WorldWideScience

Sample records for enhanced propylene production

  1. Enhanced propylene production in FCC by novel catalytic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, C.P.; Harris, D.; Xu, M.; Fu, J. [BASF Catalyst LLC, Iselin, NJ (United States)

    2007-07-01

    Fluid catalytic cracking is expected to increasingly supply the additional incremental requirements for propylene. The most efficient route to increase propylene yield from an FCC unit is through the use of medium pore zeolites such as ZSM-5. ZSM-5 zeolite cracks near linear olefins in the gasoline range to LPG olefins such as propylene and butylenes. This paper will describe catalytic approaches to increase gasoline range olefins and the chemistry of ZSM-5 to crack those olefins. The paper will also describe novel catalytic materials designed to increase propylene. (orig.)

  2. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene

    International Nuclear Information System (INIS)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-01-01

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time (∼0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO(reg s ign), with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  3. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  4. Propylene

    Directory of Open Access Journals (Sweden)

    M. Emami

    2007-08-01

    Full Text Available This is a report on the study of high melt flow, highly isotactic polypropylene homopolymer synthesized in liquid monomer using a fifth generation Ziegler-Natta catalytic system. At highest catalyst productivity, the response of thecatalyst to hydrogen as chain transfer is studied. Melt flow rate is controlled by hydrogen as chain transfer from 0.4 to 300 g/10min with changing the amount of hydrogen from 0 to 1400 ppm. Results show that the melt flow rate of homopolymer is increased linearly with increasing the amount of hydrogen in polymerization. The effect of external electron donor on catalyst productivity and stereoregularity of the final product has been studied. The external electron donor on the catalyst caused an increase in polymer isotacticity, but led to decrease in catalyst productivity andits response to hydrogen (i.e., requiring relatively more hydrogen for molecular weight control. This new generation of Z-N catalyst system containing 1,3-diether as internal electron donor has the ability to produce very high MFR polymers (for thin wall parts in combination with narrow molecular weight distribution. These reactor grades of polypropylene have many advantages compared to visbroken (controlled rheology grades such as lower cost and better processability. These resins can be used as homopolymer matrix in sequential polymerization to obtain impactcopolymers (heterophasic copolymers.

  5. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria.

    Science.gov (United States)

    Wagner, Jonathan; Bransgrove, Rachel; Beacham, Tracey A; Allen, Michael J; Meixner, Katharina; Drosg, Bernhard; Ting, Valeska P; Chuck, Christopher J

    2016-05-01

    A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Increase of propylene production and recovery in a PETROBRAS FCC units; Aumento da producao e recuperacao de propeno em uma Unidade de FCC da PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Penna, Elisangela Melo; Pinho, Andrea de Rezende; Wolff, Marcelo Straubel [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Propylene is one of the major petrochemical raw materials and its demand has been growing rapidly in recent years. Projections for future years indicate that the growth in propylene production via pyrolysis tends to be lower than the growth in the demand for ethylene, creating a supply deficit of this product. The FCC units are in a unique position to meet this increase in propylene demand due to its operational flexibility. Although their primary function in recent decades has been the gasoline production, FCC units are often operated for maximizing other products, such as LPG or distillates. At the FCC conversion section, the increase of propylene yield requires some increase in reaction severity, which can be obtained by increasing reactor riser temperature, and the use of catalyst additives based on ZSM-5. However, besides maximizing the propylene production in the reactor, a second objective should be pursued: the propylene recovery increase in the gas recovery section. In this section, the yield is affected by the gas compressor performance, the equipment design and process scheme. Eventually, new equipment may be installed, such as chillers, aimed at improving the absorption system. Predicting a real increase in propylene demand in the Brazilian market, this study aims to evaluate the adequacy of the gas recovery section of a PETROBRAS FCC unit, analyzing the impacts that a new products yields profile, which bend the propylene production compared to a conventional operation, would cause on this unit. In this paper, the main limitations and modifications that would be needed for an operation were identified, aiming at maximizing the propylene production, as well as proposed changes in the hardware of the unit. (author)

  7. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2016-10-01

    Full Text Available Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  8. Alberta propylene upgrading prospects

    International Nuclear Information System (INIS)

    2000-03-01

    A very significant byproduct recovery and purification scheme is at present being prepared by TransCanada Midstream (TCMS). Alberta Economic Development commissioned an independent study to identify propylene supply options while proceeding with the evaluation of various propylene derivatives with regard to their fit with the Alberta context. Identification of chemical companies with derivative interests was also accomplished. By 2005, it is estimated that 280 kilo-tonnes of propylene will be available on an annual basis from byproduct sources. Those sources are oil sands upgraders, ethylene plants and refineries. The ranges of impurities and supply costs vary between the different sources. An option being considered involves pipeline and rail receipt with a major central treating and distillation facility for the production of polymer grade (PG) propylene with propane and other smaller byproducts. Special consideration was given to three chemicals in this study, namely: polypropylene (PP), acrylonitrile (ACN), and acrylic acid (AA). Above average growth rates were identified for these chemicals: demand is growing at 6 to 7 per cent a year for both PP and ACN, while demand for AA grows at 8 per cent annually. Two other possibilities were identified, propylene oxide (PO) and phenol. The study led to the conclusion that low capital and operating costs and shipping costs to the Pacific Rim represent advantages to the development of propylene derivatives in the future in Alberta. 4 refs., 87 tabs., 7 figs

  9. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    Science.gov (United States)

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Differential effects of low-temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of 'Hayward' kiwifruit

    DEFF Research Database (Denmark)

    Antunes, M. D C; Pateraki, I.; Kanellis, A. K.

    2000-01-01

    production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1....... It is concluded that kiwifruit stored at 20°C behaves as a typical climacteric fruit, while at 10°C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (≤ IO°C), are primarily...

  11. The Profile of Anti-inflammatory Activity of Syzigium Aromaticum Volatile Oil in Lotion with Variation Composition of Oleic Acid and Propylene Glycol as Enhancer

    Directory of Open Access Journals (Sweden)

    Fitriah Ardiawijianti Iriani

    2017-08-01

    Full Text Available Essential oil of clove (Syzygium aromaticum containing eugenol has an anti-inflammatory activity. The study was aimed to develop the formulation of lotion by adding of oleic acid and propylene glycol as penetration enhancer. The effect of enhancer composition was also studied. Lotion was prepared with the composition of oleic acid (AO and propylene glycol (PG as follow: 1:0 (FI, 0,5:0,5 (FII, 0:1 (FIII. Capacity an anti-inflammatory of formulation based on parameters of the amount of cells with COX-2 expression, the number of inflammatory cells and the epidermis thickness was evaluated using male mouse strain BALb/C induced by crotton oil as inflammatory agents. The results showed that the increasing composition propylene glycol caused the decreasing of the amount of cells with COX-2 expression (p <0.05, the inflammatory cells (P <0.05 and the epidermis thickness (p <0.05

  12. Metallacyclobutane substitution and its effect on alkene metathesis for propylene production over W-H/Al2O3: Case of isobutene/2-butene cross-metathesis

    KAUST Repository

    Szeto, Kaï Chung

    2013-09-06

    Cross metathesis between 2-butenes and isobutene yielding the valuable products propylene and 2-methyl-2-butene has been investigated at low pressure and temperature using WH3/Al2O3, a highly active and selective catalyst. Two parallel catalytic cycles for this reaction have been proposed where the cycle involving the less sterically hindered tungstacyclobutane intermediates is most likely favored. Moreover, it has been found that the arrangement of substituents on the least thermodynamically favored tungstacyclobutane governs the conversion rate of the cross metathesis reaction for propylene production from butenes and/or ethylene. © 2013 American Chemical Society.

  13. Metallacyclobutane substitution and its effect on alkene metathesis for propylene production over W-H/Al2O3: Case of isobutene/2-butene cross-metathesis

    KAUST Repository

    Szeto, Kaï Chung; Mazoyer, Etienne; Merle, Nicolas; Norsic, Sé bastien; Basset, Jean-Marie; Nicholas, Christopher P.; Taoufik, Mostafa

    2013-01-01

    Cross metathesis between 2-butenes and isobutene yielding the valuable products propylene and 2-methyl-2-butene has been investigated at low pressure and temperature using WH3/Al2O3, a highly active and selective catalyst. Two parallel catalytic cycles for this reaction have been proposed where the cycle involving the less sterically hindered tungstacyclobutane intermediates is most likely favored. Moreover, it has been found that the arrangement of substituents on the least thermodynamically favored tungstacyclobutane governs the conversion rate of the cross metathesis reaction for propylene production from butenes and/or ethylene. © 2013 American Chemical Society.

  14. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

    KAUST Repository

    Swaidan, Ramy J.; Ma, Xiaohua; Litwiller, Eric; Pinnau, Ingo

    2015-01-01

    Effective separation of propylene/propane is vital to the chemical industry where C3H6 is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (α>20) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas C3H6/C3H8 selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.

  15. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

    KAUST Repository

    Swaidan, Ramy Jawdat

    2015-08-06

    Effective separation of propylene/propane is vital to the chemical industry where C3H6 is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (α>20) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas C3H6/C3H8 selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.

  16. Surface compounds and the routes of formation of the reaction products in the interaction of propylene with zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A.A.; Yefremov, A.A.; Mikhalchenko, V.G.; Sokolovskii, V.D.

    1979-06-15

    Temperature programed desorption of propylene and allyl bromide from zinc oxide in the absence and presence of oxygen and an IR spectroscopic study of the adsorbed allyl bromide showed that propylene chemisorbed reversibly as a m-allyl species which may undergo dimerization at higher pressures or temperatures but does not form acrolein because the necessary electron transfer does not proceed on the n-type zinc oxide; that propylene also forms carbon dioxide and water via carbonate/carboxylate intermediates; and that the allyl bromide, which forms cations on the zinc oxide surface, is oxidized to acrolein.

  17. Randomized clinical field trial on the effects of butaphosphan-cyanocobalamin and propylene glycol on ketosis resolution and milk production.

    Science.gov (United States)

    Gordon, J L; LeBlanc, S J; Kelton, D F; Herdt, T H; Neuder, L; Duffield, T F

    2017-05-01

    The purpose of this study was to determine the effects of a butaphosphan-cyanocobalamin combination product (B+C) and 2 durations of propylene glycol treatment (PG; 3 versus 5 d) on ketosis resolution and early lactation milk yield. Cows from 9 freestall herds (8 in Ontario and 1 in Michigan) were tested at weekly intervals between 3 and 16 d in milk. Ketosis was defined as blood β-hydroxybutyrate (BHB) ≥1.2 mmol/L. Ketotic cows were randomly assigned to treatment with 25 mL of B+C or 25 mL of saline placebo for 3 d and 3 or 5 d of 300 g of PG orally in a 2 × 2 factorial arrangement. Outcomes evaluated for all farms included ketosis cure (blood BHB ketosis cure (blood BHB 2.4 mmol/L at the time of enrollment were 1.7 times more likely [95% confidence interval (CI): 1.4 to 2.2] to cure and had a decrease of 0.25 ± 0.11 mmol/L blood BHB at 1 wk after enrollment if treated with 5 d of PG compared with 3 d, though this response was not seen in animals with BHB of 1.2 to 2.4 mmol/L at enrollment. Cows with blood glucose concentrations ketosis diagnosis. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Comparison studies of propylene oxide addition to phenyloctadecanol and phenyloctadecanoic acid and the surface activity studies of their sulphated products

    Directory of Open Access Journals (Sweden)

    Ahmed, M. H.M.

    2001-10-01

    Full Text Available Phenyloctadecanol and phenyloctadecanoic acid were produced via Lewis acid catalyzed reaction of benzene and oleyl alcohol (60 ºC or oleic acid at (80 ºC respectively. A comparison study was achieved for the addition of propylene oxide to both substrates in the presence of base (KOH and Lewis acid (SbCl5 catalysts. It was found that, the hydroxypropylation of both substrates at low temperature via Lewis acid catalyst is more preferable than via the base catalyst. The surface activity of the sulphated products was determined. The results revealed that, the samples produced from alcohol (phenyloctadecanol show a better surface activity than that from acid (phenyloctadecanoic acid. On the other hand the samples produced from both substrates using Lewis acid catalyst have a better surface activity than that produced with the base catalyst.Se ha obtenido feniloctadecanol y ácido feniloctadecanoico vía reacción catalizada ácido de Lewis a partir de benceno y alcohol oleílico (60º C o ácido oleico (80º C respectivamente. Se ha llevado a cabo un estudio comparativo por adición de óxido de propileno a ambos sustratos en presencia de base (KOH y ácido de Lewis (SbCl5 como catalizadores. Se encontró que la hidroxipropilación de ambos sustratos a baja temperatura mediante catálisis ácido de Lewis es preferible a la catálisis básica. Se determinó la actividad superficial de los productos sulfatados. Los resultados mostraron que las muestras producidas a partir de alcohol (feniloctadecanol tenían una mejor actividad superficial que las producidas a partir de ácido (ácido feniloctadecanoico. Por otro lado, las muestras producidas a partir de ambos sustratos utilizando catalizador ácido de Lewis tuvieron una actividad superficial mejor que las producidas con catálisis básica.

  19. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa [School of; Engelhard, Mark H.; Polzin, Bryant J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Wang, Chongmin; Zhang, Ji-Guang; Xu, Wu

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation of a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.

  20. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    Science.gov (United States)

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  1. Study of ethylene/2-butene cross-metathesis over W-H/Al2O 3 for propylene production: Effect of the temperature and reactant ratios on the productivity and deactivation

    KAUST Repository

    Mazoyer, Etienne

    2013-05-01

    A highly active and selective catalyst based on supported tungsten hydride for the cross-metathesis between ethylene and 2-butenes yielding propylene has been investigated at low pressure with various temperatures and feed ratios. At low temperature (120 °C), the catalyst deactivates notably with time on stream. This phenomenon was extensively examined by DRIFTS, TGA, DSC, and solid-state NMR techniques. It was found that a large amount of carbonaceous species were formed due to a side-reaction such as olefin polymerization which took place simultaneously with the metathesis reaction. However, at 150 °C, the catalyst was stable with time and thereby gave a high productivity in propylene. Importantly, the slight increase in temperature clearly disfavored the side reaction. The ratio of ethylene to trans-2-butene was also studied, and surprisingly, the W-H/Al2O3 catalyst is stable and highly selective to propylene even at substoichiometric ethylene ratios. © 2013 Elsevier Inc. All rights reserved.

  2. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa; Engelhard, Mark H.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.

  3. Crystalline Ethylene Oxide and Propylene Oxide Triblock Copolymer Solid Dispersion Enhance Solubility, Stability and Promoting Time- Controllable Release of Curcumin.

    Science.gov (United States)

    Alves, Thais F R; das Neves Lopes, Franciely C C; Rebelo, Marcia A; Souza, Juliana F; da Silva Pontes, Katiusca; Santos, Carolina; Severino, Patricia; Junior, Jose M O; Komatsu, Daniel; Chaud, Marco V

    2018-01-01

    The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Radiation treated propylene polymers

    International Nuclear Information System (INIS)

    Hoffman, W.A. III; Baum, G.A.

    1982-01-01

    A method is provided for imparting improved strength and discoloration resistance to a stabilized propylene polymer that is to be exposed to a sterilizing dose of radiation. From 200 to 400 ppm of a phenolic antioxidant containing an isocyanurate group in its molecular structure, and a thiosynergist in an amount at least 6 times the weight of the antioxidant, are incorporated into the polymer before irradiation

  5. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. I. Carcinogenicity of ethylene oxide in comparison with 1,2-propylene oxide after subcutaneous administration in mice (author's transl)].

    Science.gov (United States)

    Dunkelberg, H

    1981-12-01

    Ethylene oxide is an important initial product for a number of organic compounds and, in addition, is used in the medical field for sterilization. The aim of our experiments was to test ethylene oxide and, as a comparative substance, 1,2-propylene oxide in respect to their cancerogenic effectiveness in animal experiments. Ethylene oxide was administered subcutaneously in three dosages (1.0; 0.3 and 0.1 mg single dosage per mouse) once per week to groups of 100 female NMRI mice respectively. In the case of 1,2-propylene oxide, four dosages were used (2.5; 1.0; 0.3 and 0.1 mg single dosage per mouse). The vehicle was tricaprylin. Administrations were carried out over a period of 95 weeks. The mean total dosage per mouse in the case of ethylene oxide amounted to 64.4; 22.7, and 7.3 mg and, in the case of propylene oxide, to 165.4; 72.8; 21.7 and 6.8 mg. Both substances induced local tumours depending upon the dosage. There were mostly fibrosarcomas. In the case of the groups treated with ethylene oxide the frequency was between 11 and 5% and in the case of the groups treated with 1,2-propylene oxide this was between 16 and 2%. The cancerogenic effect of ethylene oxide and 1,2-propylene oxide determined in animal experiments could, therefore, be confirmed statistically. On the basis of the results presented in this paper, new aspects have arisen for the medical evaluation of ethylene oxide residues in the field of manufacturing and use and in respect to the TLV.

  6. Enhancing hospital productivity

    NARCIS (Netherlands)

    van Hulst, B.L.

    2016-01-01

    Healthcare expenditure in Western countries is substantial and outpaces economic growth, therefore cost containment in healthcare is high on the political agenda. One option is to increase productivity in healthcare, do more with less. This thesis uses the Dutch hospitals as a case-study and

  7. Radon in propylene : unexpected influence of NORM in a chemical plant

    International Nuclear Information System (INIS)

    Scarnichia, Eduardo; Etchepareborda, Andres; Arribere, Maria

    2008-01-01

    This paper describes an incident in a polypropylene plant caused by NORM material, 222 Rn and its daughters; the measurements conducted to determine radon concentration in propylene; the determination of the maximum allowable concentration to operate and the radiation protection issues implied. The growing world demand on polypropylene makes necessary follow the research on the subject. The problems of radon in natural gas, and propane are well known, but there is less information on propylene. The aim of this paper is contribute to overcome this drawback. Propylene is one of the fastest growing petrochemicals, driven primarily by the high growth rate of polypropylene. Polypropylene demand is currently growing in the U.S. at 6 %/yr, and in some regions of the world the growth rate is considerably higher. While steam cracking continues to supply most of the world's propylene, there is an increasing need for propylene from other sources. The growth in steam cracker capacity is driven by the need for ethylene, and co-product propylene production is not keeping up with propylene demand growth. New on-purpose propylene technologies will be required to provide the additional supplies of propylene needed to meet the growth projections. Several on-purpose propylene technologies are available, such as propane dehydrogenation. Remembering that most of the radon follows propane, in the case of propane dehydrogenation the radon concentration in propylene will be very much higher. This world tendency, together with still unclear issues, makes necessary to keep an eye on the subject. (author)

  8. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    Science.gov (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  9. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne; Szeto, Kaï Chung; Norsic, Sé bastien; Garron, Anthony; Basset, Jean-Marie; Nicholas, Christopher P.; Taoufik, Mostafa

    2011-01-01

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi

  10. Interaction of propylene with reduced surface of chromium molybdate

    International Nuclear Information System (INIS)

    Konovalova, N.D.; Belokopytov, Yu.V.

    1978-01-01

    It has been found that reduction of oxidated chromium molybdate sample by propylene at 450 deg C does not change the form of energy surface heterogeneity and also practically does not effect activation desorption energy of C 3 H 6 . It is shown that oxygen of this catalyst volume is movable and is responsible for formation of products of C 3 H 6 partial oxidation (acetic aldehyde and acrolein) in the sample reduction by propylene

  11. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    Science.gov (United States)

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  12. Propylene/Nitrogen Separation in a By-Stream of the Polypropylene Production: From Pilot Test and Model Validation to Industrial Scale Process Design and Optimization

    OpenAIRE

    Guler Narin; Ana Ribeiro; Alexandre Ferreira; Young Hwang; U-Hwang Lee; José Loureiro; Jong-San Chang; Alírio Rodrigues

    2014-01-01

    Two industrial-scale pressure swing adsorption (PSA) processes were designed and optimized by simulations: recovery of only nitrogen and recovery of both nitrogen and propylene from a polypropylene manufacture purge gas stream. MIL-100(Fe) granulates were used as adsorbent. The mathematical model employed in the simulations was verified by a PSA experiment. The effect of several operating parameters on the performance of the proposed PSA processes was investigated. For the nitrogen recovery, ...

  13. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  14. Study of ethylene/2-butene cross-metathesis over W-H/Al2O 3 for propylene production: Effect of the temperature and reactant ratios on the productivity and deactivation

    KAUST Repository

    Mazoyer, Etienne; Szeto, Kaï Chung; Merle, Nicolas; Norsic, Sé bastien; Boyron, Olivier; Basset, Jean-Marie; Taoufik, Mostafa; Nicholas, Christopher P.

    2013-01-01

    A highly active and selective catalyst based on supported tungsten hydride for the cross-metathesis between ethylene and 2-butenes yielding propylene has been investigated at low pressure with various temperatures and feed ratios. At low temperature

  15. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation

    KAUST Repository

    Swaidan, Ramy Jawdat

    2016-09-02

    High performance thermally-rearranged (TR) and carbon molecular sieve (CMS) membranes made from an intrinsically microporous polymer precursor PIM-6FDA-OH are reported for the separation of propylene from propane. Thermal rearrangement of PIM-6FDA-OH to the corresponding polybenzoxazole (PBO) membrane resulted in a pure-gas C3H6/C3H8 selectivity of 15 and C3H6 permeability of 14 Barrer, positioning it above the polymeric C3H6/C3H8 upper bound. For the first time, the C3H6/C3H8 mixed-gas properties of a TR polymer were investigated and showed a C3H6 permeability of 11 Barrer and C3H6/ C3H8 selectivity of 11, essentially independent of feed pressure up to 5 bar. The CMS membrane made by treatment at 600 C showed further improvement in performance as demonstrated with a pure-gas C3H8/C3H8 selectivity of 33 and a C3H6 permeability of 45 Barrer. The mixed-gas C3H6/C3H8 selectivity dropped from 24 to 17 from 2 to 5 bar feed pressure due to a decrease in C3H6 permeability most likely caused by competitive sorption without any evidence of plasticization. (C) 2016 Elsevier B.V. All rights reserved.

  16. Methanol to propylene. From development to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Haag, S.; Rothaemel, M. [Air Liquide Forschung und Entwicklung GmbH, Frankfurt am Main (Germany); Pohl, S.; Gorny, M. [Lurgie GmbH, Frankfurt am Main (Germany). Air Liquide Global E and C Solutions

    2012-07-01

    In the late 1990s the development of the so-called MTP {sup registered} (methanol-to-propylene) process, a Lurgi Technology (by Air Liquide Global E and C Solutions) started. This constitutes a novel route to a valuable product that would not rely on crude oil as feedstock (as conventional propylene production does), but instead utilizes coal or natural gas and potentially biomass. These alternative feedstocks are first converted to synthesis gas, cleaned, and then converted to methanol. The development of the methanol-to-propylene conversion was achieved in a close collaboration between R and D and engineering. Two pilot plants at the R and D center in Frankfurt and a demonstration plant in Norway have been used to demonstrate the yields, catalyst lifetime and product quality and to support the engineering team in plant design and scale-up. Especially the last item is important as it was clear from the very beginning that the first commercial MTP {sup registered} plant would already be world-scale, actually one of the largest propylene producing plants in the world. This required a safe and diligent scale-up as the MTP {sup registered} reactors in the commercial plant receive about 7,000 times the feed of the demo unit and as much as 100,000 times the feed of the pilot plant. The catalyst used is a zeolite ZSM-5 that was developed by our long-term cooperation partner Sued-Chemie (now Clariant). At the end of 2010, the first commercial MTP {sup registered} plant in Ningdong in the Chinese province of Ningxia was started up as part of a coal-to-chemicals complex owned by the Shenhua Ningxia Coal Industry Group. In this complex the complete chain starting from coal through to the final polypropylene product is realized. The customer successful started the polymer-grade propylene production in April 2011 and then announced in May 2011 that he sold the first 1000 tons of polypropylene made with propylene coming from the MTP {sup registered} unit. Following this

  17. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis

    NARCIS (Netherlands)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-01-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene

  18. Photosynthesis solutions to enhance productivity.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Nixon, Peter J

    2017-09-26

    The concept that photosynthesis is a highly inefficient process in terms of conversion of light energy into biomass is embedded in the literature. It is only in the past decade that the processes limiting photosynthetic efficiency have been understood to an extent that allows a step change in our ability to manipulate light energy assimilation into carbon gain. We can therefore envisage that future increases in the grain yield potential of our major crops may depend largely on increasing the efficiency of photosynthesis. The papers in this issue provide new insights into the nature of current limitations on photosynthesis and identify new targets that can be used for crop improvement, together with information on the impacts of a changing environment on the productivity of photosynthesis on land and in our oceans.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  19. Williams propylene upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, D. [Williams Energy Canada Inc., Edmonton, AB (Canada)

    2004-07-01

    Edmonton-based Williams Energy Canada Inc. extracts petrochemicals from oil sands and operates a straddle plant business and an olefins business. This presentation provided an update of both businesses and reviewed the advantage of polypropylene production in Alberta, with reference to premium markets and to comparative rail costs to Chicago via Texas, and rail costs to Chicago from Alberta. Williams' straddle plant business includes the Cochrane Straddle Plant, the Empress 2 Straddle Plant, and the Empress 5 Straddle Plant. The Fort McMurray Extraction Plant was also described along with the Redwater Olefins Fractionator and its potential for salt cavern storage and distribution. It was noted that Alberta is well positioned for polypropylene production because it already has a secure supply and an excellent distribution network. tabs., figs.

  20. Williams propylene upgrading

    International Nuclear Information System (INIS)

    Chappell, D.

    2004-01-01

    Edmonton-based Williams Energy Canada Inc. extracts petrochemicals from oil sands and operates a straddle plant business and an olefins business. This presentation provided an update of both businesses and reviewed the advantage of polypropylene production in Alberta, with reference to premium markets and to comparative rail costs to Chicago via Texas, and rail costs to Chicago from Alberta. Williams' straddle plant business includes the Cochrane Straddle Plant, the Empress 2 Straddle Plant, and the Empress 5 Straddle Plant. The Fort McMurray Extraction Plant was also described along with the Redwater Olefins Fractionator and its potential for salt cavern storage and distribution. It was noted that Alberta is well positioned for polypropylene production because it already has a secure supply and an excellent distribution network. tabs., figs

  1. Problems concerning product quality enhancement

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2016-03-01

    Full Text Available In the article analysis of the discrepancies in the production process for selected products in a company producing candles was carried out. Using the Pareto-Lorenzdiagram and the FMEA method the most essential areas having influence on the production of candles were shown. Apart from factors connected with the manufacturing side of the process, factors of the labour organization and requirements concerning the quality of material were also noted. An appropriate quality of equipment constitutes one of the essential conditions of production process functioning and this directly influences manufacturing possibilities of the enterprise. A synthesis of immaterial factors that influence the production of the enterprise, taking into consideration conditions of functioning the production system, was also carried out. The set of factors selected for description was the fourteenth Toyota management principle. Respondents were asked to provide answers which could bring the best improvements.

  2. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    Directory of Open Access Journals (Sweden)

    Courtney A. Cunningham MD

    2015-09-01

    Full Text Available In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  3. Production-enhancement partnerships: Successful business arrangements

    International Nuclear Information System (INIS)

    Coble, L.E.; Weitzel, K.R.; Attai, L.F.; Gray, K.A.

    1996-01-01

    Production-enhancement projects are creating changes in business relationships between oil and gas and service companies. The most successful projects are building partnerships. Service companies are being asked to share the risk while supplying services to enhance well performance. Risk sharing creates common project objectives and requires the service company's involvement in initial project planning, job design, and reservoir understanding. Service-work compensation is based on well- or field-performance improvement resulting from the treatment(s). This paper presents an integrated approach to the selection and prioritization of well candidates for production-enhancement jobs or treatments. Processes are illustrated, and data requirements and techniques necessary to select well candidates that provide the highest return on investment are discussed. Field examples demonstrate the techniques, critical factors, and appropriate software used by geoscience and field-operations teams to maximize benefits from production-enhancement projects

  4. A Product Line Enhanced Unified Process

    DEFF Research Database (Denmark)

    Zhang, Weishan; Kunz, Thomas

    2006-01-01

    The Unified Process facilitates reuse for a single system, but falls short handling multiple similar products. In this paper we present an enhanced Unified Process, called UPEPL, integrating the product line technology in order to alleviate this problem. In UPEPL, the product line related activit...... activities are added and could be conducted side by side with other classical UP activities. In this way both the advantages of Unified Process and software product lines could co-exist in UPEPL. We show how to use UPEPL with an industrial mobile device product line in our case study....

  5. Magnetically-enhanced open string pair production

    Science.gov (United States)

    Lu, J. X.

    2017-12-01

    We consider the stringy interaction between two parallel stacks of D3 branes placed at a separation. Each stack of D3 branes in a similar fashion carry an electric flux and a magnetic flux with the two sharing no common field strength index. The interaction amplitude has an imaginary part, giving rise to the Schwinger-like pair production of open strings. We find a significantly enhanced rate of this production when the two electric fluxes are almost identical and the brane separation is on the order of string scale. This enhancement will be largest if the two magnetic fluxes are opposite in direction. This novel enhancement results from the interplay of the non-perturbative Schwinger-type pair production due to the electric flux and the stringy tachyon due to the magnetic flux, and may have realistic physical applications.

  6. Evaluation of factors important to enhance productivity

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    2016-12-01

    Full Text Available Productivity as a measure for output is important to industry and academia. In this research, factors to enhance productivity have been identified from the literature by reviewing various international and national sources to explore this evergreen field of research that is “productivity,” which has always been an increasingly interesting area of research for researchers over decades or perhaps over centuries. In total, 15 number of factors have been identified to enhance productivity. Analytic hierarchy process approach has been appropriately chosen to rank these factors because of its simplicity and effectiveness. The tool has been used by taking perception of experts from the Indian manufacturing industry. Positive attitude and involvement of management, proactive employees, and good working conditions have been ranked as top three factors as per the experts’ opinion. The ranking of factors to enhance productivity, categorization of the factors into four perspectives, and hierarchy of perspective and action plan as a final outcome of the paper may help academia and operations managers toward effective management of “operations and production activities of firms/supply chains.”

  7. Managing Risk, Reducing Vulnerability and Enhancing Productivity ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Risk, Reducing Vulnerability and Enhancing Productivity under a Changing Climate. The countries of the Greater Horn of Africa are particularly vulnerable to drought, exacerbated by widespread poverty and dependence on rainfed agriculture. Even with normal rainfall, the region does not produce enough food to ...

  8. Production enhancement partnerships -- successful business arrangements

    International Nuclear Information System (INIS)

    Coble, L.; Weitzel, K.; Attai, L.; Gray, K.

    1995-01-01

    Production enhancement projects are creating changes in business relationships between oil and gas and service companies. The most successful projects are building partnerships. Service companies are being asked to share the risk while supplying services to enhance well performance. Risk sharing creates common project objectives and requires the service company's involvement in initial project planning, job design, and reservoir understanding. Service work compensation is based on well or field performance improvement as a result of the treatment(s). This paper presents an integrated approach to the selection and prioritization of well candidates for production enhancement jobs or treatments. Special emphasis is placed on reservoir understanding using field reviews and/or extensive reservoir description studies to provide the essential information for well candidate selection and the best return on investment. Processes are illustrated and discussion gives the data requirements and techniques used to select and prioritize well candidates. Field examples demonstrate the techniques, critical factors, and appropriate software used by geoscience and field operations teams to maximize benefits from production enhancement projects

  9. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  10. Lean Production Practices to Enhance Organisational Performance

    Directory of Open Access Journals (Sweden)

    Shah Satya

    2017-01-01

    Full Text Available Service sector organisations are constantly overcoming the challenges facing the over-production and waste reduction within their environments. Industries are also becoming very competitive thus forcing them to seek suitable production organisation strategies with the aim towards enhancing their competitiveness and efficiency. The aim of this research study is to investigate the impact of lean production practices on the performance of service based businesses through the case study of a local baked goods supplier. The research framework adopted consists of questionnaire survey method implemented with different end users, thus covering the overall production – retail – customer cycle. The research results and analysis justify the objective of the research that lean production practices enhance the performance of the supplier company and the common tool identified were JIT (Just in Time, Value Steam Mapping (VSP and the 5S methods. The results also suggest that JIT method has a higher impact towards improvement on performance relating to quality, speed, dependability, flexibility and cost of the supplier. However, the research study also identifies that one of the major challenges faced by the organisation while adopting lean practices was the lack of commitment from top management, continuous training and employee engagement measures.

  11. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  12. International thermodynamic tables of the fluid state propylene (propene)

    CERN Document Server

    Angus, S; De Reuck, K M

    2013-01-01

    International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove

  13. High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, clevage and alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.

    1980-07-08

    A process is described for producing high octane value gasoline which comprises in a disproportionation zone subjecting propylene and a mixture of propylene and ethylene obtained as hereinafter delineated to disproportionation conditions to produce a stream containing ethylene and a stream containing butenes, passing the ethylene-containing stream from said disproportionation zone together with a catalytic cracking gasoline to a cleavage zone under disproportionation conditions and subjecting the mixture of hydrocarbons therin to cleavage to produce said mixture of propylene and ethylene, a C/sub 5//sup +/ gasoline-containing product and butenes and wherein the butenes obtained in the overall operation of the disproportionation zone and the cleavage zone are passed to an alkylation zone wherein said butenes are used to alkylate an isoparaffin to produce additional high octane value product.

  14. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2014-01-01

    Hydrothermal synthesis has been used as a soft chemical method to prepare bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. All obtained samples displayed a plate-like morphology, but their individual aspect ratios varied with the hydrothermal synthesis conditions...... of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination at 550...

  15. 77 FR 28493 - Propylene Oxide; Tolerance Actions

    Science.gov (United States)

    2012-05-15

    .... SUMMARY: EPA is establishing the tree nut crop group tolerance and separate tolerances on pistachio and...; nut, tree, group 14; and pistachio; and in 40 CFR 180.491(a)(2) tolerances for propylene chlorohydrin at 10.0 ppm on nut, pine; nut, tree, group 14; and pistachio. Also, in accordance with current Agency...

  16. Absolute rate constants for the reaction of O(3P) atoms with ethylene, propylene, and propylene-d6 over the temperature range 258--861 K

    International Nuclear Information System (INIS)

    Perry, R.A.

    1984-01-01

    Absolute rate constants for the reaction of O( 3 P) with ethylene, propylene, and propylene-d6 were determined over the temperature range 258--861 K using a laser photolysis-chemiluminescence technique. The following empirical expressions are the best fits to the data: k/sub ethylene/ = 2.12 x 10 -13 T -63 e -1370 /sup ///sup R//sup T/, k/sub propylene/ = 3.40 x 10 -19 T/sup 2.56/e/sup 1130/RT/, and k/sub propylene-d/6 = 3.40 x 10 -19 T/sup 2.53/ e/sup 1210/R/T cm 3 molecule -1 s -1 . A simple transition state theory model is shown to provide a reasonable explanation for non-Arrhenius temperature behavior

  17. Discovery of the First Interstellar Chiral Molecule: Propylene Oxide

    Science.gov (United States)

    Carroll, Brandon; McGuire, Brett A.; Loomis, Ryan; Finneran, Ian A.; Jewell, Philip; Remijan, Anthony; Blake, Geoffrey

    2016-06-01

    Life on Earth relies on chiral molecules, that is, species not superimposable on their mirror images. This manifests itself as a reliance on a single molecular handedness, or homochirality that is characteristic of life and perhaps most readily apparent in the large enhancement in biological activity of particular amino acid and sugar enantiomers. Yet, the ancestral origin of biological homochirality remains a mystery. The non-racemic ratios in some organics isolated from primitive meteorites hint at a primordial chiral seed but even these samples have experienced substantial processing during planetary assembly, obscuring their complete histories. To determine the underlying origin of any enantiomeric excess, it is critical to understand the molecular gas from which these molecules originated. Here, we present the first extra-solar, astronomical detection of a chiral molecule, propylene oxide (CH_3CHCH_2O), in absorption toward the Galactic Center. With the detection of propylene oxide, we at last have a target for broad-ranging searches for the possible cosmic origin of the homochirality of life.

