in improving the conductivity, Seebeck coefficient, and thermoelectric power factor, possibly due to the surfactant effects of bismuth. We observed a reduction in thermal conductivity with increasing Bi concentration, which is expected because of alloy scattering. We report a peak ZT of 0.23 at 300 K.

  12. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering

    Science.gov (United States)

    Shen, Shengfei; Zhu, Wei; Deng, Yuan; Zhao, Huaizhou; Peng, Yuncheng; Wang, Chuanjun

    2017-08-01

    Preparation of high performance flexible thermoelectric thin films would promote applications of flexible thermoelectric device. In this work, antimony telluride (Sb2Te3) thin films were directly deposited on polyimide substrate. The crystalline structures and morphologies of the thin films were analyzed, and the mechanism of crystal growth influenced by sputtering pressure was discussed. We also investigated the effects of microstructure on their thermoelectric properties, where Hall effect measurement was conducted to provide further insight into the enhancement of thermoelectric properties. The mean free path of the carrier was calculated on the basis of carrier concentration and mobility. Our results showed that with (015) crystal preferential orientation, the electrical conductivity and Seebeck coefficient of Sb2Te3 thin films were simultaneously increased, and a maximum power factor of 6.0 μW cm-1 K-2 was achieved, which was increased by 75% compared with the ordinary thin film. Meanwhile, due to the reduced lattice thermal conductivity and increased power factor, the estimated figure of merit (ZT) value was largely enhanced to 0.42.

  13. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    Science.gov (United States)

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  14. Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition

    Directory of Open Access Journals (Sweden)

    Chun Hung Suen

    2017-12-01

    Full Text Available SnSe single crystals have been demonstrated to possess excellent thermoelectric properties. In this work, we demonstrate a grain size control method in growing nanocrystalline SnSe thin films through a glancing angle pulsed-laser deposition approach. Structural characterization reveals that the SnSe film deposited at a normal angle has a preferred orientation along a axis, while by contrast, the SnSe film deposited at an 80° glancing angle develops a nanopillar structure with the growth direction towards the incident atomic flux. The glancing angle deposition greatly reduces the grain size of the thin film due to a shadowing effect to the adatoms, resulting in significantly increased power factor for more than 100%. The maximum Seebeck coefficient and power factor are 498.5μV/K and 18.5μWcm−1K−2, respectively. The enhancement of thermoelectric property can be attributed to the potential barrier scattering at grain boundaries owing to the reduced grain size and increased grain boundaries in the film. Given this enhanced power factor, and considering the fact that the nanopillar structure should have much lower thermal conductivity than a plain film, the zT value of such made SnSe film could be significantly larger than the corresponding single crystal film, making it a good candidate for thin film-based thermoelectric device.

  15. Thermoelectric properties control due to doping level and sintering conditions for FGM thermoelectric element

    CERN Document Server

    Kajikawa, T; Shiraishi, K; Ohmori, M; Hirai, T

    1999-01-01

    Thermoelectric performance is determined with three factors, namely, Seebeck coefficient, electrical resistivity and thermal conductivity. For metal and single crystalline semiconductor, those factors have close interrelation each $9 other. However, as the sintered thermoelectric element has various levels of superstructure from macro scale and micro scale in terms of the thermoelectric mechanism, the relationship among them is more complex than that for the $9 melt- grown element, so it is suggested that the control of the temperature dependence of thermoelectric properties is possible to enhance the thermoelectric performance for wide temperature range due to FGM approach. The research $9 objective is to investigate the characteristics of the thermoelectric properties for various doping levels and hot-pressed conditions to make the thermoelectric elements for which the temperature dependence of the performance is $9 controlled due to FGM approach varying the doping levels and sintering conditions. By usage ...

  16. Thermoelectric properties of p-type CuInSe2 chalcopyrites enhanced by introduction of manganese

    Science.gov (United States)

    Yao, Jinlei; Takas, Nathan J.; Schliefert, Megan L.; Paprocki, David S.; Blanchard, Peter E. R.; Gou, Huiyang; Mar, Arthur; Exstrom, Christopher L.; Darveau, Scott A.; Poudeu, Pierre F. P.; Aitken, Jennifer A.

    2011-08-01

    Thermoelectric properties, x-ray photoelectron spectroscopy, Raman spectroscopy, and electronic structures have been studied for Mn-substituted CuInSe2 chalcopyrites. Raman spectroscopy verifies the lattice disorder due to the introduction of Mn into the CuInSe2 matrix, leading to a slight suppression of thermal conductivity. On the other hand, the Mn substitution significantly increases the electrical conductivity and Seebeck coefficient. Therefore the thermoelectric figure of merit ZT has been enhanced by over two orders of magnitude by the introduction of Mn into CuInSe2. These materials are p-type degenerate semiconductors, containing divalent Mn species as confirmed by x-ray photoelectron spectroscopy. The crystal structure of Mn-substituted CuInSe2, as well as related ternary and quaternary diamond-like semiconductors, can be viewed as a combination of an electrically conducting unit, the Cu-Se and Mn-Se networks, and an electrically insulating unit, the In-Se network. Therefore, diamond-like semiconductors can serve as a potential class of thermoelectric materials with relatively wide band gaps upon substitution with Mn or other transition metals.

  17. A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2-RGO nanocomposites.

    Science.gov (United States)

    Nam, Woo Hyun; Lim, Young Soo; Kim, Woochul; Seo, Hyeon Kook; Dae, Kyun Seong; Lee, Soonil; Seo, Won-Seon; Lee, Jeong Yong

    2017-06-14

    We report synergistically enhanced thermoelectric properties through the independently controlled charge and thermal transport properties in a TiO2-reduced graphene oxide (RGO) nanocomposite. By the consolidation of TiO2-RGO hybrid powder using spark plasma sintering, we prepared an interface-controlled TiO2-RGO nanocomposite where its grain boundaries are covered with the RGO network. Both the enhancement in electrical conductivity and the reduction in thermal conductivity were simultaneously achieved thanks to the beneficial effects of the RGO network, and detailed mechanisms are discussed. This led to the gigantic increase in the ratio of electrical to thermal conductivity by six orders of magnitude and also the synergistic enhancement in the thermoelectric figure of merit by two orders. Our results present a strategy for the realization of 'phonon-glass electron-crystals' through interface control using graphene in graphene hybrid thermoelectric materials.

  18. Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity

    Directory of Open Access Journals (Sweden)

    Ran He

    2016-10-01

    Full Text Available Here we report the thermoelectric properties of NbCoSn-based n-type half-Heuslers (HHs that were obtained through arc melting, ball milling, and hot pressing process. With 10% Sb substitution at the Sn site, we obtained enhanced n-type properties with a maximum power factor reaching ∼35 μW cm−1 K−2 and figure of merit (ZT value ∼0.6 in NbCoSn0.9Sb0.1. The ZT is doubled compared to the previous report. In addition, the specific power cost ($ W−1 is decreased by ∼68% comparing to HfNiSn-based n-type HH because of the elimination of Hf.

  19. Towards highs performance bulk thermoelectric materials with enhanced mechanical properties by Severe Plastic Deformation (SPD)

    OpenAIRE

    Santamaría Regueiro, J.A.(Jon Ander); Gil Sevillano, J. (Javier); Alkorta Barragan, J. (Jon)

    2016-01-01

    Nowadays, one of the most promising strategies to produce highly efficient thermoelectric (TE) materials is to reduce the lattice thermal conductivity by introducing phonon scattering centres (such as submicron sized grain boundaries, second-phase nano-particles, and point defects) at different length scales. For highly anisotropic crystals such as Bi2Te3-based thermoelectrics, the combination of nanosized grain structures (to improve phonon scattering) together with strong crystallographic t...

  20. Thermoelectric Properties of Semiconducting Silicide Nanowires

    Science.gov (United States)

    Jin, Song; Sczech, Jeannine; Higgins, Jeremy; Zhou, Feng; Shi, Li

    2008-03-01

    Semiconducting silicides are promising thermoelectric materials. In addition to their respectable thermoelectric figure-of-merit (ZT up to 0.8), silicides have the advantages of low cost, excellent thermal stability and mechanical strength, and outstanding oxidation resistance, making them suitable for high temperature applications. We have developed general synthetic approaches to single crystal nanowires of silicides to investigate the enhancement of thermoelectric properties due to the reduced nanoscale dimension and to explore their applications in thermoelectrics. We will discuss the synthesis and structural characterization of nanowires of chromium disilicide (CrSi2) prepared via a chemical vapor transport (CVT) method and chemical vapor deposition (CVD) of organometallic precursors to synthesize the Novontony Chimney ladder phase MnSi1.75. The Seebeck coefficient, electrical conductivity, and thermal conductivity of individual CrSi2 nanowires were characterized using a suspended microdevice and correlated with the structural information obtained by microscopy on the same nanowires. This combined Seebeck coefficient and electrical conductivity measurements also provide an effective approach to probing the Fermi level, carrier concentration and mobility in nanowires. We will also discuss our progress in using individual nanostructures combined well-defined structural characterization to conclusively investigate the complex thermoelectric behaviors of silicide materials.

  1. Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

    OpenAIRE

    Degang Zhao; Xuezhen Wang; Di Wu

    2017-01-01

    Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these ag...

  2. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  3. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Science.gov (United States)

    Takashiri, Masayuki; Kurita, Kensuke; Hagino, Harutoshi; Tanaka, Saburo; Miyazaki, Koji

    2015-08-01

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone.

  4. Thermoelectric properties of hexagonal graphene quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yonghong, E-mail: yhyan@fudan.edu.cn [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Zhao, Hui [Department of Physics, Tongji University, Shanghai 200092 (China); Wu, Chang-Qin [Department of Physics, Fudan University, Shanghai 200433 (China)

    2012-02-27

    By using the atomistic nonequilibrium Green's function method, we investigate the thermoelectric properties of graphene nanoribbons in the presence of two constrictions (or hexagonal graphene quantum dots). With decreasing widths of the constrictions, the thermal conductance of the nanoribbon can be reduced largely while S{sup 2}G{sub e} (S is the Seebeck coefficient and G{sub e} is the electronic conductance) remains still high as compared with the results of the pristine nanoribbon. Thus, the thermoelectric figure of merit ZT can be enhanced largely. In fact, in the presence of narrowest constrictions the ZT values of the zigzag quantum dots can exceed one at room temperature, while the ZT values of the armchair quantum dots may be close to one, depending on the size of the dot. -- Highlights: ► We study thermoelectric properties of hexagonal graphene quantum dots. ► By point contacts to two leads, the thermal conductance can be reduced greatly while keeping the power factor still high. ► Thermoelectric figure of merit (ZT) can exceed unity.

  5. Exceeding the filling fraction limit: An approach to enhancement of thermoelectric properties of filled - Co4Sb12 skutterudite

    Science.gov (United States)

    Graff, Jennifer Whitney

    Currently the world energy usage has nearly tripled since 1950 and is projected to grow at a rate of 1.5% per year and predicted to at least double from the beginning of the millennium to 2050. The United States alone is currently consuming more energy than it can produce (≈ 97 Quadrillion BTU's consumed in 2011).(1) Presently, fossil fuels make up over 85% of our energy landscape, including both the stationary grid (like coal and nuclear power plants) and the mobile grid (automobiles using gas and oil). This presents a major demand for developing methods of saving, storing, and renewing energy. Answers to these existing energy demands must come from a variety of renewable sources including: solar, wind, biomass, geothermal and others. But currently, most renewable sources are only a small part of the big energy picture. One approach to this exponentially growing problem, lies within high efficiency (15%-20%) thermoelectric (TE) materials which address small, yet very important and specific, parts of a bigger problem. Specifically, Co4Sb12-based skutterudites, an increasingly favorable thermoelectric material for mid to high temperature applications (currently used in General Motors TE Generator devices). These materials have the ability to be 'tuned' or controlled thermally and electrically through doping and filling mechanisms, as you will see in this dissertation. However, one of the major drawbacks of TE materials is the difficulty in optimizing both electrical and thermal properties simultaneously. Typically, different control parameters are used in order to enhance the electrical and thermal properties individually. It is very rare to observe optimization of both in a TE material via one control parameter. However, the work presented herein successfully augments all TE properties, with one control variable, by using an approach that can be applied to all doped skutterudites and clathrate materials. Skutterudites are novel materials in that they are a binary

  6. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    Hatef Sadeghi

    2015-05-01

    Full Text Available We demonstrate that thermoelectric properties of graphene nanoribbons can be dramatically improved by introducing nanopores. In monolayer graphene, this increases the electronic thermoelectric figure of merit ZTe from 0.01 to 0.5. The largest values of ZTe are found when a nanopore is introduced into bilayer graphene, such that the current flows from one layer to the other via the inner surface of the pore, for which values as high as ZTe = 2.45 are obtained. All thermoelectric properties can be further enhanced by tuning the Fermi energy of the leads.

  7. Enhanced Thermoelectric Properties of Melt-Spun p-Type Yb0.9Fe3CoSb12

    Science.gov (United States)

    Son, Geonsik; Lee, Kyu Hyoung; Choi, Soon-Mok

    2017-05-01

    We herein report an enhancement of the thermoelectric properties of p-type Yb0.9Fe3CoSb12 skutterudite by melt spinning combined with spark plasma sintering (SPS). By thermal aging (873 K for 120 h) of the starting Yb0.9Fe3 CoSb12 compound for melt spinning, fabricated by conventional melting and quenching, highly dense single phase bulks with reduced grain sizes of 300 nm are successfully fabricated after SPS. The power factor value of the sample ( 3.6 mW m-1 K-2 at 723 K) is increased, benefiting from an enhancement of the electrical conductivity due to the elimination of the secondary phase CoSb2 during the thermal aging process. In addition, lattice thermal conductivity is significantly decreased due to the reduced grain size, thus intensifying the grain boundary phonon scattering. Through these synergetic effects, the maximum dimensionless figure of merit ZT increases by 25% (0.70 at 723 K) compared to a pristine sample with microscale grains.

  8. Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

    Directory of Open Access Journals (Sweden)

    Degang Zhao

    2017-02-01

    Full Text Available Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 μm. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.

  9. Tunable thermoelectric properties in bended graphene nanoribbons

    Science.gov (United States)

    Chang-Ning, Pan; Jun, He; Mao-Fa, Fang

    2016-07-01

    The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic-semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic-metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene. Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).

  10. Ballistic thermoelectric properties of nitrogenated holey graphene nanostructures

    Science.gov (United States)

    Cao, Wei; Xiao, Huaping; Ouyang, Tao; Zhong, Jianxin

    2017-11-01

    In this study, we theoretically investigate the ballistic thermoelectric performance of a new two-dimensional material, nitrogenated holey graphene (NHG), using nonequilibrium Green's function method. The calculations show that compared to graphene, such novel single atomic layer structure exhibits better thermoelectric performance. At room temperature, the stable hole (electron) thermoelectric figure of merit ( Z T ) could approach 0.75 (0.2) and 0.6 (0.2) for zigzag-edged (Z-NHGNRs) and armchair-edged NHGNRs (A-NHGNRs), respectively. To achieve better thermoelectric performance, the effect of geometric engineering (chevron-type nanoribbons and rhomboid quantum dot) on the electronic and phononic transport properties of Z-NHGNRs is further discussed. The results indicate that structure modulation is indeed a viable approach to enhance the thermoelectric properties (the figure of merit could exceed 1.5 and 1.3 for the chevron-type and rhomboid quantum dot system, respectively). On analyzing the transport properties, such improvement on the figure of merit is mainly attributed to the increased Seebeck coefficient and reduced thermal conductance (including both electronic and phononic contributions). Our findings presented in this paper qualify NHG as a promising thermoelectric material and provide theoretical guidance for fabricating the outstanding thermoelectric devices.

  11. Enhanced Thermoelectric Properties in BiCuSeO Oxyselenides via Zn and S Dual-Site Substitution

    Science.gov (United States)

    Sun, Yazhou; Zhang, Cencen; Cao, Chengming; Fu, Jianxin; Peng, Liangming

    2017-10-01

    We report on the effect of Zn and S dual-site substitution on the thermoelectric properties of Bi1- x Zn x CuSeO1- x S x ( x = 0, 0.025, 0.05, 0.075) oxyselenides prepared by conventional two-step solid-state reaction followed by inductive hot-pressing sintering. BiCuSeO phase with lath-like microstructures was observed for all samples. Upon Zn and S dual-site substitution, the electrical conductivity at 750 K was improved from 28.9 S cm-1 for pure BiCuSeO to 43.3 S cm-1 for Bi0.975Zn0.025CuSeO0.975S0.025 with highest Seebeck coefficient of 360 μV K-1 for Bi0.95Zn0.05CuSeO0.95S0.05. A maximum power factor of 4.6 μW cm-1 K-2 was achieved for Bi0.95Zn0.05CuSeO0.95S0.05 at 750 K due to its moderate electrical conductivity and high Seebeck coefficient. As the enhanced power factor compensates for the slight increase in the total thermal conductivity, the dimensionless figure of merit ZT reached a maximum value of 0.68 for Bi0.95Zn0.05CuSeO0.95S0.05 at 750 K, approximately 1.7 times larger than that of pristine BiCuSeO.

  12. Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators.

    Science.gov (United States)

    Xu, Yong; Gan, Zhongxue; Zhang, Shou-Cheng

    2014-06-06

    Improving the thermoelectric figure of merit zT is one of the greatest challenges in material science. The recent discovery of topological insulators (TIs) offers new promise in this prospect. In this work, we demonstrate theoretically that zT is strongly size dependent in TIs, and the size parameter can be tuned to enhance zT to be significantly greater than 1. Furthermore, we show that the lifetime of the edge states in TIs is strongly energy dependent, leading to large and anomalous Seebeck effects with an opposite sign to the Hall effect. These striking properties make TIs a promising material for thermoelectric science and technology.

  13. Enhancement of graphene thermoelectric performance through defect engineering

    Science.gov (United States)

    Anno, Yuki; Imakita, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2017-06-01

    Thermoelectric properties of materials are typically evaluated using the figure of merit, ZT, which relies on both the electrical and thermal properties of the materials. Although graphene has a high thermoelectric power factor, its overall ZT value is quite low as it possesses extremely high thermal conductivity. Phonons are the main heat carrier in graphene, and therefore propagation of heat in the material may be modulated by introducing defects into the structure, resulting in reduced thermal conductivity. In this study, we investigate the effect of graphene defect density on the thermoelectric performance of graphene. The defects introduced into graphene by oxygen plasma treatment reduce its Seebeck coefficient as well as its electrical conductivity; as a result, the thermoelectric power factor declines with increasing defect density. However, at higher defect densities, the reduction in thermal conductivity dominates over the reduction in electrical conductivity and, consequently, graphene treated in this way is observed to possess ZT values of up to three times that of pristine graphene. Therefore, it may be concluded that introducing controlled amount of defects into graphene is an effective way of reducing its thermal conductivity, thereby enhancing the performance of graphene-based thermoelectric devices.

  14. Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Haijun; Cai, Kefeng, E-mail: kfcai@tongji.edu.cn [Tongji University, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering (China); Shen, Shirley [CSIRO Manufacturing (Australia)

    2016-12-15

    Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is ~191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H{sub 2}SO{sub 4} treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK{sup 2} has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.

  15. Enhancement of the thermoelectric performance of oxygen substituted bismuth telluride

    Science.gov (United States)

    Van Quang, Tran; Kim, Miyoung

    2017-12-01

    We carried out first-principles calculations based on density functional theory and the semi-classical Boltzmann transport theory to study the effect of oxygen substitution on the electronic structure and thermoelectric properties of bismuth telluride. The newly formed compound, Bi2O2Te, is found to be a narrow bandgap semiconductor with the bandgap of Eg = 0.13 eV. The presence of a flat band close to the valence band maximum gives rise to a steep slope of density of states near Fermi energy, leading to a significant enhancement of the Seebeck coefficient. As a result, the thermoelectric power factor of Bi2O2Te is significantly improved by controlling the carrier concentration, and the maximum power factor increased with temperature. Assuming the experiment-thermal conductivity, Bi2O2Te exhibits a high figure of merit of ZT ˜1.27 around 600 K for the p-type doping, which matches or exceeds ZT of the state-of-the-art thermoelectric materials in this temperature range. This suggests that Bi2O2Te with p-type doping is a new promising material for use in the moderate-temperature thermoelectric energy conversion.

  16. Enhancement of thermoelectric properties in the Nb–Co–Sn half-Heusler/Heusler system through spontaneous inclusion of a coherent second phase

    Energy Technology Data Exchange (ETDEWEB)

    Buffon, Malinda L. C., E-mail: mandibuffon@mrl.ucsb.edu; Verma, Nisha; Lamontagne, Leo; Pollock, Tresa M. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Laurita, Geneva [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ghadbeigi, Leila; Sparks, Taylor D. [Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Lloyd, Demetrious L. [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Seshadri, Ram [Materials Department, University of California, Santa Barbara, California 93106 (United States); Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2016-08-21

    Half-Heusler XYZ compounds with an 18 valence electron count are promising thermoelectric materials, being thermally and chemically stable, deriving from relatively earth-abundant components, and possessing appropriate electrical transport properties. The typical drawback with this family of compounds is their high thermal conductivity. A strategy for reducing thermal conductivity is through the inclusion of secondary phases designed to minimize negative impact on other properties. Here, we achieve this through the addition of excess Co to half-Heusler NbCoSn, which introduces precipitates of a semi-coherent NbCo{sub 2}Sn Heusler phase. A series of NbCo{sub 1+x}Sn materials are characterized here using X-ray and neutron diffraction studies and electron microscopy. Electrical and thermal transport measurements and electronic structure calculations are used to understand property evolution. We find that annealing has an important role to play in determining antisite ordering and properties. Antisite disorder in the as-prepared samples improves thermoelectric performance through the reduction of thermal conductivity, but annealing during the measurement degrades properties to resemble those of the annealed samples. Similar to the more widely studied TiNi{sub 1+x}Sn system, Co addition to the NbCoSn phase results in improved thermoelectric performance through a decrease in thermal conductivity which results in a 20% improvement in the thermoelectric figure of merit, zT.

  17. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh

    2014-05-12

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  18. Thermoelectric properties of SnSe compound

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wu, Liyuan; Han, Lihong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Liu, Gang [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Song, Yuxin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-09-15

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data.

  19. Enhanced thermoelectric power in ultrathin topological insulators with magnetic doping

    KAUST Repository

    Tahir, M.

    2014-09-07

    We derive analytical expressions for the magnetic moment and orbital magnetization as well as for the corresponding thermal conductivity and thermoelectric power of a topological insulator film. We demonstrate enhancement of the thermoelectric transport for decreasing film thickness and for application of an exchange field due to the tunable band gap. Combining hybridization and exchange field is particularly suitable for heat to electric energy conversion and thermoelectric cooling.

  20. Thermal and thermoelectric properties of graphene.

    Science.gov (United States)

    Xu, Yong; Li, Zuanyi; Duan, Wenhui

    2014-06-12

    The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermoelectric properties of a strongly correlated layer

    Science.gov (United States)

    Titvinidze, Irakli; Dorda, Antonius; von der Linden, Wolfgang; Arrigoni, Enrico

    2017-09-01

    In this paper we investigate the effect of strong electronic interactions on the thermoelectric properties of a simple generic system, consisting of a single correlated layer sandwiched between two metallic leads. Results will be given for the linear response regime as well as beyond, for which a full nonequilibrium many-body calculation is performed, based on nonequilibrium dynamical mean-field theory (DMFT). As impurity solver we use the auxiliary master equation approach, which addresses the impurity problem within a finite auxiliary system consisting of a correlated impurity, a small number of uncorrelated bath sites, and Markovian environments. For the linear response regime, results will be presented for the Seebeck coefficient, the electrical conductance, and the electronic contribution to the thermal conductance. Beyond linear response, i.e., for finite differences in the temperatures and/or the bias voltages in the leads, we study the dependence of the current on various model parameters, such as gate voltage and Hubbard interaction of the central layer. We will give a detailed parameter study as far as the thermoelectric efficiency is concerned. We find that strong correlations can indeed increase the thermopower of the device. In addition, some general theoretical requirements for an efficient thermoelectric device will be given.

  2. Thermoelectric properties of Cr1-xMoxSi2

    Science.gov (United States)

    Ohishi, Yuji; Mohamad, Afiqa; Miyazaki, Yoshinobu; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2015-12-01

    The thermoelectric properties of Mo-substituted CrSi2 were studied. Dense polycrystalline samples of Mo-substituted hexagonal C40 phase Cr1-xMoxSi2 (x=0-0.30) were fabricated by arc melting followed by spark plasma sintering. Mo substitution substantially increases the carrier concentration. The lattice thermal conductivity of CrSi2 at room temperature was reduced from 9.0 to 4.5 W m-1 K-1 by Mo substitution due to enhanced phonon-impurity scattering. The thermoelectric figure of merit, ZT, increases with increasing Mo content because of the reduced lattice thermal conductivity. The maximum ZT value obtained in the present study was 0.23 at 800 K, which was observed for the sample with x=0.30. This value is significantly greater than that of undoped CrSi2 (ZT=0.13).

  3. Homogeneity domain and thermoelectric properties of CrSi2

    Science.gov (United States)

    Solomkin, F. Yu.; Zaitsev, V. K.; Novikov, S. V.; Samunin, Yu. A.; Isachenko, G. N.

    2013-02-01

    The phase composition, structure, and thermoelectric properties of CrSi2 obtained by low-temperature synthesis are investigated. The results indicate the strong effect of the silicon sublattice on the thermoelectric properties of the material and the possibility of solid-phase low-temperature transformations in a CrSi2 crystal lattice.

  4. Multi-scale defect engineering and interface modification for enhancement of thermoelectric properties in nanostructured bulk materials

    Science.gov (United States)

    Puneet, Pooja

    studies of the effect of SPS conditions on the transport properties of polycrystalline Bi strongly suggests that surface states play a prominent role in enhancing the TE performance of Bi. Lastly, planar or two-dimensional defects were introduced by chemical exfoliation of layered chalcogenide n-type Bi2Te 3. Particularly, chemical exfoliation allows for the introduction of micro-structured scattering centers at multiple length scales while preserving the basal plane properties needed for high ZT values. Mechanical process such as, grinding, sintering and exfoliation are known to generate donor- like defects. In this method, the possible introduction of positively charged defects (TeBi antisites/Te vacancies) on the grain boundaries resulted in: i) the injection of electrons into the bulk increasing carrier concentration, and ii) a potential barrier that selectively filtered low-energy minority carriers (holes in case of n-type Bi 2Te3 samples) and thereby, shifting the bipolar (two carrier contribution) effects to higher temperatures. This effect is clearly reflected in the thermopower and thermal conductivity data. Thus, the shift in the bipolar effects results in the shift of ZT maxima to higher temperature, where peak ZT is broadened over a wide temperature range of ˜ 150 K. In addition to this, the compatibility factor of our samples exhibits smaller changes over the broad operating temperature regime, making it a good candidate for potential device design. (Abstract shortened by UMI.)

  5. Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers

    KAUST Repository

    Pu, Jiang

    2016-07-27

    The carrier-density-dependent conductance and thermoelectric properties of large-area MoS2 and WSe2 monolayers are simultaneously investigated using the electrolyte gating method. The sign of the thermoelectric power changes across the transistor off-state in the ambipolar WSe2 transistor as the majority carrier density switches from electron to hole. The thermopower and thermoelectric power factor of monolayer samples are one order of magnitude larger than that of bulk materials, and their carrier-density dependences exhibit a quantitative agreement with the semiclassical Mott relation based on the two-dimensional energy band structure, concluding the thermoelectric properties are enhanced by the low-dimensional effect.

  6. Dynamical thermoelectric properties of doped AA-stacked bilayer graphene

    Science.gov (United States)

    Rezania, Hamed; Yarmohammadi, Mohsen

    2016-01-01

    The frequency dependence of thermoelectric properties of doped biased bilayer graphene are investigated using the Green's function approach in the context of tight-binding model. We find that the thermoelectric figure of merit (ZT) can be remarkably enhanced by electronic chemical potential, temperature, bias voltage and frequency. The electronic contribution to thermal conductivity of doped materials is dominant and therefore we have considered this contribution. The improvement due to the combined increase in the Seebeck coefficient and the reduction in the thermal conductivity outweighing the decrease in the electrical conductance is studied. We have found a good ZT value for normal conditions in the lab, i.e, for room temperature (RT), high bias voltages and low frequencies. We have found the temperature dependence of ZT for different values of frequency, bias voltage and chemical potential. Also the dependence of ZT on the chemical potential and bias voltage has been investigated in details. The calculated ZT values qualify bilayer graphene as a very promising material for thermoelectric applications.

  7. Interference enhanced thermoelectricity in quinoid type structures

    NARCIS (Netherlands)

    Strange, M.; Seldenthuis, J.S.; Verzijl, C.J.O.; Thijssen, J.M.; Solomon, G.C.

    2015-01-01

    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical

  8. Multilayer thermoelectric films: A strategy for the enhancement of ZT

    Energy Technology Data Exchange (ETDEWEB)

    Wadgner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-03-01

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Although all known thermoelectric materials are believed to have ZT {le} 1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) could have ZT {ge} 3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi{sub 0.9}Sb{sub 0.1} and PbTe{sub 0.8}Se{sub 0.2} onto a moving substrate from a pair of magnetron sources. These materials have been synthesized to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. This work focuses primarily on the scientific issues involved in producing the materials necessary to examine the possibility of enhancing ZT using quantum confinement. The techniques needed to measure the relevant electrical parameters of thermoelectric thin films are developed in this paper. Ultimately, if a quantum well enhancement of thermoelectrics is experimentally observed, devices based on this technology could be used to greatly expand the role of thermoelectrics in power generation and refrigeration.

  9. Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers.

    Science.gov (United States)

    Lee, Kyeong-Dong; Kim, Dong-Jun; Yeon Lee, Hae; Kim, Seung-Hyun; Lee, Jong-Hyun; Lee, Kyung-Min; Jeong, Jong-Ryul; Lee, Ki-Suk; Song, Hyon-Seok; Sohn, Jeong-Woo; Shin, Sung-Chul; Park, Byong-Guk

    2015-05-28

    The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devices.

  10. Ab initio description of the thermoelectric properties of heterostructures in the diffusive limit of transport

    DEFF Research Database (Denmark)

    Hinsche, Nicki Frank; Rittweger, Florian; Hölzer, Martin

    2016-01-01

    -principles calculations a consistent and convenient method is presented to fully describe the thermoelectric properties in the diffusive limit of transport for bulk systems and their associated heterostructures. While fundamentals of the functionality of phonon-blocking and electron-transmitting superlattices could...... be unveiled, we provide also distinct analysis and ideas for thermoelectric enhancement for two archetypical thermoelectric heterostructures based on Bi2Te3/Sb2Te3 and Si/Ge. A focus was on the influence of bulk and interfacial strain, varying charge carrier concentration, temperature, and superlattice...... periods on the thermoelectric transport properties. Transmission electron micrograph of a 10 Å/50 Å Bi2 Te3/ Sb2Te3 superlattice. Red and green areas highlight the layered structure. For optimal cross-plane transport (⊥) phonons (p) are expected to be scattered at the interfaces, while electrons (e...

  11. Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale.

    Science.gov (United States)

    Mohanraman, Rajeshkumar; Lan, Tian-Wey; Hsiung, Te-Chih; Amada, Dedi; Lee, Ping-Chung; Ou, Min-Nan; Chen, Yang-Yuan

    2015-01-01

    Thermoelectricity is a very important phenomenon, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage, and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement.

  12. Thermoelectric Properties of Silicon Microchannel Plates Structures

    Energy Technology Data Exchange (ETDEWEB)

    Ci, P L; Shi, J; Wang, F; Sun, L; Xu, S H; Yang, P X; Wang, L W [Laboratory of Polar Materials and Devices, Ministry of Education, and Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chu, Paul K, E-mail: lwwang@ee.ecnu.edu.cn [Department of Physics and Material Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2011-02-01

    We have fabricated silicon microchannel plates (MCPs) by photo-assisted electrochemical etching (PAECE) and determined the thermoelectric properties by measuring the Seebeck coefficient of the samples. The samples are composed of regular arrayed lattices with a width of about 5 {mu}m and spacing of about 1 {mu}m. The Seebeck coefficient along the edge of the lattice is 466 {mu}V/K. The silicon MCPs are potential materials for power generation and refrigeration. After oxidation from 30 minutes to 70 minutes and removing the silicon dioxide layer by buffered hydrofluoric acid, the samples show an improved coefficient as high as 1019 {mu}V/K after repeating oxidation and etching 5 times. Our results show that the Seebeck coefficient increases when the wall of the silicon MCPs is thinned.

  13. Enhancing Thermoelectric Properties of Si80Ge20 Alloys Utilizing the Decomposition of NaBH4 in the Spark Plasma Sintering Process

    Directory of Open Access Journals (Sweden)

    Ali Lahwal

    2015-09-01

    Full Text Available The thermoelectric properties of spark plasma sintered, ball-milled, p-type Si80Ge20-(NaBH4x (x = 0.7,1.7 and 2.7, and Si80Ge20B1.7-y-(NaBH4y (y = 0.2 and 0.7 samples have been investigated from 30 K to 1100 K. These samples were prepared by spark plasma sintering of an admixture of Si, Ge, B and NaBH4 powders. In particular, the degasing process during the spark plasma sintering process, the combined results of X-ray powder diffraction, Raman spectroscopy, Hall coefficient, electrical resistivity, and Seebeck coefficient measurements indicated that NaBH4 decomposed into Na, B, Na2B29, and H2 during the spark plasma sintering process; Na and B were doped into the SiGe lattice, resulting in favorable changes in the carrier concentration and the power factor. In addition, the ball milling process and the formation of Na2B29 nanoparticles resulted in stronger grain boundary scattering of heat-carrying phonons, leading to a reduced lattice thermal conductivity. As a result, a significant improvement in the figure of merit ZT (60% was attained in p-type Si80Ge20-(NaBH41.7 and Si80Ge20-B1.5(NaBH40.7 at 1100 K as compared to the p-type B-doped Si80Ge20 material used in the NASA’s radioactive thermoelectric generators. This single-step “doping-nanostructuring” procedure can possibly be applied to other thermoelectric materials.

  14. Thermoelectric properties of doped BaHfO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow-229001, U.P India (India); Bhamu, K. C. [Department of Physics, Goa University, Goa-403 206 (India); Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Feroze Gandhi Institute of Engineering & Technology, Raebareli-229001, U.P India (India)

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  15. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped ZnO....... Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...... for conventional ZnO materials. For Al-doped ZnO, α- and γ-Al2O3 were selectively used as dopants in order to understand the doping mechanism of each phase and their effects on the thermoelectric properties. The samples were prepared by the spark plasma sintering technique from precursors calcined at various...

  16. Nanostructures having high performance thermoelectric properties

    Science.gov (United States)

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  17. Nonlinear thermoelectric properties of molecular junctions with vibrational coupling

    DEFF Research Database (Denmark)

    Leijnse, Martin Christian; Wegewijs, M. R.; Flensberg, Karsten

    2010-01-01

    We present a detailed study of the nonlinear thermoelectric properties of a molecular junction, represented by a dissipative Anderson-Holstein model. A single-orbital level with strong Coulomb interaction is coupled to a localized vibrational mode and we account for both electron and phonon...... conditions, which are found to be qualitatively changed by the presence of the vibrational mode. Based on this study of a generic model system, we discuss the desirable properties of molecular junctions for thermoelectric applications....

  18. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler Alloys

    KAUST Repository

    Gandi, Appala

    2017-09-18

    We investigate the thermoelectric properties of the half-Heusler alloys XCoSb (X: Ti,Zr,Hf) by solving Boltzmann transport equations and discuss them in terms of the electronic band structure. The rigid band approximation is employed to address the effects of doping. While many half-Heuser alloys show excellent thermoelectric performance, the materials under study are special by supporting both n- and p-doping. We identify the reasons for this balanced thermoelectric transport and explain why experimentally p-doping is superior to n-doping. We also determine the spectrum of phonon mean free paths to guide grain refinement methods to enhance the thermoelectric figure of merit.

  19. First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides

    Science.gov (United States)

    Ge, Xu-Jin; Qin, Dan; Yao, Kai-Lun; Lü, Jing-Tao

    2017-10-01

    Through first-principles calculations, we study the thermoelectric transport properties of monolayer gallium chalcogenides GaX with X being S, Se or Te. We show that, the Mexican-hat-shaped dispersion near the valence band maximum, absent in the bulk, effectively enhances their thermoelectric performance. We analyze these results using a simple model Hamiltonian, and show that it can be understood as an effective one-dimensional band structure emerging from these two-dimensional materials. These results support recent proposals of using low-dimensional electronic band in high-dimensional materials in the search of new high-performance thermoelectric materials. Moreover, for n-doping, we find that strain engineering could be an efficient way of tuning the position of conduction band minimum and the corresponding thermoelectric performance.

  20. Thermoelectric performance enhancement of SrTiO3 by Pr doping

    KAUST Repository

    Kahaly, M. Upadhyay

    2014-01-01

    We investigate Pr doping at the Sr site as a possible route to enhance the thermoelectric behavior of SrTiO3-based materials, using first principles calculations in full-potential density functional theory. The effects of the Pr dopant on the local electronic structure and resulting transport properties are compared to common Nb doping. We demonstrate a substantial enhancement of the thermoelectric figure of merit and develop an explanation for the positive effects, which opens new ways for materials optimization by substitutional doping at the perovskite B site. © 2014 the Partner Organisations.

  1. Enhancement of thermoelectric efficiency by quantum interference effects in trilayer silicene flakes.

    Science.gov (United States)

    Cortés, Natalia; Rosales, L; Chico, Leonor; Pacheco, M; Orellana, P A

    2017-01-11

    In recent years, the enhancement of thermoelectric efficiencies has been accomplished in nanoscale systems by making use of quantum effects. We exploit the presence of quantum interference phenomena such as bound states in the continuum and Fano antiresonances in trilayer silicene flakes to produce sharp changes in the electronic transmission of the system. By applying symmetric gate voltages the thermoelectric properties can be tuned and, for particular flake lengths, a great enhancement of the figure of merit can be achieved. We show that the most favorable configurations are those in which the electronic transmission is dominated by the coupling of bound states to the continuum, tuned by an external gate.

  2. Atomistic design of semiconductor nanostructures with optimal thermoelectric properties

    Science.gov (United States)

    Galli, Giulia

    2008-03-01

    The search for novel materials with optimal thermoelectric properties (for either thermoelectric power generation or heat dissipation) is an active field of research. We present atomistic and ab-initio simulations of selected nanomaterials, aimed at predicting thermal conductivities and electronic transport properties, and ultimately at designing materials with optimal thermoelectric figure of merit. In particular we focus on carbon nanotubes [1], silicon wires [2] and nanoporous silicon [3] and we discuss both strategies and algorithms to optimize thermoelectric properties at the nanoscale. [1] D. Donadio and G.Galli, Phys. Rev. Lett. 2007 (in press). [2] T.Vo, A.Williamson, V.Lordi and G.Galli (submitted) and J.Reed, A.Williamson, E.Schwegler and G.Galli (submitted). [3] J.-H. Lee, J.C.Grossman, J.Reed and G.Galli, Appl. Phys. Lett. 2007 (in press).

  3. Wearable and flexible thermoelectric generator with enhanced package

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Taurino, A.; Siciliano, P.; De Risi, A.

    2013-05-01

    Present work shows recent progresses in thin film-based flexible and wearable thermoelectric generator (TEG), finalized to support energy scavenging and local storage for low consumption electronics in Ambient Assisted Living (AAL) applications and buildings integration. The proposed TEG is able to recover energy from heat dispersed into the environment converting a thermal gradient to an effective electrical energy available to power ultra-low consumption devices. A low cost fabrication process based on planar thin-film technology was optimized to scale down the TEG dimensions to micrometer range. The prototype integrates 2778 thermocouples of sputtered Sb2Te3 and Bi2Te3 thin films (1 μm thick) on an area of 25 cm2. The electrical properties of thermoelectric materials were investigated by Van der Pauw measurements. Transfer Length Method (TLM) analysis was performed on three different multi-layer contact schemes in order to select the best solution to use for the definition of the contact pads realized on each section of the thermoelectric array configuration to allow electrical testing of single production areas. Kapton polyimide film was used as flexible substrate in order to add comfortable lightweight and better wearability to the device. The realized TEG is able to autonomously recover the thermal gradient useful to thermoelectric generation thanks to an appropriate package designed and optimized by a thermal analysis based on finite element method (FEM). The proposed package solution consists in coupling the module realized onto Kapton foil to a PDMS layer opportunely molded to thermally insulate TEG cold junctions and enhance the thermal gradient useful for the energy scavenging. Simulations results were compared to experimental tests performed by a thermal infrared camera, in order to evaluate the real performance of the designed package. First tests conducted on the realized TEG indicate that the prototype is able to recover about 5°C between hot and

  4. Nano-materials for enhanced thermoelectric efficiencies

    Science.gov (United States)

    Boukai, Akram

    2010-04-01

    Energy is the ultimate currency that drives the world economy. Without energy, the global economy would cease to function normally. Most of the world's energy comes from the burning of fossil fuels such as coal and oil. Unfortunately, these fossil fuels are limited and pollute the atmosphere. The rising costs and demand of energy products and the alarming rate of global warming have focused research efforts into alternative forms of renewable energy. Thermoelectrics are one class of renewable energy producing devices. Thermoelectrics operate by converting temperature differences into electrical power and vice versa. They find limited use due to their low efficiencies and high cost. This article will review the operation of thermoelectrics and their current state-of-the-art. It will also explore future promising research endeavors that aim to increase their efficiency.

  5. Thermoelectric properties of c-axis aligned Bi-Te materials

    Science.gov (United States)

    Kim, Hoyoung; Kim, Dong Hwan; Kim, Cham; Park, SangHa

    2012-06-01

    Single crystalline Bi-Te thermoelectric materials have a rhombohedral structure with van der Waals bonding along c-axis direction. This structure gives intrinsic anisotropy in thermoelectric properties like electrical resistivity, thermal conductivity, Seebeck coefficient, as well as electron/hall mobility. Recent research works report that nano structures in polycrystalline thermoelectric materials improve thermoelectric performance by reducing thermal conductivity or by enhancing Seebeck coefficient. We investigated the effect of adjusting crystal orientation in the microstructures containing sub micro-sized grains on the thermoelectric properties for polycrystalline Bi-Te materials. Bi-Te powder, prepared through the conventional pulverization process, was sufficiently dispersed in an appropriate solvent, and then was formed into c-axis aligned green body under a designated high magnetic field. The green bodies were sintered with spark-plasma-sintering machine. The degree of crystal alignment of sintered bodies was examined with the electron-back-scatter-diffraction SEM and the X-ray diffraction patterns. It was observed that for p-type thermoelectric Bi-Te materials, aligning crystal orientation properly made electrical resistivity in the preferred direction decreased with keeping Seebeck coefficient and thermal conductivity remained unchanged.

  6. Interference enhanced thermoelectricity in quinoid type structures.

    Science.gov (United States)

    Strange, M; Seldenthuis, J S; Verzijl, C J O; Thijssen, J M; Solomon, G C

    2015-02-28

    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical interacting model Hamiltonian describing the π-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdrawing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S(2)G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.

  7. Enhanced thermoelectric performance of rough silicon nanowires

    Science.gov (United States)

    Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz; Liang, Wenjie; Garnett, Erik C.; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-01-01

    Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT>1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT>1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  8. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films

    Science.gov (United States)

    Lambert, Colin J.; Sadeghi, Hatef; Al-Galiby, Qusiy H.

    2016-12-01

    We provide a brief overview of recent measurements and predictions of thermoelectric properties of single-molecules and porous nanoribbons and discuss some principles underpinning strategies for enhancing their thermoelectric performance. The latter include (a) taking advantage of steep slopes in the electron transmission coefficient T (E), (b) creating structures with delta-function-like transmission coefficients and (c) utilising step-like features in T (E). To achieve high performance, we suggest that the latter may be the most fruitful, since it is less susceptible to inhomogeneous broadening. For the purpose of extrapolating thermoelectric properties of single or few molecules to monolayer molecular films, we also discuss the relevance of the conductance-weighted average Seebeck coefficient.

  9. Direct measurements of thermoelectric properties of thin films and nanostructures

    Science.gov (United States)

    Sultan, Rubina; Avery, Azure; Zink, Barry

    2008-10-01

    Dwindling energy reserves have created an urgent need for alternative energy sources. Measurement and development of new thermoelectric materials offer an opportunity to recycle the waste heat from energy consumption, transforming it into a viable energy source. Efforts to maximize the dimensionless figure-of-merit ZT rely on accurate and effective measurement techniques. The aim of this poster is to present the design of thermal isolation structures and the thermopower measurements made using these structures on thermoelectric thin films. The unique design of the micromachined structures allows us to make simultaneous measurements of thermopower α and thermal conductivity k to calculate ZT. We will present the measurement platform design and results from our first measurements on devices with established thermoelectric properties. Finally we will discuss the growth of our first doped amorphous silicon thin films and their potential as an efficient new class of thermoelectric materials.

  10. Structural, electrical and thermoelectric properties of chromium silicate thin films

    Science.gov (United States)

    Abd El Qader, Makram

    2011-12-01

    Thermoelectric devices can generate electrical power as a result of their ability to produce electrical currents in the presence of thermal gradients. They can also produce refrigerative cooling when electrical power is supplied to them. Among the potential semiconducting silicides, CrSi 2 is attractive because of its high thermal and chemical stability and its potential for thermoelectric application. CrSi2/SiO2 thin-film structures were prepared using RF sputtering. As deposited and annealed (300°C to 600°C) thin films were characterized for their structural, electrical, and thermoelectric transport properties. As-sputtered CrSi 2 film is amorphous at room temperature and crystallizes around 300°C independent of thickness. Resistivity of the as-deposited 1im films is 1.20 mO-cm, whereas, the annealed films were not electrically conducting as a result of the formation of cracks in the film. The measured Seebeck voltage of the 1im films is markedly enhanced upon annealing and reaches a value of 81muV/K; close to that of bulk CrSi2. The 0.1mum-thick film exhibit an increase in the resistivity up to 0.9mO-cm upon annealing at 300°C, which drops for higher temperature anneals. This behavior is not well-understood. The Seebeck voltages of the 0.1mum thin films increase with annealing temperatures, reaching a maximum value of 62muV/K. Thermoelectric power factors for 0.1 mum thin films exhibit a similar behavior to that of the Seebeck coefficients; increasing with temperature and reaching a plateau value of 10-3 W/(K2 m) at around 400°C to 450°C. These results suggest that annealed thin films of thicknesses in the range of 0.1mum are more suitable for device applications when glass substrates are employed. In order a deposit ternary and higher order alloys, a three gun sputtering system was designed, built and tested for its level of vacuum levels and cleanliness. The tests showed that the three-gun sputtering system is of vacuum levels of 10-9 Torr and shows

  11. Experiments on the thermoelectric properties of quantum dots

    Science.gov (United States)

    Svilans, Artis; Leijnse, Martin; Linke, Heiner

    2016-12-01

    Quantum dots (QDs) are good model systems for fundamental studies of mesoscopic transport phenomena using thermoelectric effects because of their small size, electrostatically tunable properties and thermoelectric response characteristics that are very sensitive to small thermal biases. Here we provide a review of experimental studies on thermoelectric properties of single QDs realized in two-dimensional electron gases, single-walled carbon nanotubes and semiconductor nanowires. A key requirement for such experiments is to have some methods for nanoscale thermal biasing at one's disposal. We briefly review the main techniques used in the field, namely, heating of the QD contacts, side heating and top heating, and touch upon their relative advantages. The thermoelectric response of a QD as a function of gate potential has a characteristic oscillatory behavior with the same period as is observed for conductance peaks. Much of the existing literature focuses on the agreement between experiments and theory, particularly for amplitude and line-shape of the thermovoltage Vth. A general observation is that the widely used single-electron tunneling approximation for QDs has limited success in reproducing measured Vth. Landauer-type calculations are often found to describe measurement results better, despite the large electron-electron interactions in QDs. More recently, nonlinear thermoelectric effects have moved into the focus of attention, and we offer a brief overview of the experiments done so far. We conclude by discussing open questions and avenues for future work, including the role of asymmetries in tunnel- and capacitive couplings in the thermoelectric behavior of QDs.

  12. Thermoelectric properties of group VI metal silicide semiconductors

    Science.gov (United States)

    Nonomura, T.; Wen, C.; Kato, A.; Isobe, K.; Kubota, Y.; Nakamura, T.; Yamashita, M.; Hayakawa, Y.; Tatsuoka, H.

    The electrical and thermoelectric properties of group VI metal silicides, such as the Mo- and W-silicides as well as CrSi2, were investigated. The electronic band structures of the hexagonal- MoSi2, - WSi2 and CrSi2, were calculated using the first-principles total-energy calculation program in pseudopotential schemes with plane-wave basis functions, and their Seebeck coefficients were also calculated. In addition, the Mo- and W-silicides were synthesized using mechanical alloying followed by a spark plasma sintering technique, and their structural, electric and thermoelectric properties were examined.

  13. Enhancing thermoelectric performance of Cu2Se by doping Te.

    Science.gov (United States)

    Zhu, Yong-Bin; Zhang, Bo-Ping; Liu, Yong

    2017-10-18

    Owing to the excellent electrical properties and inherently complex crystal structure, Cu2Se has been considered as a promising thermoelectric (TE) material. Herein, a series of Cu2Se1-xTex (x = 0, 0.02, 0.04, 0.06, and 0.08) bulk samples are prepared by combining mechanical alloying (MA) and spark plasma sintering (SPS) to investigate the effect of Te content (x) on the phase structure, microstructure and TE properties of stoichiometric Cu2Se. It is found that a maximum TE figure of merit (ZT) value of 1.25 could be achieved for Cu2Se0.98Te0.02 sample at 773 K, which essentially stemmed from the elevated power factor (PF) and reduced thermal conductivity (κ). The results obtained in our study indicate that the introduction of Te into stoichiometric Cu2Se is an effective and convenient strategy to improve ZT by enhancing PF and decreasing κ.

  14. Interpretation of thermoelectric properties of Cu substituted LaCoO3 ceramics

    Science.gov (United States)

    Choudhary, K. K.; Kaurav, N.; Sharma, U.; Ghosh, S. K.

    2014-04-01

    The thermoelectric properties of LaCo1-xCuxO3-δ is theoretically analyzed, it is observed that thermoelectric figure of merit ZT (=S2σT/κ) is maximized by Cu substitution in LaCoO3 Ceramics at x=0.15. The lattice thermal conductivity and thermoelectric power were estimated by the scattering of phonons with defects, grain boundaries, electrons and phonons to evaluate the thermoelectric properties. We found that Cu substitution increase the phonon scattering with grain boundaries and defects which significantly increase the thermoelectric power and decrease the thermal conductivity. The present numerical analysis will help in designing more efficient thermoelectric materials.

