Sample records for enhanced propylene production

  1. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo


    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  2. Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: a molecular oxygen mechanism. (United States)

    Dai, Yimeng; Chen, Zongjia; Guo, Yanglong; Lu, Guanzhong; Zhao, Yifang; Wang, Haifeng; Hu, P


    As an attractive and environmentally friendly process for propylene oxide (PO) production, direct epoxidation of propylene (DEP) with molecular oxygen catalyzed by metal-based catalysts such as Ag and Cu has drawn much attention, but remains one of the biggest challenges in chemistry. In this work, the crucial competitive reactions of propylene α-H stripping (AHS) versus the oxametallacycle formation (OMMP formation) using adsorbed atomic oxygen (O*) or adsorbed molecular oxygen (O 2 *) as an oxidant are extensively compared on IB group metal surfaces (Cu, Ag and Au) with varied electronic and structural effects in order to explore the possibility to enhance the PO selectivity by virtue of first-principles calculations. The determining factor for the PO selectivity is quantitatively revealed: it is found that with atomic O*, the AHS pathway was preferred, indicating the reason for low PO selectivity with current catalysts. By contrast, the undissociated molecular O 2 * species is found to prefer to electrophilically attack the C[double bond, length as m-dash]C double bond of propylene and form a special oxametallacycle intermediate (OOMMP) rather than nucleophilically abstracting the α-H. This OOMMP can readily cleave the O-O bond and transform into OMMP. These results demonstrate that the presence of undissociated O 2 * can efficiently promote the PO selectivity. Furthermore, the merit of such a molecular O 2 * mechanism can be rationalized by our quantitative barrier decomposition analyses, which reveal that the lower hydrogen affinity (ΔE H ) of the O 2 * species dominantly contributes to the limited AHS reaction, and boosts the OMMP selectivity. Therefore, ΔE H can be applied as a selectivity descriptor. An efficient strategy to promote PO formation is presented. The insight obtained could pave the way for further development of catalysts for propylene epoxidation.

  3. Natural and enhanced biodegradation of propylene glycol in airport soil. (United States)

    Toscano, Giuseppe; Colarieti, M Letizia; Anton, Attila; Greco, Guido; Biró, Borbála


    Aircraft de-icing fluids (ADF) are a source of water and soil pollution in airport sites. Propylene glycol (PG) is a main component in several commercial formulations of ADFs. Even though PG is biodegradable in soil, seasonal overloads may result in occasional groundwater contamination. Feasibility studies for the biostimulation of PG degradation in soil have been carried out in soil slurries, soil microcosms and enrichment cultures with and without the addition of nutrients (N and P sources, oligoelements), alternative electron acceptors (nitrate, oxygen releasing compounds) and adsorbents (activated carbon). Soil samples have been taken from the contaminated area of Gardermoen Airport Oslo. Under aerobic conditions and in the absence of added nutrients, no or scarce biomass growth is observed and PG degradation occurs by maintenance metabolism at constant removal rate by the original population of PG degraders. With the addition of nutrient, biomass exponential growth enhances aerobic PG degradation also at low temperatures (4 ° C) that occur at the high season of snowmelt. Anaerobic PG degradation without added nutrients still proceeds at constant rate (i.e. no biomass growth) and gives rise to reduced fermentation product (propionic acid, reduced Fe and Mn, methane). The addition of nitrate does not promote biomass growth but allows full PG mineralization without reduced by-products. Further exploitation on the field is necessary to fully evaluate the effect of oxygen releasing compounds and adsorbents.

  4. Propylene

    Directory of Open Access Journals (Sweden)

    M. Emami


    Full Text Available This is a report on the study of high melt flow, highly isotactic polypropylene homopolymer synthesized in liquid monomer using a fifth generation Ziegler-Natta catalytic system. At highest catalyst productivity, the response of thecatalyst to hydrogen as chain transfer is studied. Melt flow rate is controlled by hydrogen as chain transfer from 0.4 to 300 g/10min with changing the amount of hydrogen from 0 to 1400 ppm. Results show that the melt flow rate of homopolymer is increased linearly with increasing the amount of hydrogen in polymerization. The effect of external electron donor on catalyst productivity and stereoregularity of the final product has been studied. The external electron donor on the catalyst caused an increase in polymer isotacticity, but led to decrease in catalyst productivity andits response to hydrogen (i.e., requiring relatively more hydrogen for molecular weight control. This new generation of Z-N catalyst system containing 1,3-diether as internal electron donor has the ability to produce very high MFR polymers (for thin wall parts in combination with narrow molecular weight distribution. These reactor grades of polypropylene have many advantages compared to visbroken (controlled rheology grades such as lower cost and better processability. These resins can be used as homopolymer matrix in sequential polymerization to obtain impactcopolymers (heterophasic copolymers.

  5. Processes and systems for the production of propylene glycol from glycerol (United States)

    Frye, John G; Oberg, Aaron A; Zacher, Alan H


    Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.

  6. Thymol nanoemulsified by whey protein-maltodextrin conjugates: the enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol. (United States)

    Xue, Jia; Davidson, P Michael; Zhong, Qixin


    The objective of this research was to enhance the capability of whey protein isolate-maltodextrin conjugates in nanoemulsifying thymol using propylene glycol to improve antilisterial properties in milk. Thymol was predissolved in PG and emulsified in 7% conjugate solution. Transparent dispersions with mean diameters of propylene glycol.

  7. 77 FR 28493 - Propylene Oxide; Tolerance Actions (United States)


    ... AGENCY 40 CFR Part 180 RIN 2070-ZA16 Propylene Oxide; Tolerance Actions AGENCY: Environmental Protection... separate tolerances on pistachio and pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene oxide, known as propylene chlorohydrin, to cover all registered uses on...

  8. Organosilane modified silica/polydimethylsiloxane mixed matrix membranes for enhanced propylene/nitrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, Arnel B.; Nisola, Grace M. [Energy and Environment Fusion Technology Center (E2FTC), Department of Environmental Engineering and Biotechnology, Myongji University, Yongin City, Gyeonggi Province 449-728 (Korea, Republic of); Cho, Eulsaeng [Korea Environment Institute, Division of Water and Environmental Strategy Research Group, 290 Jinheungno, Eunpyeong-Gu, Seoul, 122-706 (Korea, Republic of); Lee, Erli Eros D. [Energy and Environment Fusion Technology Center (E2FTC), Department of Environmental Engineering and Biotechnology, Myongji University, Yongin City, Gyeonggi Province 449-728 (Korea, Republic of); Chung, Wook-Jin, E-mail: [Energy and Environment Fusion Technology Center (E2FTC), Department of Environmental Engineering and Biotechnology, Myongji University, Yongin City, Gyeonggi Province 449-728 (Korea, Republic of)


    Gas transport behaviors of oxygen (O{sub 2}), nitrogen (N{sub 2}) and propylene (C{sub 3}H{sub 6}) in polydimethylsiloxane (PDMS) mixed matrix membranes (MMM) containing modified silica (SiO{sub 2}) nanoparticles are presented. Two surface modified SiO{sub 2} nanoparticles, silica dimethyloctyl silane (Si-DMOS) and silica dimethylphenyl silane (Si-DMPS), were used as fillers. Surface modification was carried out through silanization, which was confirmed via Fourier transform infrared spectroscopy. From elemental analysis, degrees of modifications on Si-DMOS and Si-DMPS were estimated to be 29.64% and 79.89%, respectively. Field emission scanning electron microscopy showed uniform distribution of the modified SiO{sub 2} fillers in MMMs. Both MMMs exhibited reduced O{sub 2} and N{sub 2} permeabilities as compared to pure PDMS, while enhanced C{sub 3}H{sub 6} permeabilities were observed. Consequently, C{sub 3}H{sub 6}/N{sub 2} permselectivities were increased by 35 and 44% in MMMs filled with Si-DMOS and Si-DMPS, respectively. Results revealed that permeability was dependent on penetrant diffusivities, a parameter related to the structure of MMMs. Density measurements and differential scanning calorimetry were performed to elucidate the changes in MMM properties which affected the permeation behaviors of O{sub 2}, N{sub 2} and C{sub 3}H{sub 6}. Overall, both Si-DMOS and Si-DMPS show potential as fillers for the enhancement of PDMS permeation performance.

  9. Effects of propylene glycol on the metabolic status and milk production of dairy buffaloes. (United States)

    Hussein, H A; Abdel-Raheem, S M; Abd-Allah, M; Senosy, W


    The study was designed to investigate the effects of drenching with propylene glycol (PG) on body condition, serum metabolites and milk production during the transition period of dairy buffaloes. Animals were randomly allocated to a control group (n=5) and a PG group of 10 buffaloes that were drenched with 500 ml of propylene glycol once daily from 10 (9±3) days prepartum until 2 weeks postpartum. Ultrasound measurements of backfat thickness (BFT) were performed weekly, while blood samples were taken at -4, -2, 2, 4, 6, and 8 weeks from parturition for estimation of hematological and biochemical metabolites. At -4, -3, and -2 weeks from calving, BFT did not differ between the two groups, but decreased after calving and was higher for the control group than the PG group at weeks -1 and 1. Hematological analysis revealed insignificant changes between the two groups. Serum concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose did not differ between the two groups before parturition. At 2 and 4 weeks from parturition, NEFA was higher for the control group than the PG group. Serum concentrations of BHBA were higher at 2, 4, 6, and 8 weeks in control animals than in treated buffaloes. In contrast, the glucose level was significantly increased in PG group when compared to the control group at week 2 postpartum (p0.05). Serum enzyme activities of aspartate aminotransferase and γ-glutamyl transferase were significantly higher in the control than in the PG group. In treated buffaloes significantly (ppropylene glycol may reduce the risk of ketosis, improve the metabolic status, and increase the milk yield.