  18. PRODUCTION WELL PERFORMANCE ENHANCEMENT USING SONICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery

    2003-12-17

    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  19. SYNTHESIS OF PROPYLENE FROM ETHANOL USING PHOSPHORUS-MODIFIED HZSM-5

    Directory of Open Access Journals (Sweden)

    R. S. Costa

    Full Text Available Abstract Effects of phosphorus addition to HZSM-5 on ethanol conversion to propylene were evaluated. Catalysts were characterized by XRF, XRD, nitrogen adsorption, 27Al and 31P MAS NMR, n-propylamine and ammonia TPD. Increasing P content decreased the strength and density of acid total sites. Ethanol dehydration was carried out in a fixed bed reactor operating at atmospheric pressure. Conversion was around 100% for all catalysts. 1.2 wt% of P catalyst showed the highest propylene yield, and was used to evaluate temperature and ethanol partial pressure effects on the product distribution. The highest propylene accumulated productivity was obtained for an ethanol partial pressure of 0.4 atm. Propylene formation was favored in the temperature range 475-500 °C. Significant changes in the product distribution as a function of time on stream were observed at higher temperatures, suggesting stronger catalyst deactivation. The ethylene yield decreased up to 500 °C, rising significantly at 550 °C, possibly due to heavier product cracking reactions.

  20. Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Li, Zhenjun; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2014-10-09

    The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapes and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.

  1. Aqueous Productivity: An enhanced productivity indicator for water

    Science.gov (United States)

    Ritzema, Randall S.

    2014-09-01

    Increasing demand for scarce water supplies is fueling competition between agricultural production and other municipal and environmental demands, and has heightened the need for effective indicators to measure water performance and support water allocation and planning processes. Water productivity (WP), defined as the ‘ratio of the net benefits from crop, forestry, fishery, livestock, and mixed agricultural systems to the amount of water required to produce those benefits', is one such indicator that has gained prominence, particularly in research-for-development efforts in the developing world. However, though WP is a framework well-suited to systems where water use is directly attributable, particularly via depletion, to definitive benefits, the suitability of the approach becomes questionable when these conditions are not met, such as in multiple use systems with high re-use and non-depleting uses. These factors furthermore make WP highly scale-dependent, complicating comparative studies across scales and systems. This research forwards ‘aqueous productivity' (AP) as an alternative indicator that addresses some inherent limitations in the WP approach and enhances productivity estimates for water in integrated systems. Like WP, AP is expressed as a ratio of benefit to water volume. However, AP uses a systems approach and is based on the concept that elements within a hydrologic system are linked via water flow interactions, and that those elements either ‘extract' value from associated water flows or ‘infuse' value into them. The AP method therefore calculates the ‘aqueous productivity', a ratio indicating the ‘dissolved' production-related economic value of all downstream uses of an individual water flow, for each inter-element and cross-boundary flow in the system. The AP conceptual framework and analytical methodology are presented. The method is then applied to two example hydroeconomic systems and compared to equivalent WP analysis. Discussion

  2. Tuning PIM-PI-Based Membranes for Highly Selective Transport of Propylene/Propane

    KAUST Repository

    Swaidan, Ramy J.

    2016-12-06

    To date there exists a great deal of energetic and economic inefficiency in the separation of olefins from paraffins because the principal means of achieving industrial purity requirements is accomplished with very energy intensive cryogenic distillation. Mitigation of the severe energy intensity of the propylene/propane separation has been identified as one of seven chemical separations which can change the landscape of global energy use, and membranes have been targeted as an emerging technology because they offer scalability and lower capital and operating costs. The focus of this work was to evaluate a new direction of material development for the very industrially relevant propylene/propane separation using membranes. The objective was to develop a rational design approach for generating highly selective membranes using a relatively new platform of materials known as polyimides of intrinsic microporosity (PIM-PIs), the prospects of which have never been examined for the propylene/propane separation. Structurally, PIMs comprise relatively inflexible macromolecular architectures integrating contortion sites that help disrupt packing and trap microporous free volume elements (< 20 Å). To date most of the work reported in the literature on this separation is based on conventional low free volume 6FDA-based polyimides which in the best case show moderate C3H6/C3H8 selectivities (<20) with C3H6 permeabilities too low to garner industrial interest. Due to propylene and propane’s relatively large molecular size, we hypothesized that the use of more open structures can provide greater accessibility to the pores necessary to enhance membrane sieving and flux. It has been shown for numerous key gas separations that introduction of microporosity into a polymer structure can defy the notorious permeability/selectivity tradeoff curve and induce simultaneous boosts in both permeability and selectivity. The cornerstone approach to designing state of the art high

  3. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  4. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  5. Radiation technology for enhancing agriculture productivity

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2016-01-01

    Radiations and radioisotopes are used in agricultural research to develop improved crop varieties, to manage insect pests, monitor fate of pesticides, to study fertilizer and plant micronutrient uptake and to preserve agricultural produce. This is one of the important fields of peaceful applications of atomic energy for societal benefit. Department of Atomic Energy (DAE) has contributed significantly in this area especially in the development of new mutant crop varieties which are benefitting the farmers in enhancing their productivity. With an effective blend of induced mutagenesis and recombination breeding, 42 new crop varieties developed at Bhabha Atomic Research Centre (BARC) have been released and Gazette notified by the Ministry of Agriculture, Government of India for commercial cultivation. These include 21 in oilseeds (15-groundnut, 3 mustard , 2 soybean, 1 sunflower), 19 in pulses (8-mungbean, 5-urdbean, 5-pigeonpea, 1-cowpea) and one each in rice and jute. Some of the desirable traits which have been bred through induced mutations in these crops include higher yields, improved quality traits, early maturity and resistance to biotic and abiotic stress. Several of these varieties have high patronage from the farming community and are grown extensively across the country. Groundnut varieties have given record yields in farmer's fields. Pulses such as mung, urid and tur are popular among farmers in view of their disease resistance and suitability to rice fallow situations. Many of the breeding programmes in national/state systems have been utilizing BARC varieties as parental materials/donors and have developed several other improved varieties using them. (author)

  6. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  7. Propylene epoxydation with hydrogen peroxide in acidic conditions

    NARCIS (Netherlands)

    Kertalli, E.; Rijnsoever, L.S.; Paunovic, V.; Schouten, J.C.; Neira d'Angelo, M.F.; Nijhuis, T.A.

    2016-01-01

    In the present work, the epoxidation of propylene with hydrogen peroxide in the presence of acids and halides is studied. The presence of acids and halides is indispensable for increasing the selectivity of the direct synthesis of hydrogen peroxide, the first step of the direct propylene oxide

  8. Gamma-induced reactions of bromo-ethane with olefines. Addition of ethyl radicals to hexene-1 and propylene

    International Nuclear Information System (INIS)

    Myshkin, V.E.; Shostenko, A.G.; Zagorets, P.A.; Pchelkin, A.I.; Markova, K.G.

    1978-01-01

    Radiation interaction of bromo-ethane with propylene and 1-hexene has been studied with the aim to investigate the action of γ-radiation on bromalkanes. The absorbed dose rate is 50 rad/s. The reaction products separated by preparative chromatography have been identified with infrared spectroscopy, elemental, chromatographic, and other physico-chemical methods of analysis. It has been established that the reaction with propylene gives rise to telomers whereas interaction of bromo-ethane with 1-hexene yields only the addition product (4-bromoctane). The activation energy of the reactions of adding ethyl radicals to 1-hexene and propylene has been found equal to (3.8+-0.4 kcal/mol) and (2.2+-0.2 kcal/mol), respectively. The activation energy of the reaction of chain transfer through bromo-ethane is (3.7+-0.3 kcal/mol.)

  9. Enhanced Phagocytosis and Antibody Production by Tinospora ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... antibody production through in vitro and in vivo studies. MATERIALS AND METHODS. Collection ..... components with candidicidal activity in human, rabbit and guinea pig leukocytes. Infect. Immun., 11: 1226-1234. Manjrekar ...

  10. Methods and measures of enhancing production capacity of uranium mines

    International Nuclear Information System (INIS)

    Ni Yuhui

    2013-01-01

    Limited by resource conditions and mining conditions, the production capacity of uranium mines is generally small. The main factors to affect the production capacity determination of uranium mines are analyzed, the ways and measures to enhance the production capacity of uranium mines are explored from the innovations of technology and management mode. (author)

  11. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  12. Enhancing the production effect in memory.

    Science.gov (United States)

    Quinlan, Chelsea K; Taylor, Tracy L

    2013-01-01

    The production effect is the finding that subsequent memory is better for words that are produced than for words that are not produced. Whereas the current literature demonstrates that reading aloud is the most effective form of production, the distinctiveness account used to explain the production effect predicts that there is nothing special about reading aloud per se: Other forms of vocal production that include an additional distinct element should produce even greater subsequent memory benefits than reading aloud. To test this, we presented participants with study words that they were instructed to read aloud loudly, read aloud, or read silently (Experiment 1); sing, read aloud, or read silently (Experiment 2); and sing, read aloud loudly, read aloud, or read silently (Experiment 3). We observed that both reading items aloud loudly (Experiments 1 and 3) and singing items (Experiments 2 and 3) at study resulted in greater subsequent recognition than reading items aloud in a normal voice; singing had a larger memory benefit than reading aloud loudly (Experiment 3). Our findings support the distinctiveness hypothesis by demonstrating that there are other forms of production, such as singing and reading aloud loudly that have a more pronounced effect on memory than reading aloud.

  13. Tunnel production enhances quality in organic carrot seed production

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2009-01-01

    production of open-pollinated carrot varieties increased the yield and germination percentages when compared with normal field conditions. Yield was in the range of 100-250 g and 2-17 g seeds m-2 respectively, and germination percentage was 84-95 and 43-55, respectively. However, hybrid carrot seed...... production showed lower yields than did their open-pollinated counterparts. Yields ranging from 60-123 g seeds m-2 can be obtained, but the production needs to be carefully planned and monitored. Different growing systems in tunnels have been studied in both open-pollinated and hybrid carrot (Daucus carota L......In Denmark, organic vegetable seed production is possible for some of the late-maturing species when the maturing is performed in lightweight tunnels which are also relevant for the isolation of small-scale production. The tunnel system offers several advantages, e.g., it is possible to control...

  14. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... protects them from enzymatic attack. Hence, the main purpose of this work was to define diverse ways to improve the performance of AD systems using these unconventional biomasses. Thus, mechanical and thermal alkaline pretreatments, microaeration and bioaugmentation with hydrolytic microbes were examined...... conductivity, soluble chemical oxygen demand and enzymatic hydrolysis) as a rapid way to predict the methane production. However, the precision of methane yield prediction was not high (R2

  15. Enhancing Productivity: A Structured Approach to Downsizing.

    Science.gov (United States)

    Oehm, J. Kent

    1991-01-01

    Organizations that downsize in a rational and orderly manner can increase productivity. School districts can initiate a cost-reduction and restructuring program with an analysis of the responsibilities of each employee followed by communicating with, and renewing the commitment of, remaining employees. (MLF)

  16. Workplace Counselling: Implications For Enhanced Productivity ...

    African Journals Online (AJOL)

    It further presents a model of workplace counseling and concludes that increase in work related trauma and stress, accidents at the workplace, harassment and bullying, absenteeism, low productivity/poor performance and labour turnover will be nipped in the bud if counseling service is provided at the workplace.

  17. Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate.

    Science.gov (United States)

    Limpongsa, Ekapol; Jaipakdee, Napaphak; Pongjanyakul, Thaned

    2014-08-27

    Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20% v/v), EtOH (10, 20% v/v) or SLS (0.5, 1% w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS > EtOH > PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS.

  18. Radio-frequency wave enhanced runaway production rate

    International Nuclear Information System (INIS)

    Chan, V.S.; McClain, F.W.

    1983-01-01

    Enhancement of runaway electron production (over that of an Ohmic discharge) can be achieved by the addition of radio-frequency waves. This effect is studied analytically and numerically using a two-dimensional Fokker--Planck quasilinear equation

  19. Enhanced xanthan production process in shake flasks and pilot ...

    African Journals Online (AJOL)

    Enhanced xanthan production process in shake flasks and pilot scale bioreactors using industrial semidefined medium. ... by the type and concentration of the different carbon and nitrogen source as well as other medium components. The

  20. Enhancement of Diosgenin Production in Plantlet and Cell Cultures ...

    African Journals Online (AJOL)

    Enhancement of Diosgenin Production in Plantlet and Cell Cultures of Dioscorea zingiberensis by Palmarumycin C13 from the Endophytic fungus, Berkleasmium sp. Dzf12. Y Mou, K Zhou, D Xu, R Yu, J Li, C Yin, L Zhou ...

  1. Integrated agriculture enhances farm productivity and livelihoods in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-29

    Apr 29, 2016 ... Farm productivity and Livelihoods in Agro Biodiversity. Farmers in Tamil Nadu adopted locally-adapted cassava, boosting agro-biodiversity while enhancing ... Reducing post-harvest losses in South Asia's mango orchards.

  2. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  3. Higgs Pair Production as a Signal of Enhanced Yukawa Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg U.; Carena, Marcela [Chicago U., KICP; Carmona, Adrián [U. Mainz, PRISMA

    2017-12-31

    We present a non-trivial correlation between the enhancement of the Higgs-fermion couplings and the Higgs pair production cross section in two Higgs doublet models with a flavour symmetry. This symmetry suppresses flavour-changing neutral couplings of the Higgs boson and allows for a partial explanation of the hierarchy in the Yukawa sector. After taking into account the constraints from electroweak precision measurements, Higgs coupling strength measurements, and unitarity and perturbativity bounds, we identify an interesting region of parameter space leading to enhanced Yukawa couplings as well as enhanced di-Higgs gluon fusion production at the LHC reach. This effect is visible in both the resonant and non-resonant contributions to the Higgs pair production cross section. We encourage dedicated searches based on differential distributions as a novel way to indirectly probe enhanced Higgs couplings to light fermions.

  4. Numerical optimization of a transcritical CO2/propylene cascaded ...

    Indian Academy of Sciences (India)

    transcritical CO2/propylene cascade system with parallel compression ... specific volumes, low solidification temperature, low operating pressure of the ...... Kim M, Pettersen J and Bullard C W 2004 Fundamental process and system design ...

  5. Reduced Coniferin and Enhanced 6-Methoxypodophyllotoxin Production in

    NARCIS (Netherlands)

    Ruslan Wirasutisna, Komar; Batterman, Sieben; Koulman, Albert; Kayser, Oliver; Woerdenbag, Herman J; Quax, Wim J

    2010-01-01

    Treatment of cell suspension cultures of Linum flavum L. with Na2EDTA reduced the coniferin and enhanced the 6-methoxypodophyllotoxin (6-MPT) production in a concentration-dependent way, in a range of 0.1–5 mM. On day 14 after treatment with Na2EDTA , an inhibition of the coniferin production up to

  6. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  7. External tank program productivity and quality enhancements - A case study

    Science.gov (United States)

    Locke, S. R.

    1988-01-01

    The optimization of the Manned Space Systems productivity and quality enhancement program is described. The guidelines and standards of the program and the roles played in it by various employee groups are addressed. Aspects of the program involving job/organization redefinition, production and planning in automation, and artificial intelligence and robotics are examined.

  8. Humor in Advertisements Enhances Product Liking by Mere Association

    NARCIS (Netherlands)

    Strick, M.A.; Baaren, R.B. van; Holland, R.W.; Knippenberg, A.F.M. van

    2009-01-01

    Humor in advertising is known to enhance product liking, but this attitude change is often considered nonpredictive of product choice. Previous research relied exclusively on explicit self-report measures to assess attitudes and purchase intentions. The present research shows that unobtrusive

  9. Mechanizm of propylene oxidation on modified cobalt-molybdenum catalysts

    International Nuclear Information System (INIS)

    Kutyrev, M.Yu.; Rozentuller, B.V.; Isaev, O.V.; Margolis, L.Ya.; Krylov, O.V.

    1977-01-01

    Effect is studied of additions of iron, copper, nickel, and vanadium oxides, introduced into cobalt, molybdate, on oxidation reactions of propylene to acrolein and acrylicacid. The principal parameters determining the activity and selectivity of oxidation of propylene and acrolein on modified cobalt molibdate are the structure, the type of Mo-O bond, and the nature of the electron transitions in the solid under the effect of adsorption of the reaction components

  10. Nonlinear dielectric spectroscopy of propylene carbonate derivatives

    Science.gov (United States)

    Casalini, R.; Roland, C. M.

    2018-04-01

    Nonlinear dielectric measurements were carried out on two strongly polar liquids, 4-vinyl-1,3-dioxolan-2-one (VPC) and 4-ethyl-1,3-dioxolan-2-one (EPC), having chemical structures differing from propylene carbonate (PC) only by the presence of a pendant group. Despite their polarity, the compounds are all non-associated, "simple" liquids. From the linear component of the dielectric response, the α relaxation peak breadth was found to be invariant at a fixed value of the relaxation time, τα. From spectra from the nonlinear component, the number of dynamically correlated molecules was determined; it was also constant at fixed τα. Thus, two manifestations of dynamic heterogeneity depend only on the time constant for structural reorientation. More broadly, the cooperativity of molecular motions for non-associated glass-forming materials is connected to (i.e., reciprocally governs) the time scale. The equation of state for the two liquids was also obtained from density measurements made over a broad range of pressures and temperatures. Using these data, it was determined that the relaxation times of both liquids conform to density scaling. The effect of density, relative to thermal effects, on the α relaxation increases going from PC < VPC < EPC.

  11. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    Science.gov (United States)

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  12. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  13. Enhanced production of glucose oxidase from UVmutant of ...

    African Journals Online (AJOL)

    UV rays were used as mutagen in wild type strain of Aspergillus niger for enhanced production of glucose oxidase. After mutangenization and selection, mutant A. niger strains, resistant to 2-deoxy-Dglucose were obtained. The mutants showed 1.57 and 1.98 fold increase in activities of extra and intra cellular glucose ...

  14. Allocation of financial resource to enhance educational productivity ...

    African Journals Online (AJOL)

    This study examines the allocation of financial resource to the education industry and how it enhances productivity and students' outcomes of the secondary schools' students in the Unity Colleges in Ogun state. It adopted ex-post factor research design and purposeful sample and sampling technique for the study. Scholars' ...

  15. Can aquatic worms enhance methane production from waste activated sludge?

    NARCIS (Netherlands)

    Serrano, Antonio; Hendrickx, Tim L.G.; Elissen, Hellen; Laarhoven, Bob; Buisman, Cees J.N.; Temmink, Hardy

    2016-01-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30 °C with sludge from a high-loaded membrane bioreactor, the aquatic worm

  16. Collaborative networks in support of service-enhanced products

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.; Koelmel, B.

    2011-01-01

    The development and support of highly customized and service-enhanced products requires new organizational structures, involving the manufacturers, customers and local suppliers in a process of co-creation. This requires the implementation of the glocal enterprise notion with value creation from

  17. Humor in Advertisements Enhances Product Liking by Mere Association

    NARCIS (Netherlands)

    Strick, M.A.; Baaren, R.B. van; Holland, R.W.; Knippenberg, A.F.M. van

    2011-01-01

    This reprinted article originally appeared in the Journal of Experimental Psychology: Applied, 2009 (Mar), Vol 15(1), 35-45. (The following abstract of the original article appeared in record 2009-03685-005). Humor in advertising is known to enhance product liking, but this attitude change is often

  18. Protocol optimization for enhanced production of pigments in Spirulina.

    Science.gov (United States)

    Kumar, Devendra; Kumar, Neeraj; Pabbi, Sunil; Walia, Suresh; Dhar, Dolly Wattal

    2013-01-01

    Spirulina has attracted special attention due to its importance as human foodstuff and natural colours with specific functional properties. These functional properties have been attributed to phycobilins, carotenoids, phenolics and unsaturated fatty acids. Present study was conducted under controlled phytotron conditions to identify the efficient strains of Spirulina in terms of pigment synthesis and to optimize their enhanced production. Methodology for enhanced production was standardized by varying specific environmental parameters (light intensity, temperature, carbon dioxide concentration, pH and NaCl level). Different strains of Spirulina depicted variability and environmental parameters showed distinct influence on pigments. Growth and pigment production was recorded to be most efficient under optimized conditions of light intensity (70 μmol m -2  s -1 ), temperature (30 °C), CO 2 concentration (550 ppm and 750 ppm), pH (10.5) and NaCl level (2 g L -1 ).

  19. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    Science.gov (United States)

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enhancement of glycerol production by zygosaccharomyces ruxii using strawberry wastes

    International Nuclear Information System (INIS)

    Meleigy, S.A; Taha, S.M.A.

    2010-01-01

    Glycerol is important industrial product that can be produced using osmophilic yeasts. In this study a local isolate of osmophilic yeast, zygosaccharomyces ruxii, was used for glycerol production from strawberry waste. The effects of some important parameters including glucose and urea concentrations, incubation temperature, initial ph and gamma irradiation were investigated. The optimum conditions for maximum glycerol production (126.8 g/l)by z. ruxii were occurred at 31 degree C and initial ph 5 in the presence of 250 g/l glucose and 3 g/l urea in the production medium . Under these optimizing fermentation parameters, enhancement of glycerol production (130 g/l) were recorded when the inoculum of z. ruxii was exposed to 0.25 kGy. also, the present results showed reduction in BOD 5 levels of fermented strawberry waste.

  1. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami; Alrefae, Majed; Farooq, Aamir

    2014-01-01

    intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas

  2. Exploitation of physiological and genetic variability to enhance crop productivity

    International Nuclear Information System (INIS)

    Harper, J.E.; Schrader, L.E.; Howell, R.W.

    1985-01-01

    The American Society of Plant Physiologists recognizes the need to identify primary physiological limitations to crop productivity. This basic information is essential to facilitate and accelerate progress towards the goal of enhanced productivity on a global scale. Plant breeders currently select for desirable physiological traits intuitively by selecting for enhanced yield capability. Identification of specific physiological limitations by plant physiologists could potentially foster interdisciplinary research and accelerate progress in breeding for improved cultivars. The recent upsurge in research interest and funding in the area of biotechnology further exemplifies the importance of identification of specific physiological traits which may be amenable to manipulation at the molecular as well as the whole plant level. The theme of this symposium was to focus attention on current progress in identification of possible physiological limitations. The purpose of this publication is to document that progress and hopefully to extend the stimulating ideas to those who were unable to attend the symposium

  3. Field redevelopment optimization to unlock reserves and enhance production

    Directory of Open Access Journals (Sweden)

    AHMED AL-HASHAMI

    2013-09-01

    Full Text Available A cluster area "H" consists of 4 carbonate gas fields producing dry gas from N-A reservoir in the Northern area of Oman. These fields are producing with different maturity levels since 1968. An FDP (Field Development Plan study was done in 2006 which proposed drilling of 7 additional vertical wells beside the already existing 5 wells to develop the reserves and enhance gas production from the fields. The FDP well planning was based on a seismic amplitude "Qualitative Interpretation (QI" study that recommended drilling the areas with high amplitudes as an indication for gas presence, and it ignored the low amplitude areas even if it is structurally high. A follow up study was conducted in 2010 for "H" area fields using the same seismic data and the well data drilled post FDP. The new static and dynamic work revealed the wrong aspect of the 2006 QI study, and proved with evidence from well logs and production data that low seismic amplitudes in high structural areas have sweet spots of good reservoir quality rock. This has led to changing the old appraisal strategy and planning more wells in low amplitude areas with high structure and hence discovering new blocks that increased the reserves of the fields.Furthermore, water production in these fields started much earlier than FDP expectation. The subsurface team have integrated deeply with the operation team and started a project to find new solutions to handle the water production and enhance the gas rate. The subsurface team also started drilling horizontal wells in the fields to increase the UR, delay the water production and also reduce the wells total CAPEX by drilling less horizontal wells compared to many vertical as they have higher production and recovery. These subsurface and surface activities have successfully helped to stabilize and increase the production of "H" area cluster by developing more reserves and handling the water production.

  4. 78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption

    Science.gov (United States)

    2013-04-03

    ...-Ethylene-Propylene Block Copolymer; Tolerance Exemption AGENCY: Environmental Protection Agency (EPA... for residues of styrene-ethylene-propylene block copolymer (CAS Reg. No. 108388-87-0) when used as an...-ethylene-propylene block copolymer on food or feed commodities. DATES: This regulation is effective April 3...

  5. 21 CFR 500.50 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409 of...

  6. Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

    OpenAIRE

    S. Potivichayanon; T. Sungmon; W. Chaikongmao; S. Kamvanin

    2011-01-01

    Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in fir...

  7. Membrane Modeling, Simulation and Optimization for Propylene/Propane Separation

    KAUST Repository

    Alshehri, Ali

    2015-06-01

    , product purity and the recovery ratio. These findings were utilized to develop simple and accurate empirical correlations to predict the attainability behavior in real membranes, which showed good agreement with experimental and simulation results for various applications. Furthermore, the attainability of the most promising two and three-stage membrane systems are discussed by considering the complete well mixed assumption. The same behaviors that describe single-stage attainability are also recognized for multiple-stages. This discussion leads to a major discovery regarding the nature of the relationship between the attainability parameters in a multiple-stage membrane system with that of a single-stage system. Study of the economics of the multiple-stage membrane process for propylene/propane separation identifies the technology as a potential alternative to the conventional distillation process, even at the existing membrane performance, but conditionally at low to moderate membrane cost and sufficient durability. To study the energy efficiency of membrane retrofitting to an existing distillation process, a shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane and distillation processes. It was discovered that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage, when selectivity is low, the membrane process is not competitive to the distillation process. At the second medium selectivity stage, the membrane/distillation hybrid system can help to reduce the energy consumption; the higher the membrane selectivity the lower the energy requirement. The energy conservation is further improved as the pressure ratio increases. At the third stage, when both the selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit, resulting in a significant reduction in energy consumption

  8. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

    Science.gov (United States)

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y; Rentzepis, Peter M; Yuan, Joshua S

    2016-12-13

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

  9. La consommation de propylène en Europe occidentale Propylene Consumption in Western Europe

    Directory of Open Access Journals (Sweden)

    Barraqué M.

    2006-11-01

    'éthylène; - le craquage du méthanol. The needs of Western Europe for propylene used in petrochemistry are currently 7. 4 x 10 to the power of 6 metric tons per year. In the coming years, the average rate of increase should be about 1. 8 % per year. Hence in 1995 European petrochemicals should use about 8. 7 x 10 to the power of 6 tons of propylene,Most of this increase in consumption will be due to the sharp rise in polypropylene production and to a lesser extent in propylene oxide, isopropanol and 2-ethyl hexanol production. However, uses for acrylonitrile and cumene will remain fairly stable. Propylene consumption for butanol production should decrease. The share of propylene needs met by European steam crackers, which was 82% in 1986, should be less than 75% in 1995. It will be more and more necessary to turn to other sources of supply. In 1986 European refineries produced 1. 05 x 10 to the power of 6 tons of propylene used for petrochemicals, and imports amounted to 0. 3 x 10 to the power of 6 tons. In 1995 the difference between consumption and production by steam crackers could be beyond 2. 0 x 10 to the power of 6 tons. It seems improbable that catalytic cracking plants can make up for the deficit except if propylene yields were to increase a great deal. The construction of propylene/propane splitters can be expected along with an increase in imports. Likewise, due to the tension that risks could appear in propylene prices, the advantage of some synthesis routes now considered not to be profitable might increase. These new routes are :(a dehydrogenation of propane as is already being considered in other regions (Mexico, Indonesia, Malaysia;(b metathesis between ethylene and butenes-2, which themselves can be produced from ethylene;(c methanol cracking.

  10. Quantifying Residues from Postharvest Propylene Oxide Fumigation of Almonds and Walnuts.

    Science.gov (United States)

    Jimenez, Leonel R; Hall, Wiley A; Rodriquez, Matthew S; Cooper, William J; Muhareb, Jeanette; Jones, Tom; Walse, Spencer S

    2015-01-01

    A novel analytical approach involving solvent extraction with methyl tert-butyl ether (MTBE) followed by GC was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO, propylene chlorohydrin (PCH) [1-chloropropan-2-ol (PCH-1) and 2-chloropropan-1-ol (PCH-2)], and propylene bromohydrin (PBH) [1-bromopropan-2-ol (PBH-1) and 2-bromopropan-1-ol (PBH-2)] was accomplished with a combination of electron impact ionization MS (EIMS), negative ion chemical ionization MS (NCIMS), and electron capture detection (ECD). Respective GC/EIMS LOQs for PPO, PCH-1, PCH-2, PBH-1, and PBH-2 in MTBE extracts were [ppm (μg/g nut)] 0.9, 2.1, 2.5, 30.3, and 50.0 for almonds and 0.8, 2.2, 2.02, 41.6, and 45.7 for walnuts. Relative to GC/EIMS, GC-ECD analyses resulted in no detection of PPO, similar detector responses for PCH isomers, and >100-fold more sensitive detection of PBH isomers. NCIMS did not enhance detection of PBH isomers relative to EIMS and was, respectively, approximately 20-, 5-, and 10-fold less sensitive to PPO, PCH-1, and PCH-2. MTBE extraction efficiencies were >90% for all analytes. The 10-fold concentration of MTBE extracts yielded recoveries of 85-105% for the PBH isomers and a concomitant decrease in LODs and LOQs across detector types. The recoveries of PCH isomers and PPO in the MTBE concentrate were relatively low (approximately 50 to 75%), which confound improvements in LODs and LOQs regardless of detector type.

  11. 76 FR 17611 - Propylene Oxide; Proposed Pesticide Tolerance

    Science.gov (United States)

    2011-03-30

    ...: This document proposes to amend the propylene oxide tolerance on ``nut, tree, group 14'' to ``nutmeat... or before April 14, 2011. ADDRESSES: Submit your comments, identified by docket identification (ID... ``nut, tree, group 14'' to read ``nutmeat, processed, except peanuts.'' A final rule published in the...

  12. 76 FR 79146 - Propylene Oxide; Proposed Tolerance Actions

    Science.gov (United States)

    2011-12-21

    ...: EPA is proposing to establish the tree nut crop group tolerance and separate tolerances on pistachio... (pistachios, pine nuts) in 40 CFR 180.491(a)(1) for residues of propylene oxide in or on pistachio at 300 ppm... pistachio at 10.0 ppm and nut, pine at 10.0 ppm. Establishment of tolerances for pistachios, pine nuts, and...

  13. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... used as components of articles intended for contact with food, subject to the provisions of this... chlorine content is in the range of 53 to 56 percent as determined by any suitable analytical procedure of... section. (d) Analytical methods: The analytical methods for determining whether vinyl chloride-propylene...

  14. Rotational dynamics of propylene inside Na-Y zeolite cages

    Indian Academy of Sciences (India)

    We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved ...

  15. The Human Exposure Potential from Propylene Releases to the Environment

    Directory of Open Access Journals (Sweden)

    David A. Morgott

    2018-01-01

    Full Text Available A detailed literature search was performed to assess the sources, magnitudes and extent of human inhalation exposure to propylene. Exposure evaluations were performed at both the community and occupational levels for those living or working in different environments. The results revealed a multitude of pyrogenic, biogenic and anthropogenic emission sources. Pyrogenic sources, including biomass burning and fossil fuel combustion, appear to be the primary contributors to atmospheric propylene. Despite a very short atmospheric lifetime, measurable levels could be detected in highly remote locations as a result of biogenic release. The indoor/outdoor ratio for propylene has been shown to range from about 2 to 3 in non-smoking homes, which indicates that residential sources may be the largest contributor to the overall exposure for those not occupationally exposed. In homes where smoking takes place, the levels may be up to thirty times higher than non-smoking residences. Atmospheric levels in most rural regions are typically below 2 ppbv, whereas the values in urban levels are much more variable ranging as high as 10 ppbv. Somewhat elevated propylene exposures may also occur in the workplace; especially for firefighters or refinery plant operators who may encounter levels up to about 10 ppmv.

  16. Propylene/propane mixture adsorption on faujasite sorbents

    NARCIS (Netherlands)

    Van Miltenburg, A.; Gascon, J.; Zhu, W.; Kapteijn, F.; Moulijn, J.A.

    2008-01-01

    The adsorption of propylene and propane on zeolite NaX with and without a saturated (36 wt%) amount of CuCl have been investigated. The single component adsorption isotherms could be well described with a Dual-Site Langmuir model. The dispersion of CuCl results in a decrease of the maximum

  17. The proton-pump inhibitor lansoprazole enhances amyloid beta production.

    Science.gov (United States)

    Badiola, Nahuai; Alcalde, Victor; Pujol, Albert; Münter, Lisa-Marie; Multhaup, Gerd; Lleó, Alberto; Coma, Mireia; Soler-López, Montserrat; Aloy, Patrick

    2013-01-01

    A key event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) species in the brain, derived from the sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Based on a systems biology study to repurpose drugs for AD, we explore the effect of lansoprazole, and other proton-pump inhibitors (PPIs), on Aβ production in AD cellular and animal models. We found that lansoprazole enhances Aβ37, Aβ40 and Aβ42 production and lowers Aβ38 levels on amyloid cell models. Interestingly, acute lansoprazole treatment in wild type and AD transgenic mice promoted higher Aβ40 levels in brain, indicating that lansoprazole may also exacerbate Aβ production in vivo. Overall, our data presents for the first time that PPIs can affect amyloid metabolism, both in vitro and in vivo.

  18. THE EFFECTS OF ORAL ADMINISTRATION OF PROPYLENE GLYCOL AND CALCIUM PROPIONATE IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    C. GAVAN

    2009-10-01

    Full Text Available This study was designed to determine the effects of the oral administration of propylene glycol and calcium propionate on performance of dairy cows. Treatments were 10 l water (control, 10 l water+300 ml propylene glycol (GP and 10 l water+500 g calcium propionate (CP. Animals were mainly of Holstein breeds and were fed and managed in a commercial setting. The cows were divided randomly into an experimental group, n=24 (n=12 with PG and n=12 with CP and a control group, n=11. Cows received the assigned treatment within 10 hours of calving and 24 hours after calving. Health events were recorded during calving and for the first 21 days in milk (DIM. Health examinations were performed on cows that appeared not well. The cows were milked three times daily and milk production was recorded electronically. Milk solid content and somatic cell score were determinate from three consecutive milking weekly till 20 DIM and than monthly till 110 DIM. Retained placenta, hypocalcaemia, displaced abomasums, ketosis and metritis were low in treatment groups (with PG and CP. The cows receiving PG had 2.8 Kg/day grater milk production than control group. The cows receiving CP had 1.7 kg/day grater milk production than control group. Prophylactic administration of PG and CP drenches to Holstein cows may be justified by potentially higher milk yields and reduced health complications.

  19. A study of the ion-molecule reaction in a microwave plasma of propylene

    International Nuclear Information System (INIS)

    Carmi, U.