  15. How bilayer excitons can greatly enhance thermoelectric efficiency

    Science.gov (United States)

    Wu, Kai; Rademaker, Louk; Zaanen, Jan

    2015-03-01

    Presently, a major nanotechnological challenge is to design thermoelectric devices that have a high figure of merit. To that end, we propose to use bilayer excitons in two-dimensional nanostructures. Bilayer exciton systems are shown to have an improved thermopower and an enhanced electric counterflow and thermal conductivity, with respect to regular semiconductor-based thermoelectrics. We suggest an experimental realization of a bilayer exciton thermocouple. Based on current experimental parameters, a bilayer exciton heterostructures of p- and n-doped Bi2Te3 can enhance the figure of merit an order of magnitude compared to bulk Bi2Te3. Another material suggestion is to make a bilayer out of electron-doped SrTiO3 and hole-doped Ca3Co4O9.

  16. Thermoelectric Properties of Two-Dimensional Molybdenum-based MXenes

    KAUST Repository

    Kim, Hyunho

    2017-07-05

    MXenes are an interesting class of 2D materials consisting of transition metal carbides and nitrides, which are currently a subject of extensive studies. Although there have been theoretical calculations estimating the thermoelectric properties of MXenes, no experimental measurements have been reported so far. In this report, three compositions of Mo-based MXenes (Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx) have been synthesized and processed into free-standing binder-free papers by vacuum-assisted filtration, and their electrical and thermoelectric properties are measured. Upon heating to 800 K, these MXene papers exhibit high conductivity and n-type Seebeck coefficient. The thermoelectric power reaches 3.09×10-4 W m-1 K-2 at 803 K for the Mo2TiC2Tx MXene. While the thermoelectric properties of MXenes do not reach that of the best materials, they exceed their parent ternary and quaternary layered carbides. Mo2TiC2Tx shows the highest electrical conductivity in combination with the largest Seebeck coefficient of the three 2D materials studied.

  17. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Wood, Max; Goddard, William A., III; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey

    2017-07-01

    Lanthanum telluride (La3Te4) is an n-type high-performance thermoelectric material in the high temperature range, but its mechanical properties remain unknown. Since we want robust mechanical properties for their integration into industrial applications, we report here quantum mechanics (QM) simulations to determine the ideal strength and deformation mechanisms of La3Te4 under pure shear deformations. Among all plausible shear deformation paths, we find that shearing along the (0 0 1)/text{1} 0 0> slip system has the lowest ideal shear strength of 0.99 GPa, making it the most likely slip system to be activated under pressure. We find that the long range La-Te ionic interactions play the predominant role in resisting shear deformation. To enhance the mechanical strength, we suggest improving the long ionic La-Te bond stiffness to strengthen the ionic La-Te framework in La3Te4 by a defect-engineering strategy, such as partial substitution of La by Ce or Pr having isotypic crystal structures. This work provides the fundamental information to understand the intrinsic mechanics of La3Te4.

  18. Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions

    Science.gov (United States)

    Wang, Rui-Ning; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-11-01

    Quantum interference is a well-known phenomenon which results in unique features of the transmission spectra of molecular junctions at the nanoscale. We investigate and compare the thermoelectric properties of three types of junctions like the anti, Breit-Wigner, and Fano resonances. Due to its asymmetric line-shaped transmission function, Fano resonances lead to a larger thermoelectric figure of merit (ZT) than the symmetric anti and Breit-Wigner resonances. The occurrence of quantum interference in molecular and other nanoscale junctions is independent of contact couplings between the sandwiched molecules and left/right electrodes. However, it is found that the contact couplings determine the electric and thermoelectric performances of quantum interference junctions. In anti-resonant junctions, the Seebeck coefficient is enhanced by strong contact couplings. By contrast, for Breit-Wigner resonant junctions, this same property will increase in the weak contact coupling regime. Contrary to what is observed for anti and Breit-Wigner resonant junctions, some optimal contact couplings are found in Fano-resonant junctions for which the maximum Seebeck coefficient and ZT are obtained. Finally, thermoelectric properties are also investigated when the resonances crossover from Breit-Wigner to Fano types and, subsequently, to anti resonances.

  19. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  20. Microstructures and thermoelectric properties of GeSbTe based layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yan, F.; Zhu, T.J.; Zhao, X.B. [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China); Dong, S.R. [Zhejiang University, Department of Information and Electronics Engineering, Hangzhou (China)

    2007-08-15

    Microstructures and thermoelectric properties of Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge{sub 2}Sb{sub 2}Te{sub 5} compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} attained 0.975 x 10{sup -3} Wm{sup -1}K{sup -2} at 750 K and 0.767 x 10{sup -3} Wm{sup -1}K{sup -2} at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. (orig.)

  1. Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons

    Science.gov (United States)

    Krompiewski, Stefan; Cuniberti, Gianaurelio

    2017-10-01

    Edge states in narrow quasi-two-dimensional nanostructures determine, to a large extent, their electric, thermoelectric, and magnetic properties. Nonmagnetic edge states may quite often lead to topological-insulator-type behavior. However, another scenario develops when the zigzag edges are magnetic and the time reversal symmetry is broken. In this work we report on the electronic band structure modifications, electrical conductance, and thermoelectric properties of narrow zigzag nanoribbons with spontaneously magnetized edges. Theoretical studies based on the Kane-Mele-Hubbard tight-binding model show that for silicene, germanene, and stanene both the Seebeck coefficient and the thermoelectric power factor are strongly enhanced for energies close to the charge neutrality point. A perpendicular gate voltage lifts the spin degeneracy of energy bands in the ground state with antiparallel magnetized zigzag edges and makes the electrical conductance significantly spin polarized. Simultaneously the gate voltage worsens the thermoelectric performance. Estimated room-temperature figures of merit for the aforementioned nanoribbons can exceed a value of 3 if phonon thermal conductances are adequately reduced.

  2. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  3. Engineered carbon nanotubes reinforced polymer composites for enhanced thermoelectric performance

    Science.gov (United States)

    Kiran, Raj; Kumar, Anuruddh; Chauhan, Vishal S.; Kumar, Rajeev; Vaish, Rahul

    2017-10-01

    Thermoelectric materials have attracted great attention from researchers because of their unique ability to convert thermal energy to electrical energy and vice versa. Based on the coupled theory of transport between heat and electricity in metals, we have carried out finite element simulations on carbon nanotube (CNT)/polyaniline (PANI) composites to compute effective Seebeck coefficients and figures of merit (FOMs). The present study focuses on the effect of interfacial electrical and thermal conductivities, the volume fraction of CNTs and their inclination on the effective electrical and thermal conductivities and thermoelectric performance. It is interesting to report that effective conductivities strongly depend on interfacial conductance in composites where CNTs are transverse to electrical current and heat flow. Interfaces with electrical and thermal conductance less than 103 S m‑2 and 107 W m‑2 K‑1 respectively isolate CNTs from the matrix. This reduces the effective properties, while the conductivities increase with the CNT content if interfacial conductance is more than these specified values. It was also established that the effective Seebeck coefficient and FOM increase with interfacial electrical conductance, while decreasing with an increase in interfacial thermal conductance. Additionally, the effect of inclination on the electrical and thermal conductivities of composites, the effective Seebeck coefficient and the FOM were analysed. It can be concluded from the study that the Seebeck coefficient and FOM of thermoelectric composites are increased if the CNTs are lying perpendicular to the heat and electrical current flow.

  4. Thermoelectric properties of topological insulator BaSn2

    Science.gov (United States)

    Guo, San-Dong; Qiu, Liang

    2017-01-01

    Recently, \\text{BaS}{{\\text{n}}2} has been predicted to be a strong topological insulator by the first-principle calculations. It is well known that topological insulators have a close connection to thermoelectric materials, such as the \\text{B}{{\\text{i}}2}\\text{T}{{\\text{e}}3} family. In this work, we investigate thermoelectric properties of \\text{BaS}{{\\text{n}}2} by the first-principles calculations combined with the Boltzmann transport theory. The electronic part is carried out by a modified Becke and Johnson (mBJ) exchange potential, including spin-orbit coupling (SOC), while the phonon part is performed using a generalized gradient approximation (GGA). It was found that the electronic transport coefficients between the in-plane and cross-plane directions showed strong anisotropy, while lattice-lattice thermal conductivities demonstrated almost complete isotropy. Calculated results revealed a very low lattice thermal conductivity for \\text{BaS}{{\\text{n}}2} , and the corresponding average lattice thermal conductivity at room temperature is 1.69 \\text{W}~{{\\text{m}}-1}~{{\\text{K}}-1} , which is comparable or lower than those of lead chalcogenides and bismuth-tellurium systems as classic thermoelectric materials. Due to the complicated scattering mechanism, calculating the scattering time τ is challenging. By using an empirical τ ={{10}-14} s, the n-type figure of merit ZT is greater than 0.40 in wide temperature ranges. Experimentally, it is possible to attain better thermoelectric performance by strain or tuning size parameters. This work indicates that \\text{BaS}{{\\text{n}}2} may be a potential thermoelectric material, which can stimulate further theoretical and experimental work.

  5. Thermoelectric transport properties in graphene connected molecular junctions

    OpenAIRE

    Rodriguez, S. T.; Grosu, I.; Crisan, M.; Tifrea, I.

    2017-01-01

    We study the electronic contribution to the main thermoelectric properties of a molecular junction consisting of a single quantum dot coupled to graphene external leads. The system electrical conductivity (G), Seebeck coefficient ($S$), and the thermal conductivity ($\\kappa$), are numerically calculated based on a Green's function formalism that includes contributions up to the Hartree-Fock level. We consider the system leads to be made either of pure or gapped-graphene. To describe the free ...

  6. Synergistically tuning the electrical and thermal transport properties of CdO:Cu thermoelectric ceramics

    Science.gov (United States)

    Fu, Guangsheng; Gao, Linjie; Liu, Ran; Zha, Xinyu; Wang, Jianglong; Wang, Shufang

    2017-07-01

    The thermoelectric performance of CdO ceramics was optimized by synergistically tuning their electrical and thermal transport properties via Cu doping. The introduction of Cu led to an increase in carrier concentration and mobility simultaneously for samples with Cu content less than 3%. An improvement in power factor was obtained due to decreased electrical resistivity and a moderate Seebeck coefficient. A small amount of Cu doping was also verified to be effective in suppressing the heat transfer of CdO ceramics owing to the enhanced phonon scattering from point defects and grain boundaries. Benefiting from the increase in power factor and decrease in thermal conductivity, enhanced ZT values were achieved in all doped samples, indicating that Cu doping is an effective strategy to promote the thermoelectric performance of CdO ceramics.

  7. Conditions for enhanced performance of segmented thermoelectrics under load

    Science.gov (United States)

    Angst, Sebastian; Wolf, Dietrich E.

    2017-08-01

    The Onsager-de Groot-Callen transport theory is used to investigate the performance of double segmented thermoelectrics as generators. We show that such an inhomogeneous device usually performs worse than predicted by the effective transport coefficients. This is caused by the difference of the open circuit Seebeck voltage and the Seebeck voltage under operating conditions. The electrical current and the related interface Peltier effect cause a self-organization of the temperature profile such that the temperature drop across the material with the higher absolute Seebeck coefficient is reduced. However, including Joule heating we derive conditions for the opposite effect resulting in an enhanced power.

  8. Enhanced thermoelectric figure of merit in strained Tl-doped Bi2Se3

    KAUST Repository

    Saeed, Y.

    2014-07-21

    We explain recent experimental findings on Tl-doped Bi2Se3 by determining the electronic and transport properties by first-principles calculations and semi-classical Boltzmann theory. Though Tl-doping introduces a momentum-dependent spin-orbit splitting, the effective mass of the carriers is essentially not modified, while the band gap is reduced. Tl is found to be exceptional in this respect as other dopants modify the dispersion, which compromises thermoelectricity. Moreover, we demonstrate that only after Tl-doping strain becomes an efficient tool for enhancing the thermoelectric performance. A high figure of merit of 0.86 is obtained for strong p-doping (7 × 10^20 cm^(−3), maximal power factor) at 500 K under 2% tensile strain.

  9. Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jason [HiPSEC and Department of Physics and Astronomy, University of Nevada, Las Vegas (UNLV), 4505 S. Maryland Parkway Las Vegas NV 89154 USA; Kumar, Ravhi [HiPSEC and Department of Physics and Astronomy, University of Nevada, Las Vegas (UNLV), 4505 S. Maryland Parkway Las Vegas NV 89154 USA; Park, Changyong [(HPCAT) Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Avenue Argonne IL 60439 USA; Kenney-Benson, Curtis [(HPCAT) Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Avenue Argonne IL 60439 USA; Cornelius, Andrew [HiPSEC and Department of Physics and Astronomy, University of Nevada, Las Vegas (UNLV), 4505 S. Maryland Parkway Las Vegas NV 89154 USA; Velisavljevic, Nenad [Shock and Detonation Group, Los Alamos National Laboratory, Los Alamos NM 857545 USA

    2017-10-30

    The thermoelectric properties of polycrystalline SnTe have been measured up to 4.5 GPa at 330 K. SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition that is observed through simultaneous in situ X-ray diffraction measurement. Electrical resistance and relative changes to the thermal conductivity were also measured, enabling the determination of relative changes in the dimensionless figure of merit (ZT), which increases dramatically after 3 GPa, reaching 350 % of the lowest pressure ZT value. The results demonstrate a fundamental relationship between structure and thermoelectric behaviours and suggest that pressure is an effective tool to control them.

  10. Thermoelectric properties of thin film topological insulators: A first-principles study

    Science.gov (United States)

    Lim, Myung-Soo; Jhi, Seung-Hoon

    2018-02-01

    The electronic and thermoelectric properties of Bi2Te3, Bi2Se3, and Sb2Te3 topological insulator thin films with thickness of 4-10 quintuple layers are analyzed using density functional theory and two-channel model combined with the Boltzmann transport equations. Our calculations show that the maximum figure of merit and the Seebeck coefficient are asymmetric for n- and p-type carriers, and the thickness dependence of the Seebeck coefficient exhibits different behavior upon variation in film thickness for these materials. We find that the band offset between the surface states and bulk band edges is responsible for the asymmetry and thickness dependence in n- and p-type carriers. The two-band model shows that the topological surface states serve as electronic leakage channels through conductivity modulation, degrading the thermoelectric property. We suggest that tuning the Dirac point by modifying surface chemistry to the band edges helps retain the enhancement of thermoelectric property from quantum confinement in thin film topological insulators.

  11. Thermoelectric properties of the misfit cobaltate Ca3Co4O9

    KAUST Repository

    Amin, Bin

    2017-06-09

    The layered misfit cobaltate CaCoO, also known as CaCoO[CoO], is a promising p-type thermoelectric oxide. Employing density functional theory, we study its electronic structure and determine, on the basis of Boltzmann theory within the constant-relaxation-time approximation, the thermoelectric transport coefficients. The dependence on strain and temperature is determined. In particular, we find that the XX-component of the thermopower is strongly enhanced, while the yy-component is strongly reduced, when applying 2% tensile strain. A similar anisotropy is also found in the power factor. The temperature dependence of the conductivity in the a-b plane is found to be rather weak above 200 K, which clearly indicates that the experimentally observed transport properties are dominated by inhomogeneities arising during sample growth, i.e., they are not intrinsic.

  12. Structure and thermoelectric properties of CrSi2 crystallized from a tin solution—melt

    Science.gov (United States)

    Solomkin, F. Yu.; Zaitsev, V. K.; Kartenko, N. F.; Kolosova, A. S.; Burkov, A. T.; Uryupin, O. N.; Shabaldin, A. A.

    2010-05-01

    The thermoelectric properties of CrSi2 single crystals grown from a tin solution—melt are studied. A correlation is found between the unit cell parameters of the CrSi2 crystals, their thermoelectric properties, and solution—melt cooling conditions.

  13. Thermoelectric properties of hot-pressed CrSi2 samples

    Science.gov (United States)

    Solomkin, F. Yu.; Samunin, A. Yu.; Zaitsev, V. K.; Burkov, A. T.; Novikov, S. V.; Gurieva, E. A.

    2012-06-01

    Thermoelectric properties and structure of CrSi2 samples fabricated by hot-pressing from crushed textured bars and from microcrystals grown from melt-solution in tin are studied. A strong dependence of thermoelectric properties of the synthesized material and of the pressed samples on size and shape of the crystal unit cell is found.

  14. Thermoelectric properties of finite graphene antidot lattices

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka

    2011-01-01

    We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...

  15. Enhancement of thermoelectric characteristics in AlGaN/GaN films deposited on inverted pyramidal Si surfaces

    Science.gov (United States)

    Yalamarthy, Ananth Saran; So, Hongyun; Senesky, Debbie G.

    2017-07-01

    In this letter, we demonstrate an engineering strategy to boost thermoelectric power factor via geometry-induced properties of the pyramid structure. Aluminum gallium nitride (AlGaN)/GaN heterostructured films grown on inverted pyramidal silicon (Si) demonstrate higher power factor as compared to those grown on conventional flat Si substrates. We found that the magnitude of the Seebeck coefficient at room temperature increased from approximately 297 μVK-1 for the flat film to approximately 849 μVK-1 for the film on inverted pyramidal Si. In addition, the "effective" electrical conductivity of the AlGaN/GaN on the inverted pyramidal structure increased compared to the flat structure, generating an enhancement of thermoelectric power factor. The results demonstrate how manipulation of geometry can be used to achieve better thermoelectric characteristics in a manner that could be scaled to a variety of different material platforms.

  16. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal (India); Kargupta, Kajari [Chemical Engineering Department, Jadavpur University, Kolkata-700032, West Bengal (India)

    2016-04-13

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.

  17. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    Science.gov (United States)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  18. Temperature dependent thermoelectric properties of chemically derived gallium zinc oxide thin films

    KAUST Repository

    Barasheed, Abeer Z.

    2013-01-01

    In this study, the temperature dependent thermoelectric properties of sol-gel prepared ZnO and 3% Ga-doped ZnO (GZO) thin films have been explored. The power factor of GZO films, as compared to ZnO, is improved by nearly 17% at high temperature. A stabilization anneal, prior to thermoelectric measurements, in a strongly reducing Ar/H2 (95/5) atmosphere at 500°C was found to effectively stabilize the chemically derived films, practically eliminating hysteresis during thermoelectric measurements. Subtle changes in the thermoelectric properties of stabilized films have been correlated to oxygen vacancies and excitonic levels that are known to exist in ZnO-based thin films. The role of Ga dopants and defects, formed upon annealing, in driving the observed complex temperature dependence of the thermoelectric properties is discussed. © The Royal Society of Chemistry 2013.

  19. Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals.

    Science.gov (United States)

    Hwang, Taek Yong; Vorobyev, A Y; Guo, Chunlei

    2011-07-04

    Through femtosecond laser irradiation, we produce in this work a unique type of surface nanostructure on Al that have enhanced absorption at UV and visible but a relatively small emissivity in infrared. By integrating this laser-treated Al to a solar-driven thermoelectric generator, we show that the thermoelectric generator integrated with the femtosecond laser-treated Al foil generates a significantly higher power than the ones without. Our study shows that our technique can dramatically enhance the efficiency of solar-driven thermoelectric devices that may lead to a leap forward in solar energy harnessing.

  20. Electrical transport and thermoelectric properties of AgPb10SbTe12 ...

    Indian Academy of Sciences (India)

    Thermoelectric material, Ag1−PbSbTe+2 ( = 0.2, = 10), have been successfully prepared by high pressure method. The pressure-dependent electrical transport and thermoelectric properties of Ag0.8Pb10SbTe12 were studied at room temperature. Electrical resistivity and Seebeck coefficient decreases with an ...

  1. Thermoelectric properties of an interacting quantum dot based heat engine

    Science.gov (United States)

    Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

    2017-06-01

    We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

  2. Ion beam irradiation effect on thermoelectric properties of Bi2Te3 and Sb2Te3 thin films

    Science.gov (United States)

    Fu, Gaosheng; Zuo, Lei; Lian, Jie; Wang, Yongqiang; Chen, Jie; Longtin, Jon; Xiao, Zhigang

    2015-09-01

    Thermoelectric energy harvesting is a very promising application in nuclear power plants for self-maintained wireless sensors. However, the effects of intensive radiation on the performance of thermoelectric materials under relevant reactor environments such as energetic neutrons are not fully understood. In this work, radiation effects of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric thin film samples prepared by E-beam evaporation are investigated using Ne2+ ion irradiations at different fluences of 5 × 1014, 1015, 5 × 1015 and 1016 ions/cm2 with the focus on the transport and structural properties. Electrical conductivities, Seebeck coefficients and power factors are characterized as ion fluence changes. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of the samples are obtained to assess how phase and microstructure influence the transport properties. Carrier concentration and Hall mobility are obtained from Hall effect measurements, which provide further insight into the electrical conductivity and Seebeck coefficient mechanisms. Positive effects of ion irradiations from Ne2+ on thermoelectric material property are observed to increase the power factor to 208% for Bi2Te3 and 337% for Sb2Te3 materials between fluence of 1 and 5 × 1015 cm2, due to the increasing of the electrical conductivity as a result of ionization radiation-enhanced crystallinity. However, under a higher fluence, 5 × 1015 cm2 in this case, the power factor starts to decrease accordingly, limiting the enhancements of thermoelectric materials properties under intensive radiation environment.

  3. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    Science.gov (United States)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  4. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Sajid [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  5. Filled Co (sub X) Ni (sub 4-x) Sb (sub 12-y) Sn (sub Y) Skutterudites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3 or CoAs3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Co (sub X) Ni (sub 4-x) Sb (sub 12-y) Sn (sub Y) system has been investigated as both a p- and n-type thermoelectric material, and is stable up to 200 degrees Centigrade. Yb, Ce, and Dy fillers have been introduced into the skutterudite to study the influence of both the type and the quantity of fillers on processing conditions and thermoelectric properties. The system was processed through a multi-step technique that includes solidification, mechano-chemical alloying, and hot pressing which will be discussed along with thermoelectric transport properties.

  6. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  7. Synthesis, structure and thermoelectric properties of La1 ...

    Indian Academy of Sciences (India)

    2017-12-07

    Dec 7, 2017 ... alternative unconventional energy sources. In this scenario, phenomenon of thermoelectricity has been the hot topic of research in these days owing to its ability to convert waste thermal energy into an electrical energy [1]. The efficiency of a thermoelectric device is represented by figure of merit (zT),.

  8. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  9. Thermoelectric Properties of Li-Intercalated ZrSe2 Single Crystals

    DEFF Research Database (Denmark)

    Holgate, Tim; Liu, Yufei; Hitchcock, Dale

    2013-01-01

    can profoundly affect the structural, thermal, and electronic properties of such materials. While the thermoelectric potential of layer-structured transitionmetal dichalcogenides has been formerly studied by several groups, to our best knowledge, neither the thermoelectric properties of ZrSe2 nor...... the impact of intercalation on its thermoelectric properties have been reported (specifically, the full evaluation of the dimensionless figure of merit, ZT, which includes the thermal conductivity). In this proof-of-principle study, ZrSe2 single crystals have been synthesized using an iodine-assisted vapor...... transport method, followed by a wet-chemistry lithium intercalation process. The results of resistivity, thermopower, and thermal conductivity measurements between 10 K and 300 K show that Li intercalation induced additional charge carriers and structural disorder that favorably affected the thermoelectric...

  10. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo

    2016-01-01

    Bismuth antimony telluride (BixSb2-xTe3, 0.4 semiconductor materials for near-room-temperature thermoelectric power generation. In this work, p-type Bi0.4Sb1.6Te3 samples were prepared under various conditions (temperature, holding time, and ramp......-rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...

  11. Synthesis and Thermoelectric Properties of CuSbS2

    OpenAIRE

    Gao, Tianyue; Fang, Haiyu; Wu, Yue

    2014-01-01

    Copper antimony sulfide, CuSbS2 nanoparticles have a large potential of being a good thermoelectric material because they are made up of earth abundant elements. Thermoelectric materials can convert thermal energy into electricity, so that the wasted energy can be saved. Also, by using this earth abundant material, we can make thermoelectric materials much cheaper. The hypothesis of this study is that CuSbS2 could have a large Seebeck coefficient, one of the most important factors of thermoel...

  12. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    Science.gov (United States)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (˜20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of

  13. Enhanced thermoelectric power and electronic correlations in RuSe2

    Directory of Open Access Journals (Sweden)

    Kefeng Wang

    2015-04-01

    Full Text Available We report the electronic structure, electric and thermal transport properties of Ru1−xIrxSe2 (x ≤ 0.2. RuSe2 is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe2 exceeds −200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru0.8Ir0.2Se2 shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb2.

  14. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size

    Science.gov (United States)

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-01

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb2Te3) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb2Te3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb2Te3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb2Te3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  15. Thermoelectric transport properties in graphene connected molecular junctions

    Science.gov (United States)

    Rodriguez, S. T.; Grosu, I.; Crisan, M.; Ţifrea, I.

    2018-02-01

    We study the electronic contribution to the main thermoelectric properties of a molecular junction consisting of a single quantum dot coupled to graphene external leads. The system electrical conductivity (G), Seebeck coefficient (S), and the thermal conductivity (κ), are numerically calculated based on a Green's function formalism that includes contributions up to the Hartree-Fock level. We consider the system leads to be made either of pure or gapped-graphene. To describe the free electrons in the gapped-graphene electrodes we used two possible scenarios, the massive gap scenario, and the massless gap scenario, respectively. In all cases, the Fano effect is responsible for a strong violation of the Wiedemann-Franz law and we found a substantial increase of the system figure of merit ZT due to a drastic reduction of the system thermal coefficient. In the case of gapped-graphene electrodes, the system figure of merit presents a maximum at an optimal value of the energy gap of the order of Δ / D ∼ 0.002 (massive gap scenario) and Δ / D ∼ 0.0026 (massless gap scenario). Additionally, for all cases, the system figure of merit is temperature dependent.

  16. Tailoring ion transport to improve thermoelectric properties of mixed polymer thermoelectrics

    Science.gov (United States)

    Majumdar, Shubhaditya; Sanoja, Gabriel E.; Michenfelder-Schauser, Nicole; Bridges, Colin R.; Segalman, Rachel A.

    Polymer thermoelectrics show potential for simultaneously possessing high Seebeck coefficients and electrical conductivities by coupling electrochemical reactions at the electrodes with independent pathways for ion and electron transport. We show that by blending commercially-available PEDOT:PSS with a metal-polymer complex, the thermal diffusion of ions due to the Soret effect and the entropy of the electrochemical reactions can be leveraged to obtain Seebeck coefficients of O(10 mV/K). The transient behavior of the Seebeck coefficient in these systems can be systematically modified based on the nature of the ionic species. We describe the chemistry necessary to realize these phenomena in dry and ambient conditions and suggest future pathways to further optimize the figure of merit. These findings are an improvement over previous studies wherein such effects were demonstrated only in high-humidity environments, thus allowing us to perform detailed experimental analysis of the energy transport phenomena in such polymer thermoelectrics.

  17. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides

    Directory of Open Access Journals (Sweden)

    David R. Brown

    2013-11-01

    Full Text Available While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu2Se over a broad (360–410 K temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K, and a similar but larger increase over a wider temperature range in the zT of Cu1.97Ag.03Se (almost 1.0 at 400 K. The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

  18. The Effect of (Ag, Ni, Zn-Addition on the Thermoelectric Properties of Copper Aluminate

    Directory of Open Access Journals (Sweden)

    Jianxiao Xu

    2010-01-01

    Full Text Available Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  19. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2017-01-01

    Full Text Available Lithium and calcium are inefficient filling elements of CoSb3 at ambient pressure, but show nice filling behavior under high pressure. In this work, we synthesized Li/Ca double-filled CoSb3 with high pressure synthesis method. The products show the skutterudite structure of Im3¯ symmetry. Thermoelectric properties were effectively enhanced through Li and Ca co-filling. For the optimal Li0.08Ca0.18Co4Sb12 sample, the power factor maintains a relatively high value over the whole measurement temperature range and peaks at 4700μWm−1K−2, meanwhile the lattice thermal conductivity is greatly suppressed, leading to a maximal ZT of 1.18 at 700 K. Current work demonstrates high pressure synthesis as an effective method to produce multiple elemental filled CoSb3 skutterudites.

  20. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2014-04-08

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  1. Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices

    Directory of Open Access Journals (Sweden)

    James (Zi-Jian Ju

    2016-04-01

    Full Text Available The thermoelectric properties of n-type InGaN alloys with high In-content and InN/InGaN thin film superlattices (SL grown by molecular beam epitaxy are investigated. Room-temperature measurements of the thermoelectric properties reveal that an increasing Ga-content in ternary InGaN alloys (0 < x(Ga < 0.2 yields a more than 10-fold reduction in thermal conductivity (κ without deteriorating electrical conductivity (σ, while the Seebeck coefficient (S increases slightly due to a widening band gap compared to binary InN. Employing InN/InGaN SLs (x(Ga = 0.1 with different periods, we demonstrate that confinement effects strongly enhance electron mobility with values as high as ∼820 cm2/V s at an electron density ne of ∼5×1019 cm−3, leading to an exceptionally high σ of ∼5400 (Ωcm−1. Simultaneously, in very short-period SL structures S becomes decoupled from ne, κ is further reduced below the alloy limit (κ < 9 W/m-K, and the power factor increases to 2.5×10−4 W/m-K2 by more than a factor of 5 as compared to In-rich InGaN alloys. These findings demonstrate that quantum confinement in group-III nitride-based superlattices facilitates improvements of thermoelectric properties over bulk-like ternary nitride alloys.

  2. Investigation of reaction mechanisms of bismuth tellurium selenide nanomaterials for simple reaction manipulation causing effective adjustment of thermoelectric properties.

    Science.gov (United States)

    Kim, Cham; Kim, Dong Hwan; Kim, Jong Tae; Han, Yoon Soo; Kim, Hoyoung

    2014-01-22

    We synthesized ternary n-type bismuth tellurium selenide nanomaterials for thermoelectric applications via a water-based chemical reaction under an atmospheric environment. In this work, bismuth nitrate was employed as a bismuth precursor and was hydrolyzed to form bismuth hydroxide in an aqueous solution. Ascorbic acid was used to dissolve the bismuth hydroxide and give a reactive bismuth source (Bi(3+) ions) that was able to react with anion sources (Te(2-)/Se(2-) ions). Ascorbic acid played a role in reducing bismuth hydroxide to an unreactive bismuth source (bismuth particles, Bi(0)). We confirmed that ascorbic acid dissolved or reduced bismuth hydroxide depending on the solution pH. Because either Bi(3+) ions or bismuth particles were generated depending on the pH, the nanomaterial stoichiometry was pH dependent. Nanomaterials prepared at various pH levels were individually sintered using a spark plasma sintering process to measure their thermoelectric transport properties (i.e., carrier concentration, electrical resistivity, Seebeck coefficient, and thermal conductivity). We observed how the transport properties were affected through adjustment of the pH of the reaction and found an appropriate pH for optimizing the transport properties, which resulted in enhancement of the thermoelectric performance.

  3. Quantum mechanical computation of structural, electronic, and thermoelectric properties of AgSbSe2

    Directory of Open Access Journals (Sweden)

    M Salimi

    2015-07-01

    Full Text Available In this work, density functional calculations and Boltzmann semiclassical theory of transport are used to investigate structural, electronic, and thermoelectric properties of AgSbSe2 crystal. According to the published experimental measurements, five more likely structures of this compound are considered and their structural and electronic properties are calculated and compared together. Then, thermoelectric properties (electrical conductivity, electronic contribution to the thermal conductivity, power factor, and Seebeck coefficient of three more stable structures are investigated in the constant relaxation time approximation. Finally, the calculated temperature dependence of Seebeck coefficient is compared with the corresponding experimental measurements of others.

  4. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO{sub 2} with transition metal additions

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Geyer, Richard W.; Hans, Marcus [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2016-07-28

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO{sub 2} with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m{sup −1} K{sup −2} for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO{sub 2} and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  5. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    Science.gov (United States)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  6. Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Stephen Dongmin; Pöhls, Jan-Hendrik; Aydemir, Umut; Qiu, Pengfei; Stoumpos, Constantinos C.; Hanus, Riley; White, Mary Anne; Shi, Xun; Chen, Lidong; Kanatzidis, Mercouri G.; Snyder, G. Jeffrey

    2017-06-01

    Superionic thermoelectric materials have been shown to have high figure-of-merits, leading to expectations for efficient high-temperature thermoelectric generators. These compounds exhibit extremely high cation diffusivity, comparable to that of a liquid, which is believed to be associated with the low thermal conductivity that makes superionic materials good for thermoelectrics. However, the superionic behavior causes cation migration that leads to device deterioration, being the main obstacle for practical applications. It has been reported that lithium doping in superionic Cu2-xSe leads to suppression of the Cu ion diffusivity, but whether the material will retain the promising thermoelectric properties had not yet been investigated. Here, we report a maximum zT>1.4 from Li0.09Cu1.9Se, which is higher than what we find in the undoped samples. The high temperature effective weighted mobility of the doped sample is found higher than Cu2-xSe, while the lattice thermal conductivity remains similar. We find signatures of suppressed bipolar conduction due to an enlarged band gap. Our findings set forth a possible route for tuning the stability of superionic thermoelectric materials.

  7. Analysis of magneto-electronic, thermodynamic and thermoelectric properties of ferromagnetic CoFeCrAl alloy

    Science.gov (United States)

    Mohiuddin Bhat, Tahir; Gupta, Dinesh C.

    2017-11-01

    The structural stability, electronic, mechanical, thermodynamic and thermoelectric properties of CoFeCrAl have been investigated by modified Beck–Johnson (mBJ) exchange potential. From the optimized calculations, the indirect band gap of 0.65 eV in spin-down was found, which is enhanced than the previously reported data. The material offers the magnetic moment of 2µ B and displays brittle nature with mixed chemical bonding. The thermoelectric properties of the compound in the temperature range 50–550 K have been revealed. Seebeck coefficient at room temperature is  ‑46 µV K‑1 which increases with temperature. At 550 K, the figure-of-merit for n-type compound maximizes up to ~0.41 suggesting a potential thermoelectric material at high temperatures. Meanwhile, quasi-harmonic Debye model was also used to investigate the effect of pressure and temperature on the thermal expansion, Grüneisen parameter and unit cell volume.

  8. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  9. Chemical Precipitation Synthesis and Thermoelectric Properties of Copper Sulfide

    Science.gov (United States)

    Wu, Sixin; Jiang, Jing; Liang, Yinglin; Yang, Ping; Niu, Yi; Chen, Yide; Xia, Junfeng; Wang, Chao

    2017-04-01

    Earth-abundant copper sulfide compounds have been intensively studied as potential thermoelectric materials due to their high dimensionless figure of merit ZT values. They have a unique phonon-liquid electron-crystal model that helps to achieve high thermoelectric performance. Many methods, such as melting and ball-milling, have been adopted to synthesize this copper sulfide compound, but they both use expensive starting materials with high purity. Here, we develop a simple chemical precipitation approach to synthesize copper sulfide materials through low-cost analytically pure compounds as the starting materials. A high ZT value of 0.93 at 800 K was obtained from the samples annealed at 1273 K. Its power factor is around 8.0 μW cm-1 K-2 that is comparable to the highest record reported by traditional methods. But, the synthesis here has been greatly simplified with reduced cost, which will be of great benefit to the potential mass production of thermoelectric devices. Furthermore, this method can be applied to the synthesis of other sulfur compound thermoelectric materials.

  10. Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime

    OpenAIRE

    Monteros, A. L.; Uppal, G. S.; McMillan, S. R.; Crisan, M.; Tifrea, I.

    2014-01-01

    We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The system's electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient ($S$) and the thermal conductivity ($\\kappa$), along with the system's thermoelectric figure of merit (ZT) are numerically estimated based on a Green's function formalism that includes contributions up to the Hartree-Fock level. Our results accou...

  11. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons

    DEFF Research Database (Denmark)

    Sevincli, Haldun; Sevik, Cem; Cagin, Tahir

    2013-01-01

    We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants and Hamilto...

  12. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Directory of Open Access Journals (Sweden)

    Michael W. Gaultois

    2016-05-01

    Full Text Available The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er, which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  13. Thermoelectric Properties of Au- Containing Type-I Clathrates Ba8AuxGa16-3xGe30+2x

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zuxin [Optimal Inc., Plymouth, Michigan 48170, USA; Cho, Jung Young [Optimal Inc., Plymouth, Michigan 48170, USA; Tessema, Misle M. [Optimal Inc., Plymouth, Michigan 48170, USA; Salvador, James R. [General Motors, Global Research and Development; Waldo, Richard A. [General Motors, Global Research and Development; Yang, Jihui [University of Washington; Wang, Hsin [ORNL; Cai, Wei [ORNL; Kirkham, Melanie J [ORNL; Yang, Jiong [Chinese Academy of Sciences (CAS); Zhang, Wenqing [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS)

    2014-01-01

    Type I clathrates, with compositions based on Ba8Ga16Ge30, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S2/ where is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution with a thermoelectric figure of merit ZT ~ 0.63 at temperature T = 740 K for the composition Ba8Au5.47Ge39.96. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  14. Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition

    KAUST Repository

    Kim, Hyunho

    2017-02-27

    Extraordinary oxidant-dependent changes in the thermoelectric properties of undoped ZnO thin films deposited by atomic layer deposition (ALD) have been observed. Specifically, deionized water and ozone oxidants are used in the growth of ZnO by ALD using diethylzinc as a zinc precursor. No substitutional atoms have been added to the ZnO films. By using ozone as an oxidant instead of water, a thermoelectric power factor (σS) of 5.76 × 10 W m K is obtained at 705 K for undoped ZnO films. In contrast, the maximum power factor for the water-based ZnO film is only 2.89 × 10 W m K at 746 K. Materials analysis results indicate that the oxygen vacancy levels in the water- and ozone-grown ZnO films are essentially the same, but the difference comes from Zn-related defects present in the ZnO films. The data suggest that the strong oxidant effect on thermoelectric performance can be explained by a mechanism involving point defect-induced differences in carrier concentration between these two oxides and a self-compensation effect in water-based ZnO due to the competitive formations of both oxygen and zinc vacancies. This strong oxidant effect on the thermoelectric properties of undoped ZnO films provides a pathway to improve the thermoelectric performance of this important material.

  15. Electrical, thermoelectric and thermophysical properties of hornet cuticle

    Science.gov (United States)

    Galushko, D.; Ermakov, N.; Karpovski, M.; Palevski, A.; Ishay, J. S.; Bergman, D. J.

    2005-03-01

    Seebeck effect (thermo-emf), thermal conductivity and electrical conductivity of social hornet cuticle were measured in a direction perpendicular to the cuticular surface. The obtained value of the Seebeck coefficient (S) was about 3 ± 0.5 mV K-1 and its sign corresponded to an n-type (electronic) conductivity. Hornet cuticle is shown to be a fairly good heat insulator, with recorded values of the heat conductivity as low as 0.1-0.2 W m-1 K-1. The measured value of the electrical conductivity in the linear regime is σ = 8.5 × 10-5 Ω-1 cm-1. The thermoelectric figure of merit is computed. Implications for possible exploitation as a natural thermoelectric heat pump are discussed.

  16. Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers.

    Science.gov (United States)

    Liang, Ansheng; Zhou, Xiaoyan; Zhou, Wenqiao; Wan, Tao; Wang, Luhai; Pan, Chengjun; Wang, Lei

    2017-09-01

    Three conjugated polymers with alkyl chains of different lengths are designed and synthesized, and their structure-property relationship as organic thermoelectric materials is systematically elucidated. All three polymers show similar photophysical properties, thermal properties, and mechanical properties; however, their thermoelectric performance is influenced by the length of their side chains. The length of the alkyl chain significantly influences the electrical conductivity of the conjugated polymers, and polymers with a short alkyl chain exhibit better conductivity than those with a long alkyl chain. The length of the alkyl chain has little effect on the Seebeck coefficient. Only a slight increase in the Seebeck coefficient is observed with the increasing length of the alkyl chain. The purpose of this study is to provide comprehensive insight into fine-tuning the thermoelectric properties of conjugated polymers as a function of side-chain engineering, thereby providing a novel perspective into the design of high-performance thermoelectric conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermoelectric properties of lead chalcogenide core-shell nanostructures

    OpenAIRE

    Scheele, Marcus; Oeschler, Niels; Veremchuk, Igor; Peters, Sven-Ole; Littig, Alexander; Kornowski, Andreas; Klinke, Christian; Weller, Horst

    2012-01-01

    We present the full thermoelectric characterization of nanostructured bulk PbTe and PbTe-PbSe samples fabricated from colloidal core-shell nanoparticles followed by spark plasma sintering. An unusually large thermopower is found in both materials, and the possibility of energy filtering as opposed to grain boundary scattering as an explanation is discussed. A decreased Debye temperature and an increased molar specific heat are in accordance with recent predictions for nanostructured materials...

  18. Electronic Structure and Thermoelectric Properties of the Delafossite-Type Oxides CuFe1- x Ni x O2

    Science.gov (United States)

    Nozaki, T.; Hayashi, K.; Kajitani, T.

    2009-07-01

    In this study, we investigated the chemical composition and electronic structure of the delafossite-type oxides CuFeO2 (CFO) and CuFe0.98Ni0.02O2 (CFNO). The hole carrier density in the Cu and FeO2 layers of CFNO was found to be different from that of CFO, leading to the enhancement of electrical conductivity by Ni substitution. In addition, thermoelectric properties were found to be affected by the surface treatment, possibly due to some surface contamination. An etched CFNO (E-CFNO) exhibited a higher electrical conductivity and a higher Seebeck coefficient relative to the polished CFNO (P-CFNO). The thermal conductivity did not change much between E-CFNO and P-CFNO. As a result, the thermoelectric performance of E-CFNO was higher than that of P-CFNO. This result indicates that etching is needed when we use CFNO as a p-leg in thermoelectric generators.

  19. Thermoelectric properties of Si/CoSi2 sub-micrometer composites prepared by melt-spinning technique

    Science.gov (United States)

    Xie, Jun; Ohishi, Yuji; Ichikawa, Satoshi; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-05-01

    We here report on the influence of CoSi2 precipitates on the thermoelectric properties of heavily doped p-type Si. A simple self-assembly process using a melt-spinning technique followed by spark plasma sintering is introduced to prepare bulk Si/CoSi2 composites with a nominal composition of (Si0.99B0.01)95Co5. Scanning and transmission electron microscopy observations present clear evidence of a sub-micrometer CoSi2 phase with a size ranging from 50 to 500 nm. These sub-micrometer precipitates resulted in a retention of the high electrical performance of heavily doped Si, while simultaneously reducing thermal conductivity by over 20% compared to a coarse CoSi2 phase (1-10 μm) in a comparative sample prepared by arc melting and spark plasma sintering. As a result, a figure of merit ZT value of 0.21 at 1073 K was achieved in the sub-micrometer Si/CoSi2, an increase of 16% compared with the ZT value for homogeneous p-type Si with a similar carrier concentration. This suggests that the self-assembled sub-micrometer inclusions effectively enhanced the thermoelectric performance of Si-based thermoelectric materials.

  20. Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Sun, Ye; Canulescu, Stela; Sun, Peijie

    2011-01-01

    Thermoelectric FeSb2 films were produced by pulsed laser deposition on silica substrates in a low-pressure Ar environment. The growth conditions for near phase-pure FeSb2 films were confirmed to be optimized at a substrate temperature of 425°C, an Ar pressure of 2 Pa, and deposition time of 3 h b...... by ablating specifically prepared compound targets made of Fe and Sb powders in atomic ratio of 1:4. The thermoelectric transport properties of FeSb2 films were investigated. Pulsed laser deposition was demonstrated as a method for production of good-quality FeSb2 films....

  1. Thermoelectric properties of SiC/C composites from wood charcoal by pulse current sintering

    NARCIS (Netherlands)

    Fujisawa, M; Hata, T; Bronsveld, P; Castro, [No Value; Tanaka, F; Kikuchi, H; Imamura, Y

    2005-01-01

    SiC/C composites were investigated by sintering a mix of wood charcoal and SiO2 powder (32-45 mu m) at 1400, 1600 and 1800 degrees C under N-2 atmosphere with a pulse current sintering method. Thermoelectric properties of SiC/C composites were investigated by measuring the Seebeck coefficient and

  2. Influence of heat treatment on the structure and thermoelectric properties of CrSi2

    Science.gov (United States)

    Solomkin, F. Yu.; Suvorova, E. I.; Zaitsev, V. K.; Novikov, S. V.; Burkov, A. T.; Samunin, A. Yu.; Isachenko, G. N.

    2011-02-01

    Textured CrSi2 crystals obtained by heating finely dispersed constituents (Si, Cr) are studied. The use of a mixture of Cr and Si powders makes it possible to lower the CrSi2 synthesis temperature by 100 K. Crystallization conditions and post-crystallization annealing are found to influence the thermoelectric properties and composition of samples.

  3. Effect of Surfactant Concentration Variation on the Thermoelectric Properties of Mesoporous ZnO

    Directory of Open Access Journals (Sweden)

    Min-Hee Hong

    2013-01-01

    Full Text Available The electrical and thermal conductivities and the Seebeck coefficient of mesoporous ZnO thin films were investigated to determine the change of their thermoelectric properties by controlling surfactant concentration in the mesoporous ZnO films, because the thermoelectric properties of mesoporous ZnO films can be influenced by the porosity of the mesoporous structures, which is primarily determined by surfactant concentration in the films. Mesoporous ZnO thin films were successfully synthesized by using sol-gel and evaporation-induced self-assembly processes. Zinc acetate dihydrate and Brij-76 were used as the starting material and pore structure-forming template, respectively. The porosity of mesoporous ZnO thin films increased from 29% to 40% with increasing surfactant molar ratio. Porosity can be easily altered by controlling the molar ratio of surfactant/precursor. The electrical and thermal conductivity and Seebeck coefficients showed a close correlation with the porosity of the films, indicating that the thermoelectric properties of thin films can be changed by altering their porosity. Mesoporous ZnO thin films with the highest porosity had the best thermoelectric properties (the lowest thermal conductivity and the highest Seebeck coefficient of the films examined.

  4. Effect of doping of N and B atoms on thermoelectric properties of ...

    Indian Academy of Sciences (India)

    In this work, the doping effect on the thermoelectric properties of the C60 molecule (fullerene) was studied by considering inelastic electron–phonon interactions. It is seen that the maximum value of thermal conductance (max) with respect to the molecules are max(C59N) < max(C60) < max(C59B). Also, the ...

  5. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied...

  6. Unified modelling of the thermoelectric properties in SrTiO3

    Science.gov (United States)

    Bouzerar, G.; Thébaud, S.; Adessi, Ch.; Debord, R.; Apreutesei, M.; Bachelet, R.; Pailhès, S.

    2017-06-01

    Thermoelectric materials are opening a promising pathway to address energy conversion issues governed by a competition between thermal and electronic transport. Improving the efficiency is a difficult task, a challenge that requires new strategies to unearth optimized compounds. We present a theory of thermoelectric transport in electron-doped SrTiO3, based on a realistic tight-binding model that includes relevant scattering processes. We compare our calculations against a wide panel of experimental data, both bulk and thin films. We find a qualitative and quantitative agreement over both a wide range of temperatures and carrier concentrations, from light to heavily doped. Moreover, the results appear insensitive to the nature of the dopant La, B, Gd and Nb. Thus, the quantitative success found in the case of SrTiO3, reveals an efficient procedure to explore new routes to improve the thermoelectric properties in oxides.

  7. Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties

    Directory of Open Access Journals (Sweden)

    P. Schönherr

    2017-08-01

    Full Text Available Bi2Te3 nanowires are promising candidates for thermoelectric applications. Vapor-liquid-solid growth of these nanowires is straightforward, but the traditional Au-catalyzed method is expected to lead to Au contamination and subsequently crystal defects. Here, we present a comparison of the Au-catalyzed growth method with an alternative method using TiO2. We observe that the latter approach results in perfect quintuple layer nanowires, whilst using Au leads to mixed quintuple and septuple layer structures. Despite these differences, we surprisingly find only a negligible effect on their thermoelectric properties, namely conductivity and Seebeck coefficient. This result is relevant for the further optimization and engineering of thermoelectric nanomaterials for device applications.

  8. Fabrication and Thermoelectric Properties of Graphene/Bi2Te3 Composite Materials

    Directory of Open Access Journals (Sweden)

    Beibei Liang

    2013-01-01

    Full Text Available Graphene/Bi2Te3 thermoelectric materials were prepared by spark plasma sintering (SPS using hydrothermal synthesis of the powders as starting materials. The X-ray diffraction (XRD and field emission scanning electron microscope (FE-SEM were used to investigate the phase composition and microstructure of the as-prepared materials. Electrical resistivity, Seebeck coefficient, and thermal conductivity measurement were applied to analyze the thermoelectric properties. The effect of graphene on the performance of the thermoelectric materials was studied. The results showed that the maximum dimensionless figure of merit of the graphene/Bi2Te3 composite with 0.2 vol.% graphene was obtained at testing temperature 475 K, 31% higher than the pure Bi2Te3.

