WorldWideScience

Sample records for enhanced raman study

  1. [Terahertz-band study on surface enhanced Raman scattering of nanoparticle].

    Science.gov (United States)

    Wu, Yu-Deng; Ren, Guang-Jun; Hao, Yun; Yao, Jian-Quan

    2013-05-01

    Study on surface-enhanced Raman scattering in the terahertz-band proved in that the terahertz-band Raman enhancement also exists. By studing principles of electromagnetic enhancement of surface-enhanced Raman scattering, using the finite difference time-domain method, the electromagnetic enhancement of surface enhanced Raman scattering of nano-particles irradiated by terahertz-wave was simulated, and the enhancement effect of terahertz waves was analyzed. Simulation experiments show that using finite-difference time-domain method could obtain effectively accurate simulation result of nano-particle scattering, proving that for terahertz waves, surface-enhanced effects on the surface of the nano-particle also exist. The results for surface enhanced Raman scattering extended from the visible and infrared to terahertz-band, and provide a basis for application of the combination of surface-enhanced Raman scattering and terahertz-wave.

  2. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R

    Science.gov (United States)

    Xie, Yunfei; Li, Yan; Sun, Yingying; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-01

    Ponceau 4R is used as a coloring agent in many different products, such as food, drinks, medicines, cosmetics and tobacco. However, ponceau 4R also shows carcinogenic, teratogenic and mutagenic behavior in high doses. In this work, standard Raman, theoretical Raman and surface-enhanced Raman scattering (SERS) spectra have been used to investigate ponceau 4R. More specifically, density functional theory (DFT) calculations have been used to calculate the optimized Raman spectrum of ponceau 4R at the B3LYP/6-31G(d) level. This has provided a better understanding of the optimized geometry and vibrational frequencies of this dye. In addition, the experimental spectrum of ponceau 4R has been compared with the theoretical spectrum; good agreement was obtained. Finally, it has shown that using SERS the detection limit of the ponceau 4R solution can be as low as 5 μg/mL. This has been achieved by SERS measurements of ponceau 4R on a substrate of gold nanoparticles. The SERS peaks at 1030, 1236, 1356 and 1502 cm-1 were chosen as index for semi-quantitative analysis, showing that the SERS technique provided a useful ultrasensitive method for the detection of ponceau 4R.

  3. Synthesis, characterization, Raman, and surface enhanced Raman studies of semiconductor quantum dots

    Science.gov (United States)

    Pan, Yi

    The major contributions and discoveries of the dissertation include: (1) Homogeneous nucleation processes for the formation of nanocrystals can occur at low temperature and do not need to proceed at high temperature to overcome a high energy barrier. Monodisperse PbS quantum dots (QDs) obtained with nucleation and growth at 45°C support this finding. (2) Monodisperse single elemental Se QDs can be produced by simple solution crystallization from TDE (1-tetradecene) or ODE (1-octadecene). (3) TDE is a better non-coordinating solvent compare to ODE. STDE (S dissolved in TDE) and SeTDE (Se dissolved in TDE) are stable reagents with long storage time. They can be used as universal precursors for S-containing and Se-containing QDs. (4) QDs synthesis can be carried out at low temperature and relatively short reaction time using the simple, non-injection, one-pot synthetic method. (5) The one-pot method can be extended for the synthesis of QDs and graphene oxide nanocomposites and metal and graphene oxide nanocomposites. (6) PbCl2-OLA (oleylamine) is a universal system for the synthesis of Pb-chaclogenides QDs. (7) Surface enhanced Raman spectroscopy (SERS) is used to probe both size and wave length dependent quantum confinement effects (QCEs) of PbS QDs. (8) Raman spectroscopy is a powerful tool to elucidate crystal structure of Se nanoclusters with size of 1--2 nm. Semiconductor QDs have attracted considerable attention due to their potential for energy-efficient materials in optoelectronic and solar cell applications. When the radius of a QD is decreased to that of the exciton Bohr radius, the valence and conduction bands are known to split into narrower bands due to QCEs. QCEs are both size and wave length dependent. We have developed, synthesized and characterized a series of Pb-chaclogenide QDs, which all the sizes of the QDs are monodisperse and smaller than their respective exciton Bohr radius, to study the QCEs of these QDs. SERS is used as a crucial tool to

  4. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    Science.gov (United States)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  5. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  6. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  7. Time-Resolved Study of the Surface-Enhanced Raman Scattering Effect of Silver Nanoparticles Generated in Voltammetry Experiments

    OpenAIRE

    Ibáñez, David; Fernández Blanco, Ana Cristina; Heras, Aránzazu; Colina, Álvaro

    2014-01-01

    UV–vis absorption and Raman spectroelectrochemistry have been used to study silver nanoparticle (AgNP) electrodeposition, allowing a better understanding about the metal nanoparticle (NP) formation process and its influence on the surface-enhanced Raman scattering (SERS) effect. These techniques have provided in situ information related to the synthesis of AgNPs by cyclic voltammetry. With a marker, such as cyanide anion (CN–), Raman spectroscopy has allowed us to study all changes that take ...

  8. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    In Raman spectroscopy, inelastic scattering of photons from an atom or molecule in chemical entities is utilized to analyze the composition of solids, liquids and gases. However, the low cross-section limits its applications. The introduction of sur- face-enhanced Raman spectroscopy in 1974 has attracted a lot of attention ...

  9. Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: a comparative study.

    Science.gov (United States)

    Zheng, Jinkai; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-11-01

    Surface enhanced Raman scattering (SERS) detection using a handheld Raman spectrometer and a bench-top Raman spectrometer was systemically evaluated and compared in this study. Silver dendrites were used as the SERS substrate, and two pesticides, maneb and pyrrolidine dithiocarbamate-ammonium salt (PDCA) were used as the analytes. Capacity and performance were evaluated based on spectral resolution, signal variation, quantitative capacity, sensitivity, flexibility and intelligence for SERS detection. The results showed that the handheld Raman spectrometer had better data consistency, more accurate quantification capacity, as well as the capacity of on-site and intelligence for qualitative and semi-quantitative analysis. On the other hand, the bench-top Raman spectrometer showed about 10 times higher sensitivity, as well as flexibility for optimization of the SERS measurements under different parameters such as laser power output, collective time, and objective magnification. The study on the optimization of SERS measurements on a bench-top spectrometer provides a useful guide for designing a handheld Raman spectrometer, specifically for SERS detection. This evaluation can advance the application of a handheld Raman spectrometer for the on-site measurement of trace amounts of pesticides or other chemicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  11. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  12. Raman and Surface Enhanced Raman of Biological Material

    National Research Council Canada - National Science Library

    Guicheteau, Jason A; Gonser, Kristina; Christesen, Steven Dale

    2004-01-01

    .... Vibrational spectroscopic methods such as Raman and surface enhanced Raman scattering (SERS) provide rapid detailed fingerprint information about the molecular composition of biomaterial in a non-destructive manner...

  13. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu, India. (India); Rekha, T. N. [PG and Research Department of Physics, Lady Doak College, Madurai-625 002, Tamilnadu, India. (India)

    2016-05-06

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  14. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin; Rekha, T. N.

    2016-01-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  15. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes.

    Science.gov (United States)

    Shao, Yangfan; Li, Chongyang; Feng, Yuanming; Lin, Wang

    2013-12-01

    This paper experimentally and theoretically investigated Raman and surface-enhanced Raman scattering (SERS) of 1,4-benzenedithiol (1,4-BDT). Density functional theory methods were used to study Raman scattering spectra of isolated 1,4-BDT and 1,4-BDT-Agn (n=2,4,6) complexes with B3LYP/6-311+g(d)(C,H,S)/Lanl2dz(Ag) basis set. A full assignment of the Raman spectrum of 1,4-BDT has been made based on the DFT analysis. The calculated data showed good agreement with experimental observations. The adsorption sites, metal cluster size, and HOMO-LUMO energies are discussed to give insight in the SERS mechanisms for 1,4-BDT molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Enhanced Raman Monitor Project

    Science.gov (United States)

    Westenskow, Dwayne

    1996-01-01

    Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.

  17. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  18. Optical properties of nucleobase thin films as studied by attenuated total reflection and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kim, MinSuk; Ham, Won Kyu; Kim, Wonyoung; Hwangbo, Chang Kwon; Choi, Eun Ha; Lee, Geon Joon

    2018-04-01

    Optical properties of nucleobase thin films were studied by attenuated total reflection (ATR) and surface-enhanced Raman spectroscopy (SERS). Adenine and guanine films were deposited on fused silica and silver at room temperature by thermal evaporation, and the normal dispersion of refractive indices of transparent adenine and guanine films in the visible and near-infrared regions were analyzed. The measured ATR spectra of adenine (guanine) films and numerical simulations by optical transfer matrix formalism demonstrate that the shift of surface plasmon resonance (SPR) wavelength is approximately linearly proportional to the adenine (guanine) film thickness, indicating that SPR can be used for quantitative measurements of biomaterials. The Raman spectra indicated that the adenine (guanine) films can be deposited by thermal evaporation. The adenine (guanine) films on silver exhibited Raman intensity enhancement as compared to those on glass, which was attributed to the SPR effect of silver platform and might play a role as a hot plate for SERS detection of biomaterials.

  19. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  20. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  1. Surface-enhanced Raman spectroscopy study of radix astragali based on soxhlet extractor

    Science.gov (United States)

    Lu, Peng; Lin, Juqiang; Liu, Nengrong; Shao, Yonghong; Wang, Jing; Shi, Wei; Lin, Jinyong; Chen, Rong

    2012-12-01

    Due to its high sensitivity, flexibility, and "fingerprints" sensing capability, Surface-enhanced Raman Spectroscopy (SERS) is a very powerful method for characterization of substances. In this paper, two kinds of Radix Astragali with different quality were firstly extracted through continuous circumfluence extraction method and then mixed with silver nanoparticles for SERS detection. Most Raman bands obtained in Radix Astragali extraction solution are found at 300-7000cm-1 and 900-1390 cm-1. Although, major peak positions at 470, 556, 949, 1178 and 1286 cm-1 found in these two kinds of Radix Astragali appear nearly the same, Raman bands of 556 and 1178 cm-1 are different in intensity, thus may be used as a characteristic marker of Radix Astragali quality. In detail, we can make full use of the different intensity of two different kinds but the same state at 556 cm-1 to describe the quality standard of Radix Astragali. Our preliminary results show that SERS combining with continuous circumfluence extraction method may provide a direct, accurate and rapid detection method of Radix Astragali.

  2. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  3. NIR-FT Raman, FT-IR and surface-enhanced Raman scattering and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 4. NIR-FT Raman, FT-IR and surface-enhanced Raman scattering and DFT based theoretical studies on the adsorption behaviour of (S)-Phenylsuccinic acid on silver nanoparticles. D Sajan V Bena Jothy Thomas Kuruvilla I Hubert Joe. Full Papers Volume ...

  4. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    near-ultraviolet range of electromagnetic spectra. The shift in energy in Raman effect gives information about the ... Raman spectroscopy is commonly used in chemistry, since vibrational information is very specific for the ... in polarizability is compatible with preservation of the center of symmetry. Thus, in a centrosymmetric ...

  5. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  6. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  7. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  8. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kovaříček, Petr; Bastl, Zdeněk; Valeš, Václav; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 15 (2016), s. 5404-5408 ISSN 1521-3765 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene * nanomaterials * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    Science.gov (United States)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  10. Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization

    Directory of Open Access Journals (Sweden)

    Seda Keleştemur

    2018-01-01

    Full Text Available Biofilms are a communal way of living for microorganisms in which microorganism cells are surrounded by extracellular polymeric substances (EPS. Most microorganisms can live in biofilm form. Since microorganisms are everywhere, understanding biofilm structure and composition is crucial for making the world a better place to live, not only for humans but also for other living creatures. Raman spectroscopy is a nondestructive technique and provides fingerprint information about an analyte of interest. Surface-enhanced Raman spectroscopy is a form of this technique and provides enhanced scattering of the analyte that is in close vicinity of a nanostructured noble metal surface such as silver or gold. In this review, the applications of both techniques and their combination with other biofilm analysis techniques for characterization of composition and structure of biofilms are discussed.

  11. Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory

    DEFF Research Database (Denmark)

    Castillo, Jaime; Rindzevicius, Tomas; Wu, Kaiyu

    2015-01-01

    The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanismand for fabricating analytical devices for detection ofmalignant cells over-expressing folate receptors. This paper presents a study of the adso......The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanismand for fabricating analytical devices for detection ofmalignant cells over-expressing folate receptors. This paper presents a study...... of the adsorption of FA on silver-capped silicon nanopillar substrates employing surface enhanced Raman scattering spectroscopy and density functional theory calculations. The experimentally observed vibrations from free FA and FA bound to the Ag surface display different vibrational spectra indicating chemical...

  12. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  13. Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds.

    Science.gov (United States)

    Kundu, Subrata; Yi, Su-In; Ma, Lian; Chen, Yunyun; Dai, Wei; Sinyukov, Alexander M; Liang, Hong

    2017-07-25

    Palladium nanoparticles (Pd NPs) of three different morphologies viz., nanocubes with cetyltrimethylammonium bromide (CTAB), nanowires with polyvinyl alcohol (PVA) and Pd NPs with deoxyribonucleic acid (DNA) scaffolds were synthesized by UV-irradiation. Catalysis and surface enhanced Raman scattering (SERS) studies were done with the synthesized morphologically distinct Pd nanostructures for the very first time. The catalytic rate was extremely high with Pd nanowires templated with PVA and the order of the catalytic rate was Pd nanowires in PVA > Pd nanocubes in CTAB > DNA-Pd wire-like assemblies. The highest catalytic rate was observed for PVA capped Pd nanowires which is a few hundred fold higher than other metal NP catalysts. Methylene blue (MB) was used as a Raman analyte for the SERS study and the largest EF of 1.9 × 10 5 at a peak position of 1391 cm -1 was observed with Pd nanowires in the DNA scaffold as a SERS substrate. The order of the SERS EF values was DNA-Pd wire-like assemblies > Pd nanocubes in CTAB > Pd nanowires in PVA. Beyond everything, the present synthesis route is easy, faster, candid, highly reproducible and cost-effective. In the near future, the same protocol could be applied to synthesize other materials for various applications.

  14. Investigating the interaction of aminopolycarboxylic acid (APCA) ligands with silver nanoparticles: A Raman, surface-enhanced Raman and density functional theoretical study

    Science.gov (United States)

    Maiti, Nandita; Malkar, Vishwabharati V.; Mukherjee, Tulsi; Kapoor, Sudhir

    2018-03-01

    Aminopolycarboxylic acid (APCA) ligands are polydentate chelating agents that have multiple binding sites viz. nitrogen atoms and short chain carboxylic groups and hence can form very stable complexes with metal ions. The interactions of these APCAs with silver nanoparticles have been investigated using surface-enhanced Raman scattering (SERS) which is supported with density functional theoretical (DFT) calculations using B3LYP functional and LANL2DZ basis set. From the observed enhancement of the CO2 symmetric stretching vibration, in addition to the red shift of ∼14-35 cm-1 for the various APCAs in the SERS spectra as well as theoretical calculations, it has been inferred that the APCAs are chemisorbed to the silver surface directly through the oxygen atoms of the carboxylate groups as well as the N atom of the substituted amino groups. The apparent enhancement factors for the CO2 symmetric stretching vibration of the APCAs are of the order of 106.

  15. Enhanced Raman Scattering by Molecular Nanoaggregates

    Directory of Open Access Journals (Sweden)

    Daniel L. Akins

    2014-02-01

    Full Text Available The formation of a molecular aggregate in a confined, nanodimensioned region of space leads to what might be termed a ‘molecular nanoaggregate’. The present review deals with a theoretical formulation termed ‘aggregation-enhanced Raman scattering’ (AERS, and its use in discussion of relative Raman band intensities and selection rules for nanoaggregates. AERs represents a concept for discussion of nanoaggregates that is different from those provided by resonance Raman scattering, surface-enhanced Raman scattering and Mie scattering, all of which ignore the impact of aggregation of molecules on Raman scattering. Beyond the theoretical formulation behind the AERS phenomenon, also outlined in this review are representative samples of the publications of other authors and researchers using AERS to provide explanations for experimental findings. In addition to clarifying issues regarding the use of nanocomposites involving aggregated molecules, it is found that increasing use of AERS concepts is being made to rationalize Raman spectral observations in a range of other disciplines that fall in both the physical sciences and the medical fields.

  16. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, S.; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...

  17. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (1010)....

  18. Surface-enhanced Raman spectroscopic studies of the Au-pentacene interface: a combined experimental and theoretical investigation.

    Science.gov (United States)

    Adil, D; Guha, S

    2013-07-28

    It has recently been shown [D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012)] that a large enhancement in the Raman intensity due to surface-enhanced Raman scattering (SERS) is observed from pentacene when probed through the Au contact in organic field-effect transistors (OFET) structures. Here, the SERS spectrum is shown to exhibit a high sensitivity to disorder introduced in the pentacene film by Au atoms. The Raman signature of the metal-semiconductor interface in pentacene OFETs is calculated with density-functional theory by explicitly considering the Au-pentacene interaction. The observed enhancement in the 1380 cm(-1) and the 1560 cm(-1) regions of the experimental Raman spectrum of pentacene is successfully modeled by Au-pentacene complexes, giving insights into the nature of disorder in the pentacene sp(2) network. Finally, we extend our previous work on high-operating voltage pentacene OFETs to low-operating voltage pentacene OFETs. No changes in the SERS spectra before and after subjecting the OFETs to a bias stress are observed, concurrent with no degradation in the threshold voltage. This shows that bias stress induced performance degradation is, in part, caused by field-induced structural changes in the pentacene molecule. Thus, we confirm that the SERS spectrum can be used as a visualization tool for correlating transport properties to structural changes, if any, in organic semiconductor based devices.

  19. Surface-enhanced Raman spectroscopic studies of the Au-pentacene interface: A combined experimental and theoretical investigation

    Science.gov (United States)

    Adil, D.; Guha, S.

    2013-07-01

    It has recently been shown [D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012)], 10.1021/jp3031804 that a large enhancement in the Raman intensity due to surface-enhanced Raman scattering (SERS) is observed from pentacene when probed through the Au contact in organic field-effect transistors (OFET) structures. Here, the SERS spectrum is shown to exhibit a high sensitivity to disorder introduced in the pentacene film by Au atoms. The Raman signature of the metal-semiconductor interface in pentacene OFETs is calculated with density-functional theory by explicitly considering the Au-pentacene interaction. The observed enhancement in the 1380 cm-1 and the 1560 cm-1 regions of the experimental Raman spectrum of pentacene is successfully modeled by Au-pentacene complexes, giving insights into the nature of disorder in the pentacene sp2 network. Finally, we extend our previous work on high-operating voltage pentacene OFETs to low-operating voltage pentacene OFETs. No changes in the SERS spectra before and after subjecting the OFETs to a bias stress are observed, concurrent with no degradation in the threshold voltage. This shows that bias stress induced performance degradation is, in part, caused by field-induced structural changes in the pentacene molecule. Thus, we confirm that the SERS spectrum can be used as a visualization tool for correlating transport properties to structural changes, if any, in organic semiconductor based devices.

  20. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.

  1. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  2. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.

    Science.gov (United States)

    Anantharaj, S; Sakthikumar, K; Elangovan, Ayyapan; Ravi, G; Karthik, T; Kundu, Subrata

    2016-12-01

    Highly Sensitive and ultra-small Rhenium (Re) metal nanoparticles (NPs) were successfully stabilized in water by the staging and fencing action of the versatile biomolecule DNA that resulted in two distinct aggregated chain-like morphologies with average grain sizes of 1.1±0.1nm and 0.7±0.1nm for the very first time within a minute of reaction time. Re NPs are formed by the borohydride reduction of ammonium perrhenate (NH4ReO4) in the presence of DNA at room temperature (RT) under stirring. The morphologies were controlled by carefully monitoring the molar ratio of NH4ReO4 and DNA. The synthesized material was employed in two potential applications: as a substrate for surface enhanced Raman scattering (SERS) studies and as a catalyst for the reduction of aromatic nitro compounds. SERS study was carried out by taking methylene blue (MB) as the probe and the highest SERS enhancement factor (EF) of 2.07×10(7) was found for the aggregated chain-like having average grain size of 0.7±0.1nm. Catalytic reduction of 4-nitro phenol (4-NP), 2-nitro phenol (2-NP) and 4-nitroaniline (4-NA) with a rate constant value of 6×10(-2)min(-1), 33.83×10(-2)min(-1) and 37.4×10(-2)min(-1) have testified the excellent catalytic performance of our Re NPs immobilized on DNA. The overall study have revealed the capability of DNA in stabilizing the highly reactive Re metal at nanoscale and made them applicable in practice. The present route can also be extended to prepare one dimensional (1-D), self-assembled NPs of other reactive metals, mixed metals or even metal oxides for specific applications in water based solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Enhanced Raman scattering on functionalized graphene substrates

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2017-01-01

    Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor : 6.937, year: 2016

  4. Enhanced Raman scattering on functionalized graphene substrates

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2017-01-01

    Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.937, year: 2016

  5. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  6. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper

    2007-01-01

    Using Surface enhanced ROA (SEROA), novel results are achieved by combining Raman Optical Activity (ROA) and resonance Surface Enhanced Raman Scattering (SERRS), applied on myoglobin. The novelty of this work is ascribed the first time reporting on chiral results of a study performed on a protein...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value...

  7. Detection of explosive vapour using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Fang, X.; Ahmad, S. R.

    2009-11-01

    A commercially available nano-structured gold substrate was used for activating surface-enhanced Raman scattering (SERS). Raman spectra of the vapour of explosive material, triacetonetriperoxide (TATP), at trace concentrations produced from adsorbed molecules on such surfaces have been studied. Prominent Raman lines of the explosive molecular species were recorded at a sample temperature of ˜35°C, which is near to human body temperature. For this study, the concentration of the adsorbed TATP molecules on the nano-structured surface was varied by heating the sample to different temperatures and exposing the substrate to the sample vapour for different lengths of time. The intensities of the Raman lines have been found to increase with the increase in temperature and also with the increase in the duration of exposure for a fixed temperature. However, as expected, the Raman intensities have been found to saturate at higher temperatures and longer exposures. These saturation effects of the strengths of the Raman lines in the SERS of TATP vapour have been investigated in this paper. The results indicate that the optimisation for vapour deposition on the surface could be a crucial factor for any quantitative estimate of the concentration of the molecular species adsorbed on the nano-structured substrates.

  8. Investigation on tip enhanced Raman spectra of graphene

    Science.gov (United States)

    Li, Xinjuan; Liu, Yanqi; Zeng, Zhuo; Wang, Peijie; Fang, Yan; Zhang, Lisheng

    2018-02-01

    Tip-enhanced Raman scattering (TERS) is a promising analytical approach for some two-dimensional materials and offers the possibility to correlate imaging and chemical data. Tip-enhanced Raman spectra of graphene are discussed in some details, including substrate, gap between tip-apex and sample surface as well as Ag-nanowire. The TERS spectra give special emphasis to the possibility of TERS tip to induce a large number of defects only while got the tip attached to sample surface. Then the dependence of the TERS spectra of graphene and gap between the probe tip and sample surface was studied, and distribution features of electromagnetic (EM) field around tip were also simulated by finite-difference time-domain (FDTD). The Raman signal enhancement of graphene was further discussed with respect to experimental data. Furthermore, the Ag-nanowire as a nano-antenna could significantly enhance the weak Raman signal of D-band of monolayer graphene is shown, and the TERS spectra of graphene with regard to different regions of Ag-nanowires (endpoints, body) were obtained toward investigating into the distribution of electromagnetic field.

  9. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    Science.gov (United States)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  10. Surface-enhanced Raman scattering study of carcinoembryonic antigen in serum from patients with colorectal cancers

    Science.gov (United States)

    Chen, Gang; Chen, Yanping; Zheng, Xiongwei; He, Cheng; Lu, Jianping; Feng, Shangyuan; Chen, Rong; Zeng, Haisan

    2013-12-01

    In this work, we developed a SERS platform for quantitative detection of carcinoembryonic antigen (CEA) in serum of patients with colorectal cancers. Anti-CEA-functionalized 4-mercaptobenzoic acid-labeled Au/Ag core-shell bimetallic nanoparticles were prepared first and then used to analyze CEA antigen solutions of different concentrations. A calibration curve was established in the range from 5 × 10-3 to 5 × 105 ng/mL. Finally, this new SERS probe was applied for quantitative detection of CEA in serum obtained from 26 colorectal cancer patients according to the calibration curve. The results were in good agreement with that obtained by electrochemical luminescence method, suggesting that SERS immunoassay has high sensitivity and specificity for CEA detection in serum. A detection limit of 5 pg/ml was achieved. This study demonstrated the feasibility and great potential for developing this new technology into a clinical tool for analysis of tumor markers in the blood.

  11. Study of ABO blood types by combining membrane electrophoresis with surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Jing; Lin, Juqiang; Huang, Zufang; Sun, Liqing; Shao, Yonghong; Lu, Peng; Shi, Wei; Lin, Jinyong; Chen, Rong

    2012-12-01

    The molecular characterization of ABO blood types, which is clinically significant in blood transfusion, has clinical and anthropological importance. Polymerase chain reaction sequence-based typing (PCR-SBT) is one of the most commonly used methods for the analysis of genetic bases of ABO blood types. However, such methods as PCR-SBT are time-consuming and are high in demand of equipments and manipulative skill. Here we showed that membrane electrophoresis based SERS method employed for studying the molecular bases of ABO blood types can provide rapidand easy-operation with high sensitivity and specificity. The plasma proteins were firstly purified by membrane electrophoresis and then mixed with silver nanoparticles to perform SERS detection. We use this method to classify different blood types, including blood type A (n=13), blood type B (n=9) and blood type O (n=10). Combination of principal component analysis (PCA) and liner discriminant analysis (LDA) was then performed on the SERS spectra of purified albumin, showing good classification results among different blood types. Our experimental outcomes represent a critical step towards the rapid, convenient and accurate identification of ABO blood types.

  12. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  13. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  14. Enhanced Raman spectroscopic study of the coordination chemistry of malononitrile on copper surfaces - Removal of nu(C=N) degeneracy through pi-coordination

    Science.gov (United States)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1985-01-01

    Surface-enhanced Raman spectroscopy has been used to study the molecular interactions of malononitrile with copper electrode surfaces. The doubly degenerate CN stretching frequency at 2263/cm is removed when malononitrile adsorbs on copper. Two nu(CN) bands are observed at 2096 and 2204/cm at -0.6 V(SCE). The result shows that only one CN group is pi-coordinated with Cu, which contributes to the observed large shift (-167/cm) in nu(CN). The other CN group is not coordinated to the metal surface.

  15. Surface-enhanced Raman Scattering Study of the Binding Modes of a Dibenzotetraaza[14]annulene Derivative with DNA/RNA Polynucleotides

    OpenAIRE

    Miljanić, Snežana; Dijanošić, Adriana; Kalac, Matea; Radić Stojković, Marijana; Piantanida, Ivo; Pawlica, Dariusz; Eilmes, Julita

    2012-01-01

    Binding modes of a dibenzotetraaza14annulene (DBTAA) derivative with synthetic nucleic acids were studied using surface-enhanced Raman spectroscopy (SERS). Changes in SERS intensity and appearance of new bands in spectra were attributed to different complexes formed between the DBTAA molecules and DNA/RNA polynucleotides. A decrease in intensity pointed to intercalation as the dominant binding mode of the annulene derivative with poly dGdC-poly dGdC and poly rA-poly rU, whereas new bands in...

  16. Enhancing Raman signals with an interferometrically controlled AFM tip

    International Nuclear Information System (INIS)

    Oron-Carl, Matti; Krupke, Ralph

    2013-01-01

    We demonstrate the upgrade of a commercial confocal Raman microscope into a tip-enhanced Raman microscope/spectroscopy system (TERS) by integrating an interferometrically controlled atomic force microscope into the base of an existing upright microscope to provide near-field detection and thus signal enhancement. The feasibility of the system is demonstrated by measuring the Raman near-field enhancement on thin PEDOT:PSS films and on carbon nanotubes within a device geometry. An enhancement factor of 2–3 and of 5–6 is observed, respectively. Moreover, on a nanotube device we show local conductivity measurement and its correlation to Raman and topography recordings. Upgrading an existing upright confocal Raman microscope in the demonstrated way is significantly cheaper than purchasing a complete commercial TERS system. (paper)

  17. Infrared and Raman spectroscopy study of Assbnd S chalcogenide films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-01

    Assbnd S chalcogenide films, where As content is 60-40 at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5 μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (> 20 μm) in comparison with the "usual" Assbnd S thin films, prepared by different thermal methods, which is highly advantageous for certain applications.

  18. Infrared and Raman spectroscopy study of AsS chalcogenide films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-15

    AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles

    Science.gov (United States)

    Sun, Hai-Long; Xu, Min-Min; Guo, Qing-Hua; Yuan, Ya-Xian; Shen, Li-Ming; Gu, Ren-Ao; Yao, Jian-Lin

    2013-10-01

    A facile approach has been developed to fabricate multifunctional Fe3O4@AuAg alloy core-shell nanoparticles, owning the magnetism of the core and the surface enhanced Raman spectroscopy (SERS) activities of the alloy shell. By changing the amount of HAuCl4 and AgNO3, Fe3O4@AuAg alloy nanoparticles with different component ratios of Au and Ag were successfully prepared. The surface plasmon resonance of the composition was linearly tuned in a wide range by varying the molar fraction of Ag and Au, suggesting the formation of AuAg alloy shell. SERS and magnetic enrichment effects were investigated by using thiophenol (TP) as the probe molecule. The SERS intensity was strongly dependent on the molar ratios of Au and Ag and the excitation line. Enrichment for the molecules with low concentration and on line SERS monitoring experiments were performed through combining the magnetism of the core and the SERS effect of the alloy shell. The results revealed that the magnetic enrichment efficiency was dramatically increased due to the strong magnetism of Fe3O4 core. In addition, the Fe3O4@AuAg nanoparticles were also used in the microfluidic chip to continuously detect different flowing solution in the channel. The detection time and amount of analyte were successfully decreased.

  20. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    Science.gov (United States)

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Detection of explosives based on surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wackerbarth, Hainer; Salb, Christian; Gundrum, Lars; Niederkrüger, Matthias; Christou, Konstantin; Beushausen, Volker; Viöl, Wolfgang

    2010-08-10

    In this study we present a device based on surface-enhanced Raman scattering (SERS) for the detection of airborne explosives. The explosives are resublimated on a cooled nanostructured gold substrate. The explosives trinitrotoluene (TNT) and triacetone triperoxide (TATP) are used. The SERS spectrum of the explosives is analyzed. Thus, TNT is deposited from an acetonitrile solution on the gold substrate. In the case of TATP, first the bulk TATP Raman spectrum was recorded and compared with the SERS spectrum, generated by deposition out of the gas phase. The frequencies of the SERS spectrum are hardly shifted compared to the spectrum of bulk TATP. The influence of the nanostructured gold substrate temperature on the signals of TATP was studied. A decrease in temperature up to 200 K increased the intensities of the TATP bands in the SERS spectrum; below 200 K, the TATP fingerprint disappeared.

  2. Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    International Nuclear Information System (INIS)

    Kirubha, E; Palanisamy, P K

    2014-01-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au–Ag bimetallic core–shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au–Ag nanoparticles are characterized using UV–Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 10 9 . The nonlinear optical parameters such as the nonlinear refractive index n 2 , nonlinear absorption coefficient β and the third order nonlinear susceptibility χ 3 are measured for various wavelengths from 700 nm to 950 nm. The Au–Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G. (paper)

  3. Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    Science.gov (United States)

    Kirubha, E.; Palanisamy, P. K.

    2014-12-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au-Ag bimetallic core-shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au-Ag nanoparticles are characterized using UV-Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 109. The nonlinear optical parameters such as the nonlinear refractive index n2, nonlinear absorption coefficient β and the third order nonlinear susceptibility χ3 are measured for various wavelengths from 700 nm to 950 nm. The Au-Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G.

