WorldWideScience

Sample records for enhanced stretch formability

  1. Enhancement of tensile ductility and stretch formability of AZ31 magnesium alloy sheet processed by cross-wavy bending

    International Nuclear Information System (INIS)

    Huo, Qinghuan; Yang, Xuyue; Sun, Huan; Li, Bin; Qin, Jia; Wang, Jun; Ma, Jijun

    2013-01-01

    Highlights: •The AZ31 Mg alloy sheet is deformed to 4 passes at 673 K by cross-wavy bending. •A fine-grained microstructure and a weak and random texture are achieved. •Different softening mechanisms significantly affect the microstructure evolution. •The tensile ductility and stretch formability enhance dramatically. -- Abstract: The microstructure and texture evolution in the sheets of AZ31 magnesium alloy was studied by means of cross-wavy bending for 4 passes at 673 K. The bended samples were examined by optical microscopy and electron backscatter diffraction analysis. Finite element analysis suggested an inhomogeneous deformation at each pass. Following cross-wavy bending, a fine-grained microstructure with an average grain size of ∼8 μm and a weak and random basal texture were achieved. Accumulative effective strain was almost equal in the whole sheet at the end. Different work softening mechanisms significantly affected the evolution of the microstructure. Dynamic recovery played an important role during the first three bending passes whereas, in contrast, dynamic recrystallization dominated the evident grain refinement during the last pass. The tensile ductility and stretch formability of the 4-pass sheet at room temperature were distinctly enhanced compared to the initial sheet (1.55 and 2 times larger, respectively). These prominent increases were mainly attributed to texture randomizing rather than texture weakening alone

  2. Numerical Determination of Sheet Metal Formability under Simultaneous Stretching and Bending

    NARCIS (Netherlands)

    Martinez Lopez, A.; van den Boogaard, Antonius H.; Chinesta, Francisco; Chastel, Yvan; El Mansori, Mohamed

    2010-01-01

    The plastic behavior of AHSS is still far from being completely understood, and its prediction is of large importance in reliability of forming simulation in present automotive industry [1]. Conventional techniques have been proven to be not accurate enough, and underestimate the formability limits

  3. Study of The Effect of Draw-bead Geometry on Stretch Flange Formability

    Science.gov (United States)

    Orlov, O. S.; Winkler, S. L.; Worswick, M. J.; Lloyd, D. J.; Finn, M. J.

    2004-06-01

    A fully instrumented stretch flange press equipped with a back-up punch and draw-beads near the specimen cutout area is simulated. The utilization of different draw-bead geometries is examined numerically to determine the restraining forces, strains and amount of damage generated in stretch flanges during forming. Simulations of the forming process are conducted for 1mm AA5182 sheets with circular cutouts. The damage evolution with the deformed specimens is investigated using the explicit dynamic finite element code, LS-DYNA, with a modified Gurson-based material model. It was found that double draw-beads can provide the same amount of restraining force as single draw-beads, but at reduced levels of damage.

  4. Microstructure, mechanical properties and stretch formability of Mg-3Al-0.5Ca-0.2Gd alloy processed at various finish rolling temperatures

    Science.gov (United States)

    Kang, Qiang; Jiang, Haitao; Zhang, Yun

    2018-04-01

    Effects of various finish rolling temperatures on the microstructure, texture, mechanical properties and stretch formability of rolled and annealed Mg-3Al-0.5Ca-0.2Gd (wt%) alloy were investigated in this paper, and it was found that compared with grain size and second phase particles, the basal textures, tensile properties and stretch formability Mg-3Al-0.5Ca-0.2Gd alloy are more sensitive to the increasing finishing rolling temperature. For the rolled and annealed Mg-3Al-0.5Ca-0.2Gd alloy, their grains barely grow up and second phase particles are slightly coarsened, while their basal poles are obviously weakened and tilted with increasing finish rolling temperature. Consequently, the weakened and RD-tilted basal textures are beneficial to the gradually improved elongation and stretch formability of Mg-3Al-0.5Ca-0.2Gd alloy. It is investigated that the gradually activated non-basal slips, e. g. 〈c 〉, 〈c + a〉 dislocations due to the increasing finish rolling temperature could contribute to the weakened RD-tilted textures in rolled and annealed Mg-3Al-0.5Ca-0.2Gd alloy.

  5. Enhancement of dimple formability in sheet metals by 2-step forming

    International Nuclear Information System (INIS)

    Kim, Minsoo; Bang, Sungsik; Lee, Hyungyil; Kim, Naksoo; Kim, Dongchoul

    2014-01-01

    Highlights: • Suggested 2-step model aims at a lower susceptibility to cracking. • Strain at weak point could be reduced by 16% compared to 1-step model. • A more uniform thickness distribution is achieved by the 2-step model. • The maximum stress in the FLSD and the GTN damage variable reduced at the weak point. • The 2-step model provides an enhanced formability compared to the 1-step model. - Abstract: In this study, a 2-step stamping model with an additional 1st stamping tool is proposed to reduce stamping flaws in the curved parts of dimples in nuclear fuel spacer grids. First, the strains in the curved part of the dimple are analyzed and compared with strain solutions for pure bending. A reference 2D FE (finite element) model of the 1-step stamping is established, and the corresponding maximum strain is obtained. FE solutions are obtained for various process variable values for the 1st stamping tool used in the 2-step stamping model. Based on these solutions and applying the RSM (response surface method), strains are expressed as a function of process variables. This function then serves to evaluate optimum process variable values. Finally, by transferring these optimum values to a 3D FE model, we confirm the enhanced formability of the proposed 2-step stamping model

  6. Enhancement of Dimple Formability in Sheet Metals by 2-Step Forming

    International Nuclear Information System (INIS)

    Kim, Hasung; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo; Kim, Dongchoul

    2013-01-01

    In this study, a 2-step stamping model with an additional 1st stamping tool is proposed to reduce stamping flaws in the curved parts of a dimple in a nuclear fuel spacer grid. First, the strains of curved part of dimple are characterized via a comparison with strain solutions in pure bending. A reference 2a finite element (FE) model of 1-step stamping is then established, and the corresponding maximum strain is obtained. By varying the values of design variables of the 1st stamping tool in the 2-step stamping model, FE solutions are obtained to express the strain as a function of process variables, which provides the optimum values of process variables. Finally, applying these optimum values to a 3a FE model, we demonstrate the enhanced formability of the proposed 2-step stamping model

  7. Enhancement of Dimple Formability in Sheet Metals by 2-Step Forming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hasung; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo; Kim, Dongchoul [Sogang Univ., Seoul (Korea, Republic of)

    2013-07-15

    In this study, a 2-step stamping model with an additional 1st stamping tool is proposed to reduce stamping flaws in the curved parts of a dimple in a nuclear fuel spacer grid. First, the strains of curved part of dimple are characterized via a comparison with strain solutions in pure bending. A reference 2a finite element (FE) model of 1-step stamping is then established, and the corresponding maximum strain is obtained. By varying the values of design variables of the 1st stamping tool in the 2-step stamping model, FE solutions are obtained to express the strain as a function of process variables, which provides the optimum values of process variables. Finally, applying these optimum values to a 3a FE model, we demonstrate the enhanced formability of the proposed 2-step stamping model.

  8. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  9. Stretching

    Science.gov (United States)

    ... after a workout. Stretching still can be a beneficial activity after you have sufficiently warmed up. The ... light aerobic activity and stretching. If you're running at a quick pace, you can slow down ...

  10. Revisiting Formability and Failure of AISI304 Sheets in SPIF: Experimental Approach and Numerical Validation

    Directory of Open Access Journals (Sweden)

    Gabriel Centeno

    2017-11-01

    Full Text Available Single Point Incremental Forming (SPIF is a flexible and economic manufacturing process with a strong potential for manufacturing small and medium batches of highly customized parts. Formability and failure in SPIF have been intensively discussed in recent years, especially because this process allows stable plastic deformation well above the conventional forming limits, as this enhanced formability is only achievable within a certain range of process parameters depending on the material type. This paper analyzes formability and failure of AISI304-H111 sheets deformed by SPIF compared to conventional testing conditions (including Nakazima and stretch-bending tests. With this purpose, experimental tests in SPIF and stretch-bending were carried out and a numerical model of SPIF is performed. The results allow the authors to establish the following contributions regarding SPIF: (i the setting of the limits of the formability enhancement when small tool diameters are used, (ii the evolution of the crack when failure is attained and (iii the determination of the conditions upon which necking is suppressed, leading directly to ductile fracture in SPIF.

  11. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  12. Formability models for warm sheet metal forming analysis

    Science.gov (United States)

    Jiang, Sen

    Several closed form models for the prediction of strain space sheet metal formability as a function of temperature and strain rate are proposed. The proposed models require only failure strain information from the uniaxial tension test at an elevated temperature setting and failure strain information from the traditionally defined strain space forming limit diagram at room temperature, thereby featuring the advantage of offering a full forming limit description without having to carry out expensive experimental studies for multiple modes of deformation under the elevated temperature. The Power law, Voce, and Johnson-Cook hardening models are considered along with the yield criterions of Hill's 48 and Logan-Hosford yield criteria. Acceptable correlations between the theory and experiment are reported for all the models under a plane strain condition. Among all the proposed models, the model featuring Johnson-Cook hardening model and Logan-Hosford yield behavior (LHJC model) was shown to best correlate with experiment. The sensitivity of the model with respect to various forming parameters is discussed. This work is significant to those aiming to incorporate closed-form formability models directly into numerical simulation programs for the purpose of design and analysis of products manufactured through the warm sheet metal forming process. An improvement based upon Swift's diffuse necking theory, is suggested in order to enhance the reliability of the model for biaxial stretch conditions. Theory relating to this improvement is provided in Appendix B.

  13. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  14. Enhanced Age Strengthening of Mg-Nd-Zn-Zr Alloy via Pre-Stretching

    Directory of Open Access Journals (Sweden)

    Erjun Guo

    2016-08-01

    Full Text Available Pre-stretching was carried out to modify the microstructure of Mg-Nd-Zn-Zr alloy to enhance its age strengthening. The results indicated that more heterogeneous nucleation sites can be provided by the high density of dislocations caused by the plastic pre-stretching deformation, as well as speeding up the growth rate of precipitates. Comparison of microstructure in non-pre-stretched specimens after artificial aging showed that pre-stretched specimens exhibited a higher number density of precipitates. The fine and coarse plate-shaped precipitates were found in the matrix. Due to an increase in the number density of precipitates, the dislocation slipping during the deformation process is effectively hindered, and the matrix is strengthened. The yield strength stabilizes at 4% pre-stretching condition, and then the evolution is stable within the error bars. The 8% pre-stretched specimens can achieve an ultimate tensile strength of 297 MPa. However, further pre-stretching strains after 8% cannot supply any increase in strength. Tensile fracture surfaces of specimens subjected to pre-stretching strain mainly exhibit a trans-granular cleavage fracture. This work indicated that a small amount of pre-stretching strain can further increase strength of alloy and also effectively enhance the formation of precipitates, which can expand the application fields of this alloy.

  15. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    Science.gov (United States)

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  16. Influence of microstructure on the formability of Al-Mg6.8 alloy

    Directory of Open Access Journals (Sweden)

    Minov Boris G.

    2008-01-01

    Full Text Available Formability of Al-Mg6.8 alloy has been evaluated experimentally in uniaxial tension and biaxial stretching. Three different structures developed after cold rolling and annealing in the range of temperature from 265 to 320 °C: (I recovered dual (a + β phase, (II recrystallized (a + β dual phase, and (III recrystallized a-Al single phase structure, were tested. Samples with recovered structure have shown a lower formability level than the samples with fully recrystallized structure. Formability level assessed through FLD and LDH value, has been a result of complex interaction between work hardening ability and strain rate sensitivity.

  17. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  18. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  19. Relative sensitivity of formability to anisotropy

    International Nuclear Information System (INIS)

    Logan, R.W.; Maker, B.N.

    1997-01-01

    This work compares the relative importance of material anisotropy in sheet forming as compared to other material and process variables. The comparison is made quantitative by the use of normalized dependencies of depth to failure (forming limit is reached) on various measures of anisotropy, as well as strain and rate sensitivity, friction, and tooling. Comparisons are made for a variety of forming processes examined previously in the literature as well as two examples of complex stampings in this work. 7 The examples rover a range from nearly pure draw to nearly pure stretch situations, and show that for materials following a quadratic yield criterion, anisotropy is among the most sensitive parameters influencing formability. For materials following higher-exponent yield criteria, the dependency is milder but is still of the order of most other process parameters. However, depending on the particular forming operation, it is shown that in some cases anisotropy may be ignored, whereas in others its consideration is crucial to a good quality analysis

  20. Formability of stainless steel tailored blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Gong, Hui; Olsen, Flemming Ove

    2004-01-01

    In a number of systematic tests, the formability of tailored blanks consisting of even and different combinations of AISI304 and AISI316 in thickness of 0.8 mm and 1.5 mm have been investigated. In order to analyse the formability of tailored blanks with different sheet thickness, a method based ...

  1. Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors.

    Science.gov (United States)

    Huang, Yan; Huang, Yang; Meng, Wenjun; Zhu, Minshen; Xue, Hongtao; Lee, Chun-Sing; Zhi, Chunyi

    2015-02-04

    The performance of many stretchable electronics, such as energy storage devices and strain sensors, is highly limited by the structural breakdown arising from the stretch imposed. In this article, we focus on a detailed study on materials matching between functional materials and their conductive substrate, as well as enhancement of the tolerance to stretch-induced performance degradation of stretchable supercapacitors, which are essential for the design of a stretchable device. It is revealed that, being widely utilized as the electrode material of the stretchable supercapacitor, metal oxides such as MnO2 nanosheets have serious strain-induced performance degradation due to their rigid structure. In comparison, with conducting polymers like a polypyrrole (PPy) film as the electrochemically active material, the performance of stretchable supercapacitors can be well preserved under strain. Therefore, a smart design is to combine PPy with MnO2 nanosheets to achieve enhanced tolerance to strain-induced performance degradation of MnO2-based supercapacitors, which is realized by fabricating an electrode of PPy-penetrated MnO2 nanosheets. The composite electrodes exhibit a remarkable enhanced tolerance to strain-induced performance degradation with well-preserved performance over 93% under strain. The detailed morphology and electrochemical impedance variations are investigated for the mechanism analyses. Our work presents a systematic investigation on the selection and matching of electrode materials for stretchable supercapacitors to achieve high performance and great tolerance to strain, which may guide the selection of functional materials and their substrate materials for the next-generation of stretchable electronics.

  2. Characterization of the austenitic stability of metastable austenitic stainless steel with regard to its formability

    Science.gov (United States)

    Schneider, Matthias; Liewald, Mathias

    2018-05-01

    During the last decade, the stainless steel market showed a growing volume of 3-5% p.a.. The austenitic grades are losing market shares to ferritic or 200-series grades due to the high nickel price, but still playing the most important role within the stainless steel market. Austenitic stainless steel is characterized by the strain-induced martensite formation, causing the TRIP-effect (Transformation Induced Plasticity) which is responsible for good formability and high strength. The TRIP-effect itself is highly dependent on the forming temperature, the strain as well as the chemical composition which has a direct influence on the stability of the austenite. Today the austenitic stability is usually characterized by the so called Md30-temperature, which was introduced by Angel and enhanced by several researches, particularly Nohara. It is an empirical formula based on the chemical composition and the grain size of a given material, calculating the temperature which is necessary to gain a 50 % martensite formation after 30 % of elongation in a tensile test. A higher Md30-temperature indicates a lower stability and therefore a higher tendency towards martensite formation. The main disadvantage of Md30 -temperature is the fact that it is not based on forming parameters and only describes a single point instead of the whole forming process. In this paper, an experimental set up for measuring martensite and temperature evolution in a non-isothermal tensile test is presented, which is based on works of Hänsel and Schmid. With this set up, the martensite formation rate for different steels of the steel grade EN 1.4301 and EN 1.4310 is measured. Based on these results a new austenitic stability criterion is defined. This criterion and the determined Md30-temperatures are related to the stretch formability of the materials. The results show that the new IFU criterion is with regard to the formability a much more useful characteristic number for metastable austenitic steels

  3. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  4. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Layner, Kayla N; Triscuit, Alyssa M; Chetlin, Robert D; Ensey, James; Baker, Brent A

    2017-04-01

    Exercise is the most accessible, efficacious, and multifactorial intervention to improve health and treat chronic disease. High-intensity resistance exercise, in particular, also maximizes skeletal muscle size and strength-outcomes crucial at advanced age. However, such training is capable of inducing muscle maladaptation when misapplied at old age. Therefore, characterization of parameters (e.g., mode and frequency) that foster adaptation is an active research area. To address this issue, we utilized a rodent model that allowed training at maximal intensity in terms of muscle activation and tested the hypothesis that muscles of old rats adapt to stretch-shortening contraction (SSC) training, provided the training frequency is sufficiently low. At termination of training, normalized muscle mass (i.e., muscle mass divided by tibia length) and muscle quality (isometric force divided by normalized muscle mass) were determined. For young rats, normalized muscle mass increased by ∼20% regardless of training frequency. No difference was observed for muscle quality values after 2 days versus 3 days per week training (0.65 ± 0.09 N/mg/mm vs. 0.59 ± 0.05 N/mg/mm, respectively). For old rats following 3 days per week training, normalized muscle mass was unaltered and muscle quality was 30% lower than young levels. Following 2 days per week training at old age, normalized muscle mass increased by 17% and muscle quality was restored to young levels. To investigate this enhanced response, oxidative stress was assessed by lipid peroxidation quantification. For young rats, lipid peroxidation levels were unaltered by training. With aging, baseline levels of lipid peroxidation increased by 1.5-fold. For old rats, only 2 days per week training decreased lipid peroxidation to levels indistinguishable from young values. These results imply that, appropriately scheduled high-intensity SSC training at old age is capable of restoring muscle to a younger phenotype in terms

  5. Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: cloo8000@uni.sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Weiss, Matthias [Centre for Materials and Fibre Innovation, Deakin University, VIC 3217 (Australia); Xia, Junhai [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Sha, Gang; Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); Ranzi, Gianluca [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); School of Civil Engineering, University of Sydney, NSW 2006 (Australia)

    2012-08-30

    We have investigated the effect of heat treatment on the microstructure, texture and formability of high-strength aluminium Al2024 sheets of gauge thicknesses 1.27 mm and 2.03 mm. Both optical and electron microscopy were employed to characterise the microstructure. Tensile tests performed at 0 Degree-Sign , 45 Degree-Sign and 90 Degree-Sign to the rolling direction were used as an indication of the anisotropic behaviour of the sheets. The formability of the sheets was assessed by performing stretch forming tests over a hemispherical punch. Comparison of microstructure and material properties indicated an effect of precipitation hardening on the overall anisotropy of the investigated materials. We report an improvement in the total elongation under uniaxial tension with a loss in strength for 2.5 h and 2 days ageing while the ageing treatment for 1 week (peak hardness) resulted in increased strength with a decline in total elongation. The 1.27 mm thick sheet showed better drawability and least tendency to earing than the thicker sheet. The drawability was the highest at 45 Degree-Sign to the rolling direction for the as-received material and those that had been aged for 2.5 h and 2 days. Forming limit diagrams derived from the stretch forming tests showed that the 2 days aged sample had the highest plane strain limit making it the most appropriate condition considering that the plane strain is usually the most critical forming strain in stamping applications. In addition, the 2 days aged sample had its plane strain shifted towards the biaxial stretching area which is likely to have a positive effect on some sheet forming applications. Finally, a formability index was calculated and compared against the hardness plot.

  6. Numerical and experimental investigation of stretch-flange forming

    International Nuclear Information System (INIS)

    Cinotti, N.; Shakeri, H.R.; Worswick, M.J.; Truttmann, S.; Finn, M.J.; Jain, M.; Lloyd, D.J.

    2000-01-01

    Simulations of stretch flange forming operations are undertaken using explicit dynamic finite element calculations incorporating anisotropic yield criteria. Simple circular stretch flanges utilizing a single circular punch to expand the cut-out were considered. Experiments were performed using 101mm diameter tooling on AA 5754 and AA 5182 aluminum alloy sheets, with varying cut-out and gauge size. Metallurgical aspects of the formability of these aluminum alloys and damage mechanisms were studied. Both optical and Scanning Electron Microscopy (SEM) were used to study ductile fracture behaviour in these materials during the forming operation. The limit strains obtained from the circular stretch flange formability experiments are compared to forming limit diagram (FLD) data from hemispherical dome specimens. (author)

  7. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    Science.gov (United States)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  8. Formability of Micro-Tubes in Hydroforming

    International Nuclear Information System (INIS)

    Hartl, Christoph; Anyasodor, Gerald; Lungershausen, Joern

    2011-01-01

    Micro-hydroforming is a down-scaled metal forming process, based on the expansion of micro-tubes by internal pressurization within a die cavity. The objective of micro-hydroforming is to provide a technology for the economic mass production of complex shaped hollow micro-components. Influence of size effects in metal forming processes increases with scaling down of metal parts. Investigations into the change in formability of micro-tubes due to metal part scaling down constituted an important subject within the conducted fundamental research work. Experimental results are presented, concerning the analysis of the formability of micro-tubes made from stainless steel AISI 304 with an outer diameter of 800 μm and a wall thickness of 40 μm. An average ratio of tube wall thickness to grain size of 1.54 of up to 2.56 was analyzed. Miniaturised mechanical standard methods as well as bulge tests with internal hydrostatic pressurization of the tubular specimens were applied to analyze the influence of size-dependent effects. A test device was developed for the bulge experiments which enabled the pressurization of micro-tubes with internal pressures up to 4000 bar. To determine the attainable maximum achievable expansion ratio the tubes were pressurized in the bulge tests with increasing internal pressure until instability due to necking and subsequent bursting occurred. Comparisons with corresponding tests of macro-tubes, made from the here investigated material, showed a change in formability of micro-tubes which was attributed to the scaling down of the hydroforming process. In addition, a restricted applicability of existing theoretical correlations for the determination of the maximum pressure at bursting was observed for down-scaled micro-hydroforming.

  9. Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

    Science.gov (United States)

    Na, Min Young; Park, Sung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2018-05-01

    Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔT x ) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔC p ). The measured ΔT x and ΔC p values show a strong composition dependence. However, the composition showing the highest ΔT x and ΔC p does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔT x and ΔC p may be related to enhancement of icosahedral SRO near T g during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.

  10. Stretch Marks

    Science.gov (United States)

    ... completely without the help of a dermatologist or plastic surgeon. These doctors may use one of many types of treatments — from actual surgery to techniques like microdermabrasion and laser treatment — to reduce the appearance of stretch marks. These techniques are ...

  11. Development of Aluminum-Lithium 2195 Gores by the Stretch Forming Process

    Science.gov (United States)

    Volz, M. P.; Chen, P. S.; Gorti, S.; Salvail, P.

    2014-01-01

    Aluminum-Lithium alloy 2195 exhibits higher mechanical properties and lower density than aluminum alloy 2219, which is the current baseline material for Space Launch System (SLS) cryogenic tank components. Replacement of Al 2219 with Al-Li 2195 would result in substantial weight savings, as was the case when this replacement was made on the shuttle external tank. A key component of cryogenic tanks are the gores, which are welded together to make the rounded ends of the tanks. The required thicknesses of these gores depend on the specific SLS configuration and may exceed the current experience base in the manufacture of such gores by the stretch forming process. Here we describe the steps taken to enhance the formability of Al-Li 2195 by optimizing the heat treatment and stretch forming processes for gore thicknesses up to 0.75", which envelopes the maximum expected gore thicknesses for SLS tanks. An annealing treatment, developed at Marshall Space Flight Center, increased the forming range and strain hardening exponent of Al-Li 2195 plates. Using this annealing treatment, one 0.525" thick and two 0.75" thick gores were manufactured by the stretch forming process. The annealing treatment enabled the stretch forming of the largest ever cross sectional area (thickness x width) of an Al-Li 2195 plate achieved by the manufacturer. Mechanical testing of the gores showed greater than expected ultimate tensile strength, yield strength, modulus, and elongation values. The gores also exhibited acceptable fracture toughness at room and LN2 temperatures. All of the measured data indicate that the stretch formed gores have sufficient material properties to be used in flight domes.

  12. Single point incremental forming: Formability of PC sheets

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece

    2018-05-01

    Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.

  13. Study of the Formability of Laminated Lightweight Metallic Materials

    Directory of Open Access Journals (Sweden)

    Girjob Claudia

    2017-01-01

    Full Text Available The main objective of this work was to test the formability of laminated materials. Laminated materials are considered a good choice when parts with reduced weight are considered. Thus, a laminated material, aluminum - polypropylene - aluminum (Al-PP-Al, as sheet 1.2 mm and 1.4 mm thickness was used. Before processing the material by means of unconventional plastic deformation, its formability was determined by running the Nakajima test. After obtaining the forming limit curves, the material was machined by means of incremental forming.

  14. Formability of a wrought Mg alloy evaluated by impression testing

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Walid; Gollapudi, Srikant; Charit, Indrajit; Murty, K. Linga

    2018-01-17

    This study is focused on furthering our understanding of the different factors that influence the formability of Magnesium alloys. Towards this end, formability studies were undertaken on a wrought Mg-2Zn-1Mn (ZM21) alloy. In contrast to conventional formability studies, the impression testing method was adopted here to evaluate the formability parameter, B, at temperatures ranging from 298 to 473 K. The variation of B of ZM21 with temperature and its rather limited values were discussed in the light of different deformation mechanisms such as activation of twinning, slip, grain boundary sliding (GBS) and dynamic recrystallization (DRX). It was found that the material characteristics such as grain size, texture and testing conditions such as temperature and strain rate, were key determinants of the mechanism of plastic deformation. A by-product of this analysis was the observation of an interesting correlation between the Zener-Hollomon parameter, Z, and the ability of Mg alloys to undergo DRX.

  15. Formability analysis of sheet metals by cruciform testing

    Science.gov (United States)

    Güler, B.; Alkan, K.; Efe, M.

    2017-09-01

    Cruciform biaxial tests are increasingly becoming popular for testing the formability of sheet metals as they achieve frictionless, in-plane, multi-axial stress states with a single sample geometry. However, premature fracture of the samples during testing prevents large strain deformation necessary for the formability analysis. In this work, we introduce a miniature cruciform sample design (few mm test region) and a test setup to achieve centre fracture and large uniform strains. With its excellent surface finish and optimized geometry, the sample deforms with diagonal strain bands intersecting at the test region. These bands prevent local necking and concentrate the strains at the sample centre. Imaging and strain analysis during testing confirm the uniform strain distributions and the centre fracture are possible for various strain paths ranging from plane-strain to equibiaxial tension. Moreover, the sample deforms without deviating from the predetermined strain ratio at all test conditions, allowing formability analysis under large strains. We demonstrate these features of the cruciform test for three sample materials: Aluminium 6061-T6 alloy, DC-04 steel and Magnesium AZ31 alloy, and investigate their formability at both the millimetre scale and the microstructure scale.

  16. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  17. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  18. Experimental and numerical investigation of dual phase steels formability during laser-assisted hole-flanging

    Science.gov (United States)

    Motaman, S. A. H.; Komerla, K.; Storms, T.; Prahl, U.; Brecher, C.; Bleck, W.

    2018-05-01

    Today, in the automotive industry dual phase (DP) steels are extensively used in the production of various structural parts due to their superior mechanical properties. Hole-flanging of such steels due to simultaneous bending and stretching of sheet metal, is complex and associated with some issues such as strain and strain rate localization, development of micro-cracks, inhomogeneous sheet thinning, etc. In this study an attempt is made to improve the formability of DP sheets, by localized Laser heating. The Laser beam was oscillated in circular pattern rapidly around the pre-hole, blanked prior to the flanging process. In order to investigate formability of DP steel (DP1000), several uniaxial tensile tests were conducted from quasi to intermediate strain rates at different temperatures in warm regime. Additionally, experimentally acquired temperature and strain rate-dependent flow curves were fed into thermomechanical finite element (FE) simulation of the hole-flanging process using the commercial FE software ABAQUS/Explicit. Several FE simulations were performed in order to evaluate the effect of blank's initial temperature and punch speed on deformation localization, stress evolution and temperature distribution in DP1000 sheets during warm hole-flanging process. The experimental and numerical analyses revealed that prescribing a distribution of initial temperature between 300 to 400 °C to the blank and setting a punch speed that accommodates strain rate range of 1 to 5 s-1 in the blank, provides the highest strain hardening capacity in the considered rate and temperature regimes for DP1000. This is in fact largely due to the dynamic strain aging (DSA) effect which occurs due to pinning of mobile dislocations by interstitial solute atoms, particularly at elevated temperatures.

  19. Stretching Safely and Effectively

    Science.gov (United States)

    ... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...

  20. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  1. Investigation of the Formability of TRIP780 Steel Sheets

    Science.gov (United States)

    Song, Yang

    The formability of a metal sheet is dependent on its work hardening behaviour and its forming limits; and both aspects must be carefully determined in order to accurately simulate a particular forming process. This research aims to characterize the formability of a TRIP780 sheet steel using advanced experimental testing and analysis techniques. A series of flat rolling and tensile tests, as well as shear tests were conducted to determine the large deformation work hardening behaviour of this TRIP780 steel. Nakazima tests were carried out up to fracture to determine the forming limits of this sheet material. A highly-automated method for generating a robust FLC for sheet materials from DIC strain measurements was created with the help of finite element simulations, and evaluated against the conventional method. A correction algorithm that aims to compensate for the process dependent effects in the Nakazima test was implemented and tested with some success.