  9. Photo- and gas-tuned, reversible thermoelectric properties and anomalous photo-thermoelectric effects of platinum-loaded tungsten trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenta; Watanabe, Takuya [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2016-06-28

    We report the photo- and gas-controllable properties of platinum-loaded tungsten trioxide (Pt/WO{sub 3}), which is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a Pt/WO{sub 3} thin film generated a thermoelectric power due to the ultraviolet-light-induced band-gap excitation (photochromic (PC) reaction) and/or dark storage in formic acid vapor (gaschromic (GC) reaction) in the absence of O{sub 2}, resulting from the generation of W{sup 5+} ions. After such chromic reactions, the electrical conductivity (σ) is increased, whereas the absolute value of the Seebeck coefficient (S) is decreased. The changes in σ and S and their rate of change for consistency increased in the order of: during the PC reaction < during the GC reaction < during simultaneous PC and GC reactions. The opposite behaviors, a decrease in σ and an increase in S, were exhibited by Pt/WO{sub 3} in the presence of O{sub 2} after dark storage or visible-light irradiation. This reversible cycle could be repeated. Moreover, anomalous, nontrivial photo-thermoelectric effects (a photoconductive effect (photoconductivity, σ{sub photo}) and a photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to the visible-light irradiation of Pt/WO{sub 3} in the absence of O{sub 2} after chromic reactions. Under visible-light irradiation, both σ{sub photo} and the absolute value of S{sub photo} are increased. After the irradiation, both values were decreased, that is, σ and the absolute value of S were smaller than σ{sub photo} and the absolute value of S{sub photo}, respectively. These effects are likely to be due to the photoinduced charge carriers and the accumulated electrons in Pt contributing to the increase in σ{sub photo}. In addition, electrons are extracted from the W{sup 5+} state, decreasing the number of W{sup 5+} in H{sub x}WO{sub 3} and thus contributing to the

  10. An Experimental Investigation towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics

    Science.gov (United States)

    Mehdizadeh Dehkordi, Arash

    The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi2Te 3 and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, namely SiGe. Recently, oxides have exhibited great potential to be investigated for high-temperature thermoelectric power generation. The objective of this dissertation is to synthesize and investigate both electronic and thermal transport in strontium titanate (SrTiO3) ceramics in order to experimentally realize its potential and to ultimately investigate the possibility of further improvement of the thermoelectric performance of this perovskite oxide for mid- to high temperature applications. Developing a synthesis strategy and tuning various synthesis parameters to benefit the thermoelectric transport form the foundation of this study. It is worth mentioning that the results of this study has been employed to prepare targets for pulsed-laser deposition (PLD) to study the thermoelectric properties of corresponding thin films and superlattice structures at Dr. Husam Alshareef's group at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Considering the broad range of functionality of SrTiO3, the findings of this work will surely benefit other fields of research and application of this functional oxide such as photoluminescence, ferroelectricity or mixed-ionic electronic conductivity. This dissertation will ultimately

  11. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  12. Enhanced thermoelectric performance of amorphous Nb based oxynitrides

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Geyer, Richard W.; Hans, Marcus

    2015-12-15

    Using density functional theory, amorphous Nb{sub 0.27}Ru{sub 0.06}O{sub 0.56}N{sub 0.10} was designed to facilitate a combination of an enhanced Seebeck coefficient and low electrical resistivity. Based on a positive Cauchy pressure, ductile behavior is expected. To verify these predictions, the transport and mechanical properties of amorphous thin films were evaluated. Metallic electrical resistivity and the Seebeck coefficient of −94 µV K{sup −1} are obtained, which is consistent with our predictions. As there is no crack formation, these samples can be perceived as ductile. We demonstrate that the power factor can be increased by an order of magnitude, while keeping the thermal fatigue low.

  13. Electronic and Thermoelectric Properties of Ternary Chalcohalide Semiconductors: First Principles Study

    Science.gov (United States)

    Khan, Wilayat; Hussain, Sajjad; Minar, Jan; Azam, Sikander

    2018-02-01

    Ternary chalcohalides have been widely utilized for different device applications. The thermoelectric properties of SbSI, SbSeI and SbSBr have been investigated by theoretical simulations, and the findings have been performed using BoltzTraP code, based on semi-classical Boltzmann transport theory. In this study, we simulated the electronic structures using the Englo-Vosko generalized gradient approximation employed in the WIEN2k program. From the electronic band structures, we found a combination of light and heavy bands around the Fermi level in the valence band, which strongly affect the effective masses of the carriers. The entire thermoelectric parameters, like the electrical, the electronic part of the thermal conductivities, the Seebeck coefficient and the power factor have been analysed as functions of temperature and chemical potential. The correlation between the effective masses and the thermoelectric properties is also included in the discussion because the effective mass reveals the mobility of the carriers which in turn affect the thermoelectric properties. The substitution of sulfur reveals high electrical conductivity and a smaller Seebeck coefficient based on effective mass leads to the increase in the power factor.

  14. DFT Study on the Carrier Concentration and Temperature-Dependent Thermoelectric Properties of Antimony Selenide

    Directory of Open Access Journals (Sweden)

    Aditya Jayaraman

    2016-01-01

    Full Text Available We present the thermoelectric properties of Antimony Selenide (Sb2Se3 obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BoltzTrap code using the constant relaxation time (τ approximation at three different temperatures 300 K, 600 K, and 800 K. Seebeck coefficient (S was found to decrease with increasing temperature, electrical conductivity (σ/τ was almost constant in the entire temperature range, and electronic thermal conductivity (κ/τ increased with increasing temperature. With increase in temperature S decreased from 1870 μV/K (at 300 K to 719 μV/K (at 800 K, electronic thermal conductivity increased from 1.56 × 1015 W/m K s (at 300 K to 3.92 × 1015 W/m K s (at 800 K, and electrical conductivity decreased from 22 × 1019/Ω m s (at 300 K to 20 × 1019/Ω m s (at 800 K. The thermoelectric properties were also calculated for different hole concentrations and the optimum concentration for a good thermoelectric performance over a large range of temperatures (from 300 K to 1000 K was found for hole concentration around 1019 cm−3.

  15. Solvent-Dependent Thermoelectric Properties of PTB7 and Effect of 1,8-Diiodooctane Additive

    Directory of Open Access Journals (Sweden)

    Mina Rastegaralam

    2017-09-01

    Full Text Available Conjugated polymers are considered for application in thermoelectric energy conversion due to their low thermal conductivity, low weight, non-toxicity, and ease of fabrication, which promises low manufacturing costs. Here, an investigation of the thermoelectric properties of poly({4,8-bis[(2-ethylhexyloxy]benzo [1,2-b:4,5-b′] dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl carbonyl]thieno[3,4-b] thiophenediyl}, commonly known as PTB7 conjugated polymer, is reported. Samples were prepared from solutions of PTB7 in three different solvents: chlorobenzene, 1,2-dichlorobenzene, and 1,2,4-trichlorobenzene, with and without 1,8-diiodooctane (DIO additive. In order to characterize their thermoelectric properties, the electrical conductivity and the Seebeck coefficient were measured. We found that, by increasing the boiling point of the solvent, both the electrical conductivity and the Seebeck coefficient of the PTB7 samples were simultaneously improved. We believe that the increase in mobility is responsible for solvent-dependent thermoelectric properties of the PTB7 samples. However, the addition of DIO changes the observed trend. Only the sample prepared from 1,2,4-trichlorobenzene showed a higher electrical conductivity and Seebeck coefficient and, as a consequence, improved power factor in comparison to the samples prepared from chlorobenzene and 1,2-dichlorobenzene.

  16. Enhancement of thermoelectric power factor in CrSi2 film via Si:B addition

    Science.gov (United States)

    Hou, Q. R.; Gu, B. F.; Chen, Y. B.

    2015-09-01

    In this paper, we report a large enhancement in the thermoelectric power factor in CrSi2 film via Si:B (1 at.% B content) addition. The Si:B-enriched CrSi2 films are prepared by co-sputtering CrSi2 and heavily B-doped Si targets. Both X-ray diffraction patterns and Raman spectra confirm the formation of the crystalline phase CrSi2. Raman spectra also indicate the crystallization of the added Si:B. With the addition of Si:B, the electrical resistivity (R) decreases especially at low temperatures while the Seebeck coefficient (S) increases above 533 K. As a result, the thermoelectric power factor, PF = S2/R, is greatly enhanced and can reach 716 × 10-6W/m ṡK2 at 583 K, which is much larger than that of the pure CrSi2 film.

  17. Bilayer Excitons in Two-Dimensional Nanostructures for Greatly Enhanced Thermoelectric Efficiency

    Science.gov (United States)

    Wu, Kai; Rademaker, Louk; Zaanen, Jan

    2014-11-01

    Currently, a major nanotechnological challenge is to design thermoelectric devices that have a high figure of merit. To that end, we propose to use bilayer excitons in two-dimensional nanostructures. Bilayer-exciton systems are shown to have an improved thermopower and an enhanced electric counterflow and thermal conductivity, with respect to regular semiconductor-based thermoelectrics. We suggest an experimental realization of a bilayer-exciton thermocouple. Based on current experimental parameters, a bilayer-exciton heterostructure of p - and n -doped Bi2Te3 can enhance the figure of merit an order of magnitude compared to bulk Bi2Te3 . Another material suggestion is to make a bilayer out of electron-doped SrTiO3 and hole-doped Ca3Co4O9 .

  18. Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides

    Science.gov (United States)

    Martin, Joshua

    The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides. The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 effective mass on Si substitution level, may imply a modified band structure with Si substitution. These materials were then further optimized by adjusting the Ga-to-group IV element ratios. Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for the first time, dense dimensional nanocomposites prepared by densifying nanocrystals synthesized employing a solution-phase reaction. Furthermore, the carrier concentration of the PbTe nanocomposites can be adjusted by directly doping the nanocrystals, necessary for power

  19. Thermoelectric performance and electronic properties of transition metal monosilicides

    Science.gov (United States)

    Ou-Yang, T. Y.; Shu, G. J.; Fuh, H. R.

    2017-10-01

    We have performed a comprehensive series of lattice structure, band structure, electrical transport, and thermoelectric performances measurements for MnSi, FeSi, and CoSi single crystals. The band structure of this family of compounds demonstrates significant changes across the Fermi level as the number of 3d-electron is increased with transition metal substitution. In particular, a crossover from metal to semiconductor and back to semimetal has been observed in this series of compounds. Practical measurements (electrical transport and thermoelectric performances) are combined with theoretical calculations to qualify the reliability of band structures. By means of standard thermal activation simulations of electrical resistivity for FeSi, we identify a narrow band gap ∼57 meV, which is well consistent with our band calculation result. A double sign reversal of the Seebeck coefficient for FeSi suggests that both electrons and holes are contributed to electrical transport, indicating that the electronic structure of FeSi is substantially influenced by hole-doped (MnSi) and electron-doped (CoSi) effects.

  20. Thermoelectric properties of Al-doped Mg{sub 2}Si thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-jian; Zhou, Bai-yang, E-mail: zby_112921@163.com; Li, Jian-xin; Wen, Cui-lian, E-mail: clwen@fzu.edu.cn

    2016-11-15

    Highlights: • The thin films were fabricated by two-target alternative magnetron sputtering. • The maximum power factor of Al-doped Mg{sub 2}Si thin film we obtained is 3.8 mW m{sup −1} k{sup −2}. • A proper Al dopant can enhance the thermoelectric properties of Mg{sub 2}Si thin films. • Low-dimensional technique can enhance thermoelectric performance effectively. - Abstract: The Al-doped Mg{sub 2}Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg{sub 2}Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg{sub 2}Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg{sub 2}Si thin films are significantly greater than that of undoped Mg{sub 2}Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg{sub 2}Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m{sup −1} k{sup −2} for 1.56 at.% Al-doped Mg{sub 2}Si thin film at 573 K.

  1. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  2. Thermoelectric properties of currently available Au/Pt thermocouples related to the valid reference function

    Directory of Open Access Journals (Sweden)

    Edler F.

    2015-01-01

    Full Text Available Au/Pt thermocouples are considered to be an alternative to High Temperature Standard Platinum Resistance Thermometers (HTSPRTs for realizing temperatures according to the International Temperature Scale of 1990 (ITS-90 in the temperature range between aluminium (660.323 °C and silver (961.78 °C. The original aim of this work was to develop and to validate a new reference function for Au/Pt thermocouples which reflects the properties of presently commercially available Au and Pt wires. The thermoelectric properties of 16 Au/Pt thermocouples constructed at different National Metrological Institutes by using wires from different suppliers and 4 commercially available Au/Pt thermocouples were investigated. Most of them exhibit significant deviations from the current reference function of Au/Pt thermocouples caused by the poor performance of the Au-wires available. Thermoelectric homogeneity was investigated by measuring immersion profiles during freezes at the freezing point of silver and in liquid baths. The thermoelectric inhomogeneities were found to be one order of magnitude larger than those of Au/Pt thermocouples of the Standard Reference Material® (SRM® 1749. The improvement of the annealing procedure of the gold wires is a key process to achieve thermoelectric homogeneities in the order of only about (2–3 mK, sufficient to replace the impracticable HTSPRTs as interpolation instruments of the ITS-90. Comparison measurements of some of the Au/Pt thermocouples against a HTSPRT and an absolutely calibrated radiation thermometer were performed and exhibit agreements within the expanded measurement uncertainties. It has been found that the current reference function of Au/Pt thermocouples reflects adequately the thermoelectric properties of currently available Au/Pt thermocouples.

  3. Bismuth doped Mg2Si with improved homogeneity: Synthesis, characterization and optimization of thermoelectric properties

    Science.gov (United States)

    Nieroda, P.; Leszczynski, J.; Kolezynski, A.

    2017-04-01

    Recent investigations on Bi doped Mg2Si have shown huge differences of the optimum doping level with respect to maximization of thermoelectric performance. A possible discrepancy among the published results can have origin in different homogeneity of the samples examined in different studies, but it is impossible to judge because of lack of the microstructural studies. Therefore, the aim of the study was to develop a method for obtaining a homogeneous Mg2Si doped with Bi samples and determine the influence of dopant on their thermoelectric properties as well as the solubility limit. The results of theoretical studies of the electronic structure employing FP-LAPW (Full Potential Linearized Augmented Plane Wave) method calculations within density functional theory DFT using the WIEN2k package in Bi-doped Mg2Si are presented. A series of samples with nominal composition Mg2Si1-xBix (x=0-0.06) were prepared using the spark plasma sintering (SPS) method and subsequent annealing. Structural, phase and chemical composition analyses were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning thermoelectric microprobe (STM). The solubility limit was found to be higher than in the previous reports. Carrier concentration was measured using the Hall method. The investigations of the influence of Bi dopant on the transport properties i.e.: electrical conductivity, the Seebeck coefficient and the thermal conductivity were carried out in the temperature range from 300 to 720 K. On the basis of the experimental data, the temperature dependencies of the thermoelectric figure of merit ZT were calculated. Detailed analysis of all obtained results was carried out providing additional insight into the role of the homogeneity of studied materials on their thermoelectric properties.

  4. Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3

    KAUST Repository

    Abutaha, Anas I.

    2015-03-24

    Thermoelectric (TE) metal oxides overcome crucial disadvantages of traditional heavy-metal-alloy-based TE materials, such as toxicity, scarcity, and instability at high temperatures. Here, we report the TE properties of metal oxide superlattices, composed from alternating layers of 5% Pr3+-doped SrTiO3-δ (SPTO) and 20% Nb5+-doped SrTiO3-δ (STNO) fabricated using pulsed laser deposition (PLD). Excellent stability is established for these superlattices by maintaining the crystal structure and reproducing the TE properties after long-time (20 h) annealing at high temperature (∼1000 K). The introduction of oxygen vacancies as well as extrinsic dopants (Pr3+ and Nb5+), with different masses and ionic radii, at different lattice sites in SPTO and STNO layers, respectively, results in a substantial reduction of thermal conductivity via scattering a wider range of phonon spectrum without limiting the electrical transport and thermopower, leading to an enhancement in the figure-of-merit (ZT). The superlattice composed of 20 SPTO/STNO pairs, 8 unit cells of each layer, exhibits a ZT value of 0.46 at 1000 K, which is the highest among SrTiO3-based thermoelectrics. © 2015 American Chemical Society.

  5. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  6. Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Imai, Kazuo; Uyama, Masato [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan); Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2014-11-05

    Highlights: • Effects of EB irradiation on the properties of Bi–Se–Te thin films were examined. • The crystallinity and the crystal orientation were enhanced by the EB treatment. • The crystal grain size did not grow as the EB irradiation dose was increased. • A number of nanodots were formed on the surface of the rice-like nanostructures. • The mobility was enhanced but the carrier concentration was not greatly changed. - Abstract: The effects of homogeneous irradiation of electron beam (EB) on the crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films were investigated. The thin films were prepared using a flash evaporation method, after which EB irradiation was performed under N{sub 2} at room temperature at an accelerated voltage of 0.17 MeV. SEM revealed that the untreated thin film was composed of a large quantity of rice-like nanostructures. With increasing the EB irradiation dose, a number of nanodots with diameters of less than 10 nm became visible on the surface of the rice-like nanostructures. The crystallinity and the crystal orientation were enhanced with increasing EB irradiation dose while the average crystal grain size remained almost the same size as that of the untreated thin film. In terms of thermoelectric properties, the mobility of the thin films was enhanced as the EB irradiation dose was increased while the carrier concentration was not greatly changed. As a result, both the electrical conductivity and the Seebeck coefficient were improved with increasing EB irradiation dose. Consequently, even though there is still room for further improvement, the power factor was enhanced around sevenfold (from 0.14 to 0.96 μW/cm/K{sup 2}) by the EB irradiation treatment.

  7. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  8. The impact of sintering temperature on structural, morphological and thermoelectric properties of zinc titanate nanocrystals

    Science.gov (United States)

    Chandrasekaran, P.; Murugu thiruvalluvan, T. M. V.; Arivanandhan, M.; Jayakumari, T.; Anandan, P.

    2017-07-01

    The effect of sintering temperature and Ti:Zn ratio of precursor solutions on the structural, morphological and thermoelectric properties of Zinc titanate (TZO) nanocrystals have been investigated. TZO nanocrystals were synthesized by changing the molar ratio of precursors of Zn and Ti sources by sol-gel method. The synthesized materials were sintered at different temperatures and the formation of multi phases of TZO were analysed by x-ray diffraction studies. The morphological properties and composition of TZO samples were studied by FESEM, TEM and XPS analysis. The thermoelectric properties of the TZO have been studied by measuring the Seebeck coefficient of the materials at various temperature. It was observed that the Seebeck coefficient of TZO sample increases with increasing Zn content in the sample especially at high temperature.

  9. Conductivity and thermoelectric properties of nanostructure tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M.A. Batal

    2014-04-01

    Full Text Available Tin oxide thin films doped with iron or copper were deposited on glass and porous alumina substrates, using the co-deposition dip coating sol–gel technique. Alumina substrate was prepared by the anodizing technique. Samples were sintered for 2 h at temperature 600 °C. The XRD spectrum of deposited samples shows a polycrystalline structure with a clear characteristic peak of SnO2 cassiterite phase. From (I–V characteristics measured at different temperatures for samples prepared on glass substrates, the density of states at the Fermi level was calculated. Thermoelectric effect was measured with a change of temperature for prepared samples under low pressure 1 mbar. Seebeck coefficient, the carrier concentration, the charge carrier mobility and the figure merit were determined for prepared samples under low pressure 1 mbar. Seebeck coefficient was improved when films were deposited on porous Alumina substrates.

  10. Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Canulescu, Stela; SUN, Ye; Schou, Jørgen

    was systematically studied. Uniform, continuous and nearly phase-pure FeSb2 films with thickness of 100-400 nm were produced. Thermal transport and Hall measurements were performed to study their thermoelectric transport properties. A maximum absolute value of S ~120 μVK-1 at 40 K was obtained. This study should......FeSb2, a strongly correlated semiconductor, has promising application potential for thermoelectric cooling at cryogenic temperatures [1,2]. Single crystals of FeSb2 were found to exhibit colossal thermopower (S) values up to ~ −45000 μVK-1 and record high power factors up to 2300 μWK−2 cm−1 at 12 K...... [2]. However, the thermoelectric performance of FeSb2 is restricted by its large lattice thermal conductivity (κL). Thin film thermoelectric materials could have a much reduced κL due to surface and grain-boundary scattering of phonons. Therefore, FeSb2 thin films are expected to have remarkably...

  11. Electrical and thermoelectric properties of different compositions of Ge–Se–In thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aly, K.A., E-mail: kamalaly2001@gmail.com [Physics Department, Faculty of Science and Arts Khulais, University of Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt); Dahshan, A., E-mail: adahshan73@gmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Department of Physics, Faculty of Science for Girls, King Khalid University, Abha (Saudi Arabia); Abbady, Gh. [Department of Physics, Faculty of Science, Assuit University, Assuit (Egypt); Saddeek, Y. [Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt)

    2016-09-15

    The effect of temperature in the range of 300–450 K and the indium content on the electrical and thermoelectric properties of Ge{sub 20}Se{sub 80−x}In{sub x} (0.0≤x≤24 at%) chalcogenide glassy thin films have been studied. From dc electrical and thermoelectric measurements, it was observed that the activation energies for electrical conductivity (ΔE) and for thermoelectric (ΔE{sub s}) decrease while the conductivity (σ) and Seebeck coefficient (S) increase upon introducing In into the Ge–Se glasses. In contrast to the behavior obtained with Bi or Pb doping, In incorporated in Ge–Se does not lead to a p-to n-type conduction inversion. The power factor (P) which is strongly depends on both of the Seebeck coefficient and the electrical conductivity. According to the obtained results, the Ge{sub 20}Se{sub 80−x}In{sub x} films can be considered potential candidates for incurring high action thermoelectric materials.

  12. Thermal stability and thermoelectric properties of Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y} semiconducting glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vaney, J.B., E-mail: Jean-baptiste.vaney@ijl.nancy-universite.fr [Université de Lorraine, CNRS, Institut Jean Lamour, Parc de Saurupt, F-54042 NANCY Cedex (France); Institut Charles Gerhardt, UMR 5253 CNRS, Université de. Montpellier 2, 34095 Montpellier (France); Piarristeguy, A.; Pradel, A. [Institut Charles Gerhardt, UMR 5253 CNRS, Université de. Montpellier 2, 34095 Montpellier (France); Alleno, E. [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS UPEC 94320 Thiais (France); Lenoir, B.; Candolfi, C.; Dauscher, A. [Université de Lorraine, CNRS, Institut Jean Lamour, Parc de Saurupt, F-54042 NANCY Cedex (France); Gonçalves, A.P.; Lopes, E.B. [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa/CFMCUL, Estrada Nacianal 10, P-2686-953 Sacavém (Portugal); Delaizir, G. [SPCTS, UMR CNRS 73125, Centre Européen de la Céramique, 87068 Limoges (France); Monnier, J. [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS UPEC 94320 Thiais (France); Ribes, M. [Institut Charles Gerhardt, UMR 5253 CNRS, Université de. Montpellier 2, 34095 Montpellier (France); Godart, C. [Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS UPEC 94320 Thiais (France)

    2013-07-15

    We report on the thermal behavior and thermoelectric properties of bulk chalcogenide glasses in the systems Cu{sub x}As{sub 40−x}Te{sub 60} (20≤x≤32.5) and Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y}, (0≤y≤9) synthesized by conventional melt-quenching techniques. The thermal stability of these glasses was probed by differential scanning calorimetry to determine the characteristic T{sub g} and ΔT temperatures, both of which increasing noticeably with y. Thermoelectric properties were found to be mainly influenced by the Cu concentration with respect to the Se content. The thermal conductivity is practically composition-independent throughout the compositional range covered. A maximum ZT value of 0.02 at 300 K increasing to 0.06 at 375 K was achieved for the composition Cu{sub 30}As{sub 10}Te{sub 54}Se{sub 6}. - Graphical abstract: Effect of substitution of Te by Se and As by Cu on thermal stability and thermoelectric properties of Cu{sub x}As{sub 40−x}Te{sub 60−y}Se{sub y} semiconducting glasses. - Highlights: • We studied substitution of Te by Se in Cu–As–Te thermoelectric chalcogenide glasses. • Cu–As–Te–Se glasses were prepared by conventional melt-quenching method. • Se inclusion increases thermal stability in Cu–As–Te glasses. • Increasing copper concentration enhances thermoelectric properties. • ZT of 0.02 was achieved at 300 K and 0.06 at 375 K.

  13. Colligative thermoelectric transport properties in n-type filled CoSb3 determined by guest electrons in a host lattice

    Science.gov (United States)

    Lim, Young Soo; Park, Kwan-Ho; Tak, Jang Yeul; Lee, Soonil; Seo, Won-Seon; Park, Cheol-Hee; Kim, Tae Hoon; Park, PumSuk; Kim, Il-Ho; Yang, Jihui

    2016-03-01

    Among many kinds of thermoelectric materials, CoSb3 has received exceptional attention for automotive waste heat recovery. Its cage structure provides an ideal framework for the realization of phonon-glass electron-crystal strategy, and there have been numerous reports on the enhanced thermoelectric performance through the independent control of the thermal and electrical conductivity by introducing fillers into its cage sites. Herein, we report colligative thermoelectric transport properties in n-type CoSb3 from the viewpoint of "guest electrons in a host lattice." Both the Seebeck coefficient and the charge transport properties are fundamentally determined by the concentration of the guest electrons, which are mostly donated by the fillers, in the conduction band of the host CoSb3. Comparing this observation to our previous results, colligative relations for both the Seebeck coefficient and the mobility were deduced as functions of the carrier concentration, and thermoelectric transport constants were defined to predict the power factor in filled CoSb3. This discovery not only increases the degree of freedom for choosing a filler but also provides the predictability of power factor in designing and engineering the n-type filled CoSb3 materials.

  14. Colligative thermoelectric transport properties in n-type filled CoSb{sub 3} determined by guest electrons in a host lattice

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Young Soo, E-mail: yslim@pknu.ac.kr, E-mail: wsseo@kicet.re.kr, E-mail: pmoka@lgchem.com [Department of Materials System Engineering, Pukyong National University, Busan 48547 (Korea, Republic of); Park, Kwan-Ho; Tak, Jang Yeul; Lee, Soonil; Seo, Won-Seon, E-mail: yslim@pknu.ac.kr, E-mail: wsseo@kicet.re.kr, E-mail: pmoka@lgchem.com [Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851 (Korea, Republic of); Park, Cheol-Hee, E-mail: yslim@pknu.ac.kr, E-mail: wsseo@kicet.re.kr, E-mail: pmoka@lgchem.com; Kim, Tae Hoon; Park, PumSuk [LG Chem/Research Park, Daejeon 34122 (Korea, Republic of); Kim, Il-Ho [Department of Materials Science and Engineering, Korea National University of Transportation, Chungju 27909 (Korea, Republic of); Yang, Jihui [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2016-03-21

    Among many kinds of thermoelectric materials, CoSb{sub 3} has received exceptional attention for automotive waste heat recovery. Its cage structure provides an ideal framework for the realization of phonon-glass electron-crystal strategy, and there have been numerous reports on the enhanced thermoelectric performance through the independent control of the thermal and electrical conductivity by introducing fillers into its cage sites. Herein, we report colligative thermoelectric transport properties in n-type CoSb{sub 3} from the viewpoint of “guest electrons in a host lattice.” Both the Seebeck coefficient and the charge transport properties are fundamentally determined by the concentration of the guest electrons, which are mostly donated by the fillers, in the conduction band of the host CoSb{sub 3}. Comparing this observation to our previous results, colligative relations for both the Seebeck coefficient and the mobility were deduced as functions of the carrier concentration, and thermoelectric transport constants were defined to predict the power factor in filled CoSb{sub 3}. This discovery not only increases the degree of freedom for choosing a filler but also provides the predictability of power factor in designing and engineering the n-type filled CoSb{sub 3} materials.

  15. Enhanced thermoelectric performance of Bi2Te3 through uniform dispersion of single wall carbon nanotubes

    Science.gov (United States)

    Ahmad, Kaleem; Wan, Chunlei

    2017-10-01

    The advancement in nanostructured powder processing has attracted great interest as a cost effective and scalable strategy for high performance thermoelectric bulk materials. However, the level of technical breakthrough realized in quantum dot supperlattices/wires has not yet been demonstrated in these materials. Here, we report the first ever study on the uniform dispersion of single wall carbon nanotubes (SWCNTs) in nanostructured Bi2Te3 bulk, and their effect on thermoelectric parameters above room temperature. The Bi2Te3 based SWCNT composites were prepared through controlled powder processing, and their thermoelectric properties were finely tuned at the nanoscale by regulating various (0.5, 0.75, 1.0 and 1.5) vol% of SWCNTs in the matrix. The flexible ropes of SWCNT, making an interconnected network through the inter/trans granular positions of Bi2Te3, thus substantially change the transport properties of the composites. The perfect one-dimensional (1D) conducting structure of SWCNTs acts as a source of electrical transport through a percolating network, with significantly suppressed lattice thermal conductivity, via intensified boundary scattering. The remarkable increase in power factor is ascribed to energy filtering effects and excellent electrical transport of 1D SWCNTs in the composites. Consequently, with a considerable reduction in thermal conductivity, the figure of merit culminates in a several-fold improvement, at 0.5 vol% of SWCNTs, over pristine bulk Bi2Te3.

  16. Investigation on the thermoelectric properties of nanostructured CrTixSi2

    Science.gov (United States)

    Karuppaiah, S.; Beaudhuin, M.; Viennois, R.

    2013-03-01

    CrSi2 material is outstanding because of its thermoelectric properties and also because of its many optimization routes. Indeed, its thermal conductivity at room temperature is about 9 W m-1 K-1 with a ZT of 0.25. In this paper we propose to decrease the thermal conductivity by nanostructuration and compensate the electron scattering by increasing the charge carrier concentration with Ti. The process which permitted to get nanocrystallite of about 14 nm is presented. After cold pressing and sintering the average crystallite size reaches 50 nm with a porosity of 70%. Nanostructuring and porosity to a lesser extent lead to a strong decrease of the thermal conductivity up to 0.9±0.15 W m-1 K-1 for pure CrSi2. A significant enhancement of the power factor from 1.25 μW cm-1 K-2 for pure nano-CrSi2 to 2.5 μW cm-1 K-2 for nano-Cr0.90Ti0.10Si2 was obtained. The stability of the different phases is also evaluated by comparing experiments with ab initio calculations.

  17. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  18. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    KAUST Repository

    Amin, B.

    2013-07-16

    The electronic structure and thermoelectric properties of strained (biaxially and uniaxially) Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 are investigated in the temperature range from 300 K to 1200 K. Substitutions of Pr at the Sr site and Nb at the Ti site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for SrTi0.95Nb0.05O3 at room temperature in the case of 5% biaxial strain. At 1200 K, we predict figures of merit of 0.58 and 0.55 for 2.5% biaxially strained Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 , respectively, which are the highest values reported for rare earth doped SrTiO3.

  19. Thermoelectric properties of a ferromagnet-superconductor hybrid junction: Role of interfacial Rashba spin-orbit interaction

    Science.gov (United States)

    Dutta, Paramita; Saha, Arijit; Jayannavar, A. M.

    2017-09-01

    We investigate thermoelectric properties of a ferromagnet-superconductor hybrid structure with Rashba spin-orbit interaction and delta function potential barrier at the interfacial layer. The exponential rise of thermal conductance with temperature manifests a crossover temperature scale separating two opposite behaviors of it with the change of polarization in the ferromagnet whereas the inclusion of an interfacial Rashba spin-orbit field results in a nonmonotonic behavior of it with the strength of the Rashba field. We employ scattering matrix approach to determine the amplitudes of all the scattering processes possible at the interface to explain the thermoelectric properties of the device. We examine Seebeck effect and show that higher thermopower can be achieved when the polarization of the ferromagnet tends towards the half-metallic limit. It can be enhanced even for lower polarization in the presence of the finite potential barrier. In the presence of interfacial Rashba spin-orbit interaction, the Seebeck coefficient rises with the increase of barrier strength and polarization at weak or moderate interfacial Rashba field. From the application perspective, we compute the figure of merit and show that z T ˜4 -5 with higher polarization of the ferromagnet both in absence and presence of weak or moderate Rashba spin-orbit interaction along with the scalar potential barrier.

  20. Thermoelectric Properties of SnO2 Ceramics Doped with Sb and Zn

    DEFF Research Database (Denmark)

    Yanagiya, S.; Van Nong, Ngo; Xu, Jianxiao Jackie

    2011-01-01

    Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as i...

  1. Scrutinize the effect of Ge and Sn doping on electronic and thermoelectric properties of Mg2Si as thermoelectric material

    Science.gov (United States)

    Kaur, K.; Dhiman, S.; Kumar, R.

    2017-11-01

    We have analyzed the effect of Ge and Sn doping on the electronic and thermoelectric properties of Mg2Si using density functional theory and Boltzmann equations. The calculated results show that Mg2Si1-xAx (A = Ge, Sn, 0.125 ≤ x ≤ 0.5) systems exhibit semiconductor nature and doping with Ge slightly widen the energy gap at x = 0.125. In all doped systems, the seebeck coefficient has a negative sign, which indicates that conduction is due to electrons. With an increase in doping concentrations, the seebeck coefficient decreases, while electrical conductivity, electronic thermal conductivity increases. A classical kinetic theory has been employed to calculate the contribution of lattice thermal conductivity. We have elucidated that both doped systems attained minimum lattice thermal conductivity. Mg2Si1-xGex and Mg2Si1-xSnx has maximum figure of merit 0.077 and 0.15 at x = 0.125 respectively.

  2. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    , additional B-site doping of A-site doped SrTiO3 films leads to a prominent reduction in the lattice thermal conductivity without limiting the electrical transport, and hence an improvement in the figure of merit is noticed. Fourth and last, the enhancement of thermoelectric properties of thermally robust, high quality SrTiO3-based superlattices is discussed. Beside the randomly distributed oxygen vacancies and extrinsic dopants, the structure of SrTiO3-based superlattices increases the scattering of phonons at the interfaces between the alternative layers, and hence reducing the thermal conductivity, which leads to a notable enhancement in the figure of merit.

  3. Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT:PSS-glycerol organic films

    Science.gov (United States)

    Rahman, Airul Azha Abd; Ali Umar, Akrajas; Othman, Mohamad Habrul Ulum

    2015-02-01

    In this work, the effect of bismuth-telluride concentration on the thermoelectric properties of PEDOT:PSS-Glycerol thin films is investigated. A thermoelectric device was fabricated by depositing the n-type and the p-type Bi2Te3 (BT) doped-PEDOT:PSS-Glycerol on a glass substrate via a spin coating method at 500 rpm. Room-temperature electrical properties characterization shows that the electrical conductivity of both type thin film increases with increasing of BT doping concentration and optimum at concentration of 0.8 wt% for both p-type and n-type thin films, i.e. 17.9 S/cm and 7.78 S/cm, respectively. However, the study of the temperature effect on the thin films electrical conductivity suggested that the thermoelectric properties of both types' samples improved with increasing of BT concentration and optimum at 0.8 and 0.6 wt% for p-type and n-type thin films, respectively. It then decreased if the BT concentration further increased. The Sebeeck coefficient for these samples is as high as -11.9 and -15.7 uV/K, which is equivalent to a power factors of 0.26 and 0.19 μS V2/ (m K2), respectively. A thermoelectric device resembling a thermocouple system that was fabricated using the optimum p-type and n-type thin films can generate a voltage as high as 1.1 V at a temperature difference as low as 55 K, which is equivalent to a maximum power of 6.026 μW at Vmax.power of 0.5489 V (for an estimated matched-load of 50 Ω). The present materials system is potential for powering low power consumption electronic devices.

  4. Synthesis and Electronic Properties of Thermoelectric and Magnetic Nanoparticle Composite Materials

    Science.gov (United States)

    Koyano, Mikio; Kito, Daichi; Sakai, Kengo; Ariga, Tomoki

    2011-05-01

    Application of a magnetic field greatly enhances the thermoelectric efficiency of bismuth-antimony (Bi-Sb) alloys. We synthesized a hybrid of Bi-Sb alloy and magnetic nanoparticles, expecting improvement of the thermoelectric performance due to the magnetic field generated by the nanoparticles. Powder x-ray diffraction and magnetic measurements of the synthesized hybrid Bi0.88Sb0.12(FeSb)0.05 sample indicated that the ferromagnetic FeSb nanoparticles, with a size of about 30 nm, were distributed in the main phase of the Bi-Sb alloy. The FeSb nanoparticles act as soft ferromagnets in the diamagnetic host Bi-Sb alloy. The electrical resistivity ρ of the host Bi0.88Sb0.12 sample decreased concomitantly with decreasing temperature, showing a shoulder at 80 K. In contrast, ρ for the hybrid sample was enhanced below 100 K because of carrier scattering by the nanoparticles. The temperature dependence of the Seebeck coefficient S was also altered by the nanoparticle addition. In contrast, the addition of magnetic nanoparticles only slightly influenced the thermal conductivity κ. These results indicate that the addition of magnetic nanoparticles to thermoelectric materials modulates the electronic structures but does not influence the lattice system.

  5. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  6. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  7. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  8. Effect of multiwalled carbon nanotubes on the thermoelectric properties of Mn-Zn ferrites

    Science.gov (United States)

    Zhang, Shupin; Li, Aimin; Sun, Kangning; Sun, Xiaoning; Wang, Yaping; Wang, Song

    2017-10-01

    In this study, Mn-Zn ferrites with three different multiwalled carbon nanotubes (MWNTs) concentration, 1,2,3 wt%, were used to compare the effect of MWNTs on thermoelectric properties of the composites. The dimensionless figure of merit (ZT) of the composites at the low contents (1 and 2 wt%) of MWNTs have shown significantly increased values compared to those of composites at the high contents (3 wt%) in the temperature range of 323-973 K. The maximum ZT of 0.038 was obtained at 2 wt%. It is considered that the improved thermoelectric performance of the composite mainly originated from electrical conductivity that is attributed to the increased carrier concentration or carrier mobility.

  9. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  10. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering

    Science.gov (United States)

    Ghahari, Fereshte; Xie, Hong-Yi; Taniguchi, Takashi; Watanabe, Kenji; Foster, Matthew S.; Kim, Philip

    2016-04-01

    We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons.

  11. Enhancement in figure-of-merit with superlattices structures for thin-film thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R.; Colpitts, T.

    1997-07-01

    Thin-film superlattice (SL) structures in thermoelectric materials are shown to be a promising approach to obtaining an enhanced figure-of-merit, ZT, compared to conventional, state-of-the-art bulk alloyed materials. In this paper the authors describe experimental results on Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures, relevant to thermoelectric cooling and power conversion, respectively. The short-period Bi{sub 2}Te{sub 3} and Si/Ge SL structures appear to indicate reduced thermal conductivities compared to alloys of these materials. From the observed behavior of thermal conductivity values in the Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} SL structures, a distinction is made where certain types of periodic structures may correspond to an ordered alloy rather than an SL, and therefore, do not offer a significant reduction in thermal conductivity values. The study also indicates that SL structures, with little or weak quantum-confinement, also offer an improvement in thermoelectric power factor over conventional alloys. They present power factor and electrical transport data in the plane of the SL interfaces to provide preliminary support for the arguments on reduced alloy scattering and impurity scattering in Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures. These results, though tentative due to the possible role of the substrate and the developmental nature of the 3-{omega} method used to determine thermal conductivity values, suggest that the short-period SL structures potentially offer factorial improvements in the three-dimensional figure-of-merit (ZT3D) compared to current state-of-the-art bulk alloys. An approach to a thin-film thermoelectric device called a Bipolarity-Assembled, Series-Inter-Connected Thin-Film Thermoelectric Device (BASIC-TFTD) is introduced to take advantage of these thin-film SL structures.

  12. The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics.

    Science.gov (United States)

    Li, Fu; Li, Jing-Feng; Li, Jian-Hui; Yao, Fang-Zhou

    2012-09-21

    La(Co, Cu)O(3-δ) ceramics were prepared by pressureless sintering of citrate precursor powders, and their thermoelectric properties were investigated with an emphasis on the influence of Cu doping and phase structure as well as microstructure. It was found that a secondary phase first appeared in the form of a network along the grain boundaries and then changed to dispersion with increasing Cu content, which effectively reduced the lattice thermal conductivity of the materials. The thermal conductivity was only 1.21 W m(-1) K(-1) for the sample LaCo(0.75)Cu(0.25)O(3-δ), being much lower as for the thermoelectric oxide materials. In addition, a small amount of Cu substitution for Co increased the electrical conductivity greatly and the absolute Seebeck coefficient, whose sign was also reversed from negative to positive. The dimensionless figure of merit, ZT, of LaCoO(3-δ) oxides at low and middle temperatures can be remarkably enhanced by substituting Co with Cu.

  13. Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2013-01-01

    Full Text Available Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3 thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.

  14. Enhancement of thermoelectric power of PbTe thin films by Ag ion implantation

    Science.gov (United States)

    Bala, Manju; Bhogra, Anuradha; Khan, Saif A.; Tripathi, Tripurari S.; Tripathi, Surya K.; Avasthi, Devesh K.; Asokan, Kandasami

    2017-06-01

    Enhancement of the figure of merit (ZT) of thermoelectric materials is the topic of current research in energy studies. We report an enhancement in the thermoelectric power (TEP) of thermally evaporated PbTe thin films by low energy Ag ion implantation. This implantation results in PbTe:Ag nanocomposites. Implantations were carried out at a 130 keV Ag ion beam with ion fluences of 3 × 1015, 1.5 × 1016, 3 × 1016, and 4.5 × 1016 ions/cm2. The atomic concentrations were determined using Rutherford backscattering and found to be 1 at. %, 5 at. %, 10 at. %, and 14 at. % in the implanted PbTe films. Scanning electron microscopy images show the presence of fine cracks on the surface of as-deposited PbTe thin films that get shortened and suppressed and finally disappear at higher fluences of Ag ion implantation. The TEP measurements, from 300 K to 400 K, show ˜25% enhancement in the Seebeck coefficient of the Ag ion implanted films in comparison to the pristine PbTe thin film. The synchrotron based high resolution X-ray diffraction and X-ray photoelectron spectroscopy investigations reveal the formation of Ag2Te in the surface layer after Ag ion implantation.

  15. Final Technical Report: Thermoelectric-Enhanced Cookstove Add-on (TECA) for Clean Biomass Cookstoves

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, David [RTI International, Research Triangle Park, NC (United States)

    2015-09-29

    This program seeks to demonstrate a solution to enhance existing biomass cookstove performance through the use of RTI’s Thermoelectric Enhanced Cookstove Add-on (TECA) device. The self-powered TECA device captures a portion of heat from the stove and converts it to electricity through a thermoelectric (TE) device to power a blower. Colorado State University and Envirofit International are partners to support the air injection design and commercialization to enhance combustion in the stove and reduce emissions. Relevance: By demonstrating a proof of concept of the approach with the Envirofit M-5000 stove and TECA device, we hope to apply this technology to existing stoves that are already in use and reduce emissions for stoves that have already found user acceptance to provide a true health benefit. Challenges: The technical challenges include achieving Tier 4 emissions from a biomass stove and for such a stove to operate reliably in the harsh field environment. Additional challenges include the fact that it is difficult to develop a cost effective solution and insure adoption and proper use in the field. Outcomes: In this program we have demonstrated PM emissions at 82 mg/MJd, a 70% reduction as compared to baseline stove operation. We have also developed a stove optimization approach that reduces the number of costly experiments. We have evaluated component-level reliability and will be testing the stove prototype in the field for performance and reliability.

  16. Study of thermoelectric properties of Ca-doped LaCoO3

    Science.gov (United States)

    Murai, Kei-Ichiro; Nagai, Ken; Takahashi, Masaru; Takakusa, Shosuke; Moriga, Toshihiro

    2015-03-01

    The samples of La1-xCaxCoO3 (x = 0, 0.05, 0.10, 0.15) were synthesized by solid state reaction method for studying thermoelectric properties. The properties of electrical conductivity and Seebeck coefficient were measured in the temperature ranging from room temperature to 573 K. The results of electrical conductivity was increasing Ca substitution. The highest value of electrical conductivity is 1574 S/cm. It is concluded that Ca2+ doping in LaCoO3 has the effect to inhibit Seebeck coefficient from decreasing.

  17. Enhanced thermoelectric properties in p-type Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy by combining incorporation and doping using multi-scale CuAlO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zijun; Liu, Yuan; Zhou, Zhenxing; Lu, Xiaofang; Wang, Lianjun [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai (China); Institute of Functional Materials, Donghua University, Shanghai (China); Zhang, Qihao [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Jiang, Wan [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai (China); Institute of Functional Materials, Donghua University, Shanghai (China); School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen (China); Chen, Lidong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China)

    2017-01-15

    Multi-scale CuAlO{sub 2} particles are introduced into the Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} matrix to synergistically optimize the electrical conductivity, Seebeck coefficient, and the lattice thermal conductivity. Cu element originating from fine CuAlO{sub 2} grains diffuses into the Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} matrix and tunes the carrier concentration while the coarse CuAlO{sub 2} particles survive as the second phase within the matrix. The power factor is improved at the whole temperatures range due to the low-energy electron filtering effect on Seebeck coefficient and enhanced electrical transport property by mild Cu doping. Meanwhile, the remaining CuAlO{sub 2} inclusions give rise to more boundaries and newly built interfaces scattering of heat-carrying phonons, resulting in the reduced lattice thermal conductivity. Consequently, the maximum ZT is found to be enhanced by 150% arising from the multi-scale microstructure regulation when the CuAlO{sub 2} content reaches 0.6 vol.%. Not only that, but the ZT curves get flat in the whole temperature range after introducing the multi-scale CuAlO{sub 2} particles, which leads to a remarkable increase in the average ZT. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Simulation of SPS Process for Fabrication of Thermoelectric Materials with Predicted Properties

    Science.gov (United States)

    Bulat, L. P.; Novotelnova, A. V.; Tukmakova, A. S.; Yerezhep, D. E.; Osvenskii, V. B.; Sorokin, A. I.; Panchenko, V. P.; Bochkov, L. V.; Ašmontas, S.

    2018-02-01

    Spark plasma sintering (SPS) is a promising method for fabrication of thermoelectric materials. The electric and thermal fields in the SPS process have been simulated by using the finite element method to model an SPS-511S experimental setup. Investigation of thermoelectric materials based on Bi2Te3 solid solutions revealed that the temperature measured close to the sample during application of the electric current could be reproduced by the simulation. Modification of the compression mold configuration could be used to alter the electric and thermal conditions, adjust the Joule heat released in the setup elements, and create a gradient temperature field during the SPS process. The temperature-time dependence in the sample was also studied, revealing that the temperature difference along the vertical axis may reach hundreds of degrees. Prediction of the sintering temperature in each layer may allow further prediction of the thermoelectric properties of the sample. More accurate modifications of the SPS process based on such computer simulations may help to form structures with macroscopically inhomogeneous and functionally graded legs.

  19. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  20. First-principles study on thermoelectric transport properties of C a3S i4

    Science.gov (United States)

    Yabuuchi, Shin; Kurosaki, Yosuke; Nishide, Akinori; Fukatani, Naoto; Hayakawa, Jun

    2017-09-01

    Thermoelectric properties of a semiconducting silicide, C a3S i4 , were investigated by first-principles calculations. The calculation results revealed that C a3S i4 has a relatively low lattice thermal conductivity of around 1.2 W m-1K-1 at 800 K. The Seebeck coefficients and the electrical conductivities of C a3S i4 were evaluated by using the Boltzmann transport equation with an energy-dependent relaxation time under the assumption of electron scattering by acoustic phonons. The Seebeck coefficient of n -type C a3S i4 along the x axis is larger than that along the z axis, while the Seebeck coefficient of p -type C a3S i4 along the x axis is smaller than that along the z axis. The electrical conductivity of p -type C a3S i4 is higher than that of n -type C a3S i4 owing to the smaller effective mass of holes, which results in the higher power factor of p -type C a3S i4 . Maximum Z T (a dimensionless figure of merit) of single-crystalline p -type C a3S i4 is higher than that of n -type C a3S i4 , reaching 0.9 at 800 K. Grain-size effects on the lattice thermal conductivities and power factors were also investigated. Reducing lattice thermal conductivities overcomes the decrease of electrical conductivities and thereby enhances Z T , taking maximum of 1.0 for n -type C a3S i4 and 1.5 for p -type C a3S i4 when the grain size is 10 nm.

  1. Thermoelectric Properties of Ag-Doped Bi2(Se,Te)3 Compounds: Dual Electronic Nature of Ag-Related Lattice Defects.

    Science.gov (United States)

    Lu, Meng-Pei; Liao, Chien-Neng; Huang, Jing-Yi; Hsu, Hung-Chang

    2015-08-03

    Effects of Ag doping and thermal annealing temperature on thermoelectric transport properties of Bi2(Se,Te)3 compounds are investigated. On the basis of the comprehensive analysis of carrier concentration, Hall mobility, and lattice parameter, we identified two Ag-related interstitial (Agi) and substitutional (AgBi) defects that modulate in different ways the thermoelectric properties of Ag-doped Bi2(Se,Te)3 compounds. When Ag content is less than 0.5 wt %, Agi plays an important role in stabilizing crystal structure and suppressing the formation of donor-like Te vacancy (VTe) defects, leading to the decrease in carrier concentration with increasing Ag content. For the heavily doped Bi2(Se,Te)3 compounds (>0.5 wt % Ag), the increasing concentration of AgBi is held responsible for the increase of electron concentration because formation of AgBi defects is accompanied by annihilation of hole carriers. The analysis of Seebeck coefficients and temperature-dependent electrical properties suggests that electrons in Ag-doped Bi2(Se,Te)3 compounds are subject to a mixed mode of impurity scattering and lattice scattering. A 10% enhancement of thermoelectric figure-of-merit at room temperature was achieved for 1 wt % Ag-doped Bi2(Se,Te)3 as compared to pristine Bi2(Se,Te)3.

  2. Structural and Thermoelectric Properties of Bi85Sb15 Prepared by Non-equal Channel Angular Extrusion

    Science.gov (United States)

    El-Asfoury, Mohamed S.; Nasr, Mohamed N. A.; Nakamura, Koichi; Abdel-Moneim, Ahmed

    2018-01-01

    We report on the mechanical and transport properties of polycrystalline bulk Bi85Sb15, as a low-temperature thermoelectric material. Bi85Sb15 samples were prepared by mechanical alloying and hot isostatic pressing, followed by sever plastic deformation (SPD). SPD was applied by either equal channel angular extrusion (ECAE) or non-equal channel angular extrusion (NECAE), at two different temperatures (373 K and 423 K). X-ray diffraction and scanning electron microscopy were used to characterize the prepared samples. The transport properties including the electrical conductivity, Seebeck coefficient and thermal conductivity were investigated, and correlated with the microstructure over the temperature range of 160-360 K. NECAE was found to be more effective than ECAE in enhancing bulk density, grain refinement and preferential grain orientation along the extrusion direction, particularly at higher processing temperatures. This is attributed to the better grain alignment and the creation of more intense grain boundaries and dislocation density, which resulted in an enhancement in carrier mobility and phonon scattering and hence a higher Z value. The highest Z value was achieved via NECAE at 423 K, and had a value of 0.39 × 10-3 K-1 at 250 K, which is 55% higher than that of the hot-pressed sample, 0.22 × 10-3 K-1 at 270 K. Also, the micro-hardness of the hot-pressed sample increases by at least 20% by SPD processes. Accordingly, optimized SPD can be classified as an effective processing tool for feasible mass production of bulk Bi85Sb15 alloy with better thermoelectric performance.

  3. Structural and Thermoelectric Properties of Bi85Sb15 Prepared by Non-equal Channel Angular Extrusion

    Science.gov (United States)

    El-Asfoury, Mohamed S.; Nasr, Mohamed N. A.; Nakamura, Koichi; Abdel-Moneim, Ahmed

    2017-09-01

    We report on the mechanical and transport properties of polycrystalline bulk Bi85Sb15, as a low-temperature thermoelectric material. Bi85Sb15 samples were prepared by mechanical alloying and hot isostatic pressing, followed by sever plastic deformation (SPD). SPD was applied by either equal channel angular extrusion (ECAE) or non-equal channel angular extrusion (NECAE), at two different temperatures (373 K and 423 K). X-ray diffraction and scanning electron microscopy were used to characterize the prepared samples. The transport properties including the electrical conductivity, Seebeck coefficient and thermal conductivity were investigated, and correlated with the microstructure over the temperature range of 160-360 K. NECAE was found to be more effective than ECAE in enhancing bulk density, grain refinement and preferential grain orientation along the extrusion direction, particularly at higher processing temperatures. This is attributed to the better grain alignment and the creation of more intense grain boundaries and dislocation density, which resulted in an enhancement in carrier mobility and phonon scattering and hence a higher Z value. The highest Z value was achieved via NECAE at 423 K, and had a value of 0.39 × 10-3 K-1 at 250 K, which is 55% higher than that of the hot-pressed sample, 0.22 × 10-3 K-1 at 270 K. Also, the micro-hardness of the hot-pressed sample increases by at least 20% by SPD processes. Accordingly, optimized SPD can be classified as an effective processing tool for feasible mass production of bulk Bi85Sb15 alloy with better thermoelectric performance.