  4. Surface-enhanced Raman spectroscopy of DNA bases

    NARCIS (Netherlands)

    Otto, Cornelis; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, Jan

    1986-01-01

    A Raman microprobe has been used to measure the surface-enhanced Raman spectra of adenine, guanine, cytosine and thymine. Comparison of the SERS spectrum with solution spectra shows that some line positions are not influenced by the adsorption process while others show large shifts. In the SERS

  5. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  6. Molecular selectivity of graphene-enhanced Raman scattering.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Song, Yi; Fang, Wenjing; Zhang, Jin; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-05-13

    Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS), in which the Raman enhancement is essentially due to the electromagnetic mechanism, GERS mainly relies on a chemical mechanism and therefore shows unique molecular selectivity. In this paper, we report graphene-enhanced Raman scattering of a variety of different molecules with different molecular properties. We report a strong molecular selectivity for the GERS effect with enhancement factors varying by as much as 2 orders of magnitude for different molecules. Selection rules are discussed with reference to two main features of the molecule, namely its molecular energy levels and molecular structures. In particular, the enhancement factor involving molecular energy levels requires the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies to be within a suitable range with respect to graphene's Fermi level, and this enhancement effect can be explained by the time-dependent perturbation theory of Raman scattering. The enhancement factor involving the choice of molecular structures indicates that molecular symmetry and substituents similar to that of the graphene structure are found to be favorable for GERS enhancement. The effectiveness of these factors can be explained by group theory and the charge-transfer interaction between molecules and graphene. Both factors, involving the molecular energy levels and structural symmetry of the molecules, suggest that a remarkable GERS enhancement requires strong molecule-graphene coupling and thus effective charge transfer between the molecules and graphene. These conclusions are further

  7. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  8. Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples

    Science.gov (United States)

    Schulte, Franziska; Joseph, Virginia; Panne, Ulrich; Kneipp, Janina

    In this chapter, we discuss Raman scattering and surface-enhanced Raman scattering (SERS) for the analysis of cellular samples of plant and animal origin which are several tens to hundreds of microns in size. As was shown in the past several years, the favorable properties of noble metal nanostructures can be used to generate SERS signals in very complex biological samples such as cells, and result in an improved sensitivity and spatial resolution. Pollen grains, the physiological containers that produce the male gametes of seed plants, consist of a few vegetative cells and one generative cell, surrounded by a biopolymer shell. Their chemical composition has been a subject of research of plant physiologists, biochemists [1, 2], and lately even materials scientists [3, 4] for various reasons. In spite of a multitude of applied analytical approaches it could not be elucidated in its entirety yet. Animal cells from cell cultures have been a subject of intense studies due to their application in virtually all fields of biomedical research, ranging from studies of basic biological mechanisms to models for pharmaceutical and diagnostic research. Many aspects of all kinds of cellular processes including signalling, transport, and gene regulation have been elucidated, but many more facts about cell biology will need to be understood in order to efficiently address issues such as cancer, viral infection or genetic disorder. Using the information from spectroscopic methods, in particular combining normal Raman spectroscopy and SERS may open up new perspectives on cellular biochemistry. New sensitive Raman-based tools are being developed for the biochemical analysis of cellular processes [5-8].

  9. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  10. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  11. Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.

    2017-08-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.

  12. The effect of substrate on electric field enhancement of Tip-enhanced Raman spectroscopy (TERS)

    Science.gov (United States)

    Bahreini, Maryam

    2018-01-01

    The characterization of materials down to a few-molecule level is a key challenge in nanotechnology. Raman spectroscopy is a powerful method that provides chemical information via nondestructive vibrational fingerprinting. Unfortunately, this method suffers from signal weakness which prevents the study of small quantities. Tip-enhanced Raman spectroscopy (TERS) which combines the chemical sensitivity of Raman spectroscopy (RS) with high spatial resolution of scanning probe microscopy (SPM), provides chemical images of surfaces at the nanometer scale. In this method, irradiation of an SPM tip by a focused laser beam results in enhancement of local electric field via two reasons of localized surface plasmon resonance and lightning rod effect. This enhancement leads to the enhancement in Raman intensity from the sample surface in the vicinity of tip. In all TERS measurements, samples should be located on a substrate. In this paper, the dependence of the electric field enhancement to the substrate has been investigated. In simulations, three-dimensional finite-difference time-domain (3D-FDTD) method is used for numerical solution of Maxwell's equations. Our results show that the electric field enhancement is weak for the tip alone case. Introducing a substrate provides further electric field enhancement via near field electromagnetic dipole-dipole coupling between the tip and substrate. Since the side-illumination geometry is used for laser irradiation, the vertical component of the incident field plays a dominant role in the electric field enhancement. Therefore, the coupling effect between the tip and the substrate is the key contribution to the enhancement. For the case of silicon tip and the gold substrate, the electric field enhancement is improved considerably. There is an optimal tip size for TERS because of the competing effects of the radiation damping and the surface scattering of the tip. The results show the substrate as an effective tool for the

  13. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  14. Surface-enhanced Raman spectroscopic study of DNA and 6-mercapto-1-hexanol interactions using large area mapping

    DEFF Research Database (Denmark)

    Frøhling, Kasper Bayer; Alstrøm, Tommy Sonne; Bache, Michael

    2016-01-01

    intensities and peak positions it is possible to directly inspect the interplay between DNA and 6-mercapto-1-hexanol on gold covered nanopillars. It is demonstrated that optimised functionalization parameters can be extracted from the Raman spectra directly. Using the peak-fitting approach it is possible...

  15. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  16. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  17. Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy.

    Science.gov (United States)

    Wang, Jianfeng; Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-07-01

    We report on the development of a beveled fiber-optic confocal Raman probe coupled with a ball lens for enhancing in vivo epithelial tissue Raman measurements at endoscopy. Our Monte Carlo simulations show that by selecting a proper fiber-ball lens distance and beveled angle of collection fibers, the confocal Raman probe design can be optimized for maximizing shallower tissue Raman measurements in epithelial tissue; in addition, the ratio of epithelium to stromal Raman photons collected using an optimized confocal Raman probe is approximately 19-fold higher than that using a volume-type Raman probe. Further experiments confirm that the confocal Raman endoscopic probe developed is in favor of probing superficial tissue Raman signals from a two-layer tissue phantom as well as esophagus tissue in vivo during endoscopy. This work suggests the great potential of applying the beveled fiber-optic confocal Raman probe for improving in vivo diagnosis of precancer occurring in epithelial tissue at endoscopy.

  18. Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

    International Nuclear Information System (INIS)

    Ganbold, Erdene Ochir; Park, Jin Ho; Ock, Kwang Su; Joo, Sang Woo

    2011-01-01

    We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs

  19. Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Bertel, Linda

    2016-01-01

    The orientation of pterin-6-carboxylic acid on gold nanopillars was investigated by surface enhanced Raman spectroscopy and density functional theory methods. The experimentally vibrations from pterin-6-COOH free and attached to the Au surface display vibration features indicating chemical...

  20. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  1. Light depolarization effects in tip enhanced Raman spectroscopy of silicon (001 and gallium arsenide (001

    Directory of Open Access Journals (Sweden)

    P. G. Gucciardi

    2011-09-01

    Full Text Available We report on the effects of light depolarization induced by sharp metallic tips in Tip-Enhanced Raman Spectroscopy (TERS. Experiments on Si(001 and GaAs(001 crystals show that the excitation field depolarization induces a selective enhancement of specific Raman modes, depending on their Raman tensor symmetry. A complete polarization analysis of the light backscattered from the tip confirms the TERS findings. The spatial confinement of the depolarization field is studied and its dependence on the excitation wavelength and power are explored.

  2. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  3. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  4. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Krasnoslobodtsev, Alexey V., E-mail: akrasnos@unomaha.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Department of Physics, University of Nebraska Omaha, Omaha, NE 68182 (United States); Deckert-Gaudig, Tanja [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Zhang, Yuliang [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Deckert, Volker [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Institute for Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena (Germany); Lyubchenko, Yuri L., E-mail: ylyubchenko@unmc.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States)

    2016-06-15

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. - Highlights: • Amyloid polymorphs were characterized by AFM and TERS. • A mixture of peptide secondary structures in fibrils were identified using TERS. • TERS recognizes packing arrangement (parallel versus antiparallel) of peptides. • TERS is a powerful tool for high resolution structural analysis of fibrils.

  5. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  6. Surface-enhanced Raman scattering studies on the interaction of phosphonate derivatives of imidazole, thiazole, and pyridine with a silver electrode in aqueous solution.

    Science.gov (United States)

    Podstawka, Edyta; Kudelski, Andrzej; Olszewski, Tomasz K; Boduszek, Bogdan

    2009-07-23

    Surface-enhanced Raman scattering (SERS) spectra from phosphonate derivatives of N-heterocyclic aromatic compounds immobilized on an electrochemically roughened silver electrode surface are reported and compared to Raman spectra of the corresponding solid species. The tested compounds contain imidazole [ImMeP ([hydroxy-(1H-imidazol-5-yl)-methyl]-phosphonic acid) and (ImMe)2P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]-phosphinic acid)]; thiazole [BAThMeP ((butylamino-thiazol-2-yl-methyl)-phosphonic acid) and BzAThMeP ((benzylamino-thiazol-2-yl-methyl)-phosphonic acid)]; and pyridine ((PyMe)2P (bis[(hydroxy-pyridin-3-yl-methyl)]-phosphinic acid) aromatic rings. Changes in wavenumber, broadness, and the enhancement of N-heterocyclic aromatic ring bands upon adsorption are consistent with the adsorption primarily occurring through the N lone pair of electrons with the ring arranged in a largely edge-on manner for ImMeP and BzAThMeP or in a slightly inclined orientation to the silver electrode surface at an intermediate angle from the surface normal for (ImMe)2P, BAThMeP, and (PyMe)2P. A strong enhancement of a roughly 1500 cm(-1) SERS signal for ImMeP and (PyMe)2P is also observed. This phenomenon is attributed to the formation of a localized C=C bond, which is accompanied by a decrease in the ring-surface pi-electrons' overlap. In addition, more intense SERS bands due to the benzene ring in BzAThMeP are observed than those observed for the thiazole ring, which suggests a preferential adsorption of benzene. Some interaction of a phosphonate unit is also suggested but with moderate strength between biomolecules. The strength of the P=O coordination to the silver electrode is highest for ImMeP but lowest for BzAThMeP. For all studied biomolecules, the contribution of the structural components to their ability to interact with their receptors was correlated with the SERS patterns.

  7. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  8. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering

    OpenAIRE

    Moran, Christine H.; Rycenga, Matthew; Zhang, Qiang; Xia, Younan

    2011-01-01

    In this work, we used surface-enhanced Raman scattering (SERS) to monitor the replacement of poly(vinyl pyrrolidone) (PVP) on Ag nanocubes by cysteamine, thiol-terminated PEG, and benzenedithiol. PVP is widely used as a colloidal stabilizer and capping agent to control the shape of Ag (as well as many other noble metals) nanocrystals during synthesis, and to stabilize the final colloidal suspension. However, the surface chemistry of Ag nanocrystals often needs to be tailored for specific appl...

  9. Applications of the surface enhanced Raman scattering (SERS)

    International Nuclear Information System (INIS)

    Picquart, M.; Haro P, E.; Bernard, S.

    2007-01-01

    Full text: Vibration spectroscopy techniques are used for many times to identify substances, determine molecular structure and quantify them, independently of their physical state. Raman spectroscopy as infrared absorption permit to access the vibration energy levels of molecules. In the second case, the permanent dipolar moment is involved while in the first one it is the polarizability (and the induced dipolar moment). Unfortunately, the classical Raman spectroscopy is low sensitive in particular in the case of biological molecules. On the opposite, the surface enhanced Raman spectroscopy (SERS) offers great potentialities. In this case, the molecules are adsorbed on a rough surface or on nanoparticles of gold or silver and the: signal can be increased by a factor of 10 7 to 10 8 . Moreover, the spectral enhancement is greater for the vibrations of the functional group of the molecule adsorbed on the substrate. In this work, we present the main theoretical bases of SERS, and some results obtain on different systems. (Author)

  10. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...... molecules adsorbed onto the substrate. The substrates were fabricated in a cleanroom process which only requires two steps to produce well controlled nano-sized high aspect ratio metal pillars. These substrates had superior chemical sensing performance in addition to a more cost effective fabrication...... process compared to existing commercial substrates. Therefore it is believed that these novel substrates will be able to make SERS more applicable in mobile explosives detection systems to be deployed in for example landmine clearance actions....

  11. INFRARED AND RAMAN SPECTROSCOPIC STUDY OF ION ...

    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  12. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    magnetic properties of these nanoparticles combined with SERS provide a wide range of applications. Keywords. Surface-enhanced Raman scattering; magnetic nanoparticles; core-shell nanostructure; bio-diagnosis. 1. Introduction. In recent years, plasmonic nanostructures exhibiting novel optical properties have attracted ...

  13. Surface enhanced Raman spectra of the organic nonlinear optic ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Chemistry, University of Opole, Olesksa 48 45-052 Opole, Poland. 1. Present Address: Department of Physics, V.P.S.H.S.S. for ... co-ordination chemistry. Surface-enhanced Raman scattering (SERS), using .... numbers were calculated using analytic second de- rivatives to confirm the convergence to minima on.

  14. Near-Ir surface-enhanced Raman spectrum of lignin

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner

    2009-01-01

    Compacted powders of commercially available nano- and microparticles of silver were used to successfully induce the surface enhanced Raman scattering (SERS) effect in spruce milled-wood lignin (MWL). For the two silver particle sizes used in this investigation, the spectra were mostly similar. Some general characteristics of the lignin SERS spectrum are described. The...

  15. Asphaltene detection using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Alabi, O O; Edilbi, A N F; Brolly, C; Muirhead, D; Parnell, J; Stacey, R; Bowden, S A

    2015-04-28

    Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum. This simple format and sensitivity make it transformative for applications including sample triage, flow assurance, environmental protection and analysis of unique one of a kind materials.

  16. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  17. Reversibility of Graphene-Enhanced Raman Scattering with Fluorinated Graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Melníková Komínková, Zuzana; Verhagen, Timotheus; Vejpravová, Jana; Kalbáč, Martin

    2017-01-01

    Roč. 254, č. 11 (2017), č. článku 1700177. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : fluorination * graphene * graphene-enhanced Raman * Raman spectroscopy * scattering Subject RIV: CF - Physical ; Theoretical Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Physical chemistry; Condensed matter physics (including formerly solid state physics , supercond.) (FZU-D) Impact factor: 1.674, year: 2016

  18. Reversibility of Graphene-Enhanced Raman Scattering with Fluorinated Graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Melníková Komínková, Zuzana; Verhagen, Timotheus; Vejpravová, Jana; Kalbáč, Martin

    2017-01-01

    Roč. 254, č. 11 (2017), č. článku 1700177. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : fluorination * graphene * graphene -enhanced Raman * Raman spectroscopy * scattering Subject RIV: CF - Physical ; Theoretical Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Physical chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.674, year: 2016

  19. Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS

    Directory of Open Access Journals (Sweden)

    Raju Botta

    2016-07-01

    Full Text Available The detection of glucose by Surface Enhanced Raman Scattering (SERS is a challenging problem because glucose molecules have a small Raman scattering cross-section and they have a low affinity for adsorption on metal nanoparticle surfaces. In this study we used 2-Thienylboronic acid (2-TBA as a bridge or linker molecule between the metal surface and the glucose molecule and observed an intense Raman line at 986 cm−1 that was used to quantify the glucose concentration in the molar concentration range 1 μM–500 μM. A good correlation was observed between the intensity of this line and molar concentration of glucose. These results would find applications in the development of a non-invasive glucose sensor for diabetic patients using saliva as the body fluid instead of blood serum. Keywords: SERS, Nanoclusters, Raman Spectroscopy, 2-Thienylboronic acid, d-Glucose

  20. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  1. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    CERN Document Server

    McAnally, G D

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm sup - sup 1) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are ...

  2. Surface enhanced Raman optical activity as an ultra sensitive tool for ligand binding analysis

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim

    2007-01-01

    The Surface Enhanced Resonance Raman Scattering (SERRS) and Surface Enhanced Resonance Raman Optical Activity (SERROA) spectra of myoglobin and the myoglobin-azide complex were measured on very dilute samples (100 nM protein) in order to analyze the sensitivity of SERROA spectroscopy when inducing...... upon azide complexation. Application of this method allows for rapid analysis of ligand binding in metalloproteins in dilute aqueous solution and could in the future, when combined with theoretical studies, increase the obtainable structural resolution of proteins beyond that of X-ray analysis....

  3. Time-dependent micro-Raman scattering studies of polyvinyl ...

    Indian Academy of Sciences (India)

    2014-02-15

    Feb 15, 2014 ... Abstract. In-situ monitoring of silver nanoparticle formation was studied in thin films of poly- vinyl alcohol and silver nitrate. We proposed the observation of surface-enhanced Raman spec- troscopy (SERS) as a novel and simple technique to record the growth of silver nanoparticles in polyvinyl alcohol thin ...

  4. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2018-02-01

    Full Text Available Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene.

  5. Directional surface enhanced Raman scattering on gold nano-gratings

    International Nuclear Information System (INIS)

    Gillibert, Raymond; Yasukuni, Ryohei; Chapelle, Marc Lamy de la; Sarkar, Mitradeep; Bryche, Jean-François; Moreau, Julien; Besbes, Mondher; Canva, Michael; Barbillon, Grégory; Bartenlian, Bernard

    2016-01-01

    Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size. (paper)

  6. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    Noble metal nanostructures support localized surface plasmon (LSPR) resonances that depend on their dimensions, shapes and compositions. Particle LSPR's can be used to spatially confine the incident light and produce enormous electromagnetic (EM) field enhancement spots, i.e. hot spots. Hot spots...... have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...... experimentally and theoretically. Simulations show that that a single Agcoated NP supports two LSPR modes, i.e. the particle mode and the Ag cap resonant cavity mode. The Ag cap resonant cavity mode contributes most to the enhancement of the Raman scattering signal. The electric field distribution calculations...

  7. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  8. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering.

    Science.gov (United States)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-04-10

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10 -3 , 10 -4 and 10 -5 M and adenine in 30 and 100μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106cm -1 band is explained by involvement of the CS stretching deformation, and the appearance of the broad 300cm -1 band attributed to SAu stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736cm -1 . The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600cm -1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Raman spectroscopic studies on bacteria

    Science.gov (United States)

    Maquelin, Kees; Choo-Smith, Lin-P'ing; Endtz, Hubert P.; Bruining, Hajo A.; Puppels, Gerwin J.

    2000-11-01

    Routine clinical microbiological identification of pathogenic micro-organisms is largely based on nutritional and biochemical tests. Laboratory results can be presented to a clinician after 2 - 3 days for most clinically relevant micro- organisms. Most of this time is required to obtain pure cultures and enough biomass for the tests to be performed. In the case of severely ill patients, this unavoidable time delay associated with such identification procedures can be fatal. A novel identification method based on confocal Raman microspectroscopy will be presented. With this method it is possible to obtain Raman spectra directly from microbial microcolonies on the solid culture medium, which have developed after only 6 hours of culturing for most commonly encountered organisms. Not only does this technique enable rapid (same day) identifications, but also preserves the sample allowing it to be double-checked with traditional tests. This, combined with the speed and minimal sample handling indicate that confocal Raman microspectroscopy has much potential as a powerful new tool in clinical diagnostic microbiology.

  10. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pięta, Ewa, E-mail: Ewa.Pieta@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Paluszkiewicz, Czesława [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Oćwieja, Magdalena [J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow (Poland); Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-05-15

    Highlights: • Molecular fragments involved in the adsorption process were determined. • Formation of hydrogen bonds with the negatively charged gold substrates was observed. • Indole moiety strongly interacts with gold nanosensors. • The synthesized sensors are characterized by high stability and reproducibility. • Chemical mechanism plays a crucial role in the enhancement of the Raman signal. - Abstract: An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface–enhanced Raman scattering (SERS) spectroscopic investigations of N–acetyl–5–methoxytryptamine (melatonin) and α–methyl–DL–tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6–311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  11. Interfacing capillary electrophoresis and surface-enhanced resonance Raman spectroscopy for the determination of dye compounds

    NARCIS (Netherlands)

    Arraez Roman, D.; Efremov, E.V.; Ariese, F.; Segura Carretero, A.; Gooijer, C.

    2005-01-01

    The at-line coupling of capillary electrophoresis (CE) and surface-enhanced resonance Raman spectroscopy (SERRS) was optimized for the separation and subsequent spectroscopic identification of charged analytes (dye compounds). Raman spectra were recorded following deposition of the electropherogram

  12. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  13. Surface enhanced Raman spectroscopy on a flat graphene surface

    Science.gov (United States)

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  14. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  15. A surface-enhanced Raman study of N-methylquinolinium tricyanoquinodimethanide adsorbed on Ag nanospheres: Determination of molecular orientation and order

    Science.gov (United States)

    Fletcher, Melissa C.; Alexson, Dimitri M.; Prokes, Sharka M.; Glembocki, Orest J.; Vivoni, Alberto; Hosten, Charles M.

    2015-08-01

    Quinolinium tricyanoquinodimethanides are among the most promising molecules for electronic applications. Disorder can be detrimental to the desired electronic properties of a monolayer, and as such, a reliable method to characterize a monolayer without destroying or creating defects is paramount to determining potential applications. Here, the normal and surface-enhanced Raman scattering spectra of N-methylquinolinium tricyanoquinodimethanide (CH3Q-3CNQ) on silver coated nanosurfaces have been obtained and analyzed. Theoretical treatment of CH3Q-3CNQ was performed. Optimization and frequency search was conducted using the B3LYP functional with the 6-31G(d) basis set. A complete list of frequencies and assignments for the molecules are presented. The spectroscopic evidence points to the fact that a monolayer of CH3Q-3CNQ can be formed through the self-assembly process, and the SERS data indicate that the monolayer attaches to the silver surface through the nitrile groups.

  16. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  17. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  18. Tip-enhanced Raman scattering of bacillus subtilis spores

    Science.gov (United States)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  19. Principal component analysis of bacteria using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Guicheteau, Jason; Christesen, Steven D.

    2006-05-01

    Surface-enhanced Raman scattering (SERS) provides rapid fingerprinting of biomaterial in a non-destructive manner. The problem of tissue fluorescence, which can overwhelm a normal Raman signal from biological samples, is largely overcome by treatment of biomaterials with colloidal silver. This work presents a study into the applicability of qualitative SER spectroscopy with principal component analysis (PCA) for the discrimination of four biological threat simulants; Bacillus globigii, Pantoea agglomerans, Brucella noetomae, and Yersinia rohdei. We also demonstrate differentiation of gram-negative and gram-positive species and as well as spores and vegetative cells of Bacillus globigii.

  20. Experimental verification of Raman scattering suppression via ground state depletion for spatial resolution enhancement in label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    Resonance Raman scattering was suppressed by 50% via ground state depletion in Tris(bipyridine)ruthenium(II). This concept of Raman suppression is of high interest for enhancing the resolution of Raman microscopy to below the diffraction limit

  1. Tip-enhanced Raman spectroscopy for nanoscale strain characterization.

    Science.gov (United States)

    Tarun, Alvarado; Hayazawa, Norihiko; Kawata, Satoshi

    2009-08-01

    Tip-enhanced Raman spectroscopy (TERS), which utilizes the strong localized optical field generated at the apex of a metallic tip when illuminated, has been shown to successfully probe the vibrational spectrum of today's and tomorrow's state-of-the-art silicon and next-generation semiconductor devices, such as quantum dots. Collecting and analyzing the vibrational spectrum not only aids in material identification but also provides insight into strain distributions in semiconductors. Here, the potential of TERS for nanoscale characterization of strain in silicon devices is reviewed. Emphasis will be placed on the key challenges of obtaining spectroscopic images of strain in actual strained silicon devices.

  2. Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhang, Jing; Li, Jinxing; Tang, Shiwei; Fang, Yangfu; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Zheng, Lirong; Cui, Xugao; Mei, Yongfeng

    2015-01-01

    The synergy effect in nature could enable fantastic improvement of functional properties and associated effects. The detection performance of surface-enhanced Raman scattering (SERS) can be highly strengthened under the cooperation with other factors. Here, greatly-enhanced SERS detection is realized based on rolled-up tubular nano-resonators decorated with silver nanoparticles. The synergy effect between whispering-gallery-mode (WGM) and surface plasmon leads to an extra enhancement at the order of 105 compared to non-resonant flat SERS substrates, which can be well tuned by altering the diameter of micron- and nanotubes and the excitation laser wavelengths. Such synchronous and coherent coupling between plasmonics and photonics could lead to new principle and design for various sub-wavelength optical devices, e.g. plasmonic waveguides and hyperbolic metamaterials. PMID:26443526

  3. Surface enhanced Raman scattering (SERS) study of L-arginine adsorbed on Ag nanoclusters on glass substrate by nanocluster deposition method

    Science.gov (United States)

    Botta, Raju; Bansal, C.

    2015-06-01

    Spheroidal shape Ag nanoclusters were prepared using inert gas phase condensation technique of cluster deposition system. Annealed the Ag nanocluster film at 300 °C to get proper size and also tune the surface plasmon resonance (SPR) with excitation wavelength. L- Arginine (L-Arg) amino acid was taken to study the quantitative nature of the Raman peaks with molar concentration. Wide range of aqueous solution of L-Arg amino acid was prepared by sequential dilution method (1 mM to 1 µM) and 40 µL of L-Arg was dropped on the Ag nanocluster film and allowed to dry in the ambient conditions. Further Raman measurements were carried out using 514 nm laser excitation sources. Guanidium fragment vibrational mode and COO- symmetric stretching mode peaks were taken for the quantitative measurement. All the SERS spectrums are in good agreement with earlier reports and are reproducible over the substrate. A good correlation between peak intensity and molar concentration was found. These results show promising applications in the protein analysis.

  4. A Raman Study of Titanate Nanotubes

    African Journals Online (AJOL)

    NJD

    The nano titania produced by the electrochemical and template methods, gave amorphous titania while titania nanotubes produced by 'soft' chemical processes gave materials with good crystallinity. Initially it was believed that the tubular material had the anatase structure.13,14,16,21 Indeed XRD and Raman studies.

  5. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  6. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  7. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  8. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    Science.gov (United States)

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.

  9. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  10. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  11. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  12. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.

    Science.gov (United States)

    Ling, Xi; Fang, Wenjing; Lee, Yi-Hsien; Araujo, Paulo T; Zhang, Xu; Rodriguez-Nieva, Joaquin F; Lin, Yuxuan; Zhang, Jin; Kong, Jing; Dresselhaus, Mildred S

    2014-06-11

    Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm(-1)) are enhanced more strongly on graphene than that on h-BN, while the lower frequency phonon modes of CuPc (such as those at 682, 749, 1142, 1185 cm(-1)) are enhanced more strongly on h-BN than that on graphene. MoS2 demonstrated the weakest Raman enhancement effect as a substrate among these three 2D materials. These differences are attributed to the different enhancement mechanisms related to the different electronic properties and chemical bonds exhibited by the three substrates: (1) graphene is zero-gap semiconductor and has a nonpolar C-C bond, which induces charge transfer (2) h-BN is insulating and has a strong B-N bond, while (3) MoS2 is semiconducting with the sulfur atoms on the surface and has a polar covalent bond (Mo-S) with the polarity in the vertical direction to the surface. Therefore, the different Raman enhancement mechanisms differ for each material: (1) charge transfer may occur for graphene; (2) strong dipole-dipole coupling may occur for h-BN, and (3) both charge transfer and dipole-dipole coupling may

  13. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    Science.gov (United States)

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  14. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  15. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  16. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina [Department of Chemistry, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany); Franzka, Steffen [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany); Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen, 47047 Duisburg (Germany); Biener, Monika; Biener, Jürgen [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550 (United States); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Department of Chemistry, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg (Germany); Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen, 47047 Duisburg (Germany)

    2016-06-30

    Graphical abstract: - Highlights: • Photothermal laser processing is used to modify the surface structure of nanoporous gold. • Laser-fabricated structures exhibit pore sizes in the range from 25 nm to 200 nm and higher. • Ru-dye-functionalized surface structures are used in surface-enhanced Raman spectroscopy (SERS) studies. • Raman peak intensities of N719, a commercial Ru-dye, exhibit a strong dependence on the pore size. • Maximum Raman peak intensities are observed for small pore sizes close to 25 nm. - Abstract: Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  17. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Moran, Christine H; Rycenga, Matthew; Zhang, Qiang; Xia, Younan

    2011-11-10

    In this work, we used surface-enhanced Raman scattering (SERS) to monitor the replacement of poly(vinyl pyrrolidone) (PVP) on Ag nanocubes by cysteamine, thiol-terminated PEG, and benzenedithiol. PVP is widely used as a colloidal stabilizer and capping agent to control the shape of Ag (as well as many other noble metals) nanocrystals during synthesis, and to stabilize the final colloidal suspension. However, the surface chemistry of Ag nanocrystals often needs to be tailored for specific applications, so the PVP coating must be removed and/or replaced by other ligands. By monitoring the signature peak from the carbonyl groups of PVP, we show, for the first time, that the PVP adsorbed on the surface of Ag nanocubes was completely replaced by the thiol molecules at room temperature over the course of a few hours. We observed the same trend no matter if the Ag nanocubes were suspended in an aqueous solution of the thiol or supported on a silicon substrate and then immersed in the thiol solution.

  18. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.

    Science.gov (United States)

    Roelli, Philippe; Galland, Christophe; Piro, Nicolas; Kippenberg, Tobias J

    2016-02-01

    The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic 'hot-spots' in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics.

  19. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nano structures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    International Nuclear Information System (INIS)

    Goncalves, M.R.; Marti, O.; Fabian Enderle, F.

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver. excitation: by far-field illumination of metal nanostructures or rough metal Raman scattering cross-section of gold-palladium target Temporal Fluctuation in SERS Temporal and spectral fluctuations.

  20. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.

    Science.gov (United States)

    Mahmoud, Mahmoud A

    2013-05-28

    Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.

  1. Plasmonic dimer antennas for surface enhanced Raman scattering.

    Science.gov (United States)

    Höflich, Katja; Becker, Michael; Leuchs, Gerd; Christiansen, Silke

    2012-05-11

    Electron beam induced deposition (EBID) has recently been developed into a method to directly write optically active three-dimensional nanostructures. For this purpose a metal-organic precursor gas (here dimethyl-gold(III)-acetylacetonate) is introduced into the vacuum chamber of a scanning electron microscope where it is cracked by the focused electron beam. Upon cracking the aforementioned precursor gas, 3D deposits are realized, consisting of gold nanocrystals embedded in a carbonaceous matrix. The carbon content in the deposits hinders direct plasmonic applications. However, it is possible to activate the deposited nanostructures for plasmonics by coating the EBID structures with a continuous silver layer of a few nanometers thickness. Within this silver layer collective motions of the free electron gas can be excited. In this way, EBID structures with their intriguing precision at the nanoscale have been arranged in arrays of free-standing dimer antenna structures with nanometer sized gaps between the antennas that face each other with an angle of 90°. These dimer antenna ensembles can constitute a reproducibly manufacturable substrate for exploiting the surface enhanced Raman effect (SERS). The achieved SERS enhancement factors are of the order of 10⁴ for the incident laser light polarized along the dimer axes. To prove the signal enhancement in a Raman experiment we used the dye methyl violet as a robust test molecule. In future applications the thickness of such a silver layer on the dimer antennas can easily be varied for tuning the plasmonic resonances of the SERS substrate to match the resonance structure of the analytes to be detected.

  2. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  3. Surface enhanced Raman scattering by organic and inorganic semiconductors formed on laterally ordered arrays of Au nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@thermo.isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090, Novosibirsk (Russian Federation); Yeryukov, Nikolay A., E-mail: yeryukov@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Sheremet, Evgeniya S.; Ludemann, Michael; Gordan, Ovidiu D. [Semiconductor Physics, Chemnitz University of Technology, D-09107, Chemnitz (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, Lavrentiev av. 13, 630090, Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090, Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Chemnitz University of Technology, D-09107, Chemnitz (Germany)

    2013-09-30

    This work is devoted to the investigation of surface-enhanced Raman scattering by vibrational modes of cobalt phthalocyanine ultrathin films and CuS nanocrystals prepared using by organic molecular beam vapor deposition and the Langmuir–Blodgett technique, respectively, on laterally ordered arrays of Au nanoclusters formed by electron beam lithography on Si and GaAs substrates. The surface-enhanced Raman scattering study of cobalt phthalocyanine films demonstrates the strong dependence of Raman intensity of vibrational modes in cobalt phthalocyanine on the laser excitation wavelength as well as on the size and period of Au nanoclusters. By tuning the optical resonance conditions a maximal enhancement factor of 2 × 10{sup 4} is achieved. The investigation of surface-enhanced Raman scattering by cobalt phthalocyanine deposited on laterally ordered arrays of paired Au nanoclusters (dimers) reveals anisotropic enhancement with respect to polarization of the scattered light parallel or perpendicular to the dimer axis. - Highlights: • Controllable and reproducible Au nanocluster and dimer arrays were fabricated. • Surface enhanced Raman scattering (SERS) by CuS nanocrystals was observed. • SERS by ultrathin cobalt phthalocyanine (CoPc) films was observed. • Dependence of SERS enhancement factor on the size of Au nanoclusters is resonant. • SERS by ultrathin CoPc films formed on Au dimer arrays is polarization dependent.

  4. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  5. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  6. New Insight into Erythrocyte through In Vivo Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Abdali, Salim; Brazhe, Alexey R.

    2009-01-01

    The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples...... containing erythrocytes in their normal physiological environment in a mixture of colloid solution with silver nanoparticles and the procedure for the optimization of SERS conditions to achieve high signal enhancement without affecting the properties of living erythrocytes. By means of three independent...... techniques, we demonstrate that under the proposed conditions a colloid solution of silver nanoparticles does not affect the properties of erythrocytes. For the first time to our knowledge, we describe how to use the SERS-RS approach to study two populations of hemoglobin molecules inside an intact living...

  7. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    Science.gov (United States)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.

  8. In situ surface-enhanced raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan William; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 mu L) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC

  9. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 μL) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC system

  10. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study.