    1980-07-01

    Microwave plasma of propylene and of argon-propylene mixture were sampled by a quadrupole mass-spectrometer. The composition of the plasma was investigated as a function of external parameters such as pressure, initial concentration of gases, microwave power and sampling position. Three main paths were determined for the pyrolysis and polymerization of propylene, that constitute the rate determining step. Rate constants were determined for the various reactions between propylene and the intermediates. An overall rate constant for the disappearance of propylene was determined. This constant was found to be dependent on the initial gas concentration and on plasma pressure

  20. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene

    KAUST Repository

    Mazoyer, Etienne

    2014-04-01

    Tungsten hydride supported on alumina prepared by the surface organometallic chemistry method is an active precursor for the direct conversion of ethylene to propylene at low temperature and pressure. An extensive contact time study revealed that the dimerization of ethylene to 1-butene is the primary and also the rate limiting step. The catalytic cycle further involves isomerization of 1-butene to 2-butene, followed by cross-metathesis of ethylene and 2-butene to yield propylene with high selectivity. The deactivation mechanism of this reaction has been investigated. The used catalyst was extensively examined by DRIFTS, solid-state NMR, EPR, UV-Vis, TGA and DSC techniques. It was found that a large amount of carbonaceous species, which were due to side reaction like olefin polymerization took place with time on stream, significantly hindering the dimerization of ethylene to 1-butene and therefore the production of propylene. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

  1. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    Science.gov (United States)

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  3. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan

    2017-04-01

    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  4. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-01-01

    Propylene, a by-product of biomass burning, thermal cracking of hydrocarbons and incomplete combustion of fossil fuels, is a ubiquitous molecule found in the environment and atmosphere. Accurate infrared (IR) cross-sections and integrated band intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas temperatures between 296 and 460K. We recorded these spectra at spectral resolutions ranging from 0.08 to 0.5cm-1 and measured the integrated band intensities for a number of vibrational bands in certain spectral regions. We then compared the integrated band intensities measured at room temperature with values derived from the National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) databases. Our results agreed well with the results reported in the two databases with a maximum deviation of about 4%. The peak cross-sections for the primary bands decreased by about 20-54% when the temperature increased from 296 to 460K. Moreover, we determined the integrated band intensities as a function of temperature for certain features in various spectral regions; we found no significant temperature dependence over the range of temperatures considered here. We also studied the effect of temperature on absorption cross-section using a Difference Frequency Generation (DFG) laser system. We compared the DFG results with those obtained from the FTIR study at certain wavenumbers over the 2850-2975cm-1 range and found a reasonable agreement with less than 10% discrepancy. © 2013 Elsevier Ltd.

  5. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    Science.gov (United States)

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  7. Enhanced production of bacitracin by a mutant strain bacillus licheniformis UV-MN-HN-8 (enhanced bacitracin production by mutagenesis)

    International Nuclear Information System (INIS)

    Aftab, M.N.; Ikram-ul-Haq; Baig, S.

    2010-01-01

    The present study is focused on the improvement of Bacillus licheniformis through random mutagenesis to obtain mutant having enhanced production of bacitracin. Many isolates of Bacillus licheniformis were isolated and the isolate GP-40 produced maximum bacitracin production (16 +- 0.72 IU/mL). Treatment of Bacillus licheniformis GP-40 with ultraviolet (UV) radiations increased bacitracin production to 29 +- 0.69 IU/mL. Similarly, treatment of vegetative cells of GP-40 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO/sub 2/) increased bacitracin production to 35 +- 1.35 IU/mL and 29 +- 0.89 IU/mL respectively. Studies regarding the combined effect of UV and chemical treatment on parental cells exhibited significantly higher titers of bacitracin with maximum bacitracin production reached to 47.6 +- 0.92 IU/mL. An increase of 2.97 fold production of bacitracin in comparison to wild type was observed. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably mu (h-/sup 1/)max, Yp/x, qp, Qp and Qx mutant strain B. licheniformis UV-MN-HN-8 was found to be a hyper producer of bacitracin. (author)

  8. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  9. Probing Electroweak Phase Transition via Enhanced Di-Higgs Production

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Chicago U., KICP; Liu, Zhen [Fermilab; Riembau, Marc [DESY

    2018-01-02

    We consider a singlet extension of the Standard Model (SM) with a spontaneous $Z_2$ breaking and study the gluon-gluon fusion production of the heavy scalar, with subsequent decay into a pair of SM-like Higgs bosons. We find that an on-shell interference effect can notably enhance the resonant di-Higgs production rate up to 40\\%. In addition, consistently taking into account both the on-shell and off-shell interference effects between the heavy scalar and the SM di-Higgs diagrams significantly improves the HL-LHC and HE-LHC reach in this channel. As an example, within an effective field theory analysis in an explicitly $Z_2$ breaking scenario, we further discuss the potential to probe the parameter region compatible with a first order electroweak phase transition. Our analysis is applicable for general potentials of the singlet extension of the SM as well as for more general resonance searches.

  10. Solid-state drawing of post-consumer isotactic poly(propylene): effect of melt filtration and carbon black on structural and mechanical properties

    NARCIS (Netherlands)

    Luijsterburg, B.J.; Jobse, P.S.; Spoelstra, A.B.; Goossens, J.G.P.

    2016-01-01

    Post-consumer plastic waste obtained via mechanical recycling is usually applied in thick-walled products, because of the low mechanical strength due to the presence of contaminants. In fact, sorted post-consumer isotactic poly(propylene) (i-PP) can be considered as a blend of 95% i-PP and 5%

  11. Compositional analysis of nitrile terminated poly(propylene imine) dendrimers by high-performance liquid chromatography combined with electrospray mass spectrometry

    NARCIS (Netherlands)

    van der Wal, S; Mengerink, Y; Brackman, JC; de Brabander, EMM; Jeronimus-Stratingh, CM; Bruins, AP

    1998-01-01

    Separation methods for nitrile terminated poly(propylene imine) dendrimers were developed to monitor and optimize their large scale production. Detailed analyses of defects within a dendrimer generation were performed by HPLC at alkaline pH (sodium hydroxide) on a polymer-based column or at neutral

  12. A solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.

    2014-07-10

    Abstract: Increasing the productivity of solar stills has been the focus of intensive research. Many introduced developments, however, require complex components and entail notable increases in cost and land requirements. Developing a compact, productive, and easy-to-operate system is a main challenge. This paper describes a sustainable modification of the solar still that significantly enhances its productivity without forsaking its basic features. A simple amendment in the form of a slowly rotating drum is introduced allowing the formation of thin water films that evaporate rapidly and are continually renewed. The performance of this system was compared against a control without the introduced drum. Throughout the experiment, the new system gave considerably higher yield than the control with an average increase in daily productivity of 200%. Moreover, during sunshine hours, the increase in yield could surpass 6–8 times that of the control. Important parameters such as ease of handling, material availability, efficacy, low cost, safe water quality, and space conservation are maintained. One side-benefit of this design is solving stagnation problems that usually develop in conventional stills. The new simple modification in this study presents a cost-effective and efficient design to solar stills especially in areas with abundant sunshine.

  13. Enhanced Simulated Annealing for Solving Aggregate Production Planning

    Directory of Open Access Journals (Sweden)

    Mohd Rizam Abu Bakar

    2016-01-01

    Full Text Available Simulated annealing (SA has been an effective means that can address difficulties related to optimisation problems. SA is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP is one of the most considerable problems in production planning, in this paper, we present multiobjective linear programming model for APP and optimised by SA. During the course of optimising for the APP problem, it uncovered that the capability of SA was inadequate and its performance was substandard, particularly for a sizable controlled APP problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state will generate only one in next state that will make the search slower and the drawback is that the search may fall in local minimum which represents the best solution in only part of the solution space. In order to enhance its performance and alleviate the deficiencies in the problem solving, a modified SA (MSA is proposed. We attempt to augment the search space by starting with N+1 solutions, instead of one solution. To analyse and investigate the operations of the MSA with the standard SA and harmony search (HS, the real performance of an industrial company and simulation are made for evaluation. The results show that, compared to SA and HS, MSA offers better quality solutions with regard to convergence and accuracy.

  14. Potentiation of Sodium Metabisulfite Toxicity by Propylene Glycol in Both in Vitro and in Vivo Systems

    Directory of Open Access Journals (Sweden)

    Jean Yoo

    2018-02-01

    Full Text Available Many consumer products used in our daily lives result in inhalation exposure to a variety of chemicals, although the toxicities of the active ingredients are not well known; furthermore, simultaneous exposure to chemical mixtures occurs. Sodium metabisulfite (SM and propylene glycol (PG are used in a variety of products. Both the cytotoxicity and the sub-acute inhalation toxicity of each chemical and their mixtures were evaluated. Assays for cell viability, membrane damage, and lysosome damage demonstrated that SM over 100 μg/ml induced significant cytotoxicity; moreover, when PG, which was not cytotoxic, was mixed with SM, the cytotoxicity of the mixture was enhanced. Solutions of 1, 5, and 20% SM, each with 1% PG solution, were prepared, and the whole body of rats was exposed to aerosols of the mixture for 6 h/day, 5 days/week for 2 weeks. The rats were sacrificed 1 (exposure group or 7 days (recovery group after termination of the exposure. The actual concentration of SM in the low-, medium-, and high-exposure groups was 3.91 ± 1.26, 35.73 ± 6.01, and 80.98 ± 5.47 mg/m3, respectively, and the actual concentration of PG in each group was 6.47 ± 1.25, 8.68 ± 0.6, and 8.84 ± 1.77 mg/m3. The repeated exposure to SM and PG caused specific clinical signs including nasal sound, sneeze, and eye irritation which were not found in SM single exposure. In addition, the body weight of treatment group rats decreased compared to that of the control group rats in a time-dependent manner. The total protein concentration and lactate dehydrogenase activity in the bronchoalveolar lavage fluid (BALF increased. Histopathological analysis of the lungs, liver, and nasal cavity was performed. Adverse effects were observed in the nasal cavity, with squamous cell metaplasia identified in the front of the nasal cavity in all high-exposure groups, which completely recovered 7 days after exposure was terminated. Whereas inhalation of SM for 2 weeks only reduced

  15. Neutron production enhancements for the Intense Pulsed Neutron Source.

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  16. Neutron production enhancements for the Intense Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments

  17. Enhancing neutron beam production with a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ansell, S.; Dalgliesh, R. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-10-21

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally enhanced neutron beam source, improving beam emission over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  18. 78 FR 12329 - Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft...

    Science.gov (United States)

    2013-02-22

    ... medical devices to take timely action to correct violative devices or remove them from the marketplace...] Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft Guidance for... draft guidance entitled ``Distinguishing Medical Device Recalls From Product Enhancements; Reporting...

  19. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo

    2012-06-01

    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  20. Molecular weight and its distribution of tetrafluoroethylene and propylene copolymer

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro; Yamaguchi, Koichi.

    1978-04-01

    In comparison of molecular structure of tetrafluoroethylene and propylene copolymer produced by radiation and chemical initiators respectively, both were fractionated by elution method and fine structure was examined. For the fractionated sample by radiation, the relation between molecular weight anti Mn and intrinsic viscosity ( eta] is ( eta] = 3.97 x 10 -4 anti Mnsup(0.630) The result is not in agreement with that of the unfractionated sample by radiation, and similar to those of samples by chemical initiators. There is no difference, however, in the elution method of GPC between both these copolymers; the elution behavior agrees with that of standard polystyrene. Long chain branching thus exists little in the copolymer of tetrafluoroethylene and propylene. To reveal the relations between reaction conditions and molecular weight and its distribution of the copolymer produced by flow apparatus, the molecular weight distribution was measured by GPC. The method of analysis could evaluate molecular weight distribution changing constantly. (auth.)

  1. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.

    Science.gov (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-05-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. REALIGNED MODEL PREDICTIVE CONTROL OF A PROPYLENE DISTILLATION COLUMN

    Directory of Open Access Journals (Sweden)

    A. I. Hinojosa

    Full Text Available Abstract In the process industry, advanced controllers usually aim at an economic objective, which usually requires closed-loop stability and constraints satisfaction. In this paper, the application of a MPC in the optimization structure of an industrial Propylene/Propane (PP splitter is tested with a controller based on a state space model, which is suitable for heavily disturbed environments. The simulation platform is based on the integration of the commercial dynamic simulator Dynsim® and the rigorous steady-state optimizer ROMeo® with the real-time facilities of Matlab. The predictive controller is the Infinite Horizon Model Predictive Control (IHMPC, based on a state-space model that that does not require the use of a state observer because the non-minimum state is built with the past inputs and outputs. The controller considers the existence of zone control of the outputs and optimizing targets for the inputs. We verify that the controller is efficient to control the propylene distillation system in a disturbed scenario when compared with a conventional controller based on a state observer. The simulation results show a good performance in terms of stability of the controller and rejection of large disturbances in the composition of the feed of the propylene distillation column.

  3. Generalized Enhanced Multivariance Product Representation for Data Partitioning: Constancy Level

    International Nuclear Information System (INIS)

    Tunga, M. Alper; Demiralp, Metin

    2011-01-01

    Enhanced Multivariance Product Representation (EMPR) method is used to represent multivariate functions in terms of less-variate structures. The EMPR method extends the HDMR expansion by inserting some additional support functions to increase the quality of the approximants obtained for dominantly or purely multiplicative analytical structures. This work aims to develop the generalized form of the EMPR method to be used in multivariate data partitioning approaches. For this purpose, the Generalized HDMR philosophy is taken into consideration to construct the details of the Generalized EMPR at constancy level as the introductory steps and encouraging results are obtained in data partitioning problems by using our new method. In addition, to examine this performance, a number of numerical implementations with concluding remarks are given at the end of this paper.

  4. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling.

    Science.gov (United States)

    Wang, Shenghai; Duan, Mengjie; Liu, Yalan; Fan, Sen; Lin, Xiaoshan; Zhang, Yi

    2017-03-01

    To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling. A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g -1 , approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g -1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201. Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.

  5. Significant enhancement by biochar of caproate production via chain elongation.

    Science.gov (United States)

    Liu, Yuhao; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan

    2017-08-01

    In this study, biochar was introduced into a chain elongation system to enhance the bioproduction of caproate and caprylate. The concentration of caproate increased to 21.1 g/L upon the addition of biochar, which is the highest level of caproate reported for such a system to date when ethanol was used as electron donor. The addition of biochar created a tougher system with more stable microorganism community structure for chain elongation, in which no obvious inhibition by products or substrates was observed, moreover, the lag phase was reduced 2.3-fold compared to the system without biochar. These reinforcement effect of biochar are attributed to the enhanced conductivity due to the significant enrichment of functional microorganisms via the microbial network surrounding smaller biochar particles, and via the adsorption on the rough surfaces or pores of larger particles, which facilitated electron transfer. Higher amounts of extracellular polymer substances and higher conductivity induced by biochar could contribute to the reinforcement effect in chain elongation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.

    Science.gov (United States)

    Berezina, Nathalie

    2013-01-25

    In the global context of increased concerns for our environment, the use of bioplastics as a replacement for existing petroleum-based polymers is an important challenge. Indeed, bioplastics hardly meet economical and technical constraints. One, of the most promising among currently studied bioplastics, is the polyhydroxyalkanoate (PHA). To circumvent the economical issue for this particular biopolymer one solution can be the enhancement of the overall productivity by the improvement of the nutritional medium of the microorganism producing the biopolymer. Thus, several nutrition media, supplemented or not with sodium glutamate, were tested for the growth and the PHA production by Cupriavidus necator DSM 545 strain. The most efficient for the biomass and the PHA production improvement were found to be the Luria broth (LB) and the Bonnarme's media, both supplemented with 10 g/L sodium glutamate. Hence the overall productivity was 33 times enhanced comparing to traditional cultivation methods. These results open a new route for the PHA production by C. necator which appears to be more suitable on a rich, or enriched, medium with no limiting factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. New technique for enhancing helium production in ferritic materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Graczyk, D.G.; Kneff, D.W.

    1987-10-01

    Analyses of iron samples irradiated up to 10 27 n/m 2 in HFIR found more helium than was expected from fast neutron reactions at high neutron fluences. The helium excess increases systematically with neutron exposure, suggesting a transmutation-driven process. The extra helium may be produced in two different ways, either by fast neutron reactions on the transmuted isotopes of iron or by a thermal neutron reaction with the radioactive isotope 55 Fe. Radiometric and mass spectrometric measurements of the iron isotopes composing the irradiated samples have been used to determine limits on the cross sections for each process. Either of these processes can be used to enhance helium production in ferritic materials during irradiations in mixed-spectrum reactors by isotopically enriching the samples. Further work is needed to clarify the reaction mechanisms and helium production cross sections. Our measurements determined the thermal neutron total absorption cross section of 55 Fe to be 13.2 +- 2.1 barns. 16 refs., 3 figs., 3 tabs

  8. Photocatalytic oxidation of propylene on La and N codoped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye, E-mail: lqybys@163.com; Wang, Xiaodong; Zhang, Min; Yang, Jianjun, E-mail: yangjianjun@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials (China)

    2015-02-15

    Lanthanum- and nitrogen-codoped TiO{sub 2} photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO{sub 2} were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectra. The La-/N-codoped TiO{sub 2} showed excellent photoactivity of propylene oxidation compared with the single-doped TiO{sub 2} and La-/N-codoped P25 TiO{sub 2} nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  9. Poly(Propylene Imine Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Natalia Wrońska

    2015-10-01

    Full Text Available Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine (PPI dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3. The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.

  10. Interactive transport of guanidinylated poly(propylene imine)-based dendrimers through liposomal and cellular membranes.

    Science.gov (United States)

    Tsogas, Ioannis; Sideratou, Zili; Tsiourvas, Dimitris; Theodossiou, Theodossis A; Paleos, Constantinos M

    2007-10-15

    The ability of guanidinylated poly(propylene imine) dendrimers to translocate across lipid bilayers was assessed by employing either a model phosphate-bearing liposomal membrane system or A549 human lung carcinoma cells. Two dendrimer generations, differing in the number of surface guanidinium groups, were employed, while surface acetylation or the use of spacers affected the binding of the guanidinium group to the phosphate moiety and finally the transport efficiency. Following adhesion of dendrimers with liposomes, fusion or transport occurred. Transport through the liposomal bilayer was observed at low guanidinium/phosphate molar ratios, and was enhanced when the bilayer was in the liquid-crystalline phase. For effective transport through the liposomal membrane, an optimum balance between the binding strength and the degree of hydrophobicity of the guanidinylated dendrimer is required. In experiments performed in vitro with cells, efficient penetration and internalization in subcellular organelles and cytosol was observed.

  11. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  12. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Enhancing Environmental Communication and Products Through Qualitative Research

    Science.gov (United States)

    DeLorme, D.; Hagen, S. C.

    2014-12-01

    This presentation discusses two ongoing interdisciplinary case studies that are using qualitative research to design and enhance environmental communication and science products for outreach and decision making purposes. Both cases demonstrate the viability and practical value of qualitative social science methodology, specifically focus group interviews, to better understand the viewpoints of target audiences, improve deliverables, and support project goals. The first case is a NOAA-funded project to conduct process-based modeling to project impact from climate change in general and sea level rise in particular to the natural and built environment. The project spans the Mississippi, Alabama, and Florida Panhandle coasts with concentration on the three National Estuarine Research Reserves. As part of the broader project, four annual focus groups were conducted with a purposive sample of coastal resource managers to capture their perspectives and suggestions to better meet their informational and operational needs. The second case is a Florida Sea Grant-funded project that is developing, implementing, and testing a cohesive outreach campaign to promote voluntary careful and responsible recreational boating to help protect sensitive marine life and habitats (especially seagrasses and oyster reefs) in the Mosquito Lagoon. Six focus groups were conducted with a purposive sample of the target audience of boaters to gain insights, feedback, and ideas on the direction of the campaign and design of the messages and products. The campaign materials created include a branded website, Facebook page, mobile app, information packets, brochures, pledge forms, and promotional items. A comparison of these two case studies will be provided and will explain how the qualitative findings were/are being implemented to tailor and refine the respective communication strategies and techniques including the emerging outreach products. The resulting outcomes are messages and tools that are

  14. Toward cropping systems that enhance productivity and sustainability

    Science.gov (United States)

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  15. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2017-11-01

    Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  16. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  17. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  18. Propylene glycol energy supplementation during peripartal period in dairy cows and reproduction efficiency parameters

    Directory of Open Access Journals (Sweden)

    Vakanjac Slobodanka

    2012-01-01

    Full Text Available The aim of this work was to investigate the impact of two energy supplements based on propylene glycol in dairy cows diet on ovarian and follicular morphology, conception, insemination index and length of service period. A total number of 60 Holstein Friesian dairy cows, parity between 2-8, with an average milk production of 7000 kg/305 days of lactation were divided into three experimental groups (20 dairy cows per group. The first group of dairy cows was supplemented daily with "Energy-plus" (O1 group; 200 mL propylene-glycol supplement and the second group was supplemented with "Ketal" (O2 group; 160 mL propylene-glycol supplement, two weeks before partus until 30 days post partum. The third experimental group were non supplemented dairy cows (O3, control group. Ultrasound examination of the reproductive system using real time echo camera Falco VET 100 (ESAOTE PieMedical, Holland, B-shaped scan with linear-array endorectal 5-8 MHz probe was conducted on every animal starting from day 40 postpartum. The diameters of the ovaries (left and right and of the dominant follicle(s were recorded. Ultrasound testing was repeated on day 50 and 60 postpartum only in cows which in the meantime were not inseminated. Reproduction efficiency parameters (conception rate, number of inseminations and length of service period were recorded individually. The statistical significance of the differences between groups was tested using ANOVA with LSD test at the level of significance p<0.05, chi-square test and Kaplan-Meier survival analysis (the length of service period. There was no significant impact of the propylene glycol supplementation on the ovarian and follicular morphology at the first ultrasound examination. At the second ultrasound examination there was a significant difference between left ovarian dominant follicle diameter in the control and supplemented dairy cows (1.67±0.53 vs 1.12±0.29 and 1.11±0.35 cm, p<0.05, O3 vs O1 and O2, respectively. The

  19. Enhancement of Plant Productivity in the Post-Genomics Era.

    Science.gov (United States)

    Thao, Nguyen Phuong; Tran, Lam-Son Phan

    2016-08-01

    and larger scale. In their article, Onda and Mochida detailed how to use these technologies in fully characterizing the genetic diversity or multigenecity within a particular plant species. The authors discussed the constant innovation of sequencing platforms which has made sequencing technologies become more superior and more powerful than ever before. Additionally, the efforts result in not only further cut down of the sequencing cost and increase in the sequencing speed, but also improvement in sequencing accuracy and extended sequencing application to studies at both DNA and RNA levels. Such knowledge will help the scientists interpret, at least partially, how plants can adapt to various environmental conditions, or how different cultivars can respond differently to the same stress. Another article by Ong et al. also laid emphasis on the importance of various high-throughput sequencing platforms, thanks to which a large number of genomic databases supplied with detailed annotation and useful bioinformatics tools have been established to assist geneticists. Readers can find in this review the summary of available plant-specific genomic databases up-to-date and popular web-based resources that are relevant for comparative genomics, plant evolution and phylogenomics studies. These, along with other approaches, such as quantitative trait locus and genome-wide association study, will lay foundation for prediction and identification of genes or alleles responsible for valuable agronomic traits, contributing to the enhancement of plant productivity by genetic engineering approach. In this thematic issue, specific examples for crop improvement are also demonstrated. The first showcase is given by Nongpiur et al. who provided evidence that synergistic employment of genomics approaches and high-throughput gene expression methods have aided in dissecting the salinity-responsive signaling pathway, identifying genes involved in the stress response and selecting candidate genes

  20. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  1. Research on the structure in solution of optically active synthetic polymers (propylene polysulphide, propylene polyoxide, tertio-butyl polysulphide); Recherche de la structure en solution de polymeres synthetiques, optiquement actifs (polysulfure de propylene, polyoxyde de propylene, polysulfure de tertiobutyle)

    Energy Technology Data Exchange (ETDEWEB)

    Sarrazin, Brigitte

    1971-03-15

    It was proposed to study the structure of sulphur-containing synthetic polymers, stereo-regular, optically active in solution and able to adopt a spiral conformation, with special reference to propylene polysulphide. Two methods were used, the first mathematical (conformational energy calculations) and the second physico-chemical, essentially spectroscopic. By conformational analysis it is possible to choose the most probable structures liable to be adopted by a given polymer in solution while the spectro-polarimetric study should, in principle, invalidate or confirm certain of these hypotheses. The conformational energy calculations showed that in fact there is no energy conformation low enough to be stable in solution. Strictly speaking however we can refer to a region of stability in which steric hindrance is low and many energy minima exist. These minima are indistinguishable both by their energy values and by their spatial localizations and are all enclosed in the region bounded by the barriers due to steric hindrance. This uncertainty does not arise from approximations made in the calculations, but from the multitude of stereochemical structure possible. Investigations into the variation of the optical rotary dispersion and the circular dichroism as a function of temperature indicated the existence of three or more equilibrium states in the dioxane. The spectra appear to be the summation of the optical activities of the numerous simultaneously possible conformations. It appears that polymers, such as propylene polysulphide or propylene polyoxide do not have stable structures in solution. These are molecules of great flexibility possessing a large number of degrees of freedom. These properties distinguish them from the natural polymers, carrying precise information, such as DNA which must consequently have stable conformations. (author) [French] On s'est propose d'etudier la structure de polymeres synthetiques soufres, stereoreguliers, optiquement actifs en

  2. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    Full Text Available Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR and spectra showed up to 16 fold higher methanol as compared to control wild type (WT plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid and Bemisia tabaci (whitefly, respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  3. Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance

    Science.gov (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar

    2013-01-01

    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989

  4. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation

    Directory of Open Access Journals (Sweden)

    Nora M. Elkenawy

    2017-03-01

    Full Text Available Prodigiosin is a red pigment produced by Serratia marcescens. Prodigiosin is regarded as a promising drug owing to its reported characteristics of possessing anti-microbial, anti-cancer, and immunosuppressive activity. A factorial design was applied to generate a set of 32 experimental combinations to study the optimal conditions for pigment production using crude glycerol obtained from local biodiesel facility as carbon source for the growth of Serratia marcescens. The maximum production (870 unit/cell was achieved at 22 °C, at pH 9 with the addition of 1% (w/v peptone and 109 cell/ml inoculum size after 6 days of incubation. Gamma radiation at dose 200 Gy was capable of doubling the production of the pigment using the optimized conditions and manipulating production temperature. Our results indicate that we have designed an economic medium supporting enhanced Serratia marcescens MN5 prodigiosin production giving an added value for crude glycerol obtained from biodiesel industry.

  5. Solvation of lithium ion in dimethoxyethane and propylene carbonate

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Solvation of the lithium ion (Li+) in dimethoxyethane (DME) and propylene carbonate (PC) is of scientific significance and urgency in the context of lithium-ion batteries. I report PM7-MD simulations on the composition of Li+ solvation shells (SH) in a few DME/PC mixtures. The equimolar mixture features preferential solvation by PC, in agreement with classical MD studies. However, one DME molecule is always present in the first SH, supplementing the cage formed by five PC molecules. As PC molecules get removed, DME gradually substitutes vacant places. In the PC-poor mixtures, an entire SH is populated by five DME molecules.

  6. Radiation vulcanization of ethylene-propylene rubber with polyfunctional monomers

    Energy Technology Data Exchange (ETDEWEB)

    Jinhua, Wang; Yoshii, Fumio; Makuuchi, Keizo

    2001-01-01

    This paper reports on the sensitizing efficiency of several polyfunctional monomers to radiation vulcanization of ethylene-propylene rubber. And the results show that triethyleneglycol dimethacrylate (TEGDMA) gave the best results. TEGDMA not only lowers the vulcanization dose (D{sub v}), but also increases the tensile strength greatly. The content of TEGDMA does not affect the D{sub v} of TEGDMA-EPM, but affects the tensile strength at the D{sub v}. At best content (0.04 mol/100 g EPM), the tensile strength is increased from 6.0 to 12 MPa, and the elongation is 790% at the D{sub v}. (author)

  7. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  8. Summary of strategies for planning Productivity Improvement and Quality Enhancement (PIQE)

    Science.gov (United States)

    1986-01-01

    The Summary of NASA Strategies for Productivity Improvement and Quality Enhancement respond to NASA's eighth top goal: Establish NASA as a leader in the development and application of advanced technology and management practices which contribute to significant increases in both Agency and national productivity. The Strategies provide the framework for development of the agency-wide Productivity Improvement and Quality Enhancement (PIQE) Plans.

  9. Research on the structure in solution of optically active synthetic polymers (propylene polysulphide, propylene polyoxide, tertio-butyl polysulphide)

    International Nuclear Information System (INIS)

    Sarrazin, Brigitte

    1971-03-01

    It was proposed to study the structure of sulphur-containing synthetic polymers, stereo-regular, optically active in solution and able to adopt a spiral conformation, with special reference to propylene polysulphide. Two methods were used, the first mathematical (conformational energy calculations) and the second physico-chemical, essentially spectroscopic. By conformational analysis it is possible to choose the most probable structures liable to be adopted by a given polymer in solution while the spectro-polarimetric study should, in principle, invalidate or confirm certain of these hypotheses. The conformational energy calculations showed that in fact there is no energy conformation low enough to be stable in solution. Strictly speaking however we can refer to a region of stability in which steric hindrance is low and many energy minima exist. These minima are indistinguishable both by their energy values and by their spatial localizations and are all enclosed in the region bounded by the barriers due to steric hindrance. This uncertainty does not arise from approximations made in the calculations, but from the multitude of stereochemical structure possible. Investigations into the variation of the optical rotary dispersion and the circular dichroism as a function of temperature indicated the existence of three or more equilibrium states in the dioxane. The spectra appear to be the summation of the optical activities of the numerous simultaneously possible conformations. It appears that polymers, such as propylene polysulphide or propylene polyoxide do not have stable structures in solution. These are molecules of great flexibility possessing a large number of degrees of freedom. These properties distinguish them from the natural polymers, carrying precise information, such as DNA which must consequently have stable conformations. (author) [fr

  10. About morphology in ethylene-propylene(-diene) copolymers-based latexes

    NARCIS (Netherlands)

    Tillier, D.L.; Meuldijk, J.; Hoehne, G.W.H.; Frederik, P.M.; Regev, O.; Koning, C.E.

    2005-01-01

    Coatings and engineering plastics often require high impact strength. This property can be achieved with tougheners. For the present paper, core-shell impact modifiers were synthesized using ethylene–propylene copolymers (EPM), ethylene–propylene-diene copolymers (EPDM) or a mixture of both types

  11. 21 CFR 589.1001 - Propylene glycol in or on cat food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 589.1001... or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat... on cat food causes the feed to be adulterated and in violation of the Federal Food, Drug, and...

  12. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2017-01-01

    Full Text Available Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225–250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose. Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  13. Process improvements for enhanced productivity of PHWR garter springs

    International Nuclear Information System (INIS)

    Srinivasula Reddy, S.; Tonpe, Sunil; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    final step. Further process optimization was carried out to ensure better stiffness through dimensional control. This paper describes the influence of process parameters during various manufacturing steps such as heat treatment and chemical operations on the hydrogen pickup, residual stresses and coil stiffness in Garter springs used in PHWRs. The improvements carried out in manufacturing process to overcome the above problems and to achieve enhanced productivity were also discussed

  14. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  15. Propylene oxidation on catalytic Pt-Cu/y alumina. (Part II) chemical Kinetics of catalysts of Pt-Cu/y-alumina in the propylene oxidation

    International Nuclear Information System (INIS)

    Carballo, Luis M; Zea, Hugo R

    1999-01-01

    In this work is treated the effect of the composition of catalysts of Pt-Cu/y - alumina on the specific superficial activity corresponding to the total oxidation of propylene. Although the catalyst activity of the Cu in the operation conditions went practically null the specific activity of the catalytic Pt-Cu it incremented with the increase of the contained proportion of Cu in the catalyst. The total global speed by gram of catalyst was also increased with the introduction of Cu, but only to medium and high concentrations of propylene. The specific superficial activity was bigger for the sinterizated catalyst, for a given composition of the bimetallic catalyst, compared with that of the fresh catalyst (non-sinterizated). To explain, the catalytic behavior of the propylene oxidation, on the catalysts here studied, it is postulated that the propylene molecule it absorb with less force on the faces than in the corners or borders of the crystals of the catalyst and that the connection of adsorption on a place of given Pt is affected by the atoms of neighboring Cu on the surface causing changes in the mobility of the absorbed species. The kinetic results reveal a complex dependence between the reaction speed and the concentration of the propylene. In low concentrations of propylene the reaction speed was increased until to reach a maximum, and then to continue with a marked decreasing; and to concentrations. In bigger propylene concentrations, the reaction kinetics is presented as zero order with regard to the propylene, for some given concentrations of oxygen

  16. Critical variables in the performance of a productivity-enhanced solar still

    KAUST Repository

    Ayoub, George M.; Malaeb, Lilian; Saikaly, Pascal

    2013-01-01

    A new and sustainable modification has been introduced into the conventional solar still, considerably increasing its productivity. This enhancement in the solar still productivity is achieved without forsaking the basic features of the still

  17. Enhanced production of polyunsaturated fatty acid docosahexaenoic acid by thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Chandramohan, D.

    , thraustochytrids are considered among the most promising. These marine eukaryotic, straminopilan protests have been extensively studied in recent years for DHA production. This paper examines methods to enhance DHA production in thraustochytrids. A cold shock...

  18. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    International Nuclear Information System (INIS)

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  19. The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming

    International Nuclear Information System (INIS)

    Ajamein, Hossein; Haghighi, Mohammad; Alaei, Shervin

    2017-01-01

    Graphical abstract: CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the fast and simple microwave enhanced combustion method. Considering that the fuel type is one of the effective parameters on quality of the prepared nanocatalysts, different fuels such as sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used. XRD, FESEM, FTIR, EDX, and BET analyses were applied to determine the physicochemical properties of fabricated nanocatalysts. The catalytic experiments were performed in a fixed bed reactor in the temperature range of 160–300 °C. The characteristic and reactivity properties of fabricated nanocatalysts proved that ethylene glycol is the suitable fuel for preparation of CuO/ZnO/Al 2 O 3 nanocatalysts via microwave enhanced combustion method. - Highlights: • Microwave combustion synthesis of CuO/ZnO/Al 2 O 3 nanocatalysts by different fuels. • Enhancement of methanol conversion at low temperatures by selecting proper fuel. • Providing a large number of combustion pores by application of ethylene glycol as fuel. • Increase of CO selectivity in steam methanol reforming by Zn(0 0 2) crystallite facet. - Abstract: A series of CuO/ZnO/Al 2 O 3 nanocatalysts were synthesized by the microwave enhanced combustion method to evaluate the influence of fuel type. Sorbitol, propylene glycol, glycerol, diethylene glycol and ethylene glycol were used as fuel. XRD results revealed that application of ethylene glycol led to highly dispersed CuO and ZnO crystals. It was more highlighted about Cu(1 1 1) crystallite facet which known as the main active site of methanol steam reforming. Moreover, using ethylene glycol resulted homogeneous morphology and narrow particles size distribution (average surface particle size is about 265 nm). Due to the significant physicochemical properties, the catalytic experiments showed that the sample prepared by ethylene glycol achieved total conversion of methanol at 260 °C. Its carbon monoxide

  20. Effect of hydrogen and propylene on the hydrogen peroxide decomposition over Pt, PtO and Au catalysts

    NARCIS (Netherlands)

    Kertalli, E.; Schouten, J.C.; Nijhuis, T.A.