  4. Thermo-electrical properties of composite semiconductor thin films composed of nanocrystalline graphene-vanadium oxides.

    Science.gov (United States)

    Jung, Hye-Mi; Um, Sukkee

    2014-12-01

    This paper presents an experimental comparative study involving the characterization of the thermo-electrical and structural properties of graphene-based vanadium oxide (graphene-VOx) composite thin films on insulating and conducting surfaces (i.e., fused quartz and acrylic resin-impregnated graphite) produced by a sol-gel process via dipping-pyrolysis. A combination of FE-SEM and XPS analyses revealed that the graphene-VOx composite thin films (coated onto fused quartz) exhibiting the microstructure of 2-graded nanowire arrays with a diameter of 40-80 nm were composed of graphene, a few residual oxygen-containing functional groups (i.e., C-O and C=O), and the VO2 Magnéli phase. The temperature-dependent electrical resistance measured on the as-deposited thin films clearly demonstrated that the graphene-VOx composite nanowire arrays thermally grown on fused quartz act as a semiconductor switch, with a transition temperature of 64.7 degrees C in the temperature range of -20 degrees C to 140 degrees C, resulting from the contributions of graphene and graphene oxides. In contrast, the graphene-VOx composite thin films deposited onto acrylic resin-impregnated graphite exhibit a superlinear semiconducting property of extremely low electrical resistance with negative temperature coefficients (i.e., approximately four orders of magnitude lower than that of the fused quartz), despite the similar microstructural and morphological characteristics. This difference is attributed to the synergistic effects of the paramagnetic metal feature of the tightly stacked nanowire arrays consisting of hexagonal V2O3 on the intrinsic electrical properties of the acrylic resin-impregnated graphite substrate, as revealed by FE-SEM, EDX, AFM, and XRD measurements. Although the thermo-sensitive electrical properties of the graphene-VOx composite thin films are very substrate specific, the applicability of graphene sheets can be considerably effective in the formation of highly planar arrays

  5. Enhanced performance of dispenser printed MA n-type Bi₂Te₃ composite thermoelectric generators.

    Science.gov (United States)

    Madan, Deepa; Wang, Zuoqian; Chen, Alic; Juang, Rei-Cheng; Keist, Jay; Wright, Paul K; Evans, Jim W

    2012-11-01

    This work presents performance advancements of dispenser printed composite thermoelectric materials and devices. Dispenser printed thick films allow for low-cost and scalable manufacturing of microscale energy harvesting devices. A maximum ZT value of 0.31 has been achieved for mechanically alloyed (MA) n-type Bi₂Te₃-epoxy composite films with 1 wt % Se cured at 350 °C. The enhancement of ZT is a result of increase in the electrical conductivity through the addition of Se, which ultimately lowers the sintering temperature (350 °C). A 62 single-leg thermoelectric generator (TEG) prototype with 5 mm ×700 μm × 120 μm printed element dimensions was fabricated on a custom designed polyimide substrate with thick metal contacts. The prototype device produced a power output of 25 μW at 0.23 mA current and 109 mV voltage for a temperature difference of 20 °C, which is sufficient for low power generation for autonomous microsystem applications.

  6. Enhanced thermoelectric performance of MnTe via Cu doping with optimized carrier concentration

    Directory of Open Access Journals (Sweden)

    Yangyang Ren

    2016-06-01

    Full Text Available Polycrystalline Mn1-xCuxTe (x = 0, 0.025, 0.05, 0.075 thermoelectric materials were prepared by a combined method of melt-quenching and hot press. The effect of Cu doping on the electrical resistivity, band gap, the Seebeck coefficient and thermal conductivity was investigated. The power factors of the Cu-doped samples increase greatly due to the decrease of electrical resistivity and the higher Seebeck coefficient in high temperatures. In addition, the thermal conductivities of the Cu-doped samples also reduce due to the extra phonon scattering from the point defects introduced by Cu doping. As a result, the thermoelectric performance of MnTe is greatly enhanced, and a maximum ZT value of ∼0.55 in the Mn0.925Cu0.075Te sample at 773 K is achieved, which is 35% greater than that of the pristine MnTe sample.

  7. Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition

    Science.gov (United States)

    Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi

    2018-02-01

    We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.

  8. Investigation of electronic, magnetic and thermoelectric properties of Zr{sub 2}NiZ (Z = Al,Ga) ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-05-01

    Systematic investigation of impact of electronic structure and magnetism, on the thermoelectric properties of new Zr{sub 2}NiZ (Z = Al, Ga) Heusler alloys are determined using density functional theory calculations. Half-metallicity with ferromagnetic character is supported by their 100% spin polarizations at the Fermi level. Magnetic moment of ∼3 μ{sub B} is according to the Slater-Puling rule, enables their practical applications. Electron density plots are used to analyse the nature of bonding and chemical composition. Boltzmann's theory is conveniently employed to investigate the thermoelectric properties of these compounds. The analysis of the thermal transport properties specifies the Seebeck coefficient as 25.6 μV/K and 18.6 μV/K at room temperature for Zr{sub 2}NiAl and Zr{sub 2}NiGa, respectively. The half-metallic nature with efficient thermoelectric coefficients suggests the likelihood of these materials to have application in designing spintronic devices and imminent thermoelectric materials. - Highlights: • The compounds are half-metallic ferromagnets. • 100% spin-polarized compounds for spintronics. • Increasing Seebeck coefficient over a wide temperature range. • Zr{sub 2}NiAl is efficient thermoelectric material than Zr{sub 2}NiGa.

  9. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect‑direct‑indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  10. Effect of excess oxygen for CuFeO2.06 delafossite on thermoelectric and optical properties

    Science.gov (United States)

    Rudradawong, Chalermpol; Ruttanapun, Chesta

    2017-12-01

    This work presents the role of excess oxygen in CuFeO2.06 compounds on thermoelectric and optical properties. The CuFeO2.06 specimens were synthesized by solid state reaction method. X-ray diffraction technique has confirmed the CuFeO2 structure for the specimens. In particularly, CuFeO2.06 specimen revealed the structural extension of lattice parameter: a and c. Also, the specimen found increasing excess oxygen of approximately 3% as a resulted enhancement of mixed valence state of Cu+ and Cu2+ ions. XPS showed mixed valence state of the Cu+/Cu2+ ions, and Fe3+ and Fe2+ ions was also found in the CuFeO2.06 specimen. Mixed valence states contributed the co-existence of hole and electron carriers for conduction. Consequently, electrical conductivity of the CuFeO2.06 specimen increased up to 23 S/cm at 873 K. Also, increasing Seebeck coefficient was shown to be approximately 302 μV/K at 873 K. The CuFeO2.06 specimen was found power factor to be approximately 2.1 × 10-4 W/m•K2 at 873 K. The indirect optical gap of CuFeO2.06 (2.40 eV) was lower than that of the CuFeO2 (2.60 eV). Thus, thermoelectric and optical properties were governed by an existence of excess oxygen.

  11. Electronic structure and physical properties of Heusler compounds for thermoelectric and spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ouardi, Siham

    2012-03-19

    This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications. The first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co{sub 2}MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound. A major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. This thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi{sub 1-x}M{sub x}Sn (where M=Sc, V and 0properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 {mu}V/K (350 K) was obtained for NiTi{sub 0.26}Sc{sub 0.04}Zr{sub 0.35}Hf{sub 0.35}Sn. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi{sub 0.3}Zr{sub 0.35}Hf{sub 0.35}Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk

  12. Modulation of charge transport properties in poly(3,4-ethylenedioxythiophene) nanocomposites for thermoelectric applications

    Science.gov (United States)

    Galliani, Daniela; Battiston, Simone; Ruffo, Riccardo; Trabattoni, Silvia; Narducci, Dario

    2018-01-01

    Conjugated polymer poly(3,4-dioxyethylenthiofene) (PEDOT) has recently gained attention for room-temperature thermoelectric applications due to its low cost, safety and the possibility of easy processing. This makes it an interesting prospective alternative to tellurides commonly used around room temperature. Still, low thermoelectric efficiencies of polymers might be more easily increased, were a model of its transport properties available. The aim of this paper is to validate a model recently reported, making use of the concept of transport energy to frame the onset of transport properties reported over the last few years in the literature. To this aim, PEDOT and PEDOT-based nanocomposites embedding CuO nanoplatelets were prepared and analysed. We found that the model adequately fits the trends observed in pure PEDOT and in its nanocomposites. Transport and Fermi energy were verified to depend on the polymer oxidation level only,while the transport coefficient was found to be sensitive to PEDOT stacking and was modulated by the introduction of CuO nanoplatelets.

  13. Influence of Sodium Chloride Doping on Thermoelectric Properties of p-type SnSe

    Science.gov (United States)

    Yang, Shi Dan; Nutor, Raymond Kwesi; Chen, Zi Jie; Zheng, Hao; Wu, Hai Fei; Si, Jian Xiao

    2017-11-01

    We investigated the effect of NaCl doping on the thermoelectric properties of p-type Sn 1- x Na x SeCl x ( x = 0, 0.005, 0.01, 0.02, 0.03 and 0.04) prepared by a method which combines rapid induction melting and rapid hot pressing. After introducing the NaCl into the SnSe system, the carrier concentration of SnSe is significantly increased from ˜4.55 × 1017 cm-3 to ˜3.95 × 1019 cm-3 at 300 K. An electrical conductivity of ˜102.5 S cm-1 was obtained at 473 K by addition of 2 mol.% NaCl. It was found that Cl was effective in reducing the thermal conductivity by inducing abundant defects. A maximum ZT value of 0.84 was achieved in the Na0.005Sn0.995SeCl0.005 sample at 810 K. This suggests that doping with NaCl is a facile and cost-effective method in optimizing the thermoelectric properties of SnSe materials.

  14. Hydrothermal Synthesis of SnQ (Q=Te, Se, S) and Their Thermoelectric Properties.

    Science.gov (United States)

    Feng, Dan; Ge, Zhenhua; Chen, Yuexing; Li, Ju; He, Jiaqing

    2017-09-08

    Lead-free IV-VI semiconductors SnQ (Q=Te, Se, S) are deemed as promising thermoelectric materials. In this work, we designed a hydrothermal route to selectively synthesize single phase SnTe, SnSe and SnS nanopowders. For all three samples, the phase structure were characterized by X-ray diffraction, SnTe particles with octahedron structure and SnSe/SnS particles with plate-like shape were observed by field emission scanning electron microscopy and transmission electron microscopy, the formation mechanism was discussed in detail. Then, SnTe, SnSe and SnS nanopowders were densified by spark plasma sintering for investigating thermoelectric properties. It was noticed that SnSe and SnS exhibited remarkably anisotropy in both electrical and thermal properties attributed to the layered crystal structure. The highest ZT values 0.79 at 873 K, 0.21 at 773 K, and 0.13 at 773 K were achieved for SnTe, SnSe and SnS bulk samples, respectively. © 2017 IOP Publishing Ltd.

  15. Growth and thermoelectric properties of p-type layered GaTe single crystals

    Science.gov (United States)

    Vu, Thi Hoa; Pham Anh, Tuan; Duong Anh, Tuan; Nguyen van, Quang; Cho, Sunglae

    Gallium Telluride (GaTe) crystal is a member of chalcogenide crystal family as same as two-dimensional (2D) semiconductors. As for GaTe, the high dissymmetry between intra- and inter bond strengths can give rise to a strong scattering of the charge carriers by optical phonon polarized perpendicular to the layers, so thermal conductivity can be reduced. However, due to the difficulty in growth of large-size high quality crystals, it is one of the less investigated materials. In this talk, we report on the crystal structure and thermoelectric properties of p-type GaTe single crystals. The sample was obtained by the vertical temperature gradient method. The single crystal structure was determined by XRD and FE-SEM measurement. Thermoelectric and transport properties both along and perpendicular to the layered planes were evaluated in the temperature range from 20 to 400 K. We observed very high positive Seebeck coefficients in GaTe single crystal. Maximum values are about 2000 and 843 for in-plane and perpendicular direction, respectively. The results indicate a p-type semiconductor in GaTe single crystal. We will discuss on temperature and direction dependent power factor value of p-type GaTe in detail.

  16. Thermoelectric transport properties of Mn4 Si7 thin films

    Science.gov (United States)

    Shin, Yooleemi; Duong, Anh Tuan; Choi, Jeongyong; Cho, Sunglae

    2014-03-01

    The deposition of transition metal layers on silicon and their reaction with substrate are important issues in semiconductor device technology. The interface between metal and semiconductor determines the device performance. The 3d transition metal monosilicides such as FeSi, CoSi, MnSi and CrSi have attracted much attention because they are easily formed in the interface between transition metal and Si. On the other hand, the Mn4Si7 compound is well known a pseudo-direct band gap semiconductor (0.42 ~ 0.98 eV) with a fundamental gap increasing linearly with the compression along c- or a-axis. We have grown Mn thin films on Si (111) substrates at 600 °C using MBE, resulting in the formation of Mn4Si7. In order to investigate the correlation between magnetization and charge carrier transport, we performed magnetoresistance and Hall resistance measurements by using a physical property measurement system. Interestingly, we observed the Seebeck coefficient of -565 μV/K and electrical resistivity of 2.26 m Ω cm in Mn4Si7 films grown on Si substrate, resulting in the power factor of 14 mW/K2m.

  17. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  18. Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiao, E-mail: cqhy1127@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Zhi-yong, E-mail: wzyong@cqut.edu.cn [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Xie, Zhong-Xiang [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China)

    2013-08-15

    We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann–Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.

  19. Effects of Polytypism on the Thermoelectric Properties of Group-IV Semiconductor Nanowires: A Combination of Density Functional Theory and Boltzmann Transport Calculations

    Science.gov (United States)

    Akiyama, Toru; Komoda, Takato; Nakamura, Kohji; Ito, Tomonori

    2017-08-01

    The effects of polytypism on thermoelectric properties of Si and Ge nanowires (NWs) are systematically investigated by using a combination of density functional theory and Boltzmann transport calculations. The calculations for NWs with various polytypes demonstrate that the thermoelectric figure of merit Z T of Si and Ge NWs can be tuned by changing different stacking sequences along the growth direction. In particular, the Z T values of n -type Si and Ge NWs with hexagonal (2 H ) structure at 300 K are significantly larger than Z T of Si and Ge NWs with a cubic (3 C ) structure. The underlying mechanism for the enhanced Z T value in Si NWs with a 2 H structure compared with a 3 C structure is attributed by the different Seebeck coefficient depending on the structure, while that in Ge NWs is due to the difference in both the Seebeck coefficient and electrical conductivity. The calculated results offer a way to design high-performance thermoelectric materials by controlling the polytype of NWs.

  20. Fabrication Process and Thermoelectric Properties of CNT/Bi2(Se,Te3 Composites

    Directory of Open Access Journals (Sweden)

    Kyung Tae Kim

    2015-01-01

    Full Text Available Carbon nanotube/bismuth-selenium-tellurium composites were fabricated by consolidating CNT/Bi2(Se,Te3 composite powders prepared from a polyol-reduction process. The synthesized composite powders exhibit CNTs homogeneously dispersed among Bi2(Se,Te3 matrix nanopowders of 300 nm in size. The powders were densified into a CNT/Bi2(Se,Te3 composite in which CNTs were randomly dispersed in the matrix through spark plasma sintering process. The effect of an addition of Se on the dimensionless figure-of-merit (ZT of the composite was clearly shown in 3 vol.% CNT/Bi2(Se,Te3 composite as compared to CNT/Bi2Te3 composite throughout the temperature range of 298 to 473 K. These results imply that matrix modifications such as an addition of Se as well as the incorporation of CNTs into bismuth telluride thermoelectric materials is a promising means of achieving synergistic enhancement of the thermoelectric performance levels of these materials.

  1. Nanowire-based thermoelectrics

    Science.gov (United States)

    Ali, Azhar; Chen, Yixi; Vasiraju, Venkata; Vaddiraju, Sreeram

    2017-07-01

    Research on thermoelectrics has seen a huge resurgence since the early 1990s. The ability of tuning a material’s electrical and thermal transport behavior upon nanostructuring has led to this revival. Nevertheless, thermoelectric performances of nanowires and related materials lag far behind those achieved with thin-film superlattices and quantum dot-based materials. This is despite the fact that nanowires offer many distinct advantages in enhancing the thermoelectric performances of materials. The simplicity of the strategy is the first and foremost advantage. For example, control of the nanowire diameters and their surface roughnesses will aid in enhancing their thermoelectric performances. Another major advantage is the possibility of obtaining high thermoelectric performances using simpler nanowire chemistries (e.g., elemental and binary compound semiconductors), paving the way for the fabrication of thermoelectric modules inexpensively from non-toxic elements. In this context, the topical review provides an overview of the current state of nanowire-based thermoelectrics. It concludes with a discussion of the future vision of nanowire-based thermoelectrics, including the need for developing strategies aimed at the mass production of nanowires and their interface-engineered assembly into devices. This eliminates the need for trial-and-error strategies and complex chemistries for enhancing the thermoelectric performances of materials.

  2. Mo(3)Sb(7-x)Te(x) for Thermoelectric Power Generation

    Science.gov (United States)

    Snyder, G. Jeffrey; Gascoin, Frank S.; Rasmussen, Julia

    2009-01-01

    Compounds having compositions of Mo(3)Sb(7-x)Te(x) (where x = 1.5 or 1.6) have been investigated as candidate thermoelectric materials. These compounds are members of a class of semiconductors that includes previously known thermoelectric materials. All of these compounds have complex crystalline and electronic structures. Through selection of chemical compositions and processing conditions, it may be possible to alter the structures to enhance or optimize thermoelectric properties.

  3. Thermoelectric properties of nanocomposite heavy fermion CeCu{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pokharel, Mani, E-mail: pokharem@bc.edu [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States); Dahal, Tulashi; Ren, Zhifeng [Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States); Opeil, Cyril [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States)

    2014-10-01

    Highlights: • Mechanical nanostructuring is employed for the first time to the heavy fermion compound CeCu{sub 6}. • Thermal conductivity is reduced significantly. • Electronic properties are shown to be highly dependent on microstructures. • Broad and pronounced peak in temperature dependent figure-of-merit (ZT) is observed. • Hall coefficient measurements yielded results consistent with the observed thermoelectric effects. - Abstract: We report on the thermoelectric performance of the heavy fermion compound CeCu{sub 6} nanocomposite samples. Measurements of Seebeck coefficient, electrical resistivity and thermal conductivity are presented over the temperature range 5 < T < 350 K. The dimensionless figure-of-merit (ZT) was optimized by varying the sample hot-pressing temperature. Thermal conductivity measurements show that the lowest hot pressing temperature (450 °C) produces the lowest thermal conductivity. Electrical resistivity is strongly influenced by hot pressing temperature and drops by a factor of ∼3.4 as the hot pressing temperature is lowered from 800 to 450 °C. Seebeck coefficient shows a slight increase over other samples when hot pressed at 800 °C. Our ZT calculations show a broad peak with a maximum value of 0.024 at ∼60 K for the sample hot pressed at 800 °C.

  4. Thermoelectric Properties and Band Structure Calculations of Novel Boron Network Compounds

    Science.gov (United States)

    Mori, Takao; Nishimura, Toshiyuki; Grin, Yuri; Shishido, Toetsu; Nakajima, Kazuo

    2009-03-01

    Boron is an interesting element, tending to form atomic networks such as 2D atomic nets and clusters, with some analogy to carbon systems which have been more extensively studied. Boron has one less electron than carbon and thus is electron deficient when forming atomic networks, but this causes it to have a special affinity with the rare earth elements and as a result, many new compounds have recently been discovered [1]. Their potential as viable thermoelectric materials is attracting interest since they are high-temperature materials and possess intrinsic low thermal conductivity, with some compounds exhibiting Seebeck coefficients in excess of 200 μV/K above 1000 K. The thermoelectric properties and band structure calculations of novel borides such as RB44Si2, RB17CN, RB22C2N, RB28.5C4 will be presented. Features in the band structure near the Fermi level indicate large doping effects in these compounds. Various doping experiments were carried out resulting in large increases to the figure of merit. [1] T. Mori, ``Higher Borides,'' in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 38, (North-Holland, Amsterdam, 2008) p. 105-173.

  5. Thermoelectric properties of semiconductor-metal composites produced by particle blending

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2016-10-01

    Full Text Available In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.

  6. First-principles simulation on thermoelectric properties in Bi-Sb System

    Science.gov (United States)

    El-Asfoury, M. S.; Nakamura, K.; Abdel-Moneim, A.

    2017-12-01

    Thermoelectric properties of bismuth-antimony (Bi-Sb) alloy system were simulated on the basis of first-principles calculation, to discuss the potential for thermoelectric devices. Atomistic model structures of Bi-Sb alloy system were devised in the forms of single-crystal bulk and one-dimensional nanowire under the periodic boundary condition. The cell parameters of the bulk model were simulated with respect to temperature by the quasi-harmonic approximation through phonon calculation, and dependences of the Seebeck coefficient on composition, surface condition, and temperature have been demonstrated by using our original methodology in terms of the electronic state of Bi-Sb alloy system. For the single-crystal bulk Bi-Sb models, a meaningful effect of the composition on the Seebeck coefficient has not been observed, whereas a clear difference in phonon dispersion was confirmed between pure Bi and Sb-substituted Bi, leading to the significant difference in thermal conductivity. We clarified that the surface condition is a key point to control the Seebeck coefficient for the nanowire form.

  7. Thermoelectric properties of periodic quantum structures in the Wigner–Rode formalism

    Science.gov (United States)

    Kommini, Adithya; Aksamija, Zlatan

    2018-01-01

    Improving the thermoelectric Seebeck coefficient, while simultaneously reducing thermal conductivity, is required in order to boost thermoelectric (TE) figure of merit (ZT). A common approach to improve the Seebeck coefficient is electron filtering where ‘cold’ (low energy) electrons are restricted from participating in transport by an energy barrier (Kim and Lundstrom 2011 J. Appl. Phys. 110 034511, Zide et al 2010 J. Appl. Phys. 108 123702). However, the impact of electron tunneling through thin barriers and resonant states on TE properties has been given less attention, despite the widespread use of quantum wells and superlattices (SLs) in TE applications. In our work, we develop a comprehensive transport model using the Wigner–Rode formalism. We include the full electronic bandstructure and all the relevant scattering mechanisms, allowing us to simulate both energy relaxation and quantum effects from periodic potential barriers. We study the impact of barrier shape on TE performance and find that tall, sharp barriers with small period lengths lead to the largest increase in both Seebeck coefficient and conductivity, thus boosting power factor and TE efficiency. Our findings are robust against additional elastic scattering such as atomic-scale roughness at side-walls of SL nanowires.

  8. High-temperature thermoelectric properties of AgxYyCa2⋅8Co4O9 ...

    Indian Academy of Sciences (India)

    Administrator

    1Department of Physics, Mudanjiang Normal College, Heilongjiang Province Key Laboratory of New Carbon-Base. Functional and ... and thermal conductivity, respectively. The electrical properties are determined by the power factor, defined as σ S2 or S2/ρ, where ρ is the electrical resistivity. A good thermoelectric material ...

  9. Thermoelectric properties of rare earth-doped n-type Bi2Se0∙ 3Te2 ...

    Indian Academy of Sciences (India)

    -Type R0.2Bi1.8Se0.3Te2.7 (R = Ce, Y and Sm) nanopowders were synthesized by hydrothermal method and the thermoelectric properties of the bulk samples made by hot-pressing these nanopowders were investigated. The Ce, Y and Sm doping have significant effects on the morphologies of the synthesized ...

  10. Investigation of the correlation between stoichiometry and thermoelectric properties in a PtSb2 single crystal

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Christensen, Mogens; Bjerg, Lasse

    2012-01-01

    The thermoelectric properties of a PtSb2 single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified uti...

  11. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    Science.gov (United States)

    Yousuf, Saleem; Gupta, Dinesh C.

    2017-12-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  12. Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.

    Science.gov (United States)

    Gu, Da Hwi; Jo, Seungki; Jeong, Hyewon; Ban, Hyeong Woo; Park, Sung Hoon; Heo, Seung Hwae; Kim, Fredrick; Jang, Jeong In; Lee, Ji Eun; Son, Jae Sung

    2017-06-07

    Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.

  13. Enhanced Thermoelectric Power Factor of NaxCoO2 Thin Films by Structural Engineering

    NARCIS (Netherlands)

    Brinks, Peter; Kuiper, Bouwe; Breckenfeld, E.; Koster, Gertjan; Martin, L.W.; Rijnders, Augustinus J.H.M.; Huijben, Mark

    2014-01-01

    By controlling the crystallinity and average grain size of thermoelectric NaxCoO2 thin films, a doubling of the thermoelectric power factor is achieved in combination with a strong suppression of the thermal conductivity. These structurally engineered NaxCoO2 thin films outperform single crystalline

  14. Effect of Carbon Nanotubes on Thermoelectric Properties in Zn0.98Al0.02O

    Science.gov (United States)

    Dreßler, Christian; Löhnert, Romy; Gonzalez-Julian, Jesus; Guillon, Olivier; Töpfer, Jörg; Teichert, Steffen

    2016-03-01

    Thermoelectric oxides can provide the advantage of high-temperature stability in oxygen-containing atmospheres. It is known that the incorporation of multiwalled carbon nanotubes (mw-CNT) can change the thermoelectric as well as the structural properties of oxides. Here, we report the influence of mw-CNT on the thermoelectric properties of Al-doped ZnO (AZO). The preparation of the mw-CNT-added AZO was done using an ultrasonic mixing of the starting materials followed by a spark plasma sintering process under vacuum. The Seebeck coefficient S, thermal conductivity λ and electrical conductivity σ were determined in the temperature range between 300 K and 900 K. It was observed that the thermal conductivity is significantly reduced by the incorporation of the mw-CNT. At the same time, the electrical conductivity is increased by a factor of 21 from 8700 S/m to 190,000 S/m. The Power factor PF = S2 σ indicates that the addition of mw-CNT improves the thermoelectric properties of Al doped ZnO in comparison to the reference sample prepared with same process but without mw-CNT.

  15. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2010-01-01

    Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

  16. Ge/SiGe superlattices for nanostructured thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Chrastina, D., E-mail: daniel@chrastina.net [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Cecchi, S. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Hague, J.P. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Frigerio, J. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy); Samarelli, A.; Ferre–Llin, L.; Paul, D.J. [School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT (United Kingdom); Müller, E. [Electron Microscopy ETH Zurich (EMEZ), ETH-Zürich, CH-8093 (Switzerland); Etzelstorfer, T.; Stangl, J. [Institut für Halbleiter und Festkörperphysik, Universität Linz, A-4040 Linz (Austria); Isella, G. [L-NESS Politecnico di Milano, Polo di Como, via Anzani 42, 22100 Como (Italy)

    2013-09-30

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices.

  17. Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Directory of Open Access Journals (Sweden)

    Zhang Haiqian

    2011-01-01

    Full Text Available Abstract A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO33 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures. PACS: 65.80.-g, 68.35.bg, 68.35.bt

  18. Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Science.gov (United States)

    Tai, Guo'an; Miao, Chunyang; Wang, Yubo; Bai, Yunrui; Zhang, Haiqian; Guo, Wanlin

    2011-12-01

    A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO3)3 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures. PACS: 65.80.-g, 68.35.bg, 68.35.bt

  19. Thermoelectric transport properties of nanostructured FeSb 2 and Ce-based heavy-fermions CeCu and CeAl 3

    Science.gov (United States)

    Pokharel, Mani R.

    Thermoelectric (TE) energy conversion is an all-solid-state technology which can convert waste thermal energy into useful electric power and cool ambience without using harmful gases like CFC. Due to their several advantages over traditional energy conversion technologies, thermoelectric generators (TEG) and coolers (TEC) have drawn enormous research efforts. The objective of this work is to find promising materials for thermoelectric cooling applications and optimize their thermoelectric performances. Finding a material with a good value for the thermoelectric figure-of-merit (ZT) at cryogenic temperatures, specifically below 77 K, has been of great interest. This work demonstrates that FeSb2 1, CeCu6 2 and CeAl3 3, all belonging to a class of materials with strongly correlated electron behavior; exhibit promising thermoelectric properties below 77 K. In general, ZT of a TE material can be increased using two basic approaches: lattice thermal conductivity reduction and power factor (PF) enhancement. The results of this study indicate that nanostructuring effectively decreases the thermal conductivity of FeSb2, CeCu6 and CeAl 3 leading to improved ZT. The approach of introducing point-defect scattering to further reduce the thermal conductivity is successfully implemented for Te-substituted FeSb2 nanostructured samples 4. A semiconductor/metal interface has long been proposed to exhibit enhanced thermoelectric properties. We use this technique by introducing Ag-nanoparticles in the host FeSb2 which further increases ZT by 70% 5. Additionally, a detailed investigation is made on the phonon-drag effect as a possible mechanism responsible for the large value of the Seebeck coefficient of FeSb2 6. We show that the phonon-drag mechanism contributes significantly to the large Seebeck effect in FeSb2 and hence this effect cannot be minor as was proposed in literatures previously. A model based on Kapitza-resistance and effective medium approach (EMA) is used to analyze

  20. Synthesis–property relationship in thermoelectric Sr 1− x Yb x TiO 3− δ ceramics

    KAUST Repository

    Bhattacharya, S

    2014-08-22

    The electronic transport properties of a series of Sr1-xYbxTiO3-delta (x = 0.05, 0.1) ceramics are investigated as a function of solid-state reaction (SSR) parameters, specifically calcination steps. It was found that the electrical conductivity (sigma) increases almost by a factor of 6, through the optimization of SSR parameters. The enhancement in the electrical conductivity leads to an enhancement in the thermoelectric power factor by a factor of 3. In addition, the lattice thermal conductivity (k(L)) of the Sr1-xYbxTiO3-delta ceramics is suppressed with increasing Yb-doping, supposedly due to heavier atomic mass of Yb substituted at the Sr site and a smaller ionic radii of Yb+3 with respect to Sr+2 ions. However, our model calculations indicate that strain-field effect, which occurs due to the difference in ionic radii, is the more prominent phonon scattering mechanism in the Yb-doped SrTiO3. This work is an extension of our previous study on the underlying phonon scattering mechanisms in the Y-doped SrTiO3, which would provide new insight into thermal transport in doped SrTiO3 and could be used as a guideline for more effective material synthesis.

  1. Oxide Thermoelectric Energy Harvesting Materials

    OpenAIRE

    James, Ashley

    2014-01-01

    Conventional thermoelectric materials found in many thermoelectric devices have unfavourable properties; they often suffer instability at high temperatures and contain toxic metals which pose a hazard to the environment. Oxide thermoelectric materials are stable, less toxic and could eventually replace conventional materials. The thermoelectric performance of oxide materials currently do not match conventional materials however, there is potential for improvement through doping and altering t...

  2. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Howrah-711103 (India); Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal, E-mail: gangulysaibal2011@gmail.com [Chemical Engineering department, Universiti Teknologi Petronas, Perak, Tronoh (Malaysia)

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  3. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Science.gov (United States)

    Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2016-05-01

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  4. The effects of transverse magnetic field and local electronic interaction on thermoelectric properties of monolayer graphene

    Science.gov (United States)

    Rezania, Hamed; Azizi, Farshad

    2018-02-01

    We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.

  5. Microstructure And Thermoelectric Properties Of Tags-90 Compounds Fabricated By Mechanical Milling Process

    Directory of Open Access Journals (Sweden)

    Kim H.-S

    2015-06-01

    Full Text Available TAGS-90 compound powder was directly prepared from the elements by high-energy ball milling (HEBM and subsequently consolidated by a spark plasma sintering (SPS. Effect of milling time on the microstructure and thermoelectric properties of the samples were investigated. The particle size of fabricated powders were decreased with increasing milling time, finally fine particles with ~1μm size was obtained at 90 min. The SPS samples exhibited higher relative densities (>99% with fine grain size. X-ray diffraction analysis (XRD and energy dispersion analysis (EDS results revealed that all the samples were single phase of GeTe with exact composition. The electrical conductivity of samples were decreased with milling time, whereas Seebeck coefficient increased over the temperature range of RT~450°C. The highest power factor was 1.12×10−3W/mK2 obtained for the sample with 90 min milling at 450°C.

  6. Effect of quantum confinement on thermoelectric properties of vanadium dioxide nanofilms

    Science.gov (United States)

    Khan, G. R.; Ahmad, Bilal

    2017-12-01

    The quantum confinement effect on thermoelectric properties of pristine vanadium dioxide (VO2) nanofilms across semiconductor to metal phase transition (SMT) has been demonstrated by studying VO2 nanofilms of 15 nm thickness in comparison to microfilms of 290 nm thickness synthesized via inorganic sol-gel method casted on glass substrates by spin coating technique. The ebbing of phase transition temperature in nanofilms across SMT was consistent with the results obtained from resistance-temperature hysteresis contour during SMT dynamics of the nanofilms. The temperature dependent Hall and Seebeck measurements revealed that electrons were the charge carriers in the nanofilms and that the value of charge carrier concentration increased as much as 4 orders of magnitude while going across SMT which stood responsible almost entirely for resistance variations. The decline in carrier mobility and escalation in Seebeck coefficient in the low temperature semiconducting region were splendidly witnessed across SMT.

  7. Anomalous thermoelectric properties of a Floquet topological insulator with spin momentum non-orthogonality

    Science.gov (United States)

    Saha, Madhumita; Chowdhury, Debashree

    2017-11-01

    The spin momentum non-orthogonality in 3D topological insulators leads to modification of the spin texture and brings in an out-of-plane spin polarization component. Apart from the spin texture, the anomalous thermoelectric properties of these materials are worth studying. In this paper, we have pointed out that the off resonant light used to irradiate the surface states, induces a gap, which becomes momentum dependent due to the presence of non-orthogonal terms in the Hamiltonian. Importantly, to maintain the off resonant condition of light, the momentum value should satisfy a bound. Furthermore, the momentum dependent gap causes a topological transition at a higher value of momentum, which is important to analyse the unusual double peak structure of the Nernst and electrical conductivities.

  8. Thermoelectric plastics: from design to synthesis, processing and structure–property relationships

    OpenAIRE

    Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David; Hynynen, Jonna; Ryan, Jason D.; Yu, Liyang; M?ller, Christian

    2016-01-01

    Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics...

  9. Thermoelectric properties of cobalt–antimonide thin films prepared by radio frequency co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aziz; Han, Seungwoo, E-mail: swhan@kimm.re.kr

    2015-07-31

    Co–Sb thin films with an Sb content in the range 65–76 at.%, were deposited on a thermally oxidized Si (100) substrate preheated at 200 °C using radio-frequency co-sputtering. Evaluation using scanning electron microscopy images and X-ray diffraction reveals that the films were polycrystalline, with a grain size in the range 100–250 nm. Energy-dispersive spectroscopy analysis indicates single-phase CoSb{sub 2} and CoSb{sub 3} films, as well as multiphase thin films with either CoSb{sub 2} or CoSb{sub 3} as the dominant phase. The electrical and thermoelectric properties were measured and found to be strongly dependent on the observed phases and the defect concentrations. The CoSb{sub 2} thin films were found to exhibit a significant n-type thermoelectric effect, which, coupled with the very low electrical resistivity, resulted in a larger power factor than that of the CoSb{sub 3} thin films. We find power factors of 0.73 mWm{sup −1} K{sup −2} and 0.67 mWm{sup −1} K{sup −2} for the CoSb{sub 2} and CoSb{sub 3} thin films, respectively. - Highlights: • Polycrystalline Co–Sb thin films were obtained by present deposition strategy. • CoSb{sub 2} and CoSb{sub 3} have semimetal and semiconductor characteristics respectively. • The Seebeck coefficient depends heavily on defect concentration and impurity phases. • Film properties in the second heating cycle were different from the first. • CoSb{sub 2} is found to possess significant n-type thermopower.

  10. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  11. Co(x)Ni(4-x)Sb(12-y)Sn(y) Ternary Skutterudites: Processing and Thermoelectric Properties

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Skutterudites have proven to be a useful thermoelectric system as a result of their high figure of merit, favorable mechanical properties, and good thermal stability. Binary skutterudites have received the majority of interest in recent years, as a result of successful double and triple filling schemes. Ternary skutterudites, such as Ni4Sb7Sn5, also demonstrate good thermoelectric performance, with high power factor and low thermal conductivity. Ternary skutterudites, as contrasted to binary systems, provide more possibility for tuning electronic structure as substitutions can be studied on three elements. The Co(x)Ni(4-x)Sb(12-y)Sn(y) system has been investigated as both a p- and n-type thermoelectric material, stable up to 200 C. The system is processed through a combination of solidification, mechanical alloying, and hot pressing steps. Rietveld structure refinement has revealed an interesting occupancy of Sn on both the 24g Wyckoff position with Sb as well as the 2a position as a rattler. In addition to thermoelectric properties, detailed processing routes have been investigated on the system.

  12. Electronic and thermoelectric properties of nonmagnetic inverse Heusler semiconductors Sc2FeSi and Sc2FeGe

    Science.gov (United States)

    Li, Jie; Yang, Guang; Yang, Yanmin; Ma, Hongran; Zhang, Qiang; Zhang, Zhidong; Fang, Wei; Yin, Fuxing; Li, Jia

    2017-11-01

    The electronic and thermoelectric properties of two nonmagnetic Hg2CuTi-type or called inverse Heusler semiconductors Sc2FeSi and Sc2FeGe are predicted by using first principles calculations and Boltzmann transport theory. The band gaps of Sc2FeSi and Sc2FeGe are 0.54 eV and 0.60 eV, respectively. Their zero total magneticmoments both satisfy the Mt = Zt-18 while not the Mt = Zt-24 rule. The good thermoelectric properties are achieved under the condition of electron doping. At the room temperature 300 K, the peak value of Seebeck coefficient is -592.02 μVK-1 for Sc2FeSi, and -609.38 μVK-1 for Sc2FeGe by electron doping. The maximum power factor is 48.77(1014 μW cm-1 K-2 s-1) for Sc2FeSi and 47.11(1014 μW cm-1 K-2 s-1) for Sc2FeGe with electron doping concentration -2.29 × 1026 m-3 and -2.42 × 1026 m-3, respectively, which are close to the power factor of well-known thermoelectric material Bi2Te3, indicating their potential applying values for thermoelectric devices.

  13. Ultrahigh power factor and enhanced thermoelectric performance of individual Te/TiS2 nanocables.

    Science.gov (United States)

    Li, Rui; Dui, Jingna; Fu, Yunlong; Xu, Yanling; Zhou, Shaomin

    2016-10-14

    Here, we present the successful fabrication of Te/TiS2 heterostructure nanocables with enhanced thermoelectric (TE) performance by a two-step route (a facile solvothermal approach for Te nanowires and then the Te nanowires are used as templates for the controllable growth of the Te/TiS2 nanocables), which is scalable for practical nanodevice applications. The heterostructure nanocables of different sizes can be prepared by varying the synthetic composition. Measurements of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) are carried out on the same nanowires over a temperature range of 2-350 K. The heterostructure nanocables show an ultrahigh power factor (S(2) σ) with a maximum value of 0.58 Wm(-1) K(-2), which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient. The figure of merit (ZT) can reach 1.91 at room temperature from a single nanocable with a diameter of 60 nm, which is thought to contribute to the formation of the hetero-phase core/shell structure. These results are expected to open up new application possibilities in nanoscale TE devices based on individual Te/TiS2 heterostructure nanocables.

  14. Nanostructured polypyrrole: enhancement in thermoelectric figure of merit through suppression of thermal conductivity

    Science.gov (United States)

    Misra, Shantanu; Bharti, Meetu; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Hayakawa, Y.

    2017-08-01

    Semi-crystalline polypyrrole (PPy) nanotubes were synthesized through a chemical polymerization route using methyl orange-ferric chloride (MO-FeCl3) as a template for growth. The thermoelectric properties of these PPy nanotubes have been studied in the temperature range 300-380 K after treatment with various dopants such as hydrochloric acid (HCl), p-toluene-sulphonic acid monohydrate (ToS), and tetrabutyl ammonium hexaflurophosphate (PF6). It has been observed that these dopants affect the electrical and thermal transport properties of PPy nanotubes in different ways. The temperature dependence of electrical resistivity suggests that pure PPy and ToS-doped PPy nanotubes exhibit a critical regime of metal-to-insulator transition, and doping with HCl drives them into the metallic regime. In contrast, PF6 doping of PPy nanotubes carries them into the insulating regime and these samples exhibited the highest figure of merit of ~3.4  ×  10‒3 at 380 K, which was 240% higher than the value obtained in the case of pristine PPy nanotubes. Strongly repressed thermal conductivity along with moderately high Seebeck coefficient and electrical conductivity have been found to be responsible for the high figure of merit observed in PF6-doped PPy nanotubes. The suppression of thermal conductivity in PF6-doped PPy nanotubes is attributed to the scattering of the spectrum of phonons via hierarchical length-scale defect structures present in the sample.

  15. Anisotropy analysis of thermoelectric properties of Bi{sub 2}Te{sub 2.9}Se{sub 0.1} prepared by SPS method

    Energy Technology Data Exchange (ETDEWEB)

    Zybala, Rafal; Wojciechowski, Krzysztof T. [Thermoelectric Research Laboratory, Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Av. Mickiewicza 30, 30-059, Cracow (Poland)

    2012-06-26

    The n-type Bi{sub 2}Te{sub 2.9}Se{sub 0.1} materials were synthesized by the direct fusion technique. The polycrystalline samples were fabricated by the uniaxial pressing of powders in spark plasma sintering (SPS) apparatus. The materials were subjected to the heat treatment in H{sub 2}-Ar atmosphere at 470 K for 24 h. The influence of preparation conditions on the anisotropy of electrical and thermal properties was thoroughly studied for the direction perpendicular and parallel to the pressing force. The microstructure and the chemical composition of both types of samples were examined using a scanning microscope (SEM) equipped with an X-ray energy dispersion detector (EDX). The XRD method was applied for the phase analysis of materials, as well as, for determination of preferred orientation of Bi{sub 2}Te{sub 2.9}Se{sub 0.1} grains. The Seebeck coefficient distribution was studied by the scanning thermoelectric microprobe (STM). Temperature dependences of thermoelectric properties (thermal and electrical conductivities, Seebeck coefficient) were measured in the temperature from 300 K to 550 K. The statistical analysis of results has shown strong influence of pressing force direction both on structural and transport properties. The applied heat treatment of materials significantly improves their thermoelectric figure of merit. Particularly, it was found that annealing in H2-Ar atmosphere leads to enhancement of the ZT three times up to {approx}0.7 at 370 K in perpendicular direction to the pressing force.

  16. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    Science.gov (United States)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  17. Effects of Lu and Tm Doping on Thermoelectric Properties of Bi2Te3 Compound

    Science.gov (United States)

    Yaprintsev, Maxim; Lyubushkin, Roman; Soklakova, Oxana; Ivanov, Oleg

    2017-11-01

    The Bi2Te3, Bi1.9Lu0.1Te3 and Bi1.9Tm0.1Te3 thermoelectrics of n-type conductivity have been prepared by the microwave-solvothermal method and spark plasma sintering. These compounds behave as degenerate semiconductors from room temperature up to temperature T d ≈ 470 K. Within this temperature range the temperature behavior of the specific electrical resistivity is due to the temperature changes of electron mobility determined by acoustic and optical phonon scattering. Above T d, an onset of intrinsic conductivity takes place when electrons and holes are present. At the Lu and Tm doping, the Seebeck coefficient increases, while the specific electrical resistivity and total thermal conductivity decrease within the temperature 290-630 K range. The increase of the electrical resistivity is related to the increase of electron concentration since the Tm and Lu atoms are donor centres in the Bi2Te3 lattice. The increase of the density-of-state effective mass for conduction band can be responsible for the increase of the Seebeck coefficient. The decrease of the total thermal conductivity in doped Bi2Te3 is attributed to point defects like the antisite defects and Lu or Tm atoms substituting for the Bi sites. In addition, reducing the electron thermal conductivity due to forming a narrow impurity (Lu or Tm) band having high and sharp density-of-states near the Fermi level can effectively decrease the total thermal conductivity. The thermoelectric figure-of-merit is enhanced from ˜ 0.4 for undoped Bi2Te3 up to ˜ 0.7 for Bi1.9Tm0.1Te3 and ˜ 0.9 for Bi1.9Lu0.1Te3.

  18. Electronic structure and thermoelectric transport properties of the golden Th2S3-type Ti2O3 under pressure

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-05-01

    Full Text Available A lot of physical properties of Th2S3-type Ti2O3 have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30GP to 35GP, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease with increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.

  19. First-Principles Study of Thermoelectric Properties of Covalent Organic Frameworks

    Science.gov (United States)

    Chumakov, Yurii; Aksakal, Fatma; Dimoglo, Anatholy; Ata, Ali; Palomares-Sánchez, Salvador A.

    2016-07-01

    Covalent organic frameworks (COFs) are new emerging functional porous materials. Strong covalent bonds result in molecular building blocks that can be arranged in layered two-dimensional (2D) or three-dimensional (3D) periodic networks. However, to the best of our knowledge, there have been no reports on experimental and theoretical studies of thermoelectrical properties of COFs to date. Therefore, density functional theory (DFT) and the Boltzmann transport equation have been applied in this work to calculate the semiclassical transport coefficients for phthalocyanine (Pc)-based NiPc, NiPc-benzothiadiazole (BTDA), and Pc COFs. Owing to the well-ordered stacking of the phthalocyanine units and linkers in these compounds, charge-carrier transport is facilitated in the stacking direction. In all studied compounds, the highly directional character of π-orbitals provides band-structure engineering and produces a type of low-dimensional hole transport along the stacking direction. All studied compounds are indirect semiconductors. The low-dimensional transport of holes and the localized states in both valence and conduction bands prevent the electron-hole compensation effect in the Seebeck coefficients, correlating with the large Seebeck coefficients of the studied compounds. Insertion of the electron-deficient building block benzothiadiazole in the NiPc-BTDA COF leads to positive Seebeck coefficients along the a-, b-, and c-directions. The relaxation time was estimated in our investigations from DFT band-structure calculations and the experimentally defined mobility, leading to determination of the electrical conductivity and electronic contribution to the thermal conductivity, as well as figure of merit ( ZT) estimation. Ni atom provided greater electrical conductivity along the c-direction in comparison with metal-free Pc COF, and NiPc COF showed the highest thermoelectric performance among the studied COFs.

  20. Electrical transport and thermoelectric properties of AgPb10SbTe12 ...

    Indian Academy of Sciences (India)

    tion is crucial for better thermoelectric performance because. S, ρ and κ are highly dependent on carrier concentration. PbTe is well known as a thermoelectric material, which is generally used for power generator functions in the inter- mediate temperature region (400–800 K) (Wood 1988). Over the years PbTe prepared by ...

  1. Effect of doping of N and B atoms on thermoelectric properties of ...

    Indian Academy of Sciences (India)

    Transfer of thermal energy for cooling or heating purposes and conversion of energy to generate electric power directly from heat are some applications of thermoelectric mate- rials. To maximize their efficiency, thermoelectric generators need materials with low thermal conductance and high electrical conductance.

  2. Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO

    Science.gov (United States)

    Okamoto, Y.; Sakamaki, A.; Takenaka, K.

    2016-05-01

    We report the thermoelectric properties of polycrystalline samples of Ca3Pb1-xBixO (x = 0, 0.1, 0.2) and Ca3SnO, both crystallizing in a cubic antiperovskite-type structure. The Ca3SnO sample shows metallic resistivity and its thermoelectric power approaches 100 μV K-1 at room temperature, resulting in the thermoelectric power factor of Ca3SnO being larger than that of Ca3Pb1-xBixO. On the basis of Hall and Sommerfeld coefficients, the Ca3SnO sample is found to be a p-type metal with a carrier density of ˜1019 cm-3, a mobility of ˜80 cm2 V-1 s-1, both comparable to those in degenerated semiconductors, and a moderately large hole carrier effective mass. The coexistence of moderately high mobility and large effective mass observed in Ca3SnO, as well as possible emergence of a multivalley electronic structure with a small band gap at low-symmetry points in k-space, suggests that the antiperovskite Ca oxides have strong potential as a thermoelectric material.

  3. Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules.

    Science.gov (United States)

    Chen, Chih-Chieh; Kuo, David M T; Chang, Yia-Chung

    2015-07-15

    The quantum interference and orbital filling effects on the thermoelectric (TE) properties of quantum dot (QD) molecules with high figure of merit are illustrated via the full solution to the Hubbard-Anderson model in the Coulomb blockade regime. It is found that under certain conditions in the triangular QD molecule (TQDM), destructive quantum interference (QI) can occur, which leads to vanishingly small electrical conductance, while the Seebeck coefficient is modified dramatically. When the TQDM is in the charge localization state due to QI, the Seebeck coefficient is seriously suppressed at low temperature, but is highly enhanced at high temperature. Meanwhile, the behavior of the Lorenz number reveals that it is easier to block charge transport via destructive QI than the electron heat transport at high temperatures. The maximum power factor (PF) in the TQDM occurs under full-filling conditions. Nevertheless, low-filling conditions are preferred for getting the maximum PF in serially coupled triple QDs in general. In double QDs, the maximum PF can be achieved either with orbital-depletion or orbital-filling as a result of electron-hole symmetry. Our theoretical work provides a useful guideline for the advancement of the nanoscale TE technology.

  4. First-Principles Calculations of Thermoelectric Properties of IV–VI Chalcogenides 2D Materials

    Directory of Open Access Journals (Sweden)

    J. O. Morales-Ferreiro

    2017-12-01

    Full Text Available A first-principles study using density functional theory and Boltzmann transport theory has been performed to evaluate the thermoelectric (TE properties of a series of single-layer 2D materials. The compounds studied are SnSe, SnS, GeS, GeSe, SnSe2, and SnS2, all of which belong to the IV–VI chalcogenides family. The first four compounds have orthorhombic crystal structures, and the last two have hexagonal crystal structures. Solving a semi-empirical Boltzmann transport model through the BoltzTraP software, we compute the electrical properties, including Seebeck coefficient, electrical conductivity, power factor, and the electronic thermal conductivity, at three doping levels corresponding to 300 K carrier concentrations of 1018, 1019, and 1020 cm−3. The spin orbit coupling effect on these properties is evaluated and is found not to influence the results significantly. First-principles lattice dynamics combined with the iterative solution of phonon Boltzmann transport equations are used to compute the lattice thermal conductivity of these materials. It is found that these materials have narrow band gaps in the range of 0.75–1.58 eV. Based on the highest values of figure-of-merit ZT of all the materials studied, we notice that the best TE material at the temperature range studied here (300–800 K is SnSe.