    Science.gov (United States)

    Kalbac, Martin; Hsieh, Ya-Ping; Farhat, Hootan; Kavan, Ladislav; Hofmann, Mario; Kong, Jing; Dresselhaus, Mildred S

    2010-11-10

    Raman spectroscopy and in situ Raman spectroelectrochemistry have been used to study the influence of defects on the Raman spectra of semiconducting individual single-walled carbon nanotubes (SWCNTs). The defects were created intentionally on part of an originally defect-free individual semiconducting nanotube, which allowed us to analyze how defects influence this particular nanotube. The formation of defects was followed by Raman spectroscopy that showed D band intensity coming from the defective part and no D band intensity coming from the original part of the same nanotube. It is shown that the presence of defects also reduces the intensity of the symmetry-allowed Raman features. Furthermore, the changes to the Raman resonance window upon the introduction of defects are analyzed. It is demonstrated that defects lead to both a broadening of the Raman resonance profile and a decrease in the maximum intensity of the resonance profile. The in situ Raman spectroelectrochemical data show a doping dependence of the Raman features taken from the defective part of the tested SWCNT.

  11. Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies

    NARCIS (Netherlands)

    PUPPELS, G J; SCHUT, T C B; SIJTSEMA, N M; GROND, M; MARABOEUF, F; DEGRAUW, C G; FIGDOR, C G; GREVE, J

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  12. The monothiocyanate complexes of chromium ion(III) on the silver electrode by the surface enhanced Raman scattering

    Science.gov (United States)

    Wang, Huanru; Wu, Guozhen

    2005-11-01

    Two adsorbate forms of the monothiocyanate complex of chromium ion on the silver electrode are identified in the surface enhanced Raman scattering. The spectroscopic, especially the electronic, properties of these two forms under different applied voltages on the electrode and under both 632.8 and 514.5 nm excitations are studied by the bond force constants (bond orders) and the bond polarizability derivatives which are retrieved from the Raman intensities by an algorithm developed by Wu and co-workers [B. Tian, G. Wu, G. Liu, J. Chem. Phys. 87 (1987) 7300]. The work shows the potential of this approach to the surface enhanced Raman scattering and other fields like resonance Raman that involve vibronic coupling.

  13. Rapid detection of polychlorinated biphenyls at trace levels in real environmental samples by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhou, Qin; Zhang, Xian; Huang, Yu; Li, Zhengcao; Zhang, Zhengjun

    2011-01-01

    Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs) in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10(-6) mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

  14. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  15. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies.......e., the particle mode and the cavity mode. The particle mode can be hybridized via leaning of pillars. The LSPR wavelength of the cavity mode is dominant only by the diameter of the Si pillar. The presence of a substrate dramatically changes the intensities of these two LSPR modes, by introducing constructive...... displaying a very large average SERS EF of >108. From a practical point of view, the developed SERS substrates are particularity interesting, since they are easy to handle and store and the fabrication is scalable, facilitating a wide and simple use of SERS in sensing applications....

  16. A Raman Study of Titanate Nanotubes | Liu | South African Journal ...

    African Journals Online (AJOL)

    The effect of the addition of NaOH or KOH on commercial Degussa Titania P25 was investigated using TEM, Raman and in situ Raman spectroscopy. Treatment of titania with conc. NaOH generated a tubular material corresponding to a sodium titanate. An in situ Raman study on the sodium titanate nanotubes as a function ...

  17. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Hao; Shi, Hong; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Feng, Shangyuan; Lin, Juqiang; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm −1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm −1 . This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction. (paper)

  18. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology

    Science.gov (United States)

    2012-10-01

    al., "Visible, near-infrared, and ultraviolet laser- excited Raman spectroscopy of the monocytes/macrophages (U937) cells", J. Raman Spectrosc., 41...Visible, near-infrared, and ultraviolet laser-excited Raman spectroscopy of the monocytes/macrophages (U937) cells,” J. Raman Spectrosc., 41(3), 268...spectroscopy,” Journal of Photochemistry and Photobiology B-Biology, 16(2), 211-233 (1992). [17] K. Kneipp, H. Kneipp, and H. G. Bohr, “Single-molecule SERS

  19. Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Siegel Jakub

    2011-01-01

    Full Text Available Abstract This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BFD from the solutions with various concentrations. BFD was also used for preparation of sandwich structures with Au or Ag nanoparticles by two different procedures. Results showed that PTFE can be used for fabrication of SERS active substrate with easy handle properties at low cost. This substrate was sufficient for the measurement of SERS spectrum of BFD even at 10-8 mol/l concentration.

  20. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  1. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings.

    Science.gov (United States)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-13

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  2. Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances

    Science.gov (United States)

    Frizyuk, Kristina; Hasan, Mehedi; Krasnok, Alex; Alú, Andrea; Petrov, Mihail

    2018-02-01

    Resonantly enhanced Raman scattering in dielectric nanostructures has been recently proven to be an efficient tool for nanothermometry and for the experimental determination of their mode composition. In this paper we develop a rigorous analytical theory based on the Green's function approach to calculate the Raman emission from crystalline high-index dielectric nanoparticles. As an example, we consider silicon nanoparticles which have a strong Raman response due to active optical phonon modes. We relate enhancement of Raman signal emission to the Purcell effect due to the excitation of Mie modes inside the nanoparticles. We also employ our numerical approach to calculate inelastic Raman emission in more sophisticated geometries, which do not allow a straightforward analytical form of the Green's function. The Raman response from a silicon nanodisk has been analyzed with the proposed method, and the contribution of various Mie modes has been revealed.

  3. raman

    Indian Academy of Sciences (India)

    also had the devoted and loyal assistance of Asutosh Dey, known to everyone in the Association as Ashu Babu. Raman soon ...... Even after reaching the hotel, the stream of photographers and news- paper reporters continued to show us their ...... My affection, loyalty and respect for him were something extraordinary and I ...

  4. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  6. Tip Enhanced Raman Scattering of Strained Silicon with Single and Multiple Probe Scanned Probe Microscopes.

    Science.gov (United States)

    Lewis, Aaron

    2007-03-01

    Raman spectroscopy is an effective tool for the identification and analysis of molecular components of complex materials. The spatial resolution of Raman spectroscopy is limited by the wavelength of the light. One approach to overcome this drawback is Surface Enhanced Raman Scattering (SERS). This technique uses nanometric interactions between metal structures and surfaces to effect enhancement of the Raman signals. An important mechanism for enhancement originates from an electrostatic lightning rod effect due to the excitation of localized surface plasmon resonances. This is accomplished in a scanned probe microscopy context by employing an ultra-sharp metalized tip that is brought into a focused laser spot on the sample surface thereby enhancing the Raman signal. In this technique also known as Tip Enhanced Raman Scattering (TERS) the electrical field is locally enhanced near the sharp metalized tip. Rastering the sample should then allow for Raman imaging with nanometric resolution. Within this context it will be shown that multiple probe scanned probe microscopes have considerable potential in such tip enhanced applications.

  7. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  8. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    Science.gov (United States)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  9. Surface-enhanced Raman scattering on gold nanorod pairs with interconnection bars of different widths

    KAUST Repository

    Yue, Weisheng

    2012-08-01

    We demonstrate that surface-enhanced Raman scattering (SERS) enhancement could be tuned by adjusting the width of a connection bar at the bottom of a gold nanorod pair. Arrays of gold nanorod pairs with interconnection bars of different widths at the bottom of the interspace were fabricated by electron-beam lithography and used for the SERS study. Rhodamine 6G (R6G) was used as the probe molecule for the SERS. In addition to the large SERS enhancement observed in the nanostructured substrates, the SERS enhancement increases as the width of the connection bar increases. This result provides an important method for tuning SERS enhancement. Numerical simulations of electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results correspond well with the experimental observations. © 2012 Elsevier B.V. All rights reserved.

  10. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    Science.gov (United States)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  11. Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure

  12. In situ identification of the adsorption of 4,4'-thiobisbenzenethiol on silver nanoparticles surface: a combined investigation of surface-enhanced Raman scattering and density functional theory study.

    Science.gov (United States)

    You, Ting-ting; Yin, Peng-gang; Jiang, Li; Lang, Xiu-feng; Guo, Lin; Yang, Shi-he

    2012-05-21

    We investigated the configuration characteristic and adsorption behavior of 4,4'-thiobisbenzenethiol (TBBT) on the surface of silver nanoparticles (NPs). Under different conditions and preparation processes, several possible surface species were produced including single-end adsorption on a silicon wafer, double-end adsorption and bridge-like adsorption. Although consisting of the same molecule and nano material, different adsorption systems exhibited different spectral characteristics in the surface-enhanced Raman spectroscopy (SERS). A density functional theory (DFT) study further verified the corresponding adsorption states. The combined SERS-DFT study provided a framework towards investigating and designing adsorption systems at a molecular level, indicating the potential use in applications such as nano-sensors.

  13. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  14. Surface-Enhanced Raman Spectroscopy forStaphylococcus aureusDNA Detection by Using Surface-Enhanced Raman Scattering Tag on Au Film Over Nanosphere Substrate.

    Science.gov (United States)

    Chen, Jian; Wang, Jun-Feng; Wu, Xue-Zhong; Rong, Zhen; Dong, Pei-Tao; Xiao, Rui

    2018-06-01

    We developed a high-performance surface-enhanced Raman scattering (SERS) sensing platform that can be used for specific and sensitive DNA detection. The SERS platform combines the advantages of Au film over nanosphere (AuFON) substrate and Ag@PATP@SiO2 SERS tag. SERS tag-on-AuFON is a sensing system that operates by the self-assembly of SERS tag onto an AuFON substrate in the presence of target DNAs. The SERS signals can be dramatically enhanced by the formation of "hot spots" in the interstices between the assembled nanostructures, as confirmed by finite-difference time-domain (FDTD) simulation. As a new sensing platform, SERS tag-on-AuFON was utilized to detect Staphylococcus aureus (S. aureus) DNA with a limit of detection at 1 nM. A linear relationship was also observed between the SERS intensity at Raman peak 1439 cm-1 and the logarithm of target DNA concentrations ranging from 1 μM to 1 nM. Besides, the sensing platform showed good homogeneity, with a relative standard deviation of about 1%. The sensitive SERS platform created in this study is a promising tool for detecting trace biochemical molecules because of its relatively simple and effective fabrication procedure, high sensitivity, and high reproducibility of the SERS effect.

  15. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  16. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  17. Electromagnetic theories of surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ding, Song-Yuan; You, En-Ming; Tian, Zhong-Qun; Moskovits, Martin

    2017-07-07

    Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical

  18. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.

    Science.gov (United States)

    Moody, Amber S; Sharma, Bhavya

    2018-04-05

    The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10 5 -10 6 . The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.

  19. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Johnston J

    2015-12-01

    Full Text Available Jencilin Johnston,1 Erik N Taylor,1,2 Richard J Gilbert,2 Thomas J Webster1,3 1Department of Chemical Engineering, 2Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched was assessed for the characterization of a Raman signal (ie, molecular fingerprint that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792 and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide], were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye

  20. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  1. Investigation of plasmon properties of silver microsphere array demonstrated experimentally by tip-enhanced Raman spectroscopy

    Science.gov (United States)

    Liu, Yanqi; Zhao, Lijiang; Li, Xinjuan; Zeng, Zhuo; Wang, Peijie; Zhang, Lisheng; Fang, Yan

    2018-01-01

    Due to high spatial resolution and extraordinarily high detection sensitivity of tip-enhanced Raman spectroscopy (TERS), it has attracted more and more attention. However, the tip size and shape, and tip substrate distance have a large impact on the TERS enhancement properties. In this study, a silver microsphere array was prepared on a Polystyrene (PS) microsphere array by vacuum thermal evaporation. And the correlation between the properties of two-dimensional surface-enhanced Raman scattering (SERS) mapping of rhodamine 6G (Rh6G) absorbed on the silver microsphere array and the polarization direction of the incident light was investigated. The effect of the location of the tip on the surface plasmon distribution of the silver microsphere array was also revealed in TERS. In addition, the surface electromagnetic field distribution of the silver microsphere array was simulated by three-dimensional finite-difference time domain (3D-FDTD) method. These results show that the distribution of 'hot spots' on the surface of the silver microsphere array has a dependency on the polarization direction of the incident laser. Moreover, with the introduction of the tip, the 'hot spot' on the surface of the silver microsphere array becomes much more localized and largely enhanced. These results obtained in this paper may have some significance for further studies on the surface plasmon resonance bio-sensing.

  2. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-03-01

    Full Text Available We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively. Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density.

  3. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  4. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  5. Application of silver films with different roughness parameter for septic human serum albumin detection by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Zyubin, A. Y.; Konstantinova, E. I.; Matveeva, K. I.; Slezhkin, V. A.; Samusev, I. G.; Demin, M. V.; Bryukhanov, V. V.

    2018-01-01

    In this paper, the rough silver films parameters investigation, used as media for surface enhancement Raman spectroscopy for health and septic human serum albumin (HSA) study results have been presented. The detection of small concentrations of HSA isolated from blood serum and it main vibrational groups identification has been done.

  6. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    Science.gov (United States)

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  7. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  8. NIR–FT Raman, FT–IR and surface-enhanced Raman scattering ...

    Indian Academy of Sciences (India)

    Administrator

    Jana Chocholousova, Vladimir Spirko and Pavel. Hobza 2004 Phys. Chem. Chem. Phys. 6 37. 36. Erik T J Nibbering Thomas Elsaesser 2004 Chem. Rev. 104 10. 37. Markovits A, Garcia-Hernandez M, Ricart J M and. Illas F 1999 J. Phys. Chem. B103 509. 38. Jung Sang Suh and Jurae Kim 1998 J. Raman Spec- trosc.

  9. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    Science.gov (United States)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  10. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er

    2012-12-01

    Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.

  11. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Victoria Shalabaeva

    Full Text Available Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS. This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA, we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization

  12. Research on identification and determination of mixed pesticides in apples using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Zhai, Chen; Li, Yongyu; Peng, Yankun; Xu, Tianfeng; Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei

    2015-05-01

    Residual pesticides in fruits and vegetables have become one of the major food safety concerns around the world. At present, routine analytical methods used for the determination of pesticide residue on the surface of fruits and vegetables are destructive, complex, time-consuming, high cost and not environmentally friendly. In this study, a novel Surface Enhanced Raman Spectroscopy (SERS) method with silver colloid was developed for fast and sensitive nondestructive detection of residual pesticides in fruits and vegetables by using a self-developed Raman system. SERS technology is a combination of Raman spectroscopy and nanotechnology. SERS can greatly enhance the Raman signal intensity, achieve single-molecule detection, and has a simple sample pre-treatment characteristic of high sensitivity and no damage; in recent years it has begun to be used in food safety testing research. In this study a rapid and sensitive method was developed to identify and analyze mixed pesticides of chlorpyrifos, deltamethrin and acetamiprid in apple samples by SERS. Silver colloid was used for SERS measurement by hydroxylamine hydrochloride reduced. The advantages of this method are seen in its fast preparation at room temperature, good reproducibility and immediate applicability. Raman spectrum is highly interfered by noise signals and fluorescence background, which make it too complex to get good result. In this study the noise signals and fluorescence background were removed by Savitzky-Golay filter and min-max signal adaptive zooming method. Under optimal conditions, pesticide residues in apple samples can be detected by SERS at 0.005 μg/cm2 and 0.002 μg/cm2 for individual acetamiprid and thiram, respectively. When mixing the two pesticides at low concentrations, their characteristic peaks can still be identified from the SERS spectrum of the mixture. Based on the synthesized material and its application in SERS operation, the method represents an ultrasensitive SERS performance

  13. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...... on the use of the detection OND with or without the gold nanoparticle (Au-NP). Our results confirm that, when the detection OND is coupled to the Au-NP, a better sensitivity for the target OND detection, in terms of a wider dynamic range and a lower detection limit (0:4 fM versus 1nM without Au-NP), would...

  14. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  15. Surface-enhanced Raman Scattering Enhancement Factors for RNA Mononucleotides on Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Snežana Miljanić

    2015-12-01

    Full Text Available Surface-enhanced Raman scattering (SERS enhancement factors (EF were evaluated for RNA mononucleotides: adenosine 5'-monophosphate (AMP, guanosine 5'-monophosphate (GMP, cytidine 5'-monophosphate (CMP and uridine 5'-monophosphate (UMP, on silver nanoparticles, which differed in shape (nanospheres, nanostars and stabilizing anionic layer (chlorides, citrates on the metal surface. In freshly prepared silver colloids the enhanced Raman scattering was observed for all the RNA mononucleotides on the chloride coated silver nanospheres, Ag_Cl nsp (EF ≈ 104, for AMP only on the citrate coated silver nanospheres, Ag_cit nsp (EF ≈ 103, while not obtained at all for any of the mononucleotides on the citrate stabilized silver nanostars, Ag_cit nst. Upon aggregation, the SERS activity of all the silver colloids increased, whereby the purine mononucleotides, AMP and GMP, more strongly scattered radiation on Ag_Cl nsp, and the pyrimidine mononucleotides, CMP and UMP, on Ag_cit nsp. Regardless of the silver nanoparticles, the higher EFs were evaluated for AMP and GMP (EF up to 5 × 106, than for CMP and UMP (EF ≈ 5 × 104.

  16. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  17. Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering

    Science.gov (United States)

    Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.

    2018-02-01

    In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.

  18. [The investigation of humic acid by surface-enhanced Raman spectroscopy].

    Science.gov (United States)

    Zhang, Wen-Juan; Li, Ying; Guo, Jin-Jia; Xiao, Qiong; Yu, Li

    2013-05-01

    Humic acid (HA), which are organic compounds widely existing in the oceans, rivers and soil, has important significance for the environmental monitoring of soil and water. In this paper, ai ming at the problem of Surface-enhanced Raman Spectroscopy (SERS) applying for HA detection in water, the characteristics of the humic acid on silver colloids was studied by means of SERS. The influence of laser irradiation time, HA concentrations and pH value on the surface-enhanced effects of HA were investigated. The experimental results show that the SERS spectra of HA is ideal when the laser irradiation time between 20-30 min. The SERS of different HA concentrations was detected. It was found that the relative intensity at 1 379 cm(-1) increased as a linear function of the concentration of HA with correlation coefficient R2 of 0.993. The SERS of HA was found to be very sensitive to pH, the SERS spectra of HA was very weak at neutral pH, but at acidic pH and alkaline pH a remarkable increase of SERS intensity occurred. The SERS of HA in running water was detected too. The experimental results show that it is feasible to detect HA in natural water by means of surface-enhanced Raman spectroscopy.

  19. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    Science.gov (United States)

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  20. Spectroscopic Analysis of Neurotransmitters: A Theoretical and Experimental Raman Study

    Science.gov (United States)

    Alonzo, Matthew

    Surface-enhanced Raman spectroscopy (SERS) was applied to investigate the feasibility in the detection and monitoring of the dopamine (DA) neurotransmitter adsorbed onto silver nanoparticles (Ag NPs) at 10-11 molar, a concentration far below physiological levels. In addition, density functional theory (DFT) calculations were obtained with the Gaussian-09 analytical suite software to generate the theoretical molecular configuration of DA in its neutral, cationic, anionic, and dopaminequinone states for the conversion of computer-simulated Raman spectra. Comparison of theoretical and experimental results show good agreement and imply the presence of dopamine in all of its molecular forms in the experimental setting. The dominant dopamine Raman bands at 750 cm-1 and 795 cm-1 suggest the adsorption of dopaminequinone onto the silver nanoparticle surface. The results of this experiment give good insight into the applicability of using Raman spectroscopy for the biodetection of neurotransmitters.

  1. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  2. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science.

    Science.gov (United States)

    Fikiet, Marisia A; Khandasammy, Shelby R; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K

    2018-05-15

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  4. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  5. Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger; Jauho, Antti-Pekka

    2008-01-01

    Surface-enhanced Raman spectroscopy (SERS) allows single-molecule detection due to the strong field localization occurring at sharp bends or kinks of the metal-vacuum interface. An important question concerns the limits of the signal enhancement that can be achieved via a judicious design...

  6. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  7. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Chen, Longqing; Syed, Ahad; Wong, Kimchong; Wang, Xianbin

    2012-01-01

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. (paper)

  8. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  9. Antenna Design for Directivity-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2012-01-01

    Full Text Available Antenna performance can be described by two fundamental parameters: directivity and radiation efficiency. Here, we demonstrate nanoantenna designs in terms of improved directivity. Performance of the antennas is demonstrated in Raman scattering experiments. The radiated beam is directed out of the plane by using a ground plane reflector for easy integration with commercial microscopes. Parasitic elements and parabolic and waveguide nanoantennas with a ground plane are explored. The nanoantennas were fabricated by a series of electron beam evaporation steps and focused ion beam milling. As we have shown previously, the circular waveguide nanoantenna boosts the measured Raman signal by 5.5x with respect to a dipole antenna over a ground plane; here, we present the design process that led to the development of that circular waveguide nanoantenna. This work also shows that the parabolic nanoantenna produces a further fourfold improvement in the measured Raman signal with respect to a circular waveguide nanoantenna. The present designs are nearly optimal in the sense that almost all the beam power is coupled into the numerical aperture of the microscope. These designs can find applications in microscopy, spectroscopy, light-emitting devices, photovoltaics, single-photon sources, and sensing.

  10. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    Science.gov (United States)

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136

  11. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  12. Raman study of radiation-damaged zircon under hydrostatic compression

    Science.gov (United States)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  13. Tip Enhanced Raman Spectroscopy of Rhodamine 6G on nanostructured gold substrate

    KAUST Repository

    Moretti, Manola

    2015-05-01

    A new concept based setup for Tip Enhanced Raman Scattering measurement assisted by gold nanostructure is presented, that can provide a platform for gap-mode enhancement of the signal at the single molecule level conjugated with controlled spatial localization of the molecule under investigation and a method to determine the diffraction limit properties of the tip. In essence, this effect is obtained illuminating a gold coated AFM tip which is raster scanned over a nanostructured gold substrate, after chemisorption of a Raman active molecule. We expect that the near-field Raman enhancement would be given by the gap-mode effect of the two facing nano-features. Thanks to the nanostructured substrate, we verify that the resolution of the Raman mapping signal is well below the diffraction limit given by the combination of the optics geometry and the laser wavelength. We show that the gap-mode TERS can generate an estimated field- enhancement (g) of ~20 in localized areas of the sample and we demonstrate the ability to spatially define the molecule position (by Raman mapping) at the tens of nanometers scale. © 2015 Elsevier Ltd.

  14. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  16. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  17. Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering.

    Science.gov (United States)

    Roy, Pradip Kumar; Huang, Yi-Fan; Chattopadhyay, Surojit

    2014-01-01

    A simple way of detecting melamine in raw milk is demonstrated via surface-enhanced Raman spectroscopy (SERS) using fractals of bare and nonfunctionalized ~30 nm gold nanoparticles (AuNP) distributed on a solid support. The technique demonstrates the formation of AuNP fractals, from a random distribution, upon exposure to melamine, that enhance the Raman scattering cross-section to enable detection by SERS. The agglomeration, which is pronounced at higher melamine concentrations, is demonstrated directly through imaging, and the red-shift of the plasmon absorption peak of the AuNP fractal away from 530 nm by finite difference time domain (FDTD) calculations. The agglomeration results in a strong plasmon field, shown by FDTD, over the interparticle sites that enhances the Raman scattering cross-section of melamine and ensures unambiguous detection. Limit of detection of 100 ppb could be achieved reproducibly.

  18. A low-cost Raman spectrometer design used to study Raman ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The paper discusses the design of a low cost Raman spectrometer. Single- walled nanotubes (SWNT) have been studied to demonstrate the reach of such a system. We observe both the radial-breathing mode (RBM) and the tangential mode from the SWNT. The tube diameters of the SWNT used in these ...

  19. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system

    Science.gov (United States)

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  20. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  1. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The

  2. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  3. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Evlyukhin, Andrey B.; Goodilin, Eugene A.

    2015-01-01

    due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living...... mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman...

  4. Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures

    DEFF Research Database (Denmark)

    Beermann, Jonas; Novikov, Sergey Mikhailovich; Albrektsen, Ole

    2009-01-01

    Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron-beam lithogra......Surface-enhanced Raman scattering (SERS) from Rhodamine 6G (R6G) homogenously adsorbed on fractal shaped 170-nm-period square arrays formed by 50-nm-high gold nanoparticles (diameters of 80, 100, or 120 nm are constant within each array), fabricated on a smooth gold film by electron...

  5. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  6. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  7. [Rapid determination of melamine in pet food by surface enhanced Raman spectroscopy in combination with Ag nanoparticles].

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou

    2011-01-01

    The rapid qualitative and quantitative analysis of melamine in pet food was realized by surface-enhanced Raman spectroscopy in combination with Ag nanoparticle. In the present study, the 709 and 1 542 cm(-1) Raman shift was chosen as qualitative basis. The quantitative calculation of the concentration range between 1.0 and 10.0 mg x kg(-1) was achieved based on the intensity of 1 149 cm(-1) Raman peak which was used as a normalization standard. The limit of detection was 0.5 mg x kg(-1). The Ag nanoparticle had a strong Raman enhancement effect on melamine and the intensity was affected by the adding time of Ag nanoparticle and the vortex strength. At the same time, the intensity of SERS was affected by the extraction solvent type, and the manner of extraction. The analysis time of each sample was about 5 min. It was so quick that it was easy to realize the rapid detection of melamine in pet food compared with existing methods.

  8. Rapid Detection of Polychlorinated Biphenyls at Trace Levels in Real Environmental Samples by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-11-01

    Full Text Available Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10-6 mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

  9. Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers

    Science.gov (United States)

    Hosseini, P.; Novoa, D.; Abdolvand, A.; Russell, P. St. J.

    2017-12-01

    Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

  10. Study of Polymorphism of Borovanadate Glass of Sodium by Raman ...

    African Journals Online (AJOL)

    Study of Polymorphism of Borovanadate Glass of Sodium by Raman Spectroscopy Low Frequencies. MK Rabia, M Mayoufi, L Grosvalet, B Champagnon. Abstract. Sodium tetraborate (100 – x)(Na2B4O7.10H2O)– xV2O5, (x = 0 to 20 mole %) has been elaborated by splat cooling technique. Raman Measurements on the ...

  11. Metal-coated silicon nanopillars with large Raman enhancement for explosives detection

    Science.gov (United States)

    Schmidt, Michael Stenbæk; Boisen, Anja

    2010-04-01

    In this paper we present a quick and easy method for producing relatively large areas of nanostructured substrate that enhances the Raman effect. Standard semiconductor processing techniques are used, hence it is possible to narrowly control the parameters of the fabrication process to create free standing silicon nanopillars with controlled aspect ratios and spacing. The silicon nanopillars are coated by thin films of silver and/or gold to create Raman active surfaces. Surface enhanced Raman scattering (SERS) spectroscopy has numerous applications in chemical sensing, with high sensitivity and fast analysis speed seen as the main advantages. We show how these novel substrates can be used in an explosives sensor. Under the framework of the Xsense project at the Technical University of Denmark (DTU) which combines four independent sensing techniques, these SERS substrates coupled with commercially available microspectrometers will be included in handheld explosives detectors with applications in homeland security and landmine clearance.

  12. Surface-enhanced raman spectroscopy of quinomethionate adsorbed on silver colloids

    International Nuclear Information System (INIS)

    Kim, Mak Soon; Kang, Jae Soo; Park, Si Bum; Lee, Mu Sang

    2003-01-01

    We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo(4,5-b)quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors (Cl - , Br - , I - , F - ) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about 10 -5 M

  13. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    KAUST Repository

    De Vitis, Stefania

    2015-05-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars. © 2015 Elsevier Ltd.

  14. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates.

    Science.gov (United States)

    Janči, Tibor; Valinger, Davor; Gajdoš Kljusurić, Jasenka; Mikac, Lara; Vidaček, Sanja; Ivanda, Mile

    2017-06-01

    This study was focused on development of a rapid and sensitive method for histamine determination in fish based on Surface Enhanced Raman Spectroscopy (SERS) using simple and widely available silver colloid SERS substrate. Extraction of histamine with 0.4M perchloric acid and purification with 1-butanol significantly shortened sample preparation (30min) and provided clear SERS spectra with characteristic Raman bands of histamine. Principal component analysis effectively distinguished SERS spectra of fish samples with different histamine content. Partial least square (PLS) regression models confirmed reliability of detection and spectral analysis of histamine with SERS. In histamine concentration range 0-200mgkg -1 , significant in legislative and fish quality control aspects, PLS regression model based on spectral range 1139.9-1643.7cm -1 showed linear trend with R 2 pred =0.962, RPD=7.250. Presented protocol for histamine extraction and purification followed by SERS analysis coupled with chemometric approach, enabled development of rapid and inexpensive method for histamine determination in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    Science.gov (United States)

    De Vitis, Stefania; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Perozziello, Gerardo; Dattola, Elisabetta; Candeloro, Patrizio; Di Fabrizio, Enzo

    2016-01-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars.

  16. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Casadio, Francesca; Leona, Marco; Lombardi, John R; Van Duyne, Richard

    2010-06-15

    Organic dyes extracted from plants, insects, and shellfish have been used for millennia in dyeing textiles and manufacturing colorants for painting. The economic push for dyes with high tinting strength, directly related to high extinction coefficients in the visible range, historically led to the selection of substances that could be used at low concentrations. But a desirable property for the colorist is a major problem for the analytical chemist; the identification of dyes in cultural heritage objects is extremely difficult. Techniques routinely used in the identification of inorganic pigments are generally not applicable to dyes: X-ray fluorescence because of the lack of an elemental signature, Raman spectroscopy because of the generally intense luminescence of dyes, and Fourier transform infrared spectroscopy because of the interference of binders and extenders. Traditionally, the identification of dyes has required relatively large samples (0.5-5 mm in diameter) for analysis by high-performance liquid chromatography. In this Account, we describe our efforts to develop practical approaches in identifying dyes in works of art from samples as small as 25 microm in diameter with surface-enhanced Raman scattering (SERS). In SERS, the Raman scattering signal is greatly enhanced when organic molecules with large delocalized electron systems are adsorbed on atomically rough metallic substrates; fluorescence is concomitantly quenched. Recent nanotechnological advances in preparing and manipulating metallic particles have afforded staggering enhancement factors of up to 10(14). SERS is thus an ideal technique for the analysis of dyes. Indeed, rhodamine 6G and crystal violet, two organic compounds used to demonstrate the sensitivity of SERS at the single-molecule level, were first synthesized as textile dyes in the second half of the 19th century. In this Account, we examine the practical application of SERS to cultural heritage studies, including the selection of

  17. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness

    International Nuclear Information System (INIS)

    Linn, Nicholas C; Sun, C-H; Arya, Ajay; Jiang Peng; Jiang Bin

    2009-01-01

    This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10 8 ). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.

  18. Enhancement of Laser Wakefields via a Backward Raman Amplifier

    Science.gov (United States)

    Ludwig, Joshua; Masson-Laborde, Paul-Edouard; Rozmus, Wojciech; Huller, Stefan; Wilks, Scott

    2017-10-01

    The Backward Raman Amplifier (BRA) is proposed as a possible scheme for improving laser driven plasma wakefields. One- and two-dimensional particle-in-cell code simulations with SCPIC and a 3-Wave coupling model are presented and compared to demonstrate how the BRA can be applied to the laser wakefield accelerator (LWFA) in the non-relativistic regime to counteract limitations such as pump depletion, diffraction, and dephasing. Simulation results show that amplification of the driving pulse is strongest in the central high amplitude portion, causing the pulse to shorten both transversely and longitudinally. This results in a reduction or alleviation of the effects of diffraction, an increase in wake amplitude and sustainability, and provides direct insight into new methods of controlling plasma wakes in LWFA and other applications. JL is grateful for support from LLNL through the summer scholar program. JL and WR would like to acknowledge partial support from NSERC.

  19. Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas.

    Science.gov (United States)

    Wustholz, Kristin L; Brosseau, Christa L; Casadio, Francesca; Van Duyne, Richard P

    2009-09-14

    This perspective presents recent surface-enhanced Raman spectroscopy (SERS) studies of dyes, with applications to the fields of single-molecule spectroscopy and art conservation. First we describe the development and outlook of single-molecule SERS (SMSERS). Rather than providing an exhaustive review of the literature, SMSERS experiments that we consider essential for its future development are emphasized. Shifting from single-molecule to ensemble-averaged experiments, we describe recent efforts toward SERS analysis of colorants in precious artworks. Our intention is to illustrate through these examples that the forward development of SERS is dependent upon both fundamental (e.g., SMSERS) and applied (e.g., on-the-specimen SERS of historical art objects) investigations and that the future of SERS is very bright indeed.

  20. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  1. Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina

    2014-01-01

    We observed strong surface-enhanced Raman scattering on discontinuous nanostructured aluminum films using 785 nm excitation even though dielectric constants of this metal suggest plasmon supported spectroscopy in the ultraviolet range. The excitation of SERS correlates with plasmon resonances in ...... in the 1.3–2.5 eV range identified in electron energy loss spectra....