    2017-01-01

    The decomposition of hydrogen peroxide (H2O2) on Pt, PtO and Au catalysts has been investigated in the presence of nitrogen, propylene and hydrogen. H2O2 formation on the catalyst is known to be a key intermediate step for the direct synthesis of propylene oxide (PO) from hydrogen, propylene and

  1. Ultrasound-Enhanced Biogas Production from Different Substrates

    DEFF Research Database (Denmark)

    González-Fernández, Cristina; Timmers, Rudolphus Antonius; Ruiz, Begona

    2015-01-01

    Among the biofuel production processes using different substrates, the biogas generation process is one of the simplest. Compared with bioethanol or biodiesel production processes, anaerobic digestion is a process where all the organic matter (carbohydrates, lipids and proteins) can be biologically...... production. The present chapter is dedicated to providing a review of ultrasound pretreatment applied to different substrates (lignocelullosic materials, manures, sludge and microalgae). The advantages and constraints, that ultrasound pretreatment exhibit towards biogas production, are discussed and compared...

  2. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  3. PRODUCTIVITY AND LAND ENHANCING TECHNOLOGIES IN NORTHERN ETHIOPIA: HEALTH, PUBLIC INVESTMENTS, AND SEQUENTIAL ADOPTION

    OpenAIRE

    Ersado, Lire; Amacher, Gregory S.; Alwang, Jeffrey Roger

    2003-01-01

    The adoption of more efficient farming practices and technologies that enhance agricultural productivity and improve environmental sustainability is instrumental for achieving economic growth, food security and poverty alleviation in sub-Saharan Africa. Our research examines the interaction between public investments, community health, and adoption of productivity and land enhancing technologies by households in the northern Ethiopian state of Tigray. Agricultural technology adoption decision...

  4. Enhancement of biodiesel production from different species of algae

    Directory of Open Access Journals (Sweden)

    El-Moneim M. R. Afify, Abd

    2010-12-01

    Full Text Available Eight algal species (4 Rhodo, 1 chloro and 1 phaeophycean macroalgae, 1 cyanobacterium and 1 green microalga were used for the production of biodiesel using two extraction solvent systems (Hexane/ether (1:1, v/v and (Chloroform/ methanol (2:1, v/v. Biochemical evaluations of algal species were carried out by estimating biomass, lipid, biodiesel and sediment (glycerin and pigments percentages. Hexane/ ether (1:1, v/v extraction solvent system resulted in low lipid recoveries (2.3-3.5% dry weight while; chloroform/methanol (2: 1, v/v extraction solvent system was proved to be more efficient for lipid and biodiesel extraction (2.5 – 12.5% dry weight depending on algal species. The green microalga Dictyochloropsis splendida extract produced the highest lipid and biodiesel yield (12.5 and 8.75% respectively followed by the cyanobacterium Spirulina platensis (9.2 and 7.5 % respectively. On the other hand, the macroalgae (red, brown and green produced the lowest biodiesel yield. The fatty acids of Dictyochloropsis splendida Geitler biodiesel were determined using gas liquid chromatography. Lipids, biodiesel and glycerol production of Dictyochloropsis splendida Geitler (the promising alga were markedly enhanced by either increasing salt concentration or by nitrogen deficiency with maximum production of (26.8, 18.9 and 7.9 % respectively at nitrogen starvation condition.

    Ocho especies de algas (4 Rhodo, 1 cloro y 1 macroalgas phaeophycean, 1 cianobacteria y 1 microalga verde fueron utilizados para la producción de biodiesel utilizando dos sistemas de extracción con disolventes (hexano/éter (1:1, v/v y (Cloroformo / metanol (2:1, v/v. La evaluación bioquímica de las especies de algas se llevó a cabo mediante la estimación de los porcentajes de biomasa, de lípidos, de biodiesel y de sedimento (glicerina y pigmentos. El sistema extracción con el disolvente hexano/éter (1:1, v

  5. Lean manufacturing: A better way for enhancement in productivity

    Science.gov (United States)

    Kumar Ahir, Pankaj; Kumar Yadav, Lalit; Singh Chandrawat, Saurabh

    2012-03-01

    Productivity is the impact of peoples working together. Machines are merely an extended way of collective imagination and energy. Lean Manufacturing is the most used method for continues improvement of business. Organization management philosophy focusing on the reduction of wastage to improve overall customer value. "Lean" operating principles began in manufacturing environments and are known by a variety of synonyms; Lean Manufacturing, Lean Production, Toyota Production System, etc. It is commonly believed that Lean started in Japan "The notable activities in keeping the price of Ford products low is the steady restriction of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost." "A systematic approach to identifying and eliminating waste through continuous improvement, flowing the product at the pull of the customer in pursuit of perfection."

  6. CONSUMER ENGAGEMENT AND VALUE ENHANCEMENT THROUGH PRODUCT INDIVIDUALISATION

    OpenAIRE

    Armellini, Juan Pablo

    2017-01-01

    Product customisation has always been a regular practice as a form of self or group identification. Previous studies have demonstrated that when investing time and effort to customise a product, an emotional attachment to that product develops. Since the 1980s, new technologies in design, manufacturing and communications have facilitated customisation practices for mass manufacturers as well as for individual consumers. For example, computer algorithms can now automate customisation (i.e. ind...

  7. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    International Nuclear Information System (INIS)

    Barroso-Bujans, F.; Verdejo, R.; Lozano, A.; Fierro, J.L.G.; Lopez-Manchado, M.A.

    2008-01-01

    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy

  8. Adsorption and separation of propane and propylene by porous hexacyanometallates

    International Nuclear Information System (INIS)

    Autie-Castro, G.; Autie, M.; Reguera, E.; Moreno-Tost, R.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Santamaria-Gonzalez, J.

    2011-01-01

    The separation capability for mixtures of propane and propylene by porous frameworks representatives of transition metal hexacyanometallates was studied from adsorption data under equilibrium conditions at 273.15 K and from inverse gas chromatography profiles at different column temperatures. Samples of two porous solids were considered; Cd 3 [Co(CN) 6 ] 2 , which is representative of Prussian blue analogues (cubic structure) with a porous framework related to vacancies for building block, and Zn 3 [Co(CN) 6 ] 2 (rhombohedral phase) where the porous framework results from the tetrahedral coordination for the Zn atoms. The two materials were found to be able for the mixtures separation, with the highest separation ability for the rhombohedral phase under equilibrium conditions but, in dynamic conditions the cubic one shown a better separation, which was ascribed to a kinetic contribution related to a smaller windows size.

  9. Radiochemical oxidation of an ethylene-propylene-hexadiene terpolymer

    International Nuclear Information System (INIS)

    Verdu, J.; Pinel, B.; Gueguen, V.; Audouin, L.

    1996-01-01

    The γ ray initiated oxidation of an ethylene-propylene-hexadiene terpolymer (molar ratios 87/12/1) was studied by IR spectrophotometry in the 40-90 deg C temperature range, with dose rates varying from 10 to 2500 Gy h -1 and integrated doses up to 100 kGy. Bulk (∼ 8 mm) and thin (∼ 0.1 mm) samples were studied. It appears that the oxidation is diffusion controlled in the bulk samples and non diffusion controlled in thin films. A kinetic study of IR spectral changes in these latter reveals that vinylene groups of the hexadiene monomer unit disappear in the early period of exposure, presumably by addition reactions with peroxy radicals. A very simplified mechanistic scheme allows a satisfying modelling of this process whose rate is almost proportional to the dose rate (irradiation intensity). (authors)

  10. Adsorption and separation of propane and propylene by porous hexacyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Autie-Castro, G. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Autie, M. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Centro de Ingenieria y Proyectos (CIPRO), ISPJAE, La Habana (Cuba); Reguera, E., E-mail: ereguera@yahoo.com [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Mexico DF (Mexico); Moreno-Tost, R.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Santamaria-Gonzalez, J. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Malaga (Spain)

    2011-01-15

    The separation capability for mixtures of propane and propylene by porous frameworks representatives of transition metal hexacyanometallates was studied from adsorption data under equilibrium conditions at 273.15 K and from inverse gas chromatography profiles at different column temperatures. Samples of two porous solids were considered; Cd{sub 3}[Co(CN){sub 6}]{sub 2}, which is representative of Prussian blue analogues (cubic structure) with a porous framework related to vacancies for building block, and Zn{sub 3}[Co(CN){sub 6}]{sub 2} (rhombohedral phase) where the porous framework results from the tetrahedral coordination for the Zn atoms. The two materials were found to be able for the mixtures separation, with the highest separation ability for the rhombohedral phase under equilibrium conditions but, in dynamic conditions the cubic one shown a better separation, which was ascribed to a kinetic contribution related to a smaller windows size.

  11. Kinetic modelling of radiochemical ageing of ethylene-propylene copolymers

    International Nuclear Information System (INIS)

    Colin, Xavier; Richaud, Emmanuel; Verdu, Jacques; Monchy-Leroy, Carole

    2010-01-01

    A non-empirical kinetic model has been built for describing the general trends of radiooxidation kinetics of ethylene-propylene copolymers (EPR) at low γ dose rate and low temperature. It is derived from a radical chain oxidation mechanism composed of 30 elementary reactions: 19 relative to oxidation of methylene and methyne units plus 11 relative to their eventual cooxidation. The validity of this model has been already checked successfully elsewhere for one homopolymer: polyethylene (PE) (; ). In the present study, it is now checked for polypropylene (PP) and a series of three EPR differing essentially by their mole fraction of ethylene (37%, 73% and 86%) and their crystallinity degree (0%, 5% and 26%). Predicted values of radiation-chemical yields are in good agreement with experimental ones published in the last half past century.

  12. Radiation-induced emulsion copolymerization of tetrafluoroethylene with propylene in flow system, (9)

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Ito, Masayuki; Okamoto, Jiro; Machi, Sueo.

    1982-02-01

    Seeded copolymerization of tetrafluoroethylene with propylene by radiation was carried out in a flow apparatus with pipe reactor at a pressure of 30 kg/cm 2 , a temperature of 40 0 C, a dose rate of 4.9 x 10 5 rad/h, and at various monomer compositions. Polymer concentration in latex increases linearly at propylene fraction of 0.25 and accelerately at the fraction below 0.1 with reaction time. The polymerization rates are 36, 60, 57, and 46 g/h.l-H 2 O at propylene fractions of 0.01, 0.05, 0.1, and 0.25, respectively. Fluorine content of the polymer obtained at the end of polymerization is 53.8 wt% at propylene fractions of 0.25 and 0.1, and is 56.5 wt% at the fraction of 0.01. For the insoluble polymer in tetrahydrofuran produced at the fraction of 0.01, the fluorine content is 61.3 wt%. This indicates that monomer unit ratio of tetrafluoroethylene and propylene is 1.8/l. In the polymerization at a region of high tetrafluoroethylene content in monomer gas, it was elucidated that alternative arrangement of copolymer being characteristic in this system is broken down to produce tetrafluoroethylene rich polymer, and polymerization rate is reduced. This is explained by that addition of propylene monomer to tetrafluoroethylene polymer radical becomes rate-determining step due to the extremely poor propylene concentration in polymer particles. (author)

  13. Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-02-01

    Full Text Available A statistical model combined with CFD (computational fluid dynamic method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM, with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D response surface and a related two-dimensional (2D contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT 75 °C, system pressure (SP 25 bar, and 75% monomer concentration (MC. The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable

  14. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management

    International Nuclear Information System (INIS)

    Manikandan, S.; Rajan, K.S.

    2017-01-01

    Highlights: • Hybrid nanofluid containing sand nanoparticles & encapsulated paraffin wax prepared. • Specific heat of hybrid nanofluid 9% greater than that of PG-water mixture. • Specific heat & thermal conductivity enhanced at optimum paraffin wax concentration. • Hybrid nanofluid with 1 wt.% paraffin wax & 1 vol% sand nanoparticles best suited. - Abstract: The reduction in specific heat commonly encountered due to the addition of nanoparticles to a heat transfer fluid such as propylene glycol-water mixture, can be overcome by co-dispersing surfactant-encapsulated paraffin wax, leading to formation of a hybrid nanofluid. Experimental investigations have been carried out on the preparation and evaluation of thermophysical properties of a hybrid nanofluid containing pluronic P-123 encapsulated paraffin wax (70–120 nm diameter, 1–5 wt.%) and sand nanoparticles (1 vol%) in propylene glycol-water mixture. The comparison of results of differential scanning calorimetry of pure paraffin wax and encapsulated paraffin wax revealed encapsulation efficiency of 84.4%. The specific heat of hybrid nanofluids monotonously increased with paraffin wax concentration, with 9.1% enhancement in specific heat for hybrid nanofluid containing 5 wt.% paraffin wax, in comparison to propylene glycol-water mixture. There exists an optimum paraffin wax concentration (1 wt.%) for the hybrid nanofluid at which the combination of various thermophysical properties such as specific heat, thermal conductivity and viscosity are favorable for use as heat transfer fluid. Such a hybrid nanofluid can be used as a substitute for propylene glycol-water mixture in solar thermal systems.

  15. Enhancing the Production of a Novel Exopolysaccharide by Bacillus ...

    African Journals Online (AJOL)

    Purpose: To improve the production of a novel exopolysaccharide (EPS) by Bacillus mucilaginosus CGMCC5766. Methods: The culture medium for production of EPS was optimized using statistical experiment design. Sucrose, CaCO3 and K2HPO4 were found to be the key factors based on the results obtained from ...

  16. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  17. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  18. Enhanced amylase production by fusarium solani in solid state fermentation

    International Nuclear Information System (INIS)

    Bakri, Y.; Jawhar, M.; Arabi, M.I.E.

    2014-01-01

    The present study illustrates the investigation carried out on the production of amylase by Fusarium species under solid state fermentation. All the tested Fusarium species were capable of producing amylase. A selected F. solani isolate SY7, showed the highest amylase production in solid state fermentation. Different substrates were screened for enzyme production. Among the several agronomic wastes, wheat bran supported the highest yield of amylase (141.18 U/g of dry substrate) after 3 days of incubation. Optimisation of the physical parameters revealed the optimum pH, temperature and moisture level for amylase production by the isolate as 8.0, 25 C and 70%, respectively. The above results indicate that the production of amylase by F. solani isolate SY7 could be improved by a further optimisation of the medium and culture conditions. (author)

  19. Domestic Wood Products Manufacturing Trends and Factors to Enhance Competitiveness

    Science.gov (United States)

    Urs Buehlmann; Matthew Bumgardner; Albert Schuler; Rich Christianson; Rich Christianson

    2003-01-01

    There is little question that imports have captured a substantial portion of the domestic furniture market. However, there is much speculation and concern as to the future of this and related industries. This study sought to obtain industry perspectives of trends in domestic manufacturing and importing, and to identify factors that can enhance domestic competitiveness...

  20. Enhancing product robustness in reliability-based design optimization

    International Nuclear Information System (INIS)

    Zhuang, Xiaotian; Pan, Rong; Du, Xiaoping

    2015-01-01

    Different types of uncertainties need to be addressed in a product design optimization process. In this paper, the uncertainties in both product design variables and environmental noise variables are considered. The reliability-based design optimization (RBDO) is integrated with robust product design (RPD) to concurrently reduce the production cost and the long-term operation cost, including quality loss, in the process of product design. This problem leads to a multi-objective optimization with probabilistic constraints. In addition, the model uncertainties associated with a surrogate model that is derived from numerical computation methods, such as finite element analysis, is addressed. A hierarchical experimental design approach, augmented by a sequential sampling strategy, is proposed to construct the response surface of product performance function for finding optimal design solutions. The proposed method is demonstrated through an engineering example. - Highlights: • A unifying framework for integrating RBDO and RPD is proposed. • Implicit product performance function is considered. • The design problem is solved by sequential optimization and reliability assessment. • A sequential sampling technique is developed for improving design optimization. • The comparison with traditional RBDO is provided

  1. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    Science.gov (United States)

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.

  2. Single basin solar still with fin for enhancing productivity

    International Nuclear Information System (INIS)

    Velmurugan, V.; Gopalakrishnan, M.; Raghu, R.; Srithar, K.

    2008-01-01

    Distilled water productivity of the single basin solar still is very low. In this work, to augment evaporation of the still basin water, fins were integrated at the basin of the still. Thus production rate accelerated. Also, for further increase in exposure area sponges were used. Experimental results were compared with ordinary basin type still and still with wicks. The governing energy balance equations were solved analytically and compared with experimental results. It was found that 29.6% productivity increased, when wick type solar still was used, 15.3% productivity increased when sponges were used and 45.5% increased when fins were used. A good agreement had been achieved with theoretical results

  3. A solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.; Al Hindi, Mahmoud; Malaeb, Lilian

    2014-01-01

    Abstract: Increasing the productivity of solar stills has been the focus of intensive research. Many introduced developments, however, require complex components and entail notable increases in cost and land requirements. Developing a compact

  4. Enhancing the Production of a Novel Exopolysaccharide by Bacillus ...

    African Journals Online (AJOL)

    HP

    Methods: The culture medium for production of EPS was optimized using statistical experiment design. Sucrose, CaCO3 and ... INTRODUCTION. Microorganism exopolysaccharides (EPSs) are biopolymers which either attach to the cell.

  5. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... INTRODUCTION. Probiotic organisms find their potential use in food and ..... complex nutrients, temperature and pH on bacteriocin production by. Bacillus subtilis ... B, Gupta R (2004). Application of statistical experimental.

  6. Optimal Maintenance Crew Composition and Enhancement of Crew Productivity

    Science.gov (United States)

    2008-08-01

    The South Carolina Department of Transportation dedicates a large portion of both : its budget and other resources to the maintenance of the States transportation : infrastructure. In order to maximize the efficiency and productivity of the State...

  7. Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide Membranes

    Directory of Open Access Journals (Sweden)

    Surya Murali R.

    2015-02-01

    Full Text Available The separation of propylene and propane is a challenging task in petroleum refineries due to the similar molecular sizes and physical properties of two gases. Composite Poly(ether-block-amide (Pebax-1657 membranes incorporated with silver tetra fluoroborate (AgBF4 in concentrations of 0-50% of the polymer weight were prepared by solution casting and solvent evaporation technique. The membranes were characterized by Scanning Electron Microscopy (SEM, Fourier Transform InfraRed (FTIR and wide-angle X-ray Diffraction (XRD to study surface and cross-sectional morphologies, effect of incorporation on intermolecular interactions and degree of crystallinity, respectively. Experimental data was measured with an indigenously built high-pressure gas separation manifold having an effective membrane area of 42 cm2. Permeability and selectivity of membranes were determined for three different binary mixtures of propylene-propane at pressures varying in the range 2-6 bar. Selectivity of C3H6/C3H8 enhanced from 2.92 to 17.22 and 2.11 to 20.38 for 50/50 and 66/34 C3H6+C3H8 feed mixtures, respectively, with increasing loading of AgBF4. Pebax membranes incorporated with AgBF4 exhibit strong potential for the separation of C3H6/C3H8 mixtures in petroleum refineries.

  8. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy

    DEFF Research Database (Denmark)

    Cong, Wen-Feng; Jing, Jingying; Rasmussen, Jim

    2017-01-01

    Intensively managed grasslands are dominated by highly productive grass-clover mixtures. Increasing crop diversity by inclusion of competitive forbs may enhance biomass production and sustainable biofuel production. Here we examined if one or all of three forbs (chicory, Cichorium intybus L.; car...

  9. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  10. Highlights of contractor initiatives in quality enhancement and productivity improvement

    Science.gov (United States)

    1986-01-01

    The NASA/Contractor Team efforts are presented as part of NASA's continuing effort to facilitate the sharing of quality and productivity improvement ideas among its contractors. This complilation is not meant to be a comprehensive review of contractor initiative nor does it necessarily express NASA's views. The submissions represent samples from a general survey, and were not edited by NASA. The efforts are examples of quality and productivity programs in private industry, and as such, highlight company efforts in individual areas. Topics range from modernization of equipment, hardware, and technology to management of human resources. Of particular interest are contractor initiatives which deal with measurement and evaluation data pertaining to quality and productivity performance.

  11. Enhanced Polyhydroxybutyrate Production for Long-Term Spaceflight Applications

    Science.gov (United States)

    Putman, Ryan J.; Rahman, Asif; Miller, Charles D.; Hadi, Masood Z.

    2015-01-01

    Synthetic biology holds the promise of advancing long term space fight by the production of medicine, food, materials, and energy. One such application of synthetic biology is the production of biomaterials, specifically polyhydroxyalkanoates (PHAs), using purposed organisms such as Escherichia coli. PHAs are a group of biodegradable bioplastics that are produced by a wide variety of naturally occurring microorganisms, mainly as an energy storage intermediate. PHAs have similar melting point to polypropylene and a Youngs modulus close to polystyrene. Due to limited resources and cost of transportation, large-scale extraction of biologically produced products in situ is extremely cumbersome during space flight. To that end, we are developing a secretion systems for exporting PHA from the cell in order to reduce unit operations. PHAs granules deposited inside bacteria are typically associated with proteins bound to the granule surface. Phasin, a granule bound protein, was targeted for type I secretion by fusion with HlyA signal peptide for indirect secretion of PHAs. In order to validate our secretion strategy, a green fluorescent protein (GFP) was tagged to the PHA polymerase enzyme (phaC), this three part gene cassette consists of phaA and phaB and are required for PHA production. Producing PHAs in situ during space flight or planet colonization will enable mission success by providing a valuable source of biomaterials that can have many potential applications thereby reducing resupply requirements. Biologically produced PHAs can be used in additive manufacturing such as three dimensional (3D) printing to create products that can be made on demand during space flight. After exceeding their lifetime, the PHAs could be melted and recycled back to 3D print other products. We will discuss some of our long term goals of this approach.

  12. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn

    2013-01-01

    -cyclic guanidinium bromide on SBA-15 (HEPCGBr/SBA-15) as catalyst in the absence of any co-catalyst. It was found that the yield was strongly dependent on the amount of CO2 added to the system and that the phase behavior strongly changes along the reaction pathway. The Cubic-Plus-Association (CPA) equation of state...... was used to predict the phase behavior during the reaction and the number and composition of coexisting phases in the multicomponent reaction system were determined. In accordance with the experimental data, the maximum conversion was achieved in the transition region between the two- and the one-phase...... region where a CO2-expanded reactant/product phase (larger volume due to the dissolution of carbon dioxide in the liquid phase) is present. Optimal conditions for performing the reaction have been derived which requires consideration not only of the phase behavior of the starting phase but also...

  13. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang

    2012-02-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed excellent separation performances for a wide range of propylene/propane mixtures. The membrane showed a permeability of propylene up to 200. barrers and a propylene to propane separation factor up to 50 at optimal separation conditions, well surpassing the "upper-bound trade-off" lines of existing polymer and carbon membranes. The experimental data also showed that the membranes had excellent reproducibility, long-term stability and thermal stability. © 2011 Elsevier B.V.

  14. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Science.gov (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang; Li, Tao; Lestari, Gabriella; Lai, Zhiping

    2012-01-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed

  16. Performance of 6FDA–6FpDA polyimide for propylene/propane separations

    KAUST Repository

    Das, Mita; Koros, William J.

    2010-01-01

    This work addresses the challenges faced by previous researchers with 6FDA-6FpDA polyimide for propylene/propane separations due to plasticization. A study of film annealing temperature is reported to optimize plasticization suppression in elevated

  17. Enhancing Productivity Through Feedback and Goal Setting. Final Report.

    Science.gov (United States)

    Pritchard, Robert D.; And Others

    A field test was conducted to research the effects of feedback and goal-setting techniques on increasing productivity. Subjects were regular employees of two autonomous clerical-type units in a credit card and payment processing center of a Southwestern oil company. The study desiqn had three phases--baseline period and two experimental conditions…

  18. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  20. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  1. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    1Chemistry of Natural and Microbial Products Dept., Pharmaceutical Industries Div., National Research Centre, 33 EL ... enzymes produced by many pathogenic bacteria, ... produced by the actinomycete Streptomyces ... enzymes, hence avoiding loss of the beta-lactam ...... strain will explore the economic outcome of.

  2. Improvement and enhancement of clavulanic acid production in ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-04

    Oct 4, 2010 ... effects of different medium containing vegetable oil on cell growth ... fermentation of Streptomyces clavuligerus ATCC 27064 were ... The results of this study can be applied for the efficient production of ... 27064 strain, which requires a source of carbon, nitrogen ... Microorganism and cultivation conditions.

  3. Mixed plantations of Eucalyptus and leguminous trees enhance biomass production

    Science.gov (United States)

    Dean S. DeBell; Craig D. Whitesell; Thomas H. Schubert

    1985-01-01

    Two Eucalyptus species-E. saligna Sm. and E. grandis Hill-are especially favored in Hawaii forwood, fiber, and fuel production because of their quick growth and high yields. Their growth is limited, however, on many sites by low levels of available nitrogen. Supplemental nitrogen can be provided by nitrogen-...

  4. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    glutamicum SYPS-062 cultivation process for efficient production of L-serine on a large scale. ... central intermediate for a number of cellular .... impeller, oxygen and pH electrodes, under the ... equation. The yield of L-serine was regressed with respect to the medium ..... is not essential for activity but is required for inhibition.

  5. Corn stover-enhanced cellulase production by Aspergillus niger ...

    African Journals Online (AJOL)

    The production of extracellular cellulases by Aspergilus niger NRRL 567 on corn stover was studied in liquid state fermentation. In this study, three cellulases, exoglucanase (EXG), endoglucanase (EG) and β-glucosidase (BGL) were produced by A. niger NRRL 567. The optimal pH, temperature and incubation time for ...

  6. Enhancement of Short Chain Fatty Acid Production from Millet Fibres ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. ... Methods: The effect of millet dietary fibre fermentation on production of short chain fatty ... fildes PYF enrichment solution was used as the .... where Pa is the peak area of SCFA, Ps is the ..... enzymatic- gravimetric method.

  7. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Jyh-Ming; Liu, Ren-Han

    2012-09-01

    Thin stillage (TS), a wastewater from rice wine distillery can well sustain the growth of Gluconacetobacter xylinus for production of bacterial cellulose (BC). When used as a supplement to the traditional BC production medium (Hestrin and Schramm medium), the enhancement of BC production increased with the amount of TS supplemented in a static culture of G. xylinus. When TS was employed to replace distilled water for preparing HS medium (100%TS-HS medium), the BC production in this 100%TS-HS medium was enhanced 2.5-fold to a concentration of 10.38 g/l with sugar to BC conversion yield of 57% after 7 days cultivation. The cost-free TS as a supplement in BC production medium not only can greatly enhance the BC production, but also can effectively dispose the nuisance wastewater of rice wine distillery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Stability and kinetics of uranyl ion complexation by macrocycles in propylene carbonate

    International Nuclear Information System (INIS)

    Fux, P.

    1984-06-01

    A thermodynamic study of uranyl ion complexes formation with different macrocyclic ligands was realized in propylene carbonate as solvent using spectrophotometric and potentiometric techniques. Formation kinetics of two UO 2 complexes: a crown ether (18C6) and a coronand (22) was studied by spectrophotometry in propylene carbonate with addition of tetraethylammonium chlorate 0.1M at 25 0 C. Possible structures of complexes in solution are discussed [fr

  9. Effects of hydrogen and propylene presence on decomposition of hydrogen peroxide over palladium catalysts

    NARCIS (Netherlands)

    Chen, T.; Kertalli, E.; Nijhuis, T.A.; Podkolzin, S.

    2016-01-01

    Reaction rates for H2O2 decomposition in a methanol solution were measured over Pd/SiO2 catalysts in the presence of gas-phase N2, H2 and propylene. The H2O2 decomposition rates were higher in the presence of H2 and lower in the presence of propylene compared to those under N2, which acted as an

  10. Runinal and Intermediary Metabolism of Propylene Glycol in Lactating Holstein Cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl

    2007-01-01

    Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG).......Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG)....

  11. A Data Base System To Enhance Exploitation Effectiveness And Productivity

    Science.gov (United States)

    Eisman, Lee

    1989-02-01

    The ever expanding uses of remote sensing continue to drive requirements in industry, Government, and the military for an imagery data base and processing system that provides timely, flexible support to imagery analysts and yet is simple to use. This paper describes a system called the Digital Enhancement Data Base System (DEDS) that allows real-time image processing, storage, display, and enhancement of multisensor imagery, charts, and textual data. It is an imagery analyst's interactive "shoe box" that can replace hundreds of pounds of hardcopy imagery and collateral information by storing that data in digital, video, and analog forms. The system contains a graphics package that allows annotation of the data to be stored. A split-screen display feature allows side-by-side comparison of new imagery or data with collateral information retrieved from the data base. Futhermore, information in the data base can be recalled and distributed via local wide-area communications networks. The complete system is designed to operate within ruggedized, transportable cases.

  12. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  13. Anti-parallel dimer and tetramer formation of propylene carbonate

    Directory of Open Access Journals (Sweden)

    Ayana Tagawa

    2017-09-01

    Full Text Available Raman scattering and infrared (IR absorption spectra of enantiopure (R-propylene carbonate ((RPC and racemic propylene carbonate (PC were recorded at room temperature, 25 °C, in benzene (Bz solution and in the pure liquid state to investigate the presence of dimers and other higher order intermolecular associations. (RPC and PC both demonstrated a strong C=O stretching vibrational band. The band exhibited changes in its shape and resonance wavenumber highly dependent on the concentrations of PCs, whereas a difference between the chirality of (RPC and PC had little influence. In an extremely dilute condition, doubly split bands were observed at 1807 and 1820 cm-1 in both Raman and IR spectra, which are assigned to the characteristic bands of isolated monomeric PCs. An additional band appeared at 1795 cm-1 in a dilute to concentrated regime, and its magnitude strengthened with increasing concentrations accompanied with slight increasing in the magnitude of 1807 cm-1 band in Raman spectra, while an increase in the magnitude of 1807 cm-1 band was clearly greater than that of 1795 cm-1 band in IR spectra. The spectrum changes at 1795 and 1807 cm-1 were attributed to characteristics of anti-parallel dimer formation of PCs caused by strong dipole-dipole interactions between C=O groups. Moreover, another additional signal was clearly observed at 1780-1790 cm-1 in a concentrated regime, and became the primary signal in the pure liquid state with slight increasing in the intensity of 1795 cm-1 band in Raman spectra. On the other hand, in IR spectra the observed increasing of 1780-1790 cm-1 band was much less than that of 1795 cm-1 band. These newly found spectrum changes in the concentrated regime are attributed to the formation of anti-parallel tetramers of PCs based on the characteristics of band selection rule found in Raman and IR spectra. Equilibrium constants for the anti-parallel dimer (KD and tetramer formation (KT of PCs in Bz solution and in

  14. Enhanced vanillin production from ferulic acid using adsorbent resin.

    Science.gov (United States)

    Hua, Dongliang; Ma, Cuiqing; Song, Lifu; Lin, Shan; Zhang, Zhaobin; Deng, Zixin; Xu, Ping

    2007-03-01

    High vanillin productivity was achieved in the batch biotransformation of ferulic acid by Streptomyces sp. strain V-1. Due to the toxicity of vanillin and the product inhibition, fed-batch biotransformation with high concentration of ferulic acid was unsuccessful. To solve this problem and improve the vanillin yield, a biotransformation strategy using adsorbent resin was investigated. Several macroporous adsorbent resins were chosen to adsorb vanillin in situ during the bioconversion. Resin DM11 was found to be the best, which adsorbed the most vanillin and the least ferulic acid. When 8% resin DM11 (wet w/v) was added to the biotransformation system, 45 g l(-1) ferulic acid could be added continually and 19.2 g l(-1) vanillin was obtained within 55 h, which was the highest vanillin yield by bioconversion until now. This yield was remarkable for exceeding the crystallization concentration of vanillin and therefore had far-reaching consequence in its downstream processing.

  15. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...

  16. Future enhancements to 3D printing and real time production

    Science.gov (United States)

    Landa, Joseph; Jenkins, Jeffery; Wu, Jerry; Szu, Harold

    2014-05-01

    The cost and scope of additive printing machines range from several hundred to hundreds of thousands of dollars. For the extra money, one can get improvements in build size, selection of material properties, resolution, and consistency. However, temperature control during build and fusing predicts outcome and protects the IP by large high cost machines. Support material options determine geometries that can be accomplished which drives cost and complexity of printing heads. Historically, 3D printers have been used for design and prototyping efforts. Recent advances and cost reduction sparked new interest in developing printed products and consumables such as NASA who is printing food, printing consumer parts (e.g. cell phone cases, novelty toys), making tools and fixtures in manufacturing, and recursively print a self-similar printer (c.f. makerbot). There is a near term promise of the capability to print on demand products at the home or office... directly from the printer to use.

  17. Genetic improvement of plants for enhanced bio-ethanol production.

    Science.gov (United States)

    Saha, Sanghamitra; Ramachandran, Srinivasan

    2013-04-01

    The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.

  18. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    Science.gov (United States)

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  19. Enhanced photon production rate on the light-cone

    International Nuclear Information System (INIS)

    Aurenche, P.; Grenoble-1 Univ., 74 - Annecy; Gelis, F.; Kobes, R.; Petitgirard, E.

    1996-01-01

    Recent studies of the high temperature soft photon production rate on the light cone using Braaten-Pisarski resummation techniques have found collinear divergences present. It is shown that there exist a class of terms outside the Braaten-Pisarski framework which, although also divergent, dominate over these previously considered terms. The divergences in these new terms may be alleviated by application of a recently developed resummation scheme for processes sensitive to the light-cone. (author)

  20. Study of the chemisorption and hydrogenation of propylene on platinum by temperature-programed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, S.; Nakamura, M.; Yoshioka, N.

    1978-01-01

    Temperature-programed desorption (TPD) chromotograms of propylene adsorbed on platinum black in the absence or presence of hydrogen preadsorbed, admitted simultaneously, or admitted later, all showed four peaks at about 260/sup 0/ (A), 380/sup 0/ (B), 570/sup 0/ (C), and higher than 720/sup 0/K (D). Peaks A and B were identified as mixtures of propylene and propane, and peaks C and D were methane formed by thermal decomposition of the chemisorbed propylene during desorption. When nitrogen rather than helium was used as the carrier gas for the TPD, only delta-hydrogen was observed; this suggested that propylene was more strongly adsorbed on the platinum than hydrogen. Studies of the reactivities with propylene of the various types of chemisorbed hydrogen previously detected by TPD showed that propylene reacted with ..gamma..-hydrogen present on the surface in the form of hydrogen atoms chemisorbed on top of platinum atoms and with ..beta..-hydrogen, molecular hydrogen chemisorbed in a bridged form, but did not react with delta-hydrogen. Tables and graph.

  1. ASSESSMENT OF A WIND TURBINE INTELLIGENT CONTROLLER FOR ENHANCED ENERGY PRODUCTION AND POLLUTION REDUCTION

    Science.gov (United States)

    This study assessed the enhanced energy production which is possible when variable-speed wind turbines are electronically controlled by an intelligent controller for efficiency optimization and performance improvement. The control system consists of three fuzzy- logic controllers...

  2. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    Science.gov (United States)

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enhanced production of nattokinase from UV mutated Bacillus sp.

    Directory of Open Access Journals (Sweden)

    V Mohanasrinivasan

    2013-06-01

    Full Text Available In the recent years, nattokinase is one of the most-often employed among the several thrombolytic agents used clinically, particularly because of its lower cost comparing to other thrombolytic agents. In the present research work, Bacillus sp. was isolated from the heterogeneous microbial population present in the soil sample and screened for the production of nattokinase. The production of the enzyme was carried out using two different media (with and without shrimp shell substrate. Nattokinase activity (clot buster was determined by using a modified Holmstorm method. The production strain SFN01 was improved by random mutagenesis (UV radiation and the enzyme activity was checked with the enzyme produced by wild strain. The mutated strains had exhibited a higher clot lysis activity in which 1 unit of the enzyme completely lyses 1 mL of human blood when compared to the wild strain. Nattokinase produced by SFN showed a retention time of 10.6 min in RP-HPLC chromatogram.