  2. Single-point incremental forming and formability-failure diagrams

    DEFF Research Database (Denmark)

    Silva, M.B.; Skjødt, Martin; Atkins, A.G.

    2008-01-01

    In a recent work [1], the authors constructed a closed-form analytical model that is capable of dealing with the fundamentals of single point incremental forming and explaining the experimental and numerical results published in the literature over the past couple of years. The model is based...... of deformation that are commonly found in general single point incremental forming processes; and (ii) to investigate the formability limits of SPIF in terms of ductile damage mechanics and the question of whether necking does, or does not, precede fracture. Experimentation by the authors together with data...

  3. Inverse Analysis to Formability Design in a Deep Drawing Process

    Science.gov (United States)

    Buranathiti, Thaweepat; Cao, Jian

    Deep drawing process is an important process adding values to flat sheet metals in many industries. An important concern in the design of a deep drawing process generally is formability. This paper aims to present the connection between formability and inverse analysis (IA), which is a systematical means for determining an optimal blank configuration for a deep drawing process. In this paper, IA is presented and explored by using a commercial finite element software package. A number of numerical studies on the effect of blank configurations to the quality of a part produced by a deep drawing process were conducted and analyzed. The quality of the drawing processes is numerically analyzed by using an explicit incremental nonlinear finite element code. The minimum distance between elemental principal strains and the strain-based forming limit curve (FLC) is defined as tearing margin to be the key performance index (KPI) implying the quality of the part. The initial blank configuration has shown that it plays a highly important role in the quality of the product via the deep drawing process. In addition, it is observed that if a blank configuration is not greatly deviated from the one obtained from IA, the blank can still result a good product. The strain history around the bottom fillet of the part is also observed. The paper concludes that IA is an important part of the design methodology for deep drawing processes.

  4. Formability prediction for AHSS materials using damage models

    Science.gov (United States)

    Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara

    2017-05-01

    Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.

  5. Formability prediction for AHSS materials using damage models

    International Nuclear Information System (INIS)

    Amaral, R.; Miranda, Sara; Santos, Abel D.; José, César de Sá

    2017-01-01

    Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches. (paper)

  6. Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors

    Science.gov (United States)

    Wu, Zhong; Huang, Xiao-Lei; Wang, Zhong-Li; Xu, Ji-Jing; Wang, Heng-Guo; Zhang, Xin-Bo

    2014-01-01

    Supercapacitors, as one of alternative energy devices, have been characterized by the rapid rate of charging and discharging, and high power density. But they are now challenged to achieve their potential energy density that is related to specific capacitance. Thus it is extremely important to make such materials with high specific capacitances. In this report, we have gained homogenous Ni(OH)2 on graphene by efficiently using of a facile and effective electrostatic induced stretch growth method. The electrostatic interaction triggers advantageous change in morphology and the ordered stacking of Ni(OH)2 nanosheets on graphene also enhances the crystallization of Ni(OH)2. When the as-prepared Ni(OH)2/graphene composite is applied to supercapacitors, they show superior electrochemical properties including high specific capacitance (1503 F g−1 at 2 mV s−1) and excellent cycling stability up to 6000 cycles even at a high scan rate of 50 mV s−1. PMID:24413283

  7. Knotting in stretched polygons

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

    2008-01-01

    The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force

  8. Effect of Coating-thickness on the formability of hot dip aluminized steel

    International Nuclear Information System (INIS)

    Awan, G.H.; Ahmed, F.; Hasan, F.

    2008-01-01

    The influence of coating thickness on the formability and ductility of hot-dip-aluminized steel has been determined using a 3-point bend test and optical metallography. The ductility / formability was estimated from the 3-point bend test wherein the angle of bend at which the cracks start to appear on the surface of the aluminized sheet during bending, was taken as an index of the formability / ductility. It was observed that as the amount of silicon in the aluminising melt was gradually increased the measured ductility of the sheet sample also increased. Metallographic examination has shown that as the amount of silicon in the aluminising melt was increased the thickness of the intermediate compound layer, between the outer aluminum coat and the substrate steel, decreased. It was thus indicated from these experiments that the formability / ductility of the sheet was inversely related to the thickness of the interlayer. (author)

  9. Assessing the formability of metallic sheets by means of localized and diffuse necking models

    Science.gov (United States)

    Comşa, Dan-Sorin; Lǎzǎrescu, Lucian; Banabic, Dorel

    2016-10-01

    The main objective of the paper consists in elaborating a unified framework that allows the theoretical assessment of sheet metal formability. Hill's localized necking model and the Extended Maximum Force Criterion proposed by Mattiasson, Sigvant, and Larsson have been selected for this purpose. Both models are thoroughly described together with their solution procedures. A comparison of the theoretical predictions with experimental data referring to the formability of a DP600 steel sheet is also presented by the authors.

  10. Development of Multi-Scale Finite Element Analysis Codes for High Formability Sheet Metal Generation

    International Nuclear Information System (INIS)

    Nnakamachi, Eiji; Kuramae, Hiroyuki; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    In this study, the dynamic- and static-explicit multi-scale finite element (F.E.) codes are developed by employing the homogenization method, the crystalplasticity constitutive equation and SEM-EBSD measurement based polycrystal model. These can predict the crystal morphological change and the hardening evolution at the micro level, and the macroscopic plastic anisotropy evolution. These codes are applied to analyze the asymmetrical rolling process, which is introduced to control the crystal texture of the sheet metal for generating a high formability sheet metal. These codes can predict the yield surface and the sheet formability by analyzing the strain path dependent yield, the simple sheet forming process, such as the limit dome height test and the cylindrical deep drawing problems. It shows that the shear dominant rolling process, such as the asymmetric rolling, generates ''high formability'' textures and eventually the high formability sheet. The texture evolution and the high formability of the newly generated sheet metal experimentally were confirmed by the SEM-EBSD measurement and LDH test. It is concluded that these explicit type crystallographic homogenized multi-scale F.E. code could be a comprehensive tool to predict the plastic induced texture evolution, anisotropy and formability by the rolling process and the limit dome height test analyses

  11. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    Science.gov (United States)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  12. Formability of aluminium sheets manufactured by solid state recycling

    Science.gov (United States)

    Kore, A. S.; Nayak, K. C.; Date, P. P.

    2017-09-01

    Conventional recycling practices for non-ferrous metallic scrap involves melting followed by purification. This practice is suitable for recycling when the large volume of scrap is available. Though such recycling reduces consumption of diminishing metallic resources, high energy requirement and material loss during melting and purification limit its applicability. In the present work, manufacturing of solid state recycled aluminium sheet by hot rolling is explored and its formability characterized. Aluminium chips were divided into smaller particles (1~2mm) by crushing. After stress relief annealing, chips were cold compacted into square slabs (75*75mm section) of different thicknesses. Another similar set of slabs was made by hot compaction. The compacted slabs were hot rolled over a number of passes at 400°C. Each slab was reduced to approximately 90% thickness to get the sheet thickness in the range of 0.6 to 1.5 mm. Microstructure revealed good interface bonding between the chip particles. Mechanical properties of the sheet from room temperature up to 200°C and at different strain rates were characterized by a number of tensile tests. Circular blanks from sheet were drawn into cylindrical cups and strain distribution was observed along different directions of rolling using circle grid analysis.

  13. Influence of ECAP temperature on the formability of a particle reinforced 2017 aluminum alloy

    Science.gov (United States)

    Wagner, S.; Härtel, M.; Frint, P.; F-X Wagner, M.

    2017-03-01

    Severe plastic deformation methods are commonly used to increase the strength of materials by generating ultrafine-grained microstructures. The application of these methods to Al-Cu alloys is, however, difficult because of their poor formability at room temperature. An additional reduction of formability of such alloys occurs when ceramic particles are added as reinforcement: this often triggers shear localization and crack initiation during ECAP. This is the main reason why equal-channel angular pressing (ECAP) of aluminum matrix composites (AMCs) can generally only be performed at elevated temperatures and using ECAP dies with a channel angle larger than 90° (e.g. 120°). In this study we present a brief first report on an alternative approach for the improvement of the formability of an AMC (AA2017, 10 % SiC): ECAP at low temperatures. We show that, using a temperature of -60 °C and a channel angle of 90° (corresponding to an equivalent strain of 1.1), ECAP of the AMC can be successfully performed without material failure. The mechanical properties of the strongly deformed AMC are analyzed by tensile testing. Our results indicate that the increased formability of the AMC at low temperatures can be attributed to the suppression of unstable plastic flow that affects formability at room temperature.

  14. Recent Developments in the Formability of Aluminum Alloys

    Science.gov (United States)

    Banabic, Dorel; Cazacu, Oana; Paraianu, Liana; Jurco, Paul

    2005-08-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  15. Recent Developments in the Formability of Aluminum Alloys

    International Nuclear Information System (INIS)

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul; Cazacu, Oana

    2005-01-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program

  16. Formability of high-alloy dual-phase Cr-Ni steels

    International Nuclear Information System (INIS)

    Elfmark, J.

    2004-01-01

    The formability of dual-phase high-alloy Cr-Ni steel within the temperature range from 900 to 1250 C was studied using laboratory tensile and torsion tests. The dual-phase steels on 24% Cr basis are characterized by poor hot formability due to very low stable deformation values and slow recrystallization. Mathematical description of deformation stability exhaustion was derived, as well as a model of formability control based on analysis of the gradual diffuse deformation stability from the stability limit to the moment when the deformation starts to concentrate in a small volume of the test piece. Rolling simulation of dual-phase steel strip was used as an example demonstrating the draught scheme optimization technique which avoids the danger of crack occurrence during the rolling of dual-phase steel strip. (orig.)

  17. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    Science.gov (United States)

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  18. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  19. Stretching the Border

    DEFF Research Database (Denmark)

    Horstmann, Alexander

    2014-01-01

    In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re-ent......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....

  20. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  1. Prediction of formability of aluminum alloy 5454 sheet

    International Nuclear Information System (INIS)

    Kim, Chan Il; Yang, Seung Han; Kim, Young Suk

    2012-01-01

    In the automobile industry, reducing the weight is the most important objective for reducing air pollution and improving the fuel efficiency. For this reason, the application of aluminum sheets is increasing. When the sheets are applied to the automobile, using inappropriate variables for the material, product design, and press processing can generate tearing, wrinkling, and spring back problems, which are the main types of failure in the manufacturing process. Therefore, it is necessary to reduce these failures by harmonizing the many variables and strictly managing the processes. In this research, we study the theoretical plasticity instability of Al5454 and obtain the forming limit diagram (FLD) using MATLAB. Moreover, we compare the theoretical FLD with an experimental FLD obtained from a stretching test

  2. Correlation between structure and conductivity in stretched Nafion

    Science.gov (United States)

    Allahyarov, Elshad; Taylor, Philip

    2008-03-01

    We have used coarse-grained simulation methods to investigate the effect of stretching-induced structure orientation on the proton conductivity of Nafion-like polyelectrolyte membranes. Recent experimental data on the morphology of ionomers describe Nafion as an aggregation of polymeric backbone chains forming elongated objects embedded in a continuous ionic medium. Uniaxial stretching of a recast Nafion film causes a preferential orientation of these objects in the direction of stretching. Our simulations of humid Nafion show that this has a strong effect on the proton conductivity, which is enhanced along the stretching direction, while the conductivity perpendicular to the stretched polymer backbone is strongly reduced. Stretching also causes the perfluorinated side chains to orient perpendicular to the stretching axis. The sulphonate multiplets shrink in diameter as the stretching is increased and show a spatially periodic ordering in their distribution. This in turn affects the distribution of contained water at low water contents. The water forms a continuous network with narrow bridges between small water clusters absorbed in head-group multiplets. We find the morphological changes in the stretched Nafion to be retained upon removal of the uniaxial stress.

  3. Prediction of Ductile Failure in the Stretch-Forming of AA2024 Sheets

    International Nuclear Information System (INIS)

    Vallellano, C.; Guzman, C.; Garcia-Lomas, F. J.

    2007-01-01

    A number of ductile failure criteria are nowadays being used to predict the formability of aluminium alloy sheets. Generally speaking, integral criteria (e.g. those proposed by Cockcroft and Latham, Brozzo et al., Oyane et al Chaouadi et al., etc.) have been probed to work well when the principal strains are of opposite sign, i.e. in the left side of the Forming Limit Diagram (FLD). However, when tensile biaxial strains are present, as occurs in stretch-forming practice, their predictions are usually very poor and even non-conservatives. As an alternative, local criteria, such as the classical Tresca's and Bressan and Williams' criteria, have demonstrated a good capability to predict the failure in some automotive aluminum alloys under stretching. The present work analyses experimentally and numerically the failure in AA2024-T3 sheets subjected to biaxial stretching. A series of out-of-plane stretching tests have been simulated using ABAQUS. The experimental and the numerical FLD for different failure criteria are compared. The influence on the failure of the hydrostatic pressure and the normal stress to the fracture plane is also discussed

  4. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    Science.gov (United States)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-10-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  5. Theoretical and Experimental Analysis of Formability of Explosive Welded Mg/Al Bimetallic Bars

    Directory of Open Access Journals (Sweden)

    Mróz S.

    2017-06-01

    Full Text Available The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of Mg/Al bimetallic specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator. Bimetallic bars of an outer diameter of 22.5 mm and a cladding layer thickness of 1.7 mm were obtained by the explosive welding method. Samples for formability tests, characterized by a diameter-to-length ratio of 1, were taken from the bars. The theoretical studies and experimental tests were carried out for the temperature range from 300 to 400°C and for different strain rates. Based on the obtained investigation results it has been found that the main parameters influencing the formability of Mg/Al bimetallic bars are strain rate than the process temperature.

  6. Studies on formability of sintered aluminum composites during hot deformation using strain hardening parameters

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2017-04-01

    Full Text Available Formability is the limit to which a material can be deformed before failure and is upmost importance in powder metallurgy (PM forming process. This is because the presence of porosity in the PM part after the sintering process. In this study two key strain hardening parameters are used to study the workability behavior or determining the failure zone. This can be used for design of PM parts and most importantly the die design as repressing needs to be employed before pores appear as cracks on the free surface. It is nearly impossible to produce defect free parts if this failure occurs. The hot formability behavior of aluminum metal matrix composites (MMC's that is, Al-4TiC, Al-4WC, Al-4Fe3C and Al-4Mo2C (by weight percentage are presented in this paper.

  7. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  8. Formability of ABX3 (X=F,Cl,Br,I) halide perovskites

    International Nuclear Information System (INIS)

    Li Chonghea; Lu Xionggang; Ding Weizhong; Feng Liming; Gao Yonghui; Guo Ziming

    2008-01-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX 3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF 2 ) without perovskite structure and six systems (RbF-PbF 2 , CsF- BeF 2 , KCl-FeCl 2 , TlI-MnI 2 , RbI-SnI 2 , TlI-PbI 2 ) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX 3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO 3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. (orig.)

  9. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    Directory of Open Access Journals (Sweden)

    Nikky Pathak

    2017-03-01

    Full Text Available The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP and Dual-Phase (DP steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition or drilled and then reamed (reamed edge condition. The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  10. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    Science.gov (United States)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  11. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  12. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  13. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    Science.gov (United States)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  14. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Rasmussen, Marianne N P; Skovsted, Gry F

    2016-01-01

    that rapid and sustained reduction in wall tension/stretch is a possible trigger mechanism for this vascular remodelling. Isolated rat middle cerebral artery (MCA) segments were incubated in a wire-myograph with or without mechanical stretch, prior to assessment of their contractile response to the selective...... expression to SMC expression and 2) an increased calcium sensitivity of the SMCs due to an increased expression of the calcium channel transient receptor potential canonical 1. Collectively, our results present a possible mechanism linking lack of vessel wall stretch/tension to changes in ETB receptor...

  15. Effect of the Process Parameters on the Formability, Microstructure, and Mechanical Properties of Thin Plates Fabricated by Rheology Forging Process with Electromagnetic Stirring Method

    Science.gov (United States)

    Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil

    2014-01-01

    A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.

  16. Improving formability of tube bending for a copper material using finite element simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Duc Toan; Nnuyen, Dinh Thanh [Hungyen University of Technology and Education, Hungyen (Viet Nam); Kim, Young Suk [Kyungpook National University, Daegu (Korea, Republic of)

    2015-10-15

    Bending tubes are key products in many industries. The geometric parameters of the bending process are considered according to Taguchi's orthogonal array and then coupled with finite element simulation to predict and improve the formability of the tube bending process for copper JIS25A material. Three parameters, namely, mandrel diameter, distance between mandrel rings, and distance from the tip of the mandrel bar to the center of the base die, are selected to study their effects on the quality of the bending process. The variance analysis shows that the effect distribution of each parameter to bending quality is determined, and optimal conditions are adopted to conduct experiments.

  17. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Science.gov (United States)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  18. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  19. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  20. Experimental and numerical investigation of formability for austenitic stainless steel 316 at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Syed Mujahed Hussaini

    2014-01-01

    Full Text Available Sheet metal forming at elevated temperature is not much used in industries but it is going to be a very important process in the future. The present work is aimed to investigate the formability of austenitic stainless steel 316 at elevated temperatures. Limiting drawing ratio and thickness of the drawn cup are the indicators of formability in deep drawing. In the present investigation circular blanks are deep drawn at room temperature, 150 °C and 300 °C using a 20 ton hydraulic press coupled with a furnace. Finite element simulations are carried out using Dynaform with LS-Dyna solver. Simulations and experimental results show an increase in the limiting drawing ration as the temperature increases and a decrease in the thickness of the drawn cup without any fracture. An artificial neural network model is developed for the prediction of the cup thickness at different locations. Based on the input variables, such as distance from the center of the cup, temperature and LDR, a back propagation neural network model to predict the thickness as output was develop. The comparison between these sets of results indicates the reliability of the predictions. It was found that there is a good agreement between the experimental and predicted values.

  1. Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy

    Directory of Open Access Journals (Sweden)

    Jianbo TAN

    2016-02-01

    Full Text Available The 6061 alloy cooling curve is determined by analysis software, and the 6061 semi-solid alloy is prepared by manual paddling process. The primary solid fraction is tested through prepared water quenched samples under different temperature. With H1F100 type servo press and cup type test mold, the forming of the 6061 semi-solid alloy rheological casting-forging is made. The influence of alloy temperature, forming pressure, upper mould temperature and holding time on the formability of 6061 alloy is researched. The results show that within the same set of mold completing casting and forging of the alloy is feasible. Along with the increase of the alloy temperature and the upper mould temperature, the formability of finished products becomes better. Under this experimentation, when the temperature of the semi-solid alloy is amongst 642 ℃ to 645 ℃ and the upper mould preheating temperature is amongst 200 ℃ to 300 ℃, casting defects such as cold insulation will form in the casting-forging sample of semi-solid 6061 alloy with the prolongation of holding time.

  2. On the Use of Maximum Force Criteria to Predict Localised Necking in Metal Sheets under Stretch-Bending

    Directory of Open Access Journals (Sweden)

    Domingo Morales-Palma

    2017-11-01

    Full Text Available The maximum force criteria and their derivatives, the Swift and Hill criteria, have been extensively used in the past to study sheet formability. Many extensions or modifications of these criteria have been proposed to improve necking predictions under only stretching conditions. This work analyses the maximum force principle under stretch-bending conditions and develops two different approaches to predict necking. The first is a generalisation of classical maximum force criteria to stretch-bending processes. The second approach is an extension of a previous work of the authors based on critical distance concepts, suggesting that necking of the sheet is controlled by the damage of a critical material volume located at the inner side of the sheet. An analytical deformation model is proposed to characterise the stretch-bending process under plane-strain conditions. Different parameters are considered, such as the thickness reduction, the gradient of variables through the sheet thickness, the thickness stress and the anisotropy of the material. The proposed necking models have been successfully applied to predict the failure in different materials, such as steel, brass and aluminium.

  3. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  4. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  5. Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.

    2010-01-01

    Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.

  6. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  7. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...

  8. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  9. Experiments and FE-simulations of stretch flanging of DP-steels with different shear cut edge quality

    Science.gov (United States)

    Sigvant, M.; Falk, J.; Pilthammar, J.

    2017-09-01

    Dual-Phase (DP) steels are today used in the automotive industry due to its large strength to weight ratio. However, the high strength of DP-steel does have a negative impact on the general formability in sheet metal forming. Unfavourable process conditions in the press shop will, on top of this, reduce the formability of DP-steels even more. This paper addresses the problem of edge fracture in stretch flanges in sheet metal parts made of DP-steel. The experimental part involves tests of ten different DP590 and DP780 steel grades with three different shear cut qualities. The influence on the fracture strain of the sample orientation of the shear cut are also studied by facing the burr away or towards the punch and testing samples with the cut edge parallel with the rolling direction and the transverse direction. The strains are measured with an ARAMIS system in each test, together with punch displacement and punch force. All tests are then simulated with AutoFormplus R7 and the results from these simulations are compared with the experimental results in order to find the appropriate failure strain for each combination of supplier, coating, thickness and shear cut quality.

  10. A technology to improve formability for aluminum alloy thin-wall corrugated sheet component hydroforming

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The explosively forming projectile (EFP had been traditional adopted for the aluminum thin-walled corrugated sheet, whose deformation range is large but the formability is poor, and this process usually has problems of poor surface quality, long manufacturing cycle and high cost. The active hydroforming process was suggested to solve these issues during EFP. A new technology named as blank bulging by turning the upside down active hydroforming technology was proposed to overcome difficulties in non-uniform thickness distribution and cracking failure of corrugated sheet during the conventional hydroforming process. Both numerical simulations and experiments were conducted for this new technology. The result show that the deformation capacity of aluminum alloys can be improved effectively, and the more uniform distribution of wall thickness was obtained by this new method. It is conducted that the new method is universal for thin-walled, shallow drawing parts with complex section.

  11. Formable ferrite-degenerated pearlite steel (FDP-55) for automotive use

    International Nuclear Information System (INIS)

    Nagao, N.; Hamamatsu, S.; Kunishige, K.

    1984-01-01

    In order to help the gauge reduction of wheels and chassis parts of automobiles, a formable and weldable hot rolled steel of 550 MPa grade, named FDP-55, has been developed. FDP-55 is an 0.14% C, 0.1% Si, 1.1% Mn and Nb free Alkilled steel obtained by controlled-cooling to a low coiling temperature on a runout table, and it is featured by ferrite-degenerated pearlite microstructure. Results of co-operative works with automotive makers showed that FDP-55 was successful in the application to wheels and chassis parts attaining the large weight reduction. This paper reports the metallurgical features and characteristics of the steel

  12. Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model

    International Nuclear Information System (INIS)

    Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.

    2007-01-01

    The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths

  13. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    Science.gov (United States)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  14. Superplastic formability of Al-Cu-Li alloy Weldalite (TM) 049

    Science.gov (United States)

    Ma, Bao-Tong; Pickens, Joseph R.

    1991-01-01

    Extensive research during the past decade shows that several aluminum lithium alloys can be processed to attain a microstructure that enables superplasticity. The high tensile stress of Al-Cu-Li alloy Weldalite (TM) 049 in the T4 and T6 tempers offers tremendous potential for attaining exceptional post-SPF (superplastic formability) properties. The used SPF material is Weldalite, which was shown to induce SPF behavior in other Al-Cu-Li alloys. The superplastic behavior and resulting post-SPF mechanical properties of this alloy, which was designed to be the next major structural alloy for space applications, were evaluated. The results indicate that Weldalite alloy does indeed exhibit excellent superplasticity over a wide range of temperatures and strain rates and excellent post-SPF tensile strength at various potential service temperatures.

  15. Development of dynamic explicit crystallographic homogenization finite element analysis code to assess sheet metal formability

    International Nuclear Information System (INIS)

    Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji

    2004-01-01

    The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and 'earing'. This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale 'unit cell', where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation.At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's 'constant strain homogenization algorithm' yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on 'earing' in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale

  16. Time stretch and its applications

    Science.gov (United States)

    Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram

    2017-06-01

    Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

  17. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  18. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  19. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  20. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  1. Stretching of macromolecules and proteins

    International Nuclear Information System (INIS)

    Strick, T R; Dessinges, M-N; Charvin, G; Dekker, N H; Allemand, J-F; Bensimon, D; Croquette, V

    2003-01-01

    In this paper we review the biophysics revealed by stretching single biopolymers. During the last decade various techniques have emerged allowing micromanipulation of single molecules and simultaneous measurements of their elasticity. Using such techniques, it has been possible to investigate some of the interactions playing a role in biology. We shall first review the simplest case of a non-interacting polymer and then present the structural transitions in DNA, RNA and proteins that have been studied by single-molecule techniques. We shall explain how these techniques permit a new approach to the protein folding/unfolding transition

  2. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    Science.gov (United States)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  3. EFFECTS OF DYNAMIC AND STATIC STRETCHING WITHIN GENERAL AND ACTIVITY SPECIFIC WARM-UP PROTOCOLS

    Directory of Open Access Journals (Sweden)

    Michael Samson

    2012-06-01

    Full Text Available The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1 general aerobic warm-up with static stretching, 2 general aerobic warm-up with dynamic stretching, 3 general and specific warm-up with static stretching and 4 general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance, countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013 in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM by 2.8% more (p = 0.0083 than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance

  4. Biaxial stretching of film principles and applications

    CERN Document Server

    Demeuse, M T

    2011-01-01

    Biaxial (having two axes) stretching of film is used for a range of applications and is the primary manufacturing process by which products are produced for the food packaging industry. Biaxial stretching of film: principles and applications provides an overview of the manufacturing processes and range of applications for biaxially stretched films. Part one reviews the fundamental principles of biaxial stretching. After an introductory chapter which defines terms, chapters discuss equipment design and requirements, laboratory evaluations, biaxial film structures and typical industrial processes for the biaxial orientation of films. Additional topics include post production processing of biaxially stretched films, the stress-strain behaviour of poly(ethylene terephthalate) and academic investigations of biaxially stretched films. Part two investigates the applications of biaxial films including fresh cut produce, snack packaging and product labelling. A final chapter investigates potential future trends for bi...

  5. Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing

    Science.gov (United States)

    Qin, Liang; Wang, Hui; Cui, Shengqiang; Wu, Qian; Fan, Minyu; Yang, Zonghui; Tao, Jie

    2017-07-01

    The Ti/Al laminate composites were prepared by hot pressing to investigate the forming performance due to the corresponding potential applications in both the aerospace and auto industry. The bonding interface morphology and element distributions were characterized by SEM and EDS. The phase constituent was detected by XRD. It was observed that these composites presented good bonding interfaces between Ti and Al layers, and no low-sized voids and intermetallic compounds formed at the interface. In addition, the formability of these laminate composites was studied by the uniaxial tension tests, the limit drawing ratio (LDR) and the forming limit curve (FLC) experiments, respectively. The results indicated that the flow stress increased along with the strain rate increment. A constitutive equation was developed for deformation behavioral description of these laminate composites. The LDR value was 1.8, and the most susceptible region to present cracks was located at the punch profile radius. The forming limit curve of the laminate composites was located between the curves of titanium and aluminum and intersected with the major strain line at approximately 0.31. The macroscopic cracks of the FLC sample demonstrated a saw-toothed crack feature.

  6. Improvement in char formability of phenolic resin for development of Carbon/Carbon composites

    International Nuclear Information System (INIS)

    Hajhosseini, M.; Payami, A.; Ghaffarian, S. R.; Rezadoust, A. M.

    2008-01-01

    In the processing of carbon/carbon composites using polymer resin as the matrix precursor, it is inevitable that a porous structure was formed after carbonization. As a result, densification by liquid phase impregnation followed by recarbonization is required to obtain a densified composite. Consequently, the char formability of resin is an important factor in reducing the number of densification cycles and hence the processing cost. In this study, a novel approach is adopted to improve the densification of carbon/carbon composites by using a new phenolic resin modified by pitch. For this purpose, soluble part of pitch was extracted and dispersed in resol type phenolic resin. The polymerization reaction was performed in presence of para-formaldehyde and a resol-pitch compound was obtained. The second compound was prepared by mixing novolac-furfural in 55:45 weight ratio containing 9% by weight hexamethylene tetramine. This compound was added to resol-pitch compound in 10,20,50 and 80 w %. The microstructure of carbonized resin was investigated by X-ray diffraction and char yield, and the linear and volumetric shrinkage were obtained. Results show that in 80:20 ratio of resol-pitch to novolac-furfural , the char yield would be maximized by 71% and volumetric shrinkage would be minimized at 16.4%. At the same time, XRD results indicate that the resin has a strong ability to graphitize carbon/carbon composites matrix as a necessary step for its processing

  7. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo [Department of Mechanical Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul, 121-742 (Korea, Republic of); Ko, Sangjin [Mold/die and forming technology team, Product prestige research lab, LG electronics, 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713 (Korea, Republic of)

    2013-12-16

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  8. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  9. Stretching and jamming of finite automata

    NARCIS (Netherlands)

    Beijer, de N.; Kourie, D.G.; Watson, B.W.; Cleophas, L.G.W.A.; Watson, B.W.