  2. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  3. Surface-enhanced resonance Raman spectroscopy as an identification tool in column liquid chromatography

    NARCIS (Netherlands)

    Seifar, R.M.; Altelaar, M.A.F.; Dijkstra, R.J.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2000-01-01

    The compatibility of ion-pair reversed-phase column liquid chromatography and surface-enhanced resonance Raman spectroscopy (SERRS) for separation and identification of anionic dyes has been investigated, with emphasis on the at-line coupling via a thin-layer chromatography (TLC) plate. SERR spectra

  4. Investigation of enhanced forward and backward anti-stokes Raman signals in lithium niobate waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Hong, Pengda; Ding, Yujie J., E-mail: yding300@gmail.com [Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Liu, Zhaojun; Wang, Lei [Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100 (China); Hua, Ping-Rang; Zhang, De-Long [School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China)

    2015-07-07

    We have observed enhancements of the anti-Stokes Raman signals generated in lithium niobate waveguides in the forward and backward configurations by at least one order of magnitude under the pump power of the microwatt level. These output signals were measured using a single photon detector. The forward and backward propagating anti-Stokes signals exhibited different spectral features.

  5. Mathematical model for biomolecular quantification using surface-enhanced Raman spectroscopy based signal intensity distributions

    DEFF Research Database (Denmark)

    Palla, Mirko; Bosco, Filippo Giacomo; Yang, Jaeyoung

    2015-01-01

    This paper presents the development of a novel statistical method for quantifying trace amounts of biomolecules by surface-enhanced Raman spectroscopy (SERS) using a rigorous, single molecule (SM) theory based mathematical derivation. Our quantification framework could be generalized for planar...

  6. Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP

    NARCIS (Netherlands)

    Otto, Cornelis; Hoeben, F.P.; Hoeben, F.P.; Greve, Jan

    1991-01-01

    The behaviour of adenine and 2'-deoxyadenosine-5'-monophosphate (dAMP) at positive surface potentials of a silver working electrode was investigated using surface-enhanced Raman scattering (SERS). The use of positive potentials in the presence of adenine or dAMP leads to a rapid accumulation of an

  7. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene -enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  8. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  9. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.

    Science.gov (United States)

    Kalbác, Martin; Kavan, Ladislav; Zukalová, Markéta; Dunsch, Lothar

    2007-10-01

    C60 fullerene peapods and double-walled carbon nanotubes (DWCNTs) containing highly 13C enriched C60 and inner tubes, respectively, are studied using Raman spectroscopy and in situ Raman spectroelectrochemistry in order to follow the influence of 13C enrichment on the vibrational pattern of these carbon nanostructures. The Raman response of 13C60 after encapsulation in fullerene peapods differs from that of isotope-natural species, (Nat)C60. The Raman A(g)(2) mode of encapsulated 13C60 is upshifted in frequency compared to that of the (Nat)C60 peapods with the same filling factor. The chemical doping of 13C60 peapods (peapod = C(60)@SWCNT) with K-vapor leads to the downshift of the A(g)(2) mode, similar to the case of (Nat)C60 peapods. The 13C60 peapods were successfully transformed into DWCNTs, which confirms high filling of single-walled (SW) CNTs with 13C60. The DWCNTs exhibited distinctly downshifted G and D Raman modes for inner tubes, which proves that only inner tubes were enriched by 13C. The in situ Raman spectroelectrochemistry of (Nat)C60 exhibits strong anodic enhancement, while for 13C60 peapods the enhancement is only weak. On the other hand, the electrochemical charging of the inner-tube-labeled DWCNTs (13C(i)-DWCNTs) followed the behavior of ordinary (Nat)C(i)-DWCNTs as indicated by in situ Raman spectroelectrochemistry. In addition, the spectroelectrochemical behavior of the G mode of inner tubes in 13C(i)-DWCNTs is followed from the start of the electrochemical doping, which was not feasible for (Nat)C(i)-DWCNTs.

  10. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  11. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... such as bioconjugation, material science or drug discovery. Additionally, as an attractive advantage of this technique, no significant background signal is expected during the measurements, since these signals reside in a Raman silent region of 2000–2300 cm−1, where virtually all biological molecules are transparent....

  12. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds

  13. sp Carbon chain interaction with silver nanoparticles probed by Surface Enhanced Raman Scattering

    Science.gov (United States)

    Lucotti, A.; Casari, C. S.; Tommasini, M.; Li Bassi, A.; Fazzi, D.; Russo, V.; Del Zoppo, M.; Castiglioni, C.; Cataldo, F.; Bottani, C. E.; Zerbi, G.

    2009-08-01

    Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behavior and stability of polyynes of different lengths and the overall sp conversion towards sp 2 phase.

  14. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering.

    Science.gov (United States)

    D'Andrea, C; Neri, F; Ossi, P M; Santo, N; Trusso, S

    2009-06-17

    An effective method for the production of surface enhanced Raman scattering (SERS) active substrates is presented. Nanostructured silver thin films are pulsed laser deposited in an argon atmosphere. The films consist of arrays of nanoparticles whose size is controlled by the Ar pressure. The surface morphology of the films can be tuned by the laser pulse number. Nanoparticle size is calculated by a phenomenological model taking into account the dynamics of the laser generated silver plasma. The SERS activity of the films is investigated by Raman scattering of adsorbed rhodamine 6G at different concentrations.

  15. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  16. Resonance-Enhanced Raman Spectroscopy on Explosives Vapor at Standoff Distances

    Directory of Open Access Journals (Sweden)

    Anneli Ehlerding

    2012-01-01

    Full Text Available Resonance-enhanced Raman spectroscopy has been used to perform standoff measurements on nitromethane (NM, 2,4-DNT, and 2,4,6-TNT in vapor phase. The Raman cross sections for NM, DNT, and TNT in vapor phase have been measured in the wavelength range 210–300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The results show that the signal is enhanced up to 250,000 times for 2,4-DNT and up to 60,000 times for 2,4,6-TNT compared to the nonresonant signal at 532 nm. Realistic outdoor measurements on NM in vapor phase at 13 m distance were also performed, which indicate a potential for resonance Raman spectroscopy as a standoff technique for detection of vapor phase explosives. In addition, the Raman spectra of acetone, ethanol, and methanol were measured at the same wavelengths, and their influence on the spectrum from NM was investigated.

  17. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  18. Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Açikgöz, Güneş; Hamamci, Berna; Yildiz, Abdulkadir

    2018-04-01

    Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, 920~820 cm -1 band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method (R 2 = 1). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.

  19. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  20. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this

  1. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.

    Science.gov (United States)

    Kneipp, Janina; Li, Xiangting; Sherwood, Margaret; Panne, Ulrich; Kneipp, Harald; Stockman, Mark I; Kneipp, Katrin

    2008-06-01

    Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as "nanolenses". Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 10(9). The "chemically clean" preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications.

  2. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  3. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2015-11-01

    This study aims to compare the diagnostic performance of the two different endoscope-based fiber-optic Raman probe designs (i.e., bevelled and volume Raman probes) for real-time, in vivo detection of gastric dysplasia at endoscopy. To conduct the clinical comparison, a total of 1,050 in vivo tissue Raman spectra (normal: n = 864; dysplasia: n = 186) were acquired from 66 gastric patients (normal: n = 48; dysplasia: n = 18) by using bevelled Raman probe, while a total of 1,913 in vivo tissue Raman spectra (normal: n = 1,786; dysplasia: n = 127) were acquired from 98 gastric patients (normal: n = 87; dysplasia: n = 11) by using volume Raman probe. The bevelled Raman probe provides approximately twofold improvements in tissue Raman-to-autofluorescence intensity ratios as compared to the use of volume Raman probe. Partial least squares discriminant analysis together with leave-one patient-out cross-validation on in vivo tissue Raman spectra acquired yields a diagnostic accuracy of 93.0 % (sensitivity of 92.5 %; specificity of 93.1 %) for differentiating gastric dysplasia from normal gastric tissue by using the bevelled fiber-optic Raman probe, which is superior to the diagnostic performance (accuracy of 88.4 %; sensitivity of 85.8 %; specificity of 88.6 %) by using the volume Raman probe. This work demonstrates that the Raman spectroscopic technique coupled with bevelled fiber-optic Raman probe has great potential to enhance in vivo diagnosis of gastric precancer and early cancer at endoscopy. Graphical Abstract Comparison of in vivo gastric tissue Raman spectra acquired by using bevelled and volume fiber-optic Raman probes.

  4. Operando plasmon-enhanced Raman spectroscopy in silicon anodes for Li-ion battery

    Science.gov (United States)

    Miroshnikov, Yana; Zitoun, David

    2017-11-01

    Silicon, an attractive candidate for high-energy lithium-ion batteries (LIBs), displays an alloying mechanism with lithium and presents several unique characteristics which make it an interesting scientific topic and also a technological challenge. In situ local probe measurements have been recently developed to understand the lithiation process and propose an effective remedy to the failure mechanisms. One of the most specific techniques, which is able to follow the phase changes in poorly crystallized electrode materials, makes use of Raman spectroscopy within the battery, i.e., in operando mode. Such an approach has been successful but is still limited by the rather signal-to-noise ratio of the spectroscopy. Herein, the operando Raman signal from the silicon anodes is enhanced by plasmonic nanoparticles following the known surface-enhanced Raman spectroscopy (SERS). Coinage metals (Ag and Au) display a surface plasmon resonance in the visible and allow the SERS effect to take place. We have found that the as-prepared materials reach high specific capacities over 1000 mAh/g with stability over more than 1000 cycles at 1C rate and can be suitable to perform as anodes in LIB. Moreover, the incorporation of coinage metals enables SERS to take place specifically on the surface of silicon. Consequently, by using a specially designed Raman cell, it is possible to follow the processes in a silicon-coinage metal-based battery trough operando SERS measurements.

  5. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon.

    Science.gov (United States)

    Tarun, Alvarado; Hayazawa, Norihiko; Motohashi, Masashi; Kawata, Satoshi

    2008-01-01

    We present a versatile tip-enhanced Raman spectroscopy (TERS) system that permits efficient illumination and detection of optical properties in the visible range to obtain high signal-to-noise Raman signals from surfaces and interfaces of materials using an edge filter. The cutoff wavelength of the edge filter is tuned by changing the angle of incident beam to deliver high incident power and effectively collect scattered near-field signals for nanoscopic investigation in depolarized TERS configuration. The dynamic design of the instrument provides a unique combination of features that allows us to perform reflection or transmission mode TERS to cover both opaque and transparent samples. A detailed description of improvements of TERS was carried out on a thin strained silicon surface layer. The utilization of an edge filter for shorter collection time, specialized tip for higher field enhancement and for elimination of Raman signal from the tip, shorter wavelength, sample orientation relative to probing polarization, and depolarized configuration for higher contrast Raman signal is discussed.

  6. Surface enhanced Raman spectroscopy platform based on graphene with one-year stability

    Energy Technology Data Exchange (ETDEWEB)

    Tite, Teddy [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Barnier, Vincent [Ecole Nationale Supérieure des Mines, CNRS, Laboratoire Georges Friedel UMR 5307, 158 cours Fauriel, F-42023 Saint-Etienne (France); Donnet, Christophe, E-mail: Christophe.Donnet@univ-st-etienne.fr [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Loir, Anne–Sophie; Reynaud, Stéphanie; Michalon, Jean–Yves; Vocanson, Francis; Garrelie, Florence [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France)

    2016-04-01

    We report the synthesis, characterization and use of a robust surface enhanced Raman spectroscopy platform with a stable detection for up to one year of Rhodamine R6G at a concentration of 10{sup −6} M. The detection of aminothiophenol and methyl parathion, as active molecules of commercial insecticides, is further demonstrated at concentrations down to 10{sup −5}–10{sup −6} M. This platform is based on large scale textured few-layer (fl) graphene obtained without any need of graphene transfer. The synthesis route is based on diamond-like carbon films grown by pulsed laser deposition, deposited onto silicon substrates covered by a Ni layer prior to diamond-like carbon deposition. The formation of fl-graphene film, confirmed by Raman spectroscopy and mapping, is obtained by thermal annealing inducing the diffusion of Ni atoms and the concomitant formation of nickel silicide compounds, as identified by Raman and Auger electron spectroscopies. The textured fl-graphene films were decorated with gold nanoparticles to optimize the efficiency of the SERS device to detect organic molecules at low concentrations. - Highlights: • Synthesis of graphene film from amorphous carbon by pulsed laser deposition with nickel catalyst • Large scale textured graphene with nanoscale roughness obtained through nickel silicide formation • Films used for surface enhanced Raman spectroscopy detection of organophosphate compounds • Stability of the SERS platforms over up to one year.

  7. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: applications, fundamentals, and optimization

    International Nuclear Information System (INIS)

    Jeremy Daniel Driskell

    2006-01-01

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  8. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays. Applications, fundamentals, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Driskell, Jeremy Daniel [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  9. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system.

    Science.gov (United States)

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-13

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  10. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Chen, Yanping; Chen, Gang; Feng, Shangyuan; Pan, Jianji; Zheng, Xiongwei; Su, Ying; Chen, Yan; Huang, Zufang; Lin, Xiaoqian; Lan, Fenghua; Chen, Rong; Zeng, Haishan

    2012-06-01

    Studies with circulating ribonucleic acid (RNA) not only provide new targets for cancer detection, but also open up the possibility of noninvasive gene expression profiling for cancer. In this paper, we developed a surface-enhanced Raman scattering (SERS), platform for detection and differentiation of serum RNAs of colorectal cancer. A novel three-dimensional (3-D), Ag nanofilm formed by dry MgSO4 aggregated silver nanoparticles, Ag NP, as the SERS-active substrate was presented to effectively enhance the RNA Raman signals. SERS measurements were performed on two groups of serum RNA samples. One group from patients, n=55 with pathologically diagnosed colorectal cancer and the other group from healthy controls, n=45. Tentative assignments of the Raman bands in the normalized SERS spectra demonstrated that there are differential expressions of cancer-related RNAs between the two groups. Linear discriminate analysis, based on principal component analysis, generated features can differentiate the colorectal cancer SERS spectra from normal SERS spectra with sensitivity of 89.1 percent and specificity of 95.6 percent. This exploratory study demonstrated great potential for developing serum RNA SERS analysis into a useful clinical tool for label-free, noninvasive screening and detection of colorectal cancers.

  11. Infrared, Raman and laser fluorescence studies on large molecules

    International Nuclear Information System (INIS)

    Venkateswaran, Sugandhi

    2000-01-01

    In the present thesis, infrared and Raman spectroscopic studies on large molecules, molecular assemblies and crystalline solids, as a function of temperature, pressure and added materials have been carried out. Spectral changes observed in our studies are interpreted in terms of intermolecular interaction, phase transition and conformational changes taking place in the molecules studied

  12. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated γ–Fe2O3 nanoparticles for applications in surface-enhanced .... After the solvent evaporated, 2 μL of analyte of ∼1 μM concentration was ..... dry soil, and comprised of smooth, distinct, rectangular and square shaped islands, whose ...

  13. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  14. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    Science.gov (United States)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  15. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  16. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  17. Raman Spectroscopy Studies of Normal and Burned Biological Tissue

    Science.gov (United States)

    Zarnani, Faranak; Maass, David; Idris, Ahamed; Glosser, Robert

    2011-03-01

    Burn injuries are a significant medical problem, and need to be treated quickly and precisely. Burned skin needs to be removed early, within hours (less than 24 hrs) of injury, when the margins of the burn are still hard to define. Studies show that treating and excising burn wounds soon after the injury prevents the wound from becoming deeper, reduces the release of proinflammatory mediators, and reduces or prevents the systemic inflammatory reaction syndrome. Also, removing burned skin prepares the affected region for skin grafting. Raman spectroscopy could be used as an objective diagnostic method that will assist burn surgeons in removing burned skin precisely. As a first step in developing a diagnostic tool, we present Raman spectroscopy information from normal and burned ex vivo rat skin, and a comparison of our findings. Raman spectroscopy is explored for its specificity and sensitivity.

  18. Raman Studies of Nanocrystalline CdS:O Film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Wu, X.; Dhere, R.; Zhou, J.; Yan, Y.; Mascarenhas, A.

    2005-01-01

    Oxygenated nanocrystalline CdS films show improved solar cell performance, but the physics and mechanism underlying this are not yet clearly understood. Raman study provides complementary information to the understanding obtained from other experimental investigations. A comprehensive analysis of the existing experimental data (including x-ray diffraction, transmission, transmission electron microscopy, and Raman) has led to the following conclusions: (1) The O-incorporation forms CdS1-xOx alloy nano-particles. (2) The observed evolution of the electronic structure is the result of the interplay between the alloy and quantum confinement effect. (3) The blue-shift of the LO phonon Raman peak is primarily due to the alloying effect. (4) Some oxygen atoms have taken the interstitial sites.

  19. Synthesis of Au Nanostars and Their Application as Surface Enhanced Raman Scattering-Activity Tags Inside Living Cells.

    Science.gov (United States)

    Cao, Xiaowei; Shi, Chaowen; Lu, Wenbo; Zhao, Hang; Wang, Man; Tong, Wei; Dong, Jian; Han, Xiaodong; Qian, Weiping

    2015-07-01

    This work presents the synthesis and characterization of Au nanostars (AuNSs) and demonstrates their application as surface enhanced Raman scattering (SERS)-activity tags for cellular imaging and sensing. Nile blue A (NBA) and bovine serum albumin (BSA) were used as Raman reporter molecules and capping materials, respectively. The SERS-activity tags were tested on human lung adenocarcinoma cell (A549) and alveolar type II cell (AT II) and found to present a low level of cytotoxicity and high chemical stability. These SERS-activity tags not only can be applied in multiplexed cellular imaging, including dark field imaging, transmission electron microscopy (TEM) and SERS imaging, but also can be used for cellular sensing. The SERS spectra clearly identified cellular important components such as proteins, nucleic acids, lipids, and carbohydrates. This study also shows that endocytosis is the main channel of tags internalized in cells. The AuNSs exhibiting strong surface enhanced Raman effects are utilized in the design of an efficient, stable SERS-activity tag for intracellular applications.

  20. Polymer nanopillar-gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes.

    Science.gov (United States)

    Picciolini, Silvia; Mehn, Dora; Morasso, Carlo; Vanna, Renzo; Bedoni, Marzia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Prosperi, Davide; Tresoldi, Cristina; Ciceri, Fabio; Gramatica, Furio

    2014-10-28

    In our study, 2D nanopillar arrays with plasmonic crystal properties are optimized for surface-enhanced Raman spectroscopy (SERS) application and tested in a biochemical assay for the simultaneous detection of multiple genetic leukemia biomarkers. The special fabrication process combining soft lithography and plasma deposition techniques allows tailoring of the structural and chemical parameters of the crystal surfaces. In this way, it has been possible to tune the plasmonic resonance spectral position close to the excitation wavelength of the monochromatic laser light source in order to maximize the enhancing properties of the substrate. Samples are characterized by scanning electron microscopy and reflectance measurements and tested for SERS activity using malachite green. Besides, as the developed substrate had been prepared on a simple glass slide, SERS detection from the support side is also demonstrated. The optimized substrate is functionalized with thiol-modified capture oligonucleotides, and concentration-dependent signal of the target nucleotide is detected in a sandwich assay with labeled gold nanoparticles. Gold nanoparticles functionalized with different DNA and various Raman reporters are applied in a microarray-based assay recognizing a disease biomarker (Wilms tumor gene) and housekeeping gene expressions in the same time on spatially separated microspots. The multiplexing performance of the SERS-based bioassay is illustrated by distinguishing Raman dyes based on their complex spectral fingerprints.

  1. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag 2 Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H 8 Si 8 Al 8 O 12 represents the zeolite cavity unit, and small clusters of (Ag 2 Se) n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  2. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  3. Ultraviolet Resonance Raman Enhancements in the Detection of Explosives

    Science.gov (United States)

    2009-06-01

    necessary. 2 Currently, there are a variety of techniques used to detect explosives: sniffing explosive vapors (e.g., fluorescence quenching and...tagging agents, impurities, reaction byproducts, plasticizers or decomposition products or enhancers such as propane in explosive devices may be more...by scintillators [10]. In this method, and similar to other bulk detection methods, the neutron source must be within inches or at most a few

  4. Confocal Raman studies in determining crystalline nature of PECVD grown Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nafis; Bhargav, P. Balaji; Ramasamy, P. [SSN Research Centre, Kalavakkam-603110, Tamilnadu (India); Department of Physics, SSN College of Engineering, Kalavakkam-603110, Tamilnadu (India); Sivadasan, A. K.; Tyagi, A. K.; Dhara, S., E-mail: dhara@igcar.gov.in [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amirthapandian, S.; Panigrahi, B. K. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Bhattacharya, S. [SSN Research Centre, Kalavakkam-603110, Tamilnadu (India)

    2015-06-24

    Silicon nanowires of diameter ∼200 nm and length of 2-4 µm are grown in the plasma enhanced chemical vapour deposition technique using nanoclustered Au catalyst assisted vapour-liquid-solid process. The crystallinity in the as-grown and annealed samples is studied using confocal Raman spectroscopic studies. Amorphous phase is formed in the as-grown samples. Structural studies using high resolution transmission electron microscopy confirm the polycrystalline nature in the annealed sample.

  5. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  6. Surface-enhanced Raman detection of RNA and DNA bases following flow-injection analysis or HPLC separation

    Science.gov (United States)

    Cotton, Therese M.; Sheng, Rong-Sheng; Ni, Fan

    1990-11-01

    The goal of this study is to develop Surface-enhanced Raman scattering (SERS) detection methods for flow injection analysis (FIA) and high performance liquid chromatography (HPLC). Nucleic acid bases have been chosen for analysis because of their importance in life processes. The advantages to the use of SERS-based detection include its sensitivity, specificity and versatility. With the development of improved methodology, the detection limits should be comparable to UV spectroscopy. However, the specificity is considerably superior to that obtained with electronic spectroscopy in that the Raman spectrum provides a molecular fingerprint of the individual analytes. Raman spectroscopy is very versatile: aqueous samples, gases and solids can be analyzed with equal facility. The results presented here demonstrate that SERS can be used as a detection method for both FIA and HPLC detection. In the following experiments Ag sols have been used as the active substrate. The effect of various parameters such as temperature, pH, flow rate, and the nature of the interface between the HPLC system and the Raman spectrometer have been examined. One of the most significant findings is that the temperature of the Ag sol/HPLC effluent mixture has a dramatic effect on the SERS intensities. This effect is a result of increased colloid aggregation at higher temperatures. Aggregation is known to produce greater enhancement in SERS and proceeds much more rapidly at elevated temperatures. An increase in the temperature of the Ag sol enables SERS detection under flowing conditions and in real time. This is a substantial improvement over many of the previous attempts to interface SERS detection to FIA or HPLC. In most of the previous studies, it was necessary to stop the flow as the analyte eluted from the chromatogram and measure the SERS spectra under static conditions.

  7. Raman, surface-enhanced Raman, and density functional theory characterization of (diphenylphosphoryl)(pyridin-2-, -3-, and -4-yl)methanol.

    Science.gov (United States)

    Proniewicz, Edyta; Pięta, Ewa; Zborowski, Krzysztof; Kudelski, Andrzej; Boduszek, Bogdan; Olszewski, Tomasz K; Kim, Younkyoo; Proniewicz, Leonard M

    2014-07-31

    This work presents near-infrared Raman spectroscopy (FT-RS) and surface-enhanced Raman scattering (SERS) studies of three pyridine-α-hydroxymethyl biphenyl phosphine oxide isomers: (diphenylphosphoryl)(pyridin-2-yl)methanol (α-Py), (diphenylphosphoryl)(pyridin-3-yl)methanol (β-Py), and (diphenylphosphoryl)(pyridin-4-yl)methanol (γ-Py) adsorbed onto colloidal and roughened in oxidation-reduction cycles silver surfaces. The molecular geometries in the equilibrium state and vibrational frequencies were calculated by density functional theory (DFT) at the B3LYP 6-311G(df,p) level of theory. The results imply that the most stable structure of the investigated molecules is a dimer created by two intermolecular hydrogen bonds between the H atom of the α-hydroxyl group (in up (HOU) or down (HOD) stereo bonds position) and the O atom of tertiary phosphine oxide (═O) of the two monomers. Comparison the FT-RS spectra with the respective SERS spectra allowed us to predict the orientation of the hydroxyphosphonate derivatives of pyridine that depends upon both the position of the substituent relative to the ring N atom (in α-, β-, and γ-position, respectively) and the type of silver substrate.

  8. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.

    Science.gov (United States)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-03-03

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (Raman spectroelectrochemistry. The SEC system includes a nanostructured Au surface that serves dual roles as the electrochemical working electrode (WE) and SERS substrate, a microfabricated Pt counter electrode (CE), and an external Ag/AgCl reference electrode (RE). The nanostructured Au WE enables highly sensitive in situ SERS spectroscopy through large and reproducible SERS enhancements, which eliminates the need for resonant wavelength matching of the laser excitation source with the electronic absorption of the target molecule. The new SEC analysis system has the merits of wide applicability to target molecules, small sample volume, and a low detection limit. We demonstrate in situ SERS spectroelectrochemistry measurements of the metalloporphyrin hemin showing shifts of the iron oxidation marker band ν4 with the nanostructured Au working electrode under precise potential control.

  9. Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers.

    Science.gov (United States)

    Paxton, Walter F; Kleinman, Samuel L; Basuray, Ashish N; Stoddart, J Fraser; Van Duyne, Richard P

    2011-05-19

    Surface-enhanced Raman spectroscopy (SERS) was used to monitor the response of a self-assembled monolayer (SAM) of a tetrathiafulvalene (TTF) derivative on a gold film-over-nanosphere electrode. The electrochemical response observed was rationalized in terms of the interactions between TTF moieties as the oxidation state was changed. Electrochemical oxidation to form the monocation caused the absorbance of the TTF unit to coincide with both the laser excitation wavelength and the localized surface plasmon resonance (LSPR), resulting in surface-enhanced resonance Raman scattering (SERRS). The vibrational frequency changes that accompany electron transfer afford a high-contrast mechanism that can be used to determine the oxidation state of the TTF unit in an unambiguous manner.

  10. Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy

    International Nuclear Information System (INIS)

    Kharintsev, S S; Fishman, A I; Salakhov, M Kh; Hoffmann, G G

    2013-01-01

    This paper highlights optical plasmonic antennas designed with dc-pulsed low-voltage electrochemical etching of a gold wire for implementing tip-enhanced Raman scattering (TERS) measurements. We demonstrate a versatile electrochemical system that allows one to engineer TERS-active metallic gold tips with diverse shapes and sizes in a highly reproducible fashion. The underlying etching mechanism at a voltage-driven meniscus around a gold wire immersed into an electrolyte is discussed in detail. We show that the developed method is suitable to produce not only the simplest geometries such as cones and spheroids, but more complex designs. Attempts have been made to design plasmonic tapered antennas with quasi-uniformly spaced nano-sized bumps on the mesoscopic zone for the extra surface plasmon-light coupling. The capability of the patterned antenna to enhance and localize optical fields is demonstrated with near-field Raman microscopy and spectroscopy of single-walled carbon nanotubes bundles. (paper)

  11. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles.

    Science.gov (United States)

    Jiang, Li; Yin, Penggang; You, Tingting; Wang, Hua; Lang, Xiufeng; Guo, Lin; Yang, Shihe

    2012-12-07

    Highly reproducible surface-enhanced Raman scattering (SERS) spectra are obtained on the surface of SnO(2) octahedral nanoparticles. The spot-to-spot SERS signals show a relative standard deviation (RSD) consistently below 20 % in the intensity of the main Raman peaks of 4-mercaptobenzoic acid (4-MBA) and 4-nitrobenzenethiol (4-NBT), indicating good spatial uniformity and reproducibility. The SERS signals are believed to mainly originate from a charge-transfer (CT) mechanism. Time-dependent density functional theory (TD-DFT) is used to simulate the SERS spectrum and interpret the chemical enhancement mechanism in the experiment. The research extends the application of SERS and also establishes a new uniform SERS substrate. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In vivo blood lactic acid monitoring using microdialysis and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Hsu, Po-Hsiang; Tsai, Tung-Hu; Chiang, Huihua Kenny

    2008-08-01

    Blood lactic acid concentration is an important indicator for physiological functions. To develop a rapid and sensitive measurement technique for monitoring blood lactic acid may provide a useful tool in clinical diagnosis. We proposed to develop a microdialysis surface-enhanced Raman spectroscopy (microdialysis-SERS) approach to filter/reduce interference from other large metabolites in blood and enhance the detection sensitivity for blood lactic acid. In this study, a microdialysis probe was constructed using 13 kDa cut-off dialysis membrane. The dialysate was mixed with 50 nm Ag colloidal nanoparticles automatically in a micro-fluid chamber for SERS detection under blood microdialysis of Sprague-Dawley rat. The linear range of SERS-lactic acid measurement is 10-5~3x10-4 M with R2 value of 0.99. The optimal mixing flow rate of nanoparticles is 18 μl/min under microdialysis at constant flow rate (2 μl/min). Real time lactic acid monitoring in vivo also has been demonstrated using microdialysis-SERS system.

  13. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  14. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    Science.gov (United States)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  15. Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP

    OpenAIRE

    Otto, Cornelis; Hoeben, F.P.; Hoeben, F.P.; Greve, Jan

    1991-01-01

    The behaviour of adenine and 2'-deoxyadenosine-5'-monophosphate (dAMP) at positive surface potentials of a silver working electrode was investigated using surface-enhanced Raman scattering (SERS). The use of positive potentials in the presence of adenine or dAMP leads to a rapid accumulation of an intense spectrum. It is proposed that complexes of adenine (dAMP) with silver generate the observed spectra. Adenine and dAMP can be distinguished spectroscopically due to various different complexe...

  16. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot......) intensity distributions of target molecules on receptor-functionalized nanopillar substrates for biomolecular quantification. We demonstrate that by utilizing only a small set of empirically determined parameters, our general theoretical framework agrees with the experimental data particularly well...

  17. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  18. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III in Seawater Samples

    Directory of Open Access Journals (Sweden)

    Nguyễn Hoàng Ly

    2015-04-01

    Full Text Available Tris(hydroxymethylaminomethane ethylenediaminetetraacetic acid (Tris-EDTA, upon binding Cr(III in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs, was found to provide a sensitive and selective Raman marker band at ~563 cm−1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III. Only for Cr(III concentrations above 500 nM, the band at ~563 cm−1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm−1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  19. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Yilmaz, Mehmet; Babur, Esra; Ozdemir, Mehmet; Gieseking, Rebecca L.; Dede, Yavuz; Tamer, Ugur; Schatz, George C.; Facchetti, Antonio; Usta, Hakan; Demirel, Gokhan

    2017-09-01

    π-Conjugated organic semiconductors have been explored in several optoelectronic devices, yet their use in molecular detection as surface-enhanced Raman spectroscopy (SERS)-active platforms is unknown. Herein, we demonstrate that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition. DFH-4T films without any additional plasmonic layer exhibit unprecedented Raman signal enhancements up to 3.4 × 103 for the probe molecule methylene blue. The combination of quantum mechanical computations, comparative experiments with a fluorocarbon-free α,ω-dihexylquaterthiophene (DH-4T), and thin-film microstructural analysis demonstrates the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH-4T film morphology governing the SERS response. Furthermore, Raman signal enhancements up to ~1010 and sub-zeptomole (films with a thin gold layer. Our results offer important guidance for the molecular design of SERS-active organic semiconductors and easily fabricable SERS platforms for ultrasensitive trace analysis.

  20. Enhanced Uranium Ore Concentrate Analysis by Handheld Raman Sensor: FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orton, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-11

    High-purity uranium ore concentrates (UOC) represent a potential proliferation concern. A cost-effective, “point and shoot” in-field analysis capability to identify ore types, phases of materials present, and impurities, as well as estimate the overall purity would be prudent. Handheld, Raman-based sensor systems are capable of identifying chemical properties of liquid and solid materials. While handheld Raman systems have been extensively applied to many other applications, they have not been broadly studied for application to UOC, nor have they been optimized for this class of chemical compounds. PNNL was tasked in Fiscal Year 2015 by the Office of International Safeguards (NA-241) to explore the use of Raman for UOC analysis and characterization. This report summarizes the activities in FY15 related to this project. The following tasks were included: creation of an expanded library of Raman spectra of a UOC sample set, creation of optimal chemometric analysis methods to classify UOC samples by their type and level of impurities, and exploration of the various Raman wavelengths to identify the ideal instrument settings for UOC sample interrogation.

  1. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles

    Science.gov (United States)

    A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide pr...

  2. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) method for determination of cyanide

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Jørgensen, Kirsten; Møller, Birger Lindberg

    2004-01-01

    -dried sorghum leaf was also obtained using this instrument. Surface-enhanced Raman Spectroscopy (SERS) was demonstrated to be a more sensitive method that enabled determination of the cyanogenic potential of plant tissue. The SERS method was optimized by flow injection (FI) using a colloidal gold dispersion...... as effluent. Potential problems and pitfalls of the method are discussed....

  3. Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies

    Science.gov (United States)

    Kalbáč, Martin; Vales, Vaclav; Kavan, Ladislav; Dunsch, Lothar

    2014-12-01

    Raman spectroscopy and in situ Raman spectroelectrochemistry were applied to study the lithium vapor doping of C70@SWCNTs (peapods). A strong degree of doping was proved by the vanishing of the single walled carbon nanotubes (SWCNT’s) radial breathing mode (RBM) and by the attenuation of the tangential (TG) band intensity. In contrast to potassium vapor doping, the strong downshift of the frequency of the TG band has not been observed for Li-doping. The Li vapor treated peapods remained partly doped even if they were exposed to humid air. This has been reflected by a reduced intensity of the nanotube and the fullerene modes and by the change of the shape of the RBM band as compared to that of the undoped sample. The modes of the intratubular fullerene were almost unresolved after the contact of the Li-doped sample with water. A lithium insertion into the interior of a peapod and its strong interaction with the intratubular fullerene is suggested to be responsible for the air-insensitive residual doping. This residual doping was studied by spectroelectrochemical measurements. The TG band of the Li doped peapods is partly upshifted during the anodic doping, which points to the different state of C70@SWCNTs and C60@SWCNTs studied previously.