  5. Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration

    Directory of Open Access Journals (Sweden)

    Yuta Fujimoto

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of amorphous InGaZnO (a-IGZO thin films optimized by adjusting the carrier concentration. The a-IGZO films were produced under various oxygen flow ratios. The Seebeck coefficient and the electrical conductivity were measured from 100 to 400 K. We found that the power factor (PF at 300 K had a maximum value of 82 × 10−6 W/mK2, where the carrier density was 7.7 × 1019 cm−3. Moreover, the obtained data was analyzed by fitting the percolation model. Theoretical analysis revealed that the Fermi level was located approximately above the potential barrier when the PF became maximal. The thermoelectric properties were controlled by the relationship between the position of Fermi level and the height of potential energy barriers.

  6. Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents

    Science.gov (United States)

    Gostkowska, N.; Miruszewski, T.; Trawiński, B.; Bochentyn, B.; Kusz, B.

    2017-11-01

    Cesium-bismuth-telluride polycrystalline materials were fabricated using a cost-effective method based on a reduction of oxide reagents, leading to a production of a material with good thermoelectric properties. Several samples with various initial stoichiometry were prepared by melting of oxide powders at 1050 °C, quenching, milling to powders and then reducing in pure hydrogen at 400 °C. Another concept was to obtain the CsBi4Te6 material without a melting stage. Composition of the samples was analyzed by the XRD and EDX methods. The sample with 96% of CsBi4Te6 phase was obtained in a way of reduction of oxide reagents. Thermoelectric properties of fabricated samples were also investigated.

  7. Thermoelectric properties of highly doped n-type polysilicon inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Sinha, S

    2012-10-01

    Nanostructured single-crystal silicon exhibits a remarkable increase in the figure of merit for thermoelectric energy conversion. Here we theoretically investigate a similar enhancement for polycrystalline silicon inverse opals. An inverse opal provides nanoscale grains and a thin-film like geometry to scatter phonons preferentially over electrons. Using solutions to the Boltzmann transport equation for electrons and phonons, we show that the figure of merit at 300 K is fifteen times that of bulk single-crystal silicon. Our models predict that grain boundaries are more effective than surfaces in enhancing the figure of merit. We provide insight into this effect and show that preserving a grain size smaller than the shell thickness of the inverse opal increases the figure of merit by as much as 50% when the ratio between the two features is a third. At 600 K, the figure of merit is as high as 0.6 for a shell thickness of 10 nm. This work advances the fundamental understanding of charge and heat transport in nanostructured inverse opals. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758382

  8. Evaluation of the effect of V2O5 on the electrical and thermoelectric properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposite

    Science.gov (United States)

    Morad, M.; Fadlallah, M. M.; Hassan, M. A.; Sheha, E.

    2016-03-01

    The aim of this contribution is to introduce high performance materials for thermoelectric devices. A nanopolymer composite of PVAGNP ((polyvinyl alcohol ((PVA)0.6/graphene nanoplatelets (GNP)0.4))1-x(V2O5)x where x = 0, 2.5, 5, 7.5 and 10 wt% has been prepared using a solution cast technique. The influence of V2O5 additives on the morphology, structure, thermal and electrical properties of PVA has been examined by FTIR, XRD, TGA, DC and IV techniques. The disassociation of V2O5 to (V4+) and (V5+) in the composites acts as a co-bridge which can facilitate the translational electronic motion, which enhances the charge carrier mobility and the electrical conductivity. A prototype cell was constructed using (PVAGNP)1-x(GNP)x nanocomposites with constantan wire. The addition of V2O5 improves the thermoelectric properties of the (PVA)0.6(GNP)0.4 nanocomposite, where the Seebeck coefficient is increased from 23.1 to 45.8 μV K-1 from 0 to 10 wt% V2O5, respectively. The power factor is increased from 1.17 × 10-2 to 36.30 × 10-2 μWm-1 K-2 from 0 to 10 wt% V2O5, respectively, and the ZT is increased from 4.47 × 10-9 to 1.46 × 10-7.

  9. The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials

    Science.gov (United States)

    Rajasekaran, P.; Alagar Nedunchezhian, A. S.; Yalini Devi, N.; Sidharth, D.; Arivanandhan, M.; Jayavel, R.

    2017-11-01

    Metal oxide based materials are promising for thermoelectric applications especially at elevated temperature due to their high thermal stability. Recently, perovskite based oxide materials have been focused as a novel thermoelectric material due to their tunable electrical conductivity. Thermoelectric properties of BaSnO3 has been extensively investigated. However, the effect of various rare earth doping on the thermoelectric properties of BaSnO3 is not studied in detail. In the present work, Ba1‑x RE x SnO3 (RE  =  La and Sr) materials with x  =  0.05 were prepared by polymerization complex (PC) method in order to study the effect of RE incorporation on the structural, morphological and thermoelectric characteristics of BaSnO3. The structural and morphological properties of the synthesized materials were studied by XRD and TEM analysis. XRD analysis confirmed the mixed phases of the synthesized samples. The TEM images of Ba1‑x Sr x SnO3 shows hexagonal and cubic morphology while, Ba1‑x La x SnO3 exhibit rod like morphology. Various functional groups of the perovskite material were identified using FTIR analysis. Formation of the perovskite material was further confirmed by XPS analysis. The Seebeck coefficient of Ba0.95La0.05SnO3 was relatively higher than that of Ba0.95Sr0.05SnO3, especially at high temperature. The rod like morphology of Ba0.95La0.05SnO3 may facilitate fast electron transport which results high thermal power compared to Ba0.95Sr0.05SnO3 despite of its poor crystalline nature. The substitution of La3+ on the Ba2+ site could vary the carrier density which results high Seebeck coefficient of Ba0.95La0.05SnO3 compared to Ba0.95Sr0.05SnO3. From the experimental results, it is obvious that Ba0.95La0.05SnO3 could be a promising thermoelectric material for high temperature application.

  10. The importance of temperature dependent energy gap in the understanding of high temperature thermoelectric properties

    Science.gov (United States)

    Singh, Saurabh; Pandey, Sudhir K.

    2016-10-01

    In this work, we show the importance of temperature dependent energy band gap, E g (T), in understanding the high temperature thermoelectric (TE) properties of material by considering LaCoO3 (LCO) and ZnV2O4 (ZVO) compounds as a case study. For the fix value of band gap, E g , deviation in the values of α has been observed above 360 K and 400 K for LCO and ZVO compounds, respectively. These deviation can be overcomed by consideration of temperature dependent band gap. The change in used value of E g with respect to temperature is ∼4 times larger than that of In As. This large temperature dependence variation in E g can be attributed to decrement in the effective on-site Coulomb interaction due to lattice expansion. At 600 K, the value of ZT for n and p-doped, LCO is ∼0.35 which suggest that it can be used as a potential material for TE device. This work clearly suggest that one should consider the temperature dependent band gap in predicting the high temperature TE properties of insulating materials.

  11. Hydrothermal synthesis of SnQ (Q = Te, Se, S) and their thermoelectric properties

    Science.gov (United States)

    Feng, Dan; Ge, Zhen-Hua; Chen, Yue-Xing; Li, Ju; He, Jiaqing

    2017-11-01

    Lead-free IV-VI semiconductors SnQ (Q = Te, Se, S) are deemed as promising thermoelectric (TE) materials. In this work, we designed a hydrothermal route to selectively synthesize single phase SnTe, SnSe and SnS nanopowders. For all three samples, the phase structure were characterized by x-ray diffraction, SnTe particles with octahedron structure and SnSe/SnS particles with plate-like shape were observed by field emission scanning electron microscopy and transmission electron microscopy, the formation mechanism was discussed in detail. Then, SnTe, SnSe and SnS nanopowders were densified by spark plasma sintering for investigating TE properties. It was noticed that SnSe and SnS exhibited remarkably anisotropy in both electrical and thermal properties attributed to the layered crystal structure. The highest ZT values 0.79 at 873 K, 0.21 at 773 K, and 0.13 at 773 K were achieved for SnTe, SnSe and SnS bulk samples, respectively.

  12. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyeona Mun

    2015-03-01

    Full Text Available The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb and dopants (Fe. An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects.

  13. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  14. Thermoelectric properties of BiCuSeO with bismuth and oxygen vacancies

    Science.gov (United States)

    Das, Sayan; Ramakrishnan, Anbalagan; Chen, Kuei-Hsien; Misra, Dinesh Kumar; Mallik, Ramesh Chandra

    2018-01-01

    Introducing vacancies in oxychalcogenides is an effective paradigm for the improvement of thermoelectric properties by reducing thermal conductivity through phonon scattering as well as by decreasing electrical resistivity via incorporation of holes through vacancies. In this paper, we present thermoelectric properties of Bi1‑x CuSeO1‑y with y  =  0 for x  =  0, 0.04, and y  =  0.02 for x  =  0.04, 0.08, 0.12. X-ray diffraction studies reveal BiCuSeO as the main phase with trace amounts of Cu1.8Se in Bi0.92CuSeO0.98 and Bi0.88CuSeO0.98. The impurity phases of Cu1.8Se in Bi0.92CuSeO0.98 and Bi0.88CuSeO0.98 could be due to the presence of vacancies. The electrical resistivity of Bi0.96CuSeO0.98 is lower than BiCuSeO, but higher than Bi0.96CuSeO, since Bi vacancies produce holes that are partially compensated by O vacancies. Electrical resistivity decreases with an increase in Bi vacancy content for y  =  0.02. The Seebeck coefficient of samples shows that the similar trend as in electrical resistivity, following Mott’s formula. Total and lattice thermal conductivity of Bi0.96CuSeO is higher than BiCuSeO as well as Bi0.96CuSeO0.98. This increases with further increase in bismuth vacancy. Introduction of vacancies (Bi and O) in BiCuOSe lead to higher thermal conductivities and lower Seebeck coefficients, and result in adverse effect on zT.

  15. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    Science.gov (United States)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  16. Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2017-12-01

    Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.

  17. Effects of Synthesis and Processing on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    In the present study, Ca3Co4O9+δ was synthesized by solid-state and sol-gel reactions followed by spark plasma sintering (SPS) under different conditions such as sintering temperatures, applied pressures and ramping rates. The materials were then characterized with respect to their microstructure......, phase purity and thermoelectric properties. With the identical optimal SPS process, the power factor of about 400 µW/m•K2 and 465 µW/m•K2 (at 800 °C) is measured from samples produced by solid-state and sol-gel reactions respectively, both of these values are higher than the value reported so far....... The thermoelectric performance improvement observed for the solid-state and sol-gel reactions suggests that the particle sizes may be a predominant key parameter of the Ca3Co4O9+δ thermoelectric properties. Smaller particle size (500 nm) as produced in this study by sol-gel synthesis method with optimal SPS process...

  18. Numerical Modeling of Thermoelectric Generators with Varing Material Properties in a Circuit Simulator

    DEFF Research Database (Denmark)

    Chen, Min; Rosendahl, Lasse; Condra, Thomas

    2009-01-01

    When a thermoelectric generator (TEG) and its external load circuitry are considered together as a system, the codesign and cooptimization of the electronics and the device are crucial in maximizing the system efficiency. In this paper, an accurate TEG model is proposed and implemented in a SPICE...... from a real thermoelectric device, respectively.Within a common circuit simulator, the model can be easily connected to various electrical models of applied loads to predict and optimize the system performance....

  19. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12

    KAUST Repository

    Dong, Y.

    2012-01-01

    Several polycrystalline p-type skutterudites with compositions Ba xYb yCo 4-zFe zSb 12, with varying filler concentrations x and y, and z = 1 to 2, were synthesized by reacting the constituents and subsequent solid state annealing, followed by densification by hot-pressing. Their thermoelectric properties were evaluated from 300 to 820 K. The Yb filling fraction increased with Fe content while the amount of Fe substitution had little influence on the Ba filling fraction. High purity specimens were obtained when the Fe content was low. Bipolar conduction contributed to the thermal conductivity at elevated temperatures. A maximum ZT value of 0.7 was obtained at 750 K for the specimen with the highest Fe content and filling fraction. The potential for thermoelectric applications is also discussed. © 2012 American Institute of Physics.

  20. Thermoelectric and magnetic properties of Yb{sub 2}MgSi{sub 2} prepared by spark plasma sintering method

    Energy Technology Data Exchange (ETDEWEB)

    Kubouchi, M.; Hayashi, K.; Miyazaki, Y. [Tohoku University, Department of Applied Physics, Graduate School of Engineering, Sendai (Japan)

    2016-08-15

    An intermediate-valence compound, Yb{sub 2}MgSi{sub 2}, has been prepared using a spark plasma sintering method. The magnetic susceptibility and thermoelectric properties of Yb{sub 2}MgSi{sub 2} are measured in the temperature range from 5 to 300 K. From the magnetic susceptibility results, Yb valence of the Yb{sub 2}MgSi{sub 2} is evaluated. As compared with YbAl{sub 3}, which is one of the promising thermoelectric materials that can be used at low temperatures, Yb{sub 2}MgSi{sub 2} exhibits a lower absolute value of Seebeck coefficient, higher electrical resistivity, and lower thermal conductivity over the measured temperature range. A maximum dimensionless figure of merit, ZT, of 0.0018 is achieved at around 200 K. (orig.)

  1. The thermoelectric properties of CoSb3 compound doped with Te and Sn synthesized at different pressure

    Science.gov (United States)

    Jiang, Yiping; Jia, Xiaopeng; Ma, Hongan

    2017-10-01

    The skutterudite CoSb2.75Te0.20Sn0.05 compound was synthesized successfully by high pressure and high temperature (HPHT) method using Co, Sb, Te and Sn powder as raw materials. The effects of pressure on its structure and the thermoelectric properties are investigated systematically from 300 K to 800 K. The electrical resistivity and the absolute value of the Seebeck coefficient for the sample increases with rising synthetic pressure. The thermal conductivity of the sample decreases with synthetic pressure and temperature rising in the range of 300-800 K. In this study, the maximum dimensionless figure of merit (ZT) value of 1.17 has been achieved at 793 K, 3 GPa for this thermoelectric material.

  2. Charge Transport and Thermoelectric Properties of (Nd1-z Yb z ) y Fe4-x Co x Sb12 Skutterudites

    Science.gov (United States)

    Shin, Dong-Kil; Jang, Kyung-Wook; Choi, Soon-Mok; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho

    2017-10-01

    Partially double-filled (Nd1-z Yb z ) y Fe4-x Co x Sb12 (z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by encapsulated melting, annealing, and hot pressing, and the effects of Nd/Yb partial double filling and Co charge compensation on the microstructure, charge transport, and thermoelectric properties were investigated. All the specimens were transformed to the skutterudite phase together with a few secondary phases such as FeSb2, but FeSb2 formation was suppressed on increasing Co content. Nd and Yb were successfully double-filled in the voids of the skutterudite lattice and Co was well substituted at Fe sites, as indicated by changes in the lattice constant with Nd/Yb filling and Fe/Co substitution. All the specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at temperatures from 323 K to 823 K, and the charge transport properties depended on the filling ratio of Nd and Yb because of the difference between the valencies of Nd and Yb. The electrical conductivity decreased and the Seebeck coefficient increased owing to a decrease in the carrier concentration with increasing Co content. The lattice thermal conductivity decreased because phonon scattering was enhanced by Nd and Yb partial double filling, but partially double-filled specimens did not exhibit a further significant reduction in the lattice thermal conductivity compared with the completely double-filled specimens. A maximum ZT of 0.83 was obtained for (Nd0.75Yb0.25)0.8Fe3CoSb12 at 723 K.

  3. Thermoelectric Properties of Sb-Doped Mg2Si Prepared Using Different Silicon Sources

    Science.gov (United States)

    Isoda, Yukihiro; Tada, Satoki; Kitagawa, Hiroyuki; Shinohara, Yoshikazu

    2016-03-01

    Magnesium silicide (Mg2Si) compounds doped with 8000 ppm Sb were prepared using different Si sources via liquid-solid reaction synthesis and hot pressing. The Si sources were solar-grade Si, metal-grade Si, and sludge Si. The Si sludge generated during the cutting of Si wafers was recycled as a Si source. The x-ray diffraction (XRD) patterns of the Si sludge corresponded to Si, silicon dioxide (SiO2), and C, whereas the solar-grade Si and metal-grade Si were indexed as a single Si phase. For the sintered compact samples, the Mg2Si phase was predominant in all the samples. However, small amounts of impurity phases, MgO and SiC, were identified in the sintered Mg2Si that used sludge Si. The thermoelectric properties of the Mg2Si produced using solar-grade Si or metal-grade Si were almost the same at the measured temperature. The efficacy of the low-purity metal-grade Si was demonstrated. However, the power factor and thermal conductivity of the Mg2Si produced using sludge Si were smaller than those of the other samples over the entire measured temperature range. However, the maximum value of ZT was almost the same.

  4. Synthesis and Thermoelectric Properties of Ni-Doped ZrCoSb Half-Heusler Compounds

    Directory of Open Access Journals (Sweden)

    Degang Zhao

    2018-01-01

    Full Text Available The Ni-doped ZrCo1−xNixSb half-Heusler compounds were prepared by arc-melting and spark plasma sintering technology. X-ray diffraction analysis results showed that all samples were crystallized in a half-Heusler phase. Thermoelectric properties of ZrCo1−xNixSb compounds were measured from room temperature to 850 K. The electrical conductivity and the absolute value of Seebeck coefficient increased with the Ni-doping content increasing due to the Ni substitution at Co. sites. The lattice thermal conductivity of ZrCo1−xNixSb samples was depressed dramatically because of the acoustic phonon scattering and point defect scattering. The figure of merit of ZrCo1−xNixSb compounds was improved due to the decreased thermal conductivity and improved power factor. The maximum ZT value of 0.24 was achieved for ZrCo0.92Ni0.08Sb sample at 850 K.

  5. Solvothermal synthesis and thermoelectric property of undoped and indium doped lead telluride nanoparticles

    Science.gov (United States)

    Kadel, Kamal; Li, Wenzhi

    2013-03-01

    Undoped and indium (In) doped lead telluride (PbTe) nanostructures were synthesized via solvothermal/hydrothermal route. The crystallinity of the as-prepared un-doped and In-doped PbTe sample were examined by X-ray diffraction (XRD) which indicated the formation of face centered single phase cubic PbTe. Lattice constant calculation from XRD pattern revealed the formation of un-doped and In-doped PbTe crystals with almost similar size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) examinations indicated that undoped and In-doped PbTe nanostructures were mostly cubically shaped and highly crystalline. The effect of the synthesis temperature on the structure and morphology of undoped PbTe was also investigated; it was found that the particle size increased with the synthesis temperature. Thermoelectric property of as-synthesized lead telluride sample was also investigated. This work is supported by the National Science Foundation under the grant DMR- 0548061.

  6. The thermoelectric properties of hornet cuticle: correlation with measuring body sites and activity status.

    Science.gov (United States)

    Pertsis, Vitaly; Sverdlov, Anna; Riabinin, Ksenia; Kozhevnikov, Marija; Ishay, Jacob S

    2004-01-01

    Our study focused on the thermoelectric properties of hornet cuticle at different body compartments and under varying states of awakeness. We also measured the temperature alteration patterns in various body parts of the hornet. Electric voltage and current were dependent on: a) the state of wakefulness; b) the part of the body. The current was lowest in dead hornet cuticle, somewhat higher in narcotized hornet cuticle, considerably higher in the cuticle of hornets awakening from anesthesia and highest in fully awake hornets. Voltage values were of the same order for dead and narcotized hornets, but considerably higher in unanesthetized awake hornets and highest in the cuticle of hornets awakening from anesthesia. At optimal temperature (29 degrees C) the hornet body temperature was higher on the abdominal cuticle than on other body parts. At an ambient temperature of 20 degrees C, the highest temperatures were recorded on the head and thorax, and the lowest on the abdomen. Body temperatures of live hornets were higher than the cooler ambient temperature outside the nest at night. The results suggest that the hornets possess an intrinsic biological heat pump mechanism, which can be used to achieve active thermoregulation.

  7. Anomalous thermoelectric properties in double quantum dots coupled with Majorana bound states

    Directory of Open Access Journals (Sweden)

    Yi-Jie Zheng

    2016-12-01

    Full Text Available We discuss the transport properties of thermal electrons in double quantum dots that are coupled with Majorana bound states (MBSs corresponding to two model systems with T-type structure and series connection structure. It has been found that the thermoelectric figure of merit ZT in these model systems is suppressed when we consider the effects of the Majorana bound states. Here, ZT=GS2Tκ, where G is the electric conductance, S is the thermopower, T is the temperature and κ is the thermal conductance. The sign of the thermopower S changes from negative to positive when the energy levels of the quantum dots are less than μ while the sign of the thermopower S changes from positive to negative when the energy levels of the quantum dots are above μ in the model system of T-type structure, where μ is the chemical potential. As a result, the figure of merit ZT first decreases and then increases as the temperature kBT increases. This behavior is different from what is seen in the general quantum dot structure without MBSs. It is interesting to show that in the series connection structure, the thermopower S and ZT are robustness and do not vary with changes in εM when |εd|<λ, even if κ changes with εM.

  8. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-01-01

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO2 powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO2 films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO2 up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO2. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model. PMID:28773351

  9. Galvanic synthesis of Cu{sub 2−X}Se thin films and their photocatalytic and thermoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Amrita [Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103 (India); Kulsi, Chiranjit; Banerjee, Dipali [Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103 (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103 (India)

    2016-04-30

    Graphical abstract: - Highlights: • Cu{sub 2−X}Se thin film with cubic berzelianite phase was fabricated by galvanic deposition. • Cubic berzelianite phase was found to possess both direct and indirect band gaps of 2.9 and 1.05 eV respectively. • Cu{sub 2−X}Se thin films were found to be active visible light driven photocatalyst. • Thermoelectric property of Cu{sub 2−X}Se film was investigated and ZT value was found to be 0.07 at room temperature. - Abstract: Cu{sub 2−X}Se thin film with cubic berzelianite phase was prepared by a simple, low-cost two electrode electrochemical technique and the photocatalytic and thermoelectric properties of the thin films were investigated. The results showed that Cu{sub 2−X}Se crystallized in the cubic berzelianite phase and found to possess both direct and indirect band gaps of 2.9 and 1.05 eV respectively, covering almost the entire range of solar-spectrum. The photocatalytic discoloration of aqueous methylene blue (MB) and rose-bengal (RB) dyes over Cu{sub 2−X}Se thin films were investigated under visible light irradiation. Cu{sub 2−X}Se thin films showed higher catalytic activity for MB compared to RB in presence of H{sub 2}O{sub 2}. The photocatalytic discoloration followed first-order reaction kinetics. Complete removal of aqueous MB was realized after visible light irradiation for 150 min with Cu{sub 2−X}Se thin film catalyst in presence of H{sub 2}O{sub 2}. Thermoelectric performances through power factor and figure of merit have been evaluated. Carrier concentration obtained from thermoelectric power was used to evaluate the mobility of carriers from electrical conductivity measurement.

  10. Enhanced thermoelectric performance of xMoS{sub 2}–TiS{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yang; Wang, Yulong; Shen, YaWei [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yifeng, E-mail: yifeng.wang@njtech.edu.cn [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Pan, Lin [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Tu, Rong [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lu, Chunhua [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Huang, Rong [School of Information Science and Technology, East China Normal University, Shanghai 200062 (China); Koumoto, Kunihito [Toyota Physical and Chemical Research Institute, Nagakute 4801192 (Japan)

    2016-05-05

    A series of nanocomposite ceramics of micro-scale TiS{sub 2} containing MoS{sub 2} nanoparticles mainly embedded along grain boundaries were prepared and investigated attempting to enhance the thermoelectric performance of TiS{sub 2}. Results show that, compared with that of pristine TiS{sub 2} ceramic, the power factor of the composites was improved by virtues of enhanced Seebeck coefficient that should be brought out due to reduced carrier concentration and electron scattering or filtering at the MoS{sub 2}/matrix interfaces. Moreover, thanks to the significantly reduced thermal conductivity that originated from the intensified multi-scale phonon scattering and the decreased electronic contribution, a maximal ZT value of 0.29 at 573 K was obtained in the sample with 3 mol % MoS{sub 2}, which is 60% higher than that of pristine TiS{sub 2}. These findings promise nanocomposite as an effective approach to suppress its thermal conduction without degradation of power factor and thus to enhance the performance of TiS{sub 2}-based thermoelectrics. - Highlights: • Nanocomposites of TiS{sub 2} including nano-MoS{sub 2} were prepared by SPS. • Distribution of MoS{sub 2} mainly along the boundaries was confirmed. • Seebeck coefficient increased by reduced electron density with electron filtering. • Thermal conductivity decreased by suppressed phonon and electron transport. • A maximal ZT value of 0.29 was obtained at 573 K.

  11. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective

    Directory of Open Access Journals (Sweden)

    Xiaoxuan Zhang

    2017-02-01

    Full Text Available A BiCuSeO system has been reported as a promising thermoelectric material and has attracted great attention in the thermoelectric community since 2010. Recently, several remarkable studies have been reported and the ZT of BiCuSeO was pushed to a higher level. It motivates us to systematically summarize the recent reports on the BiCuSeO system. In this short review, we start with several attempts to optimize thermoelectric properties of BiCuSeO. Then, we introduce several opinions to explore the origins of low thermal conductivity for BiCuSeO. Several approaches to enhance thermoelectric performance are also summarized, including modulation doping, introducing dual-vacancies, and dual-doping, etc. At last, we propose some possible strategies for enhancing thermoelectric performance of BiCuSeO in future research.

  12. Enhancement of redox- and phase-stability of thermoelectric CaMnO{sub 3−δ} by substitution

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Philipp [Laboratory Materials for Energy Conversion, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, CH-8600 Dübendorf (Switzerland); Populoh, Sascha, E-mail: sascha.populoh@empa.ch [Laboratory Materials for Energy Conversion, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, CH-8600 Dübendorf (Switzerland); Yoon, Songhak [Laboratory Materials for Energy Conversion, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, CH-8600 Dübendorf (Switzerland); Weidenkaff, Anke [Materials Chemistry, Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, DE-70569 Stuttgart (Germany)

    2015-09-15

    Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO{sub 3−δ}. In this study series of Ca{sub 1−x}A{sub x}Mn{sub 1−y}B{sub y}O{sub 3−δ} (0≤x,y≤0.8) compounds, each with A-site (Dy{sup 3+}, Yb{sup 3+}) or B-site (Nb{sup 5+}, Ta{sup 5+} and Mo{sup 6+}, W{sup 6+}) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion. - Graphical abstract: Thermoelectric n-type CaMn{sub 0.98}W{sub 0.02}O{sub 3−δ}—Transport properties and expansion coefficient of: Oxygen loss (green region) and upper stability limit of the orthorhombic phase (yellow region) strongly affect the transport properties. Both features also cause lattice expansion, which leads to cracking of thermoelectric all-oxide converters. We report how the upper limit for application can be shifted to even higher temperatures. - Highlights: • Level of Mn{sup 3+} at RT determines reduction behavior of Ca{sub 1−x}A{sub x}Mn{sub 1−y}B{sub y}O{sub 3−δ} at HT. • Differences in Seebeck coefficient vanish at T>1200 K independent from substitution. • Substitution increases orthorhombicity of Ca{sub 1−x}A{sub x}Mn{sub 1−y}B{sub y}O{sub 3−δ}. • Linear dependence of orthorhombicity and phase stability. • Design guidelines for

  13. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.

    Science.gov (United States)

    Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng

    2015-07-20

    Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Probing of the pseudogap via thermoelectric properties in the Au-Al-Gd quasicrystal approximant

    Science.gov (United States)

    Ishikawa, Asuka; Takagiwa, Yoshiki; Kimura, Kaoru; Tamura, Ryuji

    2017-03-01

    The pseudogap of the recently discovered Au-Al-Gd quasicrystal approximant crystal (AC) is investigated over a wide electron-per-atom (e /a ) ratio of ˜0.5 using thermoelectric properties as an experimental probe. This Au-Al-Gd AC provides an ideal platform for fine probing of the pseudogap among a number of known ACs because the Au-Al-Gd AC possesses an extraordinarily wide single-phase region with respect to the variation in the electron concentration [A. Ishikawa, T. Hiroto, K. Tokiwa, T. Fujii, and R. Tamura, Phys. Rev. B 93, 024416 (2016), 10.1103/PhysRevB.93.024416], in striking contrast to, for instance, binary stoichiometric C d6R ACs. As a result, a salient peak structure is observed in the Seebeck coefficient, S , with the composition as well as that of the power factor S2σ , in addition to a gradual variation in the conductivity, σ , and S . These two features are directly associated with rapid and slow variations, respectively, of spectral conductivity σ (E ) , and hence the fine structure inside the pseudogap, in the vicinity of the Fermi level EF. Based on the observed continuous variation of the Fermi wave vector reported in the previous experimental work, fine tuning of EF toward an optimal position was attempted, which led to the successful observation of a sharp peak in S2σ with a value of ˜270 μ W /m .K2 at 873 K. This is the highest value ever reported among both Tsai-type and Bergman-type compounds. The dimensionless figure of merit was determined as 0.026 at 873 K, which is also the highest reported among both Tsai-type and Bergman-type compounds.

  15. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides

    KAUST Repository

    Tahir, M

    2014-10-31

    We study the thermoelectric properties of monolayers of MoS2 and other group-VI dichalcogenides under circularly polarized off-resonant light. Analytical expressions are derived for the Berry phase mediated magnetic moment, orbital magnetization, as well as thermal and Nernst conductivities. Tuning of the band gap by off-resonant light enhances the spin splitting in both the valence and conduction bands and, thus, leads to a dramatic improvement of the spin and valley thermoelectric properties.

  16. Theoretical and experimental investigations of the thermoelectric properties of Bi{sub 2}S{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chmielowski, Radoslaw, E-mail: chmielowski@imra-europe.com; Péré, Daniel; Jacob, Stéphane; Dennler, Gilles [IMRA Europe S.A.S., 220 rue Albert Caquot, BP 213, 06904 Sophia Antipolis (France); Bera, Chandan [Department of Atomistic Modelling and Simulation, ICAMS, Ruhr-Universität Bochum, Bochum (Germany); Institute of Nano Science and Technology, Habitat Centre, Sector-64, Phase X, Mohali (India); Opahle, Ingo; Madsen, Georg K. H. [Department of Atomistic Modelling and Simulation, ICAMS, Ruhr-Universität Bochum, Bochum (Germany); Xie, Wenjie; Weidenkaff, Anke [Institute of Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart (Germany); Capet, Frédéric; Roussel, Pascal [Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Ecole Nationale Supérieure de Chimie de Lille, Bat C7a-BP 90108, 59652 Villeneuve d' Ascq (France)

    2015-03-28

    Electronic and transport properties of Bi{sub 2}S{sub 3} with various dopants are studied using density functional theory and experimental characterizations. First, principle calculations of thermoelectric properties are used to evaluate the thermoelectric potential of the orthorhombic Bi{sub 2}S{sub 3} structure. The computational screening of extrinsic defects is used to select the most favorable n-type dopants. Among all the dopants considered, hafnium and chlorine are identified as prospective dopants, whereas, e.g., germanium is found to be unfavorable. This is confirmed by experiment. Seebeck coefficient (S) and electrical conductivity (σ) measurements are performed at room temperature on pellets obtained by spark plasma sintering. An increase of power factors (S{sup 2}·σ) from around 50 up to 500 μW K{sup −2} m{sup −1} is observed for differently doped compounds. In several series of samples, we observed an optimum of power factor above 500 μW K{sup −2} m{sup −1} at room temperature for a chlorine equivalence of 0.25 mol. % BiCl{sub 3}. The obtained results are plotted on a semilogarithmic log (σ) versus S graph to demonstrate that a very strong linear trend that limits the power factor around 500 μW K{sup −2} m{sup −1} exists. Further improvement of Bi{sub 2}S{sub 3} as thermoelectric material will require finding new doping modes that will break through the observed trend. The results of stability tests demonstrate that properties of optimally doped Bi{sub 2}S{sub 3} are stable.

  17. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2014-06-07

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17 MeV. For the n-type thin films, nanodots with a diameter of less than 10 nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  18. Discussion on the electrical and thermoelectrical properties of amorphous In-Sb-Te Films

    Energy Technology Data Exchange (ETDEWEB)

    Aly, K.A. [University of Jeddah, Physics Department, Faculty of Science and Arts, Khulais, Jeddah (Saudi Arabia); Al-Azhar University, Assiut Branch, Physics Department, Faculty of Science, Asyut (Egypt); Saddeek, Y. [Al-Azhar University, Assiut Branch, Physics Department, Faculty of Science, Asyut (Egypt); Dahshan, A. [Port Said University, Department of Physics, Faculty of Science, Port Said (Egypt); King Khalid University, Department of Physics, Faculty of Science for Girls, Abha (Saudi Arabia)

    2016-03-15

    Different compositions of (In{sub 0.5}Sb{sub 0.5}){sub 1-x}Te{sub x} (0.50 ≤ x ≤ 0.65) thin films were prepared by thermal evaporated technique, onto pre-cleaned glass substrates at ∝298 K. Both dark electrical resistivity (ρ) and thermoelectric power (S) were measured in the temperature range 300-420 K. The concentration of the free carriers is obtained from DC conductivity and thermoelectric power measurements. Seebeck coefficient was found to be positive over entire temperature range, indicating that (In{sub 0.5}Sb{sub 0.5}){sub 1-x}Te{sub x} films are p-type semiconducting materials. Also, the variation of the mobility with temperature has been estimated. Increasing tellurium concentration is found to affect the DC conductivity and thermoelectric power of the studied films. The activation energies obtained from the DC conductivity and thermoelectric power increase with increasing tellurium content. The obtained results were interpreted according to the chemical bond approach. (orig.)

  19. Microstructure Analysis and Thermoelectric Properties of Melt-Spun Bi-Sb-Te Compounds

    Directory of Open Access Journals (Sweden)

    Weon Ho Shin

    2017-06-01

    Full Text Available In order to realize high-performance thermoelectric materials, a way to obtain small grain size is necessary for intensification of the phonon scattering. Here, we use a melt-spinning-spark plasma sintering process for making p-type Bi0.36Sb1.64Te3 thermoelectric materials and evaluate the relation between the process conditions and thermoelectric performance. We vary the Cu wheel rotation speed from 1000 rpm (~13 ms−1 to 4000 rpm (~52 ms−1 during the melt spinning process to change the cooling rate, allowing us to control the characteristic size of nanostructure in melt-spun Bi0.36Sb1.64Te3 ribbons. The higher wheel rotation speed decreases the size of nanostructure, but the grain sizes of sintered pellets are inversely proportional to the nanostructure size after the same sintering condition. As a result, the ZT values of the bulks fabricated from 1000–3000 rpm melt-spun ribbons are comparable each other, while the ZT value of the bulk from the 4000 rpm melt-spun ribbons is rather lower due to reduction of grain boundary phonon scattering. In this work, we can conclude that the smaller nanostructure in the melt spinning process does not always guarantee high-performance thermoelectric bulks, and an adequate following sintering process must be included.

  20. Orientation control and thermoelectric properties of FeSb2 films

    DEFF Research Database (Denmark)

    Sun, Ye; Zhang, Eryun; Johnsen, Simon

    2010-01-01

    FeSb2 has a high potential for technological applications due to its colossal thermoelectric power, giant carrier mobility and large magnetoresistance. Earlier, growth of lang1 0 1rang-textured FeSb2 films on quartz (0 0 0 1) substrates has been reported. Here magnetron sputtering is used to obtain...

  1. Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers

    DEFF Research Database (Denmark)

    Wang, Suhao; Sun, Hengda; Ail, Ujwala

    2016-01-01

    Ladder-type "torsion-free" conducting polymers (e.g., polybenzimidazobenzophenanthroline (BBL)) can outperform "structurally distorted" donor-acceptor polymers (e.g., P(NDI2OD-T2)), in terms of conductivity and thermoelectric power factor. The polaron delocalization length is larger in BBL than i...

  2. Tunable thermoelectric transport properties of Cu0.008Bi2Te2.7Se0.3 via control of the spark plasma sintering conditions

    Science.gov (United States)

    Moon, Seung Pil; Ahn, Yeon Sik; Kim, Tae Wan; Choi, Soon-Mok; Park, Hee Jung; Kim, Sung Wng; Lee, Kyu Hyoung

    2016-09-01

    Polycrystalline bulks of n-type Cu0.008Bi2Te2.7Se0.3 were prepared to investigate the controllability of its thermoelectric transport properties by using the compaction conditions of spark plasma sintering (SPS). The 00 l crystal orientation to the press direction of the SPSed bulks was easily improved by increasing the applied pressure at 500 °C. The thermoelectric figure of merit, ZT values (0.72 - 0.75 at 300 K), of all samples were almost the same, however, both the electronic and the thermal transport properties could be tuned significantly by adjusting the sintering pressure. This result highlights the feasibility of using pressure-induced sintering as a fabrication technology for Bi2Te3-based polycrystalline bulks with high mechanical reliability, which is an effective means of optimizing the electrical and the thermal conductivities for maximizing the efficiencies of the thermoelectric cooling and the power generation modules.

  3. Electronic and thermoelectric properties of atomically thin C3Si3/C and C3Ge3/C superlattices

    Science.gov (United States)

    Ali, Muhammad; Pi, Xiaodong; Liu, Yong; Yang, Deren

    2018-01-01

    The nanostructuring of graphene into superlattices offers the possibility of tuning both the electronic and thermal properties of graphene. Using classical and quantum mechanical calculations, we have investigated the electronic and thermoelectric properties of the atomically thin superlattice of C3Si3/C (C3Ge3/C) formed by the incorporation of Si (Ge) atoms into graphene. The bandgap and phonon thermal conductivity of C3Si3/C (C3Ge3/C) are 0.54 (0.51) eV and 15.48 (12.64) W m‑1 K‑1, respectively, while the carrier mobility of C3Si3/C (C3Ge3/C) is 1.285 × 105 (1.311 × 105) cm2 V‑1 s‑1 at 300 K. The thermoelectric figure of merit for C3Si3/C (C3Ge3/C) can be optimized via the tuning of carrier concentration to obtain the prominent ZT value of 1.95 (2.72).

  4. Tuning crystal structures and thermoelectric properties through Al doping in ReSi{sub 1.75}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei; Lidin, Sven [Division of Polymer and Materials Chemistry, CAS, Lund University, Getingevaegen 60, 22241, Lund (Sweden); Veremchuk, Igor [Department Chemical Metals Science, Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, 01187, Dresden (Germany)

    2017-01-03

    Binary rhenium silicide, ReSi{sub 1.75}, and its aluminium-doped variants have been synthesized. Their crystal structures were characterized by X-ray diffraction, solved and refined through the use of superspace group models. The binary undoped ReSi{sub 1.75} is a commensurate (supercell) structure of the previously well-known MoSi{sub 2}-type structure. Al doping renders an incommensurate structure that was solved and refined, and reported for the first time. The thermoelectric properties of these compounds were also measured, including their electrical resistivities, thermal conductivities, and Seebeck coefficients. Compared with the commensurate structure of binary ReSi{sub 1.75}, the Al-doped incommensurate phase exhibits lower lattice thermal conductivity, lower electrical resistivity, a higher Seebeck coefficient, and ultimately a much higher figure of merit (ZT). The cause of the structural incommensuration by Al doping was studied through the use of first-principle calculations. The relationship between the incommensurability and the improved thermoelectric properties is also discussed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Improved thermoelectric property of B-doped Si/Ge multilayered quantum dot films prepared by RF magnetron sputtering

    Science.gov (United States)

    Peng, Ying; Miao, Lei; Li, Chao; Huang, Rong; Urushihara, Daisuke; Asaka, Toru; Nakatsuka, Osamu; Tanemura, Sakae

    2018-01-01

    The use of nanostructured thermoelectric materials that can effectively reduce the lattice conductivity with minimal effects on electrical properties has been recognized as the most successful approach to decoupling three key parameters (S, σ, and κ) and reaching high a dimensionless figure of merit (ZT) values. Here, five-period multilayer films consisting of 10 nm B-doped Si, 1.1 nm B, and 13 nm B-doped Ge layers in each period were prepared on Si wafer substrates using a magnetron sputtering system. Nanocrystallites of 22 nm diameter were formed by post-annealing at 800 °C in a short time. The nanostructures were confirmed by X-ray diffraction analysis, Raman spectroscopy, and transmission electron microscopy. The maximum Seebeck coefficient of Si/Ge films is significantly increased to 850 µV/K at 200 °C with their electrical resistivity decreased to 1.3 × 10‑5 Ω·m, and the maximum power factor increased to 5.6 × 10‑2 W·m‑1·K‑2. The improved thermoelectric properties of Si/Ge nanostructured films are possibly attributable to the synergistic effects of interface scattering, interface barrier, and quantum dot localization.

  6. First principles treatment of structural, optical, and thermoelectric properties of Li{sub 7}MnN{sub 4} as electrode for a Li secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2015-01-15

    The electronic structure, electronic charge density and linear optical properties of the metallic Li{sub 7}MnN{sub 4} compound, having cubic symmetry, are calculated using the full potential linearized augmented plane wave (FP-LAPW) method. The calculated band structure and density of states using the local density, generalized gradient and Engel–Vosko approximations, depict the metallic nature of the cubic Li{sub 7}MnN{sub 4} compound. The bands crossing the Fermi level in the calculated band structure are mainly from the Mn-d states with small support of N-p states. In addition, the Mn-d states at the Fermi level enhance the density of states, which is very useful for the electronic transport properties. The valence electronic charge density depicts strong covalent bond between Mn and two N atoms and polar covalent bond between Mn and Li atoms. The frequency dependent linear optical properties like real and imaginary part of the dielectric function, optical conductivity, reflectivity and energy loss function are calculated on the basis of the computed band structure. Both intra-band and inter-band transitions contribute to the calculated optical parameters. Using the BoltzTraP code, the thermoelectric properties like electrical and thermal conductivity, Seebeck coefficient, power coefficient and heat capacity of the Li{sub 7}MnN{sub 4} are also calculated as a function of temperature and studied.

  7. In situ chemical oxidative polymerization preparation of poly(3,4-ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance.

    Science.gov (United States)

    Xu, Kongli; Chen, Guangming; Qiu, Dong

    2015-05-01

    Three different in situ chemical oxidative polymerization routes, that is, (A) spin-coating and subsequent liquid layer polymerization, (B) spin-coating followed by vapor phase polymerization, and (C) in situ polymerization and then post-treatment by immersion in ethylene glycol (EG), have been developed to achieve poly(3,4-ethylenedioxythiophene)/reduced graphene oxide (PEDOT/rGO) nanocomposites. As demonstrated by scanning electron microscopic and energy-dispersive X-ray spectroscopic techniques, PEDOT has been successfully coated on the surface of the rGO nanosheets by each of the three preparation routes. Importantly, all of the nanocomposites display a greatly enhanced thermoelectric performance (power factors) relative to those of the corresponding neat PEDOT. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  9. Isovalent substitutes play in different ways: Effects of isovalent substitution on the thermoelectric properties of CoSi{sub 0.98}B{sub 0.02}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui, E-mail: huisun3@iflytek.com [Department of Basic Teaching, Anhui Institute of Information Technology, Wuhu, Anhui 241000 (China); Lu, Xu [College of Physics, Chongqing University, Chongqing 401331 (China); Morelli, Donald T. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-07-21

    Boron-added CoSi, CoSi{sub 0.98}B{sub 0.02}, possesses a very high thermoelectric power factor of 60 μW cm{sup −1} K{sup −2} at room temperature, which is among the highest power factors that have ever been reported for near-room-temperature thermoelectric applications. Since the electrical properties of this material have been tuned properly, isovalent substitution for its host atoms is intentionally employed to reduce the lattice thermal conductivity while maintaining the electronic properties unchanged. In our previous work, the effect of Rh substitution for Co atoms on the thermoelectric properties of CoSi{sub 0.98}B{sub 0.02} has been studied. Here, we present a study of the substitution of Ge for Si atoms in this compound. Even though Ge and Rh are isovalent with their corresponding host atoms, they play different roles in determining the electrical and thermal transport properties. Through the evaluation of the lattice thermal conductivity by the Debye approximation and the comparison between the high-temperature Seebeck coefficients, we propose that Rh substitution leads to a further overlapping of the conduction and the valence bands, while Ge substitution only shifts the Fermi level upward into the conduction band. Our results show that the influence of isovalent substitution on the electronic structure cannot be ignored when the alloying method is used to improve thermoelectric properties.

  10. Structural, electrical, and thermoelectric properties of CrSi{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Qader, Makram, E-mail: makram.aq@gmail.com [Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154 (United States); Venkat, Rama [Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154 (United States); Kumar, Ravhi [HiPSEC and Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154 (United States); Hartmann, Thomas [Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154 (United States); Ginobbi, Paolo [Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154 (United States); Newman, Nathan; Singh, Rakesh [School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-8706 (United States)

    2013-10-31

    Chromium silicide (CrSi{sub 2}) thermoelectric thin films with two different thicknesses, 1 μm and 0.1 μm, were deposited using radio frequency magnetron sputtering on glass substrates. These films were characterized after deposition and then after 300–600 °C anneals using X-ray diffraction and Energy dispersive X-ray spectroscopy. The Seebeck coefficient and electrical resistivity were measured. The compositions of the sputtered films were found to be close to the sputtering target stoichiometry. The annealing conditions and variations of thickness had a great influence on the thermoelectric performance of the films. The 0.1 μm p-type films annealed in an argon atmosphere at 400 °C exhibited the largest power factor of 1.0 × 10{sup −3} W/(K{sup 2}·m). - Highlights: • As-sputtered CrSi{sub 2} films crystallize around 300 °C, independent of thickness. • The trend in crystallization between 1 μm and 0.1 μm CrSi{sub 2} films is very similar. • 0.1 μm films annealed at ≥ 400 °C are most suitable for thermoelectric applications.

  11. Mass Properties Testing and Evaluation for the Multi-Mission Radioisotope Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Felicione, Frank S.

    2009-12-01

    Mass properties (MP) measurements were performed for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), serial number (S/N) 0X730401, the power system designated for the Mars Science Laboratory (MSL) mission. Measurements were made using new mounting fixtures at the mass properties testing station in the Idaho National Laboratory (INL) Space and Security Power Systems Facility (SSPSF). The objective of making mass properties measurements was to determine the generator’s flight configured mass and center of mass or center of gravity (CG). Using an extremely accurate platform scale, the mass of the as-tested generator was determined to be 100.117 ± 0.007 lb. Weight accuracy was determined by checking the platform scale with calibrated weights immediately prior to weighing the MMRTG.a CG measurement accuracy was assessed by surrogate testing using an inert mass standard for which the CG could be readily determined analytically. Repeated testing using the mass standard enabled the basic measurement precision of the system to be quantified in terms of a physical confidence interval about the measured CG position. However, repetitious testing with the MMRTG itself was not performed in deference to the gamma and neutron radiation dose to operators and the damage potential to the flight unit from extra handling operations. Since the mass standard had been specially designed to have a total weight and CG location that closely matched the MMRTG, the uncertainties determined from its testing were assigned to the MMRTG as well. On this basis, and at the 99% confidence level, a statistical analysis found the direct, as-measured MMRTG-MSL CG to be located at 10.816 ± 0.0011 in. measured perpendicular from the plane of the lower surface of the generator’s mounting lugs (Z direction), and offset from the generator’s long axis centerline in the X and Y directions by 0.0968 ± 0.0040 in. and 0.0276 ± 0.0026 in., respectively. These uncertainties are based

  12. Thermoelectric and piezoelectric properties of the predicted AlxIn1-xN composites based on ab initio calculations.

    Science.gov (United States)

    Chang, Yee Hui Robin; Yoon, Tiem Leong; Lim, Thong Leng; Tuh, Moi Hua; Goh, Eong Sheng

    2017-09-20

    Theoretical investigations of the thermoelectric and piezoelectric characteristics in the Al x In 1-x N system have been carried out based on a first principles approach in combination with the semi-classical Boltzmann transport concept and density functional perturbation theory. Based on our previous work, herein, the study specimens Al 5 InN 6 , Al 6 In 2 N 8 , Al 4 In 2 N 6 , Al 3 In 3 N 6 , Al 2 In 4 N 6 , and AlIn 7 N 8 have been predicted to be stable phases. These novel phases intrinsically exhibit moderate positive Seebeck curves (199.1-284.6 μV K -1 ) and a ZT close to unity that varies marginally over a broad temperature range of 200-800 K, demonstrating the sign of good bipolar effect tolerance. Addition of heftier elements, such as In, results in lower thermal conductivity, which in turn generates a high power factor (0.019-0.345 W m -1 K -2 ) in these alloys. While hole doping enhances the peak Seebeck coefficient of each phase, the electrical conductivity has been greatly compromised, resulting in a lower power factor. These composites also exhibit large piezoelectric constants, in which their respective largest piezoelectric tensor is several orders higher than that of quartz. The decomposition process shows that In and N are the main contributors of the internal piezoelectric term. Overall results indicate that Al x In 1-x N show bright prospects in thermoelectric and piezoelectric applications.

  13. Effect of bath temperature on structure, morphology and thermoelectric properties of CoSb{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Suchitra, E-mail: suchitrayadav87@gmail.com; Pandya, Dinesh K.; Chaudhary, Sujeet [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-23

    CoSb{sub 3} thin films are deposited on conducting glass substrates (FTO) by electrodeposition at different bath temperatures (60°C, 70°C and 80°C) and the resulting influence of the bath temperature on the structure, morphology and electrical properties of films is investigated. X-ray diffraction confirms the formation of CoSb{sub 3} phase in the films. Scanning electron microscopy reveals that different morphologies ranging from branched nano-flakes to nano-needles evolve as bath temperature increases. It is concluded that a growth temperature of 80°C is suitable for producing CoSb{sub 3} films with such properties that show potential feasibility for thermoelectric applications.

  14. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin–orbit coupling

    Science.gov (United States)

    Mawrie, Alestin; Verma, Sonu; Kanti Ghosh, Tarun

    2017-11-01

    We investigate the effect of k-cubic spin–orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ^\\prime = (2n+1)π/3 with n=1, 2, 3 . We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin–orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin–orbit coupling constant.