    2004-01-01

    In this paper we present two transformations on automata, called stretching and jamming. These transformations will, under certain conditions, reduce the size of the transition table, and under other conditions reduce the string processing time. Given a finite automaton, we can stretch it by

  10. Formability of paperboard during deep-drawing with local steam application

    Science.gov (United States)

    Franke, Wilken; Stein, Philipp; Dörsam, Sven; Groche, Peter

    2018-05-01

    The use of paperboard can significantly improve the environmental compatibility of everyday products such as packages. Nevertheless, most packages are currently made of plastics, since the three-dimensional shaping of paperboard is possible only to a limited extent. In order to increase the forming possibilities, deep drawing of cardboard has been intensively investigated for more than a decade. An improvement with regard to increased forming limits has been achieved by heating of the tool parts, which leads to a softening of paperboard constituents such as lignin. A further approach is the moistening of the samples, whereby the hydrogen bonds between the fibers are weakened and as a result an increase of the formability. It is expected that a combination of both parameter approaches will result in a significant increase in the forming capacity and in the shape accuracy. For this reason, a new tool concept is introduced within the scope of this work which makes it possible to moisten samples during the deep drawing process by means of steam supply. The conducted investigations show that spring-back in the preferred fiber direction can be reduced by 38 %. Orthogonal to the preferred fiber direction a reduction of spring back of up to 79 % is determined, which corresponds to a perfect shape. Moreover, it was determined that the steam duration and the initial moisture content have an influence on the final shape. In addition to the increased dimensional accuracy, an optimized wrinkle compression compared to conventional deep drawing is found. According to the results, it can be summarized that a steam application in the deep drawing of paperboard significantly improves the part quality.

  11. A meta-model based approach for rapid formability estimation of continuous fibre reinforced components

    Science.gov (United States)

    Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise

    2018-05-01

    Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is

  12. Crystal plasticity-based modeling for predicting anisotropic behaviour and formability of metallic materials

    International Nuclear Information System (INIS)

    Pham, Son; Jeong, Youngung; Creuziger, Adam; Iadicola, Mark; Foecke, Tim; Rollett, Anthony

    2016-01-01

    Metallic materials often exhibit anisotropic behaviour under complex load paths because of changes in microstructure, e.g., dislocations and crystallographic texture. In this study, we present the development of constitutive model based on dislocations, point defects and texture in order to predict anisotropic response under complex load paths. In detail, dislocation/solute atom interactions were considered to account for strain aging and static recovery. A hardening matrix based on the interaction of dislocations was built to represent the cross-hardening of different slip systems. Clear differentiation between forward and backward slip directions of dislocations was made to describe back stresses during path changes. In addition, we included dynamic recovery in order to better account for large plastic deformation. The model is validated against experimental data for AA5754-O with path changes, e.g., Figure 1 [1] Another effort is to include microstructure in forming predictions with a minimal increase in computational time. This effort enables comprehensive investigations of the influence of texture-induced anisotropy on formability [2]. Application of these improvements to predict forming limits of various BCC textures, such as γ, ρ, α, η and ϵ fibers and a random (R) texture. These simulations demonstrate that the crystallographic texture has significant (both positive and negative) effects on the forming limit diagrams (Figure 2). For example, the y fiber texture, that is often sought through thermo-mechanical processing due to high r-value, had the highest forming limit in the balanced biaxial strain path but the lowest forming limit under the plane strain path among textures under consideration. (paper)

  13. Strategy as stretch and leverage.

    Science.gov (United States)

    Hamel, G; Prahalad, C K

    1993-01-01

    Global competition is not just product versus product or company versus company. It is mind-set versus mind-set. Driven to understand the dynamics of competition, we have learned a lot about what makes one company more successful than another. But to find the root of competitiveness--to understand why some companies create new forms of competitive advantage while others watch and follow--we must look at strategic mind-sets. For many managers, "being strategic" means pursuing opportunities that fit the company's resources. This approach is not wrong, Gary Hamel and C.K. Prahalad contend, but it obscures an approach in which "stretch" supplements fit and being strategic means creating a chasm between ambition and resources. Toyota, CNN, British Airways, Sony, and others all displaced competitors with stronger reputations and deeper pockets. Their secret? In each case, the winner had greater ambition than its well-endowed rivals. Winners also find less resource-intensive ways of achieving their ambitious goals. This is where leverage complements the strategic allocation of resources. Managers at competitive companies can get a bigger bang for their buck in five basic ways: by concentrating resources around strategic goals; by accumulating resources more efficiently; by complementing one kind of resource with another; by conserving resources whenever they can; and by recovering resources from the market-place as quickly as possible. As recent competitive battles have demonstrated, abundant resources can't guarantee continued industry leadership.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Thermo-mechanical simulation of liquid-supported stretch blow molding

    International Nuclear Information System (INIS)

    Zimmer, J.; Stommel, M.

    2015-01-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera

  15. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  16. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  17. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.

    Science.gov (United States)

    Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2018-04-01

    Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Investigation into the Fiber Orientation Effect on the Formability of GLARE Materials in the Stamp Forming Process

    Science.gov (United States)

    Liu, Shichen; Lang, Lihui; Sherkatghanad, Ehsan; Wang, Yao; Xu, Wencai

    2018-04-01

    Glass-reinforced aluminum laminate (GLARE) is a new class of fiber metal laminates (FMLs) which has the advantages such as high tensile strength, outstanding fatigue, impact resistance, and excellent corrosion properties. GLARE has been extensively applied in advanced aerospace and automobile industries. However, the deformation behavior of the glass fiber during forming must be studied to the benefits of the good-quality part we form. In this research, we focus on the effect of fiber layer orientation on the GLARE laminate formability in stamp forming process. Experimental and numerical analysis of stamping a hemisphere part in different fiber orientation is investigated. The results indicate that unidirectional and multi-directional fiber in the middle layer make a significant effect on the thinning and also surface forming quality of the three layer sheet. Furthermore, the stress-strain distribution of the aluminum alloy and the unique anisotropic property of the fiber layer exhibit that fiber layer orientation can also affect the forming depths as well as the fracture modes of the laminate. According to the obtained results, it is revealed that multi-directional fiber layers are a good alternative compared to the unidirectional fibers especially when a better formability is the purpose.

  19. Microplastic bases for constitutive characterization of aluminum alloys and their correlation to sheet formability

    Science.gov (United States)

    Diak, Bradley James

    correlate to formability were assessed. Detailed experimental evidence is given for different aluminum alloys containing mainly fast or slow diffusing solute species, transition precipitates, dispersed particles, and/or dislocation debris. These systems of Al-Fe, Al-Cr, Al-Cu, Al-Mg, and Al-Mg-Si, all displayed unique dislocation-defect interactions which could be elucidated by the current theory of thermally activated flow.

  20. Investing in a Large Stretch Press

    Science.gov (United States)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  1. Foam topology. Bending versus stretching dominated architectures

    International Nuclear Information System (INIS)

    Deshpande, V.; Ashby, M.; Fleck, N.

    2000-01-01

    Cellular solids can deform by either the bending or stretching of the cell walls. While most cellular solids are bending-dominated, those that are stretching-dominated are much more weight-efficient for structural applications. In this study we have investigated the topological criteria that dictate the deformation mechanism of a cellular solid by analysing the rigidity (or otherwise) of pin-jointed frameworks comprising inextensional struts. We show that the minimum node connectivity for a special class of lattice structured materials to be stretching-dominated is 6 for 2D foams and 12 for 3D foams. Similarly, sandwich plates comprising of truss cores faced with planar trusses require a minimum node connectivity of 9 to undergo stretching-dominated deformation for all loading states. (author)

  2. Excluded Volume Effects in Gene Stretching

    OpenAIRE

    Lam, Pui-Man

    2002-01-01

    We investigate the effects excluded volume on the stretching of a single DNA in solution. We find that for small force F, the extension h is not linear in F but proportion to F^{\\chi}, with \\chi=(1-\

  3. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    International Nuclear Information System (INIS)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-01-01

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils

  4. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  5. The comparison of two continuum damage mechanics-based material models for formability prediction of AA6082 under hot stamping conditions

    Science.gov (United States)

    Shao, Z.; Li, N.; Lin, J.

    2017-09-01

    The hot stamping and cold die quenching process has experienced tremendous development in order to obtain shapes of structural components with great complexity in automotive applications. Prediction of the formability of a metal sheet is significant for practical applications of forming components in the automotive industry. Since microstructural evolution in an alloy at elevated temperature has a large effect on formability, continuum damage mechanics (CDM)-based material models can be used to characterise the behaviour of metals when a forming process is conducted at elevated temperatures. In this paper, two sets of unified multi-axial constitutive equations based on material’s stress states and strain states, respectively, were calibrated and used to effectively predict the thermo-mechanical response and forming limits of alloys under complex hot stamping conditions. In order to determine and calibrate the two material models, formability tests of AA6082 using a developed novel biaxial testing system were conducted at various temperatures and strain rates under hot stamping conditions. The determined unified constitutive equations from experimental data are presented in this paper. It is found that both of the stress-state based and strain-state based material models can predict the formability of AA6082 under hot stamping conditions.

  6. Improvement of the thermoplastic formability of Zr65Cu17.5Ni10Al7.5 bulk metallic glass by minor addition of Erbium

    International Nuclear Information System (INIS)

    Hu, Q.; Zeng, X.R.; Fu, M.W.; Chen, S.S.; Jiang, J.

    2016-01-01

    The softness of Zr 65 Cu 17.5 Ni 10 Al 7.5 bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr 65 Cu 17.5 Ni 10 Al 7.5 ) 98 Er 2 (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  7. The development and application of a fabric objective measurement data system in the South African apparel industry: Hygral expansion and formability

    CSIR Research Space (South Africa)

    Das, S

    2017-03-01

    Full Text Available and formability has been investigated, using ANOVA, the results being presented in tabular and graphical form. It was found that the hygral expansion of the wool fabrics was, on average, higher than that of the wool blend fabrics, while the heavier and thicker...

  8. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    International Nuclear Information System (INIS)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi; Yu, Haiyang

    2015-01-01

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  9. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhuoli; Gan, Xueqi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Fan, Hongyi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yu, Haiyang, E-mail: yhyang6812@foxmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2015-12-25

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  10. Hyperglycemia Augments the Adipogenic Transdifferentiation Potential of Tenocytes and Is Alleviated by Cyclic Mechanical Stretch.

    Science.gov (United States)

    Wu, Yu-Fu; Huang, Yu-Ting; Wang, Hsing-Kuo; Yao, Chung-Chen Jane; Sun, Jui-Sheng; Chao, Yuan-Hung

    2017-12-28

    Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPAR γ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy

  11. Stretched polygons in a lattice tube

    Energy Technology Data Exchange (ETDEWEB)

    Atapour, M [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada); Soteros, C E [Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6 (Canada); Whittington, S G [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)], E-mail: atapour@mathstat.yorku.ca, E-mail: soteros@math.usask.ca, E-mail: swhittin@chem.utoronto.ca

    2009-08-14

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n {yields} {infinity}. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n {yields} {infinity}. Thus as n {yields} {infinity} when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  12. Stretched polygons in a lattice tube

    International Nuclear Information System (INIS)

    Atapour, M; Soteros, C E; Whittington, S G

    2009-01-01

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n → ∞. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n → ∞. Thus as n → ∞ when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  13. Influence of the stretch wrapping process on the mechanical behavior of a stretch film

    Science.gov (United States)

    Klein, Daniel; Stommel, Markus; Zimmer, Johannes

    2018-05-01

    Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.

  14. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  16. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  17. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  18. Influence of temperature and friction on the 22MnB5 formability under hot stamping conditions

    Science.gov (United States)

    Venturato, G.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    The need to increase the safety and decrease the weight of the car body-in-white has determined the success of the direct hot stamping process as a primary technology for the automotive sector. Thanks to this process, parts with high strength-to-weight ratio can be obtained along with high stiffness and increase of the crashworthiness properties. Moreover, the thinner metal sheets used to manufacture the pieces lead to a decrease of the total weight of the car body-in-white, with a consequent reduction of the CO2 emissions. The direct hot stamping process is becoming the key to obtain pieces with high mechanical properties, thanks to the quenching stage that allows the manufacture of complex shapes characterized by a fully martensitic structure, thanks to the forming stage at elevated temperature and subsequent hardening inside the cooled dies. The aim of this paper is the investigation of the influence that the forming temperature may have on the formability of 22MnB5 steel sheets, commonly used in the hot stamping process of automotive components. Nakajima tests were carried out at different temperatures and the Forming Limit Diagrams (FLDs) at rupture were obtained and analysed. The temperature influenced both the major and the minor strain at which the sheet failed, indicating that not only the formability increased at increasing temperature, but there was also a modification of the strain path, which means a modification of the strain states through which the part passes during the deformation process. Moreover, the influence of friction is studied using a model developed in the LS-Dyna FEM environment. The obtained data are of great importance for an accurate calibration of Finite Element (FE) models of the hot stamping of real components in order to get optimal process parameters to obtain defects-free pieces.

  19. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  20. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  1. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  2. Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2007-01-01

    Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.

  3. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?

    International Nuclear Information System (INIS)

    Kofod, Guggi

    2008-01-01

    It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress-strain behaviour with the electrostatic Maxwell's stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress-strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force-stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress-stretch behaviour of the elastomer.

  4. The passive hamstring stretch test: clinical evaluation.

    Science.gov (United States)

    Fisk, J W

    1979-03-28

    The passive hamstring stretch test is described. Using a modified goniometer it is shown that independent measurements taken by trained examiners approximate very closely to each other. This establishes the test as a valid objective measurement. The possible value of this test as a research tool in low back pain problems is discussed.

  5. Optical stretching on chip with acoustophoretic prefocusing

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Laub Busk, L.; Bruus, Henrik

    2012-01-01

    in the microchannel. Trapping and manipulation is demonstrated for dielectric beads. In addition, we show trapping, manipulation and stretching of red blood cells and vesicles, whereby we extract the elastic properties of these objects. Our design points towards the construction of a low-cost, high-throughput lab...

  6. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  7. Stretching single fibrin fibers hampers their lysis.

    Science.gov (United States)

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies....

  9. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  10. Flexibility and stretching physiology : responses and adaptations to different stretching intensities.

    OpenAIRE

    Freitas, Sandro Remo Martins Neves Ramos

    2014-01-01

    Doutoramento em Motricidade Humana, especialidade de Biomecânica Research and reported literature regarding the conceptual, methodological, and training effects of stretching with different intensities are scarce. The purposes of this thesis were to: i) explore and develop methodological conditions to achieve the second purpose (studies: 1 to 3); ii) characterize the acute and chronic effects induced by different stretching intensities on skeletal muscle and joint mechanical properti...

  11. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  12. The influence of stretching on tensile strength and solubility of poly(vinyl alcohol) fibres

    NARCIS (Netherlands)

    Heikens, D.; Bleijenberg, A.C.A.M.; Hoppenbrouwers, J.J.M.; Barentsen, W.M.

    1971-01-01

    The strength of wet-spun poly(vinyl alcohol) (pva) fibres is given as function of bath-stretching, wet-stretching and hot-stretching. In the two equations derived for strength of wet-stretching and hot-stretching the complex influence of the bath-stretching and hot-stretching is demonstrated. The

  13. Stretch strength of Al-Li alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Sawa, Y.; Yokoyama, T.; Fujimoto, S. [Science Univ. of Tokyo (Japan). Dept. of Mech. Eng.; Sakamoto, T. [Kobe Steel Works, Tokyo (Japan)

    1998-07-01

    Stretch test on Al-Li alloy sheet was carried out in stretch rate of 0.01 to 0.2 mm/sec. The limiting stretch depth was measured in various conditions and the following results were obtained. (1) Stretch rate does not affect the limiting stretch depth of Al-Li alloy. (2) The limiting stretch depth is increased with increase of the profile radius. (3) Strain hardening exponent(n-value) and r-value of Lankford do not affect the limiting stretch depth. (4) Rapture pattern in stretch test of Al is {alpha} type rapture and that of Al-Li alloy is straight line type rapture. (orig.) 4 refs.

  14. Radiographic evaluation of acute distal radius fracture stability: A comparative cadaveric study between a thermo-formable bracing system and traditional fiberglass casting.

    Science.gov (United States)

    Santoni, Brandon G; Aira, Jazmine R; Diaz, Miguel A; Kyle Stoops, T; Simon, Peter

    2017-08-01

    Distal radius fractures are common musculoskeletal injuries and many can be treated non-operatively with cast immobilization. A thermo-formable brace has been developed for management of such fractures, but no data exist regarding its comparative stabilizing efficacy to fiberglass casting. A worst-case distal radius fracture was created in 6 cadaveric forearms. A radiolucent loading fixture was created to apply cantilever bending/compression loads ranging from 4.5N to 66.7N across the simulated fracture in the: (1) non-stabilized, (2) braced; and (3) casted forearms, each forearm serving as its own control. Fracture fragment translations and rotations were measured radiographically using orthogonal radiographs and a 2D-3D, CT-based transformation methodology. Under 4.5N of load in the non-stabilized condition, average sagittal plane rotation and 3D center of mass translation of the fracture fragment were 12.3° and 5.3mm, respectively. At the 4.5N load step, fragment rotation with the brace (avg. 0.0°) and cast (0.1°) reduced sagittal plane rotation compared to the non-stabilized forearm (Pthermo-formable brace stabilized the fracture in a manner that was not radiographically or biomechanically different from traditional fiberglass casting. Study results support the use of the thermo-formable brace clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. String Stretching, Frequency Modulation, and Banjo Clang

    OpenAIRE

    Politzer, David

    2014-01-01

    The banjo’s floating bridge, string break angle, and flexible drumhead all contribute to substantial audio range frequency modulation. From the world of electronic music synthesis, it is known that modulating higher frequency sounds with lower acoustic frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just that quite naturally, modulating fundamentals and harmonics with the motion of the bridge. In technical terms, with a floating bridge, string stretching is f...

  16. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  17. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  18. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  19. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  20. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    Science.gov (United States)

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  1. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  2. Randomized Trial of Modified Stretching Exercise Program for Menstrual Low Back Pain.

    Science.gov (United States)

    Chen, Huei-Mein; Hu, Hsou-Mei

    2018-03-01

    This study aimed to examine the effectiveness of a modified stretching exercise program on young women with menstrual low back pain. Overall, 127 young women were randomly assigned to the experimental ( n = 63) and control ( n = 64) groups. The experimental group followed the modified stretching exercise program, whereas the control group performed their usual activities. At 1, 4, 8, and 12 months, the experimental group had significantly lower scores on the visual analog scale for pain (95% confidence interval [CI] = [0.73, 1.96]; p < .05) and the Oswestry Low Back Pain Disability Questionnaire than the control group (95% CI = [0.68, 2.03]; p < .001). At 12 months, the experimental group showed significantly higher exercise self-efficacy than the control group (95% CI = [-6.87, 0.62]; p = .003). These findings can be used to enhance self-care capabilities by using the modified stretching exercise program for young women with menstrual low back pain.

  3. Analyse des solides déformables par la méthode des éléments finis

    CERN Document Server

    Bonnet, Marc

    2006-01-01

    Cet ouvrage propose une présentation structurée de la formulation et la mise en œuvre de la simulation numérique par éléments finis en mécanique des solides déformables. Il présente et développe les concepts et techniques permettant la transposition, en termes de codes de calcul de structures mécaniques industrielles, des notions fondamentales de mécanique des milieux continus solides, et ce dans le cadre d'analyses en régimes (a) statique linéaire, (b) quasistatique non-linéaire et (c) dynamique linéaire. L'exposé théorique est complété et illustré au moyen de programmes d'initiation écrits en Matlab (librement accessibles par Internet) mettant en œuvre les notions développées dans cet ouvrage et conçus comme support pratique à un enseignement. Le texte combine ainsi l'exposition des principes et des méthodes avec la présentation détaillée de ces programmes et d'exemples les mettant en œuvre. L'ouvrage est complété d'une annexe écrite par Andrei Constantinescu (directeur de...

  4. Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template

    Directory of Open Access Journals (Sweden)

    Yeong-gyu Kim

    2017-08-01

    Full Text Available Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS using a self-formable cracked template. The template—fabricated from colloidal silica—can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked MMS. The structure of the MMS can be controlled by varying the spin-coating speed during the coating of the template solution or by stacking of metal-mesh layers. Through these techniques, the optical transparency and sheet resistance of the MMS can be designed for a specific purpose. A double-layered Al MMS showed high optical transparency (~80% in the visible region, low sheet resistance (~20 Ω/sq, and good flexibility under bending test compared with a single-layered MMS, because of its highly-interconnected wire structure. Additionally, we identified the applicability of the MMS in the case of practical devices by applying it to electrodes of thin-film transistors (TFTs. The TFTs with MMS electrodes showed comparable electrical characteristics to those with conventional film-type electrodes. The cracked template can be used for the fabrication of a mesh structure consisting of any material, so it can be used for not only transparent electrodes, but also various applications such as solar cells, sensors, etc.

  5. To Stretch and Search for Better Ways

    Science.gov (United States)

    Moore, John W.

    2000-06-01

    There's a lot to do to get each issue of this Journal ready for publication, and there's a lot that can go awry during that process. We the editorial staff do our utmost to make certain that each issue is the best it can possibly be, but, of necessity, a lot of our effort is focused on solving problems, correcting errors, and avoiding pitfalls. It is not surprising that we sometimes lose sight of the bigger picture--all of the things that came out as well as or better than we hoped they would. Therefore it gives us great pleasure when a reader applauds (and thereby rewards) our efforts. One such communication inspired this editorial. I have appreciated the extra effort put forward by the staff to make the Journal really come alive. The high quality of the Journal serves as an incentive to chemical educators to stretch and search for better ways to inspire our students. I fervently hope that we do encourage you "to stretch and search for better ways", not only to inspire students but in everything you do. Stretching and searching for better ways is what life, science, chemistry, and teaching are all about, and it is a wonderfully stimulating and exciting way to approach anything and everything. Sometimes, though, one's ability to stretch is akin to that of a rubber band exposed too long to sunlight. Change becomes a threat or a burden instead of an opportunity. This often happens in one area but not others, as in the case of someone doing original research but whose lecture notes are yellow with age, or someone who experiments with new teaching approaches but neglects the latest chemical discoveries. Whatever its manifestation, failure to stretch and search for better ways is a great loss, both for the individual directly involved and for others. Fortunately there are many who continually stretch and search, often in conjunction with JCE. For example, some time ago the Chair of the Board of Publication, Jerry Bell, challenged Journal readers to become Journal

  6. Stretched horizons, quasiparticles, and quasinormal modes

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.

    2003-01-01

    We propose that stretched horizons can be described in terms of a gas of noninteracting quasiparticles. The quasiparticles are unstable, with a lifetime set by the imaginary part of the lowest quasinormal mode frequency. If the horizon arises from an AdS-CFT style duality the quasiparticles are also the effective low-energy degrees of freedom of the finite-temperature CFT. We analyze a large class of models including Schwarzschild black holes, nonextremal Dp-branes, the rotating BTZ black hole and de Sitter space, and we comment on degenerate horizons. The quasiparticle description makes manifest the relationship between entropy and area

  7. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer

    2017-01-01

    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.

  8. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    /pur tracts was slightly less than expected, with an average of 0.8%. One of the most surprising findings is a clear difference in the length distributions of the regions studied between prokaryotes and eukaryotes. Whereas short-range correlations can explain the length distributions in prokaryotes......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....

  9. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    Directory of Open Access Journals (Sweden)

    Del P. Wong

    2011-06-01

    Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments

  10. Reversed austenite for enhancing ductility of martensitic stainless steel

    Science.gov (United States)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  11. Twist-stretch profiles of DNA chains

    Science.gov (United States)

    Zoli, Marco

    2017-06-01

    Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.

  12. Stretched Exponential relaxation in pure Se glass

    Science.gov (United States)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0

  13. Stretch sensors for human body motion

    Science.gov (United States)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  14. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  15. Formability of dual-phase steels in deep drawing of rectangular parts: Influence of blank thickness and die radius

    Science.gov (United States)

    López, Ana María Camacho; Regueras, José María Gutiérrez

    2017-10-01

    The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.

  16. Constellation Stretch Goals: Review of Industry Inputs

    Science.gov (United States)

    Lang, John

    2006-01-01

    Many good ideas received based on industry experience: a) Shuttle operations; b) Commercial aircraft production; c) NASA's historical way of doing business; d) Military and commercial programs. Aerospace performed preliminary analysis: a) Potential savings; b) Cost of implementation; c) Performance or other impact/penalties; d) Roadblocks; e) Unintended consequences; f) Bottom line. Significant work ahead for a "Stretch Goal"to become a good, documented requirement: 1) As a group, the relative "value" of goals are uneven; 2) Focused analysis on each goal is required: a) Need to ensure that a new requirement produces the desired consequence; b) It is not certain that some goals will not create problems elsewhere. 3) Individual implementation path needs to be studied: a) Best place to insert requirement (what level, which document); b) Appropriate wording for the requirement. Many goals reflect "best practices" based on lessons learned and may have value beyond near-term CxP requirements process.

  17. LABOR GYMNASTICS: STRETCHING EXERCISE X FLEXIONAMENT

    Directory of Open Access Journals (Sweden)

    Jacqueline Amorin Anchieta Borges da Silva, Isabel Cristina Taranto e Fernanda Piasecki

    2006-12-01

    Full Text Available Nowadays, there are many opportunities for the society to live a healthful and long life. At the same time, never people was so sedentary and without harmony. Without a healthy body and with “an occupied mind” the human loses exactly what more it needs: the disposal to produce, to coexist and to live a good life. In this context, the present research aimed to revise some terms related to labor gymnastics, which is focused in the prevention of risks related to hours of working and in the reduction of muscular tension levels that may be originated during a day of work. Thus, the present study will make a differentiation between the use of stretching and flexionament during labor gymnastic sessions.

  18. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  19. Buckling and stretching of thin viscous sheets

    Science.gov (United States)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  20. Loads applied to fixations for chain stretching

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, K; Brychta, P

    1985-06-01

    The chains of scraper chain conveyors must be pre-stretched during standstill in order to compensate the elongations occurring during operation. They require frequent retensiening in order to meet the varying operational requirements. During tensioning, the chains are fixed in a point in the top run by means of fixation elements. The authors present a method for calculating the retaining force needed in the fixations. There are three different initial conditions of the chain before trensioning: Tensionsfree chain, pretensioned chain (stressed chain), slack chain. In all three cases, it is important to find out whether or nor the tensioning drive reaches full speed. The method of calculation is illustrated by the example of a scraper chain conveyor; it enables the establishment of rules for tensioning without damaging the chain and is a good basis for the dimensioning of new types of fixation elements.

  1. Aerothermodynamic properties of stretched flames in enclosures

    Science.gov (United States)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  2. Effects of stretching and compression on conducting properties of an Au–alkanedithiol–Au molecular junction

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fang; Zhang, Xiao-Jiao; Yu, Ji-Hai; Xu, Hua; Chu, Yu-Fang [Physics Science and Engineering Technology College, Yichun University, Yichun 336000 (China); Fan, Zhi-Qiang, E-mail: fan0221@163.com [School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004 (China)

    2016-03-01

    We have studied the effects of stretching and compression on the electronic properties of 7-alkanedithiol covalently linked to two Au electrodes. Results show a progressive increase in conductivity upon molecule compression and decrease with molecule stretching. The notable conductance increase at high compression is attributed to a significant modification of HOMO and LUMO orbitals of the junction, which enhances electron delocalization and promotes tunneling across the junction. More important, the current switching ratios between the various stages of compressed/extended geometries almost maintain the constant values on the bias region from 0 V to 2 V. In other word, the mechanically-induced conductance enhancement and weakening are stable within a large bias voltage range.

  3. Regional Data Assimilation Using a Stretched-Grid Approach and Ensemble Calculations

    Science.gov (United States)

    Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The global variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) incorporating the GEOS SG-GCM (Fox-Rabinovitz 2000, Fox-Rabinovitz et al. 2001a,b), has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The major area of interest with enhanced regional resolution used in different SG-DAS experiments includes a rectangle over the U.S. with 50 or 60 km horizontal resolution. The analyses and diagnostics are produced for all mandatory levels from the surface to 0.2 hPa. The assimilated regional mesoscale products are consistent with global scale circulation characteristics due to using the SG-approach. Both the stretched grid and basic uniform grid DASs use the same amount of global grid-points and are compared in terms of regional product quality.

  4. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  5. The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Background. Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF. Methods. Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Results. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Conclusion. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  6. EFFICACY OF MODIFIED PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING WITH CRYOTHERAPY OVER MANUAL PASSIVE STRETCHING WITH CRYOTHERAPY ON HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shamik Bhattacharjee

    2016-04-01

    Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.

  7. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  8. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    International Nuclear Information System (INIS)

    Ghazanfari, Samane; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-01-01

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.

  9. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  10. The stretch reflex and the contributions of C David Marsden

    Directory of Open Access Journals (Sweden)

    Kalyan B Bhattacharyya

    2017-01-01

    Full Text Available The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail , and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.

  11. Possible stretched exponential parametrization for humidity absorption in polymers.

    Science.gov (United States)

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  12. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force.