  4. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    Science.gov (United States)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  5. A Biomedical Surface Enhanced Raman Scattering Substrate: Functionalized Three-Dimensional Porous Membrane Decorated with Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2015-01-01

    Full Text Available We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition, Staphylococcus aureus cells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.

  6. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  7. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Kurouski, Dmitry; Van Duyne, Richard P

    2015-03-03

    Hair is one of the most common types of physical evidence found at a crime scene. Forensic examination may suggest a connection between a suspect and a crime scene or victim, or it may demonstrate an absence of such associations. Therefore, forensic analysis of hair evidence is invaluable to criminal investigations. Current hair forensic examinations are primarily based on a subjective microscopic comparison of hair found at the crime scene with a sample of suspect's hair. Since this is often inconclusive, the development of alternative and more-accurate hair analysis techniques is critical. In this study, we utilized surface-enhanced Raman spectroscopy (SERS) to demonstrate that artificial dyes can be directly detected on hair. This spectroscopic technique is capable of a confirmatory identification of analytes with single molecule resolution, requires minimal sample, and has the advantage of fluorescence quenching. Our study reveals that SERS can (1) identify whether hair was artificially dyed or not, (2) determine if a permanent or semipermanent colorants were used, and (3) distinguish the commercial brands that are utilized to dye hair. Such analysis is rapid, minimally destructive, and can be performed directly at the crime scene. This study provides a novel perspective of forensic investigations of hair evidence.

  8. Characterization of Lactococcus lactis response to ampicillin and ciprofloxacin using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wang, Panxue; Pang, Shintaro; Zhang, Hua; Fan, Mingtao; He, Lili

    2016-01-01

    Decades of antibiotic use or misuse has resulted in antibiotic resistance in lactic acid bacteria, a group of common culture starters and probiotic microorganisms. This has urged researchers to study how lactic acid bacteria respond to antibiotics, so as to have a better strategy to identify and predict the antibiotic-resistant bacteria. This study aimed to characterize the biochemical profiles of Lactococcus lactis responding to antibiotics using surface-enhanced Raman spectroscopy (SERS). Lactococcus lactis exposed to antibiotics was mixed with 50-nm gold nanoparticles for subsequent SERS measurements. The SERS spectra analyzed by principal component analysis showed no significant change after 30 min of antibiotic treatment, whereas distinct changes were clearly observed after 60 and 90 min of antibiotic treatment. Different antibiotics induced different spectral changes, and these changes revealed the detailed biochemical information of cellular responses. This study demonstrates that the SERS method developed not only senses the changes in the bacterial cell wall, but also reveals details of the biochemical profiles, which help us to understand how lactic acid bacteria respond to antibiotics, as well as to set a base for the detection of antibiotic susceptibility of bacteria by SERS.

  9. Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering

    Science.gov (United States)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea; Proietti Zaccaria, Remo; Krahne, Roman

    2014-06-01

    We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement.

  10. Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea; Proietti Zaccaria, Remo; Krahne, Roman

    2014-01-01

    We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement. (papers)

  11. Enhanced stimulated Raman scattering by femtosecond ultraviolet plasma grating in water

    Science.gov (United States)

    Liu, Fengjiang; Yuan, Shuai; He, Boqu; Nan, Junyi; Khan, Abdul Qayyum; Ding, Liang'en; Zeng, Heping

    2018-02-01

    Efficient forward stimulated Raman scattering (SRS) was observed along 400-nm femtosecond (fs) laser filaments in water. SRS conversion dominated over self-phase modulation induced continuum generation as the input pulse energy was above 4 μJ (˜30 Pcr), implying that plasma in the aqueous filamentation channel played an important role in compensating for the group velocity walk-off between the pump and Stokes pulses. By overlapping two synchronous fs 400-nm filaments to form plasma grating in water, significant enhancement of SRS conversion was observed. Such a SRS enhancement originated from the ultrahigh plasma density in the intersection region of the preformed plasma grating.

  12. Breast cancer study in rats by using Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Martinez E, J. C. [IPN, Unidad Profesional Interdisciplinaria de Ingenieria, Campus Guanajuato, Av. Mineral de Valenciana 200, Col. Fracc. Industrial Puerto Interior, 36275 Silao, Guanajuato (Mexico); Cordova F, T.; Roca Ch, J. M.; Hernandez R, A., E-mail: jcmartineze@ipn.mx [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Departamento de Ingenieria Fisica, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The use of Raman scattering to differentiate the biochemistry and hence distinguish between normal and abnormal samples of breast cancer with induced stress was investigated. Twelve different rat serum samples (5 control samples and 7 breast cancer samples) were measured. 25 spectra per sample were acquired in a region of 50 X 50 microns. Three hundred spectra were recorded and the spectral diagnostic models were constructed by using multivariate statistical analysis on the spectral matrix to carry out the discrimination between the control samples and cancers samples with induced stress. The spectral recording was performed with Raman microscopy system Thermo Scientific XRD in the range from 200 to 2000 cm{sup -1} with a laser source of 780 nm, 24 m W of power and 50 s and exposure time were used for each spectrum. It is shown that the serum samples from rats with breast cancer and the control group can be discriminate when the multivariate analysis methods are applied to their Raman data set. The ratios were significant and correspond to proteins and phospholipids. The preliminary results suggest that the Raman spectroscopy could be an alternative technique to study the breast cancer in humans in a near future. (Author)

  13. Efficiency enhancement of Raman microspectroscopy at long working distance by parabolic reflector

    Science.gov (United States)

    Tian, Yao; Su, Joshua Weiming; Ju, Jian; Liu, Quan

    2017-07-01

    Raman microspectroscopy is well suited for readily revealing information about bio-samples. As such, this technique has been applied to a wide range of areas, especially in bio-medical diagnosis. However, bio-samples typically suffer from low Raman signal level due to the nature of inelastic scattering of photons, To achieve a decent signal level, usually a high numerical aperture is employed. One drawback with these objectives is that their working distance is very short. In many cases of clinic diagnosis, a long working distance is always desired which limits the usage of these objectives. We propose a practical solution to this problem by enhancing the Raman/fluorescence signal by a parabolic reflector. On one hand, the high signal level is achieved by the large solid angle of collection of the parabolic reflector. On the other hand, the long working distance is guaranteed by the novel design of our microscope. The enhancement-capability is demonstrated through five types of samples among which we found the method is most applicable for turbid samples.

  14. Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Cao, Xiaoqiong; Ma, Changchu; Gao, Zili; Zheng, Jinkai; He, Lili; McClements, David Julian; Xiao, Hang

    2016-12-14

    Nanosized titanium dioxide (TiO 2 ) particles are commonly present in TiO 2 food additives (E171) and have been associated with potential adverse effects on health. However, little knowledge is available regarding the interactions between TiO 2 nanoparticles (NPs) and other food components, such as flavonoids. In this study, we aim to study the molecular interactions between TiO 2 anatase NPs and three structurally closely related polymethoxyflavones (PMFs, flavonoids found in citrus fruits), namely, 3',4'-didemethylnobiletin (DDN), 5-demethylnobiletin (5DN), and 5,3',4'-tridemethylnobiletin (TDN), using ultraviolet-visible (UV-vis) spectrometry and surface-enhanced Raman spectroscopy (SERS). In the UV-vis absorption spectra, bathochromic effects were observed after DDN and TDN conjugated with TiO 2 NPs. The results from SERS analysis clearly demonstrated that DDN and TDN could bind TiO 2 NPs with the functional groups 3'-OH and 4'-OH on ring B and formed charge-transfer complexes. However, 5DN with functional groups C═O on ring C and 5-OH on ring A could not bind TiO 2 NPs. Knowledge on the molecular interactions between TiO 2 NPs and food components, such as flavonoids, will facilitate the understanding of the fate of TiO 2 NPs during food processing and in the gastrointestinal tract after oral consumption.

  15. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ren, Xiaoqian; Tan, Enzhong; Lang, Xiufeng; You, Tingting; Jiang, Li; Zhang, Hongyan; Yin, Penggang; Guo, Lin

    2013-09-14

    In this article, reduction of 4-nitrobenzenthiol (4-NBT) on Au nanoparticles (NPs) was characterized using surface-enhanced Raman scattering (SERS). Plasmon-driven chemical transformation from 4-NBT dimering into p,p'-dimercaptoazobenzene (DMAB) has been investigated on the surface of Au NPs. The laser power-dependent SERS spectra of 4-NBT on the surface of Au substrates were studied, and show that the laser power has an influence on the SERS signals of 4-NBT on Au NPs and production of DMAB by a plasmon-driven surface-catalyzed chemical reaction tends to be much easier under relative high laser power. Furthermore, we have used simple and efficient Au substrates (gold NPs with a size around 45 nm) exhibiting both catalytic properties and SERS activities to monitor the catalytic reaction of surface catalytic reaction process with borohydride solution. The experiments prove that the nitro-to-amino group conversion could be completed by borohydride at ambient conditions on Au substrates. Illuminated with high laser power, 4-NBT molecules and already formed DMAB molecules are further reduced into 4-aminobenzenthiol (4-ABT) by the addition of borohydride, While with low laser power 4-NBT molecules are transformed into 4-ABT with DMAB as the intermediate, which proves Au NPs are a mild and promising catalyst. Our studies might be helpful in extending the understanding of chemical reactions of 4-NBT and related research as well as providing a new strategy synthesis of azo dyes and anilines.

  16. Greatly enhanced Raman scattering and upconversion luminescence of Au–NaYF{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Li, Junpeng [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun, E-mail: zhoujun@nbu.edu.cn [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-12-15

    Novel dual function Au–NaYF{sub 4} nanocomposites were prepared by a facile wet chemical method. Hexagonal NaYF{sub 4} nanocrystals (NCs) were first produced by a hydrothermal method. Then, these NaYF{sub 4} NCs were decorated with gold nanoparticles (NPs) to form hybrid nanostructures. In this dual mode probe, surface enhanced Raman scattering (SERS) and field enhanced fluorescence can be generated independently by using different excitation wavelengths. It was found that the attached gold NPs on the rough surfaces of NaYF{sub 4} NCs might generate high density localized electric fields, which could lead to both efficient Raman scattering signal and upconversion (UC) luminescence. The enhancement factors of SERS signals from Au–NaYF{sub 4} nanocomposites were investigated using 4-mercaptobenzoic acid. The mechanism of enhanced UC luminescence from the nanocomposites was also discussed based on the population and photoluminescence processes of doped trivalent lanthanide ions. These dual mode nanocomposites may find potential applications in biological detection, imaging, and sensing. - Highlights: • Novel dual function Au–NaYF{sub 4} nanocomposites were successfully fulfilled by a facial wet chemical method. • Field enhanced fluorescence and SERS can be generated independently by using different excitation wavelengths. • The EF value of this Au–NaYF{sub 4} substrate was as high as 8.17×10{sup 7}. • The largest ER of UC emissions from Gd{sup 3+} ion in Au–NaYF{sub 4} nanocomposites appeared to be 76.

  17. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasova, Polina; Chen, Hui; Du, Henry, E-mail: hdu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States); Kanka, Jiri [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 182 31 Prague (Czech Republic); Mergo, Pawel [Department of Optical Fibres Technology, Maria Curie-Sklodovska University, PI. M. Currie-Sklodowskiej 5, 20-031 Lublin (Poland)

    2015-02-16

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  18. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    Science.gov (United States)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  19. Fiber optic apparatus for detecting molecular species by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Angel, S.M.; Sharma, S.K.

    1987-11-30

    Optrode apparatus for detecting constituents of a fluid medium includes an optical fiber having a metal coating on at least a portion of a light transmissive core. The metal is one, such as silver, gold or copper, which enhances emission of Raman signal frequencies by molecules adsorbed on the surface of the coating when monochromatic probe light of a different frequency is scattered by such molecules and the metal coating is sufficiently thin to transmit light between the adsorbed molecules and the core of the fiber. Probe light is directed into one end of the fiber and a detector analyzes light emitted from the fiber for Raman frequencies that identify one or more particular molecular species. In one form, the optrode may function as a working electrode of an electrochemical cell while also serving to detect the products of oxidation or reduction reactions which occur at the electrode surface. 6 figs.

  20. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    Science.gov (United States)

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  1. Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application

    Science.gov (United States)

    Endo, Tatsuro; Yamada, Kenji

    2017-02-01

    Surface enhanced raman scattering (SERS) is known for its high sensitivity toward detection down to single molecule level under optimal conditions using surface plasmon resonance (SPR). To excite the SPR for SERS application, nanostructured noble metal supports such as a nanoparticle have been widely used. However, for excitation of SPR for SERS application using noble metal nanoparticle has several disadvantages such as sophisticated fabrication procedure and low reproducibility of SPR excitation efficiency. To overcome these disadvantages, in this study, plasmonic crystal (PC)-SERS substrate which has a periodic noble metal nanostructure was successfully fabricated rapidly and cost-effectively based on nanoimprint lithography (NIL).

  2. Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics

    Science.gov (United States)

    Olivares-Amaya, Roberto

    The understanding of molecular effects in nanoscale environments is becoming increasingly relevant for various emerging fields. These include spectroscopy for molecular identification as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has been increasingly useful to address these phenomena to yield an understanding of these effects. In the first part of this dissertation, we study the chemical effect of surface-enhanced Raman scattering (SERS). We use quantum chemistry simulations to study the metal-molecule interactions present in these systems. We find that the excitations that provide a chemical enhancement contain a mixed contribution from the metal and the molecule. Moreover, using atomistic studies we propose an additional source of enhancement, where a transition metal dopant surface could provide an additional enhancement. We also develop methods to study the electrostatic effects of molecules in metallic environments. We study the importance of image-charge effects, as well as field-bias to molecules interacting with perfect conductors. The atomistic modeling and the electrostatic approximation enable us to study the effects of the metal interacting with the molecule in a complementary fashion, which provides a better understanding of the complex effects present in SERS. In the second part of this dissertation, we present the Harvard Clean Energy Project, a high-throughput approach for a large-scale computational screening and design of organic photovoltaic materials. We create molecular libraries to search for candidates structures and use quantum chemistry, machine learning and cheminformatics methods to characterize these systems and find structure-property relations. The scale of this study requires an equally large computational resource. We rely on distributed volunteer computing to obtain these properties. In the third part of this dissertation we present our work related to the acceleration of electronic structure

  3. Surface enhanced Raman spectra of the organic nonlinear optic ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Chemistry, University of Opole, Olesksa 48 45-052 Opole, Poland. 1. Present Address: Department of ... The surface geometry of methyl 3-(4-methoxy phenyl)prop-2-enoate molecule was studied by analysis of the SERS spectra .... Harmonic vibrational wave numbers were calculated using analytic second de-.

  4. Rapid determination of ractopamine in swine urine using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhai, Fuli; Huang, Yiqun; Li, Chunying; Wang, Xichang; Lai, Keqiang

    2011-09-28

    Ractopamine is approved for use in swine to improve carcass leanness in the United States, but banned in the European Union and China because ractopamine residue may pose health risks. This study investigated the possibility of applying surface-enhanced Raman spectroscopy (SERS) for analysis of ractopamine in swine urine. Ractopamine (0.1-10 μg mL(-1)) was added to urine samples collected from 20 swine to prepare a total of 240 samples. A simple centrifugation, a liquid-liquid extraction (LLE) method, and a more complicated method involving liquid-liquid extraction and solid-phase extraction (LLE-SPE) were used to extract ractopamine from urine samples. Principal component analysis (PCA) and partial least-squares (PLS) regression were used for spectral data analyses. Although no satisfactory result was obtained with the centrifugation method, ractopamine could be detected at levels of 0.8 and 0.4 μg mL(-1) with the LLE and LLE-SPE extraction methods, respectively. The R2 of the PLS model of actual ractopamine values versus predicted values was 0.74 for the LLE method and 0.73 for the LLE-SPE method. The SERS method with simple sample preparation has great potential for rapid analysis of ractopamine in swine urine.

  5. Genus- and species-level identification of dermatophyte fungi by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Witkowska, Evelin; Jagielski, Tomasz; Kamińska, Agnieszka

    2018-03-01

    This paper demonstrates that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast and reliable technique for detection and identification of dermatophyte fungi at both genus and species level. Dermatophyte infections are the most common mycotic diseases worldwide, affecting a quarter of the human population. Currently, there is no optimal method for detection and identification of fungal diseases, as each has certain limitations. Here, for the first time, we have achieved with a high accuracy, differentiation of dermatophytes representing three major genera, i.e. Trichophyton, Microsporum, and Epidermophyton. Two first principal components (PC), namely PC-1 and PC-2, gave together 97% of total variance. Additionally, species-level identification within the Trichophyton genus has been performed. PC-1 and PC-2, which are the most diagnostically significant, explain 98% of the variance in the data obtained from spectra of: Trichophyton rubrum, Trichophyton menatgrophytes, Trichophyton interdigitale and Trichophyton tonsurans. This study offers a new diagnostic approach for the identification of dermatophytes. Being fast, reliable and cost-effective, it has the potential to be incorporated in the clinical practice to improve diagnostics of medically important fungi.

  6. Surface enhanced Raman spectroscopy as a new spectral technique for quantitative detection of metal ions.

    Science.gov (United States)

    Temiz, Havva Tumay; Boyaci, Ismail Hakki; Grabchev, Ivo; Tamer, Ugur

    2013-12-01

    Four newly synthesized poly (propylene amine) dendrimers from first and second generation modified with 1,8-naphthalimide units in the dendrimer periphery have been investigated as ligands for the detection of heavy metal ions (Al(3+), Sb(2+), As(2+), Cd(2+) and Pb(2+)) by surface-enhanced Raman spectroscopy. Calibration curves were established for all metal ions between the concentration ranges of 1 x 10(-6) to 5 x 10(-4) M. It has been shown that these dendrimers can be coordinated, especially with different metal ions. Using dendrimer molecules and silver colloids at the same time allowed us to obtain an SERS signal from the abovementioned metal ions at very low concentrations. Principle component analysis (PCA) analysis was also applied to the collected SERS data. Four different PCA models were developed to accomplish the discrimination of five metal ions, which interacted with each of the four dendrimer molecules, separately. A detailed investigation was performed in the present study to provide the basis of a new approach for heavy metal detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation

    International Nuclear Information System (INIS)

    Song, Ji Eun; Ko, Taeg Yeoung; Ryu, Sun Min

    2010-01-01

    Raman spectroscopy was combined with AFM to investigate the effects of thermal annealing on the graphene samples prepared by the widely used micromechanical exfoliation method. Following annealing cycles, adhesive residues were shown to contaminate graphene sheets with thin molecular layers in their close vicinity causing several new intense Raman bands. Detailed investigation shows that the Raman scattering is very strong and may be enhanced by the interaction with graphene. Although the current study does not pinpoint detailed origins for the new Raman bands, the presented results stress that graphene prepared by the above method may require extra cautions when treated with heat or possibly solvents. Since its isolation from graphite, graphene has drawn a lot of experimental and theoretical research. These efforts have been mostly in pursuit of various applications such as electronics, sensors, stretchable transparent electrodes, and various composite materials. To accomplish such graphene-based applications, understanding chemical interactions of this new material with environments during various processing treatments will become more important. Since thermal annealing is widely used in various research of graphene for varying purposes such as cleaning, nanostructuring, reactions, etc., understanding annealing-induced effects is prerequisite to many fundamental studies of graphene. In this regard, it is to be noted that there has been a controversy on the cause of the annealing-induced hole doping in graphene

  8. Evans blue dye-enhanced imaging of the brain microvessels using spectral focusing coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Bo-Ram Lee

    Full Text Available We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature.

  9. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood.

    Science.gov (United States)

    Kuligowski, Julia; El-Zahry, Marwa R; Sánchez-Illana, Ángel; Quintás, Guillermo; Vento, Máximo; Lendl, Bernhard

    2016-04-07

    Biothiols play an essential role in a number of biological processes in living organisms including detoxification and metabolism. Fetal to neonatal transition poses a pro-oxidant threat for newborn infants, especially those born prematurely. A reliable and rapid tool for the direct determination of thiols in small volume whole blood (WB) samples would be desirable for its application in clinical practice. This study shows the feasibility of Surface Enhanced Raman Spectroscopy (SERS) using a silver colloid prepared by reduction of silver nitrate using hydroxylamine, as the SERS substrate for the quantification of thiols in WB samples after a simple precipitation step for protein removal. Bands originating from biothiols (790, 714 and 642 cm(-1)) were enhanced by the employed SERS substrate and the specificity of the detected SERS signal was tested for molecules presenting -SH functional groups. A statistically significant correlation between the obtained SERS signals and the thiol concentration measured using a chromatographic reference method in umbilical cord WB samples could be demonstrated. Using WB GSH concentrations obtained from the chromatographic reference procedure, a Partial Least Squares (PLS) regression model covering GSH concentrations from 13 to 2200 μM was calculated obtaining a root mean square error of prediction (RMSEP) of 381 μM when applied to an external test set. The developed approach uses small blood sample volumes (50 μL), which is important for clinical applications, especially in the field of neonatology. This feasibility study shows that the present approach combines all the necessary characteristics for its potential application in clinical practice.

  10. Surface-enhanced Raman scattering (SERS) characterization of trace organoarsenic antimicrobials using silver/polydimethylsiloxane nanocomposites.

    Science.gov (United States)

    Olavarría-Fullerton, Jenifier; Wells, Sabrina; Ortiz-Rivera, William; Sepaniak, Michael J; De Jesús, Marco A

    2011-04-01

    Organoarsenic drugs such as roxarsone and 4-arsanilic acid are poultry feed additives widely used in US broilers to prevent coccidosis and to enhance growth and pigmentation. Despite their veterinary benefits there has been growing concern about their use because over 90% of these drugs are released intact into litter, which is often sold as a fertilizing supplement. The biochemical degradation of these antimicrobials in the litter matrix can release significant amounts of soluble As(III) and As(V) to the environment, representing a potential environmental risk. Silver/polydimethylsiloxane (Ag/PDMS) nanocomposites are a class of surfaceenhanced Raman scattering (SERS) substrates that have proven effective for the sensitive, reproducible, and field-adaptable detection of aromatic acids in water. The work presented herein uses for the first time Ag/PDMS nanocomposites as substrates for the detection and characterization of trace amounts of roxarsone, 4-arsanilic acid, and acetarsone in water. The results gathered in this study show that organoarsenic species are distributed into the PDMS surface where the arsonic acid binds onto the embedded silver nanoparticles, enhancing its characteristic 792 cm(-1) stretching band. The chemisorption of the drugs to the metal facilitates its detection and characterization in the parts per million to parts per billion range. An extensive analysis of the distinct spectroscopic features of each drug is presented with emphasis on the interactions of the arsonic acid, amino, and nitro groups with the metal surface. The benefits of SERS based methods for the study of arsenic drugs are also discussed. © 2011 Society for Applied Spectroscopy

  11. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light.

    Science.gov (United States)

    Kazemi-Zanjani, Nastaran; Vedraine, Sylvain; Lagugné-Labarthet, François

    2013-10-21

    Finite-Difference Time-Domain (FDTD) calculations are used to characterize the electric field in the vicinity of a sharp silver or gold cone with an apex diameter of 10 nm. The simulations are utilized to predict the intensity and the distribution of the locally enhanced electric field in tip-enhanced Raman spectroscopy (TERS). A side-by-side comparison of the enhanced electric field induced by a radially and a linearly polarized light in both gap-mode and conventional TERS setup is performed. For this purpose, a radially polarized source is introduced and integrated into the FDTD modeling. Additionally, the optical effect of a thin protective layer of alumina on the enhancement of the electric field is investigated.

  12. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.

    Science.gov (United States)

    Park, Seungyoung; Lee, Jiwon; Ko, Hyunhyub

    2017-12-20

    Integration of surface-enhanced Raman scattering (SERS) sensors onto transparent and flexible substrates enables lightweight and deformable SERS sensors which can be wrapped or swabbed on various nonplanar surfaces for the efficient collection and detection of analytes on various surfaces. However, the development of transparent and flexible SERS substrates with high sensitivity is still challenging. Here, we demonstrate a transparent and flexible SERS substrate with high sensitivity based on a polydimethylsiloxane (PDMS) film embedded with gold nanostar (GNS) assemblies. The flexible SERS substrates enable conformal coverage on arbitrary surfaces, and the optical transparency allows light interaction with the underlying contact surface, thereby providing highly sensitive detection of analytes adsorbed on arbitrary metallic and dielectric surfaces which otherwise do not provide any noticeable Raman signals of analytes. In particular, when the flexible SERS substrates are covered onto metallic surfaces, the SERS enhancement is greatly improved because of the additional plasmon couplings between GNS and metal film. We achieve the detection capability of a trace amount of benzenethiol (10 -8 M) and enormous SERS enhancement factor (∼1.9 × 10 8 ) for flexible SERS substrates on Ag film. In addition, because of the embedded structure of GNS monolayers within the PDMS film, SERS sensors maintain the high sensitivity even after mechanical deformations of stretching, bending, and torsion for 100 cycles. The transparent and flexible SERS substrates introduced in this study are applicable to various SERS sensing applications on nonplanar surfaces, which are not achievable for hard SERS substrates.

  13. Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds

    Science.gov (United States)

    Thrift, Will; Bhattacharjee, Arunima; Darvishzadeh-Varcheie, Mahsa; Lu, Ying; Hochbaum, Allon; Capolino, Filippo; Whiteson, Katrine; Ragan, Regina

    2015-08-01

    Pseudomonas aeruginosa (PA), a biofilm forming bacterium, commonly affects cystic fibrosis, burn victims, and immunocompromised patients. PA produces pyocyanin, an aromatic, redox active, secondary metabolite as part of its quorum sensing signaling system activated during biofilm formation. Surface enhanced Raman scattering (SERS) sensors composed of Au nanospheres chemically assembled into clusters on diblock copolymer templates were fabricated and the ability to detect pyocyanin to monitor biofilm formation was investigated. Electromagnetic full wave simulations of clusters observed in scanning electron microcopy images show that the localized surface plasmon resonance wavelength is 696 nm for a dimer with a gap spacing of 1 nm in an average dielectric environment of the polymer and analyte; the local electric field enhancement is on the order of 400 at resonance, relative to free space. SERS data acquired at 785 nm excitation from a monolayer of benzenethiol on fabricated samples was compared with Raman data of pure benzenethiol and enhancement factors as large as 8×109 were calculated that are consistent with simulated field enhancements. Using this system, the limit of detection of pyocyanin in pure gradients was determined to be 10 parts per billion. In SERS data of the supernatant from the time dependent growth of PA shaking cultures, pyocyanin vibrational modes were clearly observable during the logarithmic growth phase corresponding to activation of genes related to biofilm formation. These results pave the way for the use of SERS sensors for the early detection of biofilm formation, leading to reduced healthcare costs and better patient outcomes.

  14. [Raman spectroscopic study on silicone fluid as pressure gauge].

    Science.gov (United States)

    Liu, Jin; Sun, Qiang

    2010-09-01

    Within a diamond-anvil cell, the in-situ Raman spectroscopic study of silicone fluid was operated at room temperature 298. 1 K and under pressures from 0.1 to 5140.2 MPa. The present study analyzed the correlation of the modes 2906 and 2967 cm(-1) with different pressures, indicating that their wavenumbers linearly increased with increasing pressure. Therefore, this provided the potential to consider the pressure medium silicone fluid as a pressure gauge. The result suggested that silicone fluid could be used as a reliable pressure gauge in high-pressure experiments using diamond-anvil cells with Raman spectrometer, and the correlations between pressure and (delta nu p)2906, (delta nu p)2967 are, p = -0.05[(delta nu p)2967]2 + 73.07 (delta nu p)2967 + 91.54 and p = 0.14 [(delta nu p)2906]2 + 81.9 (delta nu p)2906 + 92.01, respectively.

  15. Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification

    Directory of Open Access Journals (Sweden)

    Mohamed Hassoun

    2017-06-01

    Full Text Available The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles.

  16. Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

    Science.gov (United States)

    Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Zhao, Jun-Wu

    2017-11-01

    Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased "hot spots". These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

  17. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  18. IR, Raman, SERS and DFT study of amoxicillin

    Science.gov (United States)

    Bebu, Andreea; Szabó, László; Leopold, Nicolae; Berindean, Cătălin; David, Leontin

    2011-05-01

    In this work a joint experimental and theoretical study on amoxicillin is reported. The molecular vibrations of amoxicillin were investigated by FTIR, FT-Raman and SERS spectroscopies. In parallel, quantum chemical calculations based on density functional theory (DFT) were used to determine the geometrical, energetic and vibrational characteristics of the molecule with particular emphasis put on the interaction and adsorption geometry of the molecule to the silver colloidal surface. The SERS spectrum of amoxicillin was recorded using a 532 nm laser line and hydroxylamine reduced silver colloid as SERS substrate. FTIR, FT-Raman and SERS spectra of amoxicillin were assigned based on DFT calculations with the hybrid B3LYP exchange-correlation functional, coupled with the standard 6-31G(d) basis set. The calculated molecular electrostatic potential (MEP) was used in conjunction with SERS data to predict the adsorption geometry of the molecule on the silver surface.

  19. Raman spectroscopic study of cyclohexane at pressures below 1000 MPa

    Science.gov (United States)

    Qiao, Erwei; Zheng, Haifei

    2017-10-01

    At present, the room temperature freezing pressure of cyclohexane is still uncertain, and the phase transition pressure of solid I - solid III is not reliable at ambient temperature. In this work, we have performed a Raman spectroscopic study of cyclohexane in a Moissanite anvil cell at pressures below 1000 MPa at 25 °C, and analyzed the characteristic of Raman brands νs(CH2), νas(CH2) and νb(Ring). Two phase transition pressures 80 MPa and 550 MPa were determined by a quartz pressure gauge, and they are the room temperature freezing pressure of cyclohexane and the phase transition pressure of solid I to solid III, respectively. Furthermore, from the phase diagram of cyclohexane, it is inferred that pressure plays an important role on the stability of cyclohexane as the main constituent of oil, and it can be beneficial to understanding the formation, migration and preservation of petroleum in subterranean rock strata.

  20. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Quick Detection of Contaminants Leaching from Polypropylene Centrifuge Tube with Surface Enhanced Raman Spectroscopy and Ultra Violet Absorption Spectroscopy

    OpenAIRE

    Xu, Zhida; Liu, Logan

    2014-01-01

    Anomalous surface enhanced Raman scattering (SERS) peaks are identified for liquid sample stored in polypropylene centrifuge tubes (PP tube) for months. We observed the unexpected Raman peaks during experiments for Thiamine Hydrochloride aqueous solution stored in PP tube for two months. In order to identify the contaminants we have performed SERS experiments for de-ionized water (DI water) stored in polypropylene centrifuge tube for two months and compared them with fresh DI water sample. We...

  2. Characterization and surface-enhanced Raman spectral probing of silver hydrosols prepared by two-wavelength laser ablation and fragmentation

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, P.; Šišková, K.; Vlčková, B.; Pfleger, Jiří; Šloufová, Ivana; Šlouf, Miroslav; Mojzeš, P.

    2003-01-01

    Roč. 59, č. 10 (2003), s. 2321-2329 ISSN 1386-1425. [International Conference on Raman Spectroscopy Applied to the Earth Sciences /5./. Prague, 12.06.2002-15.06.2002] R&D Projects: GA ČR GA203/01/1013 Institutional research plan: CEZ:AV0Z4050913 Keywords : surface-enhanced Raman spectroscopy * silver hydrosols * two-wavelength laser ablation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2003

  3. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-11-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics, which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.

  4. Surface-enhanced Raman scattering for the detection of polycystic ovary syndrome.

    Science.gov (United States)

    Momenpour, Ali; Lima, Patrícia D A; Chen, Yi-An; Tzeng, Chii-Ruey; Tsang, Benjamin K; Anis, Hanan

    2018-02-01

    Polycystic ovary syndrome (PCOS) is a multi-factorial heterogeneous syndrome that affects many women of reproductive age. This work demonstrates how the surface-enhanced Raman scattering (SERS) technique can be used to differentiate between PCOS and non-PCOS patients. We determine that the use of SERS, in conjunction with partial least squares (PLS) and principal component analysis (PCA), allows us to detect PCOS in patient samples. Although the role of chemerin in the pathogenesis of PCOS patients is not clear, this work enables us to measure their chemerin levels using the PLS regression method.

  5. Metal nanostructures for the enhancement of the Raman response of molecular adsorbates

    Science.gov (United States)

    Giorgetti, Emilia; Giammanco, Francesco; Margheri, Giancarlo; Trigari, Silvana; Muniz-Miranda, Maurizio

    2011-08-01

    Spectroscopic investigation of metallic nanostructures of different size and morphology is presented, with particular focus on the capability of enhancing the Raman response of molecular adsorbates, namely on their SERS properties. In this framework, we describe recent results obtained with Au/Ag nanocages and Au nanostars, which can be used conveniently to shift the extinction spectra and the SERS activity up to the near infrared. In the case of nanostars, we present a synthesis procedure which permits fine tuning of their morphology and extinction, thus allowing preparation of structures with controlled SERS activity from 500 up to 1500 nm.