  10. Increase of propylene production and recovery in a PETROBRAS FCC units; Aumento da producao e recuperacao de propeno em uma Unidade de FCC da PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Penna, Elisangela Melo; Pinho, Andrea de Rezende; Wolff, Marcelo Straubel [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)


    Propylene is one of the major petrochemical raw materials and its demand has been growing rapidly in recent years. Projections for future years indicate that the growth in propylene production via pyrolysis tends to be lower than the growth in the demand for ethylene, creating a supply deficit of this product. The FCC units are in a unique position to meet this increase in propylene demand due to its operational flexibility. Although their primary function in recent decades has been the gasoline production, FCC units are often operated for maximizing other products, such as LPG or distillates. At the FCC conversion section, the increase of propylene yield requires some increase in reaction severity, which can be obtained by increasing reactor riser temperature, and the use of catalyst additives based on ZSM-5. However, besides maximizing the propylene production in the reactor, a second objective should be pursued: the propylene recovery increase in the gas recovery section. In this section, the yield is affected by the gas compressor performance, the equipment design and process scheme. Eventually, new equipment may be installed, such as chillers, aimed at improving the absorption system. Predicting a real increase in propylene demand in the Brazilian market, this study aims to evaluate the adequacy of the gas recovery section of a PETROBRAS FCC unit, analyzing the impacts that a new products yields profile, which bend the propylene production compared to a conventional operation, would cause on this unit. In this paper, the main limitations and modifications that would be needed for an operation were identified, aiming at maximizing the propylene production, as well as proposed changes in the hardware of the unit. (author)

  11. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska


    Full Text Available Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  12. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production. (United States)

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota


    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  13. Propylene from renewable resources: catalytic conversion of glycerol into propylene. (United States)

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong


    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Differential effects of low-temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of 'Hayward' kiwifruit

    DEFF Research Database (Denmark)

    Antunes, M. D C; Pateraki, I.; Kanellis, A. K.


    Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8°C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8°C....... 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20°C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20°C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene...... production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1...

  15. 21 CFR 582.4666 - Propylene glycol. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.1666 - Propylene glycol. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance...

  17. Modification of Poly(propylene fumarate)-Bioglass Composites with Peptide Conjugates to Enhance Bioactivity. (United States)

    Xu, Yanyi; Luong, Derek; Walker, Jason M; Dean, David; Becker, Matthew L


    Poly(propylene fumarate) (PPF) has been highlighted as one of the most promising materials for bone regeneration. Despite the promising advantages of using polymer scaffolds for biomedical applications, their inherent lack of bioactivity has limited their clinical application. In this study, PPF was successfully functionalized with Bioglass and a novel catechol-bearing peptide bioconjugate containing bioactive short peptide sequences of basic fibroblast growth factor, bone morphogenetic protein 2, and osteogenic growth peptide. The binding affinity was assessed to be around 110 nmol/cm 2 with the Bioglass content at 10 wt %. Fluorescence imaging studies show that the catechol-bearing modular peptide binds preferentially to the Bioglass. A 4 week in vitro cell study using human mesenchymal stem cells showed that cell adhesion, spreading, proliferation, and osteogenic differentiation at both gene and protein levels were all improved by the introduction of peptides, demonstrating the potential approach of dually functionalized polymers for bone regeneration.

  18. 76 FR 79146 - Propylene Oxide; Proposed Tolerance Actions (United States)


    ... AGENCY 40 CFR Part 180 Propylene Oxide; Proposed Tolerance Actions AGENCY: Environmental Protection... tolerance and separate tolerances on pistachio and pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene oxide, known as propylene chlorohydrin, to cover all registered...

  19. Metallacyclobutane substitution and its effect on alkene metathesis for propylene production over W-H/Al2O3: Case of isobutene/2-butene cross-metathesis

    KAUST Repository

    Szeto, Kaï Chung


    Cross metathesis between 2-butenes and isobutene yielding the valuable products propylene and 2-methyl-2-butene has been investigated at low pressure and temperature using WH3/Al2O3, a highly active and selective catalyst. Two parallel catalytic cycles for this reaction have been proposed where the cycle involving the less sterically hindered tungstacyclobutane intermediates is most likely favored. Moreover, it has been found that the arrangement of substituents on the least thermodynamically favored tungstacyclobutane governs the conversion rate of the cross metathesis reaction for propylene production from butenes and/or ethylene. © 2013 American Chemical Society.

  20. Mixing with propylene glycol enhances the bond strength of mineral trioxide aggregate to dentin. (United States)

    Salem Milani, Amin; Froughreyhani, Mohammad; Charchi Aghdam, Saeed; Pournaghiazar, Fatemeh; Asghari Jafarabadi, Mohammad


    Mixing mineral trioxide aggregate (MTA) with different proportions of propylene glycol (PG) improves its handling property. The aim of this study was to evaluate the effect of PG on MTA-dentin push-out bond strength. Seventy-five 2-mm-thick midroot sections were prepared from single-rooted human extracted teeth. The lumen of each slice was enlarged with Gates-Glidden burs. The slices were randomly divided into 3 groups (n = 25). In each group, 0.3 mL of the liquid was mixed with 1 g MTA (Angelus, Londrina, Brazil). The liquid vehicles used in groups 1-3 were 100% distilled water (DW), 20% PG-80% DW, and 100% PG, respectively. After incubation, the push-out strength of the samples was measured using a universal testing machine. The samples were then cut in halves and examined under a stereomicroscope to determine the failure pattern. One-way analysis of variance followed by the Tukey post hoc test was used to compare the push-out strength among groups. There were statistically significant differences between groups (P < .001). The push-out strength in group 1 (DW) was significantly lower than groups 2 and 3 (P < .001 and P = .022, respectively). However, there was no significant difference between groups 2 (DW-PG) and 3 (PG). Mixing MTA with PG increased its push-out bond strength to dentin. In the present study, the most suitable ratio was 80% DW-20% PG. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous Hydroxyl-functionalized polyimide membrane

    KAUST Repository

    Swaidan, Ramy Jawdat


    Effective separation of propylene/propane is vital to the chemical industry where C3H6 is used as feedstock for a variety of important chemicals. The purity requirements are currently met with cryogenic distillation, which is an extremely energy-intensive process. Hybrid arrangements incorporating highly selective membranes (α>20) have been proposed to “debottleneck” the process and potentially improve the economics. Selective and permeable membranes can be obtained by the design of polymers of intrinsic microporosity (PIMs). In this work, a 250 °C annealed polyimide (PIM-6FDA-OH) membrane produced among the highest reported pure-gas C3H6/C3H8 selectivity of 30 for a solution-processable polymer to date. The high selectivity resulted from enhanced diffusivity selectivity due to the formation of inter-chain charge-transfer-complexes. Although there were some inevitable losses in selectivity under 50:50 mixed-gas feed conditions due to competitive sorption, relatively high selectivities were preserved due to enhanced plasticization resistance.

  2. Comonomer-induced stereo-selectivity enhancement in a c2 -symmetric metallocene-catalyzed propylene polymerization. (United States)

    Ma, Lin; Dong, Jin-Yong


    Propylene polymerization is carried out with a C 2 -symmetric metallocene catalyst of rac-Et(Ind)2 ZrCl2 /MAO at 40 °C in the presence of a cyclo-triene of trans,trans,cis-1,5,9-cyclododecatriene ((E,E,Z)-CDT). Comonomer incorporations are rather low (propylene -isotacticity (>7% in [mmmm]). (E,E,Z)-CDT is speculated to coordinate to the metal center forming comonomer-complexed active sites in charge of the entire polymerization reaction with decreased activity however increased propylene -enantiomorphic selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2.


    Small, F J; Ensign, S A


    Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of ...


    The overall goal of this research is to document the life cycle environmental impacts of propylene carbonate (PC) to assist DoD in assessing the life cycle environmental implications of PC and PC-based formulations as viable alternative materials, products, and techniques to pain...

  5. Polyoxometallate catalyzed oxidative modification of lignin as a favorable pre-treatment for copolymerization with propylene oxide for polyurethanes production


    Vevere, Laima; Arshanitsa, Alexandr; Dizbite, Tatiana; Jahina, Lilija; Telysheva, Galina


    The oxypropylation of the parent and oxidized lignins with propylene oxide (PO) was studied in high pressure Parr reactor using KOH as a catalyst. It was shown that oxypropylation of lignin pre-oxidized in the system POM/H2O2 proceeded in the similar manner as the parent lignin but the rate of the process was some lower due to the presence of higher amount of -COOH groups with lower nucleophilicity.