  15. Magneto-transport and thermoelectric properties of epitaxial FeSb{sub 2} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Anh Tuan; Rhim, S. H., E-mail: sonny@ulsan.ac.kr; Shin, Yooleemi; Nguyen, Van Quang; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2015-01-19

    We report magneto-transport and thermoelectric properties of FeSb{sub 2} thin film epitaxially grown on the MgO substrate using molecular beam epitaxy. The film exhibits compressive strain of 1.74% owing to large lattice mismatch, whose physical consequences are nontrivial. Magnetic phase has been changed from diamagnetic in bulk, as evidenced by anomalous Hall effect (AHE) and negative magneto-resistance (MR). The FeSb{sub 2} film is semiconducting without any metallic transition unlike the bulk counterpart. In particular, hysteresis in MR with distinct feature of AHE is evident with coercive field of 500 and 110 Oe for T = 20 and 50 K, respectively. Furthermore, from the Seebeck coefficients and temperature dependence of the resistivity, it is evident that the film is semiconducting with small band gap: 3.76 meV for T < 40 K and 13.48 meV for T > 40 K, respectively, where maximum thermoelectric power factor of 12 μV/cm·K at T = 50 K.

  16. Composition- and crystallinity-dependent thermoelectric properties of ternary BixSb2-xTey films

    Science.gov (United States)

    Kim, Jiwon; Lim, Jae-Hong; Myung, Nosang V.

    2018-01-01

    BixSb2-xTey films with controlled compositions were synthesized by a simple and cost-effective electrodeposition technique followed by post-annealing, for thermoelectric applications. Tailoring the chemical composition of ternary BixSb2-xTey materials is critical to adjust the carrier concentration and carrier type, which are crucial to determine their thermoelectric performance. Herein, the composition of electrodeposited BixSb2-xTey film was simply tailored by controlling the [Sb]/[Bi] ratio in the electrolytes while maintaining their dense and uniform morphology. Crystallographic properties of the BixSb2-xTey films, such as crystallinity and grain size changes, were confirmed by X-ray diffraction. Room-temperature measurements of electrical conductivity, Hall mobility, and carrier concentration revealed that the substitution of Bi with Sb decreased the carrier concentration, and increased the mobility. The Seebeck coefficient of the ternary BixSb2-xTey films transitioned between p- and n-type characteristics with an increase in the Bi content. Moreover, the mobility-dependent electrical conductivity of the Bi10Sb30Te60 film resulted in a high Seebeck coefficient owing to decreased carrier concentration of the film, leading to a power factor (PF) of ∼490 μW/m K2. This is more than 10 times higher than the PF values of binary nanocrystalline Sb2Te3 films.

  17. Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films

    DEFF Research Database (Denmark)

    Khan, Zia Ullah; Bubnova, Olga; Jafari, Mohammad Javad

    2015-01-01

    study the variation in the thermoelectric properties by a simple acido-basic treatment. The emphasis of this study is to elucidate the chemical changes induced by acid (HCl) or base (NaOH) treatment in PEDOT-Tos thin films using various spectroscopic and structural techniques. We could identify changes...

  18. The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Van Nong, Ngo; Le, Thanh Hung

    2013-01-01

    A systematic investigation on the microstructure and thermoelectric properties of Al-doped ZnO using α- and γ-Al2O3 as dopants was conducted in order to understand the doping effect and its mechanism. The samples were prepared by the spark plasma sintering technique from precursors calcined at va...

  19. Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit

    KAUST Repository

    Sharma, S.

    2017-10-25

    We study the thermoelectric properties of As and Sb monolayers (arsenene and antimonene) using density-functional theory and the semiclassical Boltzmann transport approach. The materials show large band gaps combined with low lattice thermal conductivities. Specifically, the small phonon frequencies and group velocities of antimonene lead to an excellent thermoelectric response at room temperature. We show that n-type doping enhances the figure of merit.

  20. Evaluation of power conditioning architectures for energy production enhancement in thermoelectric generator systems

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2014-01-01

    A large-scale thermoelectric generator (TEG) system has an unbalanced temperature distribution among the TEG modules, which leads to power mismatch among the modules and decreases the power output of the TEG system. To maximize the power output and minimize the power conversion loss, a centralized......- distributed hybrid power conditioning architecture is presented, analyzed, and evaluated for a TEG system. The novel architecture is a combination of a conventional centralized architecture and a fully distributed architecture. By using the proposed architecture, most of the harvested power is processed...... of implementing high MPPT efficiency and high conversion efficiency simultaneously. A 50-W TEG system composed of two TEG modules is built and tested. Experimental results show that the proposed hybrid power conditioning architecture generates up to 5% more energy for a temperature difference between the two...

  1. Thermoelectricity for future sustainable energy technologies

    Science.gov (United States)

    Weidenkaff, Anke

    2017-07-01

    Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  2. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  3. Thermoelectric Properties of Nano Structured CrSi2-xAlx

    Science.gov (United States)

    Suresh, P.; Umarji, A. M.

    2011-07-01

    The high density ceramics of CrSi2-xAlx (x = 0.00, 0.05, 0.10) have been synthesized by arc melting, ball milling to get nano powder and hot pressing. Al doping accelerates the crystallites size reduction thereby minimizing milling time and contamination. The resistivity and Seebeck coefficient of the dense ceramics are measured using inhouse built apparatus in the temperature range of 300-800 K. The thermoelectric power factor increased for Al doped samples as compared with pure CrSi2 from 0.67 W/m.K2 to 0.87 W/m.K2 at 300 K.

  4. Thermoelectric properties of PbTe prepared at high pressure and high temperature

    CERN Document Server

    Zhu, P W; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Zhang, W; Zou Guang Tian

    2002-01-01

    Lead telluride (PbTe) with rock-salt structure was successfully obtained by a high-pressure and high-temperature (HPHT) method. The orientation of the PbTe samples varies with pressure increase. The results - a decrease in the Seebeck coefficient, resistivity and thermal conductivity of PbTe with pressure but an increase in the thermoelectric power figure sigma S sup 2 - indicate that the figure of merit Z of PbTe samples can be improved several times over by using HPHT.

  5. Improvement of thermoelectric properties of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films grown on graphene substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Wan [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Gun Hwan; Choi, Ji Woon; An, Ki-Seok; Lee, Young Kuk [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, Jin-Sang [Center for Electronic Materials, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Hyungjun [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2017-06-15

    A study of substrate effect on the thermoelectric (TE) properties of Bi{sub 2}Te{sub 3} (BT) and Sb{sub 2}Te{sub 3} (ST) thin films grown by plasma-enhanced chemical vapor deposition (PECVD) was performed. Graphene substrates which have small lattice mismatch with BT and ST were used for the preparation of highly oriented BT and ST thin films. Carrier mobility of the epitaxial BT and ST films grown on the graphene substrates increased as the deposition temperature increased, which was not observed in that of SiO{sub 2}/Si substrates. Seebeck coefficients of the as-grown BT and ST films were observed to be maintained even though carrier concentration increased in the epitaxial BT and ST films on graphene substrate. Although Seebeck coefficient was not improved, power factor of the as-grown BT and ST films was considerably enhanced due to the increase of electrical conductivity resulting from the high carrier mobility and moderate carrier concentration in the epitaxial BT and ST films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Thermoelectric properties of TbFe{sub 2} and TbCo{sub 2} in C15- laves phase: Spin-polarized DFT+U approach

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H., E-mail: maalidph@yahoo.co.uk [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); School of Material Engineering, University Malaysia Perlis, Kangar, Perlis 01007 (Malaysia)

    2017-01-15

    Thermoelectric properties of materials are intimately related to their electronic band structure. Combining first- and second-principles calculations, we have obtained the transport properties for the spin-up and spin-down electrons of the laves phase TbFe{sub 2} and TbCo{sub 2} compounds. The unique band structure feature and the density of states at Fermi level (E{sub F}) promote the E{sub F} to a point where carriers are in energetic proximity to these features. The non-zero density of states at E{sub F} for the spin-up (↑) and spin-down (↓) electrons leads to unusual transport properties because both the (↑) and (↓) densities contributes to the states at E{sub F}. The parabolic bands in the vicinity of E{sub F} enhance the carriers mobility and hence the transport properties of TbFe{sub 2} and TbCo{sub 2}. Calculations show that the spin-up/down transport coefficients are temperature-dependent. It has been found that TbCo{sub 2} possess larger Seebeck coefficient than that of TbFe{sub 2} and hence the power factor. The calculated Seebeck coefficient of TbCo{sub 2} agree well with the available experimental data. - Highlights: • The transport properties of TbFe{sub 2} and TbCo{sub 2} are obtained. • The non-zero density of states at E{sub F} leads to unusual transport properties. • Spin-up/down transport coefficients are temperature-dependent. • The calculated Seebeck coefficient of TbCo{sub 2} agree with the experimental data. • TbCo{sub 2} possesses larger Seebeck coefficient than that of TbFe{sub 2}.

  7. Recent Progress on PEDOT-Based Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Qingshuo Wei

    2015-02-01

    Full Text Available The thermoelectric properties of poly(3,4-ethylenedioxythiophene (PEDOT-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  8. Single Dirac Cone Topological Surface State and Unusual Thermoelectric Property of Compounds from a New Topological Insulator Family

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y

    2011-08-18

    Angle resolved photoemission spectroscopy (ARPES) study on TlBiTe2 and TlBiSe2 from a Thallium-based III-V-VI2 ternary chalcogenides family revealed a single surface Dirac cone at the center of the Brillouin zone for both compounds. For TlBiSe{sub 2}, the large bulk gap ({approx} 200meV) makes it a topological insulator with better mechanical properties than the previous binary 3D topological insualtor family. For TlBiTe{sub 2}, the observed negative bulk gap indicates it as a semi-metal, rather than a narrow gap semi-conductor as conventionally believed; this semi-metality naturally explains its mysteriously small thermoelectric figure of merit comparing to other compounds in the family. Finally, the unique band structures of TlBiTe{sub 2} also suggests it as a candidate for topological superconductors.

  9. Thermoelectric properties of Bi0.5Sb1.5Te3 thin films grown by pulsed laser deposition

    Science.gov (United States)

    Symeou, E.; Pervolaraki, M.; Mihailescu, C. N.; Athanasopoulos, G. I.; Papageorgiou, Ch.; Kyratsi, Th.; Giapintzakis, J.

    2015-05-01

    We report on the pulsed laser deposition of p-type Bi0.5Sb1.5Te3 thin films onto fused silica substrates by ablation of dense targets of Bi0.5Sb1.5Te3 with an excess of 1 wt% Te. We investigated the effect of film thickness, substrate temperature and post-annealing duration on the thermoelectric properties of the films. Our results show that the best power factor (2780 μW/K2m at 300 K) is obtained for films grown at room temperature and then post-annealed in vacuum at 300 °C for 16 h. This is among the highest power factor values reported for Bi0.5Sb1.5Te3 films grown on fused silica substrates.

  10. Mott theory predicted thermoelectric properties based on electronic structure of Bi and Sb atoms substituted PbTe material

    Science.gov (United States)

    Vora-ud, Athorn

    2017-11-01

    In this work, thermoelectric properties of Bi and Sb atoms substituted PbTe material were predicted by Mott theory through electronic structure calculation. This calculation has been carried by the first-principles DV-Xα molecular orbital method based on Hartree-Fock-Slater approximation. The Pb14Te13, Pb13SbTe13 and Pb13BiTe13 small clusters with a cubic rocksalt structure (Fm-3m; 225) were designed to be performed PbTe, Pb0.75Sb0.25Te and Pb0.75Bi0.25Te materials, respectively. The electronic structure showed that the high symmetry crystal structure, spin energy levels, partial spin density of states and electron charge density. The energy gap and Fermi level have been obtained from energy levels and density of state to be evaluated of electrical conductivity and Seebeck coefficient within Mott's theory predication.

  11. Chemical post-treatment and thermoelectric properties of poly(3,4-ethylenedioxylthiophene):poly(styrenesulfonate) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinji, E-mail: jinji.luo@zfm.tu-chemnitz.de; Blaudeck, Thomas [Center for Microtechnologies, Technische Universität Chemnitz, Reichenhainer Str. 70, Chemnitz D-09107 (Germany); Billep, Detlef; Otto, Thomas [Fraunhofer Institute for Electro Nano Systems (ENAS), Technologie-Campus 3, Chemnitz D-09107 (Germany); Sheremet, Evgeniya; Rodriguez, Raul D.; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, Reichenhainer Str. 70, Chemnitz D-09107 (Germany); Toader, Marius; Hietschold, Michael [Solid Surfaces Analysis, Technische Universität Chemnitz, Reichenhainer Str. 70, Chemnitz D-09107 (Germany); Gessner, Thomas [Center for Microtechnologies, Technische Universität Chemnitz, Reichenhainer Str. 70, Chemnitz D-09107 (Germany); Fraunhofer Institute for Electro Nano Systems (ENAS), Technologie-Campus 3, Chemnitz D-09107 (Germany)

    2014-02-07

    We report on the modification of the thermoelectric properties of poly(3,4-ethylenedioxylthiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films by means of a simple post treatment of the solid thin films realized by drop-coating. We show that the organic polar solvents, dimethyl sulfoxide and ethylene glycol as secondary dopants for PEDOT:PSS, only affect the film morphology for which a high electrical conductivity is observed. In contrast, ethanolamine (MEA) and ammonia solutions are reduction agents that improve the density of PEDOT chains in the reduced forms (polaron and neutral states), resulting in the trade-off between Seebeck coefficient and electrical conductivity. Furthermore, we show that the nature of amines determines the reduction degree: the nitrogen lone pair electrons in MEA are easier to be donated than those in ammonia solution and will therefore neutralize the PEDOT chains.

  12. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sinterin...... was improved by about 67% (to 0.3 mW/m K2) for film with proper silver (Ag) metallic inclusions as compared with 0.18 mW/m K2 for pure Ca3Co4O9+δ film under the same sintering condition of 1223 K for 2 h in air....

  13. Thermoelectric properties of Au-containing type-I clathrates Ba{sub 8}Au{sub x}Ga{sub 16−3x}Ge{sub 30+2x}

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zuxin; Cho, Jung Young; Tessema, Misle M. [Optimal Inc., Plymouth, MI 48170 (United States); Salvador, James R., E-mail: james.salvador@gm.com [Chemical and Materials Systems Laboratory, General Motors Global R and D, Warren, MI 48090 (United States); Waldo, Richard A. [Chemical and Materials Systems Laboratory, General Motors Global R and D, Warren, MI 48090 (United States); Yang, Jihui [Department of Materials, University of Washington (United States); Wang, Hsin; Cai, W.; Kirkham, M.J. [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Yang, Jiong; Zhang, Wenqing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai (China)

    2014-02-25

    Highlights: • Ba{sub 8}Au{sub x}Ga{sub 16−3x}Ge{sub 30+2x} were prepared, and the solubility limit of Au is x = 5.4. • Glass like thermal conduction at low temperature was found for p-type materials. • Higher DOS effective masses carriers were found in higher Au content samples. • Au was found to preferentially substitute at the 6c Wyckoff site. • ZT = 0.6 at 750 K was found for Ba{sub 8}Au{sub x}Ga{sub 16−3x}Ge{sub 30+2x} (x = 1, 5, and 5.33). -- Abstract: Type I clathrates, with compositions based on Ba{sub 8}Ga{sub 16}Ge{sub 30}, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S{sup 2}/ρ where ρ is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution as compared to polycrystalline Ba{sub 8}Ga{sub 16}Ge{sub 30}. The thermoelectric figure of merit ZT attains a value of 0.63 at 740 K for the composition Ba{sub 8}Au{sub 5.47}Ge{sub 39.96}, a value that is somewhat lower than those reported previously. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  14. Role of milling parameters and impurity on the thermoelectric properties of mechanically alloyed chromium silicide

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, T. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Umarji, A.M. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)], E-mail: umarji@mrc.iisc.ernet.in

    2008-08-11

    Mechanical alloying of Cr-Si powders (1:2 molar ratio) was carried out under different milling conditions using stainless steel milling media. In addition to formation of nanocrystalline CrSi{sub 2} phase, depending on the milling duration, speed and use of dispersant, X-ray diffraction revealed presence of CrSi phase and EDAX showed iron contamination in varying amounts. The amount of contamination and the secondary phase are found to be linearly proportional to the input impact energy during milling. The nanocrystalline powders are seen to be thermally stable in air up to 900 K. SEM of the hot pressed powders reveal an equiaxed microstructure with grain size depending on the milling duration. Electrical resistivity ({rho}), Seebeck coefficient (S) and thermal conductivity (K) were measured up to 700 K. It is seen that the thermoelectric figure of merit (ZT) is high when the amount of secondary phases is minimum. The maximum ZT observed in the samples is {approx}0.2 at 600 K which is comparable to other high temperature thermoelectric materials in the temperature range studied.

  15. Synthesis, characterization and investigation of thermoelectric properties of selected metal borides; Synthese, Charakterisierung und Untersuchung thermoelektrischer Eigenschaften ausgewaehlter Metallboride

    Energy Technology Data Exchange (ETDEWEB)

    Stober, Frederick

    2012-06-04

    The present work deals with the high-temperature thermoelectric properties of transition metal [eg V, Cr, Mn, Ni, Cu] and lanthanide [e.g. Sc, Y, Gd, Er, Dy]-borides. In particular, intercalation compounds of beta-rhombohedral boron, compounds of the type MB{sub 66}, dodecaborides and hexaborides were examined. In the case of intercalation compounds of beta-rhombohedral boron it was found that the incorporation of metals such as Sc, Mn or Cu result in favorable thermoelectric properties. The reason is most likely the preferred occupation of the metal position M2 instead of M4. Composites, for example, DyB{sub 66}-DyB{sub 12} show high electrical conductivities, high Seebeck effects at high temperatures due to the presence of DyB{sub 12} and low thermal conductivities as a result of the DyB{sub 66} matrix. At 1100K the composite DyB{sub 66}-DyB{sub 12} shows a ZT value of 0.55, thus exceeding the ZT of boron carbide (B{sub 13}C{sub 2}) at this temperature which is considered the best p-type boride material. A composite of ErB{sub 12}-ErB{sub 4}-ErB{sub 2} has negative Seebeck coefficients and shows a ZT value of 0.5 at 840K. Furthermore, the structure of tetragonal Scandiumdodecaboride ScB{sub 12} was solved on the basis of synchrotron data from a crystalline powder, after it has been debated for decades but never fully resolved.

  16. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A

    2016-01-01

    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  17. Promising Thermoelectric Bulk Materials with 2D Structures.

    Science.gov (United States)

    Zhou, Yiming; Zhao, Li-Dong

    2017-12-01

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metaheuristic Techniques in Enhancing the Efficiency and Performance of Thermo-Electric Cooling Devices

    Directory of Open Access Journals (Sweden)

    Pandian Vasant

    2017-10-01

    Full Text Available The objective of this paper is to focus on the technical issues of single-stage thermo-electric coolers (TECs and two-stage TECs and then apply new methods in optimizing the dimensions of TECs. In detail, some metaheuristics—simulated annealing (SA and differential evolution (DE—are applied to search the optimal design parameters of both types of TEC, which yielded cooling rates and coefficients of performance (COPs individually and simultaneously. The optimization findings obtained by using SA and DE are validated by applying them in some defined test cases taking into consideration non-linear inequality and non-linear equality constraint conditions. The performance of SA and DE are verified after comparing the findings with the ones obtained applying the genetic algorithm (GA and hybridization technique (HSAGA and HSADE. Mathematical modelling and parameter setting of TEC is combined with SA and DE to find better optimal findings. The work revealed that SA and DE can be applied successfully to solve single-objective and multi-objective TEC optimization problems. In terms of stability, reliability, robustness and computational efficiency, they provide better performance than GA. Multi-objective optimizations considering both objective functions are useful for the designer to find the suitable design parameters of TECs which balance the important roles of cooling rate and COP.

  19. Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures

    Directory of Open Access Journals (Sweden)

    Jinlong Chen

    2017-09-01

    Full Text Available Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal (including geothermal power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using a thermoelectric generator (TEG, however, can directly transform thermal energy into electricity through the Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the biggest disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C TEG system. The output power of the system was improved significantly, about 34.6% greater; the instantaneous efficiency of the TEG system could reach about 6.5%. Laboratory experiments have been conducted to measure the output power at different conditions: different connection modes between TEG modules, different mechanical structures, and different temperature differences between hot and cold sides. The TEG apparatus has been tested and the data have been presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are coproduced.

  20. Thermoelectric properties, electronic structure and optoelectronic properties of anisotropic Ba{sub 2}Tl{sub 2}CuO{sub 6} single crystal from DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies - Research Center, University of West, Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [New Technologies - Research Center, University of West, Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic)

    2014-03-15

    First principle calculation was performed for the electronic structure, electronic charge density, Fermi surface, optical and thermoelectric properties of Ba{sub 2}Tl{sub 2}CuO{sub 6} compound. From the electronic band structure the two overlapping bands and the density of state at Fermi level (29.2 states/Ryd-cell) confirms the superconducting behavior. Colors of the Fermi surface elucidate speed of electrons and strength of the superconductivity as well. The bonding nature was investigated using the calculated charge density contour plot, it shows mixed ionic-covalent nature of Cu3O and Tl3O while Ba3O shows dominant ionic nature with small covalency. The optical properties were calculated and discussed in details. The calculated uniaxial anisotropy value (0.7913) clarifies a considerable anisotropy between two dominant tensor components of dielectric function. Moreover the evaluation of Seebeck coefficient and thermal conductivity conform that the compound is much suitable for thermoelectric applications. - Highlights: • DFT calculation, for density of state at Fermi level confirm the superconducting behavior of Ba{sub 2}Tl{sub 2}CuO{sub 6}. • Colors of the Fermi surface show speed of electrons and strength of superconductor. • Electronic charge density was obtained which illuminate bonding nature. • The calculated uniaxial anisotropy is 0.7913, indicating the strong anisotropy. • Seebeck coefficient and thermal conductivity were calculated and discussed.

  1. Magnetic and thermoelectric properties of three different atomic ratio of Bi/Mn in BiMn{sub 2}O{sub 5}: DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Reshak, A.H. [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rafezi Ahmad, Khairel [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2014-11-15

    Electronic structure and magnetic properties of the three different samples of BiMn{sub 2}O{sub 5}, are calculated using the density functional theory (DFT). These samples have different Bi/Mn concentration. For simplicity, we suggest to call them as A, B and C. The calculated band structures show half metallicity for all samples, and possess 100% spin polarization at the Fermi level. The spin up/down density of states are calculated using Engel–Vosko generalized gradient approximation (EV-GGA). We have discussed the effect of Mn magnetic moment (μ{sub B}) on the electronic and magnetic properties of the entire samples. The temperature dependent thermoelectric properties like electrical and thermal conductivity, Seebeck coefficient and power factor are also calculated, employing the Boltzmann transport theory under the BoltzTraP code. Our results indicated that these properties are strongly dependent on Bi/Mn concentration. - Highlights: • FPLAPW method used for calculating the electronic Structure. • The band structure shows that the calculated compounds are half metallic. • The magnetic properties have been calculated. • Thermoelectric properties were also calculated using Boltzmann theory. • Calculated power factor shows that sample B are good thermoelectric material.

  2. Electronic structure and thermoelectric transport properties of the golden Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin, E-mail: hnsqxubin@163.com; Gao, Changzheng; Zhang, Jing; Wang, Yusheng [North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); Wang, Yuanxu [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2016-05-15

    A lot of physical properties of Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30 GPa to 35 GPa, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease with increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.

  3. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  4. Thermoelectric properties of antiperovskite calcium oxides Ca{sub 3}PbO and Ca{sub 3}SnO

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Y., E-mail: yokamoto@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Institute for Advanced Research, Nagoya University, Nagoya 464-8601 (Japan); Sakamaki, A.; Takenaka, K. [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan)

    2016-05-28

    We report the thermoelectric properties of polycrystalline samples of Ca{sub 3}Pb{sub 1−x}Bi{sub x}O (x = 0, 0.1, 0.2) and Ca{sub 3}SnO, both crystallizing in a cubic antiperovskite-type structure. The Ca{sub 3}SnO sample shows metallic resistivity and its thermoelectric power approaches 100 μV K{sup −1} at room temperature, resulting in the thermoelectric power factor of Ca{sub 3}SnO being larger than that of Ca{sub 3}Pb{sub 1−x}Bi{sub x}O. On the basis of Hall and Sommerfeld coefficients, the Ca{sub 3}SnO sample is found to be a p-type metal with a carrier density of ∼10{sup 19 }cm{sup −3}, a mobility of ∼80 cm{sup 2} V{sup −1} s{sup −1}, both comparable to those in degenerated semiconductors, and a moderately large hole carrier effective mass. The coexistence of moderately high mobility and large effective mass observed in Ca{sub 3}SnO, as well as possible emergence of a multivalley electronic structure with a small band gap at low-symmetry points in k-space, suggests that the antiperovskite Ca oxides have strong potential as a thermoelectric material.

  5. Insight into mechanical properties and thermoelectric efficiency of Zr2CoZ (Z  =  Si, Ge) Heusler alloys

    Science.gov (United States)

    Yousuf, Saleem; Gupta, Dinesh C.

    2017-11-01

    We investigated the electronic, mechanical and thermoelectric properties of Zr2CoZ (Z  =  Si, Ge) Heusler alloys using the first-principles calculation. From the analysis of various elastic constants, the shear and Young’s moduli, Poisson’s ratio, the ductile nature of the alloys is predicted. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing linearly increasing Seebeck coefficient with temperature. The value of total absolute Seebeck coefficients at 1200 K of Zr2CoSi and Zr2CoGe are 60 µV K‑1 and 40 µV K‑1 respectively mainly because of the existence of almost flat conduction bands along L to Г directions of high symmetry Brillouin zone. Further, the chemical potential variation of power factor confirms the n-type doping fruitful to increase their TE performance. The figure of merit achieves an upper-limit of 0.95 at 850 K and can favour their use for waste heat recovery at higher temperatures and thermoelectric spin generators.

  6. Nanocomposites with High Thermoelectric Figures of Merit

    Science.gov (United States)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  7. Thermoelectric Polymers and their Elastic Aerogels.

    Science.gov (United States)

    Khan, Zia Ullah; Edberg, Jesper; Hamedi, Mahiar Max; Gabrielsson, Roger; Granberg, Hjalmar; Wågberg, Lars; Engquist, Isak; Berggren, Magnus; Crispin, Xavier

    2016-06-01

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  9. Graphene field effect transistor for generating on-chip thermoelectric power

    Science.gov (United States)

    Banadaki, Yaser M.; Hou, Hsuan-Chao; Sharifi, Safura

    2017-04-01

    Graphene is a promising material for thermoelectric application due to its large surface-to-volume ratio, high electrical conductivity, and high mechanical strength. In this paper, the thermoelectric properties of a series of narrow armchair graphene nanoribbons (GNR) in semiconducting family GNR(3p+1,0) are evaluated by using the semi-classical Boltzmann theory. It is found that the narrow GNR(7,0) exhibits small thermal conductivity and large TEP of 1170μV / K at small chemical potential μ = 0.1 eV . However, the small electrical conductivity of narrow GNR(7,0) suppresses the thermoelectric figure-of-merit ZT, such that better thermoelectric performance of ZT > 0.01 is achieved only for large chemical potentials, μ > 0.5eV . Our result shows that tuning the chemical potential with respect to ribbon chirality and orientation can enhance the thermoelectric performance of GNRs, however, further increase in thermoelectric power requires phonon engineering to reduce the thermal conductivity of graphene without significant reduction in its thermoelectric power and electrical conductivity.

  10. Role of the interlayer coupling for the thermoelectric properties of CuSbS2 and CuSbSe2

    Science.gov (United States)

    Alsaleh, Najebah; Singh, Nirpendra; Schwingenschlogl, Udo

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined using density functional theory and semi-classical Boltzmann transport theory, in order to investigate the role of the interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterised by lower power factors. Therefore, the interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2 even though it is of weak van der Waals type. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

  11. High-temperature Thermoelectric Properties of Ca0.9Y0.1Mn1-xFexO3 (0 ≤ x ≤ 0.25)

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Han, Li

    2013-01-01

    Polycrystalline compounds of Ca0.9Y0.1Mn1-x FexO3 for 0 ≤ x ≤ 0.25 were prepared by solid-state reaction, followed by spark plasma sintering process, and their thermoelectric properties from 300 to 1200 K were systematically investigated in terms of Y and Fe co-doping at the Ca- and Mn-sites, res......Polycrystalline compounds of Ca0.9Y0.1Mn1-x FexO3 for 0 ≤ x ≤ 0.25 were prepared by solid-state reaction, followed by spark plasma sintering process, and their thermoelectric properties from 300 to 1200 K were systematically investigated in terms of Y and Fe co-doping at the Ca- and Mn...

  12. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.

    Science.gov (United States)

    Han, Mi-Kyung; Jin, Yingshi; Lee, Da-Hee; Kim, Sung-Jin

    2017-10-26

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi₂Te₃, n-type Bi₂Te₃ co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi₂Te₃ were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi₂Te₃ and undoped Bi₂Te₃. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi₂Te₃ rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi₂Te₃ (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi₂Te₃ (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi₂Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi₂Te3 and its operating temperature can be controlled by co-doping.

  13. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Han

    2017-10-01

    Full Text Available In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10 were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping.

  14. Band engineering of thermoelectric materials.

    Science.gov (United States)

    Pei, Yanzhong; Wang, Heng; Snyder, G J

    2012-12-04

    Lead chalcogenides have long been used for space-based and thermoelectric remote power generation applications, but recent discoveries have revealed a much greater potential for these materials. This renaissance of interest combined with the need for increased energy efficiency has led to active consideration of thermoelectrics for practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. The simple high symmetry NaCl-type cubic structure, leads to several properties desirable for thermoelectricity, such as high valley degeneracy for high electrical conductivity and phonon anharmonicity for low thermal conductivity. The rich capabilities for both band structure and microstructure engineering enable a variety of approaches for achieving high thermoelectric performance in lead chalcogenides. This Review focuses on manipulation of the electronic and atomic structural features which makes up the thermoelectric quality factor. While these strategies are well demonstrated in lead chalcogenides, the principles used are equally applicable to most good thermoelectric materials that could enable improvement of thermoelectric devices from niche applications into the mainstream of energy technologies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of Strain on the Thermoelectric Properties of electron-doped SrTiO3 Thin Films

    Science.gov (United States)

    Sarantopoulos, Alexandros; Ferreiro-Vila, Elias; Magen, Cesar; Aguirre, Myriam H.; Pardo, Victor; Rivadulla, Francisco

    2015-03-01

    The discovery of a two dimensional electron gas with high mobility at the interface between insulating LaAlO3 / SrTiO3 (LAO/STO) opened the possibility of fabricating functional devices based on this interfacial effect. Therefore, it is important to study the influence of the growth parameters on the properties of the constituent materials. Here, we demonstrate that the thermoelectric properties of epitaxial thin films of Nb:STO can be finely tuned by adjusting the growth conditions in a PLD system. By growing the sample on different substrates, we demonstrate that the amount of vacancies depends on the degree of epitaxial compressive stress. The vacancies produced lead to impurity scattering at low temperatures. We show that the magnetoresistance response, and non-linear behavior of the Hall effect, characteristic of LAO/STO interfaces, can be reproduced in thin films of Nb:STO with a controlled number of vacancies. Moreover, we show that the Seebeck coefficient is a valid tool to obtain information about the degeneracy of the electronic band structure. We acknowledge support from the ERC 2D Therms project.

  16. Ab initio electronic transport and thermoelectric properties of solids from full and range-separated hybrid functionals

    Science.gov (United States)

    Sansone, Giuseppe; Ferretti, Andrea; Maschio, Lorenzo

    2017-09-01

    Within the semiclassical Boltzmann transport theory in the constant relaxation-time approximation, we perform an ab initio study of the transport properties of selected systems, including crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to analytically evaluate band velocities as well as to access full and range-separated hybrid functionals (such as B3LYP, PBE0, or HSE06) at a moderate computational cost. As a consequence of the analytical derivative, our approach is computationally efficient and does not suffer from problems related to band crossings. We investigate and compare the performance of a variety of hybrid functionals in evaluating Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals other than providing more realistic bandgaps—as expected—lead to larger bandwidths and hence allow for a better estimate of transport properties, also in metallic systems. As a nanostructure prototype, we also investigate conductivity in boron-nitride (BN) substituted graphene, in which nanoribbons (nanoroads) alternate with BN ones.

  17. Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates

    Science.gov (United States)

    Fu, Jiefei; Su, Xianli; Yan, Yonggao; Liu, Wei; Zhang, Zhengkai; She, Xiaoyu; Uher, Ctirad; Tang, Xinfeng

    2017-09-01

    Type-III Ba24Ge100 clathrates possess low thermal conductivity and high electrical conductivity at room temperature and, as such, have a great potential as thermoelectric materials for power generation. However, the Seebeck coefficient is very low due to the intrinsically high carrier concentration. In this paper, a series of Ba24CuxGe100-x and Ba24AgyGe100-y specimens were prepared by vacuum melting combined with the subsequent spark plasma sintering (SPS) process. Doping Cu or Ag on the Ge site not only suppresses the concentration of electrons but it also decreases the thermal conductivity. In addition, the carrier mobility and the Seebeck coefficient increase due to the decrease in the carrier concentration. Thus, the power factor is greatly improved, leading to an improvement in the dimensionless figure of merit ZT. Cu-doped Ba24Cu6Ge94 reaches the maximum ZT value of about 0.17 at 873 K, while Ag-doped Ba24Ag6Ge94 attains the dimensionless figure of merit ZT of 0.31 at 873 K, more than 2 times higher value compared to un-doped Ba24Ge100.

  18. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    Science.gov (United States)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  19. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    Science.gov (United States)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  20. Thermoelectric Properties of Mg2Si Produced by New Chemical Route and SPS

    Directory of Open Access Journals (Sweden)

    Wilfried Wunderlich

    2014-06-01

    Full Text Available This paper reports about a new synthesis method for preparing Mg2Si in an efficient way. The intermetallic Mg2Si-phase forms gradually from a mixture of Mg and Si fine powder during exposure to hydrogen atmosphere, which reacts in a vacuum vessel at 350 °C. The resulting powder has the same particle size (100 µm compared with commercial Mg2Si powder, but higher reactivity due to large surface area from particulate morphology. Both types of powders were compacted by spark plasma sintering (SPS experiments at 627, 602, 597, and 400 °C for 600 s with a compaction pressure of 80 MPa. The thermoelectric characterization was performed with low and high temperature gradients of ΔT = 10 K up to 600 K. The results confirmed a Seebeck coefficient of −0.14 mV/K for specimens sintered from both powders. The small difference in total performance between purchased and produced power is considered to be due to the effect of impurities. The best values were obtained for n-type Mg2Si doped with 3% Bi yielding a Seebeck coefficient of −0.2 mV/K, ZT = 0.45 and electric output power of more than 6 µW.

  1. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide

    CERN Document Server

    Mishra, S K; Jepsen, O

    1997-01-01

    The electronic structures of the two thermoelectric materials Bi sub 2 Te sub 3 and Bi sub 2 Se sub 3 are studied using density-functional theory with the spin - orbit interaction included. The electron states in the gap region and the chemical bonding can be described in terms of pp sigma interaction between the atomic p orbitals within the 'quintuple' layer. For Bi sub 2 Se sub 3 , we find both the valence-band maximum as well as the conduction-band minimum, each with a nearly isotropic effective mass, to occur at the zone centre in agreement with experimental results. For Bi sub 2 Te sub 3 , we find that the six valleys for the valence-band maximum are located in the mirror planes of the Brillouin zone and they have a highly anisotropic effective mass, leading to an agreement between the de Haas-van Alphen data for the p-doped samples and the calculated Fermi surface. The calculated conduction band, however, has only two minima, instead of the six minima indicated from earlier experiments. The calculated S...

  2. Thermoelectric, electronic, optical and chemical bonding properties of Ba{sub 2}PrRuO{sub 6}: At temperature 7 K and 150 K

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, Kangar, Perlis 01007 Malaysia (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2015-01-15

    Highlights: • DFT-FPLAPW method used for calculating the electronic structure. • The Fermi surface of BPRO (7 K and 150 K) is also calculated. • The complex dielectric function has been calculated. • Thermoelectric properties were also calculated using BoltzTraP code. • Power factor shows that both compounds are good thermoelectric materials at 600 K. - Abstract: We present first principles calculations of the band structure, density of states, electronic charge density, Fermi surface and optical properties of Ba{sub 2}PrRuO{sub 6} single crystals at two different temperatures. The atomic positions were optimized by minimizing the forces acting on the atoms. We have employed the full potential linear augmented plane wave method within local density approximation, generalized gradient approximation and Engel–Vosko generalized gradient approximation to treat the exchange correlation potential. The calculation shows that the compound is superconductor with strong hybridization near the Fermi energy level. Fermi surface is composed of two sheets. The calculated electronic specific heat capacities indicate, very close agreement with the experimental one. The bonding features of the compounds are analyzed using the electronic charge density in the (1 0 0) and (0–10) crystallographic planes. The dispersion of the optical constants was calculated and discussed. The thermoelectric properties are also calculated using the BoltzTrap code.

  3. Computationally guided discovery of thermoelectric materials

    Science.gov (United States)

    Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.

    2017-09-01

    The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materials subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.

  4. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na{sub 3}VF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic)

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na{sub 3}VF{sub 6} compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn–Sham equations. The calculation show that Na{sub 3}VF{sub 6} compound has metallic nature and the Fermi energy (E{sub F}) is assessed by overlapping of V-d state. The calculated density of states at the E{sub F} are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K{sup 2}, 9.008 mJ/mol-K{sup 2} and 2.295 mJ/mol-K{sup 2} for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na{sub 3}VF{sub 6} compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed. - Highlights: • DFT-FPLAPW method used for calculating the properties of investigated compounds. • For predicting the chemical bonding the charge density behavior is studied in 2D. • The optical properties were also calculated and analyzed. • The Fermi surface is composed of two bands crossing along the EF level. • The thermoelectric properties have also calculated.

  5. Preparation by Poly(Acrylic Acid) Sol-Gel Method and Thermoelectric Properties of γ-Na x CoO2 Bulk Materials

    Science.gov (United States)

    Li, Xiaoyu; Zhang, Li; Tang, Xinfeng

    2017-11-01

    γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol-gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m-1 K-2 and dimensionless figure of merit ( ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m-1 K-2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.

  6. Prospects for Engineering Thermoelectric Properties in La1/3NbO3 Ceramics Revealed via Atomic-Level Characterization and Modeling.

    Science.gov (United States)

    Kepaptsoglou, Demie; Baran, Jakub D; Azough, Feridoon; Ekren, Dursun; Srivastava, Deepanshu; Molinari, Marco; Parker, Stephen C; Ramasse, Quentin M; Freer, Robert

    2018-01-02

    A combination of experimental and computational techniques has been employed to explore the crystal structure and thermoelectric properties of A-site-deficient perovskite La1/3NbO3 ceramics. Crystallographic data from X-ray and electron diffraction confirmed that the room temperature structure is orthorhombic with Cmmm as a space group. Atomically resolved imaging and analysis showed that there are two distinct A sites: one is occupied with La and vacancies, and the second site is fully unoccupied. The diffuse superstructure reflections observed through diffraction techniques are shown to originate from La vacancy ordering. La1/3NbO3 ceramics sintered in air showed promising high-temperature thermoelectric properties with a high Seebeck coefficient of S1 = -650 to -700 μV/K and a low and temperature-stable thermal conductivity of k = 2-2.2 W/m·K in the temperature range of 300-1000 K. First-principles electronic structure calculations are used to link the temperature dependence of the Seebeck coefficient measured experimentally to the evolution of the density of states with temperature and indicate possible avenues for further optimization through electron doping and control of the A-site occupancies. Moreover, lattice thermal conductivity calculations give insights into the dependence of the thermal conductivity on specific crystallographic directions of the material, which could be exploited via nanostructuring to create high-efficiency compound thermoelectrics.

  7. Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process

    Directory of Open Access Journals (Sweden)

    Park Kyeongsoon

    2011-01-01

    Full Text Available Abstract High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.

  8. Structure and Thermoelectric Properties of Bi2−xSbxTe3 Nanowires Grown in Flexible Nanoporous Polycarbonate Templates

    Directory of Open Access Journals (Sweden)

    Anuja Datta

    2017-05-01

    Full Text Available We report the room-temperature growth of vertically aligned ternary Bi2−xSbxTe3 nanowires of diameter ~200 nm and length ~12 µm, within flexible track-etched nanoporous polycarbonate (PC templates via a one-step electrodeposition process. Bi2−xSbxTe3 nanowires with compositions spanning the entire range from pure Bi2Te3 (x = 0 to pure Sb2Te3 (x = 2 were systematically grown within the nanoporous channels of PC templates from a tartaric–nitric acid based electrolyte, at the end of which highly crystalline nanowires of uniform composition were obtained. Compositional analysis showed that the Sb concentration could be tuned by simply varying the electrolyte composition without any need for further annealing of the samples. Thermoelectric properties of the Bi2−xSbxTe3 nanowires were measured using a standardized bespoke setup while they were still embedded within the flexible PC templates.

  9. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films

    Science.gov (United States)

    Shen, Haishan; Lee, Suhyeon; Kang, Jun-gu; Eom, Tae-Yil; Lee, Hoojeong; Han, Seungwoo

    2018-01-01

    P-type antimony telluride (Sb2Te3) films of various thicknesses (1-, 6-, 10-, and 16-μm) were deposited on an oxidized Si (100) substrate at 250 °C by effusion cell co-evaporation. Microstructural analysis using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that the grains of the films grew in a mode in which recrystallization was prevalent and grain growth subdued, in contrast to typical film growth, which is often characterized by grain growth. The resultant microstructure exhibited narrow columnar grains, the preferred orientation of which changed with film growth thickness from (1010) with the 1-μm films to (015) for the 6- and 10-μm films, and finally (110) for the 16-μm films. Carrier mobility and the overall thermoelectric properties of the Sb2Te3 films were affected significantly by changes in the film microstructure; this was attributed to the strong anisotropy of Sb2Te3 regarding electrical conductivity. The highest power factor of 3.3 mW/mK2 was observed for the 1-μm-thick Sb2Te3 film.

  10. Synthesis and Thermoelectric Properties in the 2D Ti1 – xNbxS3 Trichalcogenides

    Directory of Open Access Journals (Sweden)

    Patrick R. N. Misse

    2015-05-01

    Full Text Available A solid solution of Ti1 − xNbxS3 composition (x = 0, 0.05, 0.07, 0.10 was synthesized by solid-liquid-vapor reaction followed by spark plasma sintering. The obtained compounds crystallize in the monoclinic ZrSe3 structure type. For the x = 0.07 sample, a mixture of both A and B variants of the MX3 structure is evidenced by transmission electron microscopy. This result contrasts with those of pristine TiS3, prepared within the same conditions, which crystallizes as a large majority of A variant. Thermoelectric properties were investigated in the temperature range 323 to 523 K. A decrease in the electrical resistivity and absolute value of the Seebeck coefficient is observed when increasing x due to electron doping. The lattice component of the thermal conductivity is effectively reduced by the Nb for Ti substitution through a mass fluctuation effect and/or a disorder effect created by the mixture of both A and B variants. Due to the low carrier concentration and the semiconductor character of the doped compounds, the too low power factor values leads to ZT values that remain smaller by a factor of 50 than those of the TiS2 layered compound.

  11. Spin-configurations in thermoelectric MnCoGe materials

    Science.gov (United States)

    Hahn, Konstanze; Portavoce, Alain; Bertaina, Sylvain; Charai, Ahmed

    In the last decades, research for improved thermoelectric materials focused on the introduction of nanostructures. However, only modest enhancement of the thermoelectric efficiency could be achieved. For improved thermoelectric performance another approach is required. In this respect, temperature driven spin transport in magnetic materials offers great potential. The ternary Mn-Co-Ge, for example, shows interesting magnetocaloric and thermoelectric properties. Magnetic properties of ferromagnetic CoxMnyGe1-x-y thin films, for example, have been shown experimentally to vary with composition x and y, suggesting a possible tuning of the CoxMnyGe1-x-y properties to meet application's requirements. In this study, structural and magnetic transitions in MnGe-based materials with varying composition have been investigated using ab initio calculations. In particular, the effect of chemical composition on the stability of the hexagonal Ni2In-type and the orthorhombic TiNiSi-type structure has been examined focusing on their magnetic configurations. It has been found that compressive strain promotes the formation of the Ni2In-type structure which can be advantageous for the magnetostructural transition in thermomagnetic devices. The spin-Seebeck coefficient has been estimated for several magnetic configurations of such materials based on the Boltzmann transport. This work is financed by the A*MIDEX foundation.

  12. Optimizing the thermoelectric performance of graphyne nanotube via applying radial strain

    Science.gov (United States)

    Li, Na; Ouyang, Tao; Tang, Chao; He, Chaoyu; Zhang, Chunxiao; Li, Jin; Zhong, Jianxin

    2017-03-01

    Graphyne nanotubes (GNTs) are a new kind of one-dimensional carbon nanomaterials containing both sp and sp2 hybridization states. In this paper, taking gamma-GNTs as an example, we investigate the effect of radial strain on the thermoelectric conversion efficiency by means of nonequilibrium Green's function method as implemented in the density functional based tight-binding framework. The results reveal that the thermoelectric figure of merit could be obviously improved by applying appropriate radial strain. Such enhancement mainly originates from the reserved pristine electronic transport properties and significant suppressed phononic thermal conductance. However, as radial strain increases further, such enhanced thermoelectric performance will be reduced rapidly, which is attributed to the serious electron scattering caused by the change of bonding configuration of GNTs. These phenomena are quite different from previous studies that axial strain has a weak influence on the thermoelectric performance of carbon nanotubes and graphene nanoribbons. The findings presented in this paper indicate that radial strain is a viable way to optimize the thermoelectric performance of GNTs and could provide helpful theoretical guideline for designing and fabricating GNT-based thermoelectrics.

  13. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.

    2012-05-10

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  14. Thermoelectric Properties and Microstructure of Modified Novel Complex Cobalt Oxides Sr3RECo4O10.5 (RE = Y, Gd)

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2012-01-01

    of the thermoelectric power factor (sigma S-2). At 1150 K, the highest sigma S-2 value attains for the Sr2CaGdCo3.9Ga0.1O10.5 sample about 60 mu Wm(-1)K(-2), which is 8 times larger than the Sr3GdCo4O10.5 counter-part. Interestingly, although microstructure shows a clear evolution of the grains for the Ga and Ca doped......We report on the high-temperature thermoelectric properties and microstructure of modified novel complex cobalt oxides Sr3RECo4O10.5 (RE = Y, Gd), in which the Sr- and Co-sites are partly substituted by Ca and Ga, respectively. We have found that the sample with RE = Gd shows a significant higher...... electrical conductivity (sigma) than the RE = Y sample, while their Seebeck coefficients (S) remain almost the same over the whole measured temperature range. With Ga substituting for Co, S is enhanced and further increased by the dually doping with Ca at the Sr-site, leading to an improvement...

  15. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  16. Microstructure tailoring in nanostructured thermoelectric materials

    Science.gov (United States)

    Jiang, Qinghui; Yang, Junyou; Liu, Yong; He, Hongcai

    2016-03-01

    Progresses in thermoelectric (TE) materials will contribute to solving the world’s demands for energy and global climate protection. It also calls for higher ZT to achieve ideal commercial conversion efficiency. As an effective way, nanostructuring can reduce the thermal conductivity by the selective scattering of phonons or enhance Seebeck coefficient via modification of the density of the states, resulting in good ZT value. Meanwhile, TE properties of nanostructured materials should depend on the size and morphology of the microstructure features. This review emphasizes the developments in the TE bulk materials at the nanoscale in the past several years and summarizes the understanding in this active field.

  17. Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: Concurrently enhancing electronic transport and blocking phononic transport

    Science.gov (United States)

    Yang, Jia-Yue; Cheng, Long; Hu, Ming

    2017-12-01

    Intermetallic clathrates, one class of guest-host systems with perfectly crystalline structures, hold great potential to be the "phonon glass - electron crystal" thermoelectric materials. Previous studies focus on revealing the atomistic origins of blocked phononic transport, yet little attention is drawn to the enhanced electronic transport. In this work, we investigate the binary type-I M8Si46 (M = Sr, Ba, Tl, and Pb) clathrates and unravel how rattlers concurrently block phononic transport and enhance electronic transport from first-principles. By comparing the empty and filled clathrates, the lattice thermal conductivity is greatly reduced by a factor of 21 due to the decrease in phonon relaxation time for propagative phonons over 0-6 THz by 1.5 orders of magnitude. On the other hand, rattlers bridge charge gaps among cages by donating electrons and thus drastically increase electrical conductivity. The concurrent realization of blocked phononic transport and enhanced electronic transport boosts the figure-of-merit (ZT) of empty clathrate by 4 orders of magnitude. Furthermore, by manipulating metallic rattlers and n-type doping, the power factor is markedly improved and ZT can reach 0.55 at 800 K. These results provide a quantitative description of the guest-host interaction and coupling dynamics from first-principles. The proposed strategy of manipulating ratting atoms and in-situ doping offers important guidance to engineer clathrates with high thermoelectric performance.

  18. First-principles calculation of semiclassical thermoelectric properties of (AgSbSe{sub 2}){sub n}(AgSbTe{sub 2}){sub n} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Marzieh [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology (Iran, Islamic Republic of)

    2015-11-25

    In this research, we perform density functional – pseudo potential calculation within generalized gradient approximation (GGA) to investigate semiclassical thermoelectric properties of (AgSbSe{sub 2}){sub n}(AgSbTe{sub 2}){sub n} (n = 1,2) thin film superlattices. It is seen that GGA, GGA + U, and the modified Becke Johnson (mBJ) functionals as well as full-relativistic corrections are not able to describe properly the electronic structure of bulk AgSbSe{sub 2} and AgSbTe{sub 2}, hence a scissor correction is used throughout this study. The Seebeck coefficient, electrical conductivity, and electronic part of the thermal conductivity of bulk compounds as well as superlattices are computed at different values of hole doping, in the fixed relaxation time approximation. It is argued that the (AgSbSe{sub 2}){sub 1}(AgSbTe{sub 2}){sub 1} superlattice may exhibits improved Seebeck coefficient compared with the bulk compounds and (AgSbSe{sub 2}){sub 2}(AgSbTe{sub 2}){sub 2} superlattice. - Highlights: • Ab initio study of (AgSbTe2)/(AgSbSe2) superlattice as a new thermoelectric system. • Computing Seebeck coefficient and power factor in relaxation time approximation. • Stable structure of the superlattices is determined. • Thermoelectric parameters of the superlattices are compared with the bulk materials.