  4. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  5. Strategies for cost-effective and enhanced production of bacterial cellulose.

    Science.gov (United States)

    Islam, Mazhar Ul; Ullah, Muhammad Wajid; Khan, Shaukat; Shah, Nasrullah; Park, Joong Kon

    2017-09-01

    Bacterial cellulose (BC) has received substantial attention because of its high purity, mechanical strength, crystallinity, liquid-absorbing capabilities, biocompatibility, and biodegradability etc. These properties allow BC to be used in various fields, especially in industries producing medical, electronic, and food products etc. A major discrepancy associated with BC is its high production cost, usually much higher than the plant cellulose. To address this limitations, researchers have developed several strategies for enhanced production of BC including the designing of advanced reactors and utilization of various carbon sources. Another promising approach is the production of BC from waste materials such as food, industrial, agricultural, and brewery wastes etc. which not only reduces the overall BC production cost but is also environment-friendly. Besides, exploration of novel and efficient BC producing microbial strains provides impressive boost to the BC production processes. To this end, development of genetically engineered microbial strains has proven useful for enhanced BC production. In this review, we have summarized major efforts to enhance BC production in order to make it a cost-effective biopolymer. This review can be of interest to researchers investigating strategies for enhanced BC production, as well as companies exploring pilot projects to scale up BC production for industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Field-enhanced REB deposition and Bremsstrahlung production

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Widner, M.M.

    1977-07-01

    Recently developed models are employed to describe the interaction of a high-current REB (relativistic electron beam) with planar gold foils in the presence of macroscopic electromagnetic fields. It is shown that, under certain conditions, azimuthal magnetic fields which either penetrate into the foil and/or exist on the transmission side of the foil can significantly enhance the specific power deposited in the foil over that which would be deposited for diode fields alone. Similar field effects suggest methods for improving the external conversion efficiencies, softening the spectra and focussing the source intensities of flash x-ray facilities. Finally, preliminary results are shown from a new trajectory-field model for self-consistent REB transport

  7. Preparation and characterization of starch grafted with toluene poly (propylene oxide diisocyanate

    Directory of Open Access Journals (Sweden)

    D.C. Dragunski

    2001-01-01

    Full Text Available Amylopectin-rich starch samples (Amidex 4001 Corn Products Brasil Ingredientes Industriais Ltda. were grafted with polyethers with the purpose of obtaining new materials for application as solid polymeric electrolytes. Grafting reaction was performed by the addition of starch dissolved in DMSO to toluene poly(propylene oxide diisocyanate (Resibras dissolved in the same solvent. This reaction produced a film with good mechanical properties. The film samples were characterized by 13C-NMR, FTIR, DSC, X-Ray and SEM. The FTIR spectrum shows a sharp NH band and a very small urethane band. The 13C-NMR spectrum revealed a peak at 20 ppm, that can be attributed to the CH3 of the polyether chain, and two small peaks at 117 and 140 ppm, attributed to the aromatic ring. The X-ray diffractograms also indicated that after the grafting reaction, the samples of amylopectin-rich starch are more amorphous. Moreover, the glass transition temperature (Tg dropped from 50 °C to -11 °C. These results indicate formation of grafted products and the low Tg of the samples suggests that polyether-grafted starch is a good candidate to obtain solid polymeric electrolytes.

  8. Economic value of ionophores and propylene glycol to prevent disease and treat ketosis in Canada.

    Science.gov (United States)

    Gohary, Khaled; Overton, Michael W; Von Massow, Michael; LeBlanc, Stephen J; Lissemore, Kerry D; Duffield, Todd F

    2016-07-01

    A partial budget model was developed to evaluate the economic value of Rumensin Controlled Release Capsule (CRC) boluses when administered before calving to reduce disease and increase milk production. After accounting for disease incidences in a herd and the percentage by which Rumensin CRC can reduce them, and the increase in milk production attributable to administration of Rumensin CRC, the return on investment (ROI) per lactation was 4:1. Another partial budget model was developed to estimate the economic value of propylene glycol (PG) to treat ketosis when diagnosed by 3 different cow-side tests or when administered to all cows without using any cow-side testing. After accounting for the sensitivity and specificity of each test, ROI per lactation ranged from 2:1 to 4:1. The ROI was 2:1 when no cow-side testing was used. In conclusion, prevention of diseases that occur in the postpartum period and treatment of ketosis after calving yielded a positive ROI that varies based on disease incidence and method of diagnosis.

  9. The Evonik-Uhde HPPO process for proplene oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B.; Baerz, M. [Evonik Industries, Hanau (Germany); Schemel, J.; Kolbe, B. [Uhde GmbH, Dortmund/Bad Soden (Germany)

    2011-07-01

    In 2008 the HPPO technology has shown up as an economically and environmentally friendly alternative for manufacturing of propylene oxide. The HPPO technology offers the advantage of an on purpose process for manufacturing of propylene oxide without dependency on disposal or marketing of coupling products. (orig.)

  10. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  11. The Role of Positive Psychology in Enhancing Satisfaction, Motivation, and Productivity in the Workplace

    Science.gov (United States)

    Martin, Andrew J.

    2005-01-01

    Positive psychology offers scope for enhancing satisfaction, motivation, and productivity in the workplace. Wiegand and Geller (2004, this issue) point to a number of strategies to enhance individuals' success orientation and conclude their discussion with the actively caring model which appears to be a useful means of representing pivotal facets…

  12. Raising the Bar on External Research Funding: Infrastructure and Strategies for Enhancing Faculty Productivity

    Science.gov (United States)

    Chval, Kathryn B.; Nossaman, Larry D.

    2014-01-01

    Administrators seek faculty who have the expertise to secure external funding to support their research agenda. Administrators also seek strategies to support and enhance faculty productivity across different ranks. In this manuscript, we describe the infrastructure we established and strategies we implemented to enhance the research enterprise at…

  13. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    International Nuclear Information System (INIS)

    Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P

    2012-01-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase–PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO 2 (100 ppm). (paper)

  14. Fracture studies of poly(propylene)/elastomer blend with β-form nucleating agent

    International Nuclear Information System (INIS)

    Bai Hongwei; Wang Yong; Zhang Danli; Xiao Chengquan; Song Bo; Li Yanli; Han Liang

    2009-01-01

    Poly(propylene)/elastomer blends with β-form nucleating agent (β-NA) aryl amides compound (TMB-5) were prepared. The effects of β-NA on crystallization, melting behaviors and elastomer morphologies of PP/elastomer blends were studied through polarization optical microscope (POM), differential scanning calorimetry (DSC) and scanning electronic microscope (SEM). The fracture behaviors, including notched Izod impact fracture and single-edge notched tensile (SENT) fracture, were comparatively studied to establish the role of NA in improving the fracture toughness of PP/elastomer blends. Our results showed that the presence of β-NA leads to determinable β-PP formation in the blends, and as a consequence the fracture toughness of the blend is improved dramatically. Compared with notched Izod impact testing, which can efficiently characterize the fracture toughness of the blends only at lower elastomer content, SENT testing provides more detail of fracture behavior in all the compositions. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/elastomer/β-NA is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage.

  15. Life's First Handshake - Discovery of the Interstellar Chiral Molecule Propylene Oxide

    Science.gov (United States)

    McGuire, Brett A.; Carroll, P. Brandon; Loomis, Ryan A.; Finneran, Ian A.; Jewell, Philip R.; Remijan, Anthony J.; Blake, Geoffrey A.

    2016-06-01

    Life on Earth relies on chiral molecules, that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere, and is perhaps most readily apparent in the large enhancement in biological activity of particular amino acid and sugar enantiomers. Yet, the ancestral origin of biological homochirality remains a mystery. The non-racemic ratios in some organics isolated from primitive meteorites hint at a primordial chiral seed, but even these samples have experienced substantial processing during planetary assembly, obscuring their complete histories. To determine the underlying origin of any enantiomeric excess, it is critical to understand the molecular gas from which these molecules originated. Here, we present the first extra-solar, astronomical detection of a chiral molecule, propylene oxide (CH3CHCH2O), in absorption toward the Galactic Center. We discuss the implications of the detection on observational searches to determine a primordial chiral excess, as well as the state of laboratory efforts in these areas.

  16. Enhancement of Cellulase Production by Cellulomonas Fimi and Bacillus Subtilis

    International Nuclear Information System (INIS)

    Omer, A.M.

    2012-01-01

    Two bacterial strains identified as Cellulomonas fimi and Baciliius subtilus are cosidered as highly active cellulytic bacteria. Trials for maximizing the cellulolytic activites of the two strains were conducted. A maximum cellulase production was achieved at 1 and 1.5%carboxy methyl cellulose as carbon source, sodium nitrate and yeast as nitrogen source for Cellulomonas fimi and Bacillus subtilis, respectively. Incubation temprature at 30 and 45 degree C, ph at 6 and 7 achieved the highest activity of cellulase for Cellulomonas fimi and bacillus subtilis, respectively

  17. Enhanced monoclonal antibody production by gradual increase of osmotic pressure

    OpenAIRE

    Lin, Jianqiang; Takagi, Mutsumi; Qu, Yinbo; Gao, Peiji; Yoshida, Toshiomi

    1999-01-01

    The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubat...

  18. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  19. DC corona discharge ozone production enhanced by magnetic field

    Science.gov (United States)

    Pekárek, S.

    2010-01-01

    We have studied the effect of a stationary magnetic field on the production of ozone from air at atmospheric pressure by a negative corona discharge in a cylindrical electrode configuration. We used a stainless steel hollow needle placed at the axis of the cylindrical discharge chamber as a cathode. The outer wall of the cylinder was used as an anode. The vector of magnetic induction was perpendicular to the vector of current density. We found that: (a) the magnetic field extends the current voltage range of the discharge; (b) for the discharge in the Trichel pulses regime and in the pulseless glow regime, the magnetic field has no substantial effect on the discharge voltage or on the concentration of ozone that is produced; (c) for the discharge in the filamentary streamer regime for a particular current, the magnetic field increases the discharge voltage and consequently an approximately 30% higher ozone concentration can be obtained; (d) the magnetic field does not substantially increase the maximum ozone production yield. A major advantage of using a magnetic field is that the increase in ozone concentration produced by the discharge can be obtained without additional energy requirements.

  20. Helping enhances productivity in campo flicker ( Colaptes campestris) cooperative groups

    Science.gov (United States)

    Dias, Raphael Igor; Webster, Michael S.; Macedo, Regina H.

    2015-06-01

    Reproductive adults in many bird species are assisted by non-breeding auxiliary helpers at the nest, yet the impact of auxiliaries on reproduction is variable and not always obvious. In this study, we tested Hamilton's rule and evaluated the effect of auxiliaries on productivity in the facultative cooperative breeder campo flicker ( Colaptes campestris campestris). Campo flickers have a variable mating system, with some groups having auxiliaries and others lacking them (i.e., unassisted pairs). Most auxiliaries are closely related to the breeding pair (primary auxiliaries), but some auxiliaries (secondary auxiliaries) are unrelated females that joined established groups. We found no effect of breeder quality (body condition) or territory quality (food availability) on group productivity, but the presence of auxiliaries increased the number of fledglings produced relative to unassisted pairs. Nonetheless, the indirect benefit of helping was small and did not outweigh the costs of delayed breeding and so seemed insufficient to explain the evolution of cooperative breeding in campo flickers. We concluded that some ecological constraints must limit dispersal or independent breeding, making staying in the group a "best-of-a-bad-job" situation for auxiliaries.

  1. Natural products as potential cancer therapy enhancers: A preclinical update

    Directory of Open Access Journals (Sweden)

    Abed Agbarya

    2014-09-01

    Full Text Available Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.

  2. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  3. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate

    Directory of Open Access Journals (Sweden)

    Ana M. Diez-Pascual

    2017-06-01

    Full Text Available Poly(propylene fumarate (PPF is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT, multi-walled carbon nanotubes (MWCNT, graphene oxide nanoribbons (GONR, graphite oxide nanoplatelets (GONP, polyethylene glycol-functionalized graphene oxide (PEG-GO, polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs and hydroxyapatite (HA nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.

  4. Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Qian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Childers, Matthew I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Correa, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zwoster, Andy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-26

    Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed for single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.

  5. Destroying lignocellulosic matters for enhancing methane production from excess sludge.

    Science.gov (United States)

    Hao, Xiaodi; Hu, Yuansheng; Cao, Daqi

    2016-01-01

    A lot of lignocellulosic matters are usually present in excess sludge, which are hardly degraded in anaerobic digestion (AD) and thus remains mostly in digested sludge. This is a reason why the conversion rate of sludge organics into energy (CH4) is often low. Obviously, the hydrolysis of AD cannot destruct the structure of lignocellulosic matters. Structural destruction of lignocellulosic matters has to be performed in AD. In this study, pretreatments with the same principles as cell disintegration of sludge were applied to destruct lignocellulosic matters so that these materials could be converted to CH4 via AD. Acid, alkali, thermal treatment and ultrasonic were used in the experiments to observe the destructed/degraded efficiency of lignocellulosic matters. Thermal treatment was found to be the most effective pretreatment. Under optimized conditions (T = 150 °C and t = 30  min), pretreated sludge had a degraded rate of 52.6% in AD, due to easy destruction and/or degradation of hemicelluloses and celluloses in pretreatment. The sludge pretreated by thermal treatment could enhance the CH4 yield (mL CH4 g(-1) VSS) by 53.6% compared to raw sludge. Economically, the thermal treatment can balance the input energy with the produced energy (steam and electricity).

  6. Enhancement of refrigerated storage of fishery products using gamma irradiation

    International Nuclear Information System (INIS)

    Lewis, N.F.; Ghadi, S.V.; Doke, S.N.; Venugopal, V.; Alur, M.D.

    1977-01-01

    A processe combining gamma radiation treatment with refrigeration has been suggested for better utilization of sea-foods of which large quantities will be available for processing after the implementation of the expansion programme of the fishing industry in India and the present capacity of refrigeration industry may be found to be inadequate to meet the demands of the expanded fishing industry. Gamma irradiation in the range of 0.1-0.25 Mrad enhances 2-3 fold storage life of refrigerated sea-foods. Low dose radiation treatment inactivates the gram-negative bacteria, the main source of sea-food spoilage, but not C. botulinum the growth of which is inhibited by the gram-negative bacteria in unirradiated sea-foods. Care has, therefore, to be taken to use a radiation dose which does not totally eliminate these bacteria so that a small percentage which survives leads to terminal spoilage and rejection of sea-foods even before C. botulinum produces toxins thus avoiding food poisoning. (M.G.B.)

  7. Enhancing productivity: The strategy-to-operations linkage

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, G. [Kepner-Tregoe, Inc., Atlanta, GA (United States)

    1995-12-31

    In its first two decades, commercial nuclear power enjoyed substantial popular acclaim. Why? Because it offered the opportunity to make a cheap product even cheaper when industrial America was dominant. Today, however, the price variable is going in the other direction and with it may go the future of nuclear power. Many approaches are being used to bring down the costs associated with nuclear power, and most are proving to be unsuccessful. What do other industries do when faced with obsolescence? They go back to their strategy and refocus their business consistent with new directions. This paper seeks to promote the results of several decades of of research in a variety of free-market industries regarding the causes of success and failures.

  8. Enhancing productivity: The strategy-to-operations linkage

    International Nuclear Information System (INIS)

    Edelman, G.

    1995-01-01

    In its first two decades, commercial nuclear power enjoyed substantial popular acclaim. Why? Because it offered the opportunity to make a cheap product even cheaper when industrial America was dominant. Today, however, the price variable is going in the other direction and with it may go the future of nuclear power. Many approaches are being used to bring down the costs associated with nuclear power, and most are proving to be unsuccessful. What do other industries do when faced with obsolescence? They go back to their strategy and refocus their business consistent with new directions. This paper seeks to promote the results of several decades of of research in a variety of free-market industries regarding the causes of success and failures

  9. Material flow enhancement in production assembly lines under application of zoned order picking systems

    Directory of Open Access Journals (Sweden)

    D. Živanić

    2014-10-01

    Full Text Available Introduced research work relates to the possibility of material flow enhancement in production systems, with the apostrophe on material order picking in production assembly lines. The paper presents basic rules and the results related to formed computer models of zoned order picking systems under the application of developed bound cavities method.

  10. The Role of Education and Training in Enhancing Labour Productivity in Arab Countries in Africa

    Science.gov (United States)

    ElObeidy, Ahmed A.

    2016-01-01

    Labour productivity in Arab countries is low by international standards and this problem occurs in Arab countries both inside and outside Africa. There are 10 Arab countries in Africa: Egypt, Libya, Tunisia, Algeria, Morocco, Mauritania, Sudan, Somalia, Djibouti and Comoros. Enhancing labour productivity is a major challenge for Arab countries.…

  11. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  12. Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiaoyin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Lance Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hochrein, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

  13. Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshinari [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Wood, Thomas K. [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Department of Biology, Texas A and M University, College Station, TX 77843-3258 (United States); Zachry Department of Civil and Environmental Engineering, Texas A and M University, College Station, TX 77843-3136 (United States)

    2008-05-15

    Mutagenesis of Escherichia coli for hydrogen production is difficult since there is no high-throughput screen. Here we describe a method for rapid detection of enhanced hydrogen production by engineered strains by detecting formate via potassium permanganate; in E. coli, hydrogen is synthesized from formate using the formate hydrogen lyase system. (author)

  14. Enhanced extracellular chitinase production in Pseudomonas fluorescens: biotechnological implications

    Directory of Open Access Journals (Sweden)

    Azhar Alhasawi

    2017-06-01

    Full Text Available Chitin is an important renewable biomass of immense commercial interest. The processing of this biopolymer into value-added products in an environmentally-friendly manner necessitates its conversion into N-acetyl glucosamine (NAG, a reaction mediated by the enzyme chitinase. Here we report on the ability of the soil microbe Pseudomonas fluorescens to secrete copious amounts of chitinase in the spent fluid when cultured in mineral medium with chitin as the sole source of carbon and nitrogen. Although chitinase was detected in various cellular fractions, the enzyme was predominantly localized in the extracellular component that was also rich in NAG and glucosamine. Maximal amounts of chitinase with a specific activity of 80 µmol NAG produced mg–1 protein min–1 was obtained at pH 8 after 6 days of growth in medium with 0.5 g of chitin. In-gel activity assays and Western blot studies revealed three isoenzymes. The enzyme had an optimal activity at pH 10 and a temperature range of 22–38 ℃. It was stable for up to 3 months. Although it showed optimal specificity toward chitin, the enzyme did readily degrade shrimp shells. When these shells (0.1 g were treated with the extracellular chitinase preparation, NAG [3 mmoles (0.003 g-mol] was generated in 6 h. The extracellular nature of the enzyme coupled with its physico-chemical properties make this chitinase an excellent candidate for biotechnological applications.

  15. Hydrogen production by absorption enhanced water gas shift (AEWGS)

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo Bretado, Miguel A. [Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120 (Mexico); Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico); Delgado Vigil, Manuel D.; Gutierrez, Jesus Salinas; Lopez Ortiz, Alejandro; Collins-Martinez, Virginia [Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico)

    2010-11-15

    AEWGS is a reaction that combines the WGS reaction and CO{sub 2} capture by a solid absorbent to produce high purity H{sub 2} from synthesis gas in one single step at 600-800 C. This reactor system, if homogeneous, would not require a catalyst. However, previous research on this concept was not conclusive, since a steel reactor was used and reactor walls were suspected to act as catalyst. Therefore, there is a need to address this issue and to select and evaluate suitable CO{sub 2} absorbents for this concept. AEWGS was studied using a quartz-made fixed-bed reactor at; SV = 3000 h{sup -1}, feed; 5% CO, 15% H{sub 2}O, balance He-N{sub 2} at 600 C, 1 atm. CO{sub 2} absorbents tested were CaO*MgO, and Na{sub 2}ZrO{sub 3}. Empty quartz-reactor tests leaded to conclude that a catalyst is needed for the WGS at temperatures of interest. A 97% H{sub 2} product was obtained with calcined dolomite suggesting this last to act as a WGS catalyst. (author)

  16. Understanding and engineering enzymes for enhanced biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  17. Investigation of the oxidative ammonolysis of propylene on oxide catalysts containing molybdenum and using the response method

    International Nuclear Information System (INIS)

    Gadzhiev, K.N.; Adzhamov, K.Y.; Alkhazov, T.G.; Khanmamedova, A.K.

    1985-01-01

    The response method has been used to study the oxidative ammonolysis of propylene on MoO 3 and molybdenum oxide systems containing bismuth, silicon, and phosphorous ions. The response curves obtained for ammonia, propylene, CO 2 , acrolein, acrylonitrile in these systems are discussed and compared with individual molybdenum trioxide. It has been shown that the modifying action of ammonia on the catalyst surfaces determines the direction of the oxidative conversion of the propylene

  18. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  19. Enhancement of carbon dioxide reduction and methane production by an obligate anaerobe and gas dissolution device.

    Science.gov (United States)

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2016-01-25

    The use of gas dissolution devices to improve the efficiency of H2 dissolution has enhanced CO2 reduction and CH4 production. In addition, the nutrients that initially existed in anaerobic sludge were exhausted over time, and the activities of anaerobic microorganisms declined. When nutrients were artificially injected, CO2 reduction and CH4 production rates climbed. Thus, assuming that the activity of the obligatory anaerobic microorganisms is maintained, a gas dissolution device will further enhance the efficiency of CO2 reduction and CH4 production. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Copper and dyes enhance laccase production in gamma-proteobacterium JB.

    Science.gov (United States)

    Malhotra, Kanam; Sharma, Prince; Capalash, Neena

    2004-07-01

    Laccase production in gamma-proteobacterium JB was enhanced 13-fold by adding 0.1 mM CuSO(4) 24 h after the onset of growth. Ethidium bromide (2.5 microM), Malachite Green, Phenol Red and Thymol Blue (10 microM each) enhanced laccase production 17-, 19-, 4- and 2-fold, respectively. Among the fourteen aromatic/organic compounds tried, p-aminobenzoic acid and an industrial effluent, from where the organism was isolated, showed 1.2- and 1.26-fold increases in production.

  1. Enhanced productivity in reactor decommissioning and waste management

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2014-01-01

    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on the way Areva

  2. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  3. Enhanced productivity in reactor decommissioning and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [Areva GmbH, Offenbach (Germany)

    2014-04-15

    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on

  4. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    Science.gov (United States)

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  5. Radiation stabilization effects in an ethylene-propylene copolymer and in epoxy resin particulate composites

    International Nuclear Information System (INIS)

    Baccaro, S.; Bianchilli, B.; Casadio, C.; Rinaldi, G.

    1999-01-01

    The aim of this work was to investigate the post-g-irradiation behavior of an ethylene-propylene copolymer loaded with an antioxidant containing the -NH functional group. The oxidative degradation of the polymer was studied using Infrared Absorption Spectroscopy. The shape of the oxidation profiles, and the dependence on thickness and on dose rate were in good agreement with the Gillen and Clough model. The interaction of polymeric free radicals with the antioxidant led to the formation of R-NO . stable radicals. These species are easily detectable using Electron Spin Resonance Spectroscopy. We used this technique to study the influence of the total absorbed dose, of dose rate and of oxygen and the time evolution of the oxidation products. High Performance Liquid Chromatography allowed us to determine the amount of antioxidant not involved in the oxidation reaction as a function of the total absorbed dose. The stabilization toward gamma radiation effects, of different types of curing agents for epoxide resins, and of fly ash as filler, were also investigated through monitoring the mechanical properties of such composite materials. (author)

  6. Effect of biogenic fermentation impurities on lactic acid hydrogenation to propylene glycol.

    Science.gov (United States)

    Zhang, Zhigang; Jackson, James E; Miller, Dennis J

    2008-09-01

    The effect of residual impurities from glucose fermentation to lactic acid (LA) on subsequent ruthenium-catalyzed hydrogenation of LA to propylene glycol (PG) is examined. Whereas refined LA feed exhibits stable conversion to PG over carbon-supported ruthenium catalyst in a trickle bed reactor, partially refined LA from fermentation shows a steep decline in PG production over short (<40 h) reaction times followed by a further slow decay in performance. Addition of model impurities to refined LA has varying effects: organic acids, sugars, or inorganic salts have little effect on conversion; alanine, a model amino acid, results in a strong but reversible decline in conversion via competitive adsorption between alanine and LA on the Ru surface. The sulfur-containing amino acids cysteine and methionine irreversibly poison the catalyst for LA conversion. Addition of 0.1 wt% albumin as a model protein leads to slow decline in rate, consistent with pore plugging or combined pore plugging and poisoning of the Ru surface. This study points to the need for integrated design and operation of biological processes and chemical processes in the biorefinery in order to make efficient conversion schemes viable.

  7. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin.

    Science.gov (United States)

    Atef, Eman; Altuwaijri, Njoud

    2018-01-01

    The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.

  8. Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review

    Directory of Open Access Journals (Sweden)

    Yitayal Addis Alemayehu

    2015-10-01

    Full Text Available Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.

  9. Cascade defect production and irradiation enhanced diffusion in Cu3Au

    International Nuclear Information System (INIS)

    Kirk, M.A.; Funk, L.L.

    1986-03-01

    By using the ordering alloy Cu 3 Au and measuring resistivity changes during and following fast-neutron irradiations at IPNS, we have studied cascade defect production and irradiation enhanced diffusion between 10 and 460 0 K. Ordering and disordering rates were measured as functions of irradiation temperature, neutron dose, neutron dose rate, time following cessation of flux, and step annealing. Free and clustered vacancy production was observed. The temperature dependence of the production of total migrating vacancy concentrations was determined. Vacancy sink production was linear with neutron dose and is compared with recent transmission electron microscopy experiments on the production of dislocation loops in this alloy. Time dependent and quasi-steady state vacancy concentrations were measured and compared with solutions of reaction rate equations for irradiation enhanced diffusion. The influence of recombination of vacancies with interstitials is observed at low sink concentrations (low neutron doses)

  10. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products.

    Science.gov (United States)

    Gomaa, M A; Al-Haj, L; Abed, R M M

    2016-10-01

    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.

  11. Knowledge productivity : designing and testing a method to diagnose knowledge productivity and plan for enhancement

    NARCIS (Netherlands)

    Stam, C.D.

    2007-01-01

    Our economy has changed from an industrial into a knowledge economy in which knowledge productivity has become the main challenge. The lack of appropriate techniques to reveal knowledge productivity hinders organizations to design effective policies aiming at improving knowledge-based performance.

  12. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2017-01-01

    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark–gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton–proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton–proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The me...

  13. ENHANCING TRUST OR REDUCING PERCEIVED RISK, WHAT MATTERS MORE WHEN LAUNCHING A NEW PRODUCT?

    OpenAIRE

    ANN-MARIE NIENABER; GERHARD SCHEWE

    2014-01-01

    Using a collection of data among 490 participants from different companies in the field of medical engineering market, we contribute to the role of contact intensity by a business partner when launching new products by introducing trust as a mediator to the concept of perceived risk reduction to enhance the relationship commitment. The findings show that the common concept of risk reduction to enhance the relationship commitment is overrated. In detail, the results show first, that the influe...

  14. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio

    2015-05-07

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  15. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio; Dong, Hailin; Rossini, Aaron J; Widdifield, Cory M.; Vummaleti, Sai V. C.; Minenkov, Yury; Poater, Albert; Abou-Hamad, Edy; Pelletier, Jeremie D. A.; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  16. A density functional theory study of partial oxidation of propylene on Cu2O(0 0 1) and CuO(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Düzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gülbiter; Onal, Isik

    2015-01-01

    Graphical abstract: - Highlights: • Propylene epoxidation mechanism on Cu 2 O(0 0 1) and CuO(0 0 1) surfaces is investigated using DFT method. • Acrolein is found to be a thermodynamically more favorable product for both surfaces especially over CuO surface. • The more basic property of the surface oxygen increases the probability of acrolein formation over CuO(0 0 1) surface. - Abstract: This work theoretically investigates propylene epoxidation reaction on Cu 2 O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu 2 O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu 2 O surface indicating the higher activity of Cu + species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  17. A density functional theory study of partial oxidation of propylene on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Düzenli, Derya [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey); Mineral Analysis and Technology, General Directorate of Mineral Research and Exploration, 06800 Ankara (Turkey); Atmaca, Deniz Onay; Gezer, Miray Gülbiter [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey); Onal, Isik, E-mail: ional@metu.edu.tr [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey)

    2015-11-15

    Graphical abstract: - Highlights: • Propylene epoxidation mechanism on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces is investigated using DFT method. • Acrolein is found to be a thermodynamically more favorable product for both surfaces especially over CuO surface. • The more basic property of the surface oxygen increases the probability of acrolein formation over CuO(0 0 1) surface. - Abstract: This work theoretically investigates propylene epoxidation reaction on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu{sub 2}O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu{sub 2}O surface indicating the higher activity of Cu{sup +} species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  18. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste.

    Science.gov (United States)

    Wei, Suzhen

    2016-12-01

    Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.

  19. Thermodynamic and electrochemical properties of some rare earth cryptates and related complexes in propylene carbonate

    International Nuclear Information System (INIS)

    Loufouilou, E.L.

    1986-03-01

    The stability of trivalent lanthanide complexes with [1]-cryptand 22 and [2]-cryptands 222 and 211 and also tris (3.6- dioxa heptyl) amine (TDHA) is studied in propylene carbonate solution by potentiometry with Ag + as an auxiliary cation. Complexation enthalpies and entropies are determined for other complexes of some trivalent lanthanides (La, Er, Pr and Eu) with ligands 222, 221, 211, 22, 21, 18C6 and TDHA. [1]- and [2]- crytands are complexing agents more powerful than TDHA and crown-ethers 15C6 and 18C6. For ligands containing nitrogen complexe stability increase with RE atomic number but decrease for crown-ethers. In propylene carbonate complexes are stabilized by enthalpic effects, entropic contribution is variable. Polarographic reduction of samarium cryptate with ligand 222, 221 and 22 in propylene carbonate is reversible as in more solvating solvents water and methanol. Mixed complexes are formed with chlorides and this cryptate system is more difficult to reduce [fr

  20. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    Science.gov (United States)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.

    2017-01-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  1. Essential work of fracture analysis for starch filled poly(propylene carbonate) composites

    International Nuclear Information System (INIS)

    Wang, X.L.; Li, R.K.Y.; Cao, Y.X.; Meng, Y.Z.

    2007-01-01

    Starch filled poly(propylene carbonate) composites are environmental friendly materials. In this study, the fracture toughness of composites under mode I loading was determined by the essential work of fracture concept. The specific essential fracture work of the poly(propylene carbonate)/starch composites decreases with increasing the starch content, while the non-essential work term, βw p increases with increasing the starch content. In addition, the morphologies, thermal properties, thermo-mechanical properties were studied by scanning electron microscope, thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry, respectively. The thermal and thermo-mechanical measurements revealed that increasing starch content led to an increase in glass transition temperature and thermal stability. Morphology observation indicates that poly(propylene carbonate) and starch have weak interfacial adhesion

  2. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, R. L.; Loeffler, M. J. [Astrochemistry Laboratory (Code 691), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Yocum, K. M., E-mail: Reggie.Hudson@nasa.gov [Department of Chemistry, Kutztown University, Kutztown, PA 19530 (United States)

    2017-02-01

    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  3. A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Muhammet Samet [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey); Korkut, Seyda, E-mail: s.korkut@beun.edu.tr [Department of Environmental Engineering, Bulent Ecevit University, 67100 Zonguldak (Turkey); Hazer, Baki [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey)

    2015-02-01

    This study describes the construction of an enzymatic fuel cell comprised of novel gold nanoparticles embedded poly(propylene-co-imidazole) coated anode and cathode. Working electrode fabrication steps and operational conditions for the fuel cell have been optimized to get enhanced power output. Electrical generation capacity of the optimized cell was tested by using the municipal wastewater sample. The enzymatic fuel cell system reached to maximum power density with 1 μg and 8 μg of polymer quantity and bilirubin oxidase on electrode surface, respectively. The maximum power output was calculated to be 5 μW cm{sup −2} at + 0.56 V (vs. Ag/AgCl) in phosphate buffer (pH 7.4, 100 mM, 20 °C) by the addition of 15 mM of glucose as a fuel source. The optimized enzymatic fuel cell generated a power density of 0.46 μW cm{sup −2} for the municipal wastewater sample. Poly(propylene-co-imidazole) was easily used for a fuel cell system owing to its metallic nanoparticle content. The developed fuel cell will play a significant role for energy conversion by using glucose readily found in wastewater and in vivo mediums. - Highlights: • Gold nanoparticles provided faster electron transfer in the circuit. • The maximum power density of 5 μW cm{sup −2} was generated at + 0.56 V cell potential. • The cell can be easily operated for in vivo mediums.

  4. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  5. Productivity Enhancement of Solar Still with PV Powered Heating Coil and Chamber Step-Wise Basin

    Directory of Open Access Journals (Sweden)

    Salah Abdallah

    2018-03-01

    Full Text Available There is a strong need to improve the productivity of single slope solar still. PV generator powered electrical heater and chamber step-wise design were introduced to the conventional solar still. An experimental study was performed to investigate the effect of adding the above mentioned modifications on the output parameters of the modified solar still. The inclusion of PV-powered heating coil and chamber step-wise design enhanced the productivity of distiller by up to 1098%.

  6. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  7. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2008-12-15

    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  8. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  9. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  10. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  11. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  12. Physiochemical parameters optimization for enhanced nisin production by Lactococcus lactis (MTCC 440

    Directory of Open Access Journals (Sweden)

    Puspadhwaja Mall

    2010-02-01

    Full Text Available The influence of various physiochemical parameters on the growth of Lactococcus lactis sub sp. lactis MTCC 440 was studied at shake flask level for 20 h. Media optimization (MRS broth was studied to achieve enhanced growth of the organism and also nisin production. Bioassay of nisin was done with agar diffusion method using Streptococcus agalactae NCIM 2401 as indicator strain. MRS broth (6%, w/v with 0.15μg/ml of nisin supplemented with 0.5% (v/v skimmed milk was found to be the best for nisin production as well as for growth of L lactis. The production of nisin was strongly influenced by the presence of skimmed milk and nisin in MRS broth. The production of nisin was affected by the physical parameters and maximum nisin production was at 30(0C while the optimal temperature for biomass production was 37(0C.

  13. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate

    DEFF Research Database (Denmark)

    Bai, Dongmei; Li, S.Z.; Liu, Z.L.

    2008-01-01

    -added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the......-isomer and a simple nutrition requirement by the fungus. Production of-L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency...... of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were...

  14. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  15. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production

    DEFF Research Database (Denmark)

    Søndergaard, Marie M.; Fotidis, Ioannis; Kovalovszki, Adam

    2015-01-01

    Biogas is extensively promoted as a promising renewable energy. Therefore, the search of appropriate co-substrates has come into focus. In this study, we examined the potential of using agricultural byproducts as alternative co-substrates for increased biogas production. The biochemical methane p...

  16. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C

    NARCIS (Netherlands)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Heijne, ter Annemiek

    2016-01-01

    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from

  17. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.; Duarte, Carlos M.; Sanz-Martí n, M.; Mesa, E.; Arrieta, J M; Chierici, M.; Hendriks, I.  E.; Garcí a-Corral, L. S.; Regaudie-de-Gioux, A.; Delgado, A.; Reigstad, M.; Wassmann, P.; Agusti, Susana

    2015-01-01

    production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range

  18. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Sakyi-Dawson, O.; Kuyper, T.W.