  6. Randomized clinical field trial on the effects of butaphosphan-cyanocobalamin and propylene glycol on ketosis resolution and milk production. (United States)

    Gordon, J L; LeBlanc, S J; Kelton, D F; Herdt, T H; Neuder, L; Duffield, T F


    The purpose of this study was to determine the effects of a butaphosphan-cyanocobalamin combination product (B+C) and 2 durations of propylene glycol treatment (PG; 3 versus 5 d) on ketosis resolution and early lactation milk yield. Cows from 9 freestall herds (8 in Ontario and 1 in Michigan) were tested at weekly intervals between 3 and 16 d in milk. Ketosis was defined as blood β-hydroxybutyrate (BHB) ≥1.2 mmol/L. Ketotic cows were randomly assigned to treatment with 25 mL of B+C or 25 mL of saline placebo for 3 d and 3 or 5 d of 300 g of PG orally in a 2 × 2 factorial arrangement. Outcomes evaluated for all farms included ketosis cure (blood BHB 2.4 mmol/L at the time of enrollment were 1.7 times more likely [95% confidence interval (CI): 1.4 to 2.2] to cure and had a decrease of 0.25 ± 0.11 mmol/L blood BHB at 1 wk after enrollment if treated with 5 d of PG compared with 3 d, though this response was not seen in animals with BHB of 1.2 to 2.4 mmol/L at enrollment. Cows with blood glucose concentrations <2.2 mmol/L at enrollment produced 3.1 kg/d (95% CI: 1.3 to 5.0) more milk if treated with B+C and 3.4 kg/d (95% CI: 1.7 to 5.1) more milk if treated with 5 d of PG compared with their respective controls. This response was not seen in animals with blood glucose ≥2.2 mmol/L at enrollment and there was no interaction between treatments. These results indicate that extended PG treatment is beneficial in decreasing blood BHB concentrations in more severely affected animals. Additionally, both B+C treatment and extended PG treatment improved milk yield in animals with low blood glucose at the time of ketosis diagnosis. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Comparison studies of propylene oxide addition to phenyloctadecanol and phenyloctadecanoic acid and the surface activity studies of their sulphated products

    Directory of Open Access Journals (Sweden)

    Ahmed, M. H.M.


    Full Text Available Phenyloctadecanol and phenyloctadecanoic acid were produced via Lewis acid catalyzed reaction of benzene and oleyl alcohol (60 ºC or oleic acid at (80 ºC respectively. A comparison study was achieved for the addition of propylene oxide to both substrates in the presence of base (KOH and Lewis acid (SbCl5 catalysts. It was found that, the hydroxypropylation of both substrates at low temperature via Lewis acid catalyst is more preferable than via the base catalyst. The surface activity of the sulphated products was determined. The results revealed that, the samples produced from alcohol (phenyloctadecanol show a better surface activity than that from acid (phenyloctadecanoic acid. On the other hand the samples produced from both substrates using Lewis acid catalyst have a better surface activity than that produced with the base catalyst.Se ha obtenido feniloctadecanol y ácido feniloctadecanoico vía reacción catalizada ácido de Lewis a partir de benceno y alcohol oleílico (60º C o ácido oleico (80º C respectivamente. Se ha llevado a cabo un estudio comparativo por adición de óxido de propileno a ambos sustratos en presencia de base (KOH y ácido de Lewis (SbCl5 como catalizadores. Se encontró que la hidroxipropilación de ambos sustratos a baja temperatura mediante catálisis ácido de Lewis es preferible a la catálisis básica. Se determinó la actividad superficial de los productos sulfatados. Los resultados mostraron que las muestras producidas a partir de alcohol (feniloctadecanol tenían una mejor actividad superficial que las producidas a partir de ácido (ácido feniloctadecanoico. Por otro lado, las muestras producidas a partir de ambos sustratos utilizando catalizador ácido de Lewis tuvieron una actividad superficial mejor que las producidas con catálisis básica.

  8. Mucoadhesive Fenretinide Patches for Site-specific Chemoprevention of Oral Cancer: Enhancement of Oral Mucosal Permeation of Fenretinide by Co-incorporation of Propylene Glycol and Menthol (United States)

    Wu, Xiao; Desai, Kashappa-Goud H.; Mallery, Susan R.; Holpuch, Andrew S.; Phelps, Maynard P.; Schwendeman, Steven P.


    The objective of this study was to enhance oral mucosal permeation of fenretinide by co-incorporation of propylene glycol (PG) and menthol in fenretinide/Eudragit® RL PO mucoadhesive patches. Fenretinide is an extremely hydrophobic chemopreventive compound with poor tissue permeability. Co-incorporation of 5-10 wt% PG (mean Js = 16-23 μg cm−2 h−1; 158-171 μg fenretinide/g tissue) or 1-10 wt% PG + 5 wt% menthol (mean Js = 18-40 μg cm−2 h−1; 172-241 μg fenretinide/g tissue) in fenretinide/Eudragit® RL PO patches led to significant ex vivo fenretinide permeation enhancement (p < 0.001). Addition of PG above 2.5 wt% in the patch resulted in significant cellular swelling in the buccal mucosal tissues. These alterations were ameliorated by combining both enhancers and reducing PG level. After buccal administration of patches in rabbits, in vivo permeation of fenretinide across the oral mucosa was greater (~43 μg fenretinide/g tissue) from patches that contained optimized permeation enhancer content (2.5 wt% PG + 5 wt% menthol) relative to permeation obtained from enhancer-free patch (~ 17 μg fenretinide/g tissue) (p < 0.001). In vitro and in vivo release of fenretinide from patch was not significantly increased by co-incorporation of permeation enhancers, indicating that mass transfer across the tissue, and not the patch, largely determined the permeation rate control in vivo. As a result of its improved permeation and its lack of deleterious local effects, the mucoadhesive fenretinide patch co-incorporated with 2.5 wt% PG + 5 wt% menthol represents an important step in the further preclinical evaluation of oral site-specific chemoprevention strategies with fenretinide. PMID:22280430

  9. Laboratory-scale evaluation of a combined soil amendment for the enhanced biodegradation of propylene glycol-based aircraft de-icing fluids. (United States)

    Libisch, Balázs; French, Helen K; Hartnik, Thomas; Anton, Attila; Biró, Borbála


    A combined soil amendment was tested in microcosm experiments with an aim to enhance the aerobic biodegradation of propylene glycol (PG)-based aircraft de-icing fluids during and following the infiltration of contaminated snowmelt. A key objective under field conditions is to increase degradation of organic pollutants in the surface soil where higher microbial activity and plant rhizosphere effects may contribute to a more efficient biodegradation of PG, compared to subsoil ground layers, where electron acceptors and nutrients are often depleted. Microcosm experiments were set up in Petri dishes using 50 g of soil mixed with appropriate additives. The samples contained an initial de-icing fluid concentration of 10,000 mg/kg soil. A combined amendment using calcium peroxide, activated carbon and 1 x Hoagland solution resulted in significantly higher degradation rates for PG both at 4 and 22 degrees C. Most probable numbers of bacteria capable of utilizing 10,000 mg/kg de-icing fluid as a sole carbon source were about two orders of magnitude higher in the amended soil samples compared to unamended controls at both temperatures. The elevated numbers of such bacteria in surface soil may be a source of cells transported to the subsoil by snowmelt infiltration. The near-surface application of amendments tested here may enhance the growth of plants and plant roots in the contaminated area, as well as microbes to be found at greater depth, and hence increase the degradation of a contaminant plume present in the ground.

  10. Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy. (United States)

    Vivek, J Padmanabhan; Berry, Neil; Papageorgiou, Georgios; Nichols, Richard J; Hardwick, Laurence J


    Understanding the mechanistic details of the superoxide induced solvent degradation, is important in the development of stable electrolytes for lithium-oxygen (Li-O2) batteries. Propylene carbonate (PC) decomposition on a model electrode surface is studied here using in situ attenuated total reflectance surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The sensitivity of the SEIRAS technique to the interfacial region allows investigation of subtle changes in the interface region during electrochemical reactions. Our SEIRAS studies show that the superoxide induced ring opening reaction of PC is determined by the electrolyte cation. Computational modeling of the proposed reaction pathway of superoxide with PC revealed a large difference in the activation energy barriers when Li(+) was the countercation compared with tetraethylammonium (TEA(+)), due to the coordination of Li(+) to the carbonate functionality. While the degradation of cyclic organic carbonates during the Li-O2 battery discharge process is a well-established case, understanding these details are of significant importance toward a rational selection of the Li-O2 battery electrolytes; our work signifies the use of SEIRAS technique in this direction.

  11. Study of ethylene/2-butene cross-metathesis over W-H/Al2O 3 for propylene production: Effect of the temperature and reactant ratios on the productivity and deactivation

    KAUST Repository

    Mazoyer, Etienne


    A highly active and selective catalyst based on supported tungsten hydride for the cross-metathesis between ethylene and 2-butenes yielding propylene has been investigated at low pressure with various temperatures and feed ratios. At low temperature (120 °C), the catalyst deactivates notably with time on stream. This phenomenon was extensively examined by DRIFTS, TGA, DSC, and solid-state NMR techniques. It was found that a large amount of carbonaceous species were formed due to a side-reaction such as olefin polymerization which took place simultaneously with the metathesis reaction. However, at 150 °C, the catalyst was stable with time and thereby gave a high productivity in propylene. Importantly, the slight increase in temperature clearly disfavored the side reaction. The ratio of ethylene to trans-2-butene was also studied, and surprisingly, the W-H/Al2O3 catalyst is stable and highly selective to propylene even at substoichiometric ethylene ratios. © 2013 Elsevier Inc. All rights reserved.

  12. Dietary propylene glycol and in vitro embryo production after ovum pick-up in heifers with different anti-Müllerian hormone profiles. (United States)

    Gamarra, G; Ponsart, C; Lacaze, S; Le Guienne, B; Humblot, P; Deloche, M-C; Monniaux, D; Ponter, A A


    Rapid genetic improvement in cattle requires the production of high numbers of embryos of excellent quality. Increasing circulating insulin and/or glucose concentrations improves ovarian follicular growth, which may improve the response to superovulation. The measurement of anti-Müllerian hormone (AMH) can help predict an animal's response to superovulation treatment. The aim of the present study was to investigate whether increasing circulating insulin concentrations, through propylene glycol (PG) drenches, could improve in vitro embryo production in oestrus-synchronised superovulated heifers with different AMH profiles. Holstein heifers were grouped according to pre-experimental AMH concentrations as low (L) or high (H). The PG drench increased circulating insulin and glucose concentrations and reduced β-hydroxybutyrate and urea concentrations compared with the control group. AMH was a good predictor of follicle and oocyte numbers at ovum pick-up (OPU), and of oocyte and embryo quality (AMH H>AMH L). PG in the AMH H group increased the number of follicles and blastocyst quality above that in the control group, but did not improve these parameters in the AMH L group. These results indicate that short-term oral PG supplementation modifies an animal's metabolic milieu and is effective in improving in vitro embryo production, after superovulation-OPU, more markedly in heifers with high rather than low AMH concentrations.