  19. Thermoelectric Properties of P-type Skutterudites YbxFe3.5Ni0.5Sb12 (0.8 x 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Ye, Zuxin [GM Research and Development Center; Tessema, M. [GM Research and Development Center; Waldo, R.A. [GM Research and Development Center; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yang, Jihui [General Motors Corporation; Cai, Wei [ORNL; Wang, Hsin [ORNL

    2012-01-01

    P-type skutterudites, with nominal compositions YbxFe3.5Ni0.5Sb12 (0.8 x 1), have been synthesized by induction melting with subsequent annealing, and their thermoelectric properties evaluated from 3.5 K to 745 K to assess their suitability for thermoelectric based waste heat recovery applications. We report results for the synthesis and measurements of Seebeck coefficient (S), electrical resistivity ( ), thermal conductivity ( ), Hall coefficient (RH), and effective mass (m*/m0) of YbxFe3.5Ni0.5Sb12 (0.8 x 1). Powder x-ray diffraction and electron probe microanalysis (EPMA) show that this system has a narrow filling fraction range of x ~ 0.84 to 0.86 for Yb in the crystallographic voids. All samples show positive RH for the entire temperature range studied with carrier concentrations ranging from 9.6 1020 to 2.8 1021 cm-3 at room temperature. Relatively high values of S result in high power factors up to 17 Wcm-1K-2 at room temperature. However, large values of and a sharp reduction in the S at high temperature due to bipolar conduction prevent the attainment of high thermoelectric figure of merit.

  20. Enhancing doping efficiency by improving host-dopant miscibility for fullerene-based n-type thermoelectrics

    NARCIS (Netherlands)

    Qiu, Li; Liu, Jian; Alessandri, Riccardo; Qiu, Xinkai; Koopmans, Marten; Havenith, Remco W. A.; Marrink, Siewert J.; Chiechi, Ryan C.; Koster, L. Jan Anton; Hummelen, Jan C.

    2017-01-01

    This paper describes a promising n-type doping system with high performance for thermoelectric applications. By introducing the polar triethylene glycol (TEG) side chain onto both fullerene host (PTEG1) and dopant (TEG-DMBI) materials, the TEG-DMBI doped PTEG-1 films obtained through solution

  1. Structure and High Temperature Thermoelectric Properties of Delafossite-Type Oxide CuFe1-xNixO2 (0 ≤ x ≤ 0.05)

    Science.gov (United States)

    Hayashi, Kei; Nozaki, Tomohiro; Kajitani, Tsuyoshi

    2007-08-01

    We have investigated crystal structure of delafossite-type oxide CuFe1-xNixO2 (0 ≤ x ≤ 0.05) and measured its thermoelectric properties at high temperatures ranging from 300 and 1100 K. The lattice parameter a of the Ni2+-doped samples is nearly equal to that of CuFeO2, while the lattice parameter c of the Ni2+-doped samples increases. Nearly constant a-axis is due to the decrease of (Fe/Ni)-O distance and simultaneous increase of O-(Fe/Ni)-O angle. Increase of the c-axis is due to the increase of Cu-O distance in the Ni2+-doped samples. The valence states of the Fe- and Cu-sites are calculated from bond valence summation. The valence state of the Fe-site in the Ni2+-doped samples is larger than that of CuFeO2, an indication of hole doping in the Fe-site. This increase of hole carriers enhances the electrical conductivity σ. The highest electrical conductivity is 18 S/cm. Although the Seebeck coefficient S decreased by Ni2+ doping, the S is still high value (S>250 μV/K). The thermal conductivity κ of CuFe1-xNixO2 is relatively high (κ>4 W/mK). The maximum dimensionless figure of merit ZT=σ S2T/κ=0.14 is obtained with the sample of x=0.01 at 1100 K, being higher than that of the polycrystalline γ-Na0.7CoO2. There is no significant evaporation of the constituent elements after the heat cycles.

  2. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  3. A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties

    Directory of Open Access Journals (Sweden)

    Alexander Page

    2016-06-01

    Full Text Available Half-Heusler alloys are an exciting class of thermoelectric materials that have shown great improvements in the thermoelectric figure of merit, ZT, during the past 15 years. Many of the key discoveries in half-Heusler alloys have been brought forth by fundamental understandings gained from first-principles investigations. Several methods in particular have recently been used to great effect. Density functional theory provides a framework in which band structure predictions, phase diagrams enabled by cluster expansion methods, and the phase stability of unknown compounds can be calculated. Recent theoretical work, which has led to significant discoveries, has proven half-Heusler alloys to be a versatile and promising class of thermoelectric materials.

  4. Sb{sub 2}Te{sub 3} nanobelts and nanosheets: Hydrothermal synthesis, morphology evolution and thermoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guo-Hui [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Cheng, Guo-Feng; Ruan, Yin-Jie [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-02-15

    Graphical abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method, and the morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesis of Sb{sub 2}Te{sub 3} nanobelts and nanosheets is demonstrated. Black-Right-Pointing-Pointer The morphology of Sb{sub 2}Te{sub 3} can be adjusted by varying hydrothermal time. Black-Right-Pointing-Pointer The morphology evolution of Sb{sub 2}Te{sub 3} from nanobelts to nanosheets is observed. Black-Right-Pointing-Pointer High Seebeck coefficients (S) of Sb{sub 2}Te{sub 3} nanobelts and nanosheets are attained. - Abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method using SbCl{sub 3} and TeO{sub 2} as the antimony and tellurium source, hydrazine hydrate as a reducing reagent, polyvinyl alcohol as a surfactant and water as the solvent. The effects of experimental parameters on the product were investigated. The experiments indicated that the elemental Te formed during the reaction, acting as a reactive and self-sacrificial template for the formation of Sb{sub 2}Te{sub 3} nanobelts. The morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The thermoelectric properties of the tablet samples of Sb{sub 2}Te{sub 3} nanostructured powders with different morphologies prepared by a room-temperature pressurized method were investigated.

  5. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-Based Thermoelectric Materials

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Borup, Kasper

    2018-01-01

    effective mass resulting from the enhancing chemical bond covalency, which is supported by the decreasing theoretical density of states. According to the above trends, a simple guiding principle based on electronegativity is proposed to shed new light on n-type doping in Zintl antimonides.......n-type Mg3Sb1.5Bi0.5 has recently been discovered to be a promising thermoelectric material, yet the effective n-type dopants are mainly limited to the chalcogens. This may be attributed to the limited chemical insight into the effects from different n-type dopants. By comparing the effects...

  6. Effect of Nano-ZrW2O8 on the Thermoelectric Properties of Bi85Sb15/ZrW2O8 Composites

    Science.gov (United States)

    Zhou, Min; Chen, Zhen; Chu, Xinxin; Li, Laifeng

    2012-06-01

    In this study, Bi85Sb15/ x wt.% ZrW2O8 ( x = 0, 0.1, 0.5, 1) thermoelectric nanocomposites were prepared successfully by ball milling and spark plasma sintering. The effect of ZrW2O8 nanoparticles on the thermoelectric properties of the Bi85Sb15/ZrW2O8 composite was investigated. Thermal conductivity, Seebeck coefficient, and electrical conductivity were measured between 77 K and 300 K. x-Ray diffraction and scanning electron microscopy were adopted for microstructure characterization of the composites. The electrical transport properties are mainly discussed with regard to the microstructures. The results show that nanoinclusions did not grow during sintering. It is found that the thermal conductivity decreases with the addition of a small amount of ZrW2O8 nanoparticles, which serve as additional phonon-scattering centers. The obtained thermal conductivity is 0.5 W/m K for the Bi85Sb15/1 wt.% ZrW2O8 composite at 80 K, which is just half of the value for the Bi85Sb15 matrix. However, the electrical transport properties are degraded with increasing content of ZrW2O8. The calculated ZT is also degraded due to the poor electrical properties.

  7. Treatments that enhance physical properties of wood

    Science.gov (United States)

    Roger M. Rowell; Peggy Konkol

    1987-01-01

    This paper was prepared for anyone who wants to know more about enhancing wood’s physical properties, from the amateur wood carver to the president of a forest products company. The authors describe chemical and physical treatments of wood that enhance the strength, stiffness, water repellency, and stability of wood. Five types of treatments are described: 1. water-...

  8. Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals.

    Science.gov (United States)

    Mi, Xue-Ya; Yu, Xiaoxiang; Yao, Kai-Lun; Huang, Xiaoming; Yang, Nuo; Lü, Jing-Tao

    2015-08-12

    Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π-π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.

  9. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  10. Elastic, Optoelectronic and Thermoelectric Properties of the Lead-Free Halide Semiconductors Cs2AgBi X 6 ( X = Cl, Br): Ab Initio Investigation

    Science.gov (United States)

    Guechi, N.; Bouhemadou, A.; Bin-Omran, S.; Bourzami, A.; Louail, L.

    2018-02-01

    We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin-orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young's modulus and Poisson's ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (˜ 25 × 104 {cm}^{ - 1} ) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.

  11. Effect of Sb content on the thermoelectric properties of annealed CoSb{sub 3} thin films deposited via RF co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aziz, E-mail: aziz_ahmed@ust.ac.kr [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Department of Nano-Mechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Han, Seungwoo, E-mail: swhan@kimm.re.kr [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Department of Nano-Mechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2017-06-30

    Graphical abstract: The X-ray diffraction patterns and temperature dependence of the Seebeck coefficient of the annealed Co–Sb thin films. - Highlights: • CoSb{sub 3} phase thin films were prepared using RF co sputtering method. • Thin film thermoelectric properties were hugely dependent on Sb content. • All thin films shows n-type conduction behavior at high temperatures. • The thin films with excess Sb possess the largest Seebeck coefficient. • The thin films with CoSb{sub 2} phase possess the largest power factor. - Abstract: A series of CoSb{sub 3} thin films with Sb contents in the range 70–79 at.% were deposited at room temperature via RF co-sputtering. The thin films were amorphous in the as-deposited state and annealed at 300 °C for 3 h to obtain crystalline samples. The annealed thin films were characterized using scanning electron microscopy and X-ray diffraction (XRD), and these data indicate that the films exhibited good crystallinity. The XRD patterns indicate single-phase CoSb{sub 3} thin films in the Sb-rich samples. For the Sb-deficient samples, however, mixed-phase thin films consisting of CoSb{sub 2} and CoSb{sub 3} components were obtained. The electrical and thermoelectric properties were measured at temperatures up to 760 K and found to be highly sensitive to the phases that were present. We observed a change in the thermoelectric properties of the films from p-type at low temperatures to n-type at high temperatures, which indicates potential applications as n-type thermoelectric thin films. A large Seebeck coefficient and power factor was obtained for the single-phase CoSb{sub 3} thin films. The CoSb{sub 2} phase thin films were also found to possess a significant Seebeck coefficient, which coupled with the much smaller electrical resistivity, provided a larger power factor than the single-phase CoSb{sub 3} thin films. We report maximum power factor of 7.92 mW/m K{sup 2} for the CoSb{sub 2}-containing mixed phase thin film and 1

  12. NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    L. V. Bochkov

    2014-07-01

    Full Text Available The urgency of thermoelectric energy conversion is proved. Perspectives of nanostructures usage as thermoelectric materials are shown. The authors have systematized and generalized the methods and investigation results of bulk nanostructure thermoelectrics based on Bi-Sb-Te solid solutions. Ways of nanoparticles fabrication and their subsequent sintering into a bulk sample, results of structure study of the received materials are shown by methods of electronic microscopy and X-ray spectroscopy, results of mechanical properties investigation. Methods of manufacturing suggested with the authors’ participation and properties of thermoelectric nanocomposites, fabricated with addition of fullerene, thermally split graphite, graphene and molybdenum disulphide are discussed. Methods for prevention of recrystallization, measurement methods of thermoelectric properties of studied nanothermoelectrics are considered, including electric and thermal conductivities, thermoemf and the figure of merit. Factors that influence on thermoelectric figure of merit, including the tunneling of carriers through interfaces between nanograins, the additional phonon scattering on nanograin borders and the energy filtration of carriers through barriers have been theoretically investigated. Mechanisms and ways for improvement of the figure of merit are determined. Experimental confirmation for thermoelectric figure of merit increase is received. Physical mechanisms of thermoelectric figure of merit increase are shown by perceptivity of nanostructures utilization. The growth of thermoelectric figure of merit means an expansion of areas for rational application of thermoelectric energy generation and thermoelectric cooling.

  13. Good thermoelectric performance in strongly correlated system SnCCo3 with antiperovskite structure.

    Science.gov (United States)

    Lin, Shuai; Tong, Peng; Wang, Bosen; Lin, Jianchao; Huang, Yanan; Sun, Yuping

    2014-04-07

    We report the magnetic, electrical, and thermoelectric properties of SnCCo3, where good thermoelectric performance [figure of merit ZT ∼ 0.035(2), 258 K] and strong electron correlation (Kadowaki-Woods ratio RKW ∼ 4a0) are observed. The thermoelectric properties of ACCo3 (A = Al, Ga, Ge) and SnCM3 (M = Mn, Fe) were also investigated for comparison. As a result, the ZT value of SnCCo3 is the largest among all of those samples, which is mainly attributed to the large Seebeck coefficient caused by the strong electron correlation and low carrier density. Moreover, the ZT value can be effectively enhanced by proper chemical doping in SnCCo3.

  14. Thermoelectric properties of gradient polymer composites with nano-inclusions fabricated by laser assisted sintering

    Science.gov (United States)

    Shishkovsky, I. V.; Scherbakov, V. I.; Saraeva, I. N.; Ionin, A. A.

    2017-03-01

    Selective laser sintering (SLS) was used to prepare porous gradient polymer nanocomposites consisting of a polyetheretherketone (PEEK) matrix doped with alternating layers of Ni and Cu nanoparticles. Optimal regimes of such 3D-fabrication were determined. The functional graded (FG) structure of sintered parts was observed by optical and scanning electron microscopy and EDX microanalysis. Temperature dependence of electro-physical properties was studied for alternating ferromagnetic/non-magnetic layers (up to 10 layers) into 3D-graded samples derived from Ni-PEEK-Cu powders. Temperature dependences for the real part of the dielectric permeability and loss tangent were found to have a hysteresis character.

  15. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  16. Search for New Thermoelectric Materials with Low Lorenz Number

    Energy Technology Data Exchange (ETDEWEB)

    Toberer, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McKinney, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gorai, Prashun [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stevanovic, Vladan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    To date, efforts to reduce thermal conductivity in thermoelectric materials have largely focused on reducing the vibrational component. However, in an optimized thermoelectric material, the electronic component can often contribute an equivalent amount to the total thermal conduction. In principle, the Lorenz number of a bulk semiconductor can be reduced to a small fraction of the Sommerfeld value through the use of a band-pass energy filter in the transport distribution function. One strategy to achieve this band-pass filter is through multiple bands that are offset in energy. Despite a reduction in power factor, we show that a lower Lorenz number can lead to zT enhancement of nearly 40% over the single parabolic band value for materials with electronic properties similar to PbTe. One signature for this behavior is a density of states that rapidly increases deeper into the band. Guided by this insight, we conducted a high-throughput computational search for materials with exceptionally low Lorenz number and high thermoelectric quality factor. From this search, we identify materials that are predicted to have both high quality factor and low Lorenz number. Intriguingly, we find that the vast majority of known thermoelectric materials exhibit these traits; further, new materials have emerged that warrant further investigation.

  17. Materials science: Nanomagnets boost thermoelectric output

    Science.gov (United States)

    Boona, Stephen R.

    2017-09-01

    The direct conversion of heat into electricity -- a reversible process known as the thermoelectric effect -- can be greatly enhanced in some materials by embedding them with a small number of magnetic nanoparticles. See Letter p.247

  18. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  19. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  20. Thermoelectric materials with filled skutterudite structure for thermoelectric devices

    Science.gov (United States)

    Fleurial, Jean-Pierre (Inventor); Borshchevsky, Alex (Inventor); Caillat, Thierry (Inventor); Morelli, Donald T. (Inventor); Meisner, Gregory P. (Inventor)

    2002-01-01

    A class of thermoelectric compounds based on the skutterudite structure with heavy filling atoms in the empty octants and substituting transition metals and main-group atoms. High Seebeck coefficients and low thermal conductivities are achieved in combination with large electrical conductivities in these filled skutterudites for large ZT values. Substituting and filling methods are disclosed to synthesize skutterudite compositions with desired thermoelectric properties. A melting and/or sintering process in combination with powder metallurgy techniques is used to fabricate these new materials.

  1. Effects of Ge substitution on thermoelectric properties of CrSi2

    Science.gov (United States)

    Nagai, Hiroki; Takamatsu, Tomohisa; Iijima, Yoshihiko; Hayashi, Kei; Miyazaki, Yuzuru

    2016-11-01

    Polycrystalline Cr(Si1- x Ge x )2 samples were prepared using arc melting and spark plasma sintering methods. Single-phase Cr(Si1- x Ge x )2 samples were obtained for the compositional range of 0 ≤ x ≤ 0.015 and the lattice parameters monotonically increased with x. In the range of single phases, the electrical conductivity and Seebeck coefficient increased and decreased with increasing x, respectively. The partial substitution of Ge effectively reduced the thermal conductivity to ˜80%, which resulted in the increase in the ZT of Cr(Si1- x Ge x )2 samples from 0.16 (x = 0) to 0.25 (x = 0.015) at 600 K. From the results of first-principles calculation for transport properties, it can be concluded that the origin of the increase in electrical conductivity and the decrease in Seebeck coefficient of Ge-substituted samples is the decrease in carrier effective mass.

  2. Thermoelectric Characterization of Electronic Properties of GaMnAs Nanowires

    Directory of Open Access Journals (Sweden)

    Phillip M. Wu

    2012-01-01

    Full Text Available Nanowires with magnetic doping centers are an exciting candidate for the study of spin physics and proof-of-principle spintronics devices. The required heavy doping can be expected to have a significant impact on the nanowires' electron transport properties. Here, we use thermopower and conductance measurements for transport characterization of Ga0.95Mn0.05As nanowires over a broad temperature range. We determine the carrier type (holes and concentration and find a sharp increase of the thermopower below temperatures of 120 K that can be qualitatively described by a hopping conduction model. However, the unusually large thermopower suggests that additional mechanisms must be considered as well.

  3. Effects of Ag-Doping on Thermoelectric Properties of Ca(2-x)AgxSi Alloys

    Science.gov (United States)

    Duan, Xingkai; Hu, Konggang; Kuang, Jing; Jiang, Yuezhen; Yi, Dengliang

    2017-05-01

    Ca(2-x)AgxSi (0 ≤ x ≤ 0.1) with 47.5% excess of Ca alloys were fabricated by melting in a tantalum tube and hot pressing technique. Phase structures of the samples were studied by means of x-ray diffraction. The electrical conductivity and Seebeck coefficient of Ca(2-x)AgxSi alloys were studied in the temperature range of 300-873 K. The electrical conductivity of the Ag-doped samples increases within the whole test temperature range. All samples show p-type semiconductor behavior. The electrical conductivity decreases with increasing temperature from 300 K to 873 K, which is typically observed for a degenerate semiconductor. Compared with the undoped samples, Ag-doping ( x = 0.04-0.1) results in decreases of Seebeck coefficient, especially Ca(2-x)AgxSi with x = 0.1. The thermal conductivity of the doped samples gradually increases with increasing the Ag-doping content. The Ca(2-x)AgxSi with x = 0.02 sample exhibits the lowest thermal conductivity within the whole test temperature range. The ZT values of Ca(2-x)AgxSi with x = 0.02 sample have an enhancement in the temperature range of 300-873 K by contrast with those of the Ca2Si sample. The maximum ZT value is 0.16 at 837 k, which is observed for the Ca(2-x)AgxSi with x = 0.04 sample.

  4. Electronic structure and thermoelectric properties of half-Heusler compounds with eight electron valence count—KScX (X = C and Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin O. [Department of Physics, Gazi University, Teknikokullar, Ankara 06500 (Turkey); Mahanti, Subhendra D. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-04-14

    Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) have been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.

  5. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, A., E-mail: amitshan2009@gmail.com [Condensed Matter Theory Group, Department of Physics, Mizoram University, 796004 (India); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl 796001 (India); Chettri, Sandeep [Condensed Matter Theory Group, Department of Physics, Mizoram University, 796004 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 (Algeria); Thapa, R.K. [Condensed Matter Theory Group, Department of Physics, Mizoram University, 796004 (India)

    2016-08-15

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconducting nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.

  6. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Science.gov (United States)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-06-01

    p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.

  7. Improvement of thermoelectric properties of Bi{sub 2}Sr{sub 2}Co{sub 1}.8O{sub x} through solution synthetic methods

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M. A.; Sotelo, A.; Raskeh, S. H.; Serrano, I.; Constantinescu, C.; Madre, M. A.; Diez, J. C.

    2012-07-01

    Several solution synthetic methods, sol-gel and a polymeric route, have been studied in order to obtain Bi{sub 2}Sr{sub 2}Co{sub 1}.8O{sub x} ceramics with improved thermoelectric properties, compared to the classical solid state reaction. The products obtained by these different methods have been compared using DTA-TGA, powder X-ray diffraction, scanning electron microscopy, and thermoelectric characterizations. All the samples obtained by solution synthesis show higher homogeneity and lower content of secondary phases. The main differences in thermo electrical properties are due to the decrease of electrical resistivity in samples obtained by solution methods, compared with the solid state obtained samples. Between them, the decrease is especially high for those samples prepared by the polymer solution method. Therefore, the polymeric solution synthesis route is shown to yield a power factor four times higher than the obtained for the solid state and sol-gel methods at room temperature. (Author) 17 refs.

  8. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  9. The electronic and thermoelectric properties of a d2/d0 type tetragonal half-Heusler compound, HfSiSb: a FP-LAPW method

    Science.gov (United States)

    Joshi, H.; Rai, D. P.; Deligoz, E.; Ozisik, H. B.; Thapa, R. K.

    2017-10-01

    We present an implementation of the full-potential linearized augmented plane-wave method for carrying out ab initio calculations of the electronic and thermoelectric properties of d2/d0 type HfSiSb based on the density-functional theory. A most common generalized gradient approximation is taken into consideration for exchange-correlation energy. The electronic calculations show that HfSiSb is metallic in nature because of the overlap between the valence band and the conduction band. The thermoelectric properties, such as Seebeck coefficient, electronic thermal conductivity and electrical conductivity were calculated along the perpendicular and parallel directions with respect to chemical potential (µ) and temperature. In addition, we also included lattice thermal conductivity ({{κ }p} ) to obtain the total thermal conductivity. The presence of total thermal conductivity gave us an exact understanding of the material’s thermodynamics and its efficiency (ZT). A sharp variation in ZT in the range (200–400 K) was seen, which makes this compound suitable at around room temperature.

  10. Structure/property relationships of the thermoelectric oxyselenides (Bi1-xAxCuOSe) (A=Ba and Ca)

    Science.gov (United States)

    Wong-Ng, Winnie; Yan, Yonggao; Kaduk, James A.; Tang, Xin F.

    2017-10-01

    The crystal structures, solid solution limit, and powder X-ray reference diffraction patterns for two 'natural superlattice' series Bi1-xBaxCuOSe (x = 0.05, 0.075, 0.1, 0.2, and 0.3), and Bi1-xCaxCuOSe (x = 0, 0.05, 0.075, 0.1, 0.2 and 0.3) have been determined. The structure/property relationships of these thermoelectric materials are summarized. As the ionic radius of Ba2+ is greater than that of Bi3+, the unit cell volume, V, of Bi1-xBaxCuOSe increases progressively from x = 0 to x = 0.2 (from 137.868 (5) Å3 to 141.194 (10) Å3, respectively). However, even though the ionic radius of Ca2+ is smaller than that of Bi3+, the unit cell volumes, V, of Bi1-xCaxCuOSe also show an increasing trend as a function of x (137.868 (5) Å3 to 139.295 (12) Å3 from x = 0 to 0.3, respectively) due to the relatively large increase in c parameter. The structure of Bi1-xAxCuOSe (A = Ba and Ca) can be considered as built from [Bi2(1-x)A2xO2]2(1-x)+ layers normal to the c-axis alternating with fluorite-like [Cu2Se2]2(1-x)- layers in the c-direction. The substitutions of Ba and Ca on the Bi site of Bi1-xAxCuOSe lead to the weakening of the 'bonding' between the [Bi2(1-x)A2xO2]2(1-x)+ and the [Cu2Se2]2(1-x)- layers (a decrease of Columbic force), resulting in an increase of the c-axis parameter and V. Powder X-ray diffraction patterns of Bi1-xAxCuOSe were submitted for inclusion in the Powder Diffraction File (PDF).

  11. Effect of Mechanical Deformation on Thermoelectric Properties of p-Type (Bi0.225Sb0.7752Te3 Alloys

    Directory of Open Access Journals (Sweden)

    Sung-Jin Jung

    2013-01-01

    Full Text Available The effect of mechanical deformation and annealing on thermoelectric properties of p-type (Bi0.225Sb0.775Te3 was performed. The ingots were prepared by melting, followed by quenching method using source materials with compositions of (Bi0.225Sb0.7752Te3. Rectangular shaped specimens (5×5×12 mm3 were cut from ingots and then cold-pressed at 700 MPa for 2 to 20 times by changing the press direction perpendicular to previous one. The cold-pressed samples have been annealed in a quartz ampoule at 573 K. The grain size of the samples was controlled by the number of cold-pressing process and annealing time. Fine grain structure with a grain size of not more than 10 μm is obtained in highly deformed samples. The Seebeck coefficient of the deformed samples were gradually increased with annealing and converged to the similar value of about 225 μV/K after 30 hrs. The small grain size in highly deformed sample enables a rapid increase of Seebeck coefficient with annealing time (~2 hrs., indicating that the thermal energy needed to recrystallize in highly deformed specimens is lower than that in low deformed specimens. Z values are rapidly increased with annealing time especially in highly deformed alloys, and converge to about 3.0×10−3/K at room temperature. A higher thermoelectric performance could be expected by the optimization of composition and microstructural adjustment. The present study experimentally demonstrates a simple and cost-effective method for fabricating Bi-Te-based alloys with higher thermoelectric performance.

  12. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  13. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  14. Enhanced thermoelectric figure-of-merit ZT for hole-doped Bi2Sr2Co2Oy through Pb substitution

    Science.gov (United States)

    Hsu, H. C.; Lee, W. L.; Wu, K. K.; Kuo, Y. K.; Chen, B. H.; Chou, F. C.

    2012-05-01

    Single crystals of Bi2-xPbxSr2Co2Oy (0 ≤ x ≤ 0.55) have been grown using optical floating-zone method. The chemical compositions were determined using combined electron probe microanalysis and iodometric titration. Physical properties including electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) were measured using single crystal specimens. Successful hole doping through Pb substitution is confirmed through combined iodometry titration, electrical transport, and Seebeck coefficient measurements. Significant reduction on both in-plane resistivity and thermal conductivity was found as a result of Pb substitution to the Bi site. The thermoelectric figure-of-merit ZT for x ˜ 0.55 is raised 20 folds from the undoped sample at room temperature.

  15. The Influence of Spark Plasma Sintering Temperature on the Microstructure and the Thermoelectric Properties of Al, Ga dually-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2012-01-01

    and better electrical properties compared with the sample sintered at 1073K. These results were supported by solid-state-reaction completion rate which suggested that the sintering temperature above 1223K would be preferable for the complete solid state reaction of the samples. The sintering mechanism of Zn......O particles and microstructure evolutions at different sintering temperatures were investigated by the simulation of the self-Joule-heating effect of the individual particles.......Al, Ga dually-doped ZnO was prepared by spark plasma sintering with different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples with a sintering temperature above 1223K obtained higher relative densities...

  16. Preparation and Physical Properties of Segmented Thermoelectric YBa2Cu3O7‑x -Ca3Co4O9 Ceramics

    Science.gov (United States)

    Wannasut, P.; Keawprak, N.; Jaiban, P.; Watcharapasorn, A.

    2018-01-01

    Segmented thermoelectric ceramics are now well known for their high conversion efficiency and are currently being investigated in both basic and applied energy researches. In this work, the successful preparation of the segmented thermoelectric YBa2Cu3O7‑x -Ca3Co4O9 (YBCO-CCO) ceramic by hot pressing method and the study on its physical properties were presented. Under the optimum hot pressing condition of 800 °C temperature, 1-hour holding time and 1-ton weight, the segmented YBCO-CCO sample showed two strongly connected layers with the relative density of about 96%. The X-ray diffraction (XRD) patterns indicated that each segment showed pure phase corresponding to each respective composition. Scanning electron microscopy (SEM) results confirmed the sharp interface and good adhesion between YBCO and CCO layers. Although the chemical analysis indicated the limited inter-layer diffusion near the interface, some elemental diffusion at the boundary was expected to be the source of this strong bonding.

  17. A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Christopher J. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Rao, Ashok, E-mail: ashokanu_rao@rediffmail.com [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalagangotri 74199, DK, Karnataka (India); Okram, G.S. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Babu, P.D. [UGC-DAE Consortium for Scientific Research, R5 Shed, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-01-01

    In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO{sub 3} cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation. - Highlights: • Pure and irradiated compounds follow SPH model in high temperature range. • Colossal thermoelectric power is observed at low temperatures. • High temperature TEP data follows SPH model. • Curie temperature decreases with electron irradiation. • Magnetization shows increased magnetic moment due to electron beam irradiation.

  18. Effect of Substrate Temperature on the Thermoelectric Properties of the Sb2Te3 Thin Films Deposition by Using Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2015-01-01

    Full Text Available The antimony-telluride (Sb2Te3 thermoelectric thin films were prepared on SiO2/Si substrates by thermal evaporation method. The substrate temperature that ranged from room temperature to 150°C was adopted to deposit the Sb2Te3 thin films. The effects of substrate temperature on the microstructures and thermoelectric properties of the Sb2Te3 thin films were investigated. The crystal structure and surface morphology of the Sb2Te3 thin films were characterized by X-ray diffraction analyses and field emission scanning electron microscope observation. The RT-deposited Sb2Te3 thin films showed the amorphous phase. Te and Sb2Te3 phases were coexisted in the Sb2Te3-based thin films as the substrate temperature was higher than room temperature. The average grain sizes of the Sb2Te3-based thin films were 39 nm, 45 nm, 62 nm, 84 nm, and 108 nm, as the substrate temperatures were 50°C, 75°C, 100°C, 125°C, and 150°C, respectively. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature; we had found that they were critically dependent on the substrate temperature.

  19. First-principles study of the electronic structure and thermoelectric properties of LaOBiCh2 (Ch=S, Se)

    Science.gov (United States)

    Wang, Guangtao; Wang, Dongyang; Shi, Xianbiao; Peng, Yufeng

    2017-10-01

    We studied the crystal and electronic structures of LaOBiSSe and LaOBiSeS using first-principles calculations and confirmed that the LaOBiSSe (S atoms on the top of BiCh2 layer and Se atoms in the inner of it) is the stable structure. Then we calculate the thermoelectric properties of LaOBiSSe using the standard Boltzmann transport theory. The in-plane thermoelectric performance are better than that along the c-axis in this n-type material. The in-plane power factor S2σ of n-type LaOBiSSe is as high as 12 μW/cmK2 at 900 K with figure of merit ZT = 0.53 and n = 3.56 × 1020cm‑3. The ZT maximum appears around 4 × 1020cm‑3 in a wide temperature region. The results indicate that LaOBiSSe is a 2D material with good thermal performance in n-type doping.

  20. Effects of hydrostatic pressure on the thermoelectric properties of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds: an ab initio study

    Science.gov (United States)

    Elsayed, H.; Olguín, D.; Cantarero, A.

    2017-12-01

    This work presents an ab initio study of the effects of hydrostatic pressure on the Seebeck coefficients and thermoelectric power factors of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds. Our study is performed using the semi-classical Boltzmann theory and the rigid band approach. The electronic band structures of these materials are calculated using the full-potential linearized augmented plane-wave method. The obtained thermoelectric properties are discussed in terms of the results of the electronic structure calculations. As we will show, our calculated Seebeck coefficient values indicate that these materials are good alternatives to other well-studied thermoelectric systems.

  1. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    Enhancing the magnetic properties of magnetic nanoparticles J. V. Ahlburg, M. S. Músquiz, C. Zeuthen, S. Kjeldgaard, M. Stingaciu, M. Christensen Center for Materials Crystallography, Departement of Chemistry & iNano, Aarhus University, Denmark Strong magnets with a high energy product are vital...

  2. Microwave Enhancement in Coronal Holes: Statistical Properties

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 21; Issue 3-4. Microwave Enhancement in Coronal Holes: Statistical Properties. Ν. Gopalswamy Κ. Shibasaki Μ. Salem. Session X – Cycle Variation in the Quiet Corona & Coronal Holes Volume 21 Issue 3-4 September-December 2000 pp 413-417 ...

  3. Enhancement of Spartium junceum L. fibres properties

    Science.gov (United States)

    Kovačević, Z.; Bischof, S.; Antonović, A.

    2017-10-01

    Properties of lignocellulosic Spartium junceum L. (SJL) fibres were investigated in order to use them as reinforcement in composite material production. The fibres were obtained by microwave maceration process and additionally modified with NaOH, nanoclay and citric acid with the aim to improve their mechanical, thermal and other physical-chemical properties. Tensile and thermal properties of these natural fibres were enhanced by the different modification treatment which is investigated by the Vibrodyn/Vibroskop method and thermogravimetric analysis (TGA), whilst determination of chemical composition and fibre’s surface properties were explored using scanning electron microscope (SEM), electron dispersive spectroscopy (EDS) and elektrokinetic analyser. All the results show great improvement of nanoclay/citric acid modified SJL properties.

  4. Applying an electron counting rule to screen prospective thermoelectric alloys: The thermoelectric properties of YCrB{sub 4} and Er{sub 3}CrB{sub 7}-type phases

    Energy Technology Data Exchange (ETDEWEB)

    Simonson, J.W., E-mail: jws9n@virginia.ed [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, VA 22904-4714 (United States); Poon, S.J. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, VA 22904-4714 (United States)

    2010-08-13

    An electron counting rule, which was recently expanded to study molecular organometallics, boranes, and metallocenes, is utilized herein to predict the formation of a semiconducting gap or pseudo-gap in the density of states of deltahedral crystalline solids at or near the Fermi energy. It is suggested that this rule may be exploited to screen intermetallic compounds for prospective thermoelectric materials. The rule was applied to several structure types of known deltahedral boride and borocarbide compounds, and its predictions were compared to those of first principles electronic structure calculations when such were available in the literature or to published reports of transport properties. In addition, the rule has been used to predict the properties of several materials for which the electronic structure and properties have not hitherto been reported. In accordance with these predictions, layered ternary boride intermetallic compounds with structure types YCrB{sub 4} and Er{sub 3}CrB{sub 7} were synthesized, and the electrical resistivity and Seebeck coefficients of these alloys were measured from room temperature to 1100 K. Alloys of composition RMB{sub 4} (R = Y, Gd, Ho; M = Cr, Mo, W) were found to be n-type semiconductors and to exhibit thermopower up to {approx}70-115 {mu}V/K; the band gap was estimated to range from 0.17 to 0.28 eV, depending on composition. Undoped YCrB{sub 4} was measured to have a maximum power factor of 6.0 {mu}W/cm K{sup 2} at 500 K and Fe-doped YMoB{sub 4} of 2.4 {mu}W/cm K{sup 2} near 1000 K.

  5. Investigation of the Microstructural and Thermoelectric Properties of the (GeTe0.95(Bi2Te30.05 Composition for Thermoelectric Power Generation Applications

    Directory of Open Access Journals (Sweden)

    Lior Weintraub

    2014-01-01

    Full Text Available In the frame of the current research, the p-type Bi2Te3 doped (GeTe0.95(Bi2Te30.05 alloy composed of hot pressed consolidated submicron structured powder was investigated. The influence of the process parameters (i.e., powder particles size and hot pressing conditions on both reduction of the lattice thermal conductivity and electronic optimization is described in detail. Very high maximal ZT values of up to ∼1.6 were obtained and correlated to the microstructural characteristics. Based on the various involved mechanisms, a potential route for further enhancement of the ZT values of the investigated composition is proposed.

  6. Electronic structure, optical and thermoelectric transport properties of layered polyanionic hydrosulfate LiFeSO{sub 4}OH: Electrode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilson (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilson (Czech Republic)

    2014-04-05

    Highlights: • LiFeSO{sub 4}OH is direct band gap semiconductor of about 0.334 eV, 0.580 eV and 1.114 eV. • The optical spectra are calculated using EVGGA in the photon energy range up to 13.8 eV. • Thermoelectric properties using the BoltzTraP code are calculated. • DFT is used for theoretical analysis of electronic structure of LiFeSO{sub 4}OH. • Bonding nature of the atoms are investigated. -- Abstract: Theoretical analysis of electronic structure and optical properties of LiFeSO{sub 4}OH, using the full-potential linearized augmented plane waves (FPLAPW), on the basis of density-functional theory (DFT), with in the local density approach (LDA), generalized gradient approach (GGA) and Engel–Vosko GGA (EVGGA). Electronic structure and bonding nature of the atoms are investigated in the entire calculation of partial, total density of states and electronic charge densities. The band structure calculations show that the investigated compound is direct band gap semiconductor of about 0.334 eV, 0.580 eV and 1.114 eV. The optical spectra are calculated using EVGGA in the photon energy range up to 13.8 eV. The anisotropic behavior of the imaginary and real parts of the complex dielectric function, reflectivity, refractive index, extension co-efficient and energy loss function are studied for parallel and perpendicular component of electric field polarization. Thermoelectric properties namely, electrical and thermal conductivity, Seebeck co-efficient and power factor are calculated and discussed with the constant relaxation time, using the BoltzTraP code.

  7. Thermoelectric properties in Ce{sub 1-x}La{sub x}Fe{sub 4}P{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, H. [Faculty of Integrated Arts and Sciences, University of Tokushima, Minamijosanjima-machi, Tokushima 770 8502 (Japan)]. E-mail: sugawara@ias.tokushima-u.ac.jp; Yuasa, S. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192 0397 (Japan); Tsuchiya, A. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192 0397 (Japan); Aoki, Y. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192 0397 (Japan); Sato, H. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192 0397 (Japan); Sasakawa, T. [Department of Quantume Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739 8530 (Japan); Takabatake, T. [Department of Quantume Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739 8530 (Japan)

    2006-05-01

    We have measured the electrical resistivity {rho}, thermoelectric power S, and thermal conductivity {kappa} in single-crystalline Ce{sub 1-x}La{sub x}Fe{sub 4}P{sub 12}. La-substitution by 1% destroys the energy gap, suggesting that the coherence among the Ce-ions plays an important role for the semiconducting behavior. Within the investigated concentration range, the maximum power factor S{sup 2}/{rho} is found to be 21{mu}Wcm{sup -1}K{sup -2} at room temperature.

  8. Formation and thermoelectric properties of Si/CrSi2/Si(001) heterostructures with stressed chromium disilicide nanocrystallites

    Science.gov (United States)

    Goroshko, Dmitry; Chusovitin, Evgeniy; Bezbabniy, Dmitry; Dózsa, Laszlo; Pécz, Bela; Galkin, Nikolay

    2015-05-01

    Three-layer heterostructures with embedded CrSi2 nanocrystallites were grown using molecular-beam epitaxy. The nanocrystallites have epitaxial orientation to the silicon lattice and are subjected to anisotropic compressive stress in the CrSi2 [001] direction. The thermoelectric power factor of the heterostructure is about 5 times higher than that in the substrate at 300-480 K. Taking into consideration the ratio of nanocomposite and substrate thickness, the real power factor is expected to be 2-3 orders higher than the measured one and it reaches 3200 μW K-2 m-1 at 470 K.[Figure not available: see fulltext.

  9. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    Directory of Open Access Journals (Sweden)

    Do Duc Cuong

    2015-11-01

    Full Text Available Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  10. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  11. High-Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    Wood, C.

    1987-01-01

    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  12. Exploring the thermoelectric and magnetic properties of uranium selenides: Tl{sub 2}Ag{sub 2}USe{sub 4} and Tl{sub 3}Cu{sub 4}USe{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Sikander; Khan, Saleem Ayaz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic); Din, Haleem Ud [Department of Physics, Hazara University, Mansehra (Pakistan); Khenata, Rabah [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria); Goumri-Said, Souraya, E-mail: sosaid@alfaisal.edu [College of Science, Physics department, Alfaisal University, P.O. Box 50927, Riyadh 11533 (Saudi Arabia)

    2016-09-01

    The electronic, magnetic and thermoelectric properties of Tl{sub 2}Ag{sub 2}USe{sub 4} and Tl{sub 3}Cu{sub 4}USe{sub 6} compounds were investigated using the full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange correlation was treated with the generalized gradient approximation plus optimized effective Hubbard parameter and spin–orbit coupling (GGA+U+SOC). The present uranium selenides show narrow direct energy band gap values of 0.7 and 0.875 eV for Tl{sub 2}Ag{sub 2}USe{sub 4} and Tl{sub 3}Cu{sub 4}USe{sub 6} respectively. For both selenides U-d/f states are responsible for electrical transport properties. Uranium atoms were the most contributors in the magnetic moment compared to other atoms and show ferromagnetic nature. The spin density isosurfaces show the polarization of neighboring atoms of Uranium, such as silver/copper and selenium. Thermoelectric calculations reveal that Tl{sub 3}Cu{sub 4}USe{sub 6} is more suitable for thermoelectric device applications than Tl{sub 2}Ag{sub 2}USe{sub 4}. - Highlights: • Electronic, magnetic and thermoelectric properties of uranium selenides are investigated with DFT. • They show a narrow direct energy band gap of 0.7 and 0.875 eV. • U-d/f states are responsible for electrical transport properties. • Tl{sub 3}Cu{sub 4}USe{sub 6} is more suitable for thermoelectric device applications than Tl{sub 2}Ag{sub 2}USe{sub 4}.

  13. Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-04-01

    Full Text Available I-doped Bi2Te3−xIx (x=0, 0.05, 0.1, 0.2 flower-like nanoparticles were synthesized by a hydrothermal method through a careful adjustment of the amount of ethylenediamine tetraacetic acid surfactant. The nanopowders of flower-like nanoparticles were hot-pressed into bulk pellets and the thermoelectric properties of the pellets were investigated. The results showed that I-doping decreased the electrical resistivity effectively, and the thermal conductivitives of the Bi2Te3−xIx bulk samples was lower because of the closer atomic mass of I compared to Te. As a result, a ZT value of 1.1 was attained at 448 K for the Bi2Te2.9I0.1 sample.

  14. The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2013-01-01

    densities and higher electronic conductivity than the sample sintered at 1073 K. These results were supported by the solid-state reaction completion rate, which suggested that sintering temperature above 1223 K would be preferable for complete solid-state reaction of the samples. The sintering mechanism...... of ZnO particles and microstructure evolution at different sintering temperatures were investigated by simulation of the self-Joule-heating effect of the individual particles.......ZnO dual-doped with Al and Ga was prepared by spark plasma sintering using different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples obtained with sintering temperature above 1223 K had higher relative...

  15. Thermoelectric properties of n and p-type cubic and tetragonal XTiO3 (X = Ba,Pb): A density functional theory study

    Science.gov (United States)

    Rahman, Gul; Rahman, Altaf Ur

    2017-12-01

    Thermoelectric properties of cubic (C) and tetragonal (T) BaTiO3 (BTO) and PbTiO3 (PTO) are investigated using density functional theory together with semiclassical Boltzmann's transport theory. Both electron and hole doped BTO and PTO are considered in 300-500 K temperature range. We observed that C-BTO has larger power factor(PF) when doped with holes, whereas n-type carrier concentration in C-PTO has larger PF. Comparing both BTO and PTO, C-PTO has larger figure of merit ZT. Tetragonal distortion reduces the Seebeck coefficient S in n-doped PTO, and the electronic structures revealed that such reduction in S is mainly caused by the increase in the optical band gaps (Γ - Γ and Γ-X).

  16. Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators.

    Science.gov (United States)

    Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-03-02

    Highly conductive indium zinc oxide (IZO) thin films were successfully fabricated via a self-combustion reaction for application in solution-processed thermoelectric devices. Self-combustion efficiently facilitates the conversion of soluble precursors into metal oxides by lowering the required annealing temperature of oxide films, which leads to considerable enhancement of the electrical conductivity of IZO thin films. Such enhanced electrical conductivity induced by exothermic heat from a combustion reaction consequently yields high performance IZO thermoelectric films. In addition, the effect of the composition ratio of In to Zn precursors on the electrical and thermoelectric properties of the IZO thin films was investigated. IZO thin films with a composition ratio of In:Zn = 6:2 at the low annealing temperature of 350 °C showed an enhanced electrical conductivity, Seebeck coefficient, and power factor of 327 S cm(-1), 50.6 μV K(-1), and 83.8 μW m(-1) K(-2), respectively. Moreover, the IZO thin film prepared at an even lower temperature of 300 °C retained a large power factor of 78.7 μW m(-1) K(-2) with an electrical conductivity of 168 S cm(-1). Using the combustive IZO precursor, a thermoelectric generator consisting of 15 legs was fabricated by a printing process. The thermoelectric array generated a thermoelectric voltage of 4.95 mV at a low temperature difference (5 °C). We suggest that the highly conductive IZO thin films by self-combustion may be utilized for fabricating n-type flexible printed thermoelectric devices.

  17. Effects of Yttrium and Iron co-doping on the high temperature thermoelectric properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo; Pryds, Nini

    2015-01-01

    A series of Y and Fe co-doped Ca3−xYxCo4−yFeyO9+δ (0 ⩽ x ⩽ 0.3, 0 ⩽ y ⩽ 0.1) samples synthesized by auto-combustion reaction and followed by a spark plasma sintering (SPS) processing with the effects of Fe and Y doping on the high temperature (RT to 800 °C) thermoelectric properties were systemat......A series of Y and Fe co-doped Ca3−xYxCo4−yFeyO9+δ (0 ⩽ x ⩽ 0.3, 0 ⩽ y ⩽ 0.1) samples synthesized by auto-combustion reaction and followed by a spark plasma sintering (SPS) processing with the effects of Fe and Y doping on the high temperature (RT to 800 °C) thermoelectric properties were...... systematically investigated. For the Fe-doped system (x = 0, y ⩽ 0.1), the electrical resistivity (ρ) decreased over the whole measured temperature range, while the Seebeck coefficient (S) remained almost the same. For the co-doped system, at any fixed Fe doping content, both ρ and S tended to increase...... with increasing Y dopants, however, the effect is more substantial on ρ than on S, particularly in the low temperature regime. In contrast to ρ and S, the in-plane thermal conductivity (κ) is only slightly influenced by Y and Fe substitutions. Among all the investigated samples, the co-doped sample with x = 0...

  18. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd

    Directory of Open Access Journals (Sweden)

    Ping Zou

    2014-06-01

    Full Text Available Bi2Te2.7Se0.3 of high performance doped with Gd bulk materials was prepared by a high pressure (6.0 GPa sintering (HPS method at 593 K, 633 K, 673 K and 693 K. The sample was then annealed for 36 h in a vacuum at 633 K. The phase composition, crystal structure and morphology of the sample were analyzed by X-ray diffraction and scanning electron microscopy. The electric conductivity, Seebeck coefficient, and thermal conductivity aspects of the sample were measured from 298 K to 473 K. The results show that high pressure sintering and the doping with Gd has a great effect on the crystal structure and the thermoelectric properties of the samples. The samples are consisted of nanoparticles before and after annealing, and these nanostructures have good stability at high temperature. HPS together with annealing can improve the TE properties of the sample by decreasing the thermal conductivity of the sample with nanostructures. The maximum ZT value of 0.74 was obtained at 423 K for the sample, which was sintered at 673 K and then annealed at 633 K for 36 h. Compared with the zone melting sample, it was increased by 85% at 423 K. Hence the temperature of the maximum of figure of merit was increased. The results can be applied to the field of thermoelectric power generation materials.

  19. Dynamic thermoelectricity in uniform bipolar semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Volovichev, I.N., E-mail: vin@ire.kharkov.ua

    2016-07-01

    The theory of the dynamic thermoelectric effect has been developed. The effect lies in an electric current flowing in a closed circuit that consists of a uniform bipolar semiconductor, in which a non-uniform temperature distribution in the form of the traveling wave is created. The calculations are performed for the one-dimensional model in the quasi-neutrality approximation. It was shown that the direct thermoelectric current prevails, despite the periodicity of the thermal excitation, the circuit homogeneity and the lack of rectifier properties of the semiconductor system. Several physical reasons underlining the dynamic thermoelectric effect are found. One of them is similar to the Dember photoelectric effect, its contribution to the current flowing is determined by the difference in the electron and hole mobilities, and is completely independent of the carrier Seebeck coefficients. The dependence of the thermoelectric short circuit current magnitude on the semiconductor parameters, as well as on the temperature wave amplitude, length and velocity is studied. It is shown that the magnitude of the thermoelectric current is proportional to the square of the temperature wave amplitude. The dependence of the thermoelectric short circuit current on the temperature wave length and velocity is the nonmonotonic function. The optimum values for the temperature wave length and velocity, at which the dynamic thermoelectric effect is the greatest, have been deduced. It is found that the thermoelectric short circuit current changes its direction with decreasing the temperature wave length under certain conditions. The prospects for the possible applications of the dynamic thermoelectric effect are also discussed.

  20. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  1. Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics

    KAUST Repository

    Kiefer, David

    2018-01-05

    N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n-doping of the polar naphthalenediimide–bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole–dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10–1 S cm–1 for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 μW K–2 m–1 compared to other NDI-based polymers.

  2. Enhanced thermoelectric properties of Cu doped ZnSb based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhuang-hao [College of Physics and Energy, Institute of Thin Film Physics and Applications, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, 518060 (China); Fan, Ping, E-mail: fanping308@126.com [College of Physics and Energy, Institute of Thin Film Physics and Applications, Shenzhen University, 518060 (China); Luo, Jing-ting [College of Physics and Energy, Institute of Thin Film Physics and Applications, Shenzhen University, 518060 (China); Liang, Guang-xing [College of Physics and Energy, Institute of Thin Film Physics and Applications, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, 518060 (China); Liu, Peng-juan; Zhang, Dong-ping [College of Physics and Energy, Institute of Thin Film Physics and Applications, Shenzhen University, 518060 (China)

    2016-05-25

    Cu doped ZnSb based thin films were deposited by direct current magnetron co-sputtering. X-ray diffraction results show that the un-doped thin film reveals a single ZnSb phase and it transforms to Zn{sub 4}Sb{sub 3} phase after Cu doped. The material with Zn{sub 4}Sb{sub 3} phase which belongs to R-3c space group crystal will lead to lower thermal conductivity. The Hall effect measurement shows that the samples are P-type semiconductors. The electrical conductivity increasers after Cu doped due to the increase of carrier concentration and the improvement in crystallinity. Though the Seebeck coefficient decreases after Cu doped, the ZT value increases from 0.11 to 0.43 with higher electrical conductivity and lower thermal conductivity at room-temperature. The temperature-dependent of ZT value is estimated to be ∼1.35 for the thin film with Zn{sub 4}Sb{sub 3} phase by using the bulk lattice thermal conductivity together with the thin film electrical thermal conductivity. - Highlights: • Cu doped ZnSb thin films were deposited by direct current magnetron co-sputtering. • The ZT value increases from 0.11 to 0.43 after Cu-doped at room-temperature. • The ZT estimates to be ∼1.35 at 623 K for the Cu-doped thin film with Zn{sub 4}Sb{sub 3} phase.