    2012-01-01

    We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to

  20. Successful development of satiety enhancing food products: towards a multidisciplinary agenda of research challenges.

    Science.gov (United States)

    Van Kleef, E; Van Trijp, J C M; Van Den Borne, J J G C; Zondervan, C

    2012-01-01

    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined.

  1. Successful Development of Satiety Enhancing Food Products: Towards a Multidisciplinary Agenda of Research Challenges

    Science.gov (United States)

    Van Kleef, E.; Van Trijp, J.C.M.; Van Den Borne, J.J.G.C.; Zondervan, C.

    2012-01-01

    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined. PMID:22530713

  2. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  3. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model

    Science.gov (United States)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.

    2017-12-01

    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and

  4. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality.

    Science.gov (United States)

    Fischer, Simon; Paul, Albert Jesuran; Wagner, Andreas; Mathias, Sven; Geiss, Melanie; Schandock, Franziska; Domnowski, Martin; Zimmermann, Jörg; Handrick, René; Hesse, Friedemann; Otte, Kerstin

    2015-10-01

    Histone deacetylase (HDAC) inhibitors have been exploited for years to improve recombinant protein expression in mammalian production cells. However, global HDAC inhibition is associated with negative effects on various cellular processes. microRNAs (miRNAs) have been shown to regulate gene expression in almost all eukaryotic cell types by controlling entire cellular pathways. Since miRNAs recently have gained much attention as next-generation cell engineering tool to improve Chinese hamster ovary (CHO) cell factories, we were interested if miRNAs are able to specifically repress HDAC expression in CHO cells to circumvent limitations of unspecific HDAC inhibition. We discovered a novel miRNA in CHO cells, miR-2861, which was shown to enhance productivity in various recombinant CHO cell lines. Furthermore, we demonstrate that miR-2861 might post-transcriptionally regulate HDAC5 in CHO cells. Intriguingly, siRNA-mediated HDAC5 suppression could be demonstrated to phenocopy pro-productive effects of miR-2861 in CHO cells. This supports the notion that miRNA-induced inhibition of HDAC5 may contribute to productivity enhancing effects of miR-2861. Furthermore, since product quality is fundamental to safety and functionality of biologics, we examined the effect of HDAC inhibition on critical product quality attributes. In contrast to unspecific HDAC inhibition using VPA, enforced expression of miR-2861 did not negatively influence antibody aggregation or N-glycosylation. Our findings highlight the superiority of miRNA-mediated inhibition of specific HDACs and present miR-2861 as novel cell engineering tool for improving CHO manufacturing cells. © 2015 Wiley Periodicals, Inc.

  5. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  6. CO-PRODUCT ENHANCEMENT AND DEVELOPMENT FOR THE MASADA OXYNOL PROCESS PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Donald V. Watkins

    2010-06-14

    The focus of this project was an overall process improvement through the enhancement of the co-product streams. The enhancement of the process operations and co-products will increase both ethanol production and the value of other process outputs and reduces the amount of waste byproducts. This leads to a more economical and environmentally sound alternative to landfill disposal of municipal solid waste (MSW). These enhancements can greatly increase the commercial potential for the production of ethanol from MSW by the Masada CES OxyNol process. Both technological and economical issues were considered for steps throughout the conversion process. The research efforts of this project are varied but synergistic. The project investigated many of the operations involved in the Masada process with the overall goal of process improvements. The general goal of the testing was to improve co-product quality, improve conversions efficiencies, minimize process losses, increase energy efficiency, and mitigate process and commercialization risks. The project was divided into 16 subtasks as described in general terms below. All these tasks are interrelated but not necessarily interdependent.

  7. Enhanced production of extracellular inulinase by the yeast Kluyveromyces marxianus in xylose catabolic state.

    Science.gov (United States)

    Hoshida, Hisashi; Kidera, Kenta; Takishita, Ryuta; Fujioka, Nobuhisa; Fukagawa, Taiki; Akada, Rinji

    2018-06-01

    The production of extracellular proteins by the thermotolerant yeast Kluyveromyces marxianus, which utilizes various sugars, was investigated using media containing sugars such as glucose, galactose, and xylose. SDS-PAGE analysis of culture supernatants revealed abundant production of an extracellular protein when cells were grown in xylose medium. The N-terminal sequence of the extracellular protein was identical to a part of the inulinase encoded by INU1 in the genome. Inulinase is an enzyme hydrolyzing β-2,1-fructosyl bond in inulin and sucrose and is not required for xylose assimilation. Disruption of INU1 in the strain DMKU 3-1042 lost the production of the extracellular protein and resulted in growth defect in sucrose and inulin media, indicating that the extracellular protein was inulinase (sucrase). In addition, six K. marxianus strains among the 16 strains that were analyzed produced more inulinase in xylose medium than in glucose medium. However, expression analysis indicated that the INU1 promoter activity was lower in the xylose medium than in the glucose medium, suggesting that enhanced production of inulinase is controlled in a post-transcriptional manner. The production of inulinase was also higher in cultures with more agitation, suggesting that oxygen supply affects the production of inulinase. Taken together, these results suggest that both xylose and oxygen supply shift cellular metabolism to enhance the production of extracellular inulinase. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Enhancement of Surfactin and Fengycin Production by Bacillus mojavensis A21: Application for Diesel Biodegradation

    Science.gov (United States)

    Ben Ayed, Hanen; Jacques, Philippe; Nasri, Moncef

    2017-01-01

    This work concerns the study of the enhancement of surfactin and fengycin production by B. mojavensis A21 and application of the produced product in diesel biodegradation. The influences of the culture medium and cells immobilization were studied. The highest lipopeptides production was achieved after 72 hours of incubation in a culture medium containing 30 g/L glucose as carbon source and a combination of yeast extract (1 g/L) and glutamic acid (5 g/L) as nitrogen sources with initial pH 7.0 at 30°C and 90% volumetric aeration. The study of primary metabolites production showed mainly the production of acetoin, with a maximum production after 24 h of strain growth. The use of immobilized cells seemed to be a promising method for improving lipopeptides productivity. In fact, the synthesis of both lipopeptides, mainly fengycin, was greatly enhanced by the immobilization of A21 cells. An increase of diesel degradation capacity of approximately 20, 27, and 40% in the presence of 0.5, 1, and 2 g/L of produced lipopeptides, respectively, was observed. Considering these properties, B. mojavensis A21 strain producing a lipopeptide mixture, containing both surfactin and fengycin, may be considered as a potential candidate for future use in bioremediation and crop protection. PMID:29082251

  9. Enhancement of Surfactin and Fengycin Production by Bacillus mojavensis A21: Application for Diesel Biodegradation

    Directory of Open Access Journals (Sweden)

    Noomen Hmidet

    2017-01-01

    Full Text Available This work concerns the study of the enhancement of surfactin and fengycin production by B. mojavensis A21 and application of the produced product in diesel biodegradation. The influences of the culture medium and cells immobilization were studied. The highest lipopeptides production was achieved after 72 hours of incubation in a culture medium containing 30 g/L glucose as carbon source and a combination of yeast extract (1 g/L and glutamic acid (5 g/L as nitrogen sources with initial pH 7.0 at 30°C and 90% volumetric aeration. The study of primary metabolites production showed mainly the production of acetoin, with a maximum production after 24 h of strain growth. The use of immobilized cells seemed to be a promising method for improving lipopeptides productivity. In fact, the synthesis of both lipopeptides, mainly fengycin, was greatly enhanced by the immobilization of A21 cells. An increase of diesel degradation capacity of approximately 20, 27, and 40% in the presence of 0.5, 1, and 2 g/L of produced lipopeptides, respectively, was observed. Considering these properties, B. mojavensis A21 strain producing a lipopeptide mixture, containing both surfactin and fengycin, may be considered as a potential candidate for future use in bioremediation and crop protection.

  10. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  11. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  12. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  13. Designing Multifunctionality into Single Phase and Multiphase Metal-Oxide-Selective Propylene Ammoxidation Catalysts

    Directory of Open Access Journals (Sweden)

    James F. Brazdil

    2018-03-01

    Full Text Available Multifunctionality is the hallmark of most modern commercial heterogeneous catalyst systems in use today, including those used for the selective ammoxidation of propylene to acrylonitrile. It is the quintessential principle underlying commercial catalyst design efforts since petrochemical process development is invariably driven by the need to reduce manufacturing costs. This is in large part achieved through new and improved catalysts that increase selectivity and productivity. In addition, the future feedstocks for chemical processes will be invariably more refractory than those currently in use (e.g., replacing alkenes with alkanes or using CO2, thus requiring a disparate combination of chemical functions in order to effect multiple chemical transformations with the fewest separate process steps. This review summarizes the key chemical phenomena behind achieving the successful integration of multiple functions into a mixed-metal-oxide-selective ammoxidation catalyst. An experiential and functional catalyst design model is presented that consists of one or both of the following components: (1 a mixed-metal-oxide–solid solution where the individual metal components serve separate and necessary functions in the reaction mechanism through their atomic level interaction in the context of a single crystallographic structure; (2 the required elemental components and their catalytic function existing in separate phases, where these phases are able to interact for the purposes of electron and lattice oxygen transfer through the formation of a structurally coherent interface (i.e., epitaxy between the separate crystal structures. Examples are provided from the literature and explained in the context of this catalyst design model. The extension of the model concepts to the design of heterogeneous catalysts in general is also discussed.

  14. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    International Nuclear Information System (INIS)

    Cheng, Dan; He, Qingfang

    2014-01-01

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  15. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  16. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Dan, E-mail: dxcheng@ualr.edu; He, Qingfang, E-mail: dxcheng@ualr.edu [Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR (United States)

    2014-07-07

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  17. PRODUCT CERTIFICATION AND LEGAL PROTECTION TO ENHANCE INDONESIAN TRADITIONAL HERBAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih

    2016-02-01

    Full Text Available This study is aimed to empower traditional herbs producer and help legal protection of Indonesian traditional medicines, implementing Participatory Research and juridical-sociological approaches. Data were collected through literary, questionnaire, interview and Focus Group Discussion. The first year study revealed that Herbal Producer Association worked with all members, persuading government offices to get product certification and effective trademark licenses. In the second year study the researchers and Producers Association trained and facilitated vendors to endorse trademark, label registry, and markets shares. Producers maintain traditional medicine management, because product certification is hard to achieve. Penelitian ini bertujuan untuk memberdayakan produsen jamu/OT dan membantu perlindungan hukumnya, dengan memanfaatkan pendekatan penelitian partisipatoris dan sosiologis yuridis. Data dikumpulkan dengan literatur, kuesioner, wawancara dan Focus Group Discussion (FGD. Pada tahun pertama organisasi gabungan pengusaha jamu (GP Jamu bersama-sama dengan seluruh anggotanya mendorong pemerintah untuk perolehan sertifikasi produk izin edar dan merek secara efektif. Pada tahun kedua, peneliti dan gabungan pengusaha jamu melakukan pelatihan guna perolehan izin edar, pendaftaran merek, dan peningkatan pemasaran. Para pengusaha jamu tradisional perlu terus menerus didampingi karena perolehan izin edar terkesan sulit.

  18. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pCDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (pCDOM samples further suggested their probable autochthonous origin. Our results have implications for the understanding of CDOM cycling in shallow aquatic ecosystems influenced by wind-induced waves, in which the enhanced turbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Science.gov (United States)

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...

  20. Microstructure study of ethylene, propylene and 1-decene terpolymers by 13C-NMR

    International Nuclear Information System (INIS)

    Ferreira, Marcio; Escher, Fernanda Nunes; Galland, Griselda Barrera

    2001-01-01

    Terpolymers of ethylene-propylene-1-decene with different composition of monomers were obtained using the metallocenes catalyst rac-EtInd 2 ZrCl 2 . The complete 13 C-NMR characterization of these terpolymers was done qualitatively and quantitatively. Chemical shifts, carbon assignments and corresponding integrals for each triad sequence are presented. (author)

  1. Poly(ethylene oxide)–Poly(propylene oxide)-Based Copolymers for ...

    African Journals Online (AJOL)

    Amphiphilic poly(ethylene oxide)–poly(propylene oxide) (PEO–PPO)-based copolymers are thermoresponsive materials having aggregation properties in aqueous medium. As hydrosolubilizers of poorly water-soluble drugs and improved stability of sensitive agents, these materials have been investigated for improvement ...

  2. Polyethers for biomedical applications. Polymerization of propylene oxide by organozinc/organotin catalysts

    NARCIS (Netherlands)

    Bots, Jan Gert; van der Does, L.; Bantjes, Adriaan; Broersma, Jaap

    1987-01-01

    The polymerization of propylene oxide to obtain a high-molecular-weight polymer with an atactic structure required for the application as artificial blood vessels was investigated using combinations of organozinc and organotin compounds as catalyst. The composition of the most active catalyst,

  3. LC determination of propylene glycol in human plasma after pre-column derivatization with benzoyl chloride

    NARCIS (Netherlands)

    Sinjewel, A.; Swart, E.L.; Lingeman, H.; Wilhelm, A.J.

    2007-01-01

    A simple high-performance liquid chromatographic method, using photodiode array detection was developed for the determination of propylene glycol in human plasma and in the fluid retreived after continuous veno-venous hemofiltration. The method entailed alkaline derivatization with benzoyl chloride

  4. Irradiation of isotactic polypropylene and polypropylene/ethylene-propylene (diene-monomer) blends

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Meijerink, J.I.; Overbergh, N.; Kleintjes, L.; Lemstra, P.J.

    1989-01-01

    The influence of electron beam irradiation on rheological properties and morphology of polypropylene and polypropylene/ethylene-propylene rubber blends was studied. Electron beam irradiation of isotactic PP causes pronounced chain scission (degradation) at dosis = 100 kGy. Melt viscosity can be

  5. Theoretical study on the nucleophilic fluoroalkylation of propylene oxide with fluorinated sulfones

    Directory of Open Access Journals (Sweden)

    Han Ling-Li

    2013-01-01

    Full Text Available The path of nucleophilic fluoroalkylation reaction of propylene oxide with PhSO2CYF- (Y=F,H, and PhSO2, respectively in gas phase and in Et2O solvent were studied theoretically. The nucleophilic fluoroalkylation of propylene oxide with fluorinated carbanions was probed by the reactivity comparison between (benzenesulfonylmonofluoromethyl anion (PhSO2CHF-, (benzenesulfonyl difluoromethyl anion (PhSO2CF2-, and bis(benzenesul-fonyl monofluoromethyl anion ((PhSO22CF-. The nucleophilicity reactivity order of PhSO2CYF- (Y = F, H, and PhSO2 is [(PhSO22CF-] > PhSO2CHF- > PhSO2CF2-, which indicates that introducing another electron-withdrawing benzenesulfonyl group is an effective way to significantly increase the nucleophilicity of the fluorinate carbanions. For comparison, we also studied the nucleophilic addition reactions of propylene oxide with chlorine substituted carbanion PhSO2CHCl-. The calculated results show that the nucleophilicity of PhSO2CYF- is better than that of PhSO2CHCl- for the ring opening reaction with propylene oxide. The calculated results are in good agreement with the available experiments.

  6. Estimation of the Polymerization Rate of Liquid Propylene Using Adiabatic Reaction Calorimetry and Reaction Dilatometry

    NARCIS (Netherlands)

    Al-haj Ali, Mohammad; Betlem, Ben; Roffel, Brian; Weickert, Günter

    2007-01-01

    The use of pressure-drop and constant-pressure dilatometry for obtaining rate data for liquid propylene polymerization in filled batch reactors was examined. The first method uses reaction temperature and pressure as well as the compressibility of the reactor contents to calculate the polymerization

  7. Functionalized Poly(propylene imine) Dendrimers as Novel Phase Transfer Catalyst in Supercritical Cabon Dioxide

    NARCIS (Netherlands)

    Goetheer, E.L.V.; Baars, M.W.P.L.; Broeke, van den L.J.P.; Meijer, E.W.; Keurentjes, J.T.F.

    2000-01-01

    Perfluoro-functionalized poly(propylene imine) dendrimers have been used as reactive extractants for anionic species and as phase transfer catalysts for two types of reactions. Different generations of dendrimers have been used for applications in carbon dioxide. First, the reactive extraction of

  8. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9) w...

  9. EVALUATION OF PROPYLENE CARBONATE IN AIR LOGISTICS CENTER (ALC) DEPAINTING OPERATIONS

    Science.gov (United States)

    This report summarizes a two-phase, laboratory-scale screening study that evaluated solvent blends containing propylene carbonate (PC) as a potential replacement for methyl ethyl ketone (MEK) in aircraft radome depainting operations. The study was conducted at Oklahoma City Air L...

  10. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymers (MAn-g-EPM) were thermoreversibly cross-linked using diamines and amino-alcohols. Covalent cross-links are formed via the equilibrium reaction of the grafted anhydride groups with di-functional cross-linkers containing combinations of primary (1°) and secondary

  11. Thermoreversible covalent crosslinking of maleated ethylene/propylene copolymers with diols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymer (MAn-g-EPM) was thermoreversibly cross-linked using different routes, i.e. ionic interactions (ionomers), hydrogen bonding and a combination thereof. Microphase separation into polar MAn-rich aggregates occurs for MAn-g-EPM and all cross-linked materials, which

  12. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye

    2012-01-01

    Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously invest...... in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids...

  13. Quantifying residues from postharvest fumigation of almonds and walnuts with propylene oxide

    Science.gov (United States)

    A novel analytical approach, involving solvent extraction with methyl tert-butyl ether (MTBE) followed by gas chromatography (GC), was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO,...

  14. Radiation-induced emulsion copolymerization of tetrafluoroethylene with propylene in flow system, 8

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Ito, Masayuki; Machi, Sueo; Okamoto, Jiro.

    1982-02-01

    Seeded copolymerization of tetrafluoroethylene with propylene by radiation was carried out in a flow apparatus with pipe reactor at a pressure of 30 kg/cm 2 , a temperature of 40 0 C, a propylene fraction in monomer gas of 0.1, and at various dose rates. Amounts of dissolved monomer in latex increases in proportion to the polymer concentration, however, it becomes lower than that in equilibrium as polymerization proceeds. Propylene fraction in the dissolved monomer decreases with reaction time. Polymer concentration in latex increases accelerately with reaction time, and polymerization rate increases and tends to level off when the polymer concentration exceeds 100 g/l-H 2 O at higher dose rate. Polymerization rate is proportional to the 0.6 power of the dose rate at the polymer concentration of 50 g/l-H 2 O, and the power factor decreases from 0.46 to 0.39 with increasing the concentration from 100 to 150 g/l-H 2 O. Molecular weight of the polymer is proportional to the -0.17 power of the dose rate. The dose rate effects are explained by considering both first-order termination by degradative chain transfer to propylene and second-order termination by recombination. (author)

  15. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Shazad, Maryam; Schuur, B.; Haan, de A.B.

    2012-01-01

    Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that

  16. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation

    KAUST Repository

    Wang, Chongqing

    2016-09-09

    Continuous ZIF-67 polycrystalline membranes with effective propylene/propane separation performances were successfully fabricated through the incorporation of zinc ions into the ZIF-67 framework. The separation factor increases from 1.4 for the pure ZIF-67 membrane to 50.5 for the 90% zinc-substituted ZIF-67 membrane.

  17. Impact of β- radiolysis and transient products on irradiation-enhanced corrosion of zirconium alloys

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1992-01-01

    An analysis has been undertaken of the various cases of local enhancement of the corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic β - is present leading to a local energy desorption rate higher than the core average. This suggests that the local transient radiolytic oxidising species produced in the coolant by the β - particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, in front of Pt inserts and Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-rich Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionising species like α in Ni-rich alloys and fission products in homogeneous reactors. This mechanism, applicable for an explanation of localised irradiation-enhanced corrosion, is proposed to be extended to the reactor core, where the general enhancement of Zr-alloy corrosion under irradiation would be due to the general radiolysis. It suggests that care should be taken to avoid any source of β - emission or other ionising species in the reactor core that could give an increase of energy deposition rate for radiolysis. Also the corrosion testing conditions for the materials to be used in reactors have to be relevant to the radiolytic environments found in the reactor cores. (orig.)

  18. Enhanced production of pigments by addition of surfactants in submerged fermentation of Monascus purpureus H1102.

    Science.gov (United States)

    Wang, Yonghui; Zhang, Bobo; Lu, Liping; Huang, Yan; Xu, Ganrong

    2013-10-01

    The production of pigments by Monascus spp. has attracted increasing attention. Modification of the cell membrane structure by addition of surfactants has proved to be effective for the secretion of intracellular metabolites. Hence in this study the effects and underlying mechanism of surfactants on the production of pigments in submerged fermentation of Monascus purpureus H1102 were systematically investigated. Various surfactants exerted significant but different impacts on the biomass and production of pigments. The maximum production of pigment (304.3 U mL(-1) ) and highest extracellular/intracellular pigment ratio (1.46) were achieved when 15 g L(-1) Triton X-100 was added at 24 h of fermentation, corresponding to significant increases of 88.4 and 240% respectively compared with the control. Meanwhile, the concentration of citrinin (0.94 mg L(-1) ) was 20.6% lower than that of the control. A further study on the fatty acid composition of M. purpureus H1102 showed that the unsaturated/saturated fatty acid ratio and the index of unsaturated fatty acid increased significantly with the addition of Triton X-100. The addition of surfactant Triton X-100 could greatly enhance the production of pigment. It was suggested that Triton X-100 facilitated the secretion of intracellular pigment and therefore enhanced pigment production accordingly. © 2013 Society of Chemical Industry.

  19. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-08-01

    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  20. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Pribyl, Pavel; Cepak, Vladislav [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Algological Centre and Centre for Bioindication and Revitalization; Zachleder, Vilem [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Lab. of the Cell Cycles of Algae

    2012-04-15

    We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l{sup -1} day{sup -1}. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l{sup -1} day{sup -1}, biomass density was 5.7 g l{sup -1} dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils. (orig.)

  1. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-01-01

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  2. Production, Characterization and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    Directory of Open Access Journals (Sweden)

    Sanket J. Joshi

    2016-11-01

    Full Text Available The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses or date molasses, as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33+0.57mN m-1 and 2.47+0.32mN m-1 respectively within 72h, at 40 C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67°+1.6° to 19.54°+0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor. The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial enhanced oil recovery processes.

  3. A density functional theory study of partial oxidation of propylene on Cu2O(0 0 1) and CuO(0 0 1) surfaces

    Science.gov (United States)

    Düzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gülbiter; Onal, Isik

    2015-11-01

    This work theoretically investigates propylene epoxidation reaction on Cu2O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu2O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu2O surface indicating the higher activity of Cu+ species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  4. SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS

    Directory of Open Access Journals (Sweden)

    Jorge Sepúlveda

    Full Text Available The glycerol hydrogenolysis reaction was performed in a continuous flow trickle bed reactor using a water glycerol feed and both copper chromite and Cu/Al2O3 catalysts. The commercial copper chromite had a higher activity than the laboratory prepared Cu/Al2O3 and was used for most of the tests. Propylene glycol was the main product with both catalysts, acetol being the main by-product. It was found that temperature is the main variable influencing the conversion of glycerol. When the state of the glycerol-water reactant mixture was completely liquid, at temperatures lower than 190 ºC, conversion was low and deactivation was observed. At reaction temperatures of 210-230 ºC the conversion of glycerol was complete and the selectivity to propylene glycol was stable at about 60-80% all throughout the reaction time span of 10 h, regardless of the hydrogen pressure level (1 to 20 atm. These optimal values could not be improved significantly by using other different reaction conditions or increasing the catalyst acidity. At higher temperatures (245-250 ºC the conversion was also 100%. Under reaction conditions at which copper chromite suffered deactivation, light by-products and surface deposits were formed. The deposits could be completely burned at 250 ºC and the catalyst activity fully recovered.

  5. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli.

    Science.gov (United States)

    Wang, Jian-Feng; Xiong, Zhi-Qiang; Li, Shi-Yuan; Wang, Yong

    2013-09-01

    Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.

  6. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity.

    Science.gov (United States)

    Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny

    2014-11-01

    Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved

  7. Bioactivity, physical and chemical properties of MTA mixed with propylene glycol

    Directory of Open Access Journals (Sweden)

    Vaishali Prakash NATU

    2015-08-01

    Full Text Available AbstractObjective To investigate the physical (setting time, hardness, flowability, microstructure and chemical (pH change, calcium release, crystallinity properties and the biological outcomes (cell survival and differentiation of mineral trioxide aggregate (MTA mixed using different proportions of propylene glycol (PG and water.Material and Methods White MTA was mixed with different water/PG ratios (100/0, 80/20 and 50/50. Composition (XRD, microstructure (SEM, setting time (ASTM C266-13, flowability (ANSI/ADA 57-2000, Knoop hardness (100 g/10 s and chemical characteristics (pH change and Ca2+ release for 7 days were evaluated. Cell proliferation, osteo/odontoblastic gene expression and mineralization induced by MTA mixed with PG were evaluated. MTA discs (5 mm in diameter, 2 mm thick were prepared and soaked in culture medium for 7 days. Next, the discs were removed and the medium used to culture dental pulp stem cells (DPSC for 28 days. Cells survival was evaluated using MTS assay (24, 72 and 120 h and differentiation with RT-PCR (ALP, OCN, Runx2, DSPP and MEPE and alizarin red staining (7 and 14 days. Data were analysed using one-way ANOVA and Tukey’s post-hoc analysis (a=0.05.Results The addition of PG significantly increased setting time, flowability and Ca2+ release, but it compromised the hardness of the material. SEM showed that 50/50 group resulted porous material after setting due to the incomplete setting reaction, as shown by XRD analysis. The addition of PG (80/20 and 50/50 was not capable to improve cell proliferation or to enhance gene expression, and mineralized deposition of DPSC after 7 and 14 days as compared to the 100/0.Conclusion Except for flowability, the addition of PG did not promote further improvements on the chemical and physical properties evaluated, and it was not capable of enhancing the bioactivity of the MTA.

  8. Enhancement of Shikonin Production in Suspension Cultures of Lithospermum erythrorhizon Cells by Gamma-irradiation

    International Nuclear Information System (INIS)

    Baek, Myung Hwa; Chung, Byung Yeoup; Kim, Jae Sung; An, Beyoung Chul; Lee, Young Bok

    2005-01-01

    The shikonin and several derivatives produced by the roots of Boraginacae family plants are purple compounds that have been used in several parts of the World as antimicrobial and antitumor agents in human pharmaceuticals. Shikonin has been reported as the most successful specimen of the mass production of plant secondary metabolites by cell suspension culture. Numerous studies have elucidated the regulation of production of these compounds in cell suspension cultures. It has known that ultrasonic and gamma irradiation can enhance the production of secondary metabolites. Thus, in present study, we investigate the effects of gamma-irradiation on the shikonin production and the key enzymes in the shikonin biosynthetic pathway of L. erythrorhizon cells

  9. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    Science.gov (United States)

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Marinšek Logar, Romana

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols.

    Science.gov (United States)

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2008-09-01

    The object of this research was improvement of prenyl alcohol production with squalene synthase-deficient mutant Saccharomyces cerevisiae ATCC 64031. On screening of many kinds of additives, we found that oils and detergents significantly enhanced the extracellular production of prenyl alcohols. Soybean oil showed the most prominent effect among the additives tested. Its effect was accelerated by a high concentration of glucose in the medium. The combination of these cultivation conditions led to the production of more than 28 mg/l of farnesol in the soluble fraction of the broth. The addition of these compounds to the medium was an effective method for large-scale production of prenyl alcohols with microorganisms.

  11. Enhanced hydrogen production by coupled system of Halobacterium halobium and chloroplast after entrapment within reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Dubey, R.S. [Banaras Hindhu University, Varanasi (India). Dept. of Biochemistry; Pandey, K.D. [Banaras Hindhu University, Varanasi (India). Dept. of Botany

    1999-08-01

    Reverse micelles were used for the enhanced rate of photoproduction of hydrogen using the coupled system of Halobacterium halobium and chloroplasts organelles. Different combinations of organic solvents and surfactants were used for generating reverse micelles. A several fold enhancement in the rate of H{sub 2} production was observed when the coupled system was entrapped within reverse micelles as compared to the aqueous suspension where no detectable H{sub 2} was produced. The coupled system immobilized in reverse micelles formed by sodium lauryl sulfate and carbon tetrachloride yielded maximum rate of H{sub 2} evolution. The optimum temperature for such hydrogen production was 40{sup o}C using light of 520-570 nm wavelength and 100 lux intensity. (author)

  12. Enhanced Production of Glucose Oxidase Using Penicillium notatum and Rice Polish

    Directory of Open Access Journals (Sweden)

    Shazia Sabir

    2007-01-01

    Full Text Available Glucose oxidase (GOD is an important enzyme that finds a wide range of applications in food and pharmaceutical industry. In this investigation the feasibility of using rice polish as a substrate for the production of GOD by Penicillium notatum in submerged fermentation (SmF has been evaluated. The intention was to enhance total GOD activity by the selection of economical substrate, microorganism and consecutive optimization of various cultural conditions. Maximum GOD activity of (112±5 U/mL was achieved under optimum growth conditions: rice polish 5 g, incubation period 72 h, buffering agent 3 % (by mass per volume, incubation temperature (30±1 °C and pH=6.0. Addition of carbon and nitrogen sources further enhanced the enzyme yield, indicating an economically attractive process for GOD production.

  13. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    OpenAIRE

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane. For every two molecules of CO2 injected, roughly one molecule of methane is produced. The work included an investigation of the potential CBM reserves in the Dutch underground and the related CO2 s...

  14. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  15. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S

    2015-01-01

    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.

    Science.gov (United States)

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi

    2017-11-01

    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Shin, So-Yeon; Kim, Myoung-Dong; Han, Nam Soo; Seo, Jin-Ho

    2012-03-01

    Guanosine 5'-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5'-diphosphate (GDP)-L-fucose. In this study, improvement of GDP-L-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-L-fucose. The effects of overexpression of inosine 5'-monophosphate (IMP) dehydrogenase, guanosine 5'-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine-inosine kinase (Gsk) on GDP-L-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-L-fucose production. Maximum GDP-L-fucose concentration of 305.5 ± 5.3 mg l(-1) was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes. Such an enhancement of GDP-L-fucose production could be due to the increase in the intracellular level of GMP.

  18. Finding Sales Promotion and Making Decision for New Product Based on Group Analysis of Edge-Enhanced Product Networks

    Science.gov (United States)

    Huang, Yi; Tan, Jianbin; Wu, Bin

    A novel method is proposed in this paper to find the promotive relationship of products from a network point of view. Firstly, a product network is built based on the dataset of handsets’ sale information collected from all outlets of a telecom operator of one province of China, with a period from Jan. 2006 to Jul. 2008. Then the edge enhanced model is applied on product network to divide all the products into several groups, according to which each outlet is assigned to class A or class B for a certain handset. Class A is defined as the outlet which sell the certain handset and contains all of handsets of its group, while other situation for class B which sell the certain handset too. It’s shown from the result of analysis on these two kinds of outlets that many handsets are sold better in outlets of class A than that of class B, even though the sales revenue of all these outlets in the time period is close. That is to say the handsets within a group would promote the sale for each other. Furthermore, a method proposed in this paper gives a way to find out the important attributes of the handsets which lead them to br divided into the same group, and it also explains how to add a new handset to an existing group and where would the new handset be sold best.

  19. Enhancement of ASTEC and COCOSYS regarding fission product release during MCCI

    Energy Technology Data Exchange (ETDEWEB)

    Agethen, Kathrin [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2016-10-15

    The focus in this paper is on the enhancement of the fission product release model during molten core concrete interaction in the severe accident analysis codes ASTEC and COCOSYS. After both codes are harmonised and the model interaction as well as the input parameters are adapted, extended model approaches are implemented. These lead to an improvement of the release rates for selected semi-volatile species validated against the ACE tests under ex-vessel conditions.

  20. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    COMMUNICATIONS CURRENT SCIENCE, VOL. 82, NO. 12, 25 JUNE 2002 *For correspondence. (e - mail: madhu@niokochi.org) Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa) N. V. Madhu*, P. A. Maheswaran, R... in the world?s oceans typically have duration of only a few days, but the physical and biological effects due to this perturbation can last up to several weeks 1 ? 4 . The integrated effect from these storm events has the potential to account for a...

  1. Enhanced Production of Glucose Oxidase Using Penicillium notatum and Rice Polish

    OpenAIRE

    Shazia Sabir; Haq Nawaz Bhatti; Muhammad Anjum Zia; Munir Ahmad Sheikh

    2007-01-01

    Glucose oxidase (GOD) is an important enzyme that finds a wide range of applications in food and pharmaceutical industry. In this investigation the feasibility of using rice polish as a substrate for the production of GOD by Penicillium notatum in submerged fermentation (SmF) has been evaluated. The intention was to enhance total GOD activity by the selection of economical substrate, microorganism and consecutive optimization of various cultural conditions. Maximum GOD activity of (112±5) U/m...

  2. A study of best management practices for enhancing productivity in building projects: construction methods perspectives

    OpenAIRE

    Gurmu, Argaw Tarekegn; Aibinu, Ajibade Ayodeji; Chan, Toong Khuan

    2016-01-01

    This research investigates management practices that have the potential to enhance productivity in building projects by focusing on construction methods. In phase 1 of the study, face-to-face interviews with nineteen experts were conducted to identify the best management practices for construction methods. The qualitative data analysis reached saturation and resulted in a list of best practices for construction methods that are relevant to the local industry. The second phase used an industry...

  3. Use of radiation hygienised municipal sewage sludge as a soil conditioner to enhance agricultural productivity

    International Nuclear Information System (INIS)

    Shah, M.R.; Nareshkumar; Sabharwal, S.

    2009-01-01

    This paper presents a report on the applications that have been developed and demonstrated in the radiation hygienisation of municipal sewage sludge for use in the agriculture as value added manure. Radiation hygienization process effectively eliminates the pathogenic bacteria present in the sewage sludge. Application of sludge to agricultural land enhances the yield and quality of agricultural products due to macronutrients and micronutrients present in the sludge. The process benefits municipal sewage treatment plant authorities as well as farming community. (author)

  4. Effect of material and processing parameters on mechanical properties of Polypropylene/Ethylene-Propylene-Diene-Monomer/clay nanocomposites

    International Nuclear Information System (INIS)

    Hejazi, Iman; Sharif, Farhad; Garmabi, Hamid

    2011-01-01

    Highlights: → Improved mechanical properties over a broad range of processing conditions. → Moderate levels of clay and processing parameters lead to higher toughness of TPO. → Significant improvement of tensile strength and modulus of TPO materials. -- Abstract: Polypropylene/Ethylene-Propylene-Diene-Monomer (PP/EPDM) blends are well known for having a combination of favourable mechanical properties. In this paper, addition of organoclay to PP/EPDM to make PP/EPDM nanocomposites with enhanced mechanical properties is studied. PP/EPDM/organoclay nanocomposites were prepared using a lab scale twin-screw extruder. Maleic anhydride grafted polypropylene (PP-g-MA) was used to enhance the intercalation/exfoliation process and to create good adhesion at the polymer/polymer and polymer/filler interfaces. Taguchi method was employed to deign the experiments and optimize material and processing parameters for optimized mechanical properties. Organoclay (NC) and compatibilizer content were selected as material parameters and the main processing variables were feeding rate and average shear rate (RPM). X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to study the microstructure of the nanocomposites samples. It was observed that NC content and shear rate in extruder improved the tensile strength and modulus. Another important result was the insignificant effect of NC content on impact strength while increasing shear rate first increased and then decreased the impact strength.

  5. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  7. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure.