    Science.gov (United States)

    Cheng, Hsin-Yi Kathy; Lin, Chun-Li; Wang, Hsien-Wen; Chou, Shih-Wei

    2008-01-01

    Stretching plays an important role in the treatment of plantar fasciitis. Information on the internal stresses/strains of the plantar fascia under stretch is useful in enhancing knowledge on the stretch mechanisms. Although direct measurement can monitor plantar fascia changes, it is invasive and gathers only localized information. The purpose of this paper was to construct a three-dimensional finite element model of the foot to calculate the stretch effects on plantar fascia and monitor its stress/strain distributions and concentrations. A three-dimensional foot model was developed and contained 26 bones with joint cartilages, 67 ligaments and a fan-like solid plantar fascia modeling. All tissues were idealized as linear elastic, homogeneous and isotropic whilst the plantar fascia was assigned as hyperelastic to represent its nonlinearity. The plantar fascia was monitored for its biomechanical responses under various stretch combinations: three toe dorsiflexion angles (windlass effect: 15 degrees , 30 degrees and 45 degrees ) and five Achilles tendon forces (100, 200, 300, 400 and 500N). Our results indicated that the plantar fascia strain increased as the dorsiflexion angles increased, and this phenomenon was enhanced by increasing Achilles tendon force. A stress concentration was found near the medial calcaneal tubercle, and the fascia stress was higher underneath the first foot ray and gradually decreased as it moved toward the fifth ray. The current model recreated the position of the foot when stretch is placed on the plantar fascia. The results provided a general insight into the mechanical and biomechanical aspects of the influences of windlass mechanism and Achilles tendon force on plantar fascia stress and strain distribution. These findings might have practical implications onto plantar fascia stretch approaches, and provide guidelines to its surgical release.

  13. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  14. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  15. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship

    DEFF Research Database (Denmark)

    Balle, S S; Magnusson, S P; McHugh, M P

    2015-01-01

    The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength wa...

  16. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol

    Directory of Open Access Journals (Sweden)

    Criscione John C

    2008-01-01

    Full Text Available Abstract Background Much of the experimental work in soft tissue mechanics has been focused on fitting approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such relations are needed for modeling applications and have reasonable predictability – especially given the natural variance in specimens. There is, however, much theoretical and experimental work to be done in determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to exploit the natural variation in tissue ultrastructure – so to relate ultrastructure composition to tissue behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the elastic part of the response (implicitly in terms of stretch and the inelastic part in terms of short term stretch history (i.e., stretch-rate Ht2, longer term stretch history Ht1, and time since the start of testing T. Methods A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression Analysis (MLRA was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the same orientation. Finally, statistical models that characterize the inelasticity were developed at various, nominal values of stretch, and their predictive capability was examined. Results Inelastic deviation from hyperelasticity was high (31% for low stretch and declined

  17. Improvement of the thermoplastic formability of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass by minor addition of Erbium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zeng, X.R., E-mail: zengxier@szu.edu.cn [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); JANUS Precision Components Co., LTD., Dongguan 523000 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Chen, S.S. [Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Jiang, J. [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2016-12-01

    The softness of Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5} bulk metallic glass (BMG) in the super-cooled liquid range (SCLR) is obviously improved by minor addition of 2% Er, which makes (Zr{sub 65}Cu{sub 17.5}Ni{sub 10}Al{sub 7.5}){sub 98}Er{sub 2} (Zr65Er2) to be a very formable Be-free Zr-based BMG. It is found the lower glass transition temperature of Zr65Er2 has an important contribution to the improvement of formability, which is contrary to the general understanding that the larger fragility and wider super-cooled liquid region (SCLR) are the major reasons for better thermoplastic formability. This finding is well explained by using the linear simplification of the SCLR in Angell plot. Zr65Er2 also has lower crystallization temperature and melting temperature, which is believed to be related to the formation of short-range ordering with lower transition energy rather than the composition shift to near eutectic. The above results help understand the effect of minor addition of rare-earth to the formability of Zr-based bulk metallic glasses.

  18. Structural Transitions in Supercoiled Stretched DNA

    Science.gov (United States)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role (for more details).

  19. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  20. Dynamic effects on the stretching of the magnetic field by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2003-08-22

    A key mechanism in the growth of magnetic energy in kinematic dynamos is the stretching of the magnetic field vector by making it point in an unstable direction of the strain matrix. Our objective is to study whether this feature may be maintained in an ideal plasma when also considering the back reaction of the magnetic field upon the flow through the Lorentz force. Several effects occur: in addition to the nonlocal ones exerted by the total pressure, a complex geometry of magnetic field lines decreases the rate of growth of magnetic energy, rotation of the flow enhances it and above all the rate of growth decreases with minus the square of the eigenvalue associated with the magnetic field direction. Thus local dynamics tend to rapidly quench the stretching of the field.

  1. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  2. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Li, Hao-Ze; Li, Hua-Long; Gao, Fei; Liu, Guo-Huai; Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin; Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong

    2015-01-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B 8 and B 50 ) and iron loss (P 15/50 and P 10/400 ) decreased with raising rolling temperature. - Highlights: • Fe−6.5 wt% Si sheet was

  3. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Li, Hao-Ze [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Hua-Long [Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Gao, Fei; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Luo, Zhong-Han; Zhang, Feng-Quan; Chen, Sheng-Lin [National Engineering Research Center for Silicon Steel, Wuhan Iron & Steel (Group) Corp, Wuhan 430083 (China); Cao, Guang-Ming; Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-10-01

    Fe-6.5 wt% Si non-oriented electrical steel sheets with a thickness of 0.50 mm were produced by using a new processing route: strip casting followed by hot rolling, intermediate temperature (150–850 °C) rolling and final annealing. The present study focused on exploring the effects of rolling temperature varying from 150 to 850 °C on the microstructure and texture evolution, the formability and final magnetic properties. The microstructure and texture evolution at the various processing steps were investigated in detail by using OM, XRD, EBSD and TEM. It was found that the formability during rolling, the microstructure and texture before and after annealing and final magnetic properties highly depended on rolling temperature. The formability during rolling was gradually improved with increasing rolling temperature due to the slipping of dislocation. In particular, the rolling temperature dominated the formation of in-grain shear bands in the rolled microstructure, which played an important role in the development of final recrystallization microstructure and texture. In the case of lower temperature (150–450 °C) rolling, an inhomogeneous microstructure with a large amount of in-grain shear bands was formed in the rolled sheets, which finally resulted in a fine and inhomogeneous annealing microstructure dominated by mild λ-fiber texture composed of cube and {001}〈210〉 components and α*-fiber texture concentrated on {115}〈5–10 1〉 component. By contrast, in the case of higher temperature (650–850 °C) rolling, a relatively homogeneous microstructure without in-grain shear bands was formed instead in the rolled sheets, which finally led to a coarse and relatively homogeneous annealing microstructure characterized by strong α-fiber and γ-fiber texture. Accordingly, on the whole, both the magnetic induction (B{sub 8} and B{sub 50}) and iron loss (P{sub 15/50} and P{sub 10/400}) decreased with raising rolling temperature. - Highlights: • Fe−6

  4. [Sciatica. From stretch rack to microdiscectomy].

    Science.gov (United States)

    Gruber, P; Böni, T

    2015-12-01

    In ancient times as well as in the Middle Ages treatment options for discogenic nerve compression syndrome were limited and usually not very specific because of low anatomical and pathophysiological knowledge. The stretch rack (scamnum Hippocratis) was particularly prominent but was widely used as a therapeutic device for very different spinal disorders. Since the beginning of the nineteenth century anatomical knowledge increased and the advances in the fields of asepsis, anesthesia and surgery resulted in an increase in surgical interventions on the spine. In 1908 the first successful lumbar discectomy was initiated and performed by the German neurologist Heinrich O. Oppenheim (1858-1919) and the surgeon Fedor Krause (1857-1937); however, neither recognized the true pathological condition of discogenic nerve compression syndrome. With the landmark report in the New England Journal of Medicine in 1934, the two American surgeons William Jason Mixter (1880-1958) and Joseph Seaton Barr (1901-1963) finally clarified the pathomechanism of lumbar disc herniation and furthermore, propagated discectomy as the standard therapy. Since then interventions on intervertebral discs rapidly increased and the treatment options for lumbar disc surgery quickly evolved. The surgical procedures changed over time and were continuously being refined. In the late 1960s the surgical microscope was introduced for spinal surgery by the work of the famous neurosurgeon Mahmut Gazi Yasargil and his colleague Wolfhard Caspar and so-called microdiscectomy was introduced. Besides open discectomy other interventional techniques were developed to overcome the side effects of surgical procedures. In 1964 the American orthopedic surgeon Lyman Smith (1912-1991) introduced chemonucleolysis, a minimally invasive technique consisting only of a cannula and the proteolytic enzyme chymopapain, which is injected into the disc compartment to dissolve the displaced disc material. In 1975 the Japanese orthopedic

  5. Optimal stretching in the reacting wake of a bluff body.

    Science.gov (United States)

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  6. Effects of Static Stretching and Playing Soccer on Knee Laxity

    NARCIS (Netherlands)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W.; Freiwald, Juergen

    Objective: This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Design: Randomized controlled trial. Setting: University biomechanics laboratory. Participants: Thirty-one athletes were randomly assigned into

  7. Effects of Static Stretching and Playing Soccer on Knee Laxity

    NARCIS (Netherlands)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W.; Freiwald, Juergen

    2015-01-01

    Objective: This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Design: Randomized controlled trial. Setting: University biomechanics laboratory. Participants: Thirty-one athletes were randomly assigned into

  8. Guidelines for Stretch Flanging Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Sriram, S.; Chintamani, J.

    2005-01-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS

  9. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  10. Modélisation hydro-thermique 2D d'un produit fortement déformable lors du séchage convectif

    OpenAIRE

    Hassini , Lamine; Azzouz , Soufiene; Belghith , Ali

    2007-01-01

    International audience; Le but de ce travail est de simuler en 2D l'évolution de la teneur en eau, de la température, de la taille et de la forme géométrique d'un produit fortement déformable lors du séchage convectif. Le modèle écrit dans un repère fixe, consiste en une équation de conservation de la phase solide, une équation de diffusion/convection de l'eau liquide et une équation de conduction/convection de chaleur, couplées par la vitesse de contraction de la phase solide due au retrait....

  11. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.

    Science.gov (United States)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji

    2017-08-01

    Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.

  12. Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation

    DEFF Research Database (Denmark)

    Silva, M. B.; Skjødt, Martin; Bay, Niels

    2009-01-01

    framework accounts for the influence of major process parameters and their mutual interaction to be studied both qualitatively and quantitatively. It enables the conclusion to be drawn that the probable mode of material failure in SPIF is consistent with stretching, rather than shearing being the governing...... mode of deformation. The study of the morphology of the cracks combined with the experimentally observed suppression of neck formation enabled the authors to conclude that traditional forming limit curves are inapplicable for describing failure. Instead, fracture forming limit curves should be employed...... the forming limits determined by the analytical framework with experimental values. It is shown that agreement between analytical, finite element, and experimental results is good, implying that the previously proposed analytical framework can be utilized to explain the mechanics of deformation...

  13. Efficacy of hamstring stretching programs in schoolchildren. A systematic review

    Directory of Open Access Journals (Sweden)

    Carlos-Alberto BECERRA FERNANDEZ

    2017-03-01

    Full Text Available The main purpose of the present review was to examine the scientific literature on the effects of physical education-based stretching programs on hamstring extensibility in schoolchildren aged 6-11 years. For this purpose relevant studies were searched from ten electronic databases dated up through May 2015. Of the 25 potentially relevant articles identified and retrieved for more detailed evaluation, only eight studies were included in the present review because they met the inclusion criteria. The overall results showed that incorporating hamstring stretching as a part of physical education classes produces a significant improvement in the scores of the tests: straight leg raise and classic sit-and-reach, for the experimental groups, but not for control groups. Stretching programs can be included in Physical Education classes, specifically during the warm-up and the cool down periods in order to improve hamstring extensibility. Although it seems that the stretching exercises in the warm-up period could be less effective in gaining flexibility in school children. Studies that use a stretching volume between 4 and 7 minutes per session and 2-4 training classes per week, obtain statistically significant improvements on the levels of hamstring flexibility in the experimental groups. However, after a five-week detraining period, children revert back to their initial flexibility levels. Therefore, it seems appropriate that physical education teachers should implement stretching programs to improve the students´ flexibility during the Physical Education classes.

  14. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin.

    Science.gov (United States)

    Balestrini, Jenna Leigh; Billiar, Kristen Lawrence

    2006-01-01

    Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.

  15. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  16. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  17. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    Science.gov (United States)

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes

  18. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    LENUS (Irish Health Repository)

    O'Sullivan, Kieran

    2009-01-01

    BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  19. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    Directory of Open Access Journals (Sweden)

    Murray Elaine

    2009-04-01

    Full Text Available Abstract Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM. 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1 at baseline; (2 after warm-up; (3 after stretch (static or dynamic and (4 after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Results Across both groups, there was a significant main effect for time (p 0.05. Using ANCOVA to adjust for the non-significant (p = 0.141 baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05. Conclusion Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. Trial Registration ACTRN12608000638336

  20. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    Science.gov (United States)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  1. Oriented Morphology and Anisotropic Transport in Uniaxially Stretched Perfluorosulfonate Ionomer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    J Park; J Li; G Divoux; L Madsen; R Moore

    2011-12-31

    Relations between morphology and transport sensitively govern proton conductivity in perfluorsulfonate ionomers (PFSIs) and thus determine useful properties of these technologically important materials. In order to understand such relations, we have conducted a broad systematic study of H{sup +}-form PFSI membranes over a range of uniaxial extensions and water uptakes. On the basis of small-angle X-ray scattering (SAXS) and {sup 2}H NMR spectroscopy, uniaxial deformation induces a strong alignment of ionic domains along the stretching direction. We correlate ionic domain orientation to transport using pulsed-field-gradient {sup 1}H NMR measurements of water diffusion coefficients along the three orthogonal membrane directions. Intriguingly, we observe that uniaxial deformation enhances water transport in one direction (parallel-to-draw direction) while reducing it in the other two directions (two orthogonal directions relative to the stretching direction). We evaluate another important transport parameter, proton conductivity, along two orthogonal in-plane directions. In agreement with water diffusion experiments, orientation of ionic channels increases proton conduction along the stretching direction while decreasing it in the perpendicular direction. These findings provide valuable fodder for optimal application of PFSI membranes as well as for the design of next generation polymer electrolyte membranes.

  2. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    Science.gov (United States)

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  3. MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2016-06-01

    Full Text Available In this study we analyzed the influence of thermal radiation and chemical reaction on two dimensional steady magnetohydrodynamic flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of suction/injection. We considered nanofluid volume fraction on the boundary is submissive controlled, which makes the present study entirely different from earlier studies and physically more realistic. The equations governing the flow are solved numerically. Effects of non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. Also, coefficient of skin friction and local Nusselt number is investigated for stretching/shrinking and suction/injection cases separately and presented through tables. Comparisons with existed results are presented. Present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that the enhancement in Brownian motion and thermophoresis parameters depreciates the nanoparticle concentration and increases the mass transfer rate. Dual solutions exist only for certain range of stretching/shrinking and suction/injection parameters.

  4. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ella W. Yeung

    2013-03-01

    Full Text Available The acute effect of whole-body vibration (WBV training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF and vastus lateralis (VL; p = 0.934 and 0.935, respectively EMD of RF and VL (p = 0.474 and 0.551, respectively and peak torque production (p = 0.483 measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults.

  5. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode.

    Science.gov (United States)

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-05-23

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

  6. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  7. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  8. EFFECT OF DIFFERENT STRETCHING PROTOCOLS ON VERTICAL JUMP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Emre Serin

    2018-04-01

    Full Text Available This study aimed to examine the effect of different stretching exercises on vertical jump performance. A total of 14 national male athletes sporting in the elite level took part in the study. The age average of the participants was 20.25±1.03 year, the average height was 1.80±.08 m, the average body weight was 77.14±18.91 kg, average of sporting age was 9.87±3.31 year and the average number of participation in international games was 10.0±3.31. As stretching protocol: Method 1 (5 minutes of jogging and 2 minutes of active rest followed by Method 2 (static stretching for 4 different muscle groups 3 repetitions for 15 seconds of static stretching, rest for 10 seconds between groups and then consecutively, Method 3 (Dynamic stretching exercises with 3 repetitions for 15 seconds and 10 seconds rest between different muscle groups were applied in the study. The vertical jump performance before and after different stretching exercises of the participants was determined by means of the vertical jump test using the smart speed lite system. Before and after the training of all athletes, HR was recorded with a heart rate monitor (RS 800, Polar Vantage NV, Polar Electro Oy, Finland with 5 seconds intervals. Before the study, the chest band of the heartbeat monitor was placed on the chest of the athlete and the HR was recorded from the monitor. SPSS 15.0 statistical package program was used for evaluation and calculation of the data. In this study in addition to descriptive statistics (mean and standard deviation paired samples t-test was used to determine the difference between the vertical jump performance of the participants before and after different stretching exercises. As a result, this study showed that; applying the dynamic and static stretching exercises consecutively affected the vertical jump performance 4.5 cm positively (p<.05. It is suggested that different dynamic and static stretching exercises should be included in the vertical jump.

  9. Static versus dynamic stretching: Chronic and acute effects on Agility performance in male athletes

    Directory of Open Access Journals (Sweden)

    Iman Taleb-Beydokhti

    2015-04-01

    Full Text Available The purpose of this study was to examine the acute and chronic effects of static & dynamic stretching protocols on agility performance in amateur handball players. Twelve male amateur handball players (age: 19.66 ± 4.02 years old, weight: 67.12 ± 8.73 kg, height: 178.29 ± 7.81 cm participated in this study. The athletes were randomly allocated into two groups: static stretching or dynamic stretching. All of them underwent an initial evaluation and were submitted to the first intervention. They were evaluated once again and at the end of 12 training sessions. The results analyzed using ANOVA showed that there was a significant decrease in agility time after dynamic stretching against no stretching in the acute phase; but, there were no significant differences between dynamic stretching and no stretching in the chronic phase. In addition, there was no a significant difference between no stretching and static stretching in the acute phase; while, There was a significant decrease in agility time after no stretching against static stretching in the chronic phase. It was concluded that acute dynamic stretching as part of a warm-up may decrease agility time performance, whereas static stretching seems to increase agility time performance. Consequently, the acute and chronic static stretching should not be performed prior to an explosive athletic performance. Keywords: Handball, Agility, Dynamic stretching, Static stretching

  10. Stretch-sensitive paresis and effort perception in hemiparesis.

    Science.gov (United States)

    Vinti, Maria; Bayle, Nicolas; Hutin, Emilie; Burke, David; Gracies, Jean-Michel

    2015-08-01

    In spastic paresis, stretch applied to the antagonist increases its inappropriate recruitment during agonist command (spastic co-contraction). It is unknown whether antagonist stretch: (1) also affects agonist recruitment; (2) alters effort perception. We quantified voluntary activation of ankle dorsiflexors, effort perception, and plantar flexor co-contraction during graded dorsiflexion efforts at two gastrocnemius lengths. Eighteen healthy (age 41 ± 13) and 18 hemiparetic (age 54 ± 12) subjects performed light, medium and maximal isometric dorsiflexion efforts with the knee flexed or extended. We determined dorsiflexor torque, Root Mean Square EMG and Agonist Recruitment/Co-contraction Indices (ARI/CCI) from the 500 ms peak voluntary agonist recruitment in a 5-s maximal isometric effort in tibialis anterior, soleus and medial gastrocnemius. Subjects retrospectively reported effort perception on a 10-point visual analog scale. During gastrocnemius stretch in hemiparetic subjects, we observed: (1) a 25 ± 7 % reduction of tibialis anterior voluntary activation (maximum reduction 98 %; knee extended vs knee flexed; p = 0.007, ANOVA); (2) an increase in dorsiflexion effort perception (p = 0.03, ANCOVA). Such changes did not occur in healthy subjects. Effort perception depended on tibialis anterior recruitment only (βARI(TA) = 0.61, p hemiparesis, voluntary ability to recruit agonist motoneurones is impaired--sometimes abolished--by antagonist stretch, a phenomenon defined here as stretch-sensitive paresis. In addition, spastic co-contraction increases effort perception, an additional incentive to evaluate and treat this phenomenon.

  11. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  12. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ-DNA......Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano...... stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter. The determination of the extension ratio of the chip provides...

  13. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  14. Directional Cell Migration in Response to Repeated Substratum Stretching

    Science.gov (United States)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  15. Probabilistic model of ligaments and tendons: Quasistatic linear stretching

    Science.gov (United States)

    Bontempi, M.

    2009-03-01

    Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.

  16. Stretching of red blood cells at high strain rates

    Science.gov (United States)

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  17. Investigating the role of musical genre in human perception of music stretching resistance

    OpenAIRE

    Chen, Jun; Wang, Chaokun

    2017-01-01

    To stretch a music piece to a given length is a common demand in people's daily lives, e.g., in audio-video synchronization and animation production. However, it is not always guaranteed that the stretched music piece is acceptable for general audience since music stretching suffers from people's perceptual artefacts. Over-stretching a music piece will make it uncomfortable for human psychoacoustic hearing. The research on music stretching resistance attempts to estimate the maximum stretchab...

  18. Dynamic Contractility and Efficiency Impairments in Stretch-Shortening Cycle Are Stretch-Load-Dependent After Training-Induced Muscle Damage

    NARCIS (Netherlands)

    Vaczi, Mark; Racz, Levente; Hortobagyi, Tibor; Tihanyi, Jozsef

    Vaczi, M, Racz, L, Hortobagyi, T, and Tihanyi, J. Dynamic contractility and efficiency impairments in stretch-shortening cycle are stretch-load-dependent after training-induced muscle damage. J Strength Cond Res 27(8): 2171-2179, 2013To determine the acute task and stretch-load dependency of

  19. Entropy generation in MHD flow of a uniformly stretched vertical ...

    African Journals Online (AJOL)

    This paper reports the analytical calculation of the entropy generation due to heat and mass transfer and fluid friction in steady state of a uniformly stretched vertical permeable surface with heat and mass diffusive walls, by solving analytically the mass, momentum, species concentration and energy balance equation, using ...

  20. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Stabilization of collagen fibres during development and through growth to maturation has now become fairly documented. In vitro effect of mechanical stretching of ratsf skin on oxidative deamination of ε-NH2-groups of lysine and hydroxylysine, and functional properties of its type . collagen were studied. Experiments were ...

  1. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  2. Contact of a spherical probe with a stretched rubber substrate

    Science.gov (United States)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  3. Sport stretching : Effect on passive muscle stiffness of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; vanBolhuis, AI; Goeken, LNH

    Objective: To evaluate the effects of one 10-minute stretch on muscle stiffness in subjects with short hamstrings. Design: Randomized control trial. Setting: Laboratory for human movement sciences in the department of rehabilitation of a university hospital. Subjects: Sixteen students from the

  4. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free...

  5. Measuring the curvature of space with stretched strings

    International Nuclear Information System (INIS)

    Lyth, D.H.

    1983-01-01

    The equilibrium of a stretched string in curved space is studied. The problem is first formulated without detailed assumptions, then the force of gravity on the string is calculated from general relativity with a static metric. Apart from the latter calculation everything is done in ordinary space rather than in space-time. A number of simple cases are worked out explicitly. (author)

  6. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature

    NARCIS (Netherlands)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobagyi, Tibor; Suzuki, Shuji

    Study Design: Eighteen healthy male adults were assigned to either an intervention or control group. Objectives: Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The

  7. Mediators of Yoga and Stretching for Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Karen J. Sherman

    2013-01-01

    Full Text Available Although yoga is an effective treatment for chronic low back pain, little is known about the mechanisms responsible for its benefits. In a trial comparing yoga to intensive stretching and self-care, we explored whether physical (hours of back exercise/week, cognitive (fear avoidance, body awareness, and self-efficacy, affective (psychological distress, perceived stress, positive states of mind, and sleep, and physiological factors (cortisol, DHEA mediated the effects of yoga or stretching on back-related dysfunction (Roland-Morris Disability Scale (RDQ. For yoga, 36% of the effect on 12-week RDQ was mediated by increased self-efficacy, 18% by sleep disturbance, 9% by hours of back exercise, and 61% by the best combination of all possible mediators (6 mediators. For stretching, 23% of the effect was mediated by increased self-efficacy, 14% by days of back exercise, and 50% by the best combination of all possible mediators (7 mediators. In open-ended questions, ≥20% of participants noted the following treatment benefits: learning new exercises (both groups, relaxation, increased awareness, and the benefits of breathing (yoga, benefits of regular practice (stretching. Although both self-efficacy and hours of back exercise were the strongest mediators for each intervention, compared to self-care, qualitative data suggest that they may exert their benefits through partially distinct mechanisms.

  8. OH stretching frequencies in systems with intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens; Hansen, Bjarke Knud Vilster; Hansen, Poul Erik

    2011-01-01

    OH stretching wavenumbers were investigated for 30 species with intramolecularly hydrogen bonded hydroxyl groups, covering the range from 3600 to ca. 1900 cm-1. Theoretical wavenumbers were predicted with B3LYP/6-31G(d) density functional theory using the standard harmonic approximation, as well...

  9. Transient filament stretching rheometer I: force balance analysis

    DEFF Research Database (Denmark)

    Szabo, Peter

    1997-01-01

    The filament stretching device which is used increasingly as an apparatus for measuring extensional properties of polymeric liquids isanalysed. A force balance that includes the effects of inertia and surface tension is derived.The force balance may be used to correct for the effects of inertia...

  10. Theory of high-force DNA stretching and overstretching.

    Science.gov (United States)

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  11. Acute effects of active isolated stretching on vertical jump ...

    African Journals Online (AJOL)

    The purpose of the study was to determine the acute effects of active isolated stretching on muscular peak power production. Sixty healthy, physically active volunteers (aged 18-28) participated as subjects in this study. Subjects were randomly assigned to two groups; the control group and the experimental group. Subjects ...

  12. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game

  13. Effect of hexane treatment and uniaxial stretching on bending ...

    African Journals Online (AJOL)

    PVDF) film was studied. The quantity, β31, defined as the bending piezoelectric stress constant, was calculated. After hexane treatment and uniaxial stretching of the PVDF film, the value of β31 was 5.75 mV/m and 8.00 mV/m for draw ratio of ...

  14. The health of benthic diatom assemblages in lower stretch

    Indian Academy of Sciences (India)

    This study examines the ecological state of epilithic diatom assemblages along the lower stretch of Mandakini, a glacier-fed Himalayan river. The diatoms were sampled at four stations during winter and summer, only once in each season. Valve counts were obtained from Naphrax mounts prepared from each sample.

  15. MHD flow of a uniformly stretched vertical permeable membrane in ...

    African Journals Online (AJOL)

    We present a magneto - hydrodynamic flow of a uniformly stretched vertical permeable surface undergoing Arrhenius heat reaction. The analytical solutions are obtained for concentration, temperature and velocity fields using an asymptotic approximation, similar to that of Ayeni et al 2004. It is shown that the temperature ...

  16. A single molecule DNA flow stretching microscope for undergraduates

    NARCIS (Netherlands)

    Williams, Kelly; Grafe, Brendan; Burke, Kathryn M.; Tanner, Nathan; van Oijen, Antoine M.; Loparo, Joseph; Price, Allen C.

    2011-01-01

    The design of a simple, safe, and inexpensive single molecule flow stretching instrument is presented. The instrument uses a low cost upright microscope coupled to a webcam for imaging single DNA molecules that are tethered in an easy to construct microfluidic flow cell. The system requires no

  17. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  18. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  19. Immediate effects of different types of stretching exercises on badminton jump smash.

    Science.gov (United States)

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, Pjump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  20. The Effect of Static Stretch on Elastin Degradation in Arteries

    Science.gov (United States)

    Chow, Ming-Jay; Choi, Myunghwan; Yun, Seok Hyun; Zhang, Yanhang

    2013-01-01

    Previously we have shown that gradual changes in the structure of elastin during an elastase treatment can lead to important transition stages in the mechanical behavior of arteries [1]. However, in vivo arteries are constantly being loaded due to systolic and diastolic pressures and so understanding the effects of loading on the enzymatic degradation of elastin in arteries is important. With biaxial tensile testing, we measured the mechanical behavior of porcine thoracic aortas digested with a mild solution of purified elastase (5 U/mL) in the presence of a static stretch. Arterial mechanical properties and biochemical composition were analyzed to assess the effects of mechanical stretch on elastin degradation. As elastin is being removed, the dimensions of the artery increase by more than 20% in both the longitude and circumference directions. Elastin assays indicate a faster rate of degradation when stretch was present during the digestion. A simple exponential decay fitting confirms the time constant for digestion with stretch (0.11±0.04 h−1) is almost twice that of digestion without stretch (0.069±0.028 h−1). The transition from J-shaped to S-shaped stress vs. strain behavior in the longitudinal direction generally occurs when elastin content is reduced by about 60%. Multiphoton image analysis confirms the removal/fragmentation of elastin and also shows that the collagen fibers are closely intertwined with the elastin lamellae in the medial layer. After removal of elastin, the collagen fibers are no longer constrained and become disordered. Release of amorphous elastin during the fragmentation of the lamellae layers is observed and provides insights into the process of elastin degradation. Overall this study reveals several interesting microstructural changes in the extracellular matrix that could explain the resulting mechanical behavior of arteries with elastin degradation. PMID:24358135

  1. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  2. Developing an experimental case in aluminium foils 1100 to determine the maximum angle of formability in a piece by Dieless-SPIF process

    Science.gov (United States)

    Gabriel, Paramo; Adrian, Benitez

    2014-07-01

    Incremental sheet forming by the method of single point incremental forming Dieless-SPIF, is a widely studied process, experimented and developed in countries with high manufacturing technologies, with friendly costs when the productive configuration in a productivity system is based in small production batches. United states, United kingdom and France lead this type of studies and cases, developing various proof with experimental geometries, different from the national environment such as Colombia, Bolivia, Chile, Ecuador and Peru where this process where discretely studied. Previously mentioned, it pretends develop an experimental case of a particular geometry, identifying the maximum formability angle of material permissible for the forming of a piece in one pass, the analysis of forming limit curve (FLC), with the objective to emphasizes in this innovative method based in CAD-CAM technologies, compare with other analogous process of deformation sheet metal like embossing, take correct decisions about the viability and applicability of this process (Dieless) in a particular industrial piece, which responses to the necessities of productive configurations mentioned and be highly taken like a manufacturing alternative to the other conventional process of forming sheet metal like embossing, for systems with slow batches production.