  3. Monte Carlo Simulations of Mode Dependent Phonon Transport in Nanostructured Thermoelectric Materials

    Science.gov (United States)

    Hori, Takuma; Shiomi, Junichiro

    2013-03-01

    Nanostructuring are efficient process to lower the lattice thermal conductivity and thus enhance thermoelectric performance of semiconducting materials. Here, detailed knowledge of phonon transport properties in the nanostructures is needed for prediction of performance and/or optimization of structures. The approach to solve the linearized phonon Boltzmann transport equations stochastically by Monte Carlo method has been demonstrated to be useful to obtain phonon transport properties in mesoscale and complex structures. In this study, we have performed the Monte Carlo simulations to investigate phonon transport properties in nanostructured thermoelectric materials. With the mode-dependent bulk phonon transport properties obtained by first-principles-based calculations, the Monte Carlo simulations are performed to investigate the influence of nanostructure length-scales on the mode-dependent lattice thermal conductivity and its sensitivity to interfacial phonon transmission. This work is partially supported by the Japan Society for the Promotion of Science and JST PRESTO.

  4. Preparation of bismuth telluride based thermoelectric nanomaterials via low-energy ball milling and their property characterizations

    Science.gov (United States)

    Robinson, Christopher A.

    Thermoelectric materials are able to convert energy between heat and electricity with no moving parts, making them very appealing for power generation purposes. This is particularly appealing since many forms of energy generation lose energy to waste heat. The Livermore National Laboratory estimates that up to 55% of the energy created in traditional power plants is lost through heat generation [1]. As greenhouse gas emissions become a more important issue, large sources of waste like this will need to be harnessed. Adoption of these materials has been limited due to the cost and efficiency of current technology. Bismuth telluride based alloys have a dimensionless figure of merit, a measure of efficiency, near one at room temperature, which makes it the best current material. In order to compete with other forms of energy generation, this needs to be increased to three or higher [2]. Recently, improvements in performance have come in the form of random nanostructured materials [3]. Bulk bismuth telluride is subjected to particle size reduction via high-energy ball milling in order to scatter phonons between grains. This reduces the lattice thermal conductivity which in turn increases the performance of the material. In this work, we investigate the use of low-energy ball milling as a method of creating nanoparticles of n-type and p-type Bi2Te3 alloys for thermoelectric applications. Optimization of parameters such as milling containers, milling media, contamination and milling time has resulted in creating 15nm particles of bismuth telluride alloys. After creating solid pellets of the resulting powders via hot pressing, the material's thermal and electrical conductivities as well as Seebeck coefficients were measured. The ZT of n-type Bi2Te2.7Se3 created using this method is 0.32, while the p-type Bi0.5Sb1.5Te3 exhibits a higher ZT of 1.24, both at room temperature.

  5. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    . The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between......Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...

  6. Investigation of aluminum heat sink design with thermoelectric generator

    Science.gov (United States)

    Mohiuddin, A. K. M.; Yazid Ameer, Muhammad; Rahman, Ataur; Khan, Ahsan Ali

    2017-03-01

    This paper presents an investigation of aluminium heat sink designs with thermoelectric generator. Basically, for thermoelectric generator (Peltier module), the thermal conversion uses Peltier effect. Two heat sinks with different design, with thermoelectric module of Bismuth Telluride, Bi 2 Te 3 were used in this investigation. The simulation and experimental studies were conducted with two different heat sinks attached with thermoelectric generator (TEG). System modelling was used to collect data and to predict the behaviour and performance of thermoelectric modules. Experiment was conducted in exhaust system at muffler section since the temperature at muffler section meets the requirement of thermoelectric generator.The result of the experiments shows that rectangular fin heat sink is more efficient in heat transfer compared to circular tube fin heat sink due to its geometry and properties.

  7. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach......-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials....

  8. First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4

    Science.gov (United States)

    Khan, Amin; Ali, Zahid; Khan, Imad; Ahmad, Iftikhar

    2017-12-01

    Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke-Johnson, and spin-orbit coupling (GGA-SOC) exchange-correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

  9. Thermoelectrics and its energy harvesting

    National Research Council Canada - National Science Library

    Rowe, David Michael

    2012-01-01

    .... It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material...

  10. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  11. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  12. Thermoelectric elastomer fabricated using carbon nanotubes and nonconducting polymer

    Science.gov (United States)

    Choi, Jeong-Hun; Hyun, Cheol-Min; Jo, Hyunjin; Son, Ji Hee; Lee, Ji Eun; Ahn, Ji-Hoon

    2017-09-01

    The electrical and thermoelectric properties of an organic elastomer composite composed of carbon nanotubes (CNTs) and a nonconductive polymer were systemically investigated as a function of CNT content. As the CNT content of the poly(dimethylsiloxane) (PDMS) matrix increased, the electrical conductivity increased remarkably (by about 250 times) without a large increase in the thermal conductivity, which could lead to significant improvement in the ZT value. Moreover, the Seebeck coefficient was also enhanced by increasing the CNT content. Consequently, the ZT value was effectively increased by a small increase in the quantity of CNTs in the nonconductive polymer matrix.

  13. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  14. Notes on Computational Methodology and Tools of Thermoelectric Energy Systems

    DEFF Research Database (Denmark)

    Chen, Min; Bach, Inger Palsgaard; Rosendahl, Lasse

    2007-01-01

    The SPICE model allows the concurrent simulation of thermoelectric devices and application electric sub-models. It is an important step to implement the thermoelectric modeling at the system level. In this paper, temperature dependent material properties in the SPICE model, temperature and heat f...

  15. A recommendation engine for suggesting unexpected thermoelectric chemistries

    OpenAIRE

    Michael W. Gaultois; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Gregory J. Mulholland; Meredig, Bryce

    2015-01-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavo...

  16. WS2 as an excellent high-temperature thermoelectric material

    KAUST Repository

    Gandi, Appala

    2014-11-25

    The potential of WS2 as a thermoelectric material is assessed. The electronic contribution to the thermoelectric properties is calculated within the constant relaxation time approximation from the electronic band structure, whereas the lattice contribution is evaluated using self-consistently calculated phonon lifetimes. In addition, the dependence of the lattice thermal conductivity on the mean free path of the phonons is determined.

  17. Thermoelectric Properties of Texture-Controlled (GeTe) x (AgSbTe2)100-x (x = 75, 80, 85, and 90) Alloys Fabricated by Gas-Atomization and Hot-Extrusion Processes

    Science.gov (United States)

    Kim, Hyo-Seob; Dharmaiah, Peyala; Hong, Soon-Jik

    2017-11-01

    In this study, p-type (GeTe) x (AgSbTe2)100-x : TAGS-x (where x = 75, 80, 85, and 90) thermoelectric materials were fabricated by a combination of gas atomization and a hot-extrusion process, and the effects of chemical composition on microstructure, thermoelectric, and mechanical properties were investigated. The extruded samples exhibited higher relative densities (> 99%), and a significant orientation degree parallel to the extrusion direction with fine and homogeneous microstructure was observed. The hardness of extruded samples was around 200-260 kgf/mm2, which indicates that they have much better mechanical properties than most other TE materials. The power factor of the extruded samples showed excellent values; the maximum power factor achieved was 3.81 × 10-3 W/mK2 for TAGS-90 at 723 K due to an effective combination of the Seebeck coefficient and electrical conductivity.

  18. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks.

    Science.gov (United States)

    Ortega, Silvia; Ibáñez, Maria; Liu, Yu; Zhang, Yu; Kovalenko, Maksym V; Cadavid, Doris; Cabot, Andreu

    2017-06-19

    The conversion of thermal energy to electricity and vice versa by means of solid state thermoelectric devices is extremely appealing. However, its cost-effectiveness is seriously hampered by the relatively high production cost and low efficiency of current thermoelectric materials and devices. To overcome present challenges and enable a successful deployment of thermoelectric systems in their wide application range, materials with significantly improved performance need to be developed. Nanostructuration can help in several ways to reach the very particular group of properties required to achieve high thermoelectric performances. Nanodomains inserted within a crystalline matrix can provide large charge carrier concentrations without strongly influencing their mobility, thus allowing to reach very high electrical conductivities. Nanostructured materials contain numerous grain boundaries that efficiently scatter mid- and long-wavelength phonons thus reducing the thermal conductivity. Furthermore, nanocrystalline domains can enhance the Seebeck coefficient by modifying the density of states and/or providing type- and energy-dependent charge carrier scattering. All these advantages can only be reached when engineering a complex type of material, nanocomposites, with exquisite control over structural and chemical parameters at multiple length scales. Since current conventional nanomaterial production technologies lack such level of control, alternative strategies need to be developed and adjusted to the specifics of the field. A particularly suitable approach to produce nanocomposites with unique level of control over their structural and compositional parameters is their bottom-up engineering from solution-processed nanoparticles. In this work, we review the state-of-the-art of this technology applied to the thermoelectric field, including the synthesis of nanoparticles of suitable materials with precisely engineered composition and surface chemistry, their combination

  19. n-type doping through tethered functionality: a new paradigm for molecular design of solution-processed organic thermoelectrics

    Science.gov (United States)

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.; Perry, Erin E.; Urban, Jeffrey J.; Chabinyc, Michael L.; Hawker, Craig J.; Segalman, Rachel A.

    2015-03-01

    A scarcity of stable n-type doping mechanisms compatible with facile processing has been a major impediment to the advancement of n-type (electron transporting) organic thermoelectric materials. We recently demonstrated that trimethylammonium functionalization with hydroxide counterions, tethered to a perylene diimide core by alkyl spacers, facilitated solution-processing and resulted in extremely high carrier concentrations (1020carriers/cm3) and best-in-class thermoelectric performance in thin films. In this presentation, we report our recent findings on the underlying mechanism enabling charge carrier generation in these self-doping materials and its influence on material thermoelectric behavior. To draw these conclusions, we complement thermoelectric characterization with insights into chemical, electronic, and structural properties from XPS, optical spectroscopy, EPR, and GIWAXS experiments. Furthermore, we show that doping through tethered functionality can be extended to other n-type small molecule systems of interest, including naphthalene diimides and diketopyrrolopyrroles. Our findings help shape promising molecular design strategies for future enhancements in n-type thermoelectric performance.

  20. Effect of microstructure on the thermoelectric performance of La{sub 1−x}Sr{sub x}CoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Viskadourakis, Z. [Crete Center for Quantum Complexity and Nanotechnology, University of Crete, P.O. Box 2208, GR7-1003 Heraklion (Greece); Department of Mechanical and Manufacturing Engineering, University of Cypruss, 75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia (Cyprus); Athanasopoulos, G.I. [Department of Mechanical and Manufacturing Engineering, University of Cypruss, 75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia (Cyprus); Kasotakis, E. [Department of Materials Science and Technology, University of Crete, P.O. Box 2208, GR7-1003 Heraklion (Greece); Giapintzakis, J. [Department of Mechanical and Manufacturing Engineering, University of Cypruss, 75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2016-11-15

    We present a case where the microstructure has a profound effect on the thermoelectric properties of oxide compounds. Specifically, we have investigated the effect of different sintering treatments on La{sub 1−x}Sr{sub x}CoO{sub 3} samples synthesized using the Pechini method. We found that the samples, which are dense and consist of inhomogeneously-mixed grains of different size, exhibit both higher Seebeck coefficient and thermoelectric figure of merit than the samples, which are porous and consist of grains with almost identical size. The enhancement of Seebeck coefficient in the dense samples is attributed to the so-called “energy-filtering” mechanism that is related to the energy barrier of the grain boundary. On the other hand, the thermal conductivity for the porous compounds is significantly reduced in comparison to the dense compounds. It is suggested that a fine-manipulation of grain size ratio combined with a fine-tuning of porosity could considerably enhance the thermoelectric performance of oxides. - Graphical abstract: The enhancement of the dimensionless thermoelectric figure ZT of merit is presented for two equally Sr-doped LaCoO3 compounds, possessing different microstructure, indicating the effect of the latter to the thermoelectric performance of the La{sub 1−x}Sr{sub x}CoO{sub 3} solid solution. - Highlights: • Electrical and thermal transport properties are affected by the microstructure in La{sub 1−x}Sr{sub x}CoO{sub 3} polycrystalline materials. • Coarse/fine grain size distribution enhances the Seebeck coefficient. • Porosity reduces the thermal conductivity in La{sub 1−x}Sr{sub x}CoO{sub 3} polycrystalline samples. • The combination of large/small grain ratio distribution with the high porosity may result to the enhancement of the thermoelectric performance of the material.

  1. Thermoelectric properties of c-GeSb{sub 0.75}Te{sub 0.5} to h-GeSbTe{sub 0.5} thin films through annealing treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Vora-ud, Athorn, E-mail: athornvora-ud@snru.ac.th [Program of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Mueang District, Sakon Nakhon 47000 (Thailand); Thermoelectrics Research Center, Research and Development Institution, Sakon Nakhon Rajabhat University, Mueang District, Sakon Nakhon 47000 (Thailand); Horprathum, Mati, E-mail: mati.horprathum@nectec.or.th [National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Eiamchai, Pitak [National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Muthitamongkol, Pennapa; Chayasombat, Bralee; Thanachayanont, Chanchana [National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Pankiew, Apirak [National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Klamchuen, Annop [National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Naenkieng, Daengdech; Plirdpring, Theerayuth; Harnwunggmoung, Adul [Thermoelectric and Nanotechnology Research Center, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Huntra Phranakhon, Si Ayutthaya 13000 (Thailand); Charoenphakdee, Anek [NANO-Thermoelectrics Research Center, Division of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Mueng Nakorn Ratchasima 30000 Thailand (Thailand); Somkhunthot, Weerasak [Program of Physics, Faculty of Science and Technology, Loei Rajabhat University, Muang District, Loei 42000 (Thailand); and others

    2015-11-15

    Germanium–Antimony–Tellurium (Ge–Sb–Te) thin films were deposited on silicon wafers with 1-μm silicon dioxide (SiO{sub 2}/Si) by pulsed dc magnetron sputtering from a 99.99% GeSbTe target of 1:1:1 ratio at ambient temperature. The samples were annealed at 573, 623, 673, and 723 K for 3600 s in a vacuum state. The effects of the annealing treatment on phase identification, atomic composition, morphology and film thickness, carrier concentration, mobility, and Seebeck coefficient of the Ge–Sb–Te samples have been investigated by grazing-incidence X-ray diffraction, auger electron spectroscopy, field-emission scanning electron microscopy, Hall-effect measurements, and steady state method, respectively. The results demonstrated that the as-deposited Ge–Sb–Te sample was amorphous. Atomic composition of as-deposited and annealed films at 573 K and 623 K were GeSb{sub 0.75}Te{sub 0.5} while annealed films at 673 K and 723 K were GeSbTe{sub 0.5} due to Sb-rich GeSb{sub 0.75}Te{sub 0.5}. The samples annealed at 573 K and 623 K showed the crystal phases of cubic structure (c-GeSb{sub 0.75}Te{sub 0.5}) into hexagonal structure (h-GeSbTe{sub 0.5}) after annealing at 673 K and 723 K. The study demonstrated the insulating condition from the as-deposited GeSbTe film, and the changes towards the thermoelectric properties from the annealing treatments. The GeSbTe films annealed at 673 K yielded excellent thermoelectric properties with the electrical resistivity, Seebeck coefficient, and power factor at approximately 1.45 × 10{sup −5} Ωm, 71.07 μV K{sup −1}, and 3.48 × 10{sup −4} W m{sup −1} K{sup −2}, respectively. - Highlights: • GeSbTe thin films were successfully sputtered for thermoelectric properties. • GeSbTe films were examined among physical, electrical and thermoelectric properties. • Thermoelectric properties were discussed based on composition of the films.

  2. Preparation and optimization of thermoelectric properties of Bi2Te3 based alloys using the waste particles as raw materials from the cutting process of the zone melting crystal rods

    Science.gov (United States)

    Xiang, Qiusheng; Fan, Xi'an; Han, Xuewu; Zhang, Chengcheng; Hu, Jie; Feng, Bo; Jiang, Chengpeng; Li, Guangqiang; Li, Yawei; He, Zhu

    2017-12-01

    The p-type Bi2Te3 alloys were prepared using the waste particles from the cutting process of the zone melting crystal rods as the main raw materials by impurity removal process including washing, carbon monoxide reduction and vacuum metallurgical process. The thermoelectric properties of the Bi2Te3 based bulk materials were optimized by component adjustment, second smelting and resistance pressing sintering (RPS) process. All evidences confirmed that most of impurities from the line cutting process and the oxidation such as Sb2O3, Bi2O3 and Bi2Te4O11 could be removed by carbon monoxide reduction and vacuum metallurgical process adopted in this work, and the recycling yield was higher than 97%. Appropriate component adjustment treatment was used to optimize the carrier content and corresponding thermoelectric properties. Lastly, a Bi0.36Sb1.64Te3 bulk was obtained and its power factor (PF) could reach 4.24 mW m-1 K-2 at 300 K and the average PF value was over 3.2 mW m-1 K-2 from 300 K to 470 K, which was equivalent with the thermoelectric performance of the zone melting products from high purity elements Bi, Te and Sb. It was worth mentioning that the recovery process introduced here was a simple, low-cost, high recovery rate and green recycling technology.

  3. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge{sub 0.94}Pb{sub 0.01}Bi{sub 0.05}Te composite

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Sude; Zeng, Hao; Zhang, Changxing; Liu, Chun; Xu, Qian [Xihua Univ., Chengdu (China). Center for Advanced Materials and Energy; Zhang, Jianjun [Xihua Univ., Chengdu (China). School of Materials Science and Engineering

    2017-11-01

    In times of industrialization, much low temperature waste heat is released and no viable technology exists which can produce electricity from this low energy density heat. So the long sought-after class thermoelectric (TE) material which directly achieves conversion between thermal and electrical energy obtains much attention. However, the traditional TE materials are alloys of inorganic materials and expensive, and most of them have some level of toxicity, so the research on organic TE materials is very important. The polyaniline (PANI, i. e., a conducting polymer) and PANI matrix Ge{sub 0.94}Pb{sub 0.01}Bi{sub 0.05}Te composite material were prepared. The chemical structure, microstructure and thermoelectric properties were investigated by FTIR, XRD, SEM and ZEM. Results showed that the molecule chains in the PANI were not ranged very neatly, and Ge{sub 0.94}Pb{sub 0.01}Bi{sub 0.05}Te in the composite material formed interconnected network as 20 wt.-% Ge{sub 0.94}Pb{sub 0.01}Bi{sub 0.05}Te was added. Power factor of the composite material increased greatly while its ZT was almost two times of PANI. The addition of Ge{sub 0.94}Pb{sub 0.01}Bi{sub 0.05}Te was an effective method to increase the thermoelectric properties of PANI.

  4. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPb{sub m}BiTe{sub 2+m} (BLST-m)

    Energy Technology Data Exchange (ETDEWEB)

    Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Schmitz, Andreas [Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany); Hartung, David; Klar, Peter J. [Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Dankwort, Torben; Kienle, Lorenz [Institute for Material Science, Christian-Albrechts-University, Kaiserstrasse 2, D-24143 Kiel (Germany); Mueller, Eckhard, E-mail: Eckhard.Mueller@dlr.de [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany)

    2016-06-07

    We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  5. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors; Thermoelektrische Eigenschaften duenner Schichten und Uebergitterstrukturen von IV-VI- und V-VI-Verbundhalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Blumers, Mathias

    2012-02-29

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S{sup 2}.{sigma}/k, where S is the Seebeck-coefficient, {sigma} is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb{sub 1-x}Sr{sub x}Te and Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3}, respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, {sigma} and {kappa} parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,{sigma},{kappa}) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  6. Thermoelectric properties of unoxidized graphene/Bi{sub 2}Te{sub 2.7}Se{sub 0.3} composites synthesized by exfoliation/re-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Il; Lee, Eun Sil; Kim, Jong-Young [Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Gyeonggi-do (Korea, Republic of); Choi, Soon-Mok [School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of); Lee, Kyu Hyoung [Materials R and D Center, Samsung Advanced Institute of Technology, Yongin (Korea, Republic of); Seo, Won-Seon [Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Seoul (Korea, Republic of)

    2014-04-15

    Nanocomposites of n-type thermoelectric Bi{sub 2}Te{sub 2.7}Se{sub 0.3} (BTS) and unoxidized graphene (UG) were prepared from the exfoliated BTS and UG nanoplatelets. Polycrystalline BTS ingots were exfoliated into nanoscroll-type crystals by chemical exfoliation, and were re-assembled with UG nanoplatelets. The composites were chemically reduced by hydrazine hydrate and sintered by a spark-plasma-sintering method. The thermoelectric properties of the sintered composites were evaluated and exhibited decreased carrier concentration and increased thermal conductivity due to the embedded graphene. The peak ZT values for the UG/BTS-US and UG/BTS-EX composites were ∝0.8 at the UG concentration of 0.05 wt%. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3

    Science.gov (United States)

    Benedict, Christopher J.; Rao, Ashok; Sanjeev, Ganesh; Okram, G. S.; Babu, P. D.

    2016-01-01

    In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO3 cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation.

  8. Processing effects on the thermoelectric properties of Bi{sub 2}Ca{sub 2}Co{sub 1}.7O{sub x} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rasekhi, S. H.; Constantinescu, G.; Madre, M. A.; Torres, M. A.; Diez, J. C.; Sotelo, A.

    2014-07-01

    Bi{sub 2}Ca{sub 2}Co{sub 1}.7O{sub x} bulk polycrystalline ceramics were prepared by the solid state method and by directional growth. Moreover, the effect of annealing on the textured materials has been studied. Microstructure has shown randomly oriented grains in the classical sintered materials while in the textured samples those were well oriented with their c-axis nearly perpendicular to the growth direction. Furthermore, the textured-annealed samples showed much lower amount of secondary phases than the as-grown ones. These microstructural changes are reflected on the thermoelectric properties which increase with the grain orientation and with the decrease on the secondary phase content mainly due to the electrical resistivity reduction. As a consequence, a raise on the power factor of about 6 and 9 times, compared with the classically sintered samples, was obtained for the as-grown and textured-annealed ones, respectively. The maximum power factor obtained at 650 degree centigrade in the textured-annealed samples (∼0.31 mW/K{sup 2}m) is about 50 % higher, at the same temperature, than the obtained in one of the most used methods for texturing this kind of materials, the sinter-forging process. (Author)

  9. Thermoelectric properties of p-type sb-doped Cu2SnSe3 near room and mid temperature applications

    Science.gov (United States)

    Prasad, K. Shyam; Rao, Ashok; Chauhan, Nagendra S.; Bhardwaj, Ruchi; Vishwakarma, Avinash; Tyagi, Kriti

    2018-02-01

    In this study, we report low and mid temperature range thermoelectric properties of Sb-substituted Cu2SnSe3 compounds. The Cu2Sn1- x Sb x Se3 (0 ≤ x ≤ 0.04) alloys were prepared using conventional solid-state reaction followed by spark plasma sintering. The crystal structure was characterized using XRD and it reveals that all the samples exhibit cubic structure with space group -4/3m. The electrical transport characteristics indicate degenerate semiconducting behavior. Electrical resistivity was found to follow small polaron hopping (SPH) model in the entire temperature range of investigation. The Seebeck coefficient data reveals that the majority of charge carriers are holes and the analysis of Seebeck coefficient data gives negative values of Fermi energy indicating that the Fermi energy is below the edge of valence band. The electronic contribution ( κ e) for total thermal conductivity is found to be less than 1%. The maximum ZT value of 0.64 is observed for the sample with x = 0.03 (at 700 K) which is approximately 2.3 times that of the pristine sample.

  10. Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites

    Science.gov (United States)

    Hassan, M.; Arshad, I.; Mahmood, Q.

    2017-11-01

    We report the structural, electronic, optical and thermoelectric (TE) properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites as a function of X cations belonging to the group IIA. The computations are done by using the most recently introduced modified Becke–Johnson potential. It has been observed that the cubic lattice constant increases as the cations change from Ca to Ba, consequently, the bulk modulus reduces. The bottom of conduction band shows strong hybridization between Pb-6p, O-2p and X-s states, in contrast, valence band maxima are mainly manufactured by Pb-6p states. The anti-perovskites exhibit narrow direct band gap that show an inverse relation to the static real dielectric constants that verifies Penn’s model. In addition, the X cations induced tuning of the absorption edge in the visible and the ultraviolet energy suggest optical device applications. The computed TE parameters have been found sensitive to the X cations and have been demonstrated to be best suited for the TE devices operating at high temperatures.

  11. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique

    Science.gov (United States)

    Hosokawa, Yuichi; Wada, Kodai; Tanaka, Masaki; Tomita, Koji; Takashiri, Masayuki

    2018-02-01

    High-purity hexagonal bismuth telluride (Bi2Te3) nanoplates were prepared by a solvothermal synthesis method, followed by the fabrication of nanoplate thin films by the drop-casting technique. The Bi2Te3 nanoplates exhibited a single-crystalline phase with a rhombohedral crystal structure. The nanoplates had a flat surface with edge sizes ranging from 500 to 2000 nm (average size of 1000 nm) and a thickness of less than 50 nm. The resulting Bi2Te3 nanoplate thin films were composed of well-aligned hexagonal nanoplates along the surface direction with an approximate film thickness of 40 µm. To tightly connect the nanoplates together within the thin films, thermal annealing was performed at different temperatures. We found that the thermoelectric properties, especially the Seebeck coefficient, were very sensitive to the annealing temperature. Finally, the optimum annealing temperature was determined to be 250 °C and the Seebeck coefficient and power factor were ‑300 µV/K and 3.5 µW/(cm·K2), respectively.

  12. Thermoelectric and spincaloric properties of epitaxial LaNiO{sub 3}/SrTiO{sub 3} superlattices from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Benjamin [FRM II, Technische Universitaet Muenchen, Garching (Germany); Fakultaet fuer Physik, Universitaet Duisburg-Essen, Duisburg (Germany); Blanca-Romero, Ariadna [Imperial College, London (United Kingdom); Pentcheva, Rossitza [Fakultaet fuer Physik, Universitaet Duisburg-Essen, Duisburg (Germany)

    2016-07-01

    Modern layer-by-layer fabrication techniques make it possible to grow epitaxial oxide superlattices with atomic precision. By combining accurate DFT+U calculations to determine the atomic and electronic structure and Boltzmann transport theory we show how a targeted design of the interface composition can be used to optimize the thermoelectric and/or spincaloric properties of LaNiO{sub 3}/SrTiO{sub 3}(001) superlattices. A TiO{sub 2}/LaO interface induces n-type doping, and a (potentially highly spin-polarized) charge current arises solely in-plane in the NiO{sub 2} layers. The out-of-plane resistance is high, since the SrTiO{sub 3} layers act as tunneling barriers. In contrast, a NiO{sub 2}/SrO interface leads to p-type doping. In this case, also the valence band of SrTiO{sub 3} contributes to the transmission, thereby reducing the out-of-plane resistance significantly. Besides this doping effect we find that the interface composition influences the electronic band structure, which leads to a nontrivial behavior of the Seebeck coefficient. Funding by the DFG within TRR 80 (G3 and G8) is acknowledged.

  13. Investigation of the Microstructure and Thermoelectric Properties of P-Type BiSbTe Alloys by Usage of Different Revolutions Per Minute (RPM During Mechanical Milling

    Directory of Open Access Journals (Sweden)

    Yoon S.-M.

    2017-06-01

    Full Text Available In this work, p-type Bi0.5Sb1.5Te3 alloys were fabricated by high-energy ball milling (MA and spark plasma sintering. Different revolutions per minute (RPMs were used in the MA process, and their effect on microstructure, and thermoelectric properties of p-type Bi0.5Sb1.5Te3 were systematically investigated. The crystal structure of milled powders and sintered samples were characterized using X-ray diffraction. All the powders exhibited the same morphology albeit with slight differences find at 1100 RPM conditions. A slight grain size refinement was observed on the fracture surfaces from 500 to 1100 RPM specimens. The temperature dependence of Seebeck coefficient, electrical conductivity, and power factors were measured as a function of temperature with different RPM conditions. The power factor shows almost same (~3.5 W/mK2 at RT for all samples due to unchanged Seebeck and electrical conductivity values. The peak ZT of 1.07 at 375K is obtained for 1100 RPM specimen due to low thermal conductivity.

  14. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag 8 SiSe 6

    Energy Technology Data Exchange (ETDEWEB)

    Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar; Day, Tristan W.; Zeier, Wolfgang G.; Kolb, Ute; Snyder, G. Jeffrey; Tremel, Wolfgang (JLU); (NWU); (JG-UM)

    2017-05-26

    Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag8SiSe6, which exhibits promising thermoelectric performance close to room temperature.

  15. Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4

    Directory of Open Access Journals (Sweden)

    Ch. Raju

    2013-03-01

    Full Text Available Quaternary chalcogenide compounds Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15 were prepared by solid state synthesis. Rietveld powder X-ray diffraction (XRD refinements combined with Electron Probe Micro Analyses (EPMA, WDS-Wavelength Dispersive Spectroscopy and Raman spectra of all samples confirmed the stannite structure (Cu2FeSnS4-type as the main phase. In addition to the main phase, small amounts of secondary phases like ZnSe, CuSe and SnSe were observed. Transport properties of all samples were measured as a function of temperature in the range from 300 K to 720 K. The electrical resistivity of all samples decreases with an increase in Cu content except for Cu2.1ZnSn0.9Se4, most likely due to a higher content of the ZnSe. All samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was high compared to Cu2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.3 at 720 K occurs for Cu2.05ZnSn0.95Se4 for which a high-pressure torsion treatment resulted in an enhancement of zT by 30% at 625 K.

  16. The effect of Cr substitution on the structure and properties of misfit-layered Ca{sub 3}Co{sub 4−x}Cr{sub x}O{sub 9+δ} thermoelectric oxides

    Energy Technology Data Exchange (ETDEWEB)

    Prasoetsopha, Natkrita [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Pinitsoontorn, Supree, E-mail: psupree@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen University, Khon Kaen 40002 (Thailand); Kurosaki, Ken; Ohishi, Yuji; Muta, Hiroaki; Yamanaka, Shinsuke [Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-03-05

    Highlights: • The effect of Cr doping in Ca{sub 3}Co{sub 4−x}Cr{sub x}O{sub 9+δ} on thermoelectric properties was studied. • XANES and XPS spectra confirm charge states of +3.5 and >+4.5 for Cr ion. • Thermoelectric variation was due to charge states and ionic radii of Co and Cr ions. • The highest ZT of 0.19 at 1073 K was obtained for the Ca{sub 3}Co{sub 3.85}Cr{sub 0.15}O{sub 9+δ} sample. -- Abstract: Misfit-layered Ca{sub 3}Co{sub 4−x}Cr{sub x}O{sub 9+δ} (0 ⩽ x ⩽ 0.2) powders were synthesized by a simple thermal hydro-decomposition method and then fabricated to form highly dense ceramics using spark plasma sintering. X-ray diffraction, and a field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer were used to verify the single phase of Ca{sub 3}Co{sub 4}O{sub 9+δ} for the samples with x = 0, 0.05, 0.10 and 0.15. The characteristic plate-like grain structure was observed. The chemical composition of the fabricated samples was found to be close to nominal composition. The thermoelectric measurement showed that Cr doping has an influence on the thermoelectric properties. The resistivity and the Seebeck coefficient increased while the thermal conductivity was suppressed when Cr was added into the system. Explanation of the change in thermoelectric properties was discussed regarding the difference in the charge states and the ionic radii between Co and Cr ions. The highest ZT of 0.19 at 1073 K was obtained for the Ca{sub 3}Co{sub 3.85}Cr{sub 0.15}O{sub 9+δ} sample. In addition, the paramagnetic property was observed in all samples at room temperature.

  17. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Directory of Open Access Journals (Sweden)

    Priyanka Jood

    2015-03-01

    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  18. Mastering languages with different rhythmic properties enhances musical rhythm perception

    NARCIS (Netherlands)

    Roncaglia-Denissen, M.Paula; Roor, Drikus; Chen, A.; Sadakata, Makiko

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and

  19. Complex oxides useful for thermoelectric energy conversion

    Science.gov (United States)

    Majumdar, Arunava [Orinda, CA; Ramesh, Ramamoorthy [Moraga, CA; Yu, Choongho [College Station, TX; Scullin, Matthew L [Berkeley, CA; Huijben, Mark [Enschede, NL

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  20. Study of IC Compatible On-Chip Thermoelectric Coolers

    Science.gov (United States)

    Kong, Seong-Ho; Wijngaards, Davey D. L.; Wolffenbuttel, Reinoud F.

    2005-07-01

    A thin-film-based thermoelectric micro-cooler has been studied and realized using the standard integrated circuit (IC) fabrication technology and bulk micromachining technology in sequence. The whole fabrication process is kept IC compatible by postponing potassium hydroxide (KOH) etching step to the last part of the fabrication sequence. Considering the fabrication compatibility, polycrystalline silicon germanium (polySiGe) is chosen as thermoelectric material even though bismuth telluride (Bi2Te3) is one of the most effective thermoelectric materials. The influence of non-idealities on device performance, such as Joule heating due to contact resistance and parasitic heat loss through supporting membrane, is analyzed. The characterized thermoelectric, thermal and electric properties of the fabricated polySiGe thermoelectric material correspond well to those from literatures. Measured cooling performance demonstrates that an on-chip micro-cooler can be applied for thermal stabilization near ambient temperature.

  1. Electrical, magnetic, thermal and thermoelectric properties of the 'Bergman phase' Mg{sub 32}(Al,Zn){sub 49} complex metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Smontara, A. [Institute of Physics, Bijenicka 46, P.O. Box 304, HR-10001 Zagreb (Croatia); Smiljanic, I. [Institute of Physics, Bijenicka 46, P.O. Box 304, HR-10001 Zagreb (Croatia); Bilusic, A. [Institute of Physics, Bijenicka 46, P.O. Box 304, HR-10001 Zagreb (Croatia); Faculty of Natural Sciences, Mathematics and Education, Teslina 12, HR-21000 Split (Croatia); Jaglicic, Z. [Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana (Slovenia); Klanjsek, M. [J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia); Roitsch, S. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, Juelich D-52425 (Germany); Dolinsek, J. [J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)]. E-mail: jani.dolinsek@ijs.si; Feuerbacher, M. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, Juelich D-52425 (Germany)

    2007-03-14

    The Mg-Al-Zn system of intermetallics contains an exceptional crystalline phase Mg{sub 32}(Al,Zn){sub 49}, named the Bergman phase, whose crystal structure is based on a periodic arrangement of icosahedral Bergman clusters within the giant-unit-cell, so that periodic and quasiperiodic atomic orders compete in determining the physical properties of the material. We have investigated electrical, magnetic, thermal and thermoelectric properties of a monocrystalline Bergman phase sample of composition Mg{sub 29.4}(Al,Zn){sub 51.6}, grown by the Bridgman technique. Electrical resistivity is in the range {rho} {approx} 40 {mu}{omega} cm and exhibits positive-temperature-coefficient with T {sup 2} dependence at low temperatures and T at higher temperatures, resembling non-magnetic amorphous alloys. Magnetic susceptibility {chi} measurements revealed that the sample is a Pauli paramagnet with a significant Landau diamagnetic orbital contribution. The susceptibility exhibits a weak increase towards higher temperature. Combined analysis of the {rho}(T) and {chi}(T), together with the independent determination of the Pauli susceptibility via the NMR Knight shift suggests that the observed temperature dependence originates from the mean-free-path effect on the orbital susceptibility. The electronic density of states (DOS) at the Fermi energy E {sub F} was estimated by NMR and was found to amount 72% of the DOS of the fcc Al metal, with no evidence on the existence of a pseudogap. Thermal conductivity contains electronic, Debye and hopping of localized vibrations terms, whereas thermopower is small and negative. High structural complexity of the Bergman phase does not result in high complexity of its electronic structure.

  2. [Bi]:[Te] Control, Structural and Thermoelectric Properties of Flexible Bi x Te y Thin Films Prepared by RF Magnetron Sputtering at Different Sputtering Pressures

    Science.gov (United States)

    Nuthongkum, Pilaipon; Sakdanuphab, Rachsak; Horprathum, Mati; Sakulkalavek, Aparporn

    2017-11-01

    In this work, flexible Bi x Te y thin films were prepared by radio frequency (RF) magnetron sputtering using a Bi2Te3 target on polyimide substrate. The effects of sputtering pressures, which ranged between 0.6 Pa and 1.6 Pa on the [Bi]:[Te] ratio, and structural and thermoelectric properties were investigated. The [Bi]:[Te] ratio of thin film was determined by energy-dispersive spectrometry (EDS). The EDS spectra show the variation of the [Bi]:[Te] ratio as the sputtering pressure is varied. The film deposited at 1.4 Pa almost has a stoichiometric composition. The selective films with different [Bi]:[Te] ratios and sputtering pressures were characterized by their surface morphologies, crystal and chemical structures by field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) and Raman spectroscopy, respectively. Electrical transport properties, including carrier concentration and mobility, were measured by Hall effect measurements. Seebeck coefficients and electrical conductivities were simultaneously measured by a direct current four-terminal method (ZEM-3). The XRD and Raman spectroscopy results show a difference in microstructure between BiTe and Bi2Te3 depending on the [Bi]:[Te] ratio. Electrical conductivity and Seebeck coefficient are related to the crystal and chemical structures. The maximum power factor of the Bi2Te3 thin film is 9.5 × 10-4 W/K2 m at room temperature, and it increases to 12.0 × 10-4 W/K2 m at 195°C.

  3. Solar thermoelectric generators

    Science.gov (United States)

    1977-01-01

    The methods, the findings and the conclusions of a study for the design of a Solar Thermoelectric Generator (STG) intended for use as a power source for a spacecraft orbiting the planet Mercury are discussed. Several state-of-the-art thermoelectric technologies in the intended application were considered. The design of various STG configurations based on the thermoelectric technology selected from among the various technologies was examined in detail and a recommended STG design was derived. The performance characteristics of the selected STG technology and associated design were studied in detail as a function of the orbital characteristics of the STG in Mercury and throughout the orbit of Mercury around the sun.

  4. Influences of the Thomson Effect on the Performance of a Thermoelectric Generator-Driven Thermoelectric Heat Pump Combined Device

    Directory of Open Access Journals (Sweden)

    Yuanli Feng

    2018-01-01

    Full Text Available A thermodynamic model of a thermoelectric generator-driven thermoelectric heat pump (TEG-TEH combined device is established considering the Thomson effect and the temperature dependence of the thermoelectric properties based on non-equilibrium thermodynamics. Energy analysis and exergy analysis are performed. New expressions for heating load, maximum working temperature difference, coefficient of performance (COP, and exergy efficiency are obtained. The performance is analyzed and optimized using numerical calculations. The general performance, optimal performance, optimum variables, optimal performance ranges, and optimum variable ranges are obtained. The results show that the Thomson effect decreases the general performance and optimal performance, and narrows the optimal operating ranges and optimum variable ranges. Considering the Thomson effect, more thermoelectric elements should be allocated to the thermoelectric generator when designing the devices. The optimum design variables for the maximum exergy efficiency are different from those for the maximum COP. The results can provide more scientific guidelines for designing TEG-TEH devices.

  5. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  6. Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+ through heavy doping and metallic nanoinclusions

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    2011-01-01

    An effective way to improve the thermoelectric performance (ZT) of layered structured oxide materials by carefully choosing heavy ion doping and introducing metallic nanoinclusions is proposed. A p-type oxide material with remarkable highly improved ZT is successfully fabricated using this approach...

  7. Towards high efficiency segmented thermoelectric unicouples

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan; Christensen, Dennis Valbjørn; Snyder, Gerald Jeffrey

    2014-01-01

    of the theoretical efficiency of the best performing unicouples designed from segmenting the state-of-the-art TE materials. The efficiencies are evaluated using a 1D numerical model which includes all thermoelectric effects, heat conduction, Joule effects and temperature dependent material properties, but neglects...

  8. Emergence of thermoelectricity in Half Heusler topological semimetals with strain

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kulwinder, E-mail: kulwinderphysics@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Dhiman, Shobhna [Department of Applied Sciences, PEC University of Technology, Chandigarh 160012 (India); Kumar, Ranjan [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2017-01-30

    The band structure and thermoelectric properties of Half Heusler topological materials XPtBi (X = Sc,Y, Lu) have been investigated using density functional theory and semi-classical Boltzmann equations. At 5% strain, the band gap opens in all the materials but maximum band opens in LuPtBi and acts as thermoelectric materials. We have calculated the Seebeck coefficient, electrical conductivity, electronic thermal conductivity and lattice thermal conductivity of these materials. Thermoelectric properties at high temperature and lattice thermal conductivity of these materials are studied first time in this work. The thermoelectric performance of LuPtBi is high because of low lattice thermal conductivity as compared to ScPtBi and YPtBi. - Highlights: • LuPtBi is good thermoelectric material as compared to ScPtBi and YPtBi. • These materials open band gap at 5% strain. • Thermoelectric properties and lattice thermal conductivity of these materials are studied first time in this report. • These materials serve as thermoelectric materials at 5% strain.

  9. Enhancement of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for thermoelectric applications

    Science.gov (United States)

    Sabarinathan, M.; Omprakash, M.; Harish, S.; Navaneethan, M.; Archana, J.; Ponnusamy, S.; Ikeda, H.; Takeuchi, T.; Muthamizhchelvan, C.; Hayakawa, Y.

    2017-10-01

    The bismuth antimony telluride hierarchical nanostructures were synthesized by hydrothermal method using dodecanethiol as a capping agent. The flower like nanosheets with the length of 500-600 nm and thickness about 60-70 nm were obtained. XRD pattern confirmed that the formation of single phase BiSbTe3. The Raman spectroscopy measurement clearly revealed the vibration modes of BiSbTe3. The composition of synthesized compounds were homogeneous and it confirmed by energy dispersive X-ray spectroscopy (EDS). The maximum value of Seebeck coefficient and power factor were 171 μV/K and 74.78 μW/mK2, respectively for nanosheets which contains spherical shaped morphology at room temperature. The enhancement of Seebeck coefficient was due to energy dependent scattering of the charge carriers at the nanograin interfaces.

  10. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  11. Formal Verification of Security Properties of Privacy Enhanced Mail

    Science.gov (United States)

    1998-06-01

    AFRL-IF-RS-TR-1998-99 Final Technical Report June 1998 FORMAL VERIFICATION OF SECURITY PROPERTIES OF PRIVACY ENHANCED MAIL Syracuse University...AND DATES COVERED Final Jun 96 - Jul 97 4. TITLE AND SUBTITLE FORMAL VERIFICATION OF SECURITY PROPERTIES OF PRIVACY ENHANCED MAIL 6. AUTHOR

  12. Effects of varying indium composition on the thermoelectric properties of In{sub x}Ga{sub 1-x}Sb ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Kumar, V.; Hayakawa, Y. [Shizuoka University, Graduate School of Science and Technology, Hamamatsu (Japan); Shizuoka University, Research Institute of Electronics, Hamamatsu, Shizuoka (Japan); Arivanandan, M. [Anna University, Centre for Nanoscience and Technology, Chennai (India); Koyoma, T. [Shizuoka University, Research Institute of Electronics, Hamamatsu, Shizuoka (Japan); Udono, H. [Ibaraki University, Faculty of Engineering, Hitachi (Japan); Inatomi, Y. [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara (Japan); SOKENDAI (The Graduate University for Advanced Studies), School of Physical Sciences, Sagamihara (Japan)

    2016-10-15

    In{sub x}Ga{sub 1-x}Sb (x = 0-1), a III-V ternary alloy, was grown by melt solidification process. The effects of varying indium composition on the thermoelectric properties of In{sub x}Ga{sub 1-x}Sb polycrystals were studied for the first time. The segregations of indium and gallium elements were observed in the grown crystals, and the defects present in crystals were revealed by etching process. Room-temperature Raman measurement revealed that the dominant optical modes of phonon vibrations in InSb and GaSb binaries were suppressed in In{sub x}Ga{sub 1-x}Sb ternaries. The in-phase vibrations of acoustic mode phonons were scattered more effectively in In{sub x}Ga{sub 1-x}Sb by the present defects, and the relative value of lattice thermal conductivity was reduced. Thus, the thermal conductivity of InSb and GaSb binaries was drastically reduced in In{sub x}Ga{sub 1-x}Sb by alloy scattering. InSb indicated the highest ZT 0.51 because of its higher power factor 70 μW/cm K{sup 2}. Next to InSb, In{sub 0.8}Ga{sub 0.2}Sb had higher ZT value of 0.29 at 600 K among the In{sub x}Ga{sub 1-x}Sb ternaries. The ZT of In{sub 0.8}Ga{sub 0.2}Sb was increased about 30 times than that of GaSb by the increase of power factor as well as the decrease of thermal conductivity. (orig.)

  13. Thermoelectric properties of Sn- and Pb-doped Tl{sub 9}BiTe{sub 6} and Tl{sub 9}SbTe{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Quansheng; Chan, Meghan; Kuropatwa, Bryan A.; Kleinke, Holger, E-mail: kleinke@uwaterloo.ca [Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-11-14

    A variety of substitutions in Tl{sub 9}BiTe{sub 6} and Tl{sub 9}SbTe{sub 6} with Sn and Pb, amounting to 14 different samples, were performed by melting the stoichiometric amounts of elements at 923 K, followed by slow cooling. The pulverized powders were sintered using the hot-pressing technique. All samples were of single phase according to the powder X-ray diffraction patterns. Thermoelectric property measurements were performed to investigate the effects of Sn- and Pb-doping on the electrical conductivity, Seebeck coefficient, and thermal conductivity. Increasing the concentration of the dopants caused increases in electrical and thermal conductivity, while decreasing the Seebeck coefficient. Tl{sub 9}Bi{sub 0.90}Pb{sub 0.10}Te{sub 6} and Tl{sub 9}Bi{sub 0.85}Pb{sub 0.15}Te{sub 6} exhibited the highest power factor. The changes in lattice thermal conductivity were minor and did not follow a clear trend. Competitive ZT values were obtained for Tl{sub 9}Bi{sub 0.95}Sn{sub 0.05}Te{sub 6}, Tl{sub 9}Bi{sub 0.95}Pb{sub 0.05}Te{sub 6}, Tl{sub 9}Sb{sub 0.97}Sn{sub 0.03}Te{sub 6}, and Tl{sub 9}Sb{sub 0.95}Pb{sub 0.05}Te{sub 6}, namely 0.95, 0.94, 0.83, and 0.71 around 500 K, respectively. Higher dopant concentrations led to lower ZT values.

  14. Iron disulfide compound: a promising thermoelectric material

    Science.gov (United States)

    Harran, Ismail; Li, Yucai; Wang, Hongyan; Chen, Yuanzheng; Ni, Yuxiang

    2017-10-01

    As a promising material for thermoelectric devices and alternative energy applications, the electronic structures and thermoelectric properties of FeS2 with both pyrite (p-FeS2) and marcasite (m-FeS2) phases are systematically investigated by using the Boltzmann transport equation combined with ab initio calculations. By adopting a more precise hybrid functional for electronic calculations, the values of the band gap being close to the experimental values are obtained. A feature of narrow band gaps and dense electronic states near Fermi level supports the p-FeS2 and m-FeS2 as thermoelectric (TE) materials. The TE factors that depend on chemical potential, temperature, and hole-doping concentrations are calculated and discussed for the two phases. The m-FeS2 structure possesses superior TE property in both n-type and p-type regions. From the analysis of the effect of hole-doping concentrations and temperatures on TE properties in both structures, it is found that a high temperature and high hole-doping concentrations are helpful for improving the TE efficiency. The calculated power factors showed high values for both structures, which classified them as good thermoelectric materials.

  15. NATO Advanced Research Workshop on New Materials for Thermoelectric Applications

    CERN Document Server

    Hewson, Alex

    2013-01-01

    Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.

  16. Numerical analysis of the performance prediction for a thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Nyung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-09-15

    The present study develops a two-dimensional numerical code that can predict the performance of a thermoelectric generator module including a p-leg/n-leg pair and top and bottom electrodes. The present code can simulate the detailed thermoelectric phenomena including the heat flow, electric current, Joule heating, Peltier heating, and Thomson heating, together with the efficiency of the modules whose properties depend on the temperature. The present numerical code can be used for the design optimization of a thermoelectric power generator.

  17. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...

  18. Enhanced thermophysical properties via PAO superstructure

    National Research Council Canada - National Science Library

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-01-01

    .... However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticle...

  19. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  20. The effect of structural vacancies on the thermoelectric properties of (Cu₂Te){sub 1–x}(Ga₂Te₃)x

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zuxin; Young Cho, Jung; Tessema, Misle M. [Optimal Inc., Plymouth Township, MI 48170 (United States); Salvador, James R., E-mail: james.salvador@gm.com [GM Global R and D, Warren, MI 48090 (United States); Waldo, Richard A. [GM Global R and D, Warren, MI 48090 (United States); Wang, Hsin; Cai, Wei [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-05-01

    We have studied the effects of structural vacancies on the thermoelectric properties of the ternary compounds (Cu₂Te)1–x(Ga₂Te₃)x (x=0.5, 0.55, 0.571, 0.6, 0.625, 0.667 and 0.75), which are solid solutions found in the pseudo-binary phase diagram for Cu₂Te and Ga₂Te₃, and possesses tunable structural vacancy concentrations. This materials system is not suitable due to the cost and scarcity of the constituent elements, but the vacancy behavior is well understood and will provide a valuable test case for other systems more suitable from the standpoint of cost and abundance of raw materials, which also possesses these vacancy features, but whose structural characterization is lacking at this stage. We find that the nominally defect free phase CuGaTe₂ possess the highest ZT (ZT=S²T/ρκ, where S is the Seebeck coefficient and ρ is the electrical resistivity κ is the thermal conductivity and T is the absolute temperature) which approaches 1 at 840 K and seems to continuously increase above this temperature. This result is due to the unexpectedly low thermal conductivity found for this material at high temperature. The low thermal conductivity was caused by strong Umklapp (thermally resistive scattering processes involving three phonons) phonon scattering. We find that due to the coincidentally strong scattering of carriers by the structural defects that higher concentrations of these features lead to poor electrical transport properties and decreased ZT. - Graphical abstract: Thermal conductivity and zT as a function of temperature for a series of compounds of the type (Cu₂Te)1–x(Ga₂Te₃)x (x=0.5, 0.55, 0.571, 0.6, 0.625, 0.667 and 0.75). Highlights: • All the samples show p-type semiconducting behavior in the temperature dependence of the Seebeck and Hall coefficients. • The increased carrier concentration and the introduction of vacancies diminish the carrier mobility and power factor. • The low