  13. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide (United States)

    Zuwei, Xi; Ning, Zhou; Yu, Sun; Kunlan, Li


    The epoxidation of olefins with H2O2 was performed with a tungsten-containing catalyst. This insoluble catalyst forms soluble active species by the action of H2O2, and when the H2O2 is used up, the catalyst precipitates for easy recycling. Thus, the advantages of both homogeneous and heterogeneous catalysts are combined in one system through reaction-controlled phase transfer of the catalyst. When coupled with the 2-ethylanthraquinone/2-ethylanthrahydroquinone redox process for H2O2 production, O2 can be used for the epoxidation of propylene to propylene oxide with 85% yield based on 2-ethylanthrahydroquinone without any co-products. This approach avoids the problematic co-products normally associated with the industrial production of propylene oxide.

  14. Mechanisms of propylene glycol and triacetin pyrolysis

    NARCIS (Netherlands)

    Laino, Teodoro; Tuma, Christian; Moor, Philippe; Martin, Elyette; Stolz, S.; Curioni, Alessandro


    Propylene glycol and triacetin are chemical compounds, commonly used as food additives. Though the usage of the pure chemicals is not considered harmful when used as dietary supplements, little is known about the nature of their thermal degradation products and the impact they may have on human

  15. Flexible-Robust Metal-Organic Framework for Efficient Removal of Propyne from Propylene. (United States)

    Li, Libo; Lin, Rui-Biao; Krishna, Rajamani; Wang, Xiaoqing; Li, Bin; Wu, Hui; Li, Jinping; Zhou, Wei; Chen, Banglin


    The removal of trace amounts of propyne from propylene is critical for the production of polymer-grade propylene. We herein report the first example of metal-organic frameworks of flexible-robust nature for the efficient separation of propyne/propylene mixtures. The strong binding affinity and suitable pore confinement for propyne account for its high uptake capacity and selectivity, as evidenced by neutron powder diffraction studies and density functional theory calculations. The purity of the obtained propylene is over 99.9998%, as demonstrated by experimental breakthrough curves for a 1/99 propyne/propylene mixture.

  16. Interfaces of Propylene Carbonate


    You, Xinli; Chaudhari, Mangesh I.; Pratt, Lawrence R.; Pesika, Noshir; Aritakula, Kalika M.; Rick, Steven W.


    Propylene carbonate (PC) wets graphite with a contact angle of 31 deg at ambient conditions. Molecular dynamics simulations agree with this contact angle after 40% reduction of the strength of graphite-C atom Lennard-Jones interactions with the solvent, relative to the models used initially. A simulated nano-scale PC droplet on graphite displays a pronounced layering tendency and an Aztex pyramid structure for the droplet. Extrapolation of the computed tensions of PC liquid-vapor interface es...

  17. Influence of nanoparticle concentration on thermo-physical properties of CuO-propylene glycol nanofluids. (United States)

    Suganthi, Kuppusamy Swaminathan; Radhakrishnan, Anju K; Anusha, Natarajan; Rajan, Kalpoondi Sekar


    Experiments were performed on the preparation and characterization of CuO-propylene glycol nanofluids. The influence of nanoparticle concentration and temperature on nanofluid viscosity reveals existence of a range of nanoparticle concentration and temperature in which the viscosity of nanofluid is lower than that of propylene glycol, possibly due to interactions between nanoparticles and propylene glycol. A temperature-independent, thermal conductivity enhancement of 38% was obtained for nanoparticle concentration of 1.5 vol% over a temperature range of 10-60 degrees C. We believe that particle clustering contributes to the thermal conductivity enhancement in CuO-propylene glycol nanofluids.

  18. Measurement of diffusion coefficient of propylene glycol in skin tissue (United States)

    Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.


    Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  19. Synthesis of Poly(Propylene Fumarate) (United States)

    Kasper, F. Kurtis; Tanahashi, Kazuhiro; Fisher, John P.; Mikos, Antonios G.


    This protocol describes the synthesis of 500 – 4000 Da poly(propylene fumarate) by a two-step reaction of diethyl fumarate and propylene glycol through a bis(hydroxypropyl) fumarate diester intermediate. Purified PPF can be covalently crosslinked to form degradable polymer networks, which have been widely explored for biomedical applications. The properties of crosslinked PPF networks depend upon the molecular properties of the constituent polymer, such as the molecular weight. The purity of the reactants and the exclusion of water from the reaction system are of utmost importance in the generation of high-molecular-weight PPF products. Additionally, the reaction time and temperature influence the molecular weight of the PPF product. The expected time required to complete this protocol is 3 d. PMID:19325548

  20. Hexene catalytic cracking over 30% sapo-34 catalyst for propylene maximization: influence of reaction conditions and reaction pathway exploration

    Directory of Open Access Journals (Sweden)

    Z. Nawaz


    Full Text Available Higher olefins are produced as a by product in a number of refinery processes and are one of the potential raw materials to produce propylene. In the present study, FCC model feed compound was considered to explore the olefin cracking features and options to enhance propylene using 30% SAPO-34 zeolite as catalyst in a micro-reactor. The superior selectivity of propylene (73 wt% and higher total olefin selectivity was obtained over 30% SAPO-34 catalyst than over Y or ZSM-5 zeolite catalysts. The thermodynamical constraints were found to be relatively less serious in the case of 1-hexene conversion. Most of the 1-hexene follows a direct cracking pathway to give two propylene molecules, due to weak acid sites and better diffusion opportunities. The higher temperature and short residence time could also suppress the hydrogen transfer reactions. From OPE (olefins performance envelop the products were classified as primary, secondary, or both. Iso-hexene (2-methyl-2-pentene cracking was also analyzed in order to justify a shape selective effect of the SAPO-34 catalyst. A detailed integrated reaction network together with an associated mechanism was proposed and discussed in detail for their fundamental importance in understanding the olefin cracking processes over SAPO-34.

  1. Interfaces of propylene carbonate (United States)

    You, Xinli; Chaudhari, Mangesh I.; Pratt, Lawrence R.; Pesika, Noshir; Aritakula, Kalika M.; Rick, Steven W.


    Propylene carbonate (PC) wets graphite with a contact angle of 31° at ambient conditions. Molecular dynamics simulations agree with this contact angle after 40% reduction of the strength of graphite-C atom Lennard-Jones interactions with the solvent, relative to the models used initially. A simulated nano-scale PC droplet on graphite displays a pronounced layering tendency and an Aztex pyramid structure for the droplet. Extrapolation of the computed tensions of PC liquid-vapor interface estimates the critical temperature of PC accurately to about 3%. PC molecules lie flat on the PC liquid-vapor surface and tend to project the propyl carbon toward the vapor phase. For close PC neighbors in liquid PC, an important packing motif stacks carbonate planes with the outer oxygen of one molecule snuggled into the positively charged propyl end of another molecule so that neighboring molecule dipole moments are approximately antiparallel. The calculated thermal expansion coefficient and the dielectric constants for liquid PC agree well with experiment. The distribution of PC molecule binding energies is closely Gaussian. Evaluation of the density of the coexisting vapor then permits estimation of the packing contribution to the PC chemical potential and that contribution is about two thirds of the magnitude of the contributions due to attractive interactions, with opposite sign.

  2. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne


    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  3. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis

    NARCIS (Netherlands)

    Drift, van der S.G.A.; Houweling, M.; Bouman, Marina; Koets, A.P.; Tielens, A.G.M.; Nielen, M.; Jorritsma, R.


    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene

  4. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation

    KAUST Repository

    Swaidan, Ramy Jawdat


    High performance thermally-rearranged (TR) and carbon molecular sieve (CMS) membranes made from an intrinsically microporous polymer precursor PIM-6FDA-OH are reported for the separation of propylene from propane. Thermal rearrangement of PIM-6FDA-OH to the corresponding polybenzoxazole (PBO) membrane resulted in a pure-gas C3H6/C3H8 selectivity of 15 and C3H6 permeability of 14 Barrer, positioning it above the polymeric C3H6/C3H8 upper bound. For the first time, the C3H6/C3H8 mixed-gas properties of a TR polymer were investigated and showed a C3H6 permeability of 11 Barrer and C3H6/ C3H8 selectivity of 11, essentially independent of feed pressure up to 5 bar. The CMS membrane made by treatment at 600 C showed further improvement in performance as demonstrated with a pure-gas C3H8/C3H8 selectivity of 33 and a C3H6 permeability of 45 Barrer. The mixed-gas C3H6/C3H8 selectivity dropped from 24 to 17 from 2 to 5 bar feed pressure due to a decrease in C3H6 permeability most likely caused by competitive sorption without any evidence of plasticization. (C) 2016 Elsevier B.V. All rights reserved.