  3. Developing an experimental case in aluminium foils 1100 to determine the maximum angle of formability in a piece by Dieless-SPIF process

    International Nuclear Information System (INIS)

    Gabriel, Paramo; Adrian, Benitez

    2014-01-01

    Incremental sheet forming by the method of single point incremental forming Dieless-SPIF, is a widely studied process, experimented and developed in countries with high manufacturing technologies, with friendly costs when the productive configuration in a productivity system is based in small production batches. United states, United kingdom and France lead this type of studies and cases, developing various proof with experimental geometries, different from the national environment such as Colombia, Bolivia, Chile, Ecuador and Peru where this process where discretely studied. Previously mentioned, it pretends develop an experimental case of a particular geometry, identifying the maximum formability angle of material permissible for the forming of a piece in one pass, the analysis of forming limit curve (FLC), with the objective to emphasizes in this innovative method based in CAD-CAM technologies, compare with other analogous process of deformation sheet metal like embossing, take correct decisions about the viability and applicability of this process (Dieless) in a particular industrial piece, which responses to the necessities of productive configurations mentioned and be highly taken like a manufacturing alternative to the other conventional process of forming sheet metal like embossing, for systems with slow batches production

  4. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    Science.gov (United States)

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-01-01

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry. PMID:29883413

  5. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    Directory of Open Access Journals (Sweden)

    Daeryeong Bae

    2018-05-01

    Full Text Available A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry.

  6. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  7. The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Directory of Open Access Journals (Sweden)

    Parish Ben

    2011-06-01

    Full Text Available Abstract Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome

  8. Interset stretching does not influence the kinematic profile of consecutive bench-press sets.

    Science.gov (United States)

    García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J

    2010-05-01

    This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.

  9. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface

  10. An economical analysis of stretch-out for Angra 1

    International Nuclear Information System (INIS)

    Sakai, M.; Mascarenhas, H.A.

    1990-01-01

    An economical assessment of Angra 1 fuel cycle stretch-out is performed by means of NUCOST 1.0, a PWR power cost calculation code. International basic costs and an interest rate of 10%a were utilized. During the natural part of the fuel cycle an hypothetical capacity factor of 70% and in the stretch-out part a decrease in Plant's thermal efficiency have also been taken into account. The neutronic data were generated by FASER, MULTIMEDIUM, MEDIUM and PINPOW code system, simulating Angra 1 in the CAOC (constant Axial-Offset Control) operation. Assumming no proplems in the Plant's strecth-out phase, an optimum extension pont of 1 MWd/kg would be attained, what affords an US$700,000 savings by cycle when fuel and operation and maintenance costs are considered. (author) [pt

  11. Anomalies in the coil-stretch transition of flexible polymers

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  12. Device for stretching tapes or cables intended for manipulators

    International Nuclear Information System (INIS)

    Baudoin, J.-C.; Oger, Robert.

    1975-01-01

    The invention relates to a device for stretching tapes (or cables) intended for remote handling devices. Said equipment consists of a spring system continuously applying a constant tensile stress to said tapes (or cables) in view of taking up the slack in the latter. Said spring system is fastened to a supporting bar able to be rigidly connected to a member of the remote handling device [fr

  13. Device for stretching tapes or cables intended for manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, J C; Oger, R

    1975-03-06

    The invention relates to a device for stretching tapes (or cables) intended for remote handling devices. Said equipment consists of a spring system continuously applying a constant tensile stress to said tapes (or cables) in view of taking up the slack in the latter. Said spring system is fastened to a supporting bar able to be rigidly connected to a member of the remote handling device.

  14. Stretched exponentials and power laws in granular avalanching

    Science.gov (United States)

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  15. Tail modeling in a stretched magnetosphere 1. Methods and transformations

    International Nuclear Information System (INIS)

    Stern, D.P.

    1987-01-01

    A new method is developed for representing the magnetospheric field B as a distorted dipole field. Because delxB = 0 must be maintained,such a distortion may be viewed as a transformation of the vector potential A. The simplest form is a one-dimensional ''stretch transformation'' along the x axis, a generalization of a method introduced by Voigt. The transformation is concisely represented by the ''stretch function'' f(x), which is also a convenient tool for representing features of the substorm cycle. Onedimensional stretch transformations are extended to spherical, cylindrical, and parabolic coordinates and then to arbitrary coordinates. It is next shown that distortion transformations can be viewed as mappings of field lines from one pattern to another: Euler potentials are used in the derivation, but the final result only requires knowledge of the field and not of the potentials. General transformations in Cartesian and arbitrary coordinates are then derived,and applications to field modeling, field line motion, MHD modeling, and incompressible fluid dynamics are considered. copyrightAmerican Geophysical Union 1987

  16. Stretching Diagnostics and Mixing Properties In The Stratosphere

    Science.gov (United States)

    Legras, B.; Shuckburgh, E.

    The "finite size Lyapunov exponent" and the "effective diffusivity" are two diagnos- tics of mixing which have been recently introduced to investigate atmospheric flows. Both have been used to successfully identify the barriers to transport, for instance at the edge of the stratospheric polar vortex. Here we compare the two diagnostics in detail. The equivalent length has the advantage of arising as a mixing quantification from a rigid theoretical framework, however it has the disadvantage of being an aver- age quantity (the average around a tracer contour). The finite size Lyapunov exponent may be defined at any point in the flow, and quantifies the stretching properties expe- rienced by a fluid parcel both in its past and future evolution. In particular, the lines of maximum stretching at any time delineate the building blocks of the chaotic stirring. However the interpretation of the finite size Lyapunov exponent as a mixing time is less direct and depends on the alignment of tracer contours with the stretching lines.

  17. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  18. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

    Science.gov (United States)

    Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

    2018-06-01

    This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

  19. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  20. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Aziz, Arsalan [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, Bashir [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2016-06-15

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.

  1. Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating

    Science.gov (United States)

    Khan, Mair; Shahid, Amna; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    Current analysis has been made to scrutinize the consequences of chemical response against magneto-hydrodynamic Carreau-Yasuda nanofluid flow induced by a non-linear stretching surface considering zero normal flux, slip and convective boundary conditions. Joule heating effect is also considered. Appropriate similarity approach is used to convert leading system of PDE's for Carreau-Yasuda nanofluid into nonlinear ODE's. Well known mathematical scheme namely shooting method is utilized to solve the system numerically. Physical parameters, namely Weissenberg number We , thermal slip parameter δ , thermophoresis number NT, non-linear stretching parameter n, magnetic field parameter M, velocity slip parameter k , Lewis number Le, Brownian motion parameter NB, Prandtl number Pr, Eckert number Ec and chemical reaction parameter γ upon temperature, velocity and concentration profiles are visualized through graphs and tables. Numerical influence of mass and heat transfer rates and friction factor are also represented in tabular as well as graphical form respectively. Skin friction coefficient reduces when Weissenberg number We is incremented. Rate of heat transfer enhances for large values of Brownian motion constraint NB. By increasing Lewis quantity Le rate of mass transfer declines.

  2. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    International Nuclear Information System (INIS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite–Fe 3 O 4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction. - Highlights: • Nanofluid flow due to exponentially stretching sheet. • Exponentially varying surface temperature distribution is accounted. • Sparrow–Gregg type Hills (SGH) for temperature distribution exist. • Numerical values of local Nusselt number are presented. • Cooling performance of ferrofluid is superior to pure water.

  3. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    International Nuclear Information System (INIS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2016-01-01

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.

  4. Simulation of stretch forming with intermediate heat treatments of aircraft skins - A physically based modeling approach

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, Alexis; Wisselink, H.H.; van den Boogaard, Antonius H.

    2011-01-01

    In the aerospace industry stretch forming is often used to produce skin parts. During stretch forming a sheet is clamped at two sides and stretched over a die, such that the sheet gets the shape of the die. However for complex shapes it is necessary to use expensive intermediate heat-treatments in

  5. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  6. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  7. The effectiveness of combined prescription of ankle–foot orthosis and stretching program for the treatment of recalcitrant plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Rehab A.E. Sallam

    2016-01-01

    Combined prescription of night-stretch ankle–foot orthosis and stretching exercises for plantar flexors and fascia had greater therapeutic effects compared with each treatment alone. Stretching exercises alone are not beneficial in the treatment of recalcitrant plantar fasciitis.

  8. Micropatterning stretched and aligned DNA for sequence-specific nanolithography

    Science.gov (United States)

    Petit, Cecilia Anna Paulette

    Techniques for fabricating nanostructured materials can be categorized as either "top-down" or "bottom-up". Top-down techniques use lithography and contact printing to create patterned surfaces and microfluidic channels that can corral and organize nanoscale structures, such as molecules and nanorods in contrast; bottom-up techniques use self-assembly or molecular recognition to direct the organization of materials. A central goal in nanotechnology is the integration of bottom-up and top-down assembly strategies for materials development, device design; and process integration. With this goal in mind, we have developed strategies that will allow this integration by using DNA as a template for nanofabrication; two top-down approaches allow the placement of these templates, while the bottom-up technique uses the specific sequence of bases to pattern materials along each strand of DNA. Our first top-down approach, termed combing of molecules in microchannels (COMMIC), produces microscopic patterns of stretched and aligned molecules of DNA on surfaces. This process consists of passing an air-water interface over end adsorbed molecules inside microfabricated channels. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the airwater interface directs the local orientation and curvature of the molecules. We developed another top-down strategy for creating micropatterns of stretched and aligned DNA using surface chemistry. Because DNA stretching occurs on hydrophobic surfaces, this technique uses photolithography to pattern vinyl-terminated silanes on glass When these surface-, are immersed in DNA solution, molecules adhere preferentially to the silanized areas. This approach has also proven useful in patterning protein for cell adhesion studies. Finally, we describe the use of these stretched and aligned molecules of DNA as templates for the subsequent bottom-up construction of hetero-structures through hybridization

  9. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  10. Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2016-10-01

    Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.

  11. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects

    Institute of Scientific and Technical Information of China (English)

    M Ramzan; M Farooq; T Hayat; A Alsaedi; J Cao

    2015-01-01

    Combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained. Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.

  12. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  13. Mechanical stretching effect on the actuator performance of cellulose electroactive paper

    International Nuclear Information System (INIS)

    Kim, Jung-Hwan; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2009-01-01

    The mechanical stretching effect on the actuating performance of electroactive cellulose paper (EAPap) was studied. A lattice elongation of cellulose fibrils due to in-plane tensile stress along the stretching direction was observed by the x-ray diffraction method. The shrinkage of the fibril diameter as a function of stretching ratio was confirmed by surface and cross-sectional images. While the actuator performance in terms of bending displacement decreased as the stretching ratio increased, the resonance frequency linearly increased as the stretching ratio increased, which was compared with the theoretical frequency data found from a cantilever beam model. The actuator efficiency was evaluated from the electrical input power consumption and the mechanical output power of an EAPap actuator. It was revealed that the stretching process increased the electro-mechanical efficiency of the EAPap actuator. The mechanism of the influence of the stretching effect on the performance of an EAPap actuator is discussed

  14. Elastography Study of Hamstring Behaviors during Passive Stretching.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Sant

    Full Text Available The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography.The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%, semimembranosus (SM, CV: 10.3%-11.2% and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%, but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%. Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh.This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury.

  15. Elastography Study of Hamstring Behaviors during Passive Stretching

    Science.gov (United States)

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  16. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways.

    Science.gov (United States)

    Ma, Yiming; Fu, Shaoting; Lu, Lin; Wang, Xiaohui

    2017-07-15

    To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Computation of nuclear reactor parameters using a stretch Kalman filtering

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Poujol, A.

    1976-01-01

    A method of nonlinear stochastic filtering, the stretched Karman filter, is used for the estimation of two basic parameters involved in the control of nuclear reactor start-up. The corresponding algorithm is stored in a small Multi-8 computer and tested with data recorded for the Ulysse reactor (I.N.S.T.N.). The various practical problems involved in using the algorithm are examined: filtering initialization, influence of the model... The quality and time saving obtained in the computation make it possible for a real time operation, the computer being connected with the reactor [fr

  18. Muscle damage induced by stretch-shortening cycle exercise.

    Science.gov (United States)

    Kyröläinen, H; Takala, T E; Komi, P V

    1998-03-01

    Strenuous stretch-shortening cycle exercise was used as a model to study the leakage of proteins from skeletal muscle. The analysis included serum levels of creatine kinase (S-CK), myoglobin (S-Mb), and carbonic anhydrase (S-CA III). Blood samples from power- (N=11) and endurance-trained (N=10) athletes were collected before, 0, and 2 h after the exercise, which consisted of a total of 400 jumps. The levels of all determined myocellular proteins increased immediately after the exercise (P exercise, and the ratio of S-CA III and S-Mb decreased (P recruitment order of motor units, and/or differences in training background.

  19. Identification of the Process of Dynamic Stretching of Threads in Warp Knitting Technology Part II: Experimental Identification of the Process of Stretching Threads, with Verification of Rheological Models

    Directory of Open Access Journals (Sweden)

    Prążyńska Aleksandra

    2018-03-01

    Full Text Available The study is a continuation of the first part of the publication, concerning the theoretical analysis of sensitivity of rheological models of dynamically stretched thread. This part presents the experimental research on the characteristics of stretching forces as a function of time, in the context of comparing the obtained results with theoretical data.

  20. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects

    Directory of Open Access Journals (Sweden)

    Sami Ullah Khan

    2018-03-01

    Full Text Available The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate. Keywords: Oscillatory surface, Couple stress fluid, Nanoparticles, Heat absorption/generation

  1. Effects of Functional Training and Calf Stretching on Risk of Falls in Older People: A Pilot Study.

    Science.gov (United States)

    do Rosario, Jailton Thulher; da Fonseca Martins, Natalia Santos; Peixinho, Carolina Carneiro; Oliveira, Liliam Fernandes

    2017-04-01

    This study aimed to determine the effects of a functional training and ankle stretching program in triceps surae torque, passive stiffness index, and in the risk for fall indicators in older adults. Twenty women (73.4 ± 7.3 years) were allocated into an intervention or control group. The 12-week intervention consisted of functional training and calf stretching exercises performed twice a week. Measurements of peak passive and active torque, passive stiffness, maximum dorsiflexion angle, and indexes of risk for falls (Timed Up and Go, functional reach test, QuickScreen-test) were collected. There were no significant differences for all variables, except the maximum dorsiflexion angle, which increased in the intervention group from 33.78 ± 8.57° to 38.89 ± 7.52°. The exercise program was not sufficient to enhance performance on functional tests and decrease the risk for falls in older adults. The significant increase in the maximum dorsiflexion indicates a positive impact of stretching exercises.

  2. Report on results concerning development of supermetal technology (FY1999-2000). Development of evaluation technology for formability of super metal (development of evaluation technology for formability of recrystallized microstructured plate); Super metal no gijutsu kaihatsu seika hokokusho (1999 - 2000 nendo). Super metal no seikeisei hyoka gijutsu nado no kaihatsu (bisai saikesshotsububan no seikeisei hyoka gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In connection with the innovative manufacturing of large base materials having a mesoscopic grain structure by means of technologies for high deformation accumulation control, recovery/recrystallization control, etc., research was conducted on evaluation technology for various characteristics such as formability, with fiscal 2000 results compiled. For the purpose of evaluating average grain size from an optical microscopic photograph of structures, it was judged reasonable to determine the average cut piece length. A device introduced to this development project was a horizontal goniometer capable of ODF (crystallite orientation distribution function)/pole figure measurement, qualitative analysis, and residual stress measurement. With warm rolling performed by controlling both material temperature of 7475 based alloys and roll temperature, thermally stable micro sub-grain structures were obtained. As a result of ODF analysis of this warm-rolled material, it was found that a {beta} orientation group existed very sharply in the area from the sheet surface to the center planar part of the thickness. The grain refinement of 5083 based alloys using a warm rolling method was also successful, with its ODF analysis revealing that the accumulation of the {beta} orientation group was very high as in the 7475 based warm-rolled materials. (NEDO)

  3. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    KAUST Repository

    Valorani, Mauro

    2016-10-16

    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  4. Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.

    2015-01-01

    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.

  5. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  6. Harmonics analysis of the photonic time stretch system.

    Science.gov (United States)

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results.

  7. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  8. Influence of dispersion stretching of ultrashort UV laser pulse on the critical power for self-focusing

    Science.gov (United States)

    Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2018-04-01

    The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.

  9. Intraplaque stretch in carotid atherosclerotic plaque--an effective biomechanical predictor for subsequent cerebrovascular ischemic events.

    Directory of Open Access Journals (Sweden)

    Zhongzhao Teng

    Full Text Available BACKGROUND: Stretch is a mechanical parameter, which has been proposed previously to affect the biological activities in different tissues. This study explored its utility in determining plaque vulnerability. METHODS: One hundred and six patients with mild to moderate carotid stenosis were recruited in this study (53 symptomatic and 53 asymptomatic. High resolution, multi-sequence magnetic resonance (MR imaging was performed to delineate various plaque components. Finite element method was used to predict high stretch concentration within the plaque. RESULTS: During a two-year follow-up, 11 patients in symptomatic group and 3 in asymptomatic group experienced recurrent cerebrovascular events. Plaque stretch at systole and stretch variation during one cardiac cycle was greater in symptomatic group than those in the asymptomatic. Within the symptomatic group, a similar trend was observed in patients with recurrent events compared to those without. CONCLUSION: Plaques with high stretch concentration and large stretch variation are associated with increased risk of future cerebrovascular events.

  10. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  11. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    Science.gov (United States)

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  12. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  13. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Motion of Knots in DNA Stretched by Elongational Fields

    Science.gov (United States)

    Klotz, Alexander R.; Soh, Beatrice W.; Doyle, Patrick S.

    2018-05-01

    Knots in DNA occur in biological systems, serve as a model system for polymer entanglement, and affect the efficacy of modern genomics technologies. We study the motion of complex knots in DNA by stretching molecules with a divergent electric field that provides an elongational force. We demonstrate that the motion of knots is nonisotropic and driven towards the closest end of the molecule. We show for the first time experimentally that knots can go from a mobile to a jammed state by varying an applied strain rate, and that this jamming is reversible. We measure the mobility of knots as a function of strain rate, demonstrating the conditions under which knots can be driven towards the ends of the molecule and untied.

  15. Centrifugal stretching along the ground state band of 168Hf

    International Nuclear Information System (INIS)

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-01-01

    The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential

  16. Stretching a semiflexible polymer with orientation-dependent interactions

    International Nuclear Information System (INIS)

    Zhen Yi; Vilgis, Thomas A

    2009-01-01

    The mean field variational approach is employed to study the effect of a nematic field and an external constant force field on the elasticity of a semiflexible polymer. In the stationary phase, we obtain the force–extension relationship and calculate the hairpin density of a stretched semiflexible polymer in nematic solvents. The force–extension behavior is found to be controlled by the parameters gl p and gf where g is the strength of the nematic field, l p is the bare persistence length and f is the external force. Several distinct regimes for the elastic response and the hairpin density emerge depending on the value of gl p and gf. Qualitative comparisons between our computation and other theories are presented

  17. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    Directory of Open Access Journals (Sweden)

    Leyla Alizadeh Ebadi

    2018-03-01

    Full Text Available The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A 5 min jogging; (B 5 min jogging followed by 15 s static stretching; (C 5 min jogging followed by 30 s static stretching; (D 5 min jogging, followed by static stretching for 45 s. Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  18. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    Science.gov (United States)

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  19. Effects of special composite stretching on the swing of amateur golf players.

    Science.gov (United States)

    Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck

    2015-04-01

    [Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed.

  20. ACUTE EFFECTS OF THREE DIFFERENT STRETCHING PROTOCOLS ON THE WINGATE TEST PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Bruno L. Franco

    2012-03-01

    Full Text Available The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT. Fifteen male participants performed five WT; one for familiarization (FT, and the remaining four after no stretching (NS, static stretching (SS, dynamic stretching (DS, and proprioceptive neuromuscular facilitation (PNF. Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP, mean power (MP, and the time to reach PP (TP were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg to the PNF (7.3 ± 0.9 W/kg condition (p < 0.05. For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power.

  1. 600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ENTECH, Auburn, NASA, and others have recently developed a new space photovoltaic array called the Stretched Lens Array (SLA), offering unprecedented performance...

  2. Implementation of a controller for linear positioners applicable in optical fiber stretching

    International Nuclear Information System (INIS)

    Castrillo Piedra, Andres Rodolfo

    2014-01-01

    A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es

  3. Pion scattering to 8- stretched states in 60Ni

    International Nuclear Information System (INIS)

    Clausen, B.L.

    1988-03-01

    Using the Energetic Pion Channel and Spectrometer at the Los Alamos Meson Physics Facility, differential cross sections for pion scattering were measured for ten previously known J/sup π/ = 8/sup /minus// stretched states in 60 Ni. A possible new pure isoscalar stretched state was also found. The data were taken near the /DELTA//sub 3,3/-resonance using 162 MeV incident pions and scattering angles of 65/degree/, 80/degree/, and 90/degree/ for π + and 65/degree/ and 80/degree/ for π/sup /minus//. The analysis of the 60 Ni data found that the use of Woods-Saxon wave functions in the theoretical calculations gave much better agreement with data than the use of the usual harmonic oscillator wave functions. The WS theory gave better predictions of: the angle at which the π/sup /minus// and π + angular distributions are maximum, the ratios of π/sup /minus// to π + cross sections for pure isovector states (which were much larger than unity), and the absolute size of the cross sections for all states (so that the normalization factor necessary to arrive at agreement of theory with data was closer to unity). The theoretical calculations used the distorted wave impulse approximation, including new methods for unbound states. The sensitivities of the calculations to input parameters were investigated. This analysis using WS wave functions was extended to five other nuclei ( 12 C, 14 C, 16 O, 28 Si, and 54 Fe) on which both pion scattering and electron scattering have been done. A significant improvement in arriving at a normalization factor close to unity was found when WS wave functions were consistently used for analyzing both pion and electron inelastic scattering data. 101 refs., 26 figs., 13 tabs

  4. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  5. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    Science.gov (United States)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  6. Framing the features of Brownian motion and thermophoresis on radiative nanofluid flow past a rotating stretching sheet with magnetohydrodynamics

    Directory of Open Access Journals (Sweden)

    F. Mabood

    Full Text Available This article addresses the combined effects of chemical reaction and viscous dissipation on MHD radiative heat and mass transfer of nanofluid flow over a rotating stretching surface. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of heat source. Similarity transformation variables have been used to model the governing equations of momentum, energy, and nanoparticles concentration. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. Physical features for all pertinent parameters on the dimensionless velocity, temperature, skin friction coefficient, and heat and mass transfer rates are analyzed graphically. The numerical comparison has also presented for skin friction coefficient and local Nusselt number as a special case for our study. It is noted that fluid velocity enhances when rotational parameter is increased. Surface heat transfer rate enhances for larger values of Prandtl number and heat source parameter while mass transfer rate increases for larger values of chemical reaction parameter. Keywords: Nanofluid, MHD, Chemical reaction, Rotating stretching sheet, Radiation

  7. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  8. Acute effects of 15min static or contract-relax stretching modalities on plantar flexors neuromuscular properties.

    Science.gov (United States)

    Babault, Nicolas; Kouassi, Blah Y L; Desbrosses, Kevin

    2010-03-01

    The present study aimed to investigate the immediate effects of 15 min static or sub-maximal contract-relax stretching modalities on the neuromuscular properties of plantar flexor muscles. Ten male volunteers were tested before and immediately after 15 min static or contract-relax stretching programs of plantar flexor muscles (20 stretches). Static stretching consisted in 30s stretches to the point of discomfort. For the contract-relax stretching modality, subjects performed 6s sub-maximal isometric plantar flexion before 24s static stretches. Measurements included maximal voluntary isometric torque (MVT) and the corresponding electromyographic activity of soleus (SOL) and medial gastrocnemius (MG) muscles (RMS values), as well as maximal peak torque (Pt) elicited at rest by single supramaximal electrical stimulation of the tibial nerve. After 15 min stretching, significant MVT and SOL RMS decreases were obtained (-6.9+/-11.6% and -6.5+/-15.4%, respectively). No difference was obtained between stretching modalities. Pt remained unchanged after stretching. MG RMS changes were significantly different between stretching modalities (-9.4+/-18.3% and +3.5+/-11.6% after static and contract-relax stretching modalities, respectively). These findings indicated that performing 15 min static or contract-relax stretching had detrimental effects on the torque production capacity of plantar flexor muscles and should be precluded before competition. Mechanisms explaining this alteration seemed to be stretch modality dependent. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. STRETCHING EXERCISES - EFFECT ON PASSIVE EXTENSIBILITY AND STIFFNESS IN SHORT HAMSTRINGS OF HEALTHY-SUBJECTS

    NARCIS (Netherlands)

    HALBERTSMA, JPK; GOEKEN, LNH

    Passive muscle stretch tests are common practice in physical therapy and rehabilitation medicine. However, the effects of stretching exercises are not well known. With an instrumental straight-leg-raising set-up the extensibility, stiffness, and electromyographic activity of the hamstring muscles

  10. Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Zuur, Abraham T; Christensen, Mark Schram; Sinkjær, Thomas

    2009-01-01

    Abstract A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive Transcranial Magnetic Stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch...

  11. On prediction of OH stretching frequencies in intramolecularly hydrogen bonded systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2012-01-01

    OH stretching frequencies are investigated for a series of non-tautomerizing systems with intramolecular hydrogen bonds. Effective OH stretching wavenumbers are predicted by the application of empirical correlation procedures based on the results of B3LYP/6-31G(d) theoretical calculations...

  12. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-01-01

    Full Text Available Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4 with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch, and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  13. The effects of static stretch duration on the flexibility of hamstring ...

    African Journals Online (AJOL)

    The effects of static stretch duration on the flexibility of hamstring muscles. NA Odunaiya, TK Hamzat, OF Ajayi. Abstract. The effects of duration of a static stretching protocol (Intervention) on hamstrings tightness were evaluated. Sixty purposively sampled subjects with unilateral hamstring tightness that had no history of low ...

  14. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    Science.gov (United States)

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  15. Muscular and stato-kinetic functions rehabilitation by means of subaquatic stretching (hydrostretching

    Directory of Open Access Journals (Sweden)

    Zoltàn Pàsztay

    2008-12-01

    Full Text Available Stretching is a physical therapeutical way for maintaining the standard parameters of the body functions from a tender to anadvanced age. The most important parameter that is influenced by the different techniques of stretching, especially byhydrostretching, is flexibility. This article presents the technique and the effects of hydrostretching on human body (onmuscular balance, strength, muscular metabolism and circulation.

  16. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    Science.gov (United States)

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  17. Stretched exponential relaxation in molecular and electronic glasses

    Science.gov (United States)

    Phillips, J. C.

    1996-09-01

    Stretched exponential relaxation, 0034-4885/59/9/003/img1, fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where 0034-4885/59/9/003/img2 is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0034-4885/59/9/003/img3 even at 0034-4885/59/9/003/img4, a glass transition temperature. We show that for molecular relaxation 0034-4885/59/9/003/img5 can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, 0034-4885/59/9/003/img6 for short-range forces, and 0034-4885/59/9/003/img7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from 0034-4885/59/9/003/img8 to s, as collected and analysed phenomenologically by Angell, Ngai, Böhmer and others. The electronic materials discussed include a-Si:H, granular 0034-4885/59/9/003/img9, semiconductor nanocrystallites, charge density waves in 0034-4885/59/9/003/img10, spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van

  18. Stretched exponential relaxation in molecular and electronic glasses

    International Nuclear Information System (INIS)

    Phillips, J.C.

    1996-01-01

    Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which

  19. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  20. Post-activation depression of soleus stretch reflexes in healthy and spastic humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Klinge, Klaus; Crone, Clarissa

    2007-01-01

    Reduced depression of transmitter release from Ia afferents following previous activation (post-activation depression) has been suggested to be involved in the pathophysiology of spasticity. However, the effect of this mechanism on the myotatic reflex and its possible contribution to increased...... reflex excitability in spastic participants has not been tested. To investigate these effects, we examined post-activation depression in Soleus H-reflex responses and in mechanically evoked Soleus stretch reflex responses. Stretch reflex responses were evoked with consecutive dorsiflexion perturbations...... of the soleus stretch reflex and H-reflex decreased as the interval between the stimulus/perturbation was decreased. Similarly, the stretch-evoked torque decreased. In the spastic participants, the post-activation depression of both reflexes and the stretch-evoked torque was significantly smaller than...