  6. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Týčová, Anna; Přikryl, Jan; Foret, František

    2017-01-01

    Roč. 38, č. 16 (2017), s. 1977-1987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Grant - others:AV ČR(CZ) MSM200311601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:68081715 Keywords : microfluidics * nanoparticles * separation * Surface-enhanced Raman spectroscopy Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  7. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  8. Temperature dependence of the surface enhanced raman spectroelectrochemistry of iron in aqueous solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, L. J.; Melendres, C. A.; Chemical Engineering

    1996-06-01

    The effect of temperature on the composition of the corrosion film on iron in aqueous sodium hydroxide and borate solutions was investigated using surface enhanced Raman spectroelectrochemistry (SERS). Fe(OH){sub 2} and Fe{sub 3}O{sub 4} were observed in the prepassivation region, while Fe{sub 3}O{sub 4} and FeOOH accounted for most of the passivated film at 25, 60 and 95 C. Fe(OH){sub 2} was found to be a stable component of the corrosion film on iron at 95 C, which is contrary to recently published theoretical calculations.

  9. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    Science.gov (United States)

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  10. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    Science.gov (United States)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  11. Rapid identification of bacterial resistance to Ciprofloxacin using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Pitris, Costas

    2014-02-01

    Due to its effectiveness and broad coverage, Ciprofloxacin is the fifth most prescribed antibiotic in the US. As current methods of infection diagnosis and antibiotic sensitivity testing (i.e. an antibiogram) are very time consuming, physicians prescribe ciprofloxacin before obtaining antibiogram results. In order to avoid increasing resistance to the antibiotic, a method was developed to provide both a rapid diagnosis and the sensitivity to the antibiotic. Using Surface Enhanced Raman Spectroscopy, an antibiogram was obtained after exposing the bacteria to Ciprofloxacin for just two hours. Spectral analysis revealed clear separation between sensitive and resistant bacteria and could also offer some inside into the mechanisms of resistance.

  12. The ''Adatom Model'' of SERS (Surface Enhanced Raman Scattering): The present status

    International Nuclear Information System (INIS)

    Otto, A.; Billmann, J.; Eickmans, J.; Ertuerk, U.; Pettenkofer, C.

    1984-01-01

    The model predicts resonant Raman scattering by adsorbate vibrations through photon excited charge transfer transition from localized electronic states at sites of atomic scale roughness (e.g. 'adatoms') on silver surfaces to the affinity levels of the adsorbates. Experimental tests are discussed: search for the localized states, shifts of the affinity levels, comparison of SERS at sites of ASR and at atomically smooth parts of the surface, changes in SER vibrational bands by shifts of the affinity levels, 'SERS' vibrational selection rules. Infrared enhancement at sites of ASR is conjectured. Different hypotheses on the role of the 'porosity' of coldly deposited silver films are discussed. (orig.)

  13. Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches

    DEFF Research Database (Denmark)

    Dowd, Annette; Geisler, Mathias; Zhu, Shaoli

    2016-01-01

    The enhancement of a Raman signal by multipolar plasmon resonances – as opposed to the more common practice of using dipolar resonances – is investigated. A wide range of gold stars, triangles, circles and squares with multipolar resonances in the visible region were designed and then produced...... by electron beam lithography. We used 633 nm excitation and Rhodamine 6G as a probe molecule to confirm that, although the dipolar resonances of these shapes lie well into the infrared, SERS in the visible can still be obtained by coupling to their ‘dark mode’ multipolar resonances. However, the magnitude...

  14. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion

    DEFF Research Database (Denmark)

    Hakonen, Aron; Rindzevicius, Tomas; Schmidt, Michael Stenbæk

    2016-01-01

    Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. He...... adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field....

  15. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  16. Development of probes for bioanalytic applications of the surface-enhanced Raman scattering; Entwicklung neuer Sonden fuer bioanalytische Anwendungen der oberflaechenverstaerkten Raman-Streuung

    Energy Technology Data Exchange (ETDEWEB)

    Matschulat, Andrea Isabel

    2011-07-01

    Surface-enhanced Raman scattering (SERS) has been established as a versatile tool for probing and labeling in analytical applications, based on the vibrational spectra of samples as well as label molecules in the proximity of noble metal nanostructures. The aim of this work was the construction of novel SERS hybrid probes. The hybrid probes consisted of Au and Ag nanoparticles and reporter molecules, as well as a targeting unit. The concept for the SERS hybrid probe design was followed by experiments comprising characterization techniques such as UV/Vis-spectroscopy (UV/Vis), Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. SERS experiments were performed for studying and optimizing the plasmonic properties of nanoparticles with respect to their enhancement capabilities. The SERS-probes had to meet following requirements: biocompatibility, stability in physiological media, and enhancement of Raman-signals from Raman reporter molecules enabling the identification of different probes even in a complex biological environment. Au and Ag nanoaggregates were found to be the most appropriate SERS substrates for the hybrid probe design. The utilization of Raman reporters enabled the identification of different SERS probes in multiplexing experiments. In particular, the multiplexing capability of ten various reporter molecules para-aminobenzenethiol, 2-naphthalenethiol, crystal violet, rhodamine (B) isothiocyanate, fluorescein isothiocyanate, 5,5'dithiobis(2-nitrobenzoic acid), para-mercaptobenzoic acid, acridine orange, safranine O und nile blue was studied using NIR-SERS excitation. As demonstrated by the results the reporters could be identified through their specific Raman signature even in the case of high structural similarity. Chemical separation analysis of the reporter signatures was performed in a trivariate approach, enabling the discrimination through an automated calculation of specific band ratios. The trivariate

  17. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-05

    Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed 2D TERS images uniquely map electric fields localized at Au(111) step edges following 671-nm excitation. We establish that our measurements are not only sensitive to spatial variations in the enhanced electric fields but also to their vector components. We also experimentally demonstrate that (i) few nanometer precision is attainable in TERS nanoscopy using corrugated tips with nominally radii on the order of 100-200 nm, and (ii) TERS signals do not necessarily exhibit the expected E4 dependence. Overall, we illustrate the concept of electric field imaging via TERS and establish the connections between our observations and conventional TERS chemical imaging measurements.

  18. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  19. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zhang, Hua; Zhang, Xia-Guang; Wei, Jie; Wang, Chen; Chen, Shu; Sun, Han-Lei; Wang, Ya-Hao; Chen, Bing-Hui; Yang, Zhi-Lin; Wu, De-Yin; Li, Jian-Feng; Tian, Zhong-Qun

    2017-08-02

    Insightful understanding of how interfacial structures and properties affect catalytic processes is one of the most challenging issues in heterogeneous catalysis. Here, the essential roles of Pt-Au and Pt-oxide-Au interfaces on the activation of H 2 and the hydrogenation of para-nitrothiophenol (pNTP) were studied at molecular level by in situ surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Pt-Au and Pt-oxide-Au interfaces were fabricated through the synthesis of Pt-on-Au and Pt-on-SHINs nanocomposites. Direct spectroscopic evidence demonstrates that the atomic hydrogen species generated on the Pt nanocatalysts can spill over from Pt to Au via the Pt-Au and Pt-TiO 2 -Au interfaces, but would be blocked at the Pt-SiO 2 -Au interfaces, leading to the different reaction pathways and product selectivity on Pt-on-Au and Pt-on-SHINs nanocomposites. Such findings have also been verified by the density functional theory calculation. In addition, it is found that nanocatalysts assembled on pinhole-free shell-isolated nanoparticles (Pt-on-pinhole-free-SHINs) can override the influence of the Au core on the reaction and can be applied as promising platforms for the in situ study of heterogeneous catalysis. This work offers a concrete example of how SERS/SHINERS elucidate details about in situ reaction and helps to dig out the fundamental role of interfaces in catalysis.

  20. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering.

    Science.gov (United States)

    Han, Xiao X; Jia, Hui Y; Wang, Yan F; Lu, Zhi C; Wang, Chun X; Xu, Wei Q; Zhao, Bing; Ozaki, Yukihiro

    2008-04-15

    We have developed a new analytical procedure for label-free protein detection designated "Western SERS", consisting of protein electrophoresis, Western blot, colloidal silver staining, and surface-enhanced Raman scattering (SERS) detection. A novel method of silver staining for Western blot that uses a silver colloid, an excellent SERS-active substrate, is first proposed in the present study. During the process of silver staining, interactions between proteins and silver nanoparticles result in the emergence of SERS of proteins. In the present study, we use myoglobin (Mb) and bovine serum albumin (BSA) as model proteins. From different protein bands on a nitrocellulose (NC) membrane, we have observed surface-enhanced resonance Raman scattering (SERRS) spectra of Mb and SERS spectra of BSA. The proposed technique offers dual advantages of simplicity and high sensitivity. On one hand, after the colloidal silver staining, we can detect label-free multi-proteins directly on a NC membrane without digestion, extraction, and other pretreatments. On the other hand, the detection limit of the Western SERS is almost consistent with the detection limit of colloidal silver staining, and the SERRS detection limit of Mb is found to be 4 ng/band. This analytical method, which combines the technique of protein separation with SERS, may be a powerful protocol for label-free protein detection in proteomic research.

  1. A novel extremophile strategy studied by Raman spectroscopy

    Science.gov (United States)

    Edwards, Howell G. M.

    2007-12-01

    A case is made for the classification of the colonisation by Dirina massiliensis forma sorediata of pigments on ancient wall-paintings as extremophilic behaviour. The lichen encrustations studied using FT-Raman spectroscopy have yielded important molecular information which has assisted in the identification of the survival strategy of the organism in the presence of significant levels of heavy metal toxins. The production of a carotenoid, probably astaxanthin, at the surface of the lichen thalli is identified from its characteristic biomolecular signatures in the Raman spectrum, whereas the presence of calcium oxalate dihydrate (weddellite) has been identified at both the upper and lower surfaces of the thalli and in core samples taken from depths of up to 10 mm through the encrustation into the rock substrate. The latter observation explains the significant disintegrative biodeteriorative effect of the colonisation upon the integrity of the wall-paintings and can be used to direct conservatorial and preservation efforts of the art work. A surprising result proved to be the absence of Raman spectroscopic evidence for the complexation of the metal pigments by the oxalic acid produced by the metabolic action of the organisms, unlike several cases that have been reported in the literature.

  2. HPLC assisted Raman spectroscopic studies on bladder cancer

    Science.gov (United States)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  3. Effect of concentration and pH on the surface-enhanced Raman scattering of captopril on nano-colloidal silver surface

    Science.gov (United States)

    Gao, Junxiang; Gu, Huaimin; Liu, Fangfang; Dong, Xiao; Xie, Min; Hu, Yongjun

    2011-07-01

    In this report, Raman and surface-enhanced Raman scattering (SERS) spectra of captopril are studied in detail. Herein, the Raman bands are assigned by the density functional theory (DFT) calculations and potential energy distributions (PED) based on internal coordinates of the molecule, which are found to be in good agree with the experimental values. Furthermore, the concentration and pH dependence of the SERS intensity of the molecule is discussed. By analyzing the intensities variation of SERS bands of the different concentrations of captopril solution, it can be concluded that the molecules orientation adsorbed on the silver nanoparticles surface change with the change of the concentrations. The variation of SERS spectra of captopril with the change of pH suggests that the interaction among the adsorbates with Ag cluster depend on the protonated state of the adsorbate and the aggregation of silver nanoparticles.

  4. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates.

    Science.gov (United States)

    Lu, Tai-Yen; Lee, Yang-Chun; Yen, Yu-Ting; Yu, Chen-Chieh; Chen, Hsuen-Li

    2016-03-15

    In this study, we found that an astronomical liquid mirror can be prepared as a highly ultrasensitive, low-cost, highly reproducible, broadband-operational surface-enhanced Raman scattering (SERS)-active substrate. Astronomical liquid mirrors are highly specularly reflective because of their perfectly dense-packed silver nanoparticles; they possess a large number and high density of hot spots that experience a very high intensity electric field, resulting in excellent SERS performance. When using the liquid mirror-based SERS-active substrate to detect 4-aminothiophenol (4-ATP), we obtained measured analytical enhancement factors (AEFs) of up to 2.7×10(12) and detection limits as low as 10(-15) M. We also found that the same liquid mirror could exhibit superior SERS capability at several distinct wavelengths (532, 632.8, and 785 nm). The presence of hot spots everywhere in the liquid mirror provided highly repeatable Raman signals from low concentrations of analytes. In addition, the astronomical liquid mirrors could be transferred readily onto cheap, flexible, and biodegradable substrates and still retain their excellent SERS performance, suggesting that they might find widespread applicability in various (bio)chemical detection fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2018-02-01

    Full Text Available Therapeutic and subtherapeutic use of veterinary drugs has increased the risk of residue contamination in animal food products. Antibiotics such as tetracycline are used for mastitis treatment of lactating cows. Milk expressed from treated cows before the withdrawal period has elapsed may contain tetracycline residue. This study developed a simple surface-enhanced Raman spectroscopic (SERS method for on-site screening of tetracycline residue in milk and water. Six batches of silver colloid nanoparticles were prepared for surface enhancement measurement. Milk-tetracycline and water-tetracycline solutions were prepared at seven concentration levels (1000, 500, 100, 10, 1, 0.1, and 0.01 ppm and spiked with silver colloid nanoparticles. A 785 nm Raman spectroscopic system was used for spectral measurement. Tetracycline vibrational modes were observed at 1285, 1317 and 1632 cm−1 in water-tetracycline solutions and 1322 and 1621 cm−1 (shifted from 1317 and 1632 cm−1, respectively in milk-tetracycline solutions. Tetracycline residue concentration as low as 0.01 ppm was detected in both the solutions. The peak intensities at 1285 and 1322 cm−1 were used to estimate the tetracycline concentrations in water and milk with correlation coefficients of 0.92 for water and 0.88 for milk. Results indicate that this SERS method is a potential tool that can be used on-site at field production for qualitative and quantitative detection of tetracycline residues.

  6. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  7. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lei Lin

    2018-04-01

    Full Text Available Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91. Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  8. Nanostructured silver for applications in surface enhanced Raman spectroscopy and photoelectrochemical reactions

    Science.gov (United States)

    Clayton, Daniel A.

    Initial work focused on characterizing silver and its surface enhanced Raman spectroscopy (SERS) capabilities. Silver nanowires were chosen as an ideal material and scanning confocal microscopy studies were performed to identify hot spots. The silver nanowires were found to exhibit fluorescence blinking that was attributed to small silver clusters undergoing rapid interchange from Ag0 to Ag2O. Control of this blinking was accomplished through the removal of oxygen and through electrochemical control of the system. SERS was also recorded from these nanowires. Deconvolution of the SERS signal from the fluorescence was accomplished either by increasing the SERS analyte concentration or increasing the total number of "hot spots" in the focus volume. Silver applications were studied by performing a SERS study of Rhodamine 6G (R6G) and Poly(3-hexylthiophene-2,5-diyl) (P3HT). A Tollens' silver substrate was utilized as the SERS substrate and similar blinking effects were found to arise. P3HT was cast from 4 different solvents:dichloromethane, chlorobenzene, THF, and toluene. The solvent effects were studied, with kinking of the polymer noted in the non-chlorinated solvents. Single molecule studies in conjunction with polarization control indicated that the P3HT formed in an overlapping manner with only partial charge transfer within the molecule. Finally silvers interactions with TiO2 were studied. Micron scale single crystal anatase TiO2 was synthesized by using HF in a hydrothermal process forming a truncated bipyramidal structure consisting of [101] and [001] faces. Fluorine was present in small amounts on the surface of the TiO2 as confirmed by x-ray photoelectron spectroscopy (XPS). An annealing process was used to remove the fluorine. Nitrogen doping was attempted, but was not found to occur in significant amounts. Visible light sensitivity was noted in annealed samples but did not occur in the bulk as demonstrated through photoelectrochemical measurements. Silver

  9. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  10. Detection of Prohibited Fish Drugs Using Silver Nanowires as Substrate for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Jia Song

    2016-09-01

    Full Text Available Surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy (SERS is a promising detection technology, and has captured increasing attention. Silver nanowires were synthesized using a rapid polyol method and optimized through adjustment of the molar ratio of poly(vinyl pyrrolidone and silver nitrate in a glycerol system. Ultraviolet-visible spectrometry, X-ray diffraction, and transmission electron microscopy were used to characterize the silver nanowires. The optimal silver nanowires were used as a SERS substrate to detect prohibited fish drugs, including malachite green, crystal violet, furazolidone, and chloramphenicol. The SERS spectra of crystal violet could be clearly identified at concentrations as low as 0.01 ng/mL. The minimum detectable concentration for malachite green was 0.05 ng/mL, and for both furazolidone and chloramphenicol were 0.1 μg/mL. The results showed that the as-prepared Ag nanowires SERS substrate exhibits high sensitivity and activity.

  11. Rapid Detection of Tetracycline Residues in Duck Meat Using Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jinhui Zhao

    2016-01-01

    Full Text Available A rapid detection method based on surface enhanced Raman spectroscopy (SERS was proposed in this paper in order to realize the detection of tetracycline residues in duck meat. Firstly, surface enhanced Raman spectra characteristics of tetracycline aqueous solution, duck meat extract, and duck meat extract containing tetracycline were analyzed. Secondly, the effect of the addition amount of duck meat extract containing tetracycline on SERS intensity and the effect of the adsorption time on SERS intensity were discussed, respectively. Thirdly, SERS intensity ratio at 1272 and 1558 cm−1 (I1272/I1558 was used to establish the SERS calibration curve. A good linearity relationship between the tetracycline concentration in duck meat extract and I1272/I1558 was obtained, and the linear regression equation and the correlation coefficient (r were y=0.0177x+0.1213 and 0.950, respectively. The average recovery of tetracycline in duck meat extract was 101~108% with relative standard deviation (RSD of 2.4~4.6%. The experimental results showed that the method proposed in this paper was a good detection scheme for the rapid detection of tetracycline residues in duck meat.

  12. Enhanced Raman Scattering from NCM523 Cathodes Coated with Electrochemically Deposited Gold

    Energy Technology Data Exchange (ETDEWEB)

    Tornheim, Adam; Maroni, Victor A.; He, Meinan; Gosztola, David J.; Zhang, Zhengcheng

    2017-01-01

    Materials with the general composition LiMO2, where M is a mix of nickel, cobalt, and manganese, have been studied extensively as cathodes for lithium-based electrochemical cells. Some compositions, like LiNi0.5Co0.2Mn0.3O2 (NCM523), have already found application in commercial lithium-ion batteries. Pre-test and post-test analyses of these types of cathodes have benefited greatly from the use of Raman spectroscopy. Specifically, Raman spectroscopy can be used to investigate the phonons of the LiMO2 lattice. This is particularly useful for studies of the LiMO2 after it has been formed into the type of polymer-bonded laminate from which typical battery cathodes are cut. One of the problems that occurs in such studies is that the scattering from the LiMO2 phase gets progressively weaker as the nickel content increases. NCM523 poses one example of this behavior owing to the fact that half of the transition metal content is nickel. In this study we show that the intensity of the Raman scattering from the NCM523 phonons can be significantly increased by electroplating clusters of sub-micron gold particles on NCM523-containing laminate structures. The gold appears to plate somewhat selectively on the NCM523 particles in randomly sized clusters. These clusters stimulate the Raman scattering from the NCM523 to varying extents that can reach nearly 100 times the scattering intensity from uncoated pristine laminates.

  13. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    De Bleye, C., E-mail: cdebleye@ulg.ac.be; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-08-12

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L{sup −1} for BPA and BPB and from 5 to 100 μg L{sup −1} for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols.

  14. FT-Raman study of dehydrogenation polymer (DHP) lignins

    Science.gov (United States)

    Umesh P. Agarwal; Noritsugu Terashima

    2003-01-01

    Compared to conventional Raman spectroscopy where samples are excited using visible light lasers, 1064 nm-excited FT-Raman technique has the single most important advantage that the sample-fluorescence is significantly suppressed for samples that are strongly fluorescent. DHPs are difficult to analyze in conventional Raman because small amounts of chromophores present...

  15. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Natalia E.; Markin, Alexey V., E-mail: av-markin@mail.ru; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu. [Saratov State University (Russian Federation)

    2016-12-15

    Multifunctional silica gel with embedded silver nanoparticles (SiO{sub 2}–AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO{sub 2}–AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO{sub 2} bulk. Synthesis of AgNP directly to the SiO{sub 2} matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO{sub 3} concentration used during the SiO{sub 2}–AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO{sub 2}–AgNP with optimal composition was around 10{sup 5}. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  16. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    Science.gov (United States)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  17. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  18. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k

  19. Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering.

    Science.gov (United States)

    Li, Yin; Lu, Gewu; Wu, Xufeng; Shi, Gaoquan

    2006-12-07

    Two-dimensional palladium (Pd) nanostructures have been fabricated by electrochemical deposition of Pd onto an indium tin oxide glass substrate modified with a thin flat film of polypyrrole or a nanofibril film of polyaniline. The experimental results demonstrated that the morphology of Pd nanoparticles strongly depended on the properties of conducting polymers and the conditions of electrochemical deposition. Two-dimensional nanostructures composed of flower-like (consisting of staggered nanosheets) or pinecone-like Pd nanoparticles were successfully synthesized. They can be used as substrates for surface-enhanced Raman scattering after partly decomposing the polymer components by heating in air, and the enhancement factor of the substrate composed of flower-like Pd nanoparticles was measured to be as high as 105 for 4-mercaptopyridine.

  20. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  1. Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Li, Tao; Wu, Kaiyu; Rindzevicius, Tomas

    2016-01-01

    We report a novel nanofabrication process via block copolymer lithography using solvent vapor annealing. The nanolithography process is facile and scalable, enabling fabrication of highly ordered periodic patterns over entire wafers as substrates for surface-enhanced Raman spectroscopy (SERS......). Direct silicon etching with high aspect ratio templated by the block copolymer mask is realized without any intermediate layer or external precursors. Uniquely, an atomic layer deposition (ALD)-assisted method is introduced to allow reversing of the morphology relative to the initial pattern. As a result......, highly ordered silicon nanopillar arrays are fabricated with controlled aspect ratios. After metallization, the resulting nanopillar arrays are suitable for SERS applications. These structures readily exhibit an average SERS enhancement factor of above 108, SERS uniformities of 8.5% relative standard...

  2. Surface-enhanced Raman scattering spectra of adsorbates on Cu₂O nanospheres: charge-transfer and electromagnetic enhancement.

    Science.gov (United States)

    Jiang, Li; You, Tingting; Yin, Penggang; Shang, Yang; Zhang, Dongfeng; Guo, Lin; Yang, Shihe

    2013-04-07

    Surface-enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid (4-MBA) have been investigated on the surface of Cu2O nanospheres. The SERS signals were believed to originate from the static chemical enhancement, resonant chemical enhancement and electromagnetic enhancement. The coupling between the adsorbates and the semiconductor, evidenced by the shift in absorption spectrum of modified Cu2O and the enhancement of non-totally symmetric modes of the 4-MBA and 4-mercaptopyridine (4-MPY) molecules, were invoked to explain the experimental results. Furthermore, simulations were employed to investigate the nature of the enhancement mechanisms operative between the molecules and the semiconductor. Density functional theory (DFT) calculations suggested a charge transfer (CT) transition process between the molecules and the Cu2O nanospheres. Three-dimensional finite-difference time domain (3D-FDTD) simulations were conducted to map out the electromagnetic field around the Cu2O nanospheres. The experimental and simulation results have revealed the promise of the Cu2O nanospheres as a good SERS substrate and the prospect of using the SERS substrate as a valuable tool for in situ investigation and assay of the adsorption behavior on semiconductor surfaces.

  3. Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Chen, Y. X.; Chen, M. W.; Lin, J. Y.; Lai, W. Q.; Huang, W.; Chen, H. Y.; Weng, G. X.

    2016-11-01

    This study is intended to explore the potential of silver (Ag) nanoparticle-based plasma surface-enhanced Raman spectroscopy (SERS) for providing a rapid and simple "Yes/No" assessment to detect acute myocardial infarction (AMI). A simple, rapid, and accurate method of diagnosing AMI is critical to reduce mortality and improve prognosis. Techniques such as electrocardiography examination and use of cardiac troponins have not yet met the current clinical need. Therefore, alternative approaches need to be developed. Plasma samples from 32 patients with AMI and 32 healthy control (Clt) subjects were assessed. Multivariate statistical techniques, including principal component (PC) analysis and linear discriminant analysis (PCA-LDA), were employed to develop a diagnostic algorithm for differentiating between patients with AMI and Clt subjects. Furthermore, the receiver operating characteristic was tested to evaluate the performance of the PCA-LDA algorithm for AMI detection. Each plasma sample was mixed with an equal volume of Ag colloidal solution, and the SERS measurement of each plasma sample was performed. The plasma SERS spectrum showed much stronger and sharper peaks compared with the normal Raman spectrum. Tentative assignments of Raman spectroscopy bands showed specific biomolecular (e.g., proteins, adenosine, adenine, and uric acid) changes. PC analysis and LDA were employed to discriminate patients with AMI from Clt subjects, yielding a sensitivity of 87.5% and a specificity of 93.8%. The findings of this study suggest that plasma SERS has a great potential for improving AMI in the future, and this will certainly reduce the difficulty, time to draw blood, and patients' pain to a great extent.

  4. Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS.

    Science.gov (United States)

    Brown, Richard J C; Wang, Jian; Tantra, Ratna; Yardley, Rachel E; Milton, Martin J T

    2006-01-01

    Despite widespread use for more than two decades, the SERS phenomenon has defied accurate physical and chemical explanation. The relative contributions from electronic and chemical mechanisms are difficult to quantify and are often not reproduced under nominally similar experimental conditions. This work has used electromagnetic modelling to predict the Raman enhancement expected from three configurations: metal nanoparticles, structured metal surfaces, and sharp metal tips interacting with metal surfaces. In each case, parameters such as artefact size, artefact separation and incident radiation wavelength have been varied and the resulting electromagnetic field modelled. This has yielded an electromagnetic description of these configurations with predictions of the maximum expected Raman enhancement, and hence a prediction of the optimum substrate configuration for the SERS process. When combined with experimental observations of the dependence of Raman enhancement with changing ionic strength, the modelling results have allowed a novel estimate of the size of the chemical enhancement mechanism to be produced.

  5. Long reach and enhanced power budget DWDM radio-over-fibre link supported by Raman amplification and coherent detection

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil; Fernandez, Amaya

    2009-01-01

    We report on a scalable and enhanced power budget radio-over-fibre system for hybrid-wireless access networks operating at 12.5 GHz DWDM spacing for 5 GHz RF carriers over a 60 km fibre link with Raman amplification.......We report on a scalable and enhanced power budget radio-over-fibre system for hybrid-wireless access networks operating at 12.5 GHz DWDM spacing for 5 GHz RF carriers over a 60 km fibre link with Raman amplification....

  6. Combined infrared and Raman study of solid CO

    Science.gov (United States)

    Urso, R. G.; Scirè, C.; Baratta, G. A.; Compagnini, G.; Palumbo, M. E.

    2016-10-01

    Context. Knowledge about the composition and structure of interstellar ices is mainly based on the comparison between astronomical and laboratory spectra of astrophysical ice analogues. Carbon monoxide is one of the main components of the icy mantles of dust grains in the interstellar medium. Because of its relevance, several authors have studied the spectral properties of solid CO both pure and in mixtures. Aims: The aim of this work is to study the profile (shape, width, peak position) of the solid CO band centered at about 2140 cm-1 at low temperature, during warm up, and after ion irradiation to search for a structural variation of the ice sample. We also report on the appearance of the longitudinal optical-transverse optical (LO-TO) splitting in the infrared spectra of CO films to understand if this phenomenon can be related to a phase change. Methods: We studied the profile of the 2140 cm-1 band of solid CO by means of infrared and Raman spectroscopy. We used a free web interface that we developed that allows us to calculate the refractive index of the sample to measure the thickness of the film. Results: The profile of the fundamental band of solid CO obtained with infrared and Raman spectroscopy does not show any relevant modification after warm up or ion bombardment in the dose range investigated. We explain that the LO-TO splitting is not connected to a structural variation of the film. Ion irradiation causes the formation of new molecular species. Raman spectroscopy allowed us to detect, among other bands, a band centered at 1817 cm-1 that has been attributed to the infrared inactive species C2 and a band centered at 1767 cm-1 that remains unidentified.

  7. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  8. Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy.

    Science.gov (United States)

    Sharma, Bhavya; Cardinal, M Fernanda; Ross, Michael B; Zrimsek, Alyssa B; Bykov, Sergei V; Punihaole, David; Asher, Sanford A; Schatz, George C; Van Duyne, Richard P

    2016-12-14

    We report here the first fabrication of aluminum film-over nanosphere (AlFON) substrates for UV surface-enhanced resonance Raman scattering (UVSERRS) at the deepest UV wavelength used to date (λ ex = 229 nm). We characterize the AlFONs fabricated with two different support microsphere sizes using localized surface plasmon resonance spectroscopy, electron microscopy, SERRS of adenine, tris(bipyridine)ruthenium(II), and trans-1,2-bis(4-pyridyl)-ethylene, SERS of 6-mercapto-1-hexanol (as a nonresonant molecule), and dielectric function analysis. We find that AlFONs fabricated with the 210 nm microspheres generate an enhancement factor of approximately 10 4-5 , which combined with resonance enhancement of the adsorbates provides enhancement factors greater than 10 6 . These experimental results are supported by theoretical analysis of the dielectric function. Hence our results demonstrate the advantages of using AlFON substrates for deep UVSERRS enhancement and contribute to broadening the SERS application range with tunable and affordable substrates.

  9. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano

    2013-04-23

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna\\'s surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  10. Titania supported tungsten oxide species studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, Hack Sung; Kim, Kwan

    1991-01-01

    Laser Raman spectroscopy has been used to study the tungsta catalyst supported on titania. The surface tungsten species which forms on titania after calcination appeared to possess a structure that is independent of the initial impregnation condition. The surface polytungstate seemed to be stable only at the interfacial region since the crystalline WO 3 phase was observed as long as the tungsta loading was in excess of monolayer coverage. The close intact and strong interaction between the polytungstate and the titania could be evidenced from the inhibition of the phase transition of TiO 2 from anatase to rutile.(Author)

  11. Raman study of InAs/InP quantum wires

    Science.gov (United States)

    Angelova, T.; Cros, A.; Cantarero, A.; Fuster, D.; González, Y.; González, L.

    2007-04-01

    We present a Raman study of the vibrational modes in InAs/InP (001) quantum wires. The energy of the observed phonon modes evidences the confinement properties of the wires, their strain anisotropy and the effect of atomic intermixing. Resonance effects in confined and interface phonons are discussed for excitation in the vicinity of the E1 critical point. The observed vibrations and their variation with sample characteristics are in agreement with the conclusions of previous structural and optical characterization performed in the same samples.

  12. Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour-liquid-solid growth

    International Nuclear Information System (INIS)

    Christiansen, S H; Becker, M; Fahlbusch, S; Michler, J; Sivakov, V; Andrae, G; Geiger, R

    2007-01-01

    Silicon nanowires grown by the vapour-liquid-solid growth mechanism with gold as the catalyst show gold caps ∼50-400 nm in diameter with an almost ideal hemispherical shape atop a silicon column. These gold caps are extremely well suited for exploiting the tip or surface enhanced Raman scattering effects since they assume the right size on the nanometre scale and a reproducible, almost ideal hemispherical shape. On attaching a nanowire with a gold cap to an atomic force microscopy (AFM) tip, the signal enhancement by the gold nanoparticle can be used to spatially resolve a Raman signal. Applications of this novel nanowire based technical tip enhanced Raman scattering solution are widespread and lie in the fields of biomedical and life sciences as well as security (e.g. detection of bacteria and explosives) and in the field of solid state research, e.g. in silicon technology where the material composition, doping, crystal orientation and lattice strain can be probed by Raman spectroscopy. A prerequisite for obtaining this spatial resolution in nano-Raman spectroscopy is the attachment of a nanowire with a gold cap to an AFM tip. This attachment by welding a nanowire in a scanning electron microscope to an AFM tip is demonstrated in this paper

  13. Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour liquid solid growth

    Science.gov (United States)

    Christiansen, S. H.; Becker, M.; Fahlbusch, S.; Michler, J.; Sivakov, V.; Andrä, G.; Geiger, R.

    2007-01-01

    Silicon nanowires grown by the vapour-liquid-solid growth mechanism with gold as the catalyst show gold caps ~50-400 nm in diameter with an almost ideal hemispherical shape atop a silicon column. These gold caps are extremely well suited for exploiting the tip or surface enhanced Raman scattering effects since they assume the right size on the nanometre scale and a reproducible, almost ideal hemispherical shape. On attaching a nanowire with a gold cap to an atomic force microscopy (AFM) tip, the signal enhancement by the gold nanoparticle can be used to spatially resolve a Raman signal. Applications of this novel nanowire based technical tip enhanced Raman scattering solution are widespread and lie in the fields of biomedical and life sciences as well as security (e.g. detection of bacteria and explosives) and in the field of solid state research, e.g. in silicon technology where the material composition, doping, crystal orientation and lattice strain can be probed by Raman spectroscopy. A prerequisite for obtaining this spatial resolution in nano-Raman spectroscopy is the attachment of a nanowire with a gold cap to an AFM tip. This attachment by welding a nanowire in a scanning electron microscope to an AFM tip is demonstrated in this paper.