  5. Methanol to propylene. From development to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Haag, S.; Rothaemel, M. [Air Liquide Forschung und Entwicklung GmbH, Frankfurt am Main (Germany); Pohl, S.; Gorny, M. [Lurgie GmbH, Frankfurt am Main (Germany). Air Liquide Global E and C Solutions


    In the late 1990s the development of the so-called MTP {sup registered} (methanol-to-propylene) process, a Lurgi Technology (by Air Liquide Global E and C Solutions) started. This constitutes a novel route to a valuable product that would not rely on crude oil as feedstock (as conventional propylene production does), but instead utilizes coal or natural gas and potentially biomass. These alternative feedstocks are first converted to synthesis gas, cleaned, and then converted to methanol. The development of the methanol-to-propylene conversion was achieved in a close collaboration between R and D and engineering. Two pilot plants at the R and D center in Frankfurt and a demonstration plant in Norway have been used to demonstrate the yields, catalyst lifetime and product quality and to support the engineering team in plant design and scale-up. Especially the last item is important as it was clear from the very beginning that the first commercial MTP {sup registered} plant would already be world-scale, actually one of the largest propylene producing plants in the world. This required a safe and diligent scale-up as the MTP {sup registered} reactors in the commercial plant receive about 7,000 times the feed of the demo unit and as much as 100,000 times the feed of the pilot plant. The catalyst used is a zeolite ZSM-5 that was developed by our long-term cooperation partner Sued-Chemie (now Clariant). At the end of 2010, the first commercial MTP {sup registered} plant in Ningdong in the Chinese province of Ningxia was started up as part of a coal-to-chemicals complex owned by the Shenhua Ningxia Coal Industry Group. In this complex the complete chain starting from coal through to the final polypropylene product is realized. The customer successful started the polymer-grade propylene production in April 2011 and then announced in May 2011 that he sold the first 1000 tons of polypropylene made with propylene coming from the MTP {sup registered} unit. Following this

  6. 21 CFR 184.1666 - Propylene glycol. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol. 184.1666 Section 184.1666 Food... Specific Substances Affirmed as GRAS § 184.1666 Propylene glycol. (a) Propylene glycol (C3H8O2, CAS Reg. No. 57-55-6) is known as 1,2-propanediol. It does not occur in nature. Propylene glycol is manufactured...

  7. Enhancing products by embedding agents

    NARCIS (Netherlands)

    Hendrik Folmer; Daniël Telgen; Leo van Moergestel; Ing. Erik Puik; Hielke Veringa; Matthijs Grünbauer; Robbert Proost; John-Jules Meyer


    Author provided: Monitoring of computernetworks, complex technical systems like aeroplanes is common practice. In this article the use of a monitoring agent in an arbitrary product is discussed. The product itself could be any product with sucient hardware capabilities. The focus is on the

  8. 76 FR 38036 - Propylene Oxide; Pesticide Tolerances (United States)


    ... AGENCY 40 CFR Part 180 Propylene Oxide; Pesticide Tolerances AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This regulation amends the propylene oxide tolerance on ``nut, tree, group...), announcing the Agency's proposal to amend the propylene oxide tolerance (40 CFR 180.491) on ``nut, tree...

  9. Advanced control of propylene polimerizations in slurry reactors

    Directory of Open Access Journals (Sweden)

    Bolsoni A.


    Full Text Available The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality and the amount of unreacted monomer (productivity. The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron. The simulated performance of the controller was evaluated for a typical propylene polymerization process. It is shown that the performance of the proposed control strategy is much better than the one obtained with the use of linear predictive controllers for setpoint tracking control problems.

  10. Collaborative Environment for Service-enhanced Products

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Macedo, P.; Oliveira, A.I.; Ferrada, F.; Afsarmanesh, H.; Gomes, L.; Hübner, M.


    The notion of service-enhanced product offers new perspectives for value creation and differentiation in manufacturing. In the case of complex and highly customized products, the inclusion of business services that add value to the product typically require the collaboration of multiple

  11. 21 CFR 172.858 - Propylene glycol alginate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or “propylene...

  12. A Product Line Enhanced Unified Process

    DEFF Research Database (Denmark)

    Zhang, Weishan; Kunz, Thomas


    activities are added and could be conducted side by side with other classical UP activities. In this way both the advantages of Unified Process and software product lines could co-exist in UPEPL. We show how to use UPEPL with an industrial mobile device product line in our case study.......The Unified Process facilitates reuse for a single system, but falls short handling multiple similar products. In this paper we present an enhanced Unified Process, called UPEPL, integrating the product line technology in order to alleviate this problem. In UPEPL, the product line related...

  13. Haemoglobinuria caused by propylene glycol in sheep (United States)

    Potter, B. J.


    Haemoglobinuria occurred in sheep anaesthetized by an intravenous injection of pentobarbitone sodium containing propylene glycol: an equivalent dose failed to cause haemoglobinuria in rabbits. Intravenous injection of an aqueous solution of 20% propylene glycol caused haemoglobinaemia and haemoglobinuria in sheep. Neither distilled water nor 20% glycerol in water administered under identical conditions produced these effects. Haemoglobinuria occurred on some occasions when an aqueous 20% solution of propylene glycol was administered to sheep after an injection of saline: it never occurred when a solution of 20% propylene glycol prepared with physiological saline was injected. It is suggested that saline may protect against the haemolytic action of propylene glycol in sheep and that propylene glycol should be avoided as a menstruum for pharmaceutical preparations to be used for injection into the blood stream of these animals. PMID:13618540

  14. Enhanced lipase production by mutation induced Aspergillus ...

    African Journals Online (AJOL)

    ... the HNO2 mutant (AHN3) and 217% higher than the UV mutant (AUV3) and 276% higher lipase activity than the parent strain. The results indicated that UV, HNO2 and NTG treatment were effective physical and chemical mutagenic agents for strain improvement of Aspergillus japonicus for enhanced lipase productivity.

  15. Managing Risk, Reducing Vulnerability and Enhancing Productivity ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Risk, Reducing Vulnerability and Enhancing Productivity under a Changing Climate. The countries of the Greater Horn of Africa are particularly vulnerable to drought, exacerbated by widespread poverty and dependence on rainfed agriculture. Even with normal rainfall, the region does not produce enough food to ...

  16. Enhanced Phagocytosis and Antibody Production by Tinospora ...

    African Journals Online (AJOL)

    Tinospora cordifolia (guduchi) is a widely used shrub in ayurvedic systems of medicine known to possess immunomodulatory properties. In the present study the aqueous extract of T. cordifolia was found to enhance phagocytosis in vitro. The aqueous and ethanolic extracts also induced an increase in antibody production ...

  17. Propylene glycol intoxication in a dog. (United States)

    Claus, Melissa A; Jandrey, Karl E; Poppenga, Robert H


    To describe the clinical course, treatment, and outcome of a dog with propylene glycol intoxication. An adult castrated male Australian cattle dog presented to an emergency clinic for an acute onset of ataxia and disorientation after roaming a construction site unsupervised. He tested positive for ethylene glycol using a point-of-care test kit. Treatment for ethylene glycol intoxication included intermittent intravenous boluses of 20% ethanol and hemodialysis. Predialysis and postdialysis blood samples were submitted to the toxicology lab to assess for both ethylene and propylene glycol. The patient tested negative for ethylene glycol and positive for propylene glycol at 1100 mg/dL predialysis and 23 mg/dL postdialysis. The dog made a full recovery. To the authors' knowledge, this is the first report of documented propylene glycol intoxication in a dog, as well as the first report to describe hemodialysis as treatment for propylene glycol intoxication in a dog. © Veterinary Emergency and Critical Care Society 2011.

  18. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    Directory of Open Access Journals (Sweden)

    Courtney A. Cunningham MD


    Full Text Available In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  19. Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Wen Yicun


    Full Text Available The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper. As far as we know, it is the first time to use potassium bicarbonate only as the catalyst in the production process which is simple and cheap. Satisfactory conversion rate of propylene oxide and yield of the products could be achieved at the optimized conditions with quite a small amount of by-products. Our new method offers an attractive choice for the production of dimethyl carbonate in large-scale industry efficiently and environmental friendly.

  20. Biohydrogen production and bioprocess enhancement: a review. (United States)

    Mudhoo, Ackmez; Forster-Carneiro, Tânia; Sánchez, Antoni


    This paper provides an overview of the recent advances and trends in research in the biological production of hydrogen (biohydrogen). Hydrogen from both fossil and renewable biomass resources is a sustainable source of energy that is not limited and of different applications. The most commonly used techniques of biohydrogen production, including direct biophotolysis, indirect biophotolysis, photo-fermentation and dark-fermentation, conventional or "modern" techniques are examined in this review. The main limitations inherent to biochemical reactions for hydrogen production and design are the constraints in reactor configuration which influence biohydrogen production, and these have been identified. Thereafter, physical pretreatments, modifications in the design of reactors, and biochemical and genetic manipulation techniques that are being developed to enhance the overall rates and yields of biohydrogen generation are revisited.

  1. Lean Production Practices to Enhance Organisational Performance

    Directory of Open Access Journals (Sweden)

    Shah Satya


    Full Text Available Service sector organisations are constantly overcoming the challenges facing the over-production and waste reduction within their environments. Industries are also becoming very competitive thus forcing them to seek suitable production organisation strategies with the aim towards enhancing their competitiveness and efficiency. The aim of this research study is to investigate the impact of lean production practices on the performance of service based businesses through the case study of a local baked goods supplier. The research framework adopted consists of questionnaire survey method implemented with different end users, thus covering the overall production – retail – customer cycle. The research results and analysis justify the objective of the research that lean production practices enhance the performance of the supplier company and the common tool identified were JIT (Just in Time, Value Steam Mapping (VSP and the 5S methods. The results also suggest that JIT method has a higher impact towards improvement on performance relating to quality, speed, dependability, flexibility and cost of the supplier. However, the research study also identifies that one of the major challenges faced by the organisation while adopting lean practices was the lack of commitment from top management, continuous training and employee engagement measures.