    Science.gov (United States)

    Ozbayram, E G; Akyol, Ç; Ince, B; Karakoç, C; Ince, O

    2018-02-01

    To investigate the effects of different bioaugmentation strategies for enhancing the biogas production from cow manure and evaluate microbial community patterns. Co-inoculation with cow rumen fluid and cow rumen-derived enriched microbial consortia was evaluated in anaerobic batch tests at 36°C and 41°C. Singular addition of both rumen fluid and enriched bioaugmentation culture had a promising enhancement on methane yields; however, the highest methane yield (311 ml CH 4 per gram VS at 41°C) was achieved when the anaerobic seed sludge was co-inoculated together with rumen fluid and enriched bioaugmentation culture. Bacterial community profiles were investigated by Ion PGM Platform, and specific lignocellulolytic bacteria dynamics in batch tests were assessed by qPCR. The temperature had minor effects on the abundance of bacterial community; in which Bacteroidetes and Firmicutes were the most abundant phyla in all digesters. Furthermore, Rikenellaceae, Clostridiaceae, Porphyromonadaceae, Bacteroidaceae and Ruminococcaceae played a crucial role during the anaerobic degradation of cow manure. There was an important impact of Firmicutes flavefaciens and Ruminococcus albus at 41°C, which in turn positively affected the methane production. The degree of enhancement in biogas production can be upgraded by the co-inoculation of rumen-derived bioaugmentation culture with anaerobic seed sludge with high methanogenic activity. A close look at the biotic interactions and their associations with abiotic factors might be valuable for evaluating rumen-related bioaugmentation applications. © 2017 The Society for Applied Microbiology.

  8. Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis

    Science.gov (United States)

    Liu, Zhi-Qiang; Zhang, Bo; Lin, Shan; Baker, Peter James; Chen, Mao-Sheng; Xue, Ya-Ping; Wu, Hui; Xu, Feng; Yuan, Shui-Jin; Teng, Yi; Wu, Ling-Fang

    2017-01-01

    To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis. PMID:29333435

  9. Enhanced ergonomics approaches for product design: a user experience ecosystem perspective and case studies.

    Science.gov (United States)

    Xu, Wei

    2014-01-01

    This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.

  10. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  11. Enhanced aflatoxin production by aspergillus parasiticus and aspergillus flavus after low dose gamma irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1992-01-01

    Spores of Aspergillus parasiticus IFO 30179 and A. flavus var. columnaris S46 were irradiated at 0.05, 0.2 and 0.4 kGy in the synthetic low salts (SL) broth, and the effect on aflatoxin production was examined after 10 days incubation at 30 or 25degC. In these two strains, irradiation of spores at 0.05 kGy resulted in higher B1 or G1 production than the non-irradiated controles. However, spores of the both strains irradiated at 0.2 or 0.4 kGy produced less aflatoxins than non-irradiated controles. In the SL broth, apparent stimulation by low dose irradiation was slight, and these enhanced effects were not observed after reinfection to fresh SL broth. In the case of food samples, the levels of aflatoxin B 1 and G 1 with A. parasiticus were increased from 15 to 90% by incubation of irradiated spores at 1 kGy in autoclaved polished rice, black pepper, white pepper and red pepper. These enhancement would be induced by change of composition in each substrates. Mutations of fungi induced by irradiation is not effective for enhancement of aflatoxin production. (author)

  12. A project management framework for enhanced productivity performance using building information modelling

    Directory of Open Access Journals (Sweden)

    Longhui Liao

    2017-09-01

    Full Text Available Although the Singapore government has mandated submissions of building plans in building information modelling (BIM format since July 2013, this does not yet seem to lead to enhanced productivity performance. BIM collaboration between designers and downstream contractors appears to remain inadequate. While many studies have been conducted on using BIM for better project outcomes, studies that relate BIM with the identification of non-value adding activities in the project lifecycle and the reduction of the resulting wastes are at infancy stage. This paper aims to propose a project management framework for enhancing the productivity of building projects in Singapore, which forms Phase I of an ongoing research project. A two-pronged approach is presented. Firstly, non-value adding activities in the current project delivery process that uses BIM partially in Singapore are identified by comparing the typical current process with full BIM-based processes; such activities are cut down after process transformation in terms of people, process, and technology. Secondly, time savings derived from reducing the wastes caused by these activities are quantified. The proposed framework was validated by a case study of a local residential project. It was concluded that this framework provides a valuable tool for project teams to enhance productivity performance.

  13. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae.

    Science.gov (United States)

    Cheirsilp, Benjamas; Shimizu, Hiroshi; Shioya, Suteaki

    2003-01-09

    In a batch mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae, which could assimilate lactic acid, cell growth and kefiran production rates of L. kefiranofaciens significantly increased, compared with those in pure cultures. The kefiran production rate was 36 mg l(-1) h(-1) in the mixed culture under the anaerobic condition, which was greater than that in the pure culture (24 mg l(-1) h(-1)). Under the aerobic condition, a more intensive interaction between these two strains was observed and higher kefiran production rate (44 mg l(-1) h(-1)) was obtained compared with that under the anaerobic condition. Kefiran production was further enhanced by an addition of fresh medium in the fed-batch mixed culture. In the fed-batch mixed culture, a final kefiran concentration of 5.41 g l(-1) was achieved at 87 h, thereby attaining the highest productivity at 62 mg l(-1) h(-1). Simulation study considered the reduction of lactic acid in pure culture was performed to estimate the additional effect of coculture with S. cerevisiae. Slightly higher cell growth and kefiran production rates in the mixed culture than those expected from pure culture by simulation were observed. These results suggest that coculture of L. kefiranofaciens and S. cerevisiae not only reduces the lactic acid concentration by consumption but also stimulates cell growth and kefiran production of L. kefiranofaciens.

  14. Process optimization for enhancing production of cis-4-hydroxy-L-proline by engineered Escherichia coli.

    Science.gov (United States)

    Chen, Kequan; Pang, Yang; Zhang, Bowen; Feng, Jiao; Xu, Sheng; Wang, Xin; Ouyang, Pingkai

    2017-11-22

    Understanding the bioprocess limitations is critical for the efficient design of biocatalysts to facilitate process feasibility and improve process economics. In this study, a proline hydroxylation process with recombinant Escherichia coli expressing L-proline cis-4-hydroxylase (SmP4H) was investigated. The factors that influencing the metabolism of microbial hosts and process economics were focused on for the optimization of cis-4-hydroxy-L-proline (CHOP) production. In recombinant E. coli, SmP4H synthesis limitation was observed. After the optimization of expression system, CHOP production was improved in accordance with the enhanced SmP4H synthesis. Furthermore, the effects of the regulation of proline uptake and metabolism on whole-cell catalytic activity were investigated. The improved CHOP production by repressing putA gene responsible for L-proline degradation or overexpressing L-proline transporter putP on CHOP production suggested the important role of substrate uptake and metabolism on the whole-cell biocatalyst efficiency. Through genetically modifying these factors, the biocatalyst activity was significantly improved, and CHOP production was increased by twofold. Meanwhile, to further improve process economics, a two-strain coupling whole-cell system was established to supply co-substrate (α-ketoglutarate, α-KG) with a cheaper chemical L-glutamate as a starting material, and 13.5 g/L of CHOP was successfully produced. In this study, SmP4H expression, and L-proline uptake and degradation, were uncovered as the hurdles for microbial production of CHOP. Accordingly, the whole-cell biocatalysts were metabolically engineered for enhancing CHOP production. Meanwhile, a two-strain biotransformation system for CHOP biosynthesis was developed aiming at supplying α-KG more economically. Our work provided valuable insights into the design of recombinant microorganism to improve the biotransformation efficiency that catalyzed by Fe

  15. The influence of starch oxidization and aluminate coupling agent on interfacial interaction, rheological behavior, mechanical and thermal properties of poly(propylene carbonate)/starch blends

    Science.gov (United States)

    Jiang, Guo; Zhang, Shui-Dong; Huang, Han-Xiong; The Key Laboratory of Polymer Processing Engineering of the Ministry of Education Team

    Poly(propylene carbonate) (PPC) is a kind of new biodegradable polymer that is synthesized by copolymerization of propylene oxide and carbon dioxide. In this work, PPC end-capped with maleic anhydride (PPCMA)/thermoplastic starch (TPS), PPCMA/thermoplastic oxidized starch (TPOS) and PPCMA/AL-TPOS (TPOS modified by aluminate coupling agent) blends were prepared by melt blending to improve its thermal and mechanical properties. FTIR results showed that there existed hydrogen-bonding interaction between PPCMA and starch. SEM observation revealed that the compatibility between PPCMA and TPOS was improved by the oxidation of starch. The enhanced interfacial interactions between PPCMA and TPOS led to a better performance of PPC blends such as storage modulus (G'), loss modulus (G''), complex viscosity (η*), tensile strength and thermal properties. Furthermore, the modification of TPOS by aluminate coupling agent (AL) facilitated the dispersion of oxidized starch in PPC matrix, and resulted in increasing the tensile strength and thermal stability. National Natural Science Foundation of China, National Science Fund of Guangdong Province.

  16. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  17. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  18. Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis.

    Science.gov (United States)

    Balakumaran, Palanisamy Athiyaman; Meenakshisundaram, Sankaranarayanan

    2015-01-01

    Coenzyme Q10 (CoQ10) plays an indispensable role in ATP generation through oxidative phosphorylation and helps in scavenging superoxides generated during electron transfer reactions. It finds extensive applications specifically related to oxidative damage and metabolic dysfunctions. This article reports the use of a statistical approach to optimize the concentration of key variables for the enhanced production of CoQ10 by Rhodotorula glutinis in a lab-scale fermenter. The culture conditions that promote optimum growth and CoQ10 production were optimized and the interaction of significant variables para-hydroxybenzoic acid (PHB, 819.34 mg/L) and soybean oil (7.78% [v/v]) was studied using response surface methodology (RSM). CoQ10 production increased considerably from 10 mg/L (in control) to 39.2 mg/L in batch mode with RSM-optimized precursor concentration. In the fed-batch mode, PHB and soybean oil feeding strategy enhanced CoQ10 production to 78.2 mg/L.

  19. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-05

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  20. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-01

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  1. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    Science.gov (United States)

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  2. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe

    Science.gov (United States)

    Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John

    Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydrological functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity ( WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage capacity) can help differentiate storage-type-RWH systems from “conventional dams”. The Agricultural Production Simulator Model (APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m -3 up to 2.3 kg m -3 on average) by mitigating ISDS.

  3. Enhanced dissolved lipid production as a response to the sea surface warming

    Science.gov (United States)

    Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka

    2018-04-01

    The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.

  4. Production acceleration and injectivity enhancement using steam-propane injection for Hamaca extra-heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, J. A.; Mamora, D. D. [Texas A and M University, El Paso, TX (United States)

    2005-02-01

    The possibility of enhanced recovery in the Orinoco Belt in Venezuela, the world's largest known hydrocarbon deposit, by using propane as a steam additive, is discussed. In a laboratory study the steam-propane injection accelerated the start of oil production by 21 per cent, compared to production with steam alone. The experiments illustrated that the inclusion of even small amounts of propane has considerable beneficial effect on the rate of bitumen production. Even though total bitumen recovery and ultimate residual oil saturation did not change, the acceleration of bitumen recovery is considered to have a significant impact on the net present value of the recovery process. 17 refs., 1 tab., 13 figs.

  5. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review

    International Nuclear Information System (INIS)

    Banat, I.M.

    1995-01-01

    Surfactants are widely used for various purposes in industry, but for many years were mainly chemically synthesized. It has only been in the past few decades that biological surface-active compounds (biosurfactants) have been described. Biosurfactants are gaining prominence and have already taken over for a number of important industrial uses, due to their advantages of biodegradability, production on renewable resources and functionality under extreme conditions; particularly those pertaining during tertiary crude-oil recovery. Conflicting reports exist concerning their efficacy and the economics of both their production and application. The limited successes and applications for biosurfactants production, recovery, use in oil pollution control, oil storage tank clean-up and enhanced oil-recovery are reviewed from the technical point of view. (author)

  6. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    Science.gov (United States)

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  7. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions.

    Science.gov (United States)

    Blei, Felix; Baldeweg, Florian; Fricke, Janis; Hoffmeister, Dirk

    2018-05-11

    Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is the main alkaloid of the fungal genus Psilocybe, the so-called "magic mushrooms". The pharmaceutical interest in this psychotropic natural product as a future medication to treat depression and anxiety is strongly re-emerging. Here, we present an enhanced enzymatic route of psilocybin production by adding TrpB, the tryptophan synthase of the mushroom Psilocybe cubensis, to the reaction. We capitalized on its substrate flexibility and show psilocybin formation from 4-hydroxyindole and L-serine, which are less cost-intensive substrates, compared to the previous method. Further, we show enzymatic production of 7-phosphoryloxytryptamine (isonorbaeocystin), a non-natural congener of the Psilocybe alkaloid norbaeocystin (4-phosphoryloxytryptamine), and of serotonin (5-hydroxytryptamine) via the same in vitro approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ergonomics productivity enhancement at government-owned sugar cane factories in east Java, Indonesia.

    Science.gov (United States)

    Manuaba, A

    1995-06-01

    To cope, both with the increasing demand for sugar and to win the global competition as well, government-owned sugar cane limited number xxi-xxii, has decided to enhance its productivity, among other things, by implementing ergonomics principles within their factories. In the execution, ergonomics application have been carried out since 1992, which resulted in safer, healthier, and more efficient working conditions and environment. Some of the improvements yielded economic gains through higher productivity via increased output, lower cost, faster processing, etc. Improvements related to cane transloading and unloading processes resulted in a higher amount of cane being transferred from the trucks to the lorries as well as from the lorries to the cane table. Fewer clinical visits, lower health care costs, more efficient inspection, and fewer fatigue complaints are also achieved by improvement steps, which increase the productivity as end results. With all those economic gains, full and long lasting management's concern and commitment could be created without a doubt.

  9. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    International Nuclear Information System (INIS)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  10. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  11. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    Science.gov (United States)

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C

  12. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2017-01-01

    Full Text Available Carbon monoxide (CO formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2. Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR; CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  13. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  14. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  15. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies.

    Science.gov (United States)

    Ho, Shih-Hsin; Chan, Ming-Chang; Liu, Chen-Chun; Chen, Chun-Yen; Lee, Wen-Lung; Lee, Duu-Jong; Chang, Jo-Shu

    2014-01-01

    Lutein, one of the main photosynthetic pigments, is a promising natural product with both nutritional and pharmaceutical applications. In this study, light-related strategies were applied to enhance the cell growth and lutein production of a lutein-rich microalga Scenedesmus obliquus FSP-3. The results demonstrate that using white LED resulted in better lutein production efficiency when compared to the other three monochromatic LEDs (red, blue, and green). The lutein productivity of S. obliquus FSP-3 was further improved by adjusting the type of light source and light intensity. The optimal lutein productivity of 4.08 mg/L/d was obtained when using a TL5 fluorescent lamp at a light intensity of 300 μmol/m(2)/s, and this performance is better than that reported in most related studies. Moreover, the time-course profile of lutein accumulation in the microalga shows that the maximal lutein content and productivity were obtained at the onset of nitrogen depletion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Potential for CO2 sequestration and Enhanced Coalbed Methane production in the Netherlands

    International Nuclear Information System (INIS)

    Hamelinck, C.N.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, D.; Pagnier, H.; Van Bergen, F.; Wolf, K.H.; Barzandji, O.; Bruining, H.; Schreurs, H.

    2001-03-01

    The technical and economic feasibility of ECBM (Enhanced Coal Bed Methane) in the Netherlands are explored. The potential and the economic performance are worked out for several ECBM recovery concepts and technological issues are outlined. The research includes the following main activities: Inventory of CO2 sources in the Netherlands and techno-economic analysis of CO2 removal and transport. Several scenarios for CO2 transport of different capacities and distances will be assessed. ECBM production locations are determined by analysis of coal reserves and their characteristics. Four potential areas are assessed: one in eastern Gelderland, two in Limburg and one in Zeeland. Description of ECBM theory and production technology resulting in a time dependent model for ECBM production and CO2 injection. Selection and description of various ECBM production/CO2 sequestration systems. Systems considered include direct delivery of methane to the natural gas grid, production of power (on various scales) and hydrogen. Information from the location assessment is combined with modelling results. Costs of CO2 sequestration are calculated for various scales and configurations. Evaluation of main uncertainties, environmental impacts and sensitivity analyses. Comparison of CBM production systems with reference systems and exploration of potential implementation schemes in the Dutch context. 72 refs

  17. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin

    2017-10-01

    This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  20. Characteristics of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids

    Directory of Open Access Journals (Sweden)

    Venancio Everaldo C.

    2001-01-01

    Full Text Available In the present work the characterization of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids was performed using different techniques. The electrochemical response by cyclic voltammetry showed redox processes due to the formation of polaron and bipolaron and polymer degradation. The characterization by infrared and UV-visible spectroscopies indicated that the polymers are in the emeraldine salt form with perchlorate anions incorporated. The films produced with both acids in propylene carbonate media presented a compact morphology as observed by scanning electron microscopy. By testing the polyaniline film produced in selected conditions in a lithium battery environment it was found that it presents a high coulombic efficiency, promising for battery applications.

  1. Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver

    International Nuclear Information System (INIS)

    Gao, J.; Zhang, H.P.; Fu, L.J.; Zhang, T.; Wu, Y.P.; Takamura, T.; Wu, H.Q.; Holze, R.

    2007-01-01

    A method has been developed to suppress the decomposition of propylene carbonate (PC) by coating graphite electrode foil with a layer of silver. Results from electrochemical impedance measurements show that the Ag-coated graphite electrode presents lower charge transfer resistance and faster diffusion of lithium ions in comparison with the virginal one. Cyclic voltammograms and discharge-charge measurements suggest that the decomposition of propylene carbonate and co-intercalation of solvated lithium ions are prevented, and lithium ions can reversibly intercalate into and deintercalate from the Ag-coated graphite electrode. These results indicate that Ag-coating is a good way to improve the electrochemical performance of graphitic carbon in PC-based electrolyte solutions

  2. Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid

    Directory of Open Access Journals (Sweden)

    Ali Abghari

    2017-07-01

    Full Text Available Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60. The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW. The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.

  3. Brief, pre-learning stress reduces false memory production and enhances true memory selectively in females.

    Science.gov (United States)

    Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N

    2014-04-10

    Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  5. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment

    International Nuclear Information System (INIS)

    Zhong, Weizhang; Li, Guixia; Gao, Yan; Li, Zaixing; Geng, Xiaoling; Li, Yubing; Yang, Jingliang; Zhou, Chonghui

    2015-01-01

    In this study, the orthogonal experimental design was used to determine the optimum conditions for the effect of thermal alkaline; pretreatment on the anaerobic digestion of penicillin bacterial residue. The biodegradability of the penicillin; bacterial residue was evaluated by biochemical methane potential tests in laboratory. The optimum values of temperature,; alkali concentration, pretreatment time and moisture content for the thermal-alkaline pretreatment were determined as; 70 °C, 6% (w/v), 30 min, and 85%, respectively. Thermal-alkaline pretreatment could significantly enhance the soluble; chemical oxygen demand solubilization, the suspended solid solubilization and the biodegradability. Biogas production; was enhanced by the thermal-alkaline pretreatment, probably as a result of the breakdown of cell walls and membranes of; micro-organisms, which may facilitate the contact between organic molecules and anaerobic microorganisms.; Keywords: penicillin bacterial residue; anaerobic digestion; biochemical methane potential tests; pretreatment

  6. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Rossi, Elio; Longo, Francesca; Barbagallo, Marialuisa; Peano, Clelia; Consolandi, Clarissa; Pietrelli, Alessandro; Jaillon, Sebastian; Garlanda, Cecilia; Landini, Paolo

    2016-01-01

    Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.

  7. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production

    Science.gov (United States)

    Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun

    2018-03-01

    Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.

  8. Action of microwave radiation in emulsion of oil demulsification by copolymers of poly (ethylene oxide-b-propylene oxide); Acao da radiacao micro-ondas na desemulsificacao de emulsoes de petroleo por copolimeros de poli(oxido de etileno-b-oxido de propileno)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Bianca M.S.; Ramalho, Joao B.V.; Guimaraes, Regina C.L.; Guarnieri, Ricardo A. [Petrobras Petroleo Brasileiro - CENPES/TPEP/TPP, Rio de Janeiro, RJ (Brazil)], e-mail: bmachado@petrobras.com.br; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria do Petroleo,Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    Emulsions of water-in-petroleum are generally formed during crude oil production. The emulsion needs to be destabilized, along the process in the production units, so as to allow the water-oil separation. This process is accomplished by heating and addition of demulsifier, like poly (ethylene oxide-b-propylene oxide) which promotes the removal of the natural emulsifier from the water droplets interfaces. Normally, the conventional heating is used, but the microwave radiation has been suggested to heat de emulsions. The results obtained in this work show that microwave radiation can really enhance the demulsification rate of petroleum emulsions by gravitational mechanism. It is also shown that demulsification enhancement is greatly related to the selective and higher heating of the water phase induced by the microwave radiation, which causes the lowering of the interfacial film rigidity and the increase of the film drainage, after the demulsifier is added to the dispersed system. It was also observed that the higher the density, viscosity, acidity and asphaltenes content of the crude oil, the lower the demulsification rate. (author)

  9. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Nguyen, Minh-Thu; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Kim, Donhue [Department of Biochemical Engineering, Dongyang Mirae College, Seoul 152-714 (Korea, Republic of)

    2010-12-15

    Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO{sub 2} and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H{sub 2}) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H{sub 2} from algal starch with H{sub 2} yield of 1.8-2.2 mol H{sub 2}/mol glucose and the total accumulated H{sub 2} level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H{sub 2} production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H{sub 2} fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 C for 20 min showed the total accumulative H{sub 2} yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable {alpha}-amylase (Termamyl) applied in the SHF process significantly enhanced the H{sub 2} productivity of the bacterium to 64% (v/v) of total accumulated H{sub 2} level and a H{sub 2} yield of 2.5 mol H{sub 2}/mol glucose. Our results demonstrated that direct H{sub 2} fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H{sub 2} production. (author)

  10. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss.

    Science.gov (United States)

    Graham, Lucia S; Parhami, Farhad; Tintut, Yin; Kitchen, Christina M R; Demer, Linda L; Effros, Rita B

    2009-11-01

    Osteoporosis is a systemic disease that is associated with increased morbidity, mortality and health care costs. Whereas osteoclasts and osteoblasts are the main regulators of bone homeostasis, recent studies underscore a key role for the immune system, particularly via activation-induced T lymphocyte production of receptor activator of NFkappaB ligand (RANKL). Well-documented as a mediator of T lymphocyte/dendritic cell interactions, RANKL also stimulates the maturation and activation of bone-resorbing osteoclasts. Given that lipid oxidation products mediate inflammatory and metabolic disorders such as osteoporosis and atherosclerosis, and since oxidized lipids affect several T lymphocyte functions, we hypothesized that RANKL production might also be subject to modulation by oxidized lipids. Here, we show that short term exposure of both unstimulated and activated human T lymphocytes to minimally oxidized low density lipoprotein (LDL), but not native LDL, significantly enhances RANKL production and promotes expression of the lectin-like oxidized LDL receptor-1 (LOX-1). The effect, which is also observed with 8-iso-Prostaglandin E2, an inflammatory isoprostane produced by lipid peroxidation, is mediated via the NFkappaB pathway, and involves increased RANKL mRNA expression. The link between oxidized lipids and T lymphocytes is further reinforced by analysis of hyperlipidemic mice, in which bone loss is associated with increased RANKL mRNA in T lymphocytes and elevated RANKL serum levels. Our results suggest a novel pathway by which T lymphocytes contribute to bone changes, namely, via oxidized lipid enhancement of RANKL production. These findings may help elucidate clinical associations between cardiovascular disease and decreased bone mass, and may also lead to new immune-based approaches to osteoporosis.

  11. Characterization of nylon 6/poly(propylene oxide) polymeric mixture by combined NMR techniques

    International Nuclear Information System (INIS)

    Costa, Dilma Alves; Oliveira, Clara Marize F.; Tavares, Maria Ines B.

    1995-01-01

    Polymeric mixtures aim to improve physical or chemical properties of materials. This mixtures can be compatible or not. The compatibility between polymers determine changes of properties. This work has presented a detailed study where nylon 6 and poly(propylene oxide) mixture was analysed by 13 C NMR in the solid state, and NMR spectra were shown and explained. The molecular mobility as well as the compatibility have been observed and discussed

  12. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  13. The Relationship Between Structural and Catalytic Activity of α and γ-Bismuth-Molybdate Catalysts for Partial Oxidation of Propylene to Acrolein

    Science.gov (United States)

    Fansuri, H.; Pham, G. H.; Wibawanta, S.; Zhang, D. K.; French, David

    Bismuth-molybdate catalysts are known to be effective for catalytic partial oxidation of propylene to acrolein. Their properties and the kinetics and reaction mechanisms for acrolein production have been extensively studied, especially in their basic forms, such as α, β, and γ-bismuth-molybdate. Although the reaction mechanisms have been reported widely in the literature, a general agreement has not been reached, especially from a catalyst-structure point of view. The present contribution reports an effort to understand the structural changes of α and γ-bismuth-molybdate catalysts at varying temperatures as examined using high temperature XRD and to relate the catalyst performance (activity and selectivity) for propylene partial oxidation to acrolein. The XRD analysis was performed at temperature between 250 and 450°C in ambient atmosphere and the Rietveld refinement method was used to extract unit cell parameters. The results showed a distinct similarity between the shapes of the thermal expansion of the catalysts and their activity and selectivity curves, indicating a significant role that the catalyst interatomic structure plays in the overall reaction mechanism.

  14. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    Science.gov (United States)

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  16. A Study on Strategies Applied for Enhancing Anthraquinones Production by Fusarium spp

    International Nuclear Information System (INIS)

    El-Fouly, M.Z.; Shahin, A.A.M.; El-Bialy, H.A.; Alsharqawey, A.A.A.; Hassan, E.A.; Ramadan, E.M.

    2017-01-01

    Sixty Fusarium isolates were selected from different isolation sources and screened for their ability to produce anthraquinones; seventeen of which showed high or a moderate ability to produce anthraquinones. Selected Fusarium isolates were screened for Fusaric acid production to exclude toxin synthesis isolates. F. arthosporoides and F. verticellioides showed the highest anthraquinones production since their production yields were 649.1 and 275.7 μg/g; respectively. The anthraquinones derivatives produced by selected Fusarium strains were characterized by HPLC and GC-MS. The optimization of fermentation conditions for F. arthosporoides revealed that the maximum anthraquinones titer was achieved at 10 days of incubation period, ph 6.5 and 30 ° C and under shaking and light conditions. For F. verticellioides, the highest anthraquinones yield was accomplished after the same incubation period at ph 6.0, 25 °C and under static and dark conditions. Results evaluated the positive effect of ionizing (gamma) and non ionizing (UV) irradiations on the anthraquinones production by F. verticellioides since 0.25 kGy and 50 J/m"2 enhanced the anthraquinone yield by nearly 30%. The antimicrobial and dyeing properties of the produced anthraquinone are also studied. The present study succeeded to reduce the cost of anthraquinones production by using kitchen garbage

  17. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment.

    Science.gov (United States)

    Singer, Stacy D; Hannoufa, Abdelali; Acharya, Surya

    2017-10-18

    Due to an expanding world population and increased buying power, the demand for ruminant products such as meat and milk is expected to grow substantially in coming years, and high levels of forage crop production will therefore be a necessity. Unfortunately, urbanization of agricultural land, intensive agricultural practices, and climate change are all predicted to limit crop production in the future, which means that the development of forage cultivars with improved productivity and adaptability will be essential. Because alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage crops, it has been the target of much research in this field. In this review, we discuss progress that has been made towards the improvement of productivity, abiotic stress tolerance, and nutrient-use efficiency, as well as disease and pest resistance, in alfalfa using biotechnological techniques. Furthermore, we consider possible future priorities and avenues for attaining further enhancements in this crop as a means of contributing to the realization of food security in a changing environment. © 2017 John Wiley & Sons Ltd.

  18. Knowledge and tools to enhance resilience of beef grazing systems for sustainable animal protein production.

    Science.gov (United States)

    Steiner, Jean L; Engle, David M; Xiao, Xiangming; Saleh, Ali; Tomlinson, Peter; Rice, Charles W; Cole, N Andy; Coleman, Samuel W; Osei, Edward; Basara, Jeffrey; Middendorf, Gerad; Gowda, Prasanna; Todd, Richard; Moffet, Corey; Anandhi, Aavudai; Starks, Patrick J; Ocshner, Tyson; Reuter, Ryan; Devlin, Daniel

    2014-11-01

    Ruminant livestock provides meat and dairy products that sustain health and livelihood for much of the world's population. Grazing lands that support ruminant livestock provide numerous ecosystem services, including provision of food, water, and genetic resources; climate and water regulation; support of soil formation; nutrient cycling; and cultural services. In the U.S. southern Great Plains, beef production on pastures, rangelands, and hay is a major economic activity. The region's climate is characterized by extremes of heat and cold and extremes of drought and flooding. Grazing lands occupy a large portion of the region's land, significantly affecting carbon, nitrogen, and water budgets. To understand vulnerabilities and enhance resilience of beef production, a multi-institutional Coordinated Agricultural Project (CAP), the "grazing CAP," was established. Integrative research and extension spanning biophysical, socioeconomic, and agricultural disciplines address management effects on productivity and environmental footprints of production systems. Knowledge and tools being developed will allow farmers and ranchers to evaluate risks and increase resilience to dynamic conditions. The knowledge and tools developed will also have relevance to grazing lands in semiarid and subhumid regions of the world. © 2014 New York Academy of Sciences.

  19. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Science.gov (United States)

    2010-07-01

    ... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether, morpholinepropanamine...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether, morpholinepropanamine...

  20. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.

    2012-11-13

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  1. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    Science.gov (United States)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  2. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.

    2013-09-18

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.; Vagin, Sergei I.; Hammann, Markus; Zimmermann, Leander; Rieger, Bernhard

    2013-01-01

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.; Vagin, Sergei; Anderson, Carly E.; Rieger, Bernhard

    2012-01-01

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  5. Polybrominated diphenyl ethers enhance the production of proinflammatory cytokines by the placenta.

    Science.gov (United States)

    Peltier, M R; Klimova, N G; Arita, Y; Gurzenda, E M; Murthy, A; Chawala, K; Lerner, V; Richardson, J; Hanna, N

    2012-09-01

    Polybrominated diphenyl ether(s) (PBDE) are ubiquitous environmental contaminants that bind and cross the placenta but their effects on pregnancy outcome are unclear. It is possible that environmental contaminants increase the risk of inflammation-mediated pregnancy complications such as preterm birth by promoting a proinflammatory environment at the maternal-fetal interface. We hypothesized that PBDE would reduce IL-10 production and enhance the production of proinflammatory cytokines associated with preterm labor/birth by placental explants. Second-trimester placental explants were cultured in either vehicle (control) or 2 μM PBDE mixture of congers 47, 99 and 100 for 72 h. Cultures were then stimulated with 10(6) CFU/ml heat-killed Escherichia coli for a final 24 h incubation and conditioned medium was harvested for quantification of cytokines and PGE(2). COX-2 content and viability of the treated tissues were then quantified by tissue ELISA and MTT reduction activity, respectively. PBDE pre-treatment reduced E. coli-stimulated IL-10 production and significantly increased E. coli-stimulated IL-1β secretion. PBDE exposure also increased basal and bacteria-stimulated COX-2 expression. Basal, but not bacteria-stimulated PGE(2), was also enhanced by PBDE exposure. No effect of PBDE on viability of the explants cultures was detected. In summary, pre-exposure of placental explants to congers 47, 99, and 100 enhanced the placental proinflammatory response to infection. This may increase the risk of infection-mediated preterm birth by lowering the threshold for bacteria to stimulate a proinflammatory response(s). Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang

    2018-08-30

    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends.

    Science.gov (United States)

    Xing, Chenyang; Wang, Hengti; Hu, Qiaoqiao; Xu, Fenfen; Cao, Xiaojun; You, Jichun; Li, Yongjin

    2013-02-15

    The eco-friendly poly(propylene carbonate) (PPC)/cellulose acetate butyrate (CAB) blends were prepared by melt-blending in a batch mixer for the first time. PPC and CAB were partially miscible because of the drastically shifted glass transition temperatures of both PPC and CAB, which originated from the specific interactions between carbonyl groups and hydroxyl groups. The incorporation of CAB into PPC matrix enhanced not only tensile strength and modulus of PPC dramatically, but also improved heat resistance and thermal stability of PPC significantly. The tensile strength and the modulus of PPC/CAB=50/50 blend are 27.7 MPa and 1.24 GPa, which are 21 times and 28 times higher than those of the unmodified PPC, respectively. Moreover, the elongation at break of PPC/CAB=50/50 blend is as high as 117%. In addition, the obtained blends exhibited good transparency, which is very important for the package materials. The results in this work pave new possibility for the massive application of eco-friendly polymer materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  9. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts.

    Science.gov (United States)

    Makio, Haruyuki; Prasad, Aitha Vishwa; Terao, Hiroshi; Saito, Junji; Fujita, Terunori

    2013-07-07

    Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C). Single site polymerization characteristics depended upon the efficiency and selectivity of the in situ imine reduction which is sensitive to the substituent on the imine nitrogen and the reaction conditions. By using (i)Bu2AlH as a reducing agent, quantitative imine reduction can be achieved with a stoichiometric amount of the reducing agent. This lower alkylaluminum loading is beneficial for the catalyst and significantly enhances the polymerization activity and the molecular weight of the resultant polymer.

  10. Effect of cork loading on mechanical and thermal properties of silica-Ethylene-propylene-diene monomer composite

    International Nuclear Information System (INIS)

    Gul, J.; Mirza, S.

    2011-01-01

    Ethylene-propylene diene ter-monomer (EPDM) filled with asbestos are widely used as thermal insulation in space vehicles because of its low specific gravity, low temperature flexibility, high ozone and oxygen resistant, superior thermal and ablation characteristics. However, asbestos has been banned worldwide because of its carcinogenic nature. This study was aimed to replace asbestos by environmental friendly and low specific gravity filler, cork in thermal insulation for space vehicles. Various batches of cork filled EPDM were obtained by compounding 0, 10, 20, 40, 50, 60, 70 and 100 Phr (parts per hundred parts of rubber) of cork powder with EPDM in Two-roll-mill in presence of other necessary compounding ingredients. The resulted vulcanizates were characterized for mechanical, thermal and ablation performances. It was observed that cork loadings significantly enhanced tensile strength and hardness of EPDM. However, elongation at break of EPDM decreased with the increase of cork concentration. Moreover, no significant reduction in density of EPDM was obtained instead of compounding with lower specific gravity cork powder. Temperatures cures in Thermo-gravimetric analysis shifted to lower temperature with increasing of cork percentage in the formulation. Furthermore, char formation of the EPDM composites decreased with the increase of cork Phr in the composition which was the indication of degrading thermal stability of EPDM by cork powders. It can be concluded that on the basis of mechanical properties asbestos can be replaced by cork powder however, cork filled EPDM exhibited inferior thermal properties as compared to asbestos filled EPDM. (author)

  11. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; Buckley Walsh

    2003-08-01

    In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression

  12. β-Carotene from Yeasts Enhances Laccase Production of Pleurotus eryngii var. ferulae in Co-culture.