  1. Comparison between static stretching and the Pilates method on the flexibility of older women.

    Science.gov (United States)

    Oliveira, Laís Campos de; Oliveira, Raphael Gonçalves de; Pires-Oliveira, Deise Aparecida de Almeida

    2016-10-01

    Flexibility decreases with advancing age and some forms of exercise, such as static stretching and Pilates, can contribute to the improvement of this physical ability. To compare the effects of static stretching and Pilates on the flexibility of healthy older women, over the age of 60 years. Thirty-two volunteers were randomized into two groups (Static stretching or Pilates) to perform exercises for 60 min, twice a week, for three months. Evaluations to analyze the movements of the trunk (flexion and extension), hip flexion and plantar and dorsiflexion of the ankle were performed before and after the intervention, using a fleximeter. The static stretching exercises improved the trunk flexion and hip flexion movements, while the Pilates improved all evaluated movements. However, over time, the groups presented differences only for the trunk extension movement. For some body segments, Pilates may be more effective for improving flexibility in older women compared to static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Won; Na, Seong Hyeon; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Kim, Young Kyun; Kim, Ki Dong [Korea Gas Coporation R& D Division, Daejeon (Korea, Republic of)

    2017-09-15

    STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and -170℃ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

  3. [Current trends in the effects of stretching: application to physical exercise in the workplace].

    Science.gov (United States)

    Eguchi, Yasumasa; Ohta, Masanori; Yamato, Hiroshi

    2011-09-01

    A review of the Survey on the State of Employees' Health by the Ministry of Health, Labour and Welfare (2008) shows that the most commonly implemented aspect as an activity of worksite health promotion is "Health counseling", and the second is "Workplace physical exercise." Physical exercise, "Taiso", is acceptable and sustainable for workers, as it is easy to do in a group or alone. Various modes of stretching are implemented for workplace physical exercise. However, articles suggesting negative or contradictory effects of stretching have increased in recent years. Several review articles have revealed that static stretching may induce impairments of muscle power performance and no stretching will prevent or reduce muscle soreness after exercise. There are various aims of workplace physical exercise, so we have to consider the situational method when we apply stretching to occupational health.

  4. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions.

    Directory of Open Access Journals (Sweden)

    Maria Imtiaz

    Full Text Available This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number.

  5. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits.

    Science.gov (United States)

    Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen

    Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is

  6. Quantifying stretching and rearrangement in epithelial sheet migration

    International Nuclear Information System (INIS)

    Lee, Rachel M; Nordstrom, Kerstin N; Losert, Wolfgang; Kelley, Douglas H; Ouellette, Nicholas T

    2013-01-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a finite-time Lyapunov exponent (FTLE) analysis, we find that—in spite of large fluctuations—the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e. positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D m in 2 , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density. (paper)

  7. Modeling stretched solitary waves along magnetic field lines

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    2002-01-01

    Full Text Available A model is presented for a new type of fast solitary waves which is observed in downward current regions of the auroral zone. The three-dimensional, coherent structures are electrostatic, have a positive potential, and move along the magnetic field lines with speeds on the order of the electron drift. Their parallel potential profile is flattened and cannot fit to the Gaussian shape used in previous work. We develop a detailed BGK model which includes a flattened potential and an assumed cylindrical symmetry around a centric magnetic field line. The model envisions concentric shells of trapped electrons slowly drifting azimuthally while bouncing back and forth in the parallel direction. The electron dynamics is analysed in terms of three basic motions that occur on different time scales characterized by the cyclotron frequency We , the bounce frequency wb , and the azimuthal drift frequency wg. The ordering We >> wb >> wg is required. Self-consistent distribution functions are calculated in terms of approximate constants of motion. Constraints on the parameters characterizing the amplitude and shape of the stretched solitary wave are discussed.

  8. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Science.gov (United States)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  9. GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING

    International Nuclear Information System (INIS)

    Hicks, E. P.; Rosner, R.

    2013-01-01

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  10. Extrinsic stretching narrowing and anterior indentation of the rectosigmoid junction

    International Nuclear Information System (INIS)

    Schulman, A.; Fataar, S.

    1979-01-01

    Thirty-five cases of extrinsic narrowing or anterior indentation of the rectosigmoid junction (RSJ) have been studied. The RSJ lies directly behind the pouch of Douglas which is a favoured site for peritoneal metastasis, abscess and endometriosis. Any space-occupying lesion of sufficient size at this site will indent the anterior aspects of the RSJ. Causes include distension or tumour of the ileum or sigmoid colon, gross ascites (when the patient is erect), and tumours below the pelvic peritonium, such as gynaecological neoplasm and internal iliac artery aneurysm. When a desmoplastic metastasis in the pouch of Douglas infiltrates the outer layers of the RSJ, the fibrosis produces an eccentric shortening on its anterior aspect, which in turn causes a pleating of the mucosa with the folds radiating towards the shortened area. This is also seen with primary pelvic carcinomas directly adherent to the rectum, endometriosis with repeated bleeding and increasing eccentric, submucosal fibrosis, and chronic abscess in the pouch of Douglas. Not all extrinsic narrowing of the RSJ are pathological. One case of anterior indentation followed operation for rectal prolapse. Ten additional cases showed narrowing due to a technical artefact air-distended colon rising into the upper abdomen to cause stretching at the RSJ. As with ascites, this narrowing due to 'high-rise sigmoid' disappeared when the patients became recumbent and the colonic air redistributed. (author)

  11. The acute effect of static and dynamic stretching during warm-ups on anaerobic performance in trained women

    Directory of Open Access Journals (Sweden)

    rouhollah haghshenas

    2014-09-01

    Full Text Available The purpose of this study was to investigate effects of static stretching, dynamic stretching and no stretching methods on power and speed in volleyball players. Therefore, Twenty-four volleyball players (height: 173.29 ± 7.81 m; mass: 62.12 ± 8.73 kg; age: 22.66 ± 4.02 years; experience: 3.27 ± 6.37 were tested for speed performance using the 20 meter sprint test and also for power using vertical jump test after static stretching, dynamic stretching and no stretching. The results analyzed using ANOVA showed that There was a significant increase in height jump after dynamic stretching against static stretching. But, there were no significant differences between no stretching and static stretching groups. In addition, there was a significant decrease in time 20 meter sprint after dynamic stretching against static stretching and no stretching groups. The results of this study suggest that it may be desirable for volleyball players to perform dynamic exercises before the performance of activities that require a high power output.

  12. The Effects of Hydrodynamic Stretch on the Flame Propagation Enhancement of Ethylene by Addition of Ozone

    Science.gov (United States)

    2015-07-13

    dimensional simulations were performed using the unsteady ignition and combustion with reactions ( UNICORN ) model [28,33–36]. UNICORN only requires the inflow...Katta VR. 1998 Role of flow visualization in the development of UNICORN . J. Vis. 2, 257–272. (doi:10.1007/BF03181442) 34. Katta VR, Goss LP, Roquemore WM

  13. Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot

    Science.gov (United States)

    Cotton root rot is a destructive disease affecting cotton production. Accurate identification of infected areas within fields is useful for cost-effective control of the disease. The uncertainties caused by various infection stages and newly infected plants make it difficult to achieve accurate clas...

  14. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.; Chen, S.-C.; Wang, T.-J.; Guo, J.

    2018-01-01

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non

  15. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  16. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    Science.gov (United States)

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  17. The influence of foot position on stretching of the plantar fascia.

    Science.gov (United States)

    Flanigan, Ryan M; Nawoczenski, Deborah A; Chen, Linlin; Wu, Hulin; DiGiovanni, Benedict F

    2007-07-01

    A recent study found nonweightbearing stretching exercises specific to the plantar fascia to be superior to the standard program of weightbearing Achilles tendon-stretching exercises in patients with chronic plantar fasciitis. The present study used a cadaver model to demonstrate the influence of foot and ankle position on stretching of the plantar fascia. Twelve fresh-frozen lower-leg specimens were tested in 15 different configurations representing various combinations of ankle and metatarsophalangeal (MTP) joint dorsiflexion, midtarsal transverse plane abduction and adduction, and forefoot varus and valgus. Measurements were recorded by a differential variable reluctance transducer (DVRT) implanted into the medial band of the plantar fascia, and primary measurement was a percent deformation of the plantar fascia (stretch) with respect to a reference position (90 degrees ankle dorsiflexion, 0 degrees midtarsal and forefoot orientation, and 0 degrees MTP dorsiflexion). Ankle and MTP joint dorsiflexion produced a significant increase (14.91%) in stretch compared to the position of either ankle dorsiflexion alone (9.31% increase, p plantar fascia tissue-specific stretching exercises and lends support to the use of ankle and MTP joint dorsiflexion when employing stretching protocols for nonoperative treatment in patients with chronic proximal plantar fasciitis.

  18. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  19. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch

    International Nuclear Information System (INIS)

    Jiang, Liang; Jerrams, Stephen; Betts, Anthony; Kennedy, David

    2016-01-01

    Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO 3 , BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated. (paper)

  20. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  2. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players

    Directory of Open Access Journals (Sweden)

    Amiri-Khorasani Mohammadtaghi

    2016-04-01

    Full Text Available The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol, and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  3. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  4. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10 in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF and surface electromyography (sEMG of both gastrocnemius lateralis (GL and vastus lateralis (VL were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD. ANOVA (2x2 (group x condition was used for shoulder joint range of motion (ROM, vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001. A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control for peak force for control group (p = 0.045. Regarding sEMG variables, there were no significant differences between groups (control versus stretched or condition (pre-stretching versus post-stretching for the peak amplitude of RMS and IEMG for both muscles (VL and GL. In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation.

  5. Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites.

    Science.gov (United States)

    Zhou, Mi; Fan, Mao; Zhao, Yongsheng; Jin, Tianxiang; Fu, Qiang

    2016-04-20

    In order to prepare poly(butylene succinate)/microfibrillated cellulose composites with high performance, in this work, microfibrillated cellulose (MFC) was first treated by acetylchloride with ball-milling to improve its interfacial compatibility with poly(butylene succinate) (PBS). Then melt stretching processing was adopted to further improve the dispersion and orientation of MFC in as-spun PBS fiber. And the effect of MFC on the crystalline structure and mechanical properties were systematically investigated for the melt-spun fibers prepared with two different draw ratios. The dispersion, alignment of the MFC and interfacial crystalline structure in the composite fibers are significantly influenced by the stretching force during the melt spinning. The possible formation of nanohybrid shish kebab (NHSK) superstructure where aligned MFC as shish and PBS lamellae as kebab has been suggested via SEM and SAXS in the composite fibers prepared at the high draw ratio. Large improvement in tensile strength has been realized at the high draw ratio due to the enhanced orientation and dispersion of MFC as well as the formation of NHSK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    Science.gov (United States)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-10-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  7. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β>1

    International Nuclear Information System (INIS)

    Hashimoto, Chihiro; Panizza, Pascal; Rouch, Jacques; Ushiki, Hideharu

    2005-01-01

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent β characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with β>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced

  8. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with {beta}>1

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Chihiro [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan); Panizza, Pascal [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Rouch, Jacques [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Ushiki, Hideharu [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan)

    2005-10-19

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent {beta} characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with {beta}>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  9. Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: An experimental study

    NARCIS (Netherlands)

    Verhaegen, Pauline D.; Schouten, Hennie J.; Tigchelaar-Gutter, Wikky; van Marle, Jan; van Noorden, Cornelis J.; Middelkoop, Esther; van Zuijlen, Paul P.

    2012-01-01

    Surgeons are often faced with large defects that are difficult to close. Stretching adjacent skin can facilitate wound closure. In clinical practice, intraoperative stretching is performed in a cyclical or continuous fashion. However, exact mechanisms of tissue adaptation to stretch remain unclear.

  10. Effect of spinal manipulative therapy with stretching compared with stretching alone on full-swing performance of golf players: a randomized pilot trial☆

    Science.gov (United States)

    Costa, Soraya M.V.; Chibana, Yumi E.T.; Giavarotti, Leandro; Compagnoni, Débora S.; Shiono, Adriana H.; Satie, Janice; Bracher, Eduardo S.B.

    2009-01-01

    Abstract Objective There has been a steady growth of chiropractic treatment using spinal manipulative therapy (SMT) that aims to increase the performance of athletes in various sports. This study evaluates the effect of SMT by chiropractors on the performance of golf players. Methods Golfers of 2 golf clubs in São Paulo, Brazil, participated in this study. They were randomized to 1 of 2 groups: Group I received a stretch program, and group II received a stretch program in addition to SMT. Participants in both groups performed the same standardized stretching program. Spinal manipulative therapy to dysfunctional spinal segments was performed on group II only. All golfers performed 3 full-swing maneuvers. Ball range was considered as the average distance for the 3 shots. Treatment was performed after the initial measurement, and the same maneuvers were performed afterward. Each participant repeated these procedures for a 4-week period. Student t test, Mann-Whitney nonparametric test, and 1-way analysis of variance for repeated measures with significance level of 5% were used to analyze the study. Results Forty-three golfers completed the protocol. Twenty participants were allocated to group I and 23 to group II. Average age, handicap, and initial swing were comparable. No improvement of full-swing performance was observed during the 4 sessions on group I (stretch only). An improvement was observed at the fourth session of group II (P = .005); when comparing the posttreatment, group II had statistical significance at all phases (P = .003). Conclusions Chiropractic SMT in association with muscle stretching may be associated with an improvement of full-swing performance when compared with muscle stretching alone. PMID:19948307

  11. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.

    Science.gov (United States)

    Magou, George C; Pfister, Bryan J; Berlin, Joshua R

    2015-10-22

    The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.

  12. Explicit Gaussian quadrature rules for C^1 cubic splines with symmetrically stretched knot sequence

    KAUST Repository

    Ait-Haddou, Rachid; Barton, Michael; Calo, Victor M.

    2015-01-01

    We provide explicit expressions for quadrature rules on the space of C^1 cubic splines with non-uniform, symmetrically stretched knot sequences. The quadrature nodes and weights are derived via an explicit recursion that avoids an intervention

  13. Origin of the blue shift of the CH stretching band for 2-butoxyethanol in water.

    Science.gov (United States)

    Katsumoto, Yukiteru; Komatsu, Hiroyuki; Ohno, Keiichi

    2006-07-26

    The blue shift of the isolated CD stretching band of 2-butoxyethanol (C4E1), which is observed for the aqueous solution during the dilution process, has been investigated by infrared (IR) spectroscopy and quantum chemical calculations. Mono-deuterium-labeled C4E1's were employed to remove the severe overlapping among the CH stretching bands. The isolated CD stretching mode of the alpha-methylene in the butoxy group shows a large blue shift, while those of the beta-methylene and methyl groups are not largely shifted. The spectral simulation results for the C4E1/H2O complexes indicate that the large blue shift of the CD stretching band of the butoxy group arises mainly from the hydration of the ether oxygen atom.

  14. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  15. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  16. Coherent time-stretch transformation for real-time capture of wideband signals.

    Science.gov (United States)

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  17. Influence of acute static stretching on the behavior of maximum muscle strength

    Directory of Open Access Journals (Sweden)

    Carmen Lúcia Borges Bastos

    2014-06-01

    Full Text Available The aim of this study was to compare the influence of acute static stretching on maximal muscle strength (1RM. The non-probabilistic sample consisted of 30 subjects split into two groups: static stretching (SS= 15 and without stretching group (WS= 15. Muscle strength evaluation (1RM was conducted with a Dynamometer model 32527pp400 Pound push / pull devices coupled in knee extension (KE and bench press (BP. The Wilcoxon test for intragroup comparisons and the Kruskal-Wallis test for comparisons between groups (p< 0.05 were selected. There were no significant differences (p> 0.05 between the SS and WS in exercise KE and BP. Therefore, it can be concluded that there was no reduction in the performance of 1RM performing the exercises KE and BP when preceded by static stretching.

  18. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  19. A supervision on stretch out mode of Guangdong Daya Bay NPP

    International Nuclear Information System (INIS)

    Zhou Hong; Chai Guohan; Dong Xiuchen; Mao Haiyun

    2004-01-01

    The supervision of stretch out mode in the Guangdong Daya Bay nuclear power plant is described. It is also discussed some problems and suggestions of supervision in the new fields of the nuclear power plan. (authors)

  20. Intrinsic ankle stiffness during standing increases with ankle torque and passive stretch of the Achilles tendon

    Science.gov (United States)

    Gill, Jaspret

    2018-01-01

    Individuals may stand with a range of ankle angles. Furthermore, shoes or floor surfaces may elevate or depress their heels. Here we ask how these situations impact ankle stiffness and balance. We performed two studies (each with 10 participants) in which the triceps surae, Achilles tendon and aponeurosis were stretched either passively, by rotating the support surface, or actively by leaning forward. Participants stood freely on footplates which could rotate around the ankle joint axis. Brief, small stiffness-measuring perturbations (torque or passive stretch. Sway was minimally affected by stretch or lean, suggesting that this did not underlie the alterations in stiffness. In quiet stance, maximum ankle stiffness is limited by the tendon. As tendon strain increases, it becomes stiffer, causing an increase in overall ankle stiffness, which would explain the effects of leaning. However, stiffness also increased considerably with passive stretch, despite a modest torque increase. We discuss possible explanations for this increase. PMID:29558469

  1. Effectiveness of passive stretching versus hold relax technique in flexibility of hamstring muscle

    Directory of Open Access Journals (Sweden)

    Gauri Shankar

    2010-10-01

    Full Text Available Aim: To compare the effectiveness of passive stretching and hold relax technique in the flexibility of hamstring muscle. Methods: A total of 80 normal healthy female subjects between age group 20-30 years referred to the department of physiotherapy, Sumandeep Vidyapeeth University, sampling method being convenient sampling. The subjects were randomly divided in two groups i.e. passive stretching group (n=40 and PNF group (n=40 and given passive stretching and proprioceptive neuromuscular facilitation technique respectively. Active knee extension range was measured before and after the intervention by goniometer. Results: t test showed a highly significant (p=0.000 increase in range of motion in PNF group. Conclusion: Proprioceptive neuromuscular facilitation technique is more effective in increasing hamstring flexibility than the passive stretching.

  2. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  3. 600 Volt Stretched Lens Array for Solar Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past six years, ENTECH, Auburn, NASA, and other organizations have developed a new space photovoltaic array called the Stretched Lens Array (SLA), which...

  4. An economic analysis of stretch-out for Angra-1 reactor

    International Nuclear Information System (INIS)

    Sakai, M.

    1989-01-01

    An application of NUCOST code for calculating nuclear energy cost is presented. Ann optimization of stretch-out for Angra-1 reactor based on international costs of nuclear fuel, operation and maintenance is done. (M.C.K.)

  5. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  6. Anomalous growth and dissipation of the magnetic field in a turbulent flow with stretches

    Energy Technology Data Exchange (ETDEWEB)

    Gvaramadze, V V; Lominadze, J G; Ruzmaikin, A A; Sokolov, D D

    1987-04-01

    The magnetic field evolution in helical turbulence with stretches is investigated. It is shown that heavy concentrations of the magnetic field appear under definite conditions. The results are consistent with numerical experiments.

  7. Anomalous growth and dissipation of the magnetic field in a turbulent flow with stretches

    International Nuclear Information System (INIS)

    Gvaramadze, V.V.; Lominadze, J.G.; Ruzmaikin, A.A.; Sokolov, D.D.

    1987-01-01

    The magnetic field evolution in helical turbulence with stretches is investigated. It is shown that heavy concentrations of the magnetic field appear under definite conditions. The results are consistent with numerical experiments

  8. Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis

    Science.gov (United States)

    Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.

    2013-04-01

    We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.

  9. Stretched exponential distributions in Nature and Economy: ``Fat tails'' with characteristic scales

    OpenAIRE

    Laherrère, Jean; Sornette, D.

    1998-01-01

    To account quantitatively for many reported ``natural'' fat tail distributions in Nature and Economy, we propose the stretched exponential family as a complement to the often used power law distributions. It has many advantages, among which to be economical with only two adjustable parameters with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms of multiplicative processes. We show that stretched exponentials describe very well the distributi...

  10. Optimization of path length stretching in Monte Carlo calculations for non-leakage problems

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands)

    2005-07-01

    Path length stretching (or exponential biasing) is a well known variance reduction technique in Monte Carlo calculations. It can especially be useful in shielding problems where particles have to penetrate a lot of material before being tallied. Several authors sought for optimization of the path length stretching parameter for detection of the leakage of neutrons from a slab. Here the adjoint function behaves as a single exponential function and can well be used to determine the stretching parameter. In this paper optimization is sought for a detector embedded in the system, which changes the adjoint function in the detector drastically. From literature it is known that the combination of path length stretching and angular biasing can result in appreciable variance reduction. However, angular biasing is not generally available in general purpose Monte Carlo codes and therefore we want to restrict ourselves to the application of pure path length stretching and finding optimum parameters for that. Nonetheless, the starting point for our research is the zero-variance scheme. In order to study the solution in detail the simplified monoenergetic two-direction model is adopted, which allows analytical solutions and can still be used in a Monte Carlo simulation. Knowing the zero-variance solution analytically, it is shown how optimum path length stretching parameters can be derived from it. It results in path length shrinking in the detector. Results for the variance in the detector response are shown in comparison with other patterns for the stretching parameter. The effect of anisotropic scattering on the path length stretching parameter is taken into account. (author)

  11. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  12. The Considere condition and rapid stretching of linear and branched polymer melts

    DEFF Research Database (Denmark)

    McKinley, Gareth H; Hassager, Ole

    1999-01-01

    to larger Hencky strains as the number of branches is increased. Numerical computations at finite Deborah numbers also show that there is an optimal range of deformation rates over which homogeneous extensions can be maintained to large strain. We also consider other rapid homogeneous stretching...... deformations, such as biaxial and planar stretching, and show that the degree of stabilization afforded by inclusion of material with long-chain branching is a sensitive function of the imposed mode of deformation....

  13. A Systematic Review on the Effect of Mechanical Stretch on Hypertrophic Scars after Burn Injuries

    Directory of Open Access Journals (Sweden)

    Yu-ting Zhang

    2017-06-01

    Conclusion: From extensive literature search, there was no strong evidence indicating the positive effect of mechanical stretch using stretching exercise, massage, or splinting on hypertrophic scars. A firm conclusion cannot be drawn for the discrepancy of outcome measures and varied effectiveness. Most of the included studies lacked objective evaluation or control group for comparison. Further high quality studies with larger sample size and using standardized measurements are needed.

  14. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    Science.gov (United States)

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  16. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  17. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    Science.gov (United States)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  18. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  19. Acute effect of different time periods of passive static stretching on the hamstring flexibility.

    Science.gov (United States)

    Cini, Anelize; de Vasconcelos, Gabriela Souza; Lima, Claudia Silveira

    2017-01-01

    Several factors are associated with the presence of chronic low back pain; one of them is the flexibility of the hamstring muscles that influences the posture of the pelvic spine. Investigate the influence of two different time periods of passive static stretching on the flexibility of the hamstring. Forty-six physiotherapy students were divided into two groups performing stretching exercises: 30 s and 60 s duration. The collections consisted of: (1) pre-test: evaluation of the flexibility of the hip and knee, using a manual goniometer by means of the following tests: Straight Leg Raise Test (SLR), Passive Hip Flexion Test (PHFT) and Modified Knee Extension Test (MKET), (2) intervention: stretching with different runtimes, (3) post-test: reappraisal of flexibility, conducted immediately after the intervention. Significant difference was observed intra groups, group that did stretching exercises lasting 30 seconds (G30) (SLR p = 0.000. PHFT p = 0.003 and MKET p = 0.000) and group that did stretching exercises lasting 60 seconds (G60) (SLR p = 0.000. PHFT p = 0.001 and MKET p = 0.002). Comparing the groups, no significant difference was found (SLR p = 0.307; PHFT p = 0.904; MKET p = 0.132). Thus it can be inferred that 30 seconds are sufficient for increased flexibility of young women. Therefore the time-treatment sessions can be optimized. Only the acute effect of stretching was observed; further investigation of the long-term effect is required.

  20. Stretching of material lines in pseudo-turbulence induced by small rising bubbles

    International Nuclear Information System (INIS)

    Tanaka, M; Tsujimura, Y; Kanatani, H

    2011-01-01

    Direct numerical simulations have been conducted for the stretching of material lines in pseudo-turbulence induced by small rising bubbles in order to understand the mixing characteristics of bubbly flows. Contaminated bubbles are considered and are treated as light solid particles. An immersed boundary method has been used for evaluating the coupling force between the bubbles and the surrounding fluid flows. Numerical results show that the total length of material lines increases exponentially in time as a result of stretching and folding due to the rising bubbles. The material lines tend to accumulate in the wake regions of the bubbles, and they are strongly stretched in the vertical direction there. It is also found that the stretching rate of material lines increases with the mean void fraction when it is normalized by the magnitude of the rate-of-strain tensor of liquid flow in pseudo-turbulence. In the case of high void fractions, material lines tend to align with the direction of maximum stretching, and are effectively stretched.

  1. Stretching of material lines in pseudo-turbulence induced by small rising bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M; Tsujimura, Y; Kanatani, H, E-mail: mtanaka@kit.ac.jp [Department of Mechanical and System Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2011-12-22

    Direct numerical simulations have been conducted for the stretching of material lines in pseudo-turbulence induced by small rising bubbles in order to understand the mixing characteristics of bubbly flows. Contaminated bubbles are considered and are treated as light solid particles. An immersed boundary method has been used for evaluating the coupling force between the bubbles and the surrounding fluid flows. Numerical results show that the total length of material lines increases exponentially in time as a result of stretching and folding due to the rising bubbles. The material lines tend to accumulate in the wake regions of the bubbles, and they are strongly stretched in the vertical direction there. It is also found that the stretching rate of material lines increases with the mean void fraction when it is normalized by the magnitude of the rate-of-strain tensor of liquid flow in pseudo-turbulence. In the case of high void fractions, material lines tend to align with the direction of maximum stretching, and are effectively stretched.

  2. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    Science.gov (United States)

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  3. Barriers to performing stretching exercises among Korean-Chinese female migrant workers in Korea.

    Science.gov (United States)

    Lee, Hyeonkyeong; Wilbur, JoEllen; Chae, Duckhee; Lee, Kyongeun; Lee, Meenhye

    2015-01-01

    The purpose of this study was to investigate the barriers to performing stretching exercise experienced by Korean-Chinese female migrant workers during a community-based 12-week stretching exercise intervention trial. Qualitative secondary data analysis was conducted using telephone counseling interview transcripts from 27 middle-aged, Korean-Chinese migrant women workers. A semistructured interview question asking barriers to performing stretching exercise was given to women who did not adhere to recommended stretching exercise. During the 12-week home-based stretching exercise intervention trial, six telephone calls were made to participants biweekly to elicit barriers to performing stretching exercise. Directed content analysis approach was utilized using three barrier categories: intrapersonal, interpersonal, and work-related environmental factors based on the ecological model. Participants experienced an average of 2.5 barriers during the study period. Intrapersonal barriers included lack of time and lack of motivation, and interpersonal barriers included no family to provide support and also a feeling resistance from coworkers. Work-related environmental barriers included frequent job changes, long working hours, lack of rest time, and unpredictable job demands. The findings highlight that migrant workers in Korea face unique work-related difficulties which present barriers to exercise. © 2014 Wiley Periodicals, Inc.

  4. Impact of anisotropic slip on transient three dimensional MHD flow of ferrofluid over an inclined radiate stretching surface

    Directory of Open Access Journals (Sweden)

    A.M. Rashad

    2017-04-01

    Full Text Available The present study explores the impact of anistropic slip on transient three dimensional MHD flow of Cobalt-kerosene ferrofluid over an inclined radiate stretching surface. The governing partial differential equations for this study are solved by the Thomas algorithm with finite-difference type. The impacts of several significant parameters on flow and heat transfer characteristics are exhibited graphically. The conclusion is revealed that the local Nusselt number is significantly promoted due to influence of thermal radiation whereas diminished with elevating the solid volume fraction, magnet parameter and slip factors. Further, the skin friction coefficients visualizes a considerable enhancement with boosting the magnet and radiation parameters, but a prominent reduction is recorded by elevating the solid volume fraction and slip factors.

  5. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-09-01

    Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.

  6. Unsteady mixed convection flow of Casson fluid past an inclined stretching sheet in the presence of nanoparticles

    Science.gov (United States)

    Rawi, N. A.; Ilias, M. R.; Lim, Y. J.; Isa, Z. M.; Shafie, S.

    2017-09-01

    The influence of nanoparticles on the unsteady mixed convection flow of Casson fluid past an inclined stretching sheet is investigated in this paper. The effect of gravity modulation on the flow is also considered. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and copper as nanoparticles. The basic governing nonlinear partial differential equations are transformed using appropriate similarity transformation and solved numerically using an implicit finite difference scheme by means of the Keller-box method. The effect of nanoparticles volume fraction together with the effect of inclination angle and Casson parameter on the enhancement of heat transfer of Casson nanofluid is discussed in details. The velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are presented and analyzed.

  7. Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions

    Directory of Open Access Journals (Sweden)

    Sameh E. Ahmed

    2017-12-01

    Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.

  8. Heat transfer analysis for magnetohydrodynamics axisymmetric flow between stretching disks in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    N. Khan

    2015-05-01

    Full Text Available The investigation of heat transfer analysis on steady MHD axi-symmetric flow between two infinite stretching disks in the presence of viscous dissipation and Joule heating is basic objective of this paper. Attention has been focused to acquire the similarity solutions of the equations governing the flow and thermal fields. The transformed boundary value problem is solved analytically using homotopy analysis method. The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for fluid velocity, pressure and temperature are constructed and analyzed for various set of parameter values. The numerical values for skin friction coefficient and the Nusselt number are presented in tabular form. Particular attention is given to the variations of Prandtl and Eckert numbers. We examined that the dimensionless temperature field is enhanced when we increase the values of Eckert number and Prandtl number.