  2. Optically enhanced production of metastable xenon

    CERN Document Server

    Hickman, G T; Pittman, T B


    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable.

  3. 46 CFR 151.50-13 - Propylene oxide. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Propylene oxide. 151.50-13 Section 151.50-13 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-13 Propylene oxide. (a)(1...) When propylene oxide is carried on board a vessel, piping systems in propylene oxide service shall not...

  4. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA


    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  5. Metabolic engineering to enhance bacterial hydrogen production (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.


    Summary Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K‐12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of the formate hydrogen lyase (FHL) system for synthesizing hydrogen from formate via hydrogenase 3 were also manipulated to enhance hydrogen production. Specifically, we altered regulation of FHL by controlling the regulators HycA and FhlA, removed hydrogen consumption by hydrogenases 1 and 2 via the hyaB and hybC mutations, and re‐directed formate metabolism using the fdnG, fdoG, narG, focA, fnr and focB mutations. The result was a 141‐fold increase in hydrogen production from formate to create a bacterium (BW25113 hyaB hybC hycA fdoG/pCA24N‐FhlA) that produces the largest amount of hydrogen to date and one that achieves the theoretical yield for hydrogen from formate. In addition, the hydrogen yield from glucose was increased by 50%, and there was threefold higher hydrogen production from glucose with this strain. PMID:21261819

  6. Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids. (United States)

    Shylaja, A; Manikandan, S; Suganthi, K S; Rajan, K S


    Iron oxide (Fe2O3) nanoparticles were prepared from ferric chloride and ferrous sulphate by precipitation reaction. Fe2O3-propylene glycol nanofluid was prepared by dispersing Fe2O3 nanoparticles in propylene glycol through stirred bead milling, shear homogenization and probe ultrasonication. The nanofluid was characterized through measurement of viscosity, particle size distribution and thermal conductivity. The interactions between Fe2O3 nanoparticles and propylene glycol on the nanoparticle surfaces lead to reduction in viscosity, the magnitude of which increases with nanoparticle concentration (0-2 vol%) at room temperature. The thermal conductivity enhancement for 2 vol% nanofluid was about 21% at room temperature, with liquid layering being the major contributor for thermal conductivity enhancement.

  7. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn


    In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl...


    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery


    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  9. Efeitos da adição de propilenoglicol ou monensina à silagem de milho sobre a cinética de degradação dos carboidratos e produção cumulativa de gases in vitro Effects of adding propylene glycol or monensin to corn silage on the degradation kinetics of carbohydrates and in vitro cumulative gas production

    Directory of Open Access Journals (Sweden)

    B.N. Faria


    Full Text Available Avaliaram-se os efeitos dos aditivos propilenoglicol e/ou monensina sobre a degradabilidade média e efetiva dos carboidratos totais, pH e produção cumulativa de gases da silagem de milho por meio da técnica in vitro semi-automática de produção de gases. Os tratamentos constituíram-se de silagem de milho (SM; SM associada ao propilenoglicol (SM+PG; SM associada à monensina (SM+MO; SM associada ao propilenoglicol e à monensina (SM+PG+MO avaliados com duas, quatro, seis, 12, 24, 48 e 96 horas. A adição de monensina ou monensina associada ao propilenoglicol aumentou (PThe effects of the additives propylene glycol and/or monensin on the degradation of total carbohydrates, pH, and cumulative gas production of corn silage by the semi-automated in vitro gas production technique were evaluated. The treatments were corn silage (CS; CS plus propylene glycol (CS+PG; CS plus monensin (CS+MO, and CS plus propylene glycol and monensin (CS+PG+MO, which were evaluated at two, four, six, 12, 24, 48, and 96 hours. The addition of monensin or monensin plus propylene glycol increased (P<0.05 the degradation of total carbohydrates at 2h. The effective degradations of total carbohydrates for CS+MO treatment (55.2; 42.7; and 36.5% were the highest in all passage rates. The use of monensin reduced cumulative gas production from 12 to 96h. CS+MO treatment had the lowest potential of gas production (221ml/g total carbohydrates, and the lowest Lag phase (1.08h, as compared to CS and CS+PG treatment (1.58 and 1.49h, respectively. Cumulative gas production and degradation of total carbohydrates were highly correlated (94 to 97%; P<0.01. The pH was inversely correlated to degradability of total carbohydrates (r= -0.79; P<0.01. Thus, monensin may be used for improving the ruminal degradability of corn silage.

  10. Competence matching in collaborative consortia for service-enhanced products

    NARCIS (Netherlands)

    Oliveira, A.I.; Shafahi, M.; Afsarmanesh, H.; Ferrada, F.; Camarinha-Matos, L.M.; Afsarmanesh, H.; Camarinha-Matos, L.M.; Lucas Soares, A.


    To exploit new market challenges in manufacturing industries, collaborative environments permit that different stakeholders achieve value creation and differentiated products when addressing the design and development of products that include associated business services (service-enhanced products).

  11. Hydrogen production through sorption enhanced reforming

    Energy Technology Data Exchange (ETDEWEB)

    Reijers, H.T.J.; Roskam-Bakker, D.F.; Dijkstra, J.W.; Smidt, R.P. de; Groot, A. de; Van den Brink, R.W. [Energy research Centre of the Netherlands, ECN, Petten (Netherlands)


    Introduction of hydrogen as an energy carrier offers an opportunity to reduce the CO{sub 2} emission from diffuse sources, like vehicles and newly built residential districts. In the long term, it is expected that a hydrogen infrastructure will contribute to CO{sub 2} reduction. In the short term, hydrogen will likely play a role where the application, especially fuel cells, asks for hydrogen. These applications include the transport sector and small-scale combined heat and power. On-site hydrogen production on a gas station or in a residential district requires an average hydrogen production rate between 1000 and 4000 Nm{sup 3}/hour. At the moment, hydrogen is produced industrially in large-scale steam-reformers at rates in the order of 100,000 Nm{sup 3}/hour and at high pressures (20 - 40 bar) and high temperatures (800 - 950 degrees C). To withstand these extreme conditions, expensive materials are required. Besides, a considerable amount of export steam is produced, which cannot be used in the small-scale hydrogen energy systems mentioned before. So there is a need for hydrogen production units operating at milder conditions, while maintaining a high system efficiency. One of the technologies currently investigated at ECN for this purpose is sorption enhanced reforming (SER). Here the methane steam reforming process is conducted in the presence of a CO{sub 2} sorbent. By removing reaction product CO{sub 2}, the equilibrium is shifted to the product side, yielding a relatively pure hydrogen stream. The system is operated periodically in two modes: an sorption cycle during which natural gas and steam are fed to the SER reactor, and a desorption cycle in which the sorbent is regenerated. The CO{sub 2} that is released during regeneration could possibly be used for CO{sub 2} sequestration. The CO{sub 2} sorbent should fulfill the following requirements: high CO{sub 2} uptake, rapid kinetics, chemical stability at high H{sub 2}O concentrations and low costs. A

  12. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. (United States)

    Kwon, Hyuk Taek; Jeong, Hae-Kwon; Lee, Albert S; An, He Seong; Lee, Jong Suk


    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potential for energy-efficient membrane-based separations, no commercial membranes are currently available due to the limitations of current polymeric materials. Zeolitic imidazolate framework, ZIF-8, with the effective aperture size of ∼4.0 Å, has been shown to be very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few reported ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Here we report the first well-intergrown membranes of ZIF-67 (Co-substituted ZIF-8) by heteroepitaxially growing ZIF-67 on ZIF-8 seed layers. The ZIF-67 membranes exhibited impressively high propylene/propane separation capabilities. Furthermore, when a tertiary growth of ZIF-8 layers was applied to heteroepitaxially grown ZIF-67 membranes, the membranes exhibited unprecedentedly high propylene/propane separation factors of ∼200 possibly due to enhanced grain boundary structure.

  13. A Techno-Economic Comparison between Two Methanol-to-Propylene Processes

    Directory of Open Access Journals (Sweden)

    Sarah Jasper


    Full Text Available The significant increase in natural/shale gas production in the US is causing major changes in the chemical and petrochemical markets. These changes include the increased supply of methanol and the decreased supply of propylene. As such, there are promising opportunities for methanol-to-propylene processes in the US. This paper provides a top-level techno-economic analysis of two pathways: methanol to olefins (MTO and methanol to propylene (MTP. Base-case scenarios are simulated using ASPEN Plus to obtain the key mass and energy balances as well as design data. For each process, two scenarios are considered for the feedstock: buying methanol versus making it from natural gas. The return on investment (ROI is calculated for both processes under broad ranges of the prices of natural gas, methanol, and products. In addition to the techno-economic analysis, the CO2 emissions are evaluated and compared.

  14. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin


    Hydrothermal synthesis has been used as a soft chemical method to prepare bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. All obtained samples displayed a plate-like morphology, but their individual aspect ratios varied with the hydrothermal synthesis conditions...... of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination at 550...

  15. Studies on ethylene-propylene-diene rubber modification by N-chlorothio-N-butyl-benzenesulfonamide

    NARCIS (Netherlands)

    Zhang, Hongmei; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.


    N-Chlorothiosulfonamides have been used to modify ethylene-propylene-diene rubber (EPDM) to enhance the compatibility of EPDM in, e.g., natural rubber (NR)/butadiene rubber (BR)/EPDM blends for ozone resistance. N-Chlorothio-N-butyl-benzenesulfonamide (CTBBS) was selected as a representative for

  16. International thermodynamic tables of the fluid state propylene (propene)

    CERN Document Server

    Angus, S; De Reuck, K M


    International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove

  17. 40 CFR 180.491 - Propylene oxide; tolerances for residues. (United States)


    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Propylene oxide; tolerances for... § 180.491 Propylene oxide; tolerances for residues. (a) General. (1) Tolerances are established for residues of propylene oxide when used as a postharvest fumigant in or on the following food commodities...