  14. Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour-liquid-solid growth.

    Science.gov (United States)

    Christiansen, S H; Becker, M; Fahlbusch, S; Michler, J; Sivakov, V; Andrä, G; Geiger, R

    2007-01-24

    Silicon nanowires grown by the vapour-liquid-solid growth mechanism with gold as the catalyst show gold caps approximately 50-400 nm in diameter with an almost ideal hemispherical shape atop a silicon column. These gold caps are extremely well suited for exploiting the tip or surface enhanced Raman scattering effects since they assume the right size on the nanometre scale and a reproducible, almost ideal hemispherical shape. On attaching a nanowire with a gold cap to an atomic force microscopy (AFM) tip, the signal enhancement by the gold nanoparticle can be used to spatially resolve a Raman signal. Applications of this novel nanowire based technical tip enhanced Raman scattering solution are widespread and lie in the fields of biomedical and life sciences as well as security (e.g. detection of bacteria and explosives) and in the field of solid state research, e.g. in silicon technology where the material composition, doping, crystal orientation and lattice strain can be probed by Raman spectroscopy. A prerequisite for obtaining this spatial resolution in nano-Raman spectroscopy is the attachment of a nanowire with a gold cap to an AFM tip. This attachment by welding a nanowire in a scanning electron microscope to an AFM tip is demonstrated in this paper.

  15. Detection of low-concentration contaminants in solution by exploiting chemical derivatization in surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Hardy, Mike; Doherty, Matthew D; Krstev, Igor; Maier, Konrad; Möller, Torgny; Müller, Gerhard; Dawson, Paul

    2014-09-16

    A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ~4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.

  16. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    Science.gov (United States)

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Validation of a Miniaturized Spectrometer for Trace Detection of Explosives by Surface-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Salvatore Almaviva

    2016-08-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS measurements of some common military explosives were performed with a table-top micro-Raman system integrated with a Serstech R785 miniaturized device, comprising a spectrometer and detector for near-infrared (NIR laser excitation (785 nm. R785 was tested as the main component of a miniaturized SERS detector, designed for in situ and stand-alone sensing of molecules released at low concentrations, as could happen in the case of traces of explosives found in an illegal bomb factory, where solid microparticles of explosives could be released in the air and then collected on the sensor’s surface, if placed near the factory, as a consequence of bomb preparation. SERS spectra were obtained, exciting samples in picogram quantities on specific substrates, starting from standard commercial solutions. The main vibrational features of each substance were clearly identified also in low quantities. The amount of the sampled substance was determined through the analysis of scanning electron microscope images, while the spectral resolution and the detector sensitivity were sufficiently high to clearly distinguish spectra belonging to different samples with an exposure time of 10 s. A principal component analysis procedure was applied to the experimental data to understand which are the main factors affecting spectra variation across different samples. The score plots for the first three principal components show that the examined explosive materials can be clearly classified on the basis of their SERS spectra.

  18. Bromide-Assisted Anisotropic Growth of Gold Nanoparticles as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Melissa A. Kerr

    2016-01-01

    Full Text Available We report herein a one-step synthesis of gold nanoparticles (Au NPs of various shapes such as triangles, hexagons, and semispheres, using 5-hydroxyindoleacetic acid (5-HIAA as the reducing agent in the presence of potassium bromide (KBr. Anisotropic Au NPs have received ever-increasing attention in various areas of research due to their unique physical and chemical properties. Numerous synthetic methods involving either top-down or bottom-up approaches have been developed to synthesize Au NPs with deliberately varied shapes, sizes, and configurations; however, the production of templateless, seedless, and surfactant-free singular-shaped anisotropic Au NPs remains a significant challenge. The concentrations of hydrogen tetrachloroaurate (HAuCl4, 5-HIAA, and KBr, as well as the reaction temperature, were found to influence the resulting product morphology. A detailed characterization of the resulting Au NPs was performed using ultraviolet-visible (UV-Vis spectroscopy, scanning electron microscopy (SEM, and Raman spectroscopy. The as-prepared Au NPs exhibited excellent surface-enhanced Raman scattering (SERS properties, which make them very attractive for the development of SERS-based chemical and biological sensors.

  19. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Re-thinking surface enhance Raman spectroscopy (SERS) sensors with a systems perspective

    Science.gov (United States)

    White, Ian M.

    2017-02-01

    While surface enhanced Raman spectroscopy (SERS) may not compete with the standard central lab approaches for chemical and biological sensing, SERS may have the potential to provide unique capabilities for analytics away from the central lab. Raman spectrometers have evolved from benchtop systems to high-performing handheld instruments that are compatible with analysis of samples in the field. However, for SERS to truly succeed as a "point-of-sample" analytical technique, the SERS sensor must fit the needs of analysis in the field, including little or no sample preparation, minimal peripheral equipment, and ease of use. Traditional plasmonically-active rigid devices do not meet these requirements. Even microfluidic SERS devices generally are not compatible with point-of-sample analysis, as the "world-to-chip" interface presents challenges, and peripheral equipment is generally required. In this review we will discuss the advances in plasmonic substrates fabricated on porous membranes, leading to SERS sensors that can collect samples via swabbing or dipping, clean up samples through separation, concentrate analytes by lateral flow focusing, and avoid the need for peripheral equipment. In particular, we will focus on inkjet-fabricated devices, which may present the best opportunity for scale-up via roll-to-roll manufacturing. We will also discuss the directions that flexible SERS sensors are moving the field, such as simple fabrication techniques, new support materials, SERS swabs, and SERS-active tapes and films.

  1. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Guichi [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Hu Yongjun, E-mail: yjhu@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Gao Jiao; Zhong Liang [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2011-07-04

    Graphical abstract: Schemes of SERS nanoprobes preparation (a) and competitive SERS immunoassay for clenbuterol (b). Highlights: > A new method for clenbuterol detection by the use of a competitive SERS immunoassay has been developed. > 4,4'-Dipyridyl is chosen as the Raman reporter due to its fast-labeled, nontoxic and bifunctional properties. > The present method could detect clenbuterol over a wide dynamic concentration range and exhibit significant specificity in real samples. > The technique is more sensitive and simpler than the conventional method ELISA. - Abstract: In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL{sup -1}) with a lower limit of detection (ca. 0.1 pg mL{sup -1}) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control.

  2. Surface enhanced Raman spectroscopy as a point-of-care diagnostic for infection in wound effluent

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Crane, Nicole J.

    2016-03-01

    In military medicine, one of the challenges in dealing with large combat-related injuries is the prevalence of bacterial infection, including multidrug resistant organisms. This can prolong the wound healing process and lead to wound dehiscence. Current methods of identifying bacterial infection rely on culturing microbes from patient material and performing biochemical tests, which together can take 2-3 days to complete. Surface Enhanced Raman Spectroscopy (SERS) is a powerful vibrational spectroscopy technique that allows for highly sensitive structural detection of analytes adsorbed onto specially prepared metal surfaces. In the past, we have been able to discriminate between bacterial isolates grown on solid culture media using standard Raman spectroscopic methods. Here, SERS is utilized to assess the presence of bacteria in wound effluent samples taken directly from patients. To our knowledge, this is the first attempt for the application of SERS directly to wound effluent. The utilization of SERS as a point-of-care diagnostic tool would enable physicians to determine course of treatment and drug administration in a matter of hours.

  3. Semi-quantitative analysis of indigo by surface enhanced resonance Raman spectroscopy (SERRS) using silver colloids

    Science.gov (United States)

    Shadi, I. T.; Chowdhry, B. Z.; Snowden, M. J.; Withnall, R.

    2003-08-01

    In this paper we report for the first time semi-quantitative analysis of indigo using surface enhanced Raman spectroscopy (SERS) and surface enhance resonance Raman spectroscopy (SERRS). Indigo, a dye widely used today in the textile industry, has been used, historically, both as a dye and as a pigment; the latter in both paintings and in printed material. The molecule is uncharged and largely insoluble in most solvents. The application of SERS/SERRS to the semi-quantitative analysis of indigo has been examined using aggregated citrate-reduced silver colloids with appropriate modifications to experimental protocols to both obtain and maximise SERRS signal intensities. Good linear correlations are observed for the dependence of the intensities of the SERRS band at 1151 cm -1 using laser exciting wavelengths of 514.5 nm ( R=0.9985) and 632.8 nm ( R=0.9963) on the indigo concentration over the range 10 -7-10 -5 and 10 -8-10 -5 mol dm -3, respectively. Band intensities were normalised against an internal standard (silver sol band at 243 cm -1). Resonance Raman spectra (RRS) of aqueous solutions of indigo could not be collected because of its low solubility and the presence of strong fluorescence. It was, however, possible to obtain RS and RRS spectra of the solid at each laser excitation wavelength. The limits of detection (L.O.D.) of indigo by SERS and SERRS using 514.5 and 632.8 nm were 9 ppm at both exciting wavelengths. Signal enhancement by SERS and SERRS was highly pH dependent due to the formation of singly protonated and possibly doubly protonated forms of the molecule at acidic pH. The SERS and SERRS data provide evidence to suggest that an excess of monolayer coverage of the dye at the surface of silver colloids is observed at concentrations greater than 7.85×10 -6 mol dm -3 for each exciting wavelength. The data reported herein also strongly suggest the presence of multiple species of the indigo molecule.

  4. Raman spectroscopic studies on exfoliated cells of oral and cervix

    Science.gov (United States)

    Hole, Arti; Sahu, Aditi; Shaikh, Rubina; Tyagi, Gunjan; Murali Krishna, C.

    2018-01-01

    Visual inspection followed by biopsy is the standard procedure for cancer diagnosis. Due to invasive nature of the current diagnostic methods, patients are often non-compliant. Hence, it is necessary to explore less invasive and rapid methods for early detection. Exfoliative cytology is a simple, rapid, and less invasive technique. It is thus well accepted by patients and is suitable for routine applications in population screening programs. Raman spectroscopy (RS) has been increasingly explored for disease diagnosis in the recent past. In vivo RS has previously shown promise in management of both oral and cervix cancers. In vivo applications require on-site instrumentation and stringent experimental conditions. Hence, RS of less invasive samples like exfoliated cells has been explored, as this facilitates collection at multiple screening centers followed by analysis at a centralized facility. In the present study, efficacy of Raman spectroscopy in classification of 15 normal and 29 abnormal oral exfoliated cells specimens and 28 normal and 38 abnormal cervix specimens were explored. Spectra were acquired by Raman microprobe (HE 785, Horiba-Jobin-Yvon, France) from several areas to span the pellet. Spectral acquisition parameters were: microscopic objective: 40X, power: 40 mW, acquisition time: 15 s and average: 3. PCA and PC-LDA of pre-processed spectra was carried out on a 4-model system of normal and tumor of both cervix and oral specimens. Leave-one-out-cross-validation findings indicate 73 % correct classification. Findings suggest RS of exfoliated cells may serve as a patient-friendly, non-invasive, rapid and objective method for management of cervix and oral cancers.

  5. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    Science.gov (United States)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20–50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl‑, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  6. Effects of collisions on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide

    Science.gov (United States)

    Patnaik, Anil K.; Roy, Sukesh; Gord, James R.; Lucht, Robert P.; Settersten, Thomas B.

    2009-06-01

    A six-level model is developed and used to study the effects of collisional energy transfer and dephasing on electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) in nitric oxide. The model includes the three levels that are coherently coupled by the three applied lasers as well as three additional bath levels that enable inclusion of the effects of electronic quenching and rotational energy transfer. The density-matrix equations that describe the evolution of the relevant populations and coherences are presented. The parametric dependencies of the ERE-CARS signal on collisional energy transfer and dephasing processes are described in terms of both a steady-state analytical solution and the numerical solutions to the governing equations. In the weak-field limit, the ERE-CARS signal scales inversely with the square of the dephasing rates for the electronic and Raman coherences. In accord with published experimental observations [Roy et al., Appl. Phys. Lett. 89, 104105 (2006)], the ERE-CARS signal is shown to be insensitive to the collisional quenching rate. Parametric dependencies on quenching, rotational energy transfer, and pure electronic dephasing are presented, demonstrating reduced collisional dependence for saturating laser fields.

  7. A low-cost Raman spectrometer design used to study Raman ...

    Indian Academy of Sciences (India)

    Unknown

    The paper discusses the design of a low cost Raman spectrometer. Single- walled nanotubes ... SWNT, whereas the TM provides the insight into the electronic properties of the nano- tubes.8–10 There is also a ... microscope objective with long working-distance as well as a large numerical aperture. The objective used is ...

  8. Doping of C60 fullerene peapods with lithium: Raman spectroscopic and Raman spectroelectrochemical studies

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Zukalová, Markéta; Dunsch, L.

    2008-01-01

    Roč. 14, č. 20 (2008), s. 6231-5236 ISSN 0947-6539 R&D Projects: GA AV ČR KJB400400601 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerenes * lithium * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 5.454, year: 2008

  9. Doping of C-70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Valeš, Václav; Kavan, Ladislav; Dunsch, L.

    2014-01-01

    Roč. 25, č. 48 (2014), 485706 ISSN 0957-4484 R&D Projects: GA ČR GAP204/10/1677 Institutional support: RVO:61388955 Keywords : fullerene peapods * Raman spectroelectrochemistry * Li doping Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.821, year: 2014

  10. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  11. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Chang, Te-Wei; Wang, Xinhao; Mahigir, Amirreza; Veronis, Georgios; Liu, Gang Logan; Gartia, Manas Ranjan

    2017-08-25

    Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 10 3 ). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 10 10 was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10 -12 M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.

  12. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  13. Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Dousti, M. Reza [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Physics, Tehran-North Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sahar, M.R., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Amjad, Raja J.; Ghoshal, S.K.; Awang, Asmahani [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2013-11-15

    Enhancing the up-conversion luminescence and Raman intensity in rare-earth doped glasses is an important issue for nanophotonics. Erbium-doped zinc tellurite glass with and without silver nanoparticles (NPs) were prepared using melt quenching method. The effect of NPs concentration and annealing time on the Raman and photoluminescence (PL) response were investigated. The presence of silver NPs with Gaussian size distribution having average size ∼12 nm were confirmed by transmission electron microscopy. The Raman spectra consist of six peaks that show red shift. The up-conversion emission exhibits three major visible lines corresponding to the transitions from {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} excited states to {sup 4}I{sub 15/2} ground state of Er{sup 3+} ion. An eight times enhancement in the Raman and five times in photoluminescence (PL) intensities were attributed to the large electric field originated from the face-centered cubic silver NPs. Quenching of PL emission in the visible range for longer annealing time interval was observed and attributed to dissolution of the growth of NPs in the host glass. The prominent absorption plasmon bands of silver were also evidenced that confirms the non-spherical shape of nanoparticles. -- Highlights: • A series of zinc tellurite glass has been prepared by melt quenching technique. • Effect of silver NPs on photoluminescence and Raman response has been investigated. • The average size of silver NPs is estimated to be ∼12 nm having a Gaussian distribution. • Both PL and Raman intensities were enhanced significantly. • Enhancement is discussed in terms of different interactions between Er and Ag NP.

  14. Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Zhang, Su; Jin, Lili

    2015-05-01

    In this paper, surface-enhanced Raman spectroscopy (SERS) was used to detect the changes in blood serum components that accompany rectal cancer. The differences in serum SERS data between rectal cancer patients and healthy controls were examined. Postoperative rectal cancer patients also participated in the comparison to monitor the effects of cancer treatments. The results show that there are significant variations at certain wavenumbers which indicates alteration of corresponding biological substances. Principal component analysis (PCA) and parameters of intensity ratios were used on the original SERS spectra for the extraction of featured variables. These featured variables then underwent linear discriminant analysis (LDA) and classification and regression tree (CART) for the discrimination analysis. Accuracies of 93.5 and 92.4 % were obtained for PCA-LDA and parameter-CART, respectively.

  15. Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu; Li, Tao; Schmidt, Michael Stenbæk

    2018-01-01

    Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodoos...... substrate. The macroscopic uniformity combined with recyclability at conserved high performance is expected to contribute significantly on the overall competitivity of the substrates. These findings show that the gold nanoparticles sliding on recyclable nanohoodoo substrate is a very strong candidate...... 6% across 4 cm. After SERS analyses, the nanohoodoos can be recycled by complete removal of gold via a one-step, simple, and robust wet etching process without compromising performance. After eight times of recycling, the substrate still exhibits identical SERS performance in comparison to a new...

  16. Surface enhanced Raman spectroscopy for urinary tract infection diagnosis and antibiogram

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Constantinos

    2010-02-01

    Urinary tract infection diagnosis and antibiogram require a minimum of 48 hours using standard laboratory practice. This long waiting period contributes to an increase in recurrent infections, rising health care costs, and a growing number of bacterial strains developing resistance to antibiotics. In this work, Surface Enhanced Raman Spectroscopy (SERS) was used as a novel method for classifying bacteria and determining their antibiogram. Five species of bacteria were classified with > 90% accuracy using their SERS spectra and a classification algorithm involving novel feature extraction and discriminant analysis. Antibiotic resistance or sensitivity was determined after just a two-hour exposure of bacteria to ciprofloxacin (sensitive) and amoxicillin (resistant) and analysis of their SERS spectra. These results can become the basis for the development of a novel method that would provide same day diagnosis and selection of the most appropriate antibiotic for most effective treatment of a urinary tract infection.

  17. Detection of Surface-Linked Polychlorinated Biphenyls using Surface-Enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Barten, Jan; Vorobiev, Mikhail

    2017-01-01

    We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was utilized to concentrate PCB molecules within an area of high electromagnetic fields through...... formation of microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a – SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes...... showed only minor differences between standard PCB77 and PCB77-SCH3. Consequently, we observe significantly increased SERS signals for –SCH3 modified PCB77 while retaining most vibrational modes that characterize standard PCB77. Results point towards more efficient path for detecting different PCB...

  18. N-Heterocyclic Carbenes as a Robust Platform for Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    DeJesus, Joseph F; Trujillo, Michael J; Camden, Jon P; Jenkins, David M

    2018-01-31

    Surface-enhanced Raman spectroscopy (SERS) underpins a wide range of commercial and fundamental applications. SERS often relies on ligands, usually thiols, bound to a noble metal surface. The difficulty of straightforward thiol synthesis combined with their instability on surfaces highlights the need for alternative ligand design. We present the first example of SERS utilizing N-heterocyclic carbene ligands. A general three step synthesis is presented for functionalized NHC-CO 2 adducts. These ligands are deposited on SERS-active gold film-over-nanosphere substrates (AuFONs) in solvent-free and base-free conditions, which prevents fouling. The resulting films are found to be robust and capable of postsynthetic modifications.

  19. A nanoforest structure for practical surface-enhanced Raman scattering substrates

    International Nuclear Information System (INIS)

    Seol, Myeong-Lok; Choi, Sung-Jin; Baek, David J; Ahn, Jae-Hyuk; Choi, Yang-Kyu; Jung Park, Tae; Yup Lee, Sang

    2012-01-01

    A nanoforest structure for surface-enhanced Raman scattering (SERS) active substrates is fabricated and analyzed. The detailed morphology of the resulting structure can be easily controlled by modifying the process parameters such as initial gold layer thickness and etching time. The applicability of the nanoforest substrate as a label-free SERS immunosensor is demonstrated using influenza A virus subtype H1N1. Selective binding of the H1N1 surface antigen and the anti-H1 antibody is directly detected by the SERS signal differences. Simple fabrication and high throughput with strong in-plane hot-spots imply that the nanoforest structure can be a practical sensing component of a chip-based SERS sensing system. (paper)

  20. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    Science.gov (United States)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-03-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology.

  1. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies.

    Science.gov (United States)

    Qu, Hua; Lai, Yuming; Niu, Dongzi; Sun, Shuqing

    2013-02-06

    Binary nanoparticles composed of a superparamagnetic Fe(3)O(4) core and an Au nanoshell (Fe(3)O(4)@Au) were prepared via a simple co-precipitation method followed by seed-mediated growth process. The nanoparticles exhibited functions of both fast magnetic response and local surface plasmon resonance. The Fe(3)O(4)@Au nanoparticles were used as probes for surface-enhanced Raman scattering (SERS) using p-thiocresol (p-TC) as reporter molecule. With the ability of analyte capture and concentration magnetically, the Fe(3)O(4)@Au nanoparticles showed significant SERS properties with excellent reproducibility. Under non-optimized conditions, detection limit as low as 4.55 pM of analyte can be reached using Fe(3)O(4)@Au nanoparticle assemblies, which excel remarkably the cases with traditional Au nanoprobes. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Analysis of Genomic DNAs from Nine Rosaceae Species Using Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Lu, Qiu; Lang, Tao; Fan, Shuguo; Chen, Wen; Zang, Deqing; Chen, Jing; Shi, Minzhen

    2015-12-01

    Surface-enhanced Raman scattering (SERS) of genomic DNA was used to determine genetic relationships and species identification of nine plants from three subfamilies of Rosaceae. Genomic DNA was extracted, and the SERS spectra were obtained by using a nanosilver collosol at an excitation wavelength of 785 nm. Adenine and ribodesose were the active sites of genomic DNAs in the silver surface-enhanced Raman spectra. The strong peak at 714 cm(-1) was assigned to the stretching vibration of adenine, the strong peak at 1011cm(-1) contributed to the stretching vibration of the deoxyribose and the scissoring vibrations of cytosine, and the strong peak at 625 cm(-1) is the stretching vibration of glycosidic bond and the scissoring vibrations of guanine. The three-dimensional plot of the first, second, and third principal components showed that the nine species could be classified into three categories (three subfamilies), consistent with the traditional classification. The model of the hierarchical cluster combined with the principal component of the second derivative was more reasonable. The results of the cluster analysis showed that apricot (Prunus armeniaca L.) and cherry (Prunus seudocerasus Lindl.) were clustered into one category (Prunoideae); firethorn (Firethorn fortuneana Li.), loquat (Eriobotrya japonica Lindl.), apple (Malus pumila Mill.), and crabapple (Malus hallianna Koehne.) were clustered into a second category (Pomoideae); and potentilla (Potentilla fulgens Wall.), rose (Rosa chinensis Jacd.), and strawberry (Fragaria chiloensis Duchesne.) were clustered into a third category (Rosoideae). These classifications were in accordance with the traditional classification with a correction rate of clustering of 100%. The correct rate of species identification was 100%. These five main results indicate that the genetic relationship and species identification of nine Rosaceae species could be determined by using SERS spectra of their genomic DNAs.

  3. Part II: surface-enhanced Raman spectroscopy investigation of methionine containing heterodipeptides adsorbed on colloidal silver.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro; Proniewicz, Leonard M

    2004-05-01

    Surface-enhanced Raman scattering (SERS) spectra of methionine (Met) containing dipeptides: Met-X and X-Met, where X is: L-glycine (Gly), L-leucine (Leu), L-proline (Pro), and L-phenylalanine (Phe) are reported. Using pre-aggregated Ag colloid we obtained high-quality SERS spectra of these compounds spontaneously adsorbed on colloidal silver. Additionally, we measured Raman spectra (RS) of these heterodipeptides in a solid state as well as in acidic and basic solutions. The RS and SERS spectra of Met-X and X-Met presented in this work appear to be different. One of the most prominent and common features in the SERS spectra of all these dipeptides is a band in the 660-690 cm(-1) range that is due to the C-S stretching, v(CS), vibration of Met. This suggests that all the abovementioned compounds adsorb on the silver surface through a thioether atom. On the other hand, the SERS spectra of X-Met show clearly that not only the S atom but also the carboxylate group interact with the colloid surface as manifested by the enhancement of bands in the 920-930 and 1380-1396 cm(-1) regions. These bands are ascribed to the v(C-COO(-)) and v(sym)(COO(-)) vibrations, respectively. Additionally, a SERS spectrum of Phe-Met indicates that the interaction of the thioether atom, amine group, and aromatic side chain with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide.

  4. Infrared and Raman Spectroscopic Study of Carbon-Cobalt Composites

    Directory of Open Access Journals (Sweden)

    André Tembre

    2011-01-01

    Full Text Available Analysis of carbon-cobalt thin films using infrared spectroscopy has shown existence of carbon-cobalt stretching mode and great porosity. The Raman spectroscopy and high-resolution transmission electron microscopy have been used in order to investigate the microstructure of the films. These films exhibit complex Raman spectra suggesting the presence of amorphous and crystallized phases. The different fractions of phases and the correlation between the atomic bond structures and the Raman features depend on the cobalt content.

  5. Infrared and Raman Spectroscopic Study of Carbon-Cobalt Composites

    OpenAIRE

    André Tembre; Jacques Hénocque; Martial Clin

    2011-01-01

    Analysis of carbon-cobalt thin films using infrared spectroscopy has shown existence of carbon-cobalt stretching mode and great porosity. The Raman spectroscopy and high-resolution transmission electron microscopy have been used in order to investigate the microstructure of the films. These films exhibit complex Raman spectra suggesting the presence of amorphous and crystallized phases. The different fractions of phases and the correlation between the atomic bond structures and the Raman feat...

  6. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    Science.gov (United States)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  7. Photoluminescence and Raman Spectroscopy Studies of Carbon Nitride Films

    Directory of Open Access Journals (Sweden)

    J. Hernández-Torres

    2016-01-01

    Full Text Available Amorphous carbon nitride films with N/C ratios ranging from 2.24 to 3.26 were deposited by reactive sputtering at room temperature on corning glass, silicon, and quartz as substrates. The average chemical composition of the films was obtained from the semiquantitative energy dispersive spectroscopy analysis. Photoluminescence measurements were performed to determine the optical band gap of the films. The photoluminescence spectra displayed two peaks: one associated with the substrate and the other associated with CNx films located at ≈2.13±0.02 eV. Results show an increase in the optical band gap from 2.11 to 2.15 eV associated with the increase in the N/C ratio. Raman spectroscopy measurements showed a dominant D band. ID/IG ratio reaches a maximum value for N/C ≈ 3.03 when the optical band gap is 2.12 eV. Features observed by the photoluminescence and Raman studies have been associated with the increase in the carbon sp2/sp3 ratio due to presence of high nitrogen content.

  8. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT.

    Science.gov (United States)

    Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Kovalenko, V I

    2016-09-05

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614cm(-1) in the experimental IR spectrum and by bands at 3327, 3241cm(-1) in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular NH⋯S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Raman spectrometric studies of selected lanthanide tribromides and trichlorides

    International Nuclear Information System (INIS)

    Daniel, J.F.

    1988-03-01

    Laser Raman spectroscopy was used to identify the crystal structures of lanthanide and actinide compounds. The phonon Raman spectrum is characteristic of the particular crystal structure. GdCl 3 exhibits two crystal structures, the UCl 3 -type hexagonal and the PuBr 3 -type orthorhombic. In the literature it is reported that the low temperature form is orthorhombic; results of experiments here suggest that it is hexagonal. Interconversion between these two forms can be accomplished with temperature andor pressure. In the present work laser Raman spectrometry was used to monitor crystal structure changes in GdCl 3 as a function of temperature or pressure to determine the temperature or pressure at which the hexagonal-to-orthorhombic transformation occurs. Raman spectroscopy was also used to determine the symmetry assignments for the Raman-active bands of a single crystal. Raman spectra of polycrystalline NdBr 3 have been recorded at room temperature and pressure and at approximately 100/degree/K. In addition, polarized Raman spectra of a single crystal NdBr 3 have been measured. Based on these polarization measurements, symmetry assignments of eight Raman-active modes were made. These assignments are useful in interpreting the phonon Raman spectrum of any compound exhibiting the PuBr 3 -type orthorhombic structure. 24 figs., 5 tabs

  10. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  11. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering

    Science.gov (United States)

    Bodelón, Gustavo; Montes-García, Verónica; López-Puente, Vanesa; Hill, Eric H.; Hamon, Cyrille; Sanz-Ortiz, Marta N.; Rodal-Cedeira, Sergio; Costas, Celina; Celiksoy, Sirin; Pérez-Juste, Ignacio; Scarabelli, Leonardo; La Porta, Andrea; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M.

    2016-11-01

    Most bacteria in nature exist as biofilms, which support intercellular signalling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. As QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in situ, label-free detection of a QS signalling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.

  12. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  13. Coupling of column liquid chromatography and surface-enhanced resonance Raman spectroscopy via a thin-layer chromatographic plate.

    NARCIS (Netherlands)

    Coulter, S.K.; Gooijer, C.; Velthorst, N.H.; Brinkman, U.A.T.; Somsen, G.W.

    1997-01-01

    Surface-enhanced resonance Raman (SERR) spectroscopy was used to characterize compounds separated by column liquid chromatography (LC). Three percent of the effluent from a conventional-size LC column were immobilized on a moving thinlayer chromatography (TLC) plate using a spray-jet

  14. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced raman spectroscopy an chemometric analysis

    Science.gov (United States)

    The intrinsic surface-enhanced Raman scattering (SERS) was used for differentiating and classifying bacterial species with chemometric data analysis. Such differentiation has often been conducted with an insufficient sample population and strong interference from the food matrices. To address these ...

  15. Surface-Enhanced Raman Scattering Activity of Ag/graphene/polymer Nanocomposite Films Synthesized by Laser Ablation

    Czech Academy of Sciences Publication Activity Database

    Siljanovska Petreska, G.; Blazevska-Gilev, J.; Fajgar, Radek; Tomovska, R.

    2014-01-01

    Roč. 564, AUG 1 (2014), s. 115-120 ISSN 0040-6090 Grant - others:NATO SfP(US) 984399 Institutional support: RVO:67985858 Keywords : laser ablation * surface-enhanced raman scattering * nanocomposite s * graphene * rhodamine 6G Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.759, year: 2014

  16. Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integtrated in a centrifugal microfluidic platform

    DEFF Research Database (Denmark)

    Durucan, Onur; Morelli, Lidia; Schmidt, Michael Stenbæk

    2015-01-01

    In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal...

  17. Surface- and tip-enhanced Raman scattering of bradykinin onto the colloidal suspended Ag surface.

    Science.gov (United States)

    Swiech, D; Ozaki, Y; Kim, Y; Proniewicz, E

    2015-07-14

    In this paper, surface- (SERS) and tip-enhanced Raman scattering (TERS) techniques were used to determine the adsorption mode of bradykinin (BK), a small peptide implicated in, for example, carcinoma growth, onto colloidal suspended Ag surfaces under various environmental conditions, including: peptide concentrations (10(-5)-10(-7) M), excitation wavelengths (514.5 and 785.0 nm), and pH of aqueous sol solutions (from pH = 3 to pH = 11). The metal surface plasmon and rheology of the colloidal suspended Ag surface were explored by ultraviolet-visible (UV-Vis) spectroscopy and atomic force/scanning electron microscopy (AFM/SEM). The SERS results indicated that the peptide concentration of 10(-5) M was the optimal peptide concentration for monolayer colloidal coverage. The Phe(5/8) and Arg(9) residues of BK generally participated in the interactions with colloidal suspended Ag surfaces. The amide group appeared to be arranged in the same manner to the Ag surface in the pH range of 3 to 11. At acidic pH of the solution (pH = 3 to 5), the BK -COO(-) terminal group binds to the Ag surface as a bidentate (at pH = 3) or monodentate (at pH = 5) chelating ligand. At pH = 11, the imino group of Arg(9), probably due to its -C[double bond, length as m-dash]N(⊕)H2 protonation state, was not involved in the interaction with Ag. The reduction in the solution alkalinity (pH = 9) produced the deprotonation of the -C=N(⊕)H2 group followed by group rearrangement in a way favoring the interaction between the lone electron pair on N and Ag. The TERS studies confirmed the proposed, on the basis of SERS, behavior of BK onto the colloidal suspended Ag at pH = 7 and showed that in different points of the colloidal suspended Ag surface the same peptide fragments approximately having the same orientations with respect to this surface interact with it.

  18. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Zhang, Weiqing; Liu, Jie; Niu, Wenxin; Yan, Heng; Lu, Xianmao; Liu, Bin

    2018-04-19

    Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO 3 used. Upon 785 nm excitation, single Au-Ag NC 350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.