    Science.gov (United States)

    Guo, Chaolin; Zhao, Liting; Wang, Feng; Lu, Jian; Ding, Zhongyang; Shi, Guiyang

    2017-01-01

    Laccase is widely used in several industrial applications and co-culture is a common method for enhancing laccase production in submerged fermentation. In this study, the co-culture of four yeasts with Pleurotus eryngii var. ferulae was found to enhance laccase production. An analysis of sterilization temperatures and extraction conditions revealed that the stimulatory compound in yeasts was temperature-sensitive, and that it was fat-soluble. An LC-MS analysis revealed that the possible stimulatory compound for laccase production in the four yeast extracts was β-carotene. Moreover, the addition of 4 mg β-carotene to 150 mL of P. eryngii var. ferulae culture broth improved laccase production by 2.2-fold compared with the control (i.e., a monoculture), and was similar to laccase production in co-culture. In addition, the enhanced laccase production was accompanied by an increase of lac gene transcription, which was 6.2-time higher than the control on the fifth day. Therefore, it was concluded that β-carotene from the co-cultured yeasts enhanced laccase production in P. eryngii var. ferulae , and strains that produce β-carotene could be selected to enhance fungal laccase production in a co-culture. Alternatively, β-carotene or crude extracts of β-carotene could be used to induce high laccase production in large scale.

  13. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.

    Science.gov (United States)

    Navone, Laura; McCubbin, Tim; Gonzalez-Garcia, Ricardo A; Nielsen, Lars K; Marcellin, Esteban

    2018-06-01

    Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp . shermanii and the pan- Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp . shermanii , two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  14. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production

    Directory of Open Access Journals (Sweden)

    Laura Navone

    2018-06-01

    Full Text Available Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP, Zwf (glucose-6-phosphate 1-dehydrogenase and Pgl (6-phosphogluconolactonase. Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK and sodium-pumping methylmalonyl-CoA decarboxylase (MMD was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  15. Results from a first production of enhanced Silicon Sensor Test Structures produced by ITE Warsaw

    Science.gov (United States)

    Bergauer, T.; Dragicevic, M.; Frey, M.; Grabiec, P.; Grodner, M.; Hänsel, S.; Hartmann, F.; Hoffmann, K.-H.; Hrubec, J.; Krammer, M.; Kucharski, K.; Macchiolo, A.; Marczewski, J.

    2009-01-01

    Monitoring the manufacturing process of silicon sensors is essential to ensure stable quality of the produced detectors. During the CMS silicon sensor production we were utilising small Test Structures (TS) incorporated on the cut-away of the wafers to measure certain process-relevant parameters. Experience from the CMS production and quality assurance led to enhancements of these TS. Another important application of TS is the commissioning of new vendors. The measurements provide us with a good understanding of the capabilities of a vendor's process. A first batch of the new TS was produced at the Institute of Electron Technology in Warsaw Poland. We will first review the improvements to the original CMS test structures and then discuss a selection of important measurements performed on this first batch.

  16. Results from a first production of enhanced Silicon Sensor Test Structures produced by ITE Warsaw

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna (Austria); Dragicevic, M. [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna (Austria)], E-mail: dragicevic@oeaw.ac.at; Frey, M. [Institut fuer Experimentelle Kernphysik (IEKP), Universitaet Karlsruhe (Thailand) (Germany); Grabiec, P.; Grodner, M. [Institute of Electron Technology (ITE), Warsaw (Poland); Haensel, S. [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna (Austria); Hartmann, F.; Hoffmann, K.-H. [Institut fuer Experimentelle Kernphysik (IEKP), Universitaet Karlsruhe (Thailand) (Germany); Hrubec, J.; Krammer, M. [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna (Austria); Kucharski, K. [Institute of Electron Technology (ITE), Warsaw (Poland); Macchiolo, A. [Max-Planck-Institut fuer Physik (MPI), Munich (Germany); Marczewski, J. [Institute of Electron Technology (ITE), Warsaw (Poland)

    2009-01-01

    Monitoring the manufacturing process of silicon sensors is essential to ensure stable quality of the produced detectors. During the CMS silicon sensor production we were utilising small Test Structures (TS) incorporated on the cut-away of the wafers to measure certain process-relevant parameters. Experience from the CMS production and quality assurance led to enhancements of these TS. Another important application of TS is the commissioning of new vendors. The measurements provide us with a good understanding of the capabilities of a vendor's process. A first batch of the new TS was produced at the Institute of Electron Technology in Warsaw Poland. We will first review the improvements to the original CMS test structures and then discuss a selection of important measurements performed on this first batch.

  17. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    Directory of Open Access Journals (Sweden)

    Joe Roman

    Full Text Available It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  18. Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions.

    Science.gov (United States)

    Hu, Guangrong; Fan, Yong; Zhang, Lei; Yuan, Cheng; Wang, Jufang; Li, Wenjian; Hu, Qiang; Li, Fuli

    2013-01-01

    The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy (12)C(6+) ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L(-1)⋅d(-1), 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

  19. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  20. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  1. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Probing the electroweak phase transition via enhanced di-Higgs boson production

    Science.gov (United States)

    Carena, Marcela; Liu, Zhen; Riembau, Marc

    2018-05-01

    We consider a singlet extension of the standard model (SM) with a spontaneous Z2 breaking and study the gluon-gluon fusion production of the heavy scalar, with subsequent decay into a pair of SM-like Higgs bosons. We find that an on-shell interference effect can notably enhance the resonant di-Higgs production rate up to 40%. In addition, consistently taking into account both the on-shell and off-shell interference effects between the heavy scalar and the SM di-Higgs diagrams significantly improves the HL-LHC and HE-LHC reach in this channel. As an example, within an effective field theory analysis in an explicitly Z2 breaking scenario, we further discuss the potential to probe the parameter region compatible with a first-order electroweak phase transition. Our analysis is applicable for general potentials of the singlet extension of the SM as well as for more general resonance searches.

  3. Effect of Discrete Fracture Network Characteristics on the Sustainability of Heat Production in Enhanced Geothermal Reservoirs

    Science.gov (United States)

    Riahi, A.; Damjanac, B.

    2013-12-01

    Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid

  4. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  5. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations

    KAUST Repository

    Zhang, Chen

    2012-02-01

    We report significantly enhanced propylene/propane (C 3H 6/C 3H 8) selectivity in mixed matrix membranes fabricated using 6FDA-DAM polyimide and a zeolitic imidazolate framework (ZIF-8). Equilibrium isotherms and sorption kinetics of C 3H 6 and C 3H 8 at 35°C were studied on a 200nm commercially available ZIF-8 sample produced by BASF. Mixed matrix dense films were formed with 6FDA-DAM and 200nm BASF ZIF-8 particles. SEM imaging showed generally good adhesion between the ZIF-8 and 6FDA-DAM without the need for surface-treating ZIF-8. Pure gas permeation showed significantly enhanced mixed matrix ZIF-8/6FDA-DAM membrane C 3H 6/C 3H 8 separation performance over the pure 6FDA-DAM membrane performance. A C 3H 6 permeability of 56.2Barrer and C 3H 6/C 3H 8 ideal selectivity of 31.0 was found in ZIF-8/6FDA-DAM mixed matrix membrane with 48.0wt% ZIF-8 loading, which are 258% and 150% higher than the pure 6FDA-DAM membrane, respectively for permeability and selectivity. Permeation properties of C 3H 6 and C 3H 8 in ZIF-8 were back-calculated by the Maxwell model for composite permeability using pure gas permeation data, leading to a C 3H 6 permeability of 277Barrer and C 3H 6/C 3H 8 selectivity of 122. Mixed gas permeation also verified that selectivity enhancements were achievable in mixed gas environment by ZIF-8. © 2011 Elsevier B.V.

  6. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations

    KAUST Repository

    Zhang, Chen; Dai, Ying; Johnson, Justin R.; Karvan, Oguz; Koros, William J.

    2012-01-01

    We report significantly enhanced propylene/propane (C 3H 6/C 3H 8) selectivity in mixed matrix membranes fabricated using 6FDA-DAM polyimide and a zeolitic imidazolate framework (ZIF-8). Equilibrium isotherms and sorption kinetics of C 3H 6 and C 3H 8 at 35°C were studied on a 200nm commercially available ZIF-8 sample produced by BASF. Mixed matrix dense films were formed with 6FDA-DAM and 200nm BASF ZIF-8 particles. SEM imaging showed generally good adhesion between the ZIF-8 and 6FDA-DAM without the need for surface-treating ZIF-8. Pure gas permeation showed significantly enhanced mixed matrix ZIF-8/6FDA-DAM membrane C 3H 6/C 3H 8 separation performance over the pure 6FDA-DAM membrane performance. A C 3H 6 permeability of 56.2Barrer and C 3H 6/C 3H 8 ideal selectivity of 31.0 was found in ZIF-8/6FDA-DAM mixed matrix membrane with 48.0wt% ZIF-8 loading, which are 258% and 150% higher than the pure 6FDA-DAM membrane, respectively for permeability and selectivity. Permeation properties of C 3H 6 and C 3H 8 in ZIF-8 were back-calculated by the Maxwell model for composite permeability using pure gas permeation data, leading to a C 3H 6 permeability of 277Barrer and C 3H 6/C 3H 8 selectivity of 122. Mixed gas permeation also verified that selectivity enhancements were achievable in mixed gas environment by ZIF-8. © 2011 Elsevier B.V.

  7. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  8. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A

    2018-06-15

    Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of Gibberellic Acid on Enhancement Growth of Aspergillus Niger for Chitosan Production

    International Nuclear Information System (INIS)

    Hazaa, M.M.; Shash, S.M.; Swailam, H.M.; Aziz, N.H.; Emam, D.A.

    2013-01-01

    Chitosan is obtained by chemical conversion of chitin, which is a constituent of the exoskeleton of crustacean and insects. An alternative source of chitosan is the cell wall of fungi. The waste biomass of Aspergillus niger, following citric acid production, was used as a source for fungal chitosan extraction. In this research we study the effect of different production media, different concentrations of molass, the effect of addition of gibberellic acid at different concentrations (1-5 mg/l) on mycelial growth and chitosan production from Aspergillus niger. Studying the effect of different incubation time. The results showed that, the best production medium was molass salt medium (MSM) with molass concentration 50 g/l and incubation time 48h. Maximum enhancement was observed at 2 mg gibberellic acid. Gibberellic acid at high concentrations inhibit both growth and chitosan content. The produced fungal chitosan was characterized with deacetylation degree of 81.3%, a molecular weight of 24.2 kDa and their FT-IR spectra were compared with that of shrimp chitosan.

  10. IL-33 Enhanced the Proliferation and Constitutive Production of IL-13 and IL-5 by Fibrocytes

    Directory of Open Access Journals (Sweden)

    Hisako Hayashi

    2014-01-01

    Full Text Available Interleukin-33 appears to play important roles in the induction of allergic airway inflammation. However, whether IL-33 is involved in airway remodeling remains unclear. Because fibrocytes contribute to tissue remodeling in the setting of chronic inflammation, we examined the effects of IL-33 on fibrocyte functions. Fibrocytes were generated in vitro from peripheral blood mononuclear cells by culturing in the presence of platelet derived growth factors and the cells were stimulated with IL-33. IL-33 enhanced cell proliferation, α-SMA expression, and pro-MMP-9 activity by the fibrocytes without increasing endogenous transforming growth factor-β1 production. Fibrocytes constitutively expressed IL-13 and IL-5, and their production was augmented by stimulation with IL-33. Dexamethasone inhibited the functions of fibrocytes, but IL-33 made fibrocytes slightly refractory to the inhibitory effect of dexamethasone in terms of IL-13 production. Montelukast suppressed IL-13 production by nonstimulated fibrocytes but not those stimulated by IL-33. These findings suggest that IL-33 is involved in the airway remodeling process through its modulation of fibrocyte function independent of antigen stimulation. IL-33 might partially reduce the therapeutic effects of glucocorticoid and cysteinyl leukotriene receptor antagonist on fibrocyte-mediated Th2 responses.

  11. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.

    Science.gov (United States)

    Saini, Reetu; Saini, Jitendra Kumar; Adsul, Mukund; Patel, Anil Kumar; Mathur, Anshu; Tuli, Deepak; Singhania, Reeta Rani

    2015-01-01

    Present study was focused on cellulase production from an indigenously isolated filamentous fungal strain, identified as Penicillium oxalicum. Initially, cellulase production under submerged fermentation in shake flasks resulted in cellulase activity of 0.7 FPU/mL. Optimization of process parameters enhanced cellulase production by 1.7-fold and resulted in maximum cellulase activity of 1.2 FPU/mL in 8 days. Cellulase production was successfully scaled-up to 7 L fermenter under controlled conditions and incubation time was reduced from 8 days to 4 days for achieving similar cellulase titer. Optimum pH and temperature for activity of the crude enzyme were pH 5 and 50 °C, respectively. At 50 °C the produced cellulase retained approximately 50% and 26% of its activity at 48 h and 72 h, respectively. Hydrolytic efficiency of P. oxalicum was comparable to commercial cellulase preparations which indicate its great potential for application in the lignocellulose hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Enhanced Production of Xylitol from Corncob by Pachysolen tannophilus Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    S. Ramesh

    2013-01-01

    Full Text Available Optimization of the culture medium and process variables for xylitol production using corncob hemicellulose hydrolysate by Pachysolen tannophilus (MTTC 1077 was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on xylitol production was achieved using a Plackett-Burman design. Peptone, xylose, MgSO4·7H2O, and yeast extract were selected based on their positive influence on xylitol production. The selected components were optimized with Box-Behnken design using response surface methodology (RSM. The optimum levels (g/L were peptone: 6.03, xylose: 10.62, MgSO4·7H2O: 1.39, yeast extract: 4.66. The influence of various process variables on the xylitol production was evaluated. The optimal levels of these variables were quantified by the central composite design using RSM, for establishment of a significant mathematical model with a coefficient determination of . The validation experimental was consistent with the prediction model. The optimum levels of process variables were temperature (36.56°C, pH (7.27, substrate concentration (3.55 g/L, inoculum size (3.69 mL, and agitation speed (194.44 rpm. These conditions were validated experimentally which revealed an enhanced xylitol yield of 0.80 g/g.

  13. Optimization of culture media for enhancing gamma-linolenic acid production by Mucor hiemalis

    Directory of Open Access Journals (Sweden)

    Mina Mohammadi Nasr

    2016-03-01

    Full Text Available Introduction: g-linolenic acid is an essential fatty acid in human nutrition. In the present study, production of g-linolenic acid by Mucor hiemalis PTCC 5292 was evaluated in submerged fermentation. Materials and methods: The fermentation variables were chosen according to the fractional factorial design and further optimized via full factorial method. Four significant variables, glucose, peptone, ammonium nitrate and pH were selected for the optimization studies. The design consisted of total 16 runs consisting of runs at two levels for each factor with three replications of the center points. Results: The analysis of variance and three-dimensional response surface plot of effects indicated that variables were regarded to be significant for production of g-linolenic acid by Mucor hiemalis. Results indicated that fermentation at the optimum conditions (100 g/l glucose concentration; 1 g/l peptone; 1 g/l ammonium nitrate, and pH of 4.5 enhanced the g-linolenic acid production up to 709 mg/l. Discussion and conclusion: The results of this study indicated that higher g-linolenic acid yield can be achieved in a simple medium at high glucose and ammonium nitrate, low peptone concentrations and acidic pH by Mucor hiemalis PTCC 5292. This simple and low cost optimization condition of culture media can be applied for g-linolenic acid production at higher scale for pharmaceutical and nutritional industries. 

  14. A study of best management practices for enhancing productivity in building projects: construction methods perspectives

    Directory of Open Access Journals (Sweden)

    Argaw Tarekegn Gurmu

    2016-09-01

    Full Text Available This research investigates management practices that have the potential to enhance productivity in building projects by focusing on construction methods. In phase 1 of the study, face-to-face interviews with nineteen experts were conducted to identify the best management practices for construction methods. The qualitative data analysis reached saturation and resulted in a list of best practices for construction methods that are relevant to the local industry. The second phase used an industry-wide survey to prioritize the best practices. Accordingly, project start-up plan, traffic control plan, machinery positioning strategy, project completion plan, and dynamic site layout plan were shown to be the top five best practices for construction methods. The study also revealed that high levels of implementation of best practices are associated with low levels of project delays. The use of best practices also varied according to the project costs. There were no discernible differences between the top five best practices. The authors suggest that they should be implemented jointly to improve productivity in building projects. Contractors could use the logistic regression model developed, to predict the probability of exceeding a baseline productivity factor and, on that basis, implement corrective actions to achieve the desired level of productivity.

  15. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum.

    Science.gov (United States)

    Du, Zhi-Qiang; Zhang, Yuan; Qian, Zhi-Gang; Xiao, Han; Zhong, Jian-Jiang

    2017-12-01

    Ansamitocin P-3 (AP-3) is a maytansinoid with its most compelling antitumor activity, however, the low production titer of AP-3 greatly restricts its wide commercial application. In this work, a combinatorial approach including random mutation and metabolic engineering was conducted to enhance AP-3 biosynthesis in Actinosynnema pretiosum. First, a mutant strain M was isolated by N-methyl-N'-nitro-N-nitrosoguanidine mutation, which could produce AP-3 almost threefold that of wild type (WT) in 48 deep-well plates. Then, by overexpressing key biosynthetic genes asmUdpg and asm13-17 in the M strain, a further 60% increase of AP-3 production in 250-ml shake flasks was achieved in the engineered strain M-asmUdpg:asm13-17 compared to the M strain, and its maximum AP-3 production reached 582.7 mg/L, which is the highest as ever reported. Both the gene transcription levels and intracellular intermediate concentrations in AP-3 biosynthesis pathway were significantly increased in the M and M-asmUdpg:asm13-17 during fermentation compared to the WT. The good fermentation performance of the engineered strain was also confirmed in a lab-scale bioreactor. This work demonstrated that combination of random mutation and metabolic engineering could promote AP-3 biosynthesis and might be helpful for increasing the production of other industrially important secondary metabolites. © 2017 Wiley Periodicals, Inc.

  16. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  17. Impact of enhanced ultraviolet-B radiation on flower, pollen, and nectar production

    International Nuclear Information System (INIS)

    Sampson, B.J.; Cane, J.H.

    1999-01-01

    Intensified ultraviolet-B radiation or UV-B (wavelengths between 280 and 320 nm) can delay flowering and diminish lifetime flower production in a few plants. Here we studied the effects of enhanced UV-B on floral traits crucial to pollination and pollinator reproduction. We observed simultaneous flowering responses of a new crop plant, Limnanthes alba (Limnathaceae), and a wildflower, Phacelia campanularia (Hydrophyllaceae), to five lifetime UV-B dosages ranging between 2.74 and 15.93 kJ·m -2 ·d -1 . Floral traits known to link plant pollination with bee host preference, host fidelity and larval development were measured. Intensified UV-B had no overall effect on nectar and pollen production of L. alba and P. campanularia flowers. A quadratic relationship between UV-B and nectar sugar production occurred in P. campanularia and showed that even subambient UV-B dosages can be deleterious for a floral trait. Other floral responses to UV-B were more dramatic and idiosyncratic. As UV-B dosage increased, L. alba plants were less likely to flower, but suffered no delays in flowering or reductions to lifetime flower production for those that did flower. Conversely, an equal proportion of P. campanularia plants flowered under all UV-B treatments, but these same plants experienced delayed onset to bloom and produced fewer flowers at greater UV-B intensities. Therefore, intensified UV-B elicits idiosyncratic responses in flowering phenology and flower production from these two annual plants. Diurnal patterns in nectar and pollen production strongly coincided with fluctuating humidity and only weakly with UV-B dosage. Overall, our results indicated that intensified UVB can alter some flowering traits that impinge upon plant competition for pollinator services, as well as plant and pollinator reproductive success. (author)

  18. Enhanced Production of Bovine Chymosin by Autophagy Deficiency in the Filamentous Fungus Aspergillus oryzae

    Science.gov (United States)

    Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Aspergillus oryzae has been utilized as a host for heterologous protein production because of its high protein secretory capacity and food-safety properties. However, A. oryzae often produces lower-than-expected yields of target heterologous proteins due to various underlying mechanisms, including degradation processes such as autophagy, which may be a significant bottleneck for protein production. In the present study, we examined the production of heterologous protein in several autophagy (Aoatg) gene disruptants of A. oryzae. We transformed A. oryzae gene disruptants of Aoatg1, Aoatg13, Aoatg4, Aoatg8, or Aoatg15, with a bovine chymosin (CHY) expression construct and found that the production levels of CHY increased up to three fold compared to the control strain. Notably, however, conidia formation by the Aoatg gene disruptants was significantly reduced. As large amounts of conidia are necessary for inoculating large-scale cultures, we also constructed Aoatg gene-conditional expression strains in which the promoter region of the Aoatg gene was replaced with the thiamine-controllable thiA promoter. Conidiation by the resultant transformants was clearly enhanced in the absence of thiamine, while autophagy remained repressed in the presence of thiamine. Moreover, these transformants displayed increased CHY productivity, which was comparable to that of the Aoatg gene disruptants. Consequently, we succeeded in the construction of A. oryzae strains capable of producing high levels of CHY due to defects in autophagy. Our finding suggests that the conditional regulation of autophagy is an effective method for increasing heterologous protein production in A. oryzae. PMID:23658635

  19. A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

    KAUST Repository

    Liu, Jia

    2014-12-01

    A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen gas recoveries than controls (no recirculation or no GAC), due to intermittent contact of the capacitive particles with the anode. The total cumulative charge of 1688C m-2 with the MFEEC reactor (a recirculation flow rate of 19 mL min-1) was 20% higher than that of the control reactor (no GAC). The highest hydrogen gas yield of 0.82 ± 0.01 mol-H2/mol-acetate (17 mL min-1) was 39% higher than that obtained without recirculation (0.59 ± 0.01 mol-H 2/mol-acetate), and 116% higher than that of the control (no GAC, without recirculation). These results show that flowable GAC particles provide a useful approach for enhancing hydrogen gas production in bioelectrochemical systems. © 2014 Elsevier B.V. All rights reserved.

  20. Enhanced Freshwater Production Using Finned-Plate Air Gap Membrane Distillation (AGMD

    Directory of Open Access Journals (Sweden)

    Perves Bappy Mohammad Jabed

    2017-01-01

    Full Text Available Air Gap membrane distillation (AGMD, a special type of energy efficient membrane distillation process, is a technology for producing freshwater from waste water. Having some benefits over other traditional processes, this method has been able to draw attention of researchers working in the field of freshwater production technologies. In this study, a basic AGMD system with flat coolant plate has been modified using a specially designed channelled coolant plate of portable size to observe its effect over the production rate and performance of the system. Attempt has been made to increase the amount of distillate flux by using the “fin effect” of the channelled coolant plate. A finned plate have been used instead of a flat coolant plate and experiments were conducted to compare the effect. Coolant temperature and feed temperature of the system have been varied from 10°C to 25°C and 40°C to 70°C respectively. Comparing the data, around 50% to 58% distillate enhancement has been observed for channelled coolant plate. Also, it was seen that the enhancement was higher for higher feed temperatures and coolant temperatures. With these findings, a better performing AGMD module has been introduced to mitigate the scarcity of freshwater.

  1. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  3. The Effects of Input-Enhanced Instruction on Iranian EFL Learners' Production of Appropriate and Accurate Suggestions

    Science.gov (United States)

    Ghavamnia, M.; Eslami-Rasekh, A.; Vahid Dastjerdi, H.

    2018-01-01

    This study investigates the relative effectiveness of four types of input-enhanced instruction on the development of Iranian EFL learners' production of pragmatically appropriate and grammatically accurate suggestions. Over a 16-week course, input delivered through video clips was enhanced differently in four intact classes: (1) metapragmatic…

  4. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs.

    Science.gov (United States)

    Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min

    2017-03-01

    The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3  d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P anaerobic system treating oxytetracycline production wastewater with an influent COD of 3720 ± 128 mg L -1 after dilution exhibited a COD removal of 51 ± 4% at an organic loading rate (OLR) 1.2 ± 0.2 kg m -3  d -1 , and a total tet gene abundance in sludge was five times higher than the pilot-scale system (P anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  6. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  7. Effect of homopolymer poly(vinyl acetate on compatibility and mechanical properties of poly(propylene carbonate/poly(lactic acid blends

    Directory of Open Access Journals (Sweden)

    J. Gao

    2012-11-01

    Full Text Available A small amount of homopolymer poly(vinyl acetate (PVAc is used to compatibilize the biodegradable blends of poly(propylene carbonate (PPC and poly(lactic acid (PLA. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC results show that PVAc is selectively localized in the PLA phase and at the interface between PPC and PLA phases. As a result, these interface-localized PVAc layers act as not only a compatibilizer to improve the phase dispersion significantly but also a bridge to increase the interfacial adhesion between PPC and PLA phases dramatically. Both of them are believed to be responsible for the enhancement in mechanical properties. This work provides a simple avenue to fabricate eco-friendly PPC/PLA blends with high performance, and in some cases, reducing the demand for petroleumbased plastics such as polypropylene.

  8. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-09-30

    Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

  10. Degradability of composites, prepared from ethylene-propylene copolymer and jute fiber under accelerated aging and biotic environments

    International Nuclear Information System (INIS)

    Kumar, Annamalai Pratheep; Singh, Raj Pal; Sarwade, Bhimrao D.

    2005-01-01

    The utilization of natural fiber as reinforcement for the thermoplastic composites is growing not only for ecological concern but also for wide range of applications. In the present article, three types of composites were prepared by melt mixing of ethylene-propylene (EP) copolymer and (i) 3% NaOH treated jute fiber, (ii) 17.5% NaOH treated jute fiber and (iii) commercial microcrystalline cellulose powder using maleated EP copolymer as compatibilizer. The obtained composites were characterized by Fourier transform infrared spectroscopy (FTIR), Thermal gravimetric analysis (TGA) and microscopic measurements. The durability of the composites was evaluated under polychromatic irradiation (λ ≥ 290 nm) and composting condition for different time intervals. It was found that the treatments on the natural fiber have influenced the service life of the end product. Composites made from microcrystalline cellulose showed better mechanical properties as well as photo-resistance. The specimen containing 3% NaOH treated fiber exhibited relatively lowest photo-resistance and biosusceptibility. It was found that the composites were less durable under both abiotic and biotic conditions in comparison of the neat polymer matrix

  11. Study of ternary-component bismuth molybdate catalysts by 18O2 tracer in the oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Ueda, W.; Moro-oka, Y.; Ikawa, T.

    1981-01-01

    Participation of lattice oxide ions of ternary-component bismuth molybdate catalysts M-Bi-Mo-O (M = Ni, Co, Mg, Mn, Ca, Sr, Ba, and Pb) was investigated using the 18 O 2 tracer in the selective oxidation of propylene to acrolein. The participation of the lattice oxide ions in the oxidation is prominent on every catalyst but the extent of the participation varies significantly depending on the structure of the catalyst. Only lattice oxide ions in the bismuth molybdate phase are incorporated into the oxidized products on the catalysts (M = Ni, Co, Mg, and Mn) where M have smaller ionic radius than Bi 3+ ; catalyst particles are composed of a shell of bismuth molybdates and a core of MMoO 4 . On the other hand, whole oxide ions in the active particles are involved in the oxidation on catalysts having a scheelite-type structure (M = Ca, Sr, Ba, and Pb) where M has a comparable ionic radius to Bi 3+

  12. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Directory of Open Access Journals (Sweden)

    Carlos Vilchez

    2010-12-01

    Full Text Available Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5 that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 ´ 108 cells/mL at the end of log phase. Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 mg·mL-1 and 35 mg·mL-1, respectively. Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures. Lutein accumulated up to 3.55 mg·g-1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  13. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    Haq, I.; Nawaz, A.; Mukhtar, A.N.H.; Mansoor, H.M.Z.; Ameer, S.M.

    2014-01-01

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  14. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Directory of Open Access Journals (Sweden)

    Klaudia Borysiuk

    2018-05-01

    Full Text Available Nitrate (NO3– and ammonium (NH4+ are prevalent nitrogen (N sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG, which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins in the contribution to NH4+ toxicity symptoms in Arabidopsis.

  15. Design of a Production Process to Enhance Optical Performance of 3(omega) Optics

    International Nuclear Information System (INIS)

    Prasad, R.R.; Bruere, J.R.; Halpin, J.; Lucero, P.; Mills, S.; Bernacil, M.; Hackel, R.P.

    2003-01-01

    Using the Phoenix pre-production conditioning facility we have shown that raster scanning of 3ω optics using a XeF excimer laser and mitigation of the resultant damage sites with a CO 2 laser can enhance their optical damage resistance. Several large-scale (43 cm x 43 cm) optics have been processed in this facility. A production facility capable of processing several large optics a week has been designed based on our experience in the pre-production facility. The facility will be equipped with UV conditioning lasers--351-nm XeF excimer lasers operating at 100 Hz and 23 ns. The facility will also include a CO 2 laser for damage mitigation, an optics stage for raster scanning large-scale optics, a damage mapping system (DMS) that images large-scale optics and can detect damage sites or precursors as small as ∼ 15 (micro)m, and two microscopes to image damage sites with ∼ 5 (micro)m resolution. The optics will be handled in a class 100 clean room, within the facility that will be maintained at class 1000

  16. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters.

    Science.gov (United States)

    Yan, Wenjing; Kanno, Chihiro; Oshima, Eiki; Kuzuma, Yukiko; Kim, Sung Woo; Bai, Hanako; Takahashi, Masashi; Yanagawa, Yojiro; Nagano, Masashi; Wakamatsu, Jun-Ichi; Kawahara, Manabu

    2017-10-01

    Improving sperm motility and viability are major goals to improve efficiency in the poultry industry. In this study, the effects of supplemental dietary turmeric by-product (TBP) from commercial turmeric production on sperm motility, viability, and antioxidative status were examined in domestic fowl. Mature Rhode Island Red roosters were divided into two groups - controls (groupC) without TBP administration and test subjects (groupT) fed a basal diet supplemented with 0.8g of TBP/day in a temperature-controlled rearing facility (Experiment 1) and 1.6g/day under heat stress (Experiment 2) for 4 weeks. In Experiment 1, TBP dietary supplementation increased the sperm motility variables straight-line velocity, curvilinear velocity, and linearity based on a computer-assisted semen analysis, 2 weeks following TBP supplementation. In Experiment 2, using flow cytometry, sperm viability at 3 and 4 weeks following TBP supplementation was greater in Group T than C, and this increase was consistent with a reduction in reactive oxygen species (ROS) production at 2 and 4 weeks. The results of both experiments clearly demonstrate that dietary supplementation with TBP enhanced sperm motility in the controlled-temperature conditions as well as sperm viability, and reduced ROS generation when heat stress prevailed. Considering its potential application in a range of environments, TBP may serve as an economical and potent antioxidant to improve rooster fertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Critical variables in the performance of a productivity-enhanced solar still

    KAUST Repository

    Ayoub, George M.

    2013-12-01

    A new and sustainable modification has been introduced into the conventional solar still, considerably increasing its productivity. This enhancement in the solar still productivity is achieved without forsaking the basic features of the still such as low cost, ease of handling, sustainability, water quality, material availability, low maintenance and space conservation. The introduced modification is in the form of a slowly rotating hollow drum within the still cavity that allows the formation of thin water films, which evaporate rapidly. Several environmental and operational parameters attribute to the optimization of the new still design. Environmental factors refer primarily to weather conditions such as solar intensity, relative humidity, ambient temperature and wind speed and direction. Operational variables include drum speed, brine depth in the basin, cover cooling and other related parameters such as the materials used and the still configuration. The influence of these parameters is discussed and their impact on productivity is investigated in detailed order to identify existing correlations and optimize design and operation of the new system. An error analysis was conducted for all experimental data obtained from this study. © 2013 Elsevier Ltd.

  18. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Jin-zhou Ye

    2018-01-01

    Full Text Available Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the fact that alanine altered several metabolic pathways, other mechanisms could be potentially involved in alanine-mediated kanamycin killing of bacteria which remains to be explored. In the present study, we adopted proteomic approach to analyze the proteome changes induced by exogenous alanine. Our results revealed that the expression of three outer membrane proteins was altered and the deletion of nagE and fadL decreased the intracellular kanamycin concentration, implying their possible roles in mediating kanamycin transport. More importantly, the integrated analysis of proteomic and metabolomic data pointed out that alanine metabolism could connect to riboflavin metabolism that provides the source for reactive oxygen species (ROS production. Functional studies confirmed that alanine treatment together with kanamycin could promote ROS production that in turn potentiates the killing of antibiotic-resistant bacteria. Further investigation showed that alanine repressed the transcription of antioxidant-encoding genes, and alanine metabolism to riboflavin metabolism connected with riboflavin metabolism through TCA cycle, glucogenesis pathway and pentose phosphate pathway. Our results suggest a novel mechanism by which alanine facilitates kanamycin killing of antibiotic-resistant bacteria via promoting ROS production.

  19. Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.L.; Bustin, R.M. [University of British Columbia, Vancouver (Canada). Dept. of Earth and Ocean Sciences

    1999-07-01

    Organic-rich source rocks have generally been attributed to enhanced preservation of organic matter under anoxic bottom waters. Here geochemical analysis of kerogen and whole rock samples of organic-rich (lithofacies B{sub 1}) and organic-lean (lithofacies B{sub 2}) laminated mudrocks of the Devonian-Carboniferous Exshaw Formation, Alberta, highlight the importance of primary production in governing the quantity and quality of organic matter. Lower Si/Al, K/Al, Ti/Al and quartz/clay ratios in lithofacies B{sub 2}, similar maceral types and the laminated fabric of the two lithofacies indicate that the quality and quantity of organic matter are not related to grain size, redox or organic matter source changes. High Total Organic Carbon (TOC) and Hydrogen Index (HI), low Oxidation Index (Ox.I. ratio of oxygen functional groups to aliphatic groups derived by FTIR), lighter {delta}{sup 15}N{sub tot} and heavier {delta}{sup 13}C{sub org} isotopes indicate that kerogen of lithofacies B{sub 1} accumulated during periods of high organic-carbon production and delivery of relatively fresh, labile, well-preserved organic matter to the sea floor. In contrast, low TOC, HI, high Ox.I., heavier {delta}{sup 15}N{sub tot} and lighter {delta}{sup 13}C{sub org} isotopes indicate low primary productivity and delivery, high recycling and poor preservation of organic matter during accumulation of lithofacies B{sub 2}. (author)

  20. Enhancement of cordyceps polysaccharide production via biosynthetic pathway analysis in Hirsutella sinensis.

    Science.gov (United States)

    Lin, Shan; Liu, Zhi-Qiang; Baker, Peter James; Yi, Ming; Wu, Hui; Xu, Feng; Teng, Yi; Zheng, Yu-Guo

    2016-11-01

    The addition of various sulfates for enhanced cordyceps polysaccharide (CP) production in submerged cultivation of H. sinensis was investigated, and manganese sulfate was found the most effective. 2mM of manganese sulfate on 0day (d) was investigated as the optimal adding condition, and the CP production reached optimum with 5.33%, increasing by 93.3% compared with the control. Furthermore, the consumption of three main precursors of CP was studied over cultivation under two conditions. Intracellular mannose content decreased by 43.1% throughout 6days cultivation, which corresponded to CP accumulation rate sharply increased from 0 d to 6 d, and mannose was considered as the most preferred precursor for generating CP. Subsequently, mannose biosynthetic pathway was constructed and verified for the first time in H. sinensis, which constituted the important part of CP biosynthesis, and transcriptional levels of the biosynthetic genes were studied. Transcriptional level of gene cpsA was significantly up-regulated 5.35-fold and it was a key gene involved both in mannose and CP biosynthesis. This study demonstrated that manganese sulfate addition is an efficient and simple way to improve CP production. Transcriptional analysis based on biosynthetic pathway was helpful to find key genes and better understand CP biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.