  9. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  10. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  11. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    Science.gov (United States)

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  12. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    Science.gov (United States)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  13. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude muscle fibre length (L0), speed twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in

  14. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys.

    Science.gov (United States)

    Aye, Irving L M H; Moraitis, Alexandros A; Stanislaus, Dinesh; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-03-01

    Stretch of the myometrium promotes its contractility and is believed to contribute to the control of parturition at term and to the increased risk of preterm birth in multiple pregnancies. To determine the effects of the putative oxytocin receptor (OTR) inverse agonist retosiban on (1) the contractility of human myometrial explants and (2) labor in nonhuman primates. Human myometrial biopsies were obtained at planned term cesarean, and explants were exposed to stretch in the presence and absence of a range of drugs, including retosiban. The in vivo effects of retosiban were determined in cynomolgus monkeys. Prolonged mechanical stretch promoted myometrial extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Moreover, stretch-induced stimulation of myometrial contractility was prevented by ERK1/2 inhibitors. Retosiban (10 nM) prevented stretch-induced stimulation of myometrial contractility and phosphorylation of ERK1/2. Moreover, the inhibitory effect of retosiban on stretch-induced ERK1/2 phosphorylation was prevented by coincubation with a 100-fold excess of a peptide OTR antagonist, atosiban. Compared with vehicle-treated cynomolgus monkeys, treatment with oral retosiban (100 to 150 days of gestational age) reduced the risk of spontaneous delivery (hazard ratio = 0.07, 95% confidence interval 0.01 to 0.60, P = 0.015). The OTR acts as a uterine mechanosensor, whereby stretch increases myometrial contractility through agonist-free activation of the OTR. Retosiban prevents this through inverse agonism of the OTR and, in vivo, reduced the likelihood of spontaneous labor in nonhuman primates. We hypothesize that retosiban may be an effective preventative treatment of preterm birth in high-risk multiple pregnancies, an area of unmet clinical need.

  15. Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling.

    Directory of Open Access Journals (Sweden)

    Yunping Li

    2009-10-01

    Full Text Available An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.

  16. Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments

    Science.gov (United States)

    Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.

    2012-01-01

    Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469

  17. Effect of the Die Temperature and Blank Thickness on the Formability of a Laser-Welded Blank of a Boron Steel Sheet with Removing Al-Si Coating Layer

    Directory of Open Access Journals (Sweden)

    M. S. Lee

    2014-05-01

    Full Text Available Reducing carbon emissions has been a major focus in the automobile industry to address various environmental issues. In particular, studies on parts comprised of high strength sheets and light car bodies are ongoing. Accordingly, this study examined the use of boron steel, which is commonly used in high strength sheets. Boron steel is a type of sheet used for hot stamping parts. Although it has high strength, the elongation is inferior, which reduces its crash energy absorption capacity. To solve this problem, two sheets of different thickness were welded so the thin sheet would absorb crash energy and the thick sheet would work as a support. Boron steel, however, may show weakening at the welding spot due to the Al-Si coating layer used to prevent oxidation from occurring during the welding process. Therefore, a certain part of the coating layer of a double-thickness boron steel sheet that is welded in the hot stamping process is removed through laser ablation, and the formability of the hot-work was examined.

  18. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  19. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.

    Science.gov (United States)

    von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert

    2003-03-15

    Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.

  20. Effects of hamstring stretch with pelvic control on pain and work ability in standing workers.

    Science.gov (United States)

    Han, Hyun-Il; Choi, Ho-Suk; Shin, Won-Seob

    2016-11-21

    Hamstring tightness induces posterior pelvic tilt and decreased lumbar lordosis, which can result in low back painOBJECTIVE: We investigated effects of hamstring stretch with pelvic control on pain and work ability in standing workers. One hundred adult volunteers from a standing workers were randomly assigned to pelvic control hamstring stretching (PCHS) (n = 34), general hamstring stretching (GHS) (n = 34), control (n = 32) groups. The control group was performed self-home exercise. All interventions were conducted 3 days per week for 6 weeks, and included in the hamstring stretching and lumbopelvic muscle strengthening. Outcomes were evaluated through the visual analog scale (VAS), straight leg raise test (SLR), sit and reach test (SRT), Oswestry disability index (ODI), and work ability index (WAI). Significant difference in VAS, SLR, SRT, ODI, and WAI were found in the PCHS and GHS groups. The control group was a significant difference only in ODI. The PCHS group showed a greater difference than the GHS group and control group in VAS, SLR, SRT, and ODI. The pelvic control hamstring stretch exercise would be more helpful in back pain reduction and improvement of work ability in an industrial setting.

  1. All-passive pixel super-resolution of time-stretch imaging

    Science.gov (United States)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2-5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  2. Acute Effect of Static Stretching on Lower Limb Movement Performance by Using STABL Virtual Reality System.

    Science.gov (United States)

    Ameer, Mariam A; Muaidi, Qassim I

    2017-07-17

    The effect of acute static stretch (ASS) on the lower limb RT has been recently questioned to decrease the risk of falling and injuries in situations requiring a rapid reaction, as in the cases of balance disturbance. The main purpose of this study was to detect the effect of ASS on the lower limb RT by using virtual reality device. Two Group Control Group design. Research laboratory. The control and experimental groups were formed randomly from sixty female university students. Each participant in the experimental group was tested before and after ASS for the quadriceps, hamstrings and planter flexor muscles, and compared with the control group with warming-up exercise only. The stretching program involved warming-up in the form of circular running inside the lab for 5 minutes followed by stretching of each muscle group thrice, to the limit of discomfort of 45 s, with resting period of 15s between stretches. The measurements included the RT of the dominant lower extremity by using the dynamic stability program, STABL Virtual Reality System (Model No. DIZ 2709, Motek Medical and Force Link Merged Co., Amsterdam). There was statistically significant reduction (F = 162, P= .00) in post-test RT between the two groups, and significant decrease in RT after stretching, in the experimental group (7.5%) (P= .00). ASS of the lower limb muscles tends to decrease the lower limb RT and improve movement performance.

  3. Prolonged passive static stretching-induced innervation zone shift in biceps brachii.

    Science.gov (United States)

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2015-05-01

    The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.

  4. Assessing the stretch-blow moulding FE simulation of PET over a large process window

    Science.gov (United States)

    Nixon, J.; Menary, G. H.; Yan, S.

    2017-10-01

    Injection stretch blow moulding has been extensively researched for numerous years and is a well-established method of forming thin-walled containers. This paper is concerned with validating the finite element analysis of the stretch-blow-moulding (SBM) process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature, air flow rate and stretch-rod speed while capturing cavity pressure, stretch-rod reaction force, in-mould contact timing and material thickness distribution. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate user-defined viscoelastic material subroutine. Results reveal that the simulation was able to pick up the general trends of how the pressure, reaction force and in-mould contact timings vary with the variation in preform temperature and air flow rate. Trends in material thickness were also accurately predicted over the length of the bottle relative to the process conditions. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and potentially providing a reduction in production costs.

  5. Prolonged static stretching does not influence running economy despite changes in neuromuscular function.

    Science.gov (United States)

    Allison, Sarah J; Bailey, David M; Folland, Jonathan P

    2008-12-01

    The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners (VO2(peak) 60.1 +/- 7.3 ml x kg(-1) x min(-1)) performed 10 min of treadmill running at 70% VO2(peak) before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 +/- 0.6 cm; isometric strength, -5.6% +/- 3.4%; countermovement jump height -5.5% +/- 3.4%; all P influence running economy despite changes in neuromuscular function.

  6. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    Science.gov (United States)

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, Ppopulations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  7. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using...

  8. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Noreen Sher, E-mail: noreensher@yahoo.com [DBS& H, CEME, National University of Sciences and Technology, Islamabad (Pakistan); Khan, Zafar Hayat [Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa (Pakistan)

    2016-07-15

    The combine effects of magnetic field bioconvection, Brownian motion and thermophoresis on a free convection nanofluid flow over a stretching sheet containing gyrotactic microorganisms are investigated. The self-similar Buongiorno model is analyzed first time for stretching sheet numerically. The present results are compared with available data and are found in an excellent agreement. Pertinent results are presented graphically and discussed quantitatively with respect to variation in bioconvection parameters. - Highlights: • Two dimensional MHD flow in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface is discussed first paper in literature. • Governed problem for proposed model solved numerically using fourth-order Runge–Kutta–Fehlberg method. • Good agreement in comparison with previous studies. • Tabulated physical quantities and graphics of all flow profiles. • Graphics of reduced skin friction coefficient, when the different flow parameters vary.

  9. Pre-Stretched Low Equivalent Weight PFSA Membranes with Improved Fuel Cell Performance

    DEFF Research Database (Denmark)

    Zhang, Wenjing (Angela); Wycisk, Ryszard; Kish, Daniel L.

    2014-01-01

    for the morphological changes to be permanent. For 825 EW PFSA, stretching increased the polymer crystallinity by 22.5%, with a reduction in methanol permeability and a small increase in proton conductivity. In direct methanol fuel cell tests at 60◦C with 1.0 M methanol, the power density at 0.4 V with a DR = 4...... stretched 825 EW membrane (72 mW/cm2) was considerably greater than that obtained with a solution-cast membrane (28 mW/cm2) or with a commercial Nafion 117 membrane (55 mW/cm2). For 733 EW PFSA, stretching promoted the formation of ordered ionic domains leading to an increase in proton conductivity...

  10. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet

    International Nuclear Information System (INIS)

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2010-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  11. Transport, mixing and stretching in a chaotic Stokes flow: The two-roll mill

    International Nuclear Information System (INIS)

    Kaper, T.J.; Wiggins, S.

    1989-01-01

    We present the outline and preliminary results of an analytical and numerical study of transport, mixing, and stretching in a chaotic Stokes' flow in a two-roll mill apparatus. We use the theory of dynamical systems to describe the rich behavior and structure exhibited by these flows. The main features are the homoclinic tangle which functions as the backbone of the chaotic mixing region, the Smale horseshoe, and the island chains. We then use our detailed knowledge of these structures to develop a theory of transport and stretching of fluid in the chaotic regime. In particular, we show how a specific set of tools for adiabatic chaos- the adiabatic Melnikov function lobe area and flux computations and the adiabatic switching method is ideally suited to develop this theory of transport, mixing and stretching in time-dependent two-dimensional Stokes' flows. 19 refs., 8 figs

  12. Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating

    Directory of Open Access Journals (Sweden)

    Imad Khan

    Full Text Available Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters. Keywords: MHD, Carreau nanofluid, Inclined stretching cylinder, Joule heating, Shooting technique

  13. New approach to the exact solution of viscous flow due to stretching (shrinking and porous sheet

    Directory of Open Access Journals (Sweden)

    Azhar Ali

    Full Text Available Exact analytical solutions for the generalized stretching (shrinking of a porous surface, for the variable suction (injection velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions. Keywords: Exact solutions, New similarities, Permeable and moving sheet

  14. Methods for thermal inactivation of pathogens in mozzarella: a comparison between stretching and pasteurization

    Directory of Open Access Journals (Sweden)

    D.C. Raimundo

    2013-04-01

    Full Text Available This study aimed to evaluate the efficiency of stretching in the reduction of pathogens when compared to milk pasteurization, the official method to ensure safe cheese production. Whole buffalo milk was contaminated with Mycobacterium fortuitum, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. Part of the milk was used in mozzarella production and the other part was submitted to holder pasteurization. Pathogens were quantified before and after thermal processing (mozzarella stretching and milk pasteurization. Pasteurization and stretching led to the following reductions in log cycles, respectively: 4.0 and 6.3 for Mycobacterium sp.; 6.0 and 8.4 for Listeria sp.; >6.8 and 4.5 for Staphylococcus sp.; and >8.2 and 7.5 for Salmonella sp.

  15. Experimental study on the deformation of erythrocytes under optically trapping and stretching

    International Nuclear Information System (INIS)

    Liu, Y.P.; Li Chuan; Lai, A.C.K.

    2006-01-01

    The mechanical behavior of erythrocytes is studied experimentally and numerically. In the experiment, prepared silica microbeads are attached to the surface of spherically swollen erythrocytes (red blood cells, RBCs) at room temperature (25 deg. C). The cells are then stretched by single laser beam via the microbeads. The relation of deformation and stretching force is quantitatively assessed by the image processing of digital pictures. Meanwhile, a physical model for an axisymmetric cell is introduced to study its deformation by different level of stretching force. By comparing the experimental and numerical data, stiffness of the cell membrane can be determined and the optimal values are found to agree with other studies by different techniques such as micropipette aspiration or high frequency electric field

  16. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology.

    Science.gov (United States)

    Loverde, Joseph R; Pfister, Bryan J

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  17. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  18. Stiffness of individual quadriceps muscle assessed using ultrasound shear wave elastography during passive stretching

    Directory of Open Access Journals (Sweden)

    Jingfei Xu

    2018-04-01

    Full Text Available Background: Until recently it has not been possible to isolate the mechanical behavior of individual muscles during passive stretching. Muscle shear modulus (an index of muscle stiffness measured using ultrasound shear wave elastography can be used to estimate changes in stiffness of an individual muscle. The aims of the present study were (1 to determine the shear modulus–knee angle relationship and the slack angle of the vastus medialis oblique (VMO, rectus femoris (RF, and vastus lateralis (VL muscles; (2 to determine whether this differs between the muscles. Methods: Nine male rowers took part in the study. The shear modulus of VMO, RF, and VL muscles was measured while the quadriceps was passively stretched at 3°/s. The relationship between the muscle shear modulus and knee angle was plotted as shear modulus–knee angle curve through which the slack angle of each muscle was determined. Results: The shear modulus of RF was higher than that of VMO and VL when the muscles were stretched over 54° (all p  0.05. The slack angle was similar among the muscles: 41.3° ± 10.6°, 44.3° ± 9.1°, and 44.3° ± 5.6° of knee flexion for VMO, RF, and VL, respectively (p = 0.626. Conclusion: This is the first study to experimentally determine the muscle mechanical behavior of individual heads of the quadriceps during passive stretching. Different pattern of passive tension was observed between mono- and bi-articular muscles. Further research is needed to determine whether changes in muscle stiffness are muscle-specific in pathological conditions or after interventions such as stretching protocols. Keywords: Muscle tension, Optimal length, Shear modulus, Slack angle, Stretch, Ultrasonography, Vastus lateralis, Vastus medialis

  19. Effect of Kinesiotaping and Stretching Exercise on Forward Shoulder Angle in Females with Rounded Shoulder Posture

    Directory of Open Access Journals (Sweden)

    Arghavan Hajibashi

    2014-12-01

    Full Text Available Background: Rounded shoulder posture is a common abnormal posture in upper quarter. Kinesiotape is a new intervention that recently used in rehabilitation. There are no studies have examined the effect of kinesiotape on rounded shoulder posture. Therefore the purpose of this study was to determine the effect of scapular kinesiotaping and pectoralis minor stretching exercise on forward shoulder angle in female subjects with rounded shoulder posture. Methods: Twenty female students aged between 18 to 25 years old with rounded shoulder posture participated in this study. Then, the subjects were randomly and equally assigned to two groups: the stretch group and the stretch plus kinesiotape group. Both groups were trained for doing home exercise to stretch Pectoralis minor bilaterally for two weeks. Kinesiotape group received kinesiotape on scapular area additionally. Forward shoulder angle was measured in four sessions including pre-intervention (first session, immediately after the first intervention (second session, fourth day (third session and at the end of two weeks (fourth session. Two-way repeated measures ANOVA (4×2 was used for data analysis. Results: kinesiotape group showed significant within-group decrease in forward shoulder angle between first session with three other sessions (P≤0.05.There was no significant within-group difference in stretch group and between groups (P=0.20 forward shoulder angle-by-group interaction in measurement sessions was significantly different (P=0.02 Conclusion: scapular kinesiotaping along with pectoralis minor stretching exercise improved rounded shoulder posture in subjects of the present study. kinesiotape is suggested as a complem

  20. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  1. Plantar flexor stretch reflex responses to whole body loading/unloading during human walking

    DEFF Research Database (Denmark)

    Grey, Michael James; van Doornik, Johannes; Sinkjær, Thomas

    2002-01-01

    Numerous animal and human studies have shown that afferent information from the periphery contributes to the control of walking. In particular, recent studies have consistently shown that load receptor input is an important element of the locomotion control mechanism. The objective of this study...... perturbation during human walking. Three body load conditions were investigated: normal body load, a 30% increase in body load, and a 30% decrease in body load. Healthy subjects walked on a treadmill at approximately 3.6 km/h with the left ankle attached to a portable stretching device. Dorsiflexion...... strongly to the corrective response of the stretch reflex in the plantar flexor muscles during walking....

  2. Lamb's plane problem in a thermo-elastic micropolar medium with stretch

    Directory of Open Access Journals (Sweden)

    T. K. Chadha

    1987-01-01

    Full Text Available A study is made of the Lamb plane problem in a thermo-elastic micropolar medium with the effect of stretch. The problem is solved for an arbitrary, normal load distribution by using the double Fourier transform. The displacement components, force stress, couple stress, vector first moment and the temperature field are determined for a half space subjected to an arbitrary normal load. Two special cases of a horizontal force and a torque which are oscillating with a frequency ω have been investigated. It is shown that results of this analysis reduce to those without stretch.

  3. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    Science.gov (United States)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  4. Wiener Index, Diameter, and Stretch Factor of a Weighted Planar Graph in Subquadratic Time

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    over all pairs of distinct vertices of the ratio between the graph distance and the Euclidean distance between the two vertices). More specifically, we show that the Wiener index and diameter can be found in O(n^2*(log log n)^4/log n) worst-case time and that the stretch factor can be found in O(n^2......We solve three open problems: the existence of subquadratic time algorithms for computing the Wiener index (sum of APSP distances) and the diameter (maximum distance between any vertex pair) of a planar graph with non-negative edge weights and the stretch factor of a plane geometric graph (maximum...

  5. Self-induced stretch syncope of adolescence: a video-EEG documentation.

    Science.gov (United States)

    Mazzuca, Michel; Thomas, Pierre

    2007-12-01

    We present the first video-EEG documentation, with ECG and EMG features, of stretch syncope of adolescence in a young, healthy 16-year-old boy. Stretch syncope of adolescence is a rarely reported, benign cause of fainting in young patients, which can be confused with epileptic seizures. In our patient, syncopes were self-induced to avoid school. Dynamic transcranial Doppler showed evidence of blood flow decrease in both posterior cerebral arteries mimicking effects of a Valsalva manoeuvre. Dynamic angiogram of the vertebral arteries was normal. Hypotheses concerning the physiopathology are discussed. [Published with video sequences].

  6. A control scheme for filament stretching rheometers with application to polymer melts

    DEFF Research Database (Denmark)

    Román Marín, José Manuel; Huusom, Jakob Kjøbsted; Javier Alvarez, Nicolas

    2013-01-01

    We propose a new control scheme to maintain a constant strain rate of the mid-filament diameter in a filament stretching rheometer for polymer melts. The scheme is cast as a velocity algorithm and consists of a feed-back and a feed-forward contribution. The performance of the controller is demons......We propose a new control scheme to maintain a constant strain rate of the mid-filament diameter in a filament stretching rheometer for polymer melts. The scheme is cast as a velocity algorithm and consists of a feed-back and a feed-forward contribution. The performance of the controller...

  7. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  8. Multiple refraction switches realized by stretching elastomeric scatterers in sonic crystals

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-02-01

    Full Text Available The effect of out-of-plane pre-stretch on the 2D sonic crystal with stretchable elastomeric scatterers is explored. The hyperelastic scatterers are characterized by a compressible neo-Hookean model. The Dirichlet-to-Neumann (DtN map is adopted to obtain the band structure and equi-frequency contours. We focus on the first passband and find that a variety of switching functionalities for refraction behaviors can be realized in selected frequencies under a specific pre-stretch range. These refraction switches enable an active control of wave propagation and are applicable in advanced technologies where switchable and multifunctional sonic crystals are required.

  9. Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted Fixed Orientation Metrics

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2008-01-01

    Let G be a graph embedded in the L_1-plane. The stretch factor of G is the maximum over all pairs of distinct vertices p and q of G of the ratio L_1^G(p,q)/L_1(p,q), where L_1^G(p,q) is the L_1-distance in G between p and q. We show how to compute the stretch factor of an n-vertex path in O(n*(log...... n)^2) worst-case time and O(n) space and we mention generalizations to trees and cycles, to general weighted fixed orientation metrics, and to higher dimensions....

  10. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  11. Acute effects of short and long duration dynamic stretching protocols on muscle strength

    Directory of Open Access Journals (Sweden)

    Christiano Francisco dos Santos

    Full Text Available Objective Compare the acute effects of dynamic stretching protocols on the isokinetic performance of the quadriceps and hamstring muscles at two velocities in adult males.Methodology Included the participation of 14 males (21 ± 2.6 years; 178 ± 0.4 cm; 73.2 ± 20.9 kg were assessed using an isokinetic dynamometer before and after following a short or long-duration dynamic stretching protocol or a control protocol. The results were assessed by a two-way ANOVA and a Scheffé’s post hoc test at a 5% significance level.Results No difference was found in the variables assessed at 180°/s after LDDS. At 60°/s, LDDS reduced the power of the knee flexors. The control protocol reduced the power of the knee flexors and increased the power of the extensors. At 60°/s, the work of the knee flexors exhibited a reduction after LDDS. The control protocol resulted in a reduction in the work of the flexors. The peak torque angle exhibited a reduction in the extensors and flexors after LDDS and SDDS.Conclusion Dynamic stretching did not cause any change in the peak torque, which points to its possible use in activities involving velocity and muscle strength. The executing dynamic stretching before physical activities such as running and high-intensity sports might be beneficial by promoting increases in heart rate and in body temperature.

  12. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method f...

  13. Individually programmable cell stretching microwell arrays actuated by a Braille display.

    Science.gov (United States)

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi

    2008-06-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.

  14. Stretching to understand proteins - a survey of the protein data bank.

    Science.gov (United States)

    Sułkowska, Joanna I; Cieplak, Marek

    2008-01-01

    We make a survey of resistance of 7510 proteins to mechanical stretching at constant speed as studied within a coarse-grained molecular dynamics model. We correlate the maximum force of resistance with the native structure, predict proteins which should be especially strong, and identify the nature of their force clamps.

  15. The Effects of Cryotherapy and PNF Stretching Techniques on Hip Extensor Flexibility in Elderly Females.

    Science.gov (United States)

    Rosenberg, Beth S.; And Others

    1990-01-01

    Study determined whether three proprioceptive neuromuscular facilitation flexibility maneuvers (to increase hamstring length) were as effective in 31 older females as in younger subjects. Cryotherapy intervention was also employed. Results indicated contract-relax and slow-reversal-hold-relax procedures were superior to static stretching;…

  16. Repeated passive stretching : Acute effect on the passive muscle moment and extensibility of short hamstrings

    NARCIS (Netherlands)

    Halbertsma, JPK; Mulder, [No Value; Goeken, LNH; Eisma, WH; Mulder, I.; Göeken, L.N.

    Objective: To examine the response of short hamstring muscles to repeated passive stretching. Design: A repeated measures design. Setting: A university laboratory for human movement analysis in a department of rehabilitation. Subjects: Students (7 men, 10 women) from the Department of Human Movement

  17. A COMPARATIVE STUDY ON EFFECTIVENESS OF STATIC STRETCH AND HOLD RELAX TECHNIQUES OVER HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    N. Vamsidhar

    2014-12-01

    Full Text Available Background: Flexibility is important in prevention of injury, muscular and postural imbalance more over the Hamstring flexibility has a lion share in sports performances and preventing DOMS. Stretching procedures increases the ROM by embarking on biomechanics and Neurologic and molecular mechanics. Hamstrings, the two joint muscle plays a crucial role in two joints integrity and also spine as they are in closed kinematic chain. The hamstring muscles represent the primary flexors of Knee. Hamstrings tightness results in Limits Knee extension when hip is flexed, Posterior Pelvic tilt, and flatten the lumbar spine. Methods: The subjects selected randomly and divided into two groups (Experimental group and control group.30 samples in One group applied with Static Stretch once a day for 3 repetitions 5 days a week for six weeks and 30 samples in other group applied with Hold relax technique once a day for 4 repetitions 5 days a week for six weeks. The knee joint range of motion was measured at the end of every week with Universal goniometer. Results: By comparing the means of Group – I, given Static Stretch and Group – II, given Hold relax Technique for six weeks implied that there is improvement of flexibility in Group – II and the ‘P’ value < 0.01 shows the difference is highly significant. Conclusion: This study concludes that the hold relax Technique method has proved to be better technique then the static stretch for improving hamstring flexibility.

  18. High resolution FISH on super-stretched flow-sorted plant chromosomes.

    NARCIS (Netherlands)

    Valárik, M.; Bartos, J.; Kovarova, P.; Kubalakova, M.; Jong, de J.H.S.G.M.; Dolezel, J.

    2004-01-01

    A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for

  19. Reflex and Non-Reflex Torque Responses to Stretch of the Human Knee Extensors

    National Research Council Canada - National Science Library

    Mrachacz-Kersting, N

    2001-01-01

    .... The quadriceps muscles were stretched at various background torques, produced either voluntarily or electrically and thus the purely reflex-mediated torque could be calculated. The contribution of the reflex mediated stiffness initially low, increased with increasing background torques for the range of torques investigated.

  20. Kink and kink-like waves in pre-stretched Mooney-Rivlin viscoelastic rods

    Directory of Open Access Journals (Sweden)

    Y. Z. Wang

    2015-08-01

    Full Text Available The present paper theoretically investigates kink and kink-like waves propagating in pre-stretched Mooney-Rivlin viscoelastic rods. In the constitutive modeling, the Cauchy stress tensor is assumed to consist of an elastic part and a dissipative part. The asymptotic method is adopted to simplify the nonlinear dynamic equations in the limit of finite-small amplitude and long wavelength. Using the reductive perturbation method, we further derive the well-known far-field equation (i.e. the KdV-Burgers equation, to which two kinds of explicit traveling wave solutions are presented. Examples are given to show the influences of pre-stretch and viscosity on the wave shape and wave velocity. It is shown that pre-stretch could be an effective method for modulating the two types of waves. In addition, such waves may be utilized to measure the viscosity coefficient of the material. The competition between the effects of pre-stretch and viscosity on the kink and kink-like waves is also revealed.

  1. Range of motion, neuromechanical and architectural daptations to plantar flexor stretch training in humans

    DEFF Research Database (Denmark)

    Blazevich, Anthony John; Cannavan, Dale; Waugh, Charlie M

    2014-01-01

    angles, but not with the ankle dorsiflexed. Muscle and fascicle strain increased (12 vs. 23%) along with a decrease in muscle stiffness (-18%) during stretch to a constant target joint angle. Muscle length at end ROM increased (13%) without a change in fascicle length, fascicle rotation, tendon...

  2. A device for extraction, manipulation and stretching of DNA from single human chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Marie, Rodolphe; Moresco, Jacob Lange

    2011-01-01

    by time-lapse imaging; pressure-driven flow was then used to shunt the chromosomal DNA package into a nanoslit. A long linear DNA strand (>1.3 Mbp) was seen to stretch out from the DNA package and along the length of the nanoslit. Delivery of DNA in its native metaphase chromosome package as well...

  3. Extensional viscosity for polymer melts measured in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Bach, Anders; Rasmussen, Henrik K.; Hassager, Ole

    2003-01-01

    A new filament stretching rheometer has been constructed to measure the elongational viscosity of polymer melts at high temperatures. Two polymer melts, a LDPE and a LLDPE, were investigated with this rheometer. A constant elongational rate has been obtained by an iterative application of the Orr...

  4. The Effects of Two Different Stretching Programs on Balance Control and Motor Neuron Excitability

    Science.gov (United States)

    Kaya, Fatih; Biçer, Bilal; Yüktasir, Bekir; Willems, Mark E. T.; Yildiz, Nebil

    2018-01-01

    We examined the effects of training (4d/wk for 6 wks) with static stretching (SS) or contract-relax proprioceptive neuromuscular facilitation (PNF) on static balance time and motor neuron excitability. Static balance time, H[subscript max]/M[subscript max] ratios and H-reflex recovery curves (HRRC) were measured in 28 healthy subjects (SS: n = 10,…

  5. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.

    Science.gov (United States)

    Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John

    2016-07-01

    The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.

  6. A workplace stretching program. Physiologic and perception measurements before and after participation.

    Science.gov (United States)

    Moore, T M

    1998-12-01

    The purpose of this study was to implement a primary prevention program in the workplace targeted to prevent muscle strains. Physiologic and perception measurements were taken before and after participation in a stretching program developed to improve flexibility through conditioning. A one group pre-test post-test design was used with 60 employees enrolled in a 36 session stretching program in the workplace. Flexibility was measured by a flexibility profile including the sit and reach test, bilateral body rotation measurements, and shoulder rotation measurements. A statistically significant increase was found in all flexibility measurements at the conclusion of the study for the participants as a total group. Perception, as measured by the Fox Physical Self Perception Profile, was statistically significant in relation to participants' perceptions of their body attractiveness, physical conditioning, and overall self worth at the program's conclusion. In addition, participants who completed the program had zero occurrences of musculoskeletal injuries during the 2 month period. The results of this study suggest that continued development and implementation of stretching programs in the workplace may benefit employees by increasing flexibility and potentially preventing injuries due to muscle strains. Stretching programs in the workplace also may improve components of employees' perceptions of their physical bodies.