  19. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  20. Raman Studies of the Nanostructure of Sol-Gel Materials

    Science.gov (United States)

    Doss, Calvin James

    Four sol-gel systems (alumina, aluminum hydroxide, zirconia, and magnesia) were investigated, primarily by laser spectroscopy, on several series of materials prepared by systematically varying the synthesis procedures. Nanocrystalline boehmite, gamma -AlO(OH), was found to be the principal component in the sol-gel alumina system. Materials were prepared by the hot-water hydrolysis/condensation of rm Al(OC_4H_9)_3, the Yoldas process, as a function of process variables such as the time spent in the sol phase. Small but systematic changes, as a function of sol aging time, were discovered in the lineshape and position of the dominant boehmite Raman band observed in the alumina hydrogels. These spectral changes were interpreted in terms of nanocrystallinity-induced finite-size effects associated with the slow growth of AlO(OH) nanocrystals in the sol. X-ray diffraction experiments were used to determine nanocrystal sizes (as small as 3 nm for gels prepared from fresh sols) and to estimate growth kinetics from the Raman-lineshape results. These results appear to be among the first available for crystallite growth kinetics (ripening) in the near-atomic-scale nanocrystal regime. The trihydroxide polymorph system is closely related to the sol-gel alumina system. The processing temperature and the method of hydrolysis were varied, in order to determine their effect on the trihydroxide phase mix. The trihydroxide phase mix does not change with time; it depends only on the initial hydrolysis conditions. Bayerite is the primary phase present for materials processed at 25 C, while nordstrandite is the primary phase present for materials processed at 60 C. It is shown that the trihydroxide crystal nucleation kinetics are responsible for the Al(OH)_3 phase mix. Hydroxide/oxyhydroxide phase-mix kinetics were also studied; this ratio increases with time. The associated rate constant decreases with increasing temperature. Sol-gel zirconia was prepared by using atmospheric water to

  1. Gripe water-mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kirubha, E.; Vishista, K.; Palanisamy, P. K.

    2014-11-01

    In the present study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple, eco-friendly and `green' method using gripe water as reducing as well as stabilizing agent. Control over the dispersity of silver (Ag) nanoparticles was attained by altering the synthesis process. The size and morphology of the particles were perceived using high-resolution transmission electron microscope and the surface plasmon resonance of the prepared nanoparticles was observed by UV-VIS spectrum. Herein, we report the nonlinear optical behavior and surface-enhanced Raman spectroscopy of silver nanoparticles with different particle size and dispersity. The nonlinear optical behavior was studied by single beam Z-scan technique using tunable Ti: Sapphire mode-locked femtosecond laser as source. The nonlinear optical parameters such as the nonlinear refractive index, nonlinear absorption coefficient β and the third-order nonlinear susceptibility χ 3 of the prepared Ag nanoparticles were obtained for various wavelengths by tuning the wavelength of the laser from 700 to 950 nm. Surface-enhanced Raman spectroscopy (SERS) is an inspiring phenomenon especially in the case of silver nanoparticles. The as-synthesized silver nanoparticles show huge enhancements in the order of 109 in the Raman spectrum of rhodamine 6G dye.

  2. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)

    OpenAIRE

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-01-01

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a stro...

  3. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    Science.gov (United States)

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  4. In and ex vivo breast disease study by Raman spectroscopy

    DEFF Research Database (Denmark)

    Raniero, L.; Canevari, R. A.; Ramalho, L. N. Z.

    2011-01-01

    In this work, Raman spectra in the 900-1,800 cm(-1) wavenumber region of in vivo and ex vivo breast tissues of both healthy mice (normal) and mice with induced mammary gland tumors (abnormal) were measured. In the case of the in vivo tissues, the Raman spectra were collected for both transcutaneo...

  5. SEM and Raman studies of CNT films on porous Si

    Science.gov (United States)

    Belka, R.; Keczkowska, J.; Suchańska, M.; Firek, P.; Wronka, H.; Kozłowski, M.; Radomska, J.; Czerwosz, E.; Craciunoiu, F.

    2017-08-01

    Carbon nanotube (CNT) films deposited on different porous silica substrates were studied by Scanning Electron Microscopy (SEM) and Raman Spectroscopy (RS). The films samples were prepared by a two-step method consisting of PVD and CVD processes. In the first step the nanocomposite Ni-C film was obtained by evaporation in dynamic vacuum from two separated sources of fullerenes and nickel acetate. Those films were deposited on porous silica and DLC/porous silica substrates. Analysis of SEM imaging showed that the obtained film are composed of carbon nanotubes, the distribution, size and quality of which depend on the type of substrate. The CNT films were studied by RS method to determine the influence of the substrate type on disordering of carbonaceous structure and quality of CNT in deposited films.

  6. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    Science.gov (United States)

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures.

  7. DEPENDENCE OF THE SURFACE-ENHANCED RAMAN SCATTERING SIGNAL ON THE SHAPE OF SILVER NANOSTRUCTURES GROWN IN THE SiO2 /n-Si POROUS TEMPLATE

    Directory of Open Access Journals (Sweden)

    D. V. Yakimchuk

    2017-01-01

    Full Text Available Surface-enhanced Raman scattering is a powerful method used in chemoand biosensorics. The aim of this work was to determine the relationship between the signal of Surface-enhanced Raman scattering and the shape of silver nanostructures under the influence of laser radiation with different power.Plasmonic nanostructures were synthesized in silicon dioxide pores on monocrystalline silicon n-type substrate. The pores were formed using ion-track technology and selective chemical etching. Silver deposition was carried out by galvanic displacement method. Synthesis time was chosen as a parameter that allows controlling the shape of a silver deposit in the pores of silicon dioxide on the surface of single-crystal n-silicon during electrodeless deposition. Deposition time directly effects on the shape of metal nanostructures.Analysis of the dynamics of changing the morphology of the metal deposit showed that as the deposition time increases, the metal evolves from individual metallic crystallites within the pores at a short deposition time to dendritic-like nanostructures at a long time. The dependence of the intensity of Surface-enhanced Raman scattering spectra on the shape of the silver deposit is studied at the powers of a green laser (λ = 532 nm from 2.5 μW to 150 μW on the model dye analyte Rodamin 6G. The optimum shape of the silver deposit and laser power is analyzed from this point of view design of active surfaces for Surface-enhanced Raman scattering with nondestructive control of small concentrations of substances.The silver nanostructures obtained in porous template SiO2 on n-type silicon substrate could be used as plasmon-active surfaces for nondestructive investigations of substances with low concentrations at low laser powers. 

  8. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  9. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-01-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H 2 O 2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H 2 O 2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  10. n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study

    OpenAIRE

    Zivcova, Z. Vlckova; Frank, O.; Drijkoningen, Sien; Haenen, Ken; Mortet, Vincent; Kavan, L.

    2016-01-01

    Electrochemical and in situ Raman spectroelectrochemical characterization of n-type phosphorus-doped nanocrystalline diamond (P-NCD) is carried out. The P-NCD films are grown by microwave plasma enhanced chemical vapour deposition and doped with phosphorus at a concentration of 10 000 ppm in the gas phase. Micro-Raman spectroscopy determines the film quality (presence of graphitic or amorphous phases). All electrochemical measurements are performed in aqueous 0.5 M H2SO4 electrolyte solution....

  11. Transcutaneous Raman Spectroscopy of Murine Bone In Vivo

    OpenAIRE

    Schulmerich, Matthew V.; Cole, Jacqueline H.; Kreider, Jaclynn M.; Esmonde-White, Francis; Dooley, Kathryn A.; Goldstein, Steven A.; Morris, Michael D.

    2009-01-01

    Raman spectroscopy can provide valuable information about bone tissue composition in studies of bone development, biomechanics, and health. In order to study the Raman spectra of bone in vivo, instrumentation that enhances the recovery of subsurface spectra must be developed and validated. Five fiber-optic probe configurations were considered for transcutaneous bone Raman spectroscopy of small animals. Measurements were obtained from the tibia of sacrificed mice, and the bone Raman signal was...

  12. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)

    Science.gov (United States)

    Liang, Lijia; Zheng, Chao; Zhang, Haipeng; Xu, Shuping; Zhang, Zhe; Hu, Chengxu; Bi, Lirong; Fan, Zhimin; Han, Bing; Xu, Weiqing

    2014-11-01

    The characteristics of type II microcalcifications in fibroadenoma (FB), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) breast tissues has been analyzed by the fingerprint features of Raman spectroscopy. Fresh breast tissues were first handled to frozen sections and then they were measured by normal Raman spectroscopy. Due to inherently low sensitivity of Raman scattering, Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique was utilized. A total number of 71 Raman spectra and 70 SHINERS spectra were obtained from the microcalcifications in benign and premalignant breast tissues. Principal component analysis (PCA) was used to distinguish the type II microcalcifications between these tissues. This is the first time to detect type II microcalcifications in premalignant (ADH and DCIS) breast tissue frozen sections, and also the first time SHINERS has been utilized for breast cancer detection. Conclusions demonstrated in this paper confirm that SHINERS has great potentials to be applied to the identification of breast lesions as an auxiliary method to mammography in the early diagnosis of breast cancer.

  13. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    Science.gov (United States)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  14. Industrial Applications of the Surface-Enhanced Raman Spectroscopy Application industrielle du SERS

    Directory of Open Access Journals (Sweden)

    Nabiev I.

    2006-11-01

    Full Text Available Surface-enhanced Raman scattering (SERS spectroscopy is now a well-established phenomenon, which has been thoroughly characterized in a variety of interfacial and colloidal environments. Although some quantitative aspects of the underlying enhancement mechanisms apparently remain unresolved, attention is now shifting towards application of SERS to explore phenomena of chemical, physical, biological and industrial significance. The goal of this review is to appreciate the industrial value of innovative SERS technique on the basis of our experience in development of new SERS-active substrates and in their biomedical and biotechnological applications. Examples of diverse SERS analytical applications as well as some very recent facilities, as SERS microprobe analysis, SERS fiber optics probes, FT-SERS spectroscopy, SERS detection for high-performance liquid chromatography, etc. , are also discussed. Le SERS (Surface Enhanced Raman Spectroscopy est un phénomène aujourd'hui bien connu qui a été étudié dans toute une gamme de milieux interfaciaux et colloïdaux. Si certains aspects quantitatifs des mécanismes d'exaltation restent apparemment non résolus, l'attention se porte à présent vers l'application de la spectroscopie SERS à l'exploration de phénomènes présentant un intérêt chimique, physique, biologique et industriel. L'objectif de cet article est d'estimer la valeur industrielle des nouvelles techniques de spectroscopie SERS à partir de notre expérience dans le développement de nouveaux substrats actifs en SERS et leurs applications biomédicales et biotechnologiques. Les auteurs discutent également des exemples de diverses applications analytiques de la spectroscopie SERS ainsi que de quelques procédés très récents : analyse par microsonde SERS, sondes SERS à fibres optiques, spectroscopie FT-SERS, détection SERS pour la chromatographie haute performance en phase liquide, etc.

  15. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  16. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering

    Science.gov (United States)

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong

    2017-06-01

    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.

  17. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  18. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  19. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    McMahon, Jeffrey M; Henry, Anne-Isabelle; Wustholz, Kristin L; Natan, Michael J; Freeman, R Griffith; Van Duyne, Richard P; Schatz, George C

    2009-08-01

    Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.

  20. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  1. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    Science.gov (United States)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  2. Determination of Benzylpenicillin Potassium Residues in Duck Meat Using Surface Enhanced Raman Spectroscopy with Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yijie Peng

    2016-01-01

    Full Text Available A new method using surface enhanced Raman spectroscopy (SERS with Au nanoparticles was established for the rapid detection of benzylpenicillin potassium (PG residues in duck meat. Au nanoparticles were used as SERS enhancement substrate, and the maximum absorption peak of Au nanoparticles using the UV-Vis spectrophotometer was 548 nm. In the research, the SERS spectra of PG solutions and PG duck meat extract as well as their vibrational assignment were analyzed. The effects of Au nanoparticles addition, sample addition, NaCl solution addition, and adsorption time on the SERS intensities of PG duck meat extract were discussed. It is revealed that a good linearity can be obtained between the SERS intensities at 993 cm−1 and the PG residues concentrations (0.5~15.0 mg·L−1 detected in duck meat extract. The linear equation was Y=831.68X+1997.1, and the determination coefficient was 0.9553. The determination coefficient of PG in duck meat extract between the actual values and the predictive values was 0.9757, and the root mean square error (RMSEP was 0.6496 mg/L. The recovery rate of PG in duck meat extract was 90~121%. The results showed that the method using SERS with Au nanoparticles could pave a new way for the rapid detection of PG residues in duck meat.

  3. Surface enhanced raman spectroscopy on nucleic acids and related compounds adsorbed on colloidal silver particles

    Science.gov (United States)

    Kneipp, K.; Pohle, W.; Fabian, H.

    1991-04-01

    Various nucleic acids and related compounds have been investigated by surface enhanced Raman spectroscopy (SERS) on silver sol. The time delay between the addition of the various nucleic acids to the silver sol and the appearance of their SER spectra, i.e. the time needed by the various molecules to adsorb on an active site of the silver surface with an adsorption geometry which allows a SERS enhancement, shows strong differences. For instance, an immediate appearance of SER spectra has been found for DNA, whereas ribonucleic acids (RNAs) demonstrated a strong time delay (up to days) of the appearance of their SER spectra. This delay can be tentatively explained by the higher rigidity of RNA molecules compared with DNA. The more flexible DNA molecules are better adaptable to adsorption on silver than RNAs. The SER spectra of RNAs and DNAs showed strong changes within their relative line intensities as a function of time before they achieved stationary conditions, which indicates a protracted re-arrangement of the large molecules on the silver surface.

  4. Surface enhanced Raman spectroscopy (SERS for in vitro diagnostic testing at the point of care

    Directory of Open Access Journals (Sweden)

    Marks Haley

    2017-06-01

    Full Text Available Point-of-care (POC device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere – from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  5. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues.

    Science.gov (United States)

    Huang, Zhiwei; Lui, Harvey; McLean, David I; Korbelik, Mladen; Zeng, Haishan

    2005-01-01

    The diagnostic ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy, NIR autofluorescence spectroscopy and the composite Raman and NIR autofluorescence spectroscopy, for in vivo detection of malignant tumors was evaluated in this study. A murine tumor model, in which BALB/c mice were implanted with Meth-A fibrosarcoma cells into the subcutaneous region of the lower back, was used for this purpose. A rapid-acquisition dispersive-type NIR Raman system was employed for tissue Raman and NIR autofluorescence spectroscopic measurements at 785-nm laser excitation. High-quality in vivo NIR Raman spectra associated with an autofluorescence background from mouse skin and tumor tissue were acquired in 5 s. Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were used to develop diagnostic algorithms for differentiating tumors from normal tissue based on their spectral features. Spectral classification of tumor tissue was tested using a leave-one-out, cross-validation method, and the receiver operating characteristic (ROC) curves were used to further evaluate the performance of diagnostic algorithms derived. Thirty-two in vivo Raman, NIR fluorescence and composite Raman and NIR fluorescence spectra were analyzed (16 normal, 16 tumors). Classification results obtained from cross-validation of the LDA model based on the three spectral data sets showed diagnostic sensitivities of 81.3%, 93.8% and 93.8%; specificities of 100%, 87.5% and 100%; and overall diagnostic accuracies of 90.6%, 90.6% and 96.9% respectively, for tumor identification. ROC curves showed that the most effective diagnostic algorithms were from the composite Raman and NIR autofluorescence techniques.

  6. Sensitive surface-enhanced Raman scattering activity of triple gold/silver/graphene oxide nanostructures decorated on gold nanowire arrays

    Science.gov (United States)

    Xu, Xiaodi; Ma, Yi; Du, Yuanyuan; Jiang, Tao; Zhou, Jun; Zhao, Ziqi

    2018-01-01

    Triple core–shell gold/silver/graphene oxide (Au/Ag/GO) nanoparticles (NPs) decorated on Au nanowire arrays as sensitive, reproducible, and low-cost platforms for surface-enhanced Raman spectroscopy (SERS) were introduced. An in situ reducing method was used to synthesize core–shell Au/Ag NPs with inbuilt 4-mercaptobenzoic acid, which gave prominent SERS signals. Subsequently, a second ultrathin shell of GO was constructed on the Ag shell to improve the SERS intensity and homogeneity. Details on stability of the Raman enhancement were discussed by mapping of SERS spectra. A composite structure was finally designed by decorating the triple core–shell Au/Ag/GO NPs onto a vertically aligned ultrathin Au nanowire forest to provide additional enhancement of the SERS signals. This hetero structure will provide an alternative choice for the effective SERS substrate.

  7. Defects in Individual Semiconducting Single Wall Carbon Nanotubes: Raman Spectroscopic and in Situ Raman Spectroelectrochemical Study

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Hsieh, Y. P.; Farhat, H.; Kavan, Ladislav; Hofmann, M.; Kong, J.; Dresselhaus, M. S.

    2010-01-01

    Roč. 10, č. 11 (2010), s. 4619-4626 ISSN 1530-6984 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single wall carbon nanotubes * Raman spectroscopy * defects Subject RIV: CG - Electrochemistry Impact factor: 12.186, year: 2010

  8. Infrared and Raman spectroscopic study of ion pairing of strontium(II ...

    African Journals Online (AJOL)

    ABSTRACT. Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both ν(CN) and ν(CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  9. Surface enhanced Raman spectroelectrochemistry of a μ-oxo triruthenium acetate cluster: an experimental and theoretical approach.

    Science.gov (United States)

    Santos, Jonnatan J; Ando, Romulo A; Toma, Sergio H; Corio, Paola; Araki, Koiti; Toma, Henrique E

    2015-10-05

    Surface enhanced Raman spectroelectrochemistry (SERS) spectroelectrochemistry provides a very sensitive technique to investigate the vibrational characteristics of coordination compounds and their particular behavior under the influence of plasmonic surfaces, concomitant with the exploitation of their redox properties and electronic spectra. The results, however, depend upon the mechanisms involved in the intensification of Raman spectra associated with the electromagnetic, resonance Raman and charge-transfer excitation at the Fermi levels. By probing the model complex [(Ru3O)(CH3COO)6(4,4'-bipy)3](n) (n = 1, 0, -1) adsorbed onto rough gold electrode surfaces, contrasting SERS profiles were obtained at several successive redox potentials and oxidation states, which enables a critical discussion on the role of the complex interaction with the gold surface, and the influence of the specific electronic bands in the triruthenium acetate cluster. Density functional theory (DFT) and time-dependent DFT calculations were carried out for the complex bound to an Au20 cluster to show the participation of active lowest unoccupied molecular orbital levels centered on the gold atoms. The corresponding charge-transfer band was predicted around 1200 nm, which supports a charge-transfer interpretation for the SERS response observed at λexc = 1064 nm. The selective enhancement of the vibrational modes was discussed based on the Raman theoretical calculations.

  10. Development of microfluidic devices for in situ investigation of cells using surface-enhanced Raman spectroscopy (Conference Presentation)

    Science.gov (United States)

    Ho, Yu-Han; Galvan, Daniel D.; Yu, Qiuming

    2016-03-01

    Surface-enhanced Raman spectroscopy (SERS) has immerged as a power analytical and sensing technique for many applications in biomedical diagnosis, life sciences, food safety, and environment monitoring because of its molecular specificity and high sensitivity. The inactive Raman scattering of water molecule makes SERS a suitable tool for studying biological systems. Microfluidic devices have also attracted a tremendous interest for the aforementioned applications. By integrating SERS-active substrates with microfluidic devices, it offers a new capability for in situ investigation of biological systems, their dynamic behaviors, and response to drugs or microenvironment changes. In this work, we designed and fabricated a microfluidic device with SERS-active substrates surrounding by cell traps in microfluidic channels for in situ study of live cells using SERS. The SERS-active substrates are quasi-3D plasmonic nanostructure array (Q3D-PNA) made in h-PDMS/PMDS with physically separated gold film with nanoholes op top and gold nanodisks at the bottom of nanowells. 3D finite-difference time-domain (3D-FDTD) electromagnetic simulations were performed to design Q3D-PNAs with the strongest local electric fields (hot spots) at the top or bottom water/Au interfaces for sensitive analysis of cells and small components, respectively. The Q3D-PNAs with the hot spots on top and bottom were placed at the up and down stream of the microfluidic channel, respectively. Each Q3D-PNA pattern was surrounded with cell trapping structures. The microfluidic device was fabricated via soft lithography. We demonstrated that normal (COS-7) and cancer (HpeG2) cells were captured on the Q3D-PNAs and investigated in situ using SERS.

  11. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    Science.gov (United States)

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Bis(aminoethoxy)propane, IR spectra, Raman spectra, Molecular structure, DFT. INTRODUCTION. Ketal based linkages have recently been investigated for the development of novel acid- cleavable polymers those are formulated into the ...

  13. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN

    2003-12-16

    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  14. Infrared absorption and Raman scattering spectroscopic studies of condensed ions

    International Nuclear Information System (INIS)

    Dao, N.Q.; Knidiri, M.

    1975-01-01

    Infrared and Raman spectra of the complex K 5 (UO 2 ) 2 F 9 were recorded in the region 4000 to 80 cm -1 . Factor group analysis was used to classify the internal vibrations of the binuclear ion (UO 2 ) 2 F 9 5- . Infrared and Raman spectra were assigned and splitting of the internal modes of the (UO 2 ) 2 F 9 5- anion interpreted. (author)

  15. Orthorhombic boron oxide under pressure: In situ study by X-ray diffraction and Raman scattering

    Science.gov (United States)

    Cherednichenko, Kirill A.; Le Godec, Yann; Kalinko, Aleksandr; Mezouar, Mohamed; Solozhenko, Vladimir L.

    2016-11-01

    High-pressure phase of boron oxide, orthorhombic β-B2O3, has been studied in situ by synchrotron X-ray diffraction to 22 GPa and Raman scattering to 46 GPa at room temperature. The bulk modulus of β-B2O3 has been found to be 169(3) GPa that is in good agreement with our ab initio calculations. Raman and IR spectra of β-B2O3 have been measured at ambient pressure; all experimentally observed bands have been attributed to the theoretically calculated ones, and the mode assignment has been performed. Based on the data on Raman shift as a function of pressure, combined with equation-of-state data, the Grüneisen parameters of all experimentally observed Raman bands have been calculated. β-B2O3 enriched by 10B isotope has been synthesized, and the effect of boron isotopic substitution on Raman spectra has been studied.

  16. Raman Spectroscopic Methods for Classification of Normal and Malignant Hypopharyngeal Tissues: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Parul Pujary

    2011-01-01

    Full Text Available Laryngeal cancer is more common in males. The present study is aimed at exploration of potential of conventional Raman spectroscopy in classifying normal from a malignant laryngopharyngeal tissue. We have recorded Raman spectra of twenty tissues (aryepiglottic fold using an in-house built Raman setup. The spectral features of mean malignant spectrum suggests abundance proteins whereas spectral features of mean normal spectrum indicate redundancy of lipids. PCA was employed as discriminating algorithm. Both, unsupervised and supervised modes of analysis as well as match/mismatch “limit test” methodology yielded clear classification among tissue types. The findings of this study demonstrate the efficacy of conventional Raman spectroscopy in classification of normal and malignant laryngopharyngeal tissues. A rigorous evaluation of the models with development of suitable fibreoptic probe may enable real-time Raman spectroscopic diagnosis of laryngopharyngeal cancers in future.

  17. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes.

    Science.gov (United States)

    Shan, Feng; Zhang, Xiao-Yang; Fu, Xing-Chang; Zhang, Li-Jiang; Su, Dan; Wang, Shan-Jiang; Wu, Jing-Yuan; Zhang, Tong

    2017-07-28

    One of the main challenges for highly sensitive surface-enhanced Raman scattering (SERS) detection is the noise interference of fluorescence signals arising from the analyte molecules. Here we used three types of gold nanostars (GNSs) SERS probes treated by different surface modification methods to reveal the simultaneously existed Raman scattering enhancement and inhibiting fluorescence behaviors during the SERS detection process. As the distance between the metal nanostructures and the analyte molecules can be well controlled by these three surface modification methods, we demonstrated that the fluorescence signals can be either quenched or enhanced during the detection. We found that fluorescence quenching will occur when analyte molecules are closely contacted to the surface of GNSs, leading to a ~100 fold enhancement of the SERS sensitivity. An optimized Raman signal detection limit, as low as the level of 10 -11  M, were achieved when Rhodamine 6 G were used as the analyte. The presented fluorescence-free GNSs SERS substrates with plentiful hot spots and controllable surface plasmon resonance wavelengths, fabricated using a cost-effective self-assembling method, can be very competitive candidates for high-sensitive SERS applications.

  18. Plasmon-less surface enhanced Raman spectra induced by self-organized networks of silica nanoparticles produced by femtosecond lasers.

    Science.gov (United States)

    Bellouard, Yves; Block, Erica; Squier, Jeff; Gobet, Jean

    2017-05-01

    Raman spectroscopy is the workhorse for label-free analysis of molecules. It relies on the inelastic scattering of incoming monochromatic light impinging molecules of interest. This effect leads to a very weak emission of light spectrum that provides a signature of the molecules being observed. Considerable efforts have been made over the last decades, in particular with the development of Surface Enhanced Raman Spectroscopy (SERS), to enhance the intensity of the emitted signal so that ultimately, traces of molecules can be detected. Here, we show that dense self-organized networks of quasi-monodisperse nanoparticles redepositing during femtosecond laser ablation of trenches in fused silica can lead to a significant field enhancement effect, enabling the Raman detection of a single-molecule layer deposited on the surface (so called monolayer). Unlike previously reported for SERS experiments, here, there is no metal layer promoting plasmonics effects causing localized field enhancement. The method for producing SERS substrates is therefore quite straightforward and low cost.

  19. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  20. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  1. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  2. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap.

    Science.gov (United States)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-02-19

    Gaps with single-nanometer dimensions (foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene-SiO2-Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au-graphene-Cu hybrid configuration as an SERS substrate.

  3. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.

  4. Detection of Ractopamine and Clenbuterol Hydrochloride Residues in Pork Using Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Zhao, J. H.; Yuan, H. C.; Peng, Y. J.; Hong, Q.; Liu, M. H.

    2017-03-01

    Surface enhanced Raman spectroscopy (SERS) coupled with chemometric methods, such as adaptive iteratively reweighted penalized least squares (AIR-PLS), wavelet transform, and least squares support vector machine (LSSVM), was investigated to realize the rapid detection and identifi cation of ractopamine (RAC) and clenbuterol hydrochloride (CL) residues in pork. First-level wavelet detail signal intensities at 1168 cm-1 were used to establish a standard curve of the RAC residues in pork, and the linear regression equation and the correlation coefficient were y = -4. 3683x - 11.059 and -0.9726. Second-level wavelet detail signal intensities at 1258 cm-1 were used to establish a standard curve of the CL residues in pork, and the linear regression equation and the correlation coeffi cient were y=33.595x + 36.538 and 0.9842. The second-level wavelet detail signals of the SERS spectra were selected as the inputs of the LSSVM classifi cation model for the identifi cation of the RAC and CL residues in pork, with a total accuracy rate reaching 100%. The experimental results demonstrate that the proposed method based on SERS is a good detection scheme for the rapid detection and identifi cation of RAC and CL residues in pork.

  5. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers

    Directory of Open Access Journals (Sweden)

    Joseph Smolsky

    2017-01-01

    Full Text Available Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS.

  6. MoS2-based nanocomposites for surface enhanced Raman scattering

    Science.gov (United States)

    Li, Juan; Zhang, Weina; Lei, Hongxiang; Li, Baojun

    2018-01-01

    Molybdenum disulfide (MoS2) monolayer, a two dimensional (2D) layered transition metal dichalcogenides with its novel nanoelectronic and optoelectronic properties has been investigated and applied widely. MoS2-based hybrid composites have shown great potential in chemical and biological fields by combining the advantages of several structures. In our work, a SERS-active substrate was fabricated by combining the MoS2 monolayer with Ag Nanowire (NW)-Nanoparticle (NP) structures using a spin-coated method. This AgNW-AgNP-MoS2 hybrid structure was characterized by SEM, UV-Vis and Raman spectroscopy. Experimental results indicate that strong SERS signals of rhodamine 6G (R6G) molecules is able to be achieved at the "hotspot" formed in this hybrid structure. The enhancement factor is high up to 106 as the incident laser is polarized perpendicular to the NW and the limit of detection is found to be as low as 10-11 M. Besides, the fabricated SERS substrate was reliable and reproducible, which showed great potential to be an excellent SERS substrate for chemical and biological detection.

  7. Surface-Enhanced Raman Scattering of MEH-PPV on Gold and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Beatriz R. Moraes

    2018-01-01

    Full Text Available The interaction of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV with Au or Ag nanospheres, Au nanostars, and Ag nanoprisms was investigated using surface-enhanced Raman scattering (SERS. The SERS investigation showed that adsorption of MEH-PPV strongly depends on the nature of the nanoparticle surface. On gold nanostars that present a thick layer of capping polymer, SERS spectrum is only observed in relatively concentrated MEH-PPV solution (1 mmol L−1. On the other hand, Au and Ag nanospheres present SERS spectra down to 10−6 mol L−1 and no chemical interaction of MEH-PPV and metal surface is observed. The spectra of MEH-PPV on Ag nanoprisms with PVP as stabilizing agent suggest that the capping polymer induces a planar conformation of MEH-PPV and consequently an increase of conjugation length. These results give support for the application of MEH-PPV on optoelectronics in which interfacial effects are critical in the device efficiency and stability.

  8. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Mikella E. Hankus

    2011-03-01

    Full Text Available We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs with surface enhanced Raman scattering (SERS. The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT. Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3 × 10−5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

  9. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  10. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.

    Science.gov (United States)

    Lee, Chang H; Hankus, Mikella E; Tian, Limei; Pellegrino, Paul M; Singamaneni, Srikanth

    2011-12-01

    We report a novel surface enhanced Raman scattering (SERS) substrate platform based on a common filter paper adsorbed with plasmonic nanostructures that overcomes many of the challenges associated with existing SERS substrates. The paper-based design results in a substrate that combines all of the advantages of conventional rigid and planar SERS substrates in a dynamic flexible scaffolding format. In this paper, we discuss the fabrication, physical characterization, and SERS activity of our novel substrates using nonresonant analytes. The SERS substrate was found to be highly sensitive, robust, and amiable to several different environments and target analytes. It is also cost-efficient and demonstrates high sample collection efficiency and does not require complex fabrication methodologies. The paper substrate has high sensitivity (0.5 nM trans-1,2-bis(4-pyridyl)ethene (BPE)) and excellent reproducibility (~15% relative standard deviation (RSD)). The paper substrates demonstrated here establish a novel platform for integrating SERS with already existing analytical techniques such as chromatography and microfluidics, imparting chemical specificity to these techniques.

  11. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  12. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer.

    Science.gov (United States)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Li, Buhong; Huang, Zufang; Chen, Guannan; Zhang, Wei; Wang, Lan; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2013-07-21

    Based on blood plasma surface-enhanced Raman spectroscopy (SERS) analysis, a simple and label-free blood test for non-invasive cervical cancer detection is presented in this paper. SERS measurements were performed on blood plasma samples from 60 cervical cancer patients and 50 healthy volunteers. Both the empirical approach and multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were employed to analyze and differentiate the obtained blood plasma SERS spectra. The empirical diagnostic algorithm based on the integration area of the SERS spectral bands (1310-1430 and 1560-1700 cm(-1)) achieved a diagnostic sensitivity of 70% and 83.3%, and a specificity of 76% and 78%, respectively, whereas the diagnostic algorithms based on PCA-LDA yielded a better diagnostic sensitivity of 96.7% and a specificity of 92% for separating cancerous samples from normal samples. This exploratory work demonstrates that a silver nanoparticle based SERS plasma analysis technique in conjunction with PCA-LDA has potential for improving cervical cancer detection and screening.

  14. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  15. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  16. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Xia Lixin; Wang Haibo; Wang Jian; Gong Ke; Jia Yi; Zhang Huili; Sun Mengtao

    2008-01-01

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at a power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the ∼1593 cm -1 band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.

  17. Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor

    Science.gov (United States)

    Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.

    2011-06-01

    Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.

  18. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay.

    Science.gov (United States)

    Zhu, Guichi; Hu, Yongjun; Gao, Jiao; Zhong, Liang

    2011-07-04

    In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL(-1)) with a lower limit of detection (ca. 0.1 pg mL(-1)) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Raman Microimaging Using a Novel Multifiber-Based Device: A Feasibility Study on Pharmaceutical Tablets

    Directory of Open Access Journals (Sweden)

    Sana Tfaili

    2012-01-01

    Full Text Available Raman microimaging is a potential analytical technique in health field and presents many possible pharmaceutical applications. In this study, we tested a micrometer spatial resolution probe coupled to a portable Raman imager via an indexed multifiber bundle. At the level of the probe, the fibers were arranged in a circular geometry in order to fit to the pupil of an objective. The imaging potential of this Raman system was assessed on pharmaceutical-like pellets. We showed that this setup permits to record, nearly in real time, Raman images with a micrometer resolution. The collected images revealed a marked heterogeneity in chemicals distribution. Further investigations will be led on cells and biological tissues to evaluate the potential of this Raman imaging device for biomedical applications.

  20. Use of a fractal-like gold nanostructure in surface-enhanced raman spectroscopy for detection of selected food contaminants.

    Science.gov (United States)

    He, Lili; Kim, Nam-Jung; Li, Hao; Hu, Zhiqiang; Lin, Mengshi

    2008-11-12

    The safety of imported seafood products because of the contamination of prohibited substances, including crystal violet (CV) and malachite green (MG), raised a great deal of concern in the United States. In this study, a fractal-like gold nanostructure was developed through a self-assembly process and the feasibility of using surface-enhanced Raman spectroscopy (SERS) coupled with this nanostructure for detection of CV, MG, and their mixture (1:1) was explored. SERS was capable of characterizing and differentiating CV, MG, and their mixture on fractal-like gold nanostructures quickly and accurately. The enhancement factor of the gold nanostructures could reach an impressive level of approximately 4 x 10(7), and the lowest detectable concentration for the dye molecules was at approximately 0.2 ppb level. These results indicate that SERS coupled with fractal-like gold nanostructures holds a great potential as a rapid and ultra-sensitive method for detecting trace amounts of prohibited substances in contaminated food samples.