  18. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-propylene copolymers. 177.1980... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1980 Vinyl chloride-propylene copolymers. The vinyl chloride-propylene copolymers identified in paragraph (a) of this section may be safely...

  19. Diamond growth in premixed propylene-oxygen flames


    Shin, Ho Seon; Goodwin, David G.


    Diamond film growth in low-pressure premixed propylene/oxygen flames is demonstrated. Well-faceted films are grown at a pressure of 180 Torr and a fuel/oxygen ratio of 0.47. Using propylene as the fuel may greatly improve the economics of flame synthesis of diamond, since propylene is an order of magnitude cheaper than acetylene.

  20. 76 FR 17611 - Propylene Oxide; Proposed Pesticide Tolerance (United States)


    ... AGENCY 40 CFR Part 180 Propylene Oxide; Proposed Pesticide Tolerance AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: This document proposes to amend the propylene oxide... this action, EPA is proposing to amend the propylene oxide tolerance ] (40 CFR 180.491) on ``nut, tree...

  1. Measurement of in situ monomer sorption in polyu(propylene)

    NARCIS (Netherlands)

    Pater, J.T.M.; Weickert, G.; Fait, Anna; Mei, Gabriele


    An experimental method has been developed to compare the amount of monomer absorbed in freshly produced poly(propylene) with the amount of monomer absorbed in the same material after degassing. It has been found that propylene sorption in freshly produced poly(propylene) is significantly higher than

  2. Crystal-plane-controlled selectivity of Cu(2)O catalysts in propylene oxidation with molecular oxygen. (United States)

    Hua, Qing; Cao, Tian; Gu, Xiang-Kui; Lu, Jiqing; Jiang, Zhiquan; Pan, Xiaorong; Luo, Liangfeng; Li, Wei-Xue; Huang, Weixin


    The selective oxidation of propylene with O2 to propylene oxide and acrolein is of great interest and importance. We report the crystal-plane-controlled selectivity of uniform capping-ligand-free Cu2 O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2 : Cu2 O octahedra exposing {111} crystal planes are most selective for acrolein; Cu2 O cubes exposing {100} crystal planes are most selective for CO2 ; Cu2 O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One-coordinated Cu on Cu2 O(111), three-coordinated O on Cu2 O(110), and two-coordinated O on Cu2 O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2 , respectively. These results reveal that crystal-plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. New catalysts for carboxylation of propylene glycol to propylene carbonate via high-throughput screening. (United States)

    Castro-Osma, José A; Comerford, James W; Heyn, Richard H; North, Michael; Tangstad, Elisabeth


    High throughput methodologies screened 81 different metal salts and metal salt combinations as catalysts for the carboxylation of propylene glycol to propylene carbonate, as compared to a 5 mol% Zn(OAc)2/p-chlorobenzene sulfonic acid benchmark catalyst. The reactions were run with added acetonitrile (MeCN) as a chemical water trap. Two new catalysts were thereby discovered, zinc trifluoromethanesulfonate (Zn(OTf)2) and zinc p-toluenesulfonate. The optimal reaction parameters for the former catalyst were screened. Zn(OTf)2 gave an overall propylene carbonate yield of greater than 50% in 24 h, twice as large as the previous best literature yield with MeCN as a water trap, with 69% selectivity and 75% conversion of propylene glycol at 145 °C and 50 bar CO2 pressure.

  4. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C


    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  5. Poly (propylene carbonate)/exfoliated graphite nanocomposites ...

    Indian Academy of Sciences (India)

    In this study, poly(propylene carbonate) (PPC) and exfoliated graphite (PPC–EG) composites were prepared by the solution blending method and their selective extraction and detection of gold(III) were investigated. Specifically, a new effective adsorbent was developed for a selective extraction and determination of gold(III) ...

  6. The influence of alcohol, propylene glycol and 1,2-pentanediol on the permeability of hydrophilic model drug through excised pig skin. (United States)

    Duracher, Lucie; Blasco, Laurent; Hubaud, Jean-Claude; Vian, Laurence; Marti-Mestres, Gilberte


    Alcohol and glycol including 1,2-pentanediol, a new product in this field, were examined for their transdermal penetration enhancing in vitro properties using pig skin and caffeine as a model drug. In order to investigate a possible influence of these compounds, we followed diffusion from an aqueous solution with caffeine followed by a series of different vehicles, their compositions were: (1) in water as a control; (2) in propylene glycol/ethanol/water (25:25:48; v/v/v); (3) in 1,2-pentanediol/water (2.5:95.5, v/v); (4) in 1,2-pentanediol/water (5:93, v/v); in propylene glycol/water (5:93; v/v); and in ethanol/water (5:93; v/v). The stratum corneum/vehicle partition coefficients (K(m)), maximum flux (J), enhancement factor (EF), 24-h receptor concentration (Q(24h)) were determined and compared to control values (caffeine in water). Permeation was also expressed in percentage of the applied dose absorbed in the different compartments. In all test models, caffeine was released and penetrated into pig skin. The 1,2-pentanediol was presented as the most effective enhancer; with a low proportion of this compound (only 5%), caffeine penetrated the skin quicker and in a greater extent. While this compound showed promise as penetration enhancer, further study was required to determine its effectiveness with others drugs and its irritation potential.

  7. Bio-based acrylic acid from sugar via propylene glycol and allyl alcohol

    NARCIS (Netherlands)

    Pramod, C. V.; Fauziah, R.; Seshan, K.; Lange, J. P.


    A new route for producing bio-based acrylic acid is proposed. It starts with the conversion of carbohydrates to propylene glycol, being main or by-product, and proceeds via a subsequent dehydration to allyl alcohol under gas-phase conditions over K-modified ZrO2 and a final oxidation over MoWVOx


    Directory of Open Access Journals (Sweden)

    R. S. Costa

    Full Text Available Abstract Effects of phosphorus addition to HZSM-5 on ethanol conversion to propylene were evaluated. Catalysts were characterized by XRF, XRD, nitrogen adsorption, 27Al and 31P MAS NMR, n-propylamine and ammonia TPD. Increasing P content decreased the strength and density of acid total sites. Ethanol dehydration was carried out in a fixed bed reactor operating at atmospheric pressure. Conversion was around 100% for all catalysts. 1.2 wt% of P catalyst showed the highest propylene yield, and was used to evaluate temperature and ethanol partial pressure effects on the product distribution. The highest propylene accumulated productivity was obtained for an ethanol partial pressure of 0.4 atm. Propylene formation was favored in the temperature range 475-500 °C. Significant changes in the product distribution as a function of time on stream were observed at higher temperatures, suggesting stronger catalyst deactivation. The ethylene yield decreased up to 500 °C, rising significantly at 550 °C, possibly due to heavier product cracking reactions.

  9. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. (United States)

    Elmoslemany, Riham M; Abdallah, Ossama Y; El-Khordagui, Labiba K; Khalafallah, Nawal M


    Propylene glycol (PG)-phospholipid vesicles have been advocated as flexible lipid vesicles for enhanced skin delivery of drugs. To further characterize the performance of these vesicles and to address some relevant pharmaceutical issues, miconazole nitrate(MN)-loaded PG nanoliposomes were prepared and characterized for vesicle size, entrapment efficiency, in vitro release, and vesicle stability. An issue of pharmaceutical importance is the time-dependent, dilution-driven diffusion of propylene glycol out of the vesicles. This was addressed by assessing propylene glycol using gas chromatography in the separated vesicles and monitoring its buildup in the medium after repeated dispersion of separated vesicles in fresh medium. Further, the antifungal activity of liposomal formulations under study was assessed using Candida albicans, and their in vitro skin permeation and retention were studied using human skin. At all instances, blank and drug-loaded conventional liposomes were included for comparison. The results provided evidence of controlled MN delivery, constant percent PG uptake in the vesicles (≈45.5%) in the PG concentration range 2.5 to 10%, improved vesicle stability, and enhanced skin deposition of MN with minimum skin permeation. These are key issues for different formulation and performance aspects of propylene glycol-phospholipid vesicles.

  10. Managing the soil for enhanced food production in Nigeria ...

    African Journals Online (AJOL)

    The paper reviews soil management practices for enhanced food production in Nigeria. The different types of soil in Nigeria were discussed. The paper further gave details of the management practices that farmers could benefit from to enhance their productivity. These included alley cropping, agro-forestry, minimum ...

  11. A computational study of the catalytic aerobic epoxidation of propylene over the coordinatively unsaturated metal-organic framework Fe3(btc)2: formation of propylene oxide and competing reactions. (United States)

    Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras


    The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .

  12. Genetic Engineering Strategies for Enhanced Biodiesel Production. (United States)

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu


    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  13. Tuning PIM-PI-Based Membranes for Highly Selective Transport of Propylene/Propane

    KAUST Repository

    Swaidan, Ramy J.