  7. Macrophytes control on a stretch of the Ebro River flowing through the Asco Nuclear Power Plant

    International Nuclear Information System (INIS)

    Munte Clua, L.; Fernandez Alentorn, E.; Beltran Grau, A.

    2010-01-01

    The objective of this paper is to evaluate the time evolution of the different macrophytes populations in the stretch of the Ebro River between the town of Flix and the Asco Nuclear Power Plant, and the effects observed by the programmed flood for their control.

  8. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    Science.gov (United States)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  9. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Noelia Campillo

    2016-07-01

    Full Text Available Intermittent hypoxia (IH, a hallmark of obstructive sleep apnea (OSA, plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS and consists of a cylindrical well covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time 6 s. Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

  10. The Effectiveness of an Additional Stretching Exercise Program in Improving Flexibility Level among Preschool Boys

    Science.gov (United States)

    Lee, Wee Akina Sia Seng; Rengasamy, Shabeshan A/L; Raju, Subramaniam A/L

    2014-01-01

    This study was conducted to examine the effectiveness of a two minutes' additional stretching exercise program in a 30 minutes games teaching lesson in improving the flexibility level of 6 year old preschool boys (M = 5.92, SD = 0.27) in a preschool in Malaysia. Fifty (50) preschool boys were selected for the study based on the intact sampling…

  11. STUDY TO COMPARE THE EFFECTIVENESS OF STATIC STRETCH AND HOLD RELAX TECHNIQUE OVER HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shanthi C

    2014-10-01

    Full Text Available Background: Numerous studies have documented on flexibility of muscles. Flexibility is defined as the ability of the muscles to lengthen allowing one joint or more than one joint in a series to move through a range of motion .Flexibility allows tissue to accommodate more easily to stress thus minimizing or preventing muscle injury. But this study sought to identify the study to compare the effectiveness of Static stretch and Hold relax technique over the hamstring flexibility. Methods: 30 healthy male adults with Hamstring tightness aged 21 to 35 years selected from general population through simple randomized technique. Samples are divided into two groups, static stretch Group-I(no.15 and Group-II Hold relax (no.=15.The outcome was measured with help of sit & reach test to see the Hamstring flexibility. Results: Comparison of the post test values of the group I and group II shows a significant difference between the outcomes of two groups with a “t” calculated value of 0.738 (unpaired “t” test. Conclusion: Both static stretch and hold relax Technique can cause very highly significant result in Hamstring Flexibility, further comparison shows very high significant difference between two groups and concludes that hold relax is better than static stretch in Hamstring Flexibility.

  12. Spectral decomposition of the stretching dynamics of the Arnold cat map

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi H.; Driebe, Dean J.; Li, C.-B.

    2003-01-01

    Using the Markov partition of the Arnold cat map on the covering space allows for the introduction of a stable basis in which the Frobenius-Perron operator may be decomposed. We consider in detail the stretching dynamics on the partition of the transformation that yields the cat map under two iterations. The discrete decay modes of the system are constructed

  13. On the planar and whirling motion of a stretched string due to a parametric harmonic excitation

    NARCIS (Netherlands)

    Van der Burgh, A.H.P.; Van Horssen, W.T.

    2004-01-01

    In this paper a model of the dynamics of a stretched string is derived. The sag of the string due to gravity is neglected. The string is suspended between a fixed support and a vibrating support. Due to the vibrating support the oscillation of the string in vertical direction is influenced by a

  14. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian

    2015-01-01

    -stimulated glucose transport and signaling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton...

  15. Parameters Controlling Dimensional Accuracy of Aluminum Extrusions Formed in Stretch Bending

    International Nuclear Information System (INIS)

    Baringbing, Henry Ako; Welo, Torgeir

    2007-01-01

    For stretch formed components used in the automotive industry, such as bumper beams, it is of primary importance to control parameters affecting dimensional accuracy. The variations in geometry and mechanical properties induced in extrusion and stretch forming lead to subsequent dimensional inaccuracy of the final product. In this work, tensile and compression samples were taken at three different positions along AA7108W extruded profiles in order to determine material parameters for a constitutive model particularly suited for strong texture materials. In addition, geometry were measured and analyzed statistically in order to study its impact on local cross sectional distortions (sagging) and springback in stretch bending of a bumper beam. These full scale experiments were combined with analytical and numerical simulations to quantify the impact of each basic parameter on product quality. It is concluded that this methodology provides a means to systematically control the product quality by focusing on reducing the acceptance limits of the main parameters controlling basic mechanisms in stretch forming. Despite the assumptions and simplifications made in order to make the analytical expressions solvable, the approach has proven its capability in establishing accurate closed-form expressions including the main influential parameters

  16. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh

    2015-04-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  17. A task dependent change in the medium latency component of the soleus stretch reflex

    DEFF Research Database (Denmark)

    Grey, Michael James; Larsen, Birgit; Sinkjær, Thomas

    2002-01-01

    In comparison to the H-reflex, the task dependency of the human stretch reflex during locomotive and postural tasks has not received a great deal of attention in the literature. The few studies on reflex task dependency that have been performed to date have concentrated on either the group Ia...

  18. Dual solutions of Casson fluid flow over a stretching or shrinking sheet

    Indian Academy of Sciences (India)

    Boundary layer flow and heat transfer over a stretching sheet is significant due to its ... in porous media in the presence of Soret, Dufour and chemical reaction effects. .... equations (9) – (14) are the buoyancy or free convection parameter λ, ...

  19. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet

  20. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  1. FE-Analysis of Stretch-Blow Moulded Bottles Using an Integrative Process Simulation

    Science.gov (United States)

    Hopmann, C.; Michaeli, W.; Rasche, S.

    2011-05-01

    The two-stage stretch-blow moulding process has been established for the large scale production of high quality PET containers with excellent mechanical and optical properties. The total production costs of a bottle are significantly caused by the material costs. Due to this dominant share of the bottle material, the PET industry is interested in reducing the total production costs by an optimised material efficiency. However, a reduced material inventory means decreasing wall thicknesses and therewith a reduction of the bottle properties (e.g. mechanical properties, barrier properties). Therefore, there is often a trade-off between a minimal bottle weight and adequate properties of the bottle. In order to achieve the objectives Computer Aided Engineering (CAE) techniques can assist the designer of new stretch-blow moulded containers. Hence, tools such as the process simulation and the structural analysis have become important in the blow moulding sector. The Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany, has developed an integrative three-dimensional process simulation which models the complete path of a preform through a stretch-blow moulding machine. At first, the reheating of the preform is calculated by a thermal simulation. Afterwards, the inflation of the preform to a bottle is calculated by finite element analysis (FEA). The results of this step are e.g. the local wall thickness distribution and the local biaxial stretch ratios. Not only the material distribution but also the material properties that result from the deformation history of the polymer have significant influence on the bottle properties. Therefore, a correlation between the material properties and stretch ratios is considered in an integrative simulation approach developed at IKV. The results of the process simulation (wall thickness, stretch ratios) are transferred to a further simulation program and mapped on the bottles FE mesh. This approach allows a local

  2. Monorail snare technique for the recovery of stretched platinum coils: technical case report.

    Science.gov (United States)

    Fiorella, David; Albuquerque, Felipe C; Deshmukh, Vivek R; McDougall, Cameron G

    2005-07-01

    Coil stretching represents a potentially hazardous technical complication not infrequently encountered during the embolization of cerebral aneurysms. Often, the stretched coil cannot be advanced into the aneurysm or withdrawn intact. The operator is then forced to attempt to retract the damaged coil, which may result in coil breakage, leaving behind a significant length of potentially thrombogenic stretched coil material within the parent vessel. To overcome this problem, we devised a technique to snare the distal, unstretched, intact portion of the platinum coil by use of the indwelling microcatheter and stretched portion of the coil as a monorail guide. We have used this technique successfully in four patients to snare coils stretched during cerebral aneurysm embolization. Three of these patients were undergoing Neuroform (Boston Scientific/Target, Fremont, CA) stent-supported coil embolization of unruptured aneurysms. In all cases, the snare was advanced easily to the targeted site for coil engagement by use of the microcatheter as a monorail guide. Once the intact distal segment of the coil was ensnared, coil removal was uneventful, with no disturbance of the remainder of the indwelling coil pack or Neuroform stent. A 2-mm Amplatz Goose Neck microsnare (Microvena Corp., White Bear Lake, MN) was placed through a Prowler-14 microcatheter (Cordis Corp., Miami, FL). The hub of the indwelling SL-10 microcatheter (Boston Scientific, Natick, MA) was then cut away with a scalpel, leaving the coil pusher wire intact, and removed. The open 2-mm snare was then advanced over the outside of the coil pusher wire and microcatheter. The snare and Prowler-14 microcatheter were then advanced into the guiding catheter (6- or 7-French) as a unit over the indwelling SL-10 microcatheter. By use of the SL-10 microcatheter and coil as a "monorail" guide, the snare was advanced over and beyond the microcatheter and the stretched portion of the coil until the snare was in position to

  3. A Fundamental Study of Stretch-Drawing Process of Sheet Metals : Single and Double Operations

    Science.gov (United States)

    Gotoh, Manabu; Kim, Young-soo; Yamashita, Minoru

    1998-05-01

    Fundamental and informative data of axisymmetric stretch-drawing of several sheet metals with thichness of 0.7 1.0 mm are presented especially for single and double operations. Very small radius is applied to the die-profile (or -shoulder) in all operations to induce wall-thinning by the effect of bending-under-tension, from which the name `stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by the single and double stretch-drawings from smaller cirlcular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional LDR (=limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valueable information on this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation. Fracturing is found to occur at the middle section of the wall part or at the die-profile other than at the punch profile common in the usual deep-drawing process. Numerical simulation of the single stretch-drawing process is also performed by use of DYNA-3D code to confirm that a satisfactory prediction especially in the depth of the drawn-cup can be done at least in a practical sense, although this kind of numerical analysis is very difficult because of the severity or localization of deformation around the die profile. The drawn cup of SUS304 among others fractures in a couple of weeks after the operation due to the residual circumferential tensile stress, whereas that of SUS304L does not. In the double stretch-drawing, it is confirmed that very deeper

  4. [Stretching the triceps surae muscle after 40 degrees C warming in patients with cerebral palsy].

    Science.gov (United States)

    Lespargot, A; Robert, M; Khouri, N

    2000-11-01

    Equinus in patients with cerebral palsy results from at least two factors: excessive contracture of the triceps surae and muscle retraction. Tendon surgery and progressive lengthening techniques using plaster walking boots can provide variable improvement in retraction. We compared the effect of this technique when applied with or without prior 40 degrees C warming in the same patients. We also assessed the efficacy of this treatment method in terms or degree of retraction, patient age, puberty maturity, and sex. This series included 70 muscles in 52 patients with cerebral palsy aged 2 years 11 months to 21 years (mean 8 years 3 months). Common features in these patients were: - equinus mainly explained by triceps retraction, - no history of prior surgery on the triceps tendon, - knee flexion less than 15 degrees in the upright position, - easily reduced lateral deformation of the foot, - absence of mediotarsal dislocation, - triceps stretching could be achieved without triggering unacceptably intense contracture. The retraction of the triceps surae was measured from the maximal passive dorsal flexion angle of the foot, before and after applying each stretching boot. The difference between these measurements gave the gain obtained with the plaster boot. Protocol R- (stretching with plaster boot) consisted in a series of slow stretchings for 10 minutes before making the boot which was worn 7 days. Recurrent retraction in these same patients warranted another treatment within a delay of 3 to 17 months (mean delay 8.7 months). The same treatment then followed protocol R+ where the stretching was preceded by immersion of the segment in a 40 degrees C water bath for 10 minutes. Mean gain obtained with protocol R+ (warming) was 6.8 degrees knee extended and 7.1 degrees knee flexed. These differences were highly significant in both cases (p knee extended and for 32 muscles, knee flexed. The gain was not related to age, sex or puberty maturity. It was not related to the

  5. Acute effect of static stretching on muscle force in older women

    Directory of Open Access Journals (Sweden)

    André Luiz Demantova Gurjão

    2010-04-01

    Full Text Available The objective of this study was to investigate the acute effect of static stretching on the peak rate of force development (PRFD and maximum voluntary contraction (MVC in older women. Ten women (68.5 ± 7.0 years; 70.9 ± 8.1 kg; 159.4 ± 6.0 cm; body mass index: 28.0 ± 3.8 kg/m2 were studied. MVC and PRFD were determined by leg press exercise before and after the control or stretching condition (three sets of 30 seconds of static stretching of the quadriceps on two different days (interval of 24 hours. PRFD was determined as the steepest slope of the curve, calculated within regular windows of 20 milliseconds (∆force/∆time for the first 200 milliseconds after the onset of contraction. MVC was determined as the highest value recorded in each set. Only one condition was tested on each day and the order of application of each condition was determined randomly. The stretching intensity was evaluated by the muscle pain threshold. Four post-condition assessments (post-treatment, 10, 20, and 30 minutes were performed to monitor muscle strength. ANCOVA 2x5, followed by the Scheffé post-hoc test, showed no significant interactions between conditions vs. times (P > 0.05 for PRFD or MVC. In conclusion, acute bouts of static stretching of the quadriceps femoris do not affect the ability of rapid and maximum muscle force production in older women.

  6. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  7. Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions

    International Nuclear Information System (INIS)

    Anno, Toshiro; Sakamoto, Naoya; Sato, Masaaki

    2012-01-01

    Highlights: ► Nesprin-1 knockdown decreases widths of nuclei in ECs under static condition. ► Nuclear strain caused by stretching is increased by nesprin-1 knockdown in ECs. ► We model mechanical interactions of F-actin with the nucleus in stretched cells. ► F-actin bound to nesprin-1 may cause sustainable force transmission to the nucleus. -- Abstract: The linker of nucleus and cytoskeleton (LINC) complex, including nesprin-1, has been suggested to be crucial for many biological processes. Previous studies have shown that mutations in nesprin-1 cause abnormal cellular functions and diseases, possibly because of insufficient force transmission to the nucleus through actin filaments (F-actin) bound to nesprin-1. However, little is known regarding the mechanical interaction between the nucleus and F-actin through nesprin-1. In this study, we examined nuclear deformation behavior in nesprin-1 knocked-down endothelial cells (ECs) subjected to uniaxial stretching by evaluating nuclear strain from lateral cross-sectional images. The widths of nuclei in nesprin-1 knocked-down ECs were smaller than those in wild-type cells. In addition, nuclear strain in nesprin-1 knocked-down cells, which is considered to be compressed by the actin cortical layer, increased compared with that in wild-type cells under stretching condition. These results indicate that nesprin-1 knockdown releases the nucleus from the tension of F-actin bound to the nucleus, thereby increasing allowance for deformation before stretching, and that F-actin bound to the nucleus through nesprin-1 causes sustainable force transmission to the nucleus.

  8. Jack-knife stretching promotes flexibility of tight hamstrings after 4 weeks: a pilot study.

    Science.gov (United States)

    Sairyo, Koichi; Kawamura, Takeshi; Mase, Yasuyoshi; Hada, Yasushi; Sakai, Toshinori; Hasebe, Kiyotaka; Dezawa, Akira

    2013-08-01

    Tight hamstrings are reported to be one of the causes of low back pain. However, there have been few reports on effective stretching procedures for the tight hamstrings. The so-called jack-knife stretch, an active-static type of stretching, can efficiently increase the flexibility of tight hamstrings. To evaluate hamstring tightness before and after the 4-week stretching protocol in healthy volunteer adults and patients aged under 18 years with low back pain. For understanding the hamstrings tightness, we measured two parameters including (1) finger to floor distance (FFD) and (2) pelvis forward inclination angle (PFIA). Eight healthy adult volunteers who had no lumbar or hip problems participated in this study (mean age: 26.8 years). All lacked flexibility and their FFD were positive before the experiment. Subjects performed 2 sets of the jack-knife stretch every day for 4 weeks. One set consisted of 5 repetitions, each held for 5 s. Before and during the 4-week experiment, the FFD and PFIA of toe-touching tests were measured weekly. For 17 of the sports players aged under 18, only FFD was measured. In adult volunteers, FFD was 14.1 ± 6.1 cm before the experiment and decreased to -8.1 ± 3.7 cm by the end of week 4, indicating a gain in flexibility of 22.2 cm. PFIA was 50.6 ± 8.2 before the experiment and 83.8 ± 5.8 degrees after. Before and after the experiment, the differences were significant (p hamstrings.

  9. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  10. Effect of Active-Assisted Stretching of 30 Seconds and 60 Seconds in Muscle Force

    Directory of Open Access Journals (Sweden)

    Mirian dos Santos Monteiro

    2018-01-01

    Full Text Available This study aims to analyze the interference of the active-assisted stretching technique in muscle strength. Participating in this study were 39 healthy and physically active individuals subdivided into three groups of active-assisted stretching G30 - 30 seconds, G60 - 60 seconds and CG - control. The muscular strength was evaluated using the isokinetic dynamometer, obtaining the analyzed conditions of torque peak, total work and agonist and antagonist relationship of the dorsiflexor and flexor muscles ankle. The values obtained were statistically analyzed by the SPSS from the “t-test for paired sample” (p ≤ 0.05. When analyzing the effect produced by the stretching, it was observed that the 30-second elongation showed a reduction of the average of the muscular torque in all conditions analyzed, with the exception of the relation between the agonist and the left antagonist and the total work of the right plantar flexors, the G60 - 60 seconds group had a reduction in average muscle torque in all conditions analyzed, except for the relation between agonist and left antagonist that obtained an increase in muscle torque and the CG - control group, there was a reduction in the average of the muscular torque in all the analyzed conditions, except for the torque and total work of the left plantar flexor muscles that presented increase. Thus, it can be concluded that there were differences between the groups of active-assisted stretching of 30 and 60 and that the effect produced by stretching did not present a significant reduction of muscle strength.

  11. Strain Analysis of Stretched Tourmaline Crystals Using ImageJ, Microsoft Excel and PowerPoint

    Science.gov (United States)

    Bosbyshell, H.

    2012-12-01

    This poster describes an undergraduate structural geology lab exercise utilizing the Mohr's circle diagram for finite strain, constructed using measurements obtained from stretched tourmaline crystals. A small building housing HVAC equipment at the south end of West Chester University's Recitation Hall (itself made of serpentinite) is constructed of early-Cambrian Chickies Quartzite. Stretched tourmaline crystals, with segments joined by fibrous quartz, are visible on many surfaces (presumably originally bedding). While the original orientation of any stone is unknown, these rocks provide an opportunity for a short field exercise during a two-hour lab period and a great base for conducting strain analysis. It is always fun to ask how many in the class have ever noticed the tourmaline (few have). Students take photos using their cell phones or cameras. Since strain is a ratio the absolute size of the tourmaline crystals is immaterial. Nonetheless, this is a good opportunity to remind students of the importance of including a scale in their photographs. The photos are opened in ImageJ and the line tool is used to determine the original and final lengths of selected crystals. Students calculate strain parameters using Microsoft Excel. Then, we use Adobe Illustrator or the drafting capabilities of Microsoft PowerPoint 2010 to follow Ramsay and Huber's techniques using a Mohr's circle construction to determine the finite strain ellipse. If a stretching direction can be estimated, elongation of two crystals is all that is required to determine the strain ratio. If no stretching direction is apparent, three crystals are required for a more complicated analysis that allows for determination of the stretching direction, as well as the strain ratio.

  12. High throughput web inspection system using time-stretch real-time imaging

    Science.gov (United States)

    Kim, Chanju

    Photonic time-stretch is a novel technology that enables capturing of fast, rare and non-repetitive events. Therefore, it operates in real-time with ability to record over long period of time while having fine temporal resolution. The powerful property of photonic time-stretch has already been employed in various fields of application such as analog-to-digital conversion, spectroscopy, laser scanner and microscopy. Further expanding the scope, we fully exploit the time-stretch technology to demonstrate a high throughput web inspection system. Web inspection, namely surface inspection is a nondestructive evaluation method which is crucial for semiconductor wafer and thin film production. We successfully report a dark-field web inspection system with line scan speed of 90.9 MHz which is up to 1000 times faster than conventional inspection instruments. The manufacturing of high quality semiconductor wafer and thin film may directly benefit from this technology as it can easily locate defects with area of less than 10 microm x 10 microm where it allows maximum web flow speed of 1.8 km/s. The thesis provides an overview of our web inspection technique, followed by description of the photonic time-stretch technique which is the keystone in our system. A detailed explanation of each component is covered to provide quantitative understanding of the system. Finally, imaging results from a hard-disk sample and flexible films are presented along with performance analysis of the system. This project was the first application of time-stretch to industrial inspection, and was conducted under financial support and with close involvement by Hitachi, Ltd.

  13. Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Anno, Toshiro [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai (Japan); Sakamoto, Naoya, E-mail: sakan@me.kawasaki-m.ac.jp [Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai (Japan); Sato, Masaaki [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai (Japan)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Nesprin-1 knockdown decreases widths of nuclei in ECs under static condition. Black-Right-Pointing-Pointer Nuclear strain caused by stretching is increased by nesprin-1 knockdown in ECs. Black-Right-Pointing-Pointer We model mechanical interactions of F-actin with the nucleus in stretched cells. Black-Right-Pointing-Pointer F-actin bound to nesprin-1 may cause sustainable force transmission to the nucleus. -- Abstract: The linker of nucleus and cytoskeleton (LINC) complex, including nesprin-1, has been suggested to be crucial for many biological processes. Previous studies have shown that mutations in nesprin-1 cause abnormal cellular functions and diseases, possibly because of insufficient force transmission to the nucleus through actin filaments (F-actin) bound to nesprin-1. However, little is known regarding the mechanical interaction between the nucleus and F-actin through nesprin-1. In this study, we examined nuclear deformation behavior in nesprin-1 knocked-down endothelial cells (ECs) subjected to uniaxial stretching by evaluating nuclear strain from lateral cross-sectional images. The widths of nuclei in nesprin-1 knocked-down ECs were smaller than those in wild-type cells. In addition, nuclear strain in nesprin-1 knocked-down cells, which is considered to be compressed by the actin cortical layer, increased compared with that in wild-type cells under stretching condition. These results indicate that nesprin-1 knockdown releases the nucleus from the tension of F-actin bound to the nucleus, thereby increasing allowance for deformation before stretching, and that F-actin bound to the nucleus through nesprin-1 causes sustainable force transmission to the nucleus.

  14. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    Science.gov (United States)

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p basketball play, as it is beneficial to vertical jump performance.

  15. Weak depth and along-strike variations in stretching from a multi-episodic finite stretching model: Evidence for uniform pure-shear extension in the opening of the South China Sea

    Science.gov (United States)

    Chen, Lin; Zhang, Zhongjie; Song, Haibin

    2013-12-01

    The South China Sea is widely believed to have been opened by seafloor spreading during the Cenozoic. The details of its lithospheric extension are still being debated, and it is unknown whether pure, simple, or conjunct shears are responsible for the opening of the South China Sea. The depth-dependent and along-strike extension derived from the single-stage finite stretching model or instantaneous stretching model is inconsistent with the observation that the South China Sea proto-margins have experienced multi-episodic extension since the Late Cretaceous. Based on the multi-episodic finite stretching model, we present the amount of lithosphere stretching at the northern continental margin of the South China Sea for different depth scales (upper crust, whole crust and lithosphere) and along several transects. The stretching factors are estimated by integrating seven deep-penetration seismic profiles, the Moho distribution derived from gravity modeling, and the tectonic subsidence data for 41 wells. The results demonstrate that the amount of stretching increases rapidly from 1.1 at the continent shelf to over 3.5 at the lower slope, but the stretching factors at the crust and lithosphere scales are consistent within error (from the uncertainty in paleobathymetry and sea-level change). Furthermore, the along-strike variation in stretching factor is within the range of 1.11-1.9 in west-east direction, accompanied by significant west-east differences in the thickness of high-velocity layers (HVLs) within the lowermost crust. This weak along-strike variation of the stretching factor is most likely produced by the preexisting contrasts in the composition and thermal structure of the lithosphere. The above observations suggest that the continental extension in the opening of the South China Sea mainly takes the form of a uniform pure shear rather than depth-dependent stretching.

  16. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver.

    Science.gov (United States)

    Lima, Tainah P; Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Monteiro, Walace D

    2015-05-01

    This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  17. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Yu, Liyun; Kofod, Guggi

    2015-01-01

    Dielectric elastomer (DE) pre-stretching is a key aspect of attaining better actuation performance, as ithelps prevent electromechanical instability (EMI) and usually lowers the Young’s modulus, thus leading toeasier deformation. The pre-stretched DE is not only susceptible to a high risk...

  18. Acute Effects of Static Stretching of Hamstring on Performance and Anterior Cruciate Ligament Injury Risk During Stop-Jump and Cutting Tasks in Female Athletes.

    Science.gov (United States)

    Ruan, Mianfang; Zhang, Qiang; Wu, Xie

    2017-05-01

    Ruan, M, Zhang, Q, and Wu, X. Acute effects of static stretching of hamstring on performance and anterior cruciate ligament injury risk during stop-jump and cutting tasks in female athletes. J Strength Cond Res 31(5): 1241-1250, 2017-There is limited research investigating antagonist stretch. The purpose of this study was to evaluate the influence of static stretching of hamstrings (SSH) on performance and anterior cruciate ligament (ACL) injury risk during stop-jump and 180° cutting tasks. Twelve female college athletes (age 20.8 ± 0.7 years; height 1.61 ± 0.05 m; mass 54.25 ± 4.22 kg) participated in this study. Subjects performed stop-jump and 180° cutting tasks under 2 conditions: after warm-up with 4 × 30 seconds SSH or after warm-up without SSH. Three-dimensional kinematic and kinetic data as well as electromyography of biceps femoris, rectus femoris, vastus medialis, and gastrocnemius medialis were collected during testing. Static stretching of hamstrings significantly enhanced jump height by 5.1% (p = 0.009) but did not change the takeoff speed of cutting. No significant changes in peak knee adduction moment or peak anterior tibia shear force were observed with SSH regardless of the task. The peak lateral tibia shear force during cutting was significantly (p = 0.036) reduced with SSH. The co-contraction of hamstring and quadriceps during the preactivation (stop-jump: p = 0.04; cutting: p = 0.05) and downward phases (stop-jump: p = 0.04; cutting: p = 0.05) was significantly reduced after SSH regardless of the task. The results suggest that SSH enhanced the performance of stop-jump because of decreased co-contraction of hamstring and quadriceps but did not change the performance of cutting. In addition, SSH did not increase ACL injury risk during stop-jump and cutting tasks and even reduced medial-lateral knee loading during cutting.

  19. Investigation on thermomechanical properties of poly (l-lactic acid) for the stretch blow moulding process of bioresorbable vascular scaffold

    Science.gov (United States)

    Wei, Huidong; Menary, Gary

    2017-10-01

    Stretch blow moulding process has been used for the manufacture of bioresorbable vascular scaffold (BVS) made by poly (l-lactic acid) (PLLA) to improve its mechanical performance. In order to better understand the process, thermomechanical properties of PLLA were investigated by experimental method. Extruded PLLA sheets were biaxial stretched under strain rate of 1s-1, 4s-1 and 16s-1 to simulate the deformation process applicable in the blow moulding process. Both the equal-biaxial stretch and constant-width stretch were conducted by an in-house developed equipment. By differential scanning calorimeter (DSC), thermal analysis for materials before and after stretch were compared to evaluate the microstructural change of PLLA materials in the deformation process. A constitutive model based on glass rubber model was presented to simulate the mechanical behaviour of PLLA above glass transition under biaxial deformation.

  20. Comparison of the effects of hamstring stretching using proprioceptive neuromuscular facilitation with prior application of cryotherapy or ultrasound therapy

    Science.gov (United States)

    Magalhães, Francisco Elezier Xavier; Junior, Arlindo Rodrigues de Mesquita; Meneses, Harnold’s Tyson de Sousa; Moreira dos Santos, Rayele Pricila; Rodrigues, Ezaine Costa; Gouveia, Samara Sousa Vasconcelos; Gouveia, Guilherme Pertinni de Morais; Orsini, Marco; Bastos, Victor Hugo do Vale; Machado, Dionis de Castro Dutra

    2015-01-01

    [Purpose] Stretching using proprioceptive neuromuscular facilitation involve physiological reflex mechanisms through submaximal contraction of agonists which activate Golgi organ, promoting the relaxation reflex. The aim of this study was to evaluate the effects of proprioceptive neuromuscular facilitation alone and with prior application of cryotherapy and thermotherapy on hamstring stretching. [Subjects and Methods] The sample comprised of 32 young subjects with hamstring retraction of the right limb. The subjects were randomly allocated to four groups: the control, flexibility PNF, flexibility PNF associated with cryotherapy, flexibility PNF in association with ultrasound therapy. [Results] After 12 stretching sessions, experimental groups showed significant improvements compared to the control group. Moreover, we did not find any significant differences among the experimental groups indicating PNF stretching alone elicits similar results to PNF stretching with prior administration of cryotherapy or thermotherapy. [Conclusion] PNF without other therapy may be a more practical and less expensive choice for clinical care. PMID:26157261