    To date there exists a great deal of energetic and economic inefficiency in the separation of olefins from paraffins because the principal means of achieving industrial purity requirements is accomplished with very energy intensive cryogenic distillation. Mitigation of the severe energy intensity of the propylene/propane separation has been identified as one of seven chemical separations which can change the landscape of global energy use, and membranes have been targeted as an emerging technology because they offer scalability and lower capital and operating costs. The focus of this work was to evaluate a new direction of material development for the very industrially relevant propylene/propane separation using membranes. The objective was to develop a rational design approach for generating highly selective membranes using a relatively new platform of materials known as polyimides of intrinsic microporosity (PIM-PIs), the prospects of which have never been examined for the propylene/propane separation. Structurally, PIMs comprise relatively inflexible macromolecular architectures integrating contortion sites that help disrupt packing and trap microporous free volume elements (< 20 Å). To date most of the work reported in the literature on this separation is based on conventional low free volume 6FDA-based polyimides which in the best case show moderate C3H6/C3H8 selectivities (<20) with C3H6 permeabilities too low to garner industrial interest. Due to propylene and propane’s relatively large molecular size, we hypothesized that the use of more open structures can provide greater accessibility to the pores necessary to enhance membrane sieving and flux. It has been shown for numerous key gas separations that introduction of microporosity into a polymer structure can defy the notorious permeability/selectivity tradeoff curve and induce simultaneous boosts in both permeability and selectivity. The cornerstone approach to designing state of the art high

  14. Millimeter and submillimeter spectrum of propylene oxide (United States)

    Mesko, A. J.; Zou, Luyao; Carroll, P. Brandon; Widicus Weaver, Susanna L.


    The spectrum of propylene oxide was collected from 70 GHz to 1 THz using direct absorption millimeter and submillimeter spectroscopy. Analysis of the spectrum was performed using the SPFIT/SPCAT programs for the A state. A full internal rotor analysis was performed using the XIAM program. The barrier to internal rotation of the methyl group was determined to be 893 cm-1. The precision of the rotation constants, centrifugal distortion constants, and internal rotor parameters was increased over the results reported by previous low-frequency studies. The results of this laboratory study and the associated analysis, as well as a spectral prediction for the ground vibrational state of propylene oxide, are presented.

  15. Biohydrogen production and bioprocess enhancement : a review


    Mudhoo, Ackmez


    This paper provides an overview of the recent advances and trends in research in the biological production of hydrogen (biohydrogen). Hydrogen from both fossil and renewable biomass resources is a sustainable source of energy that is not limited and of different applications. The most commonly used techniques of biohydrogen production, including direct biophotolysis, indirect biophotolysis, photo-fermentation and dark-fermentation, conventional or "modern" techniques are examined in this revi...

  16. Tunnel production enhances quality in organic carrot seed production

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B


    In Denmark, organic vegetable seed production is possible for some of the late-maturing species when the maturing is performed in lightweight tunnels which are also relevant for the isolation of small-scale production. The tunnel system offers several advantages, e.g., it is possible to control...... production showed lower yields than did their open-pollinated counterparts. Yields ranging from 60-123 g seeds m-2 can be obtained, but the production needs to be carefully planned and monitored. Different growing systems in tunnels have been studied in both open-pollinated and hybrid carrot (Daucus carota L...

  17. On the structure of an aqueous propylene glycol solution (United States)

    Rhys, Natasha H.; Gillams, Richard J.; Collins, Louise E.; Callear, Samantha K.; Lawrence, M. Jayne; McLain, Sylvia E.


    Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.

  18. Ice recrystallization inhibition in ice cream by propylene glycol monostearate. (United States)

    Aleong, J M; Frochot, S; Goff, H D


    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  19. Enhancing natural rubber ( Hevea brasiliensis production through ...

    African Journals Online (AJOL)

    The study investigated extension activities in natural rubber production in South West Zone of Nigeria. Fifty rubber farmers randomly selected from five communities in the rubber belt sub-zone were sampled. A structured interview schedule was used in collecting data from the respondents.Statistical analysis was ...

  20. Archive of Census Related Products (ACRP): 1990 Enhanced Migration Files (United States)

    National Aeronautics and Space Administration — The 1990 Enhanced Migration Files portion of the Archive of Census Related Products (ACRP) contains migration data derived from the U.S. Census Bureau's Summary Tape...

  1. Measuring and Enhancing Organizational Productivity: An Annotated Bibliography. (United States)


    team approach at Volvo in Sweden. 22 Gellerman, S. W. Who’s against productivity? The Conference Board Record, 1973, 10 (9), 39-43. Argues that...productivity policy. The symposium provides a progress update for the reader and integrates the "major strands of government productivity experience and...and index numbers, and (e) constantly revise and update measures. 97 Staats, E. B. Measuring and enhancing federal productivity. Conference Board

  2. HBV Core Protein Enhances Cytokine Production

    Directory of Open Access Journals (Sweden)

    Tatsuo Kanda


    Full Text Available Hepatitis B virus (HBV infection, a cause of hepatocellular carcinoma (HCC, remains a serious global health concern. HCC development and human hepatocarcinogenesis are associated with hepatic inflammation caused by host interferons and cytokines. This article focused on the association between the HBV core protein, which is one of the HBV-encoding proteins, and cytokine production. The HBV core protein induced the production of interferons and cytokines in human hepatoma cells and in a mouse model. These factors may be responsible for persistent HBV infection and hepatocarcinogenesis. Inhibitors of programmed death (PD-1 and HBV core and therapeutic vaccines including HBV core might be useful for the treatment of patients with chronic HBV infection. Inhibitors of HBV core, which is important for hepatic inflammation, could be helpful in preventing the progression of liver diseases in HBV-infected patients.

  3. Enhancing Productivity through Feedback and Goal Setting (United States)


    for productivity research. This project was initially monitored by Maj John 0. Edwards , Jr., and later by Dr. Clessen J. Martin. 4W- .==b PAGE &AM-NO...motivational, learning, and reward properties of feedback (Ammons, 1956; Annett, 1969; Thorndike , 1927). As a result, a considerable body of research...Psychological Bulletin, 1974, 81, 434-452. Thorndike , E.L. The law of effect. American Journal of Psychology, * 1927, 39, 212 222 Turner, A.N., & Lawrence

  4. Enhanced polyhydroxybutyrate production in transgenic sugarcane. (United States)

    Petrasovits, Lars A; Zhao, Lihan; McQualter, Richard B; Snell, Kristi D; Somleva, Maria N; Patterson, Nii A; Nielsen, Lars K; Brumbley, Stevens M


    Polyhydroxybutyrate (PHB) is a bacterial polyester that has properties similar to some petrochemically produced plastics. Plant-based production has the potential to make this biorenewable plastic highly competitive with petrochemical-based plastics. We previously reported that transgenic sugarcane produced PHB at levels as high as 1.8% leaf dry weight without penalty to biomass accumulation, suggesting scope for improving PHB production in this species. In this study, we used different plant and viral promoters, in combination with multigene or single-gene constructs to increase PHB levels. Promoters tested included the maize and rice polyubiquitin promoters, the maize chlorophyll A/B-binding protein promoter and a Cavendish banana streak badnavirus promoter. At the seedling stage, the highest levels of polymer were produced in sugarcane plants when the Cavendish banana streak badnavirus promoter was used. However, in all cases, this promoter underwent silencing as the plants matured. The rice Ubi promoter enabled the production of PHB at levels similar to the maize Ubi promoter. The maize chlorophyll A/B-binding protein promoter enabled the production of PHB to levels as high as 4.8% of the leaf dry weight, which is approximately 2.5 times higher than previously reported levels in sugarcane. This is the first time that this promoter has been tested in sugarcane. The highest PHB-producing lines showed phenotypic differences to the wild-type parent, including reduced biomass and slight chlorosis. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. Gas-phase simulated moving bed: Propane/propylene separation on 13X zeolite. (United States)

    Martins, Vanessa F D; Ribeiro, Ana M; Plaza, Marta G; Santos, João C; Loureiro, José M; Ferreira, Alexandre F P; Rodrigues, Alírio E


    In the last years several studies were carried out in order to separate gas mixtures by SMB technology; however, this technology has never been implemented on an industrial scale. In the present work, a gas phase SMB bench unit was built and tested for the separation of propane and propylene mixtures, using 13X zeolite extrudates as adsorbent and isobutane as desorbent. Three experiments were performed to separate propane/propylene by gas phase SMB in the bench scale unit with a 4-2-2 configuration, i.e., open loop circuit by suppressing section IV (desorbent regeneration followed by a recycle). Consequently, all the experiments were conducted using an external supply of pure isobutane as desorbent. Parameters such as switching time, extract and raffinate stream flow rates were changed to improve the efficiency of the process. Experimental results have shown that it is feasible to separate propylene from propane by gas phase SMB at a bench scale and that this process is a potential candidate to replace the conventional technologies for the propane/propylene separation. The performance parameters obtained are very promising for future development of this technology, since propylene was obtained in the extract stream with a purity of 99.93%, a recovery of 99.51%, and a productivity of [Formula: see text] . Propane was obtained in the raffinate stream with a purity of 98.10%, a recovery of 99.73% and a productivity of [Formula: see text] . The success of the above mentioned bench scale tests is a big step for the future implementation of this technology in a larger scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biochemically enhanced methane production from coal (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  7. Enhanced bulk polysilicon production using silicon tubes (United States)

    Jafri, Ijaz; Chandra, Mohan; Zhang, Hui; Prasad, Vish; Reddy, Chandra; Amato-Wierda, Carmela; Landry, Marc; Ciszek, Ted


    A novel technique using silicon tubes for the production of bulk polysilicon via chemical vapor deposition is presented. Our experimental studies with a model reactor indicate that the polysilicon growth inside the silicon tube (15.3 g) exceeds that of the calculated polysilicon growth on silicon slim rods (4.3 g) over 55 h of deposition time. A computational model is also being developed to simulate the growth rates of the model reactor. Preliminary computational results from this model show a slightly asymmetric temperature distribution at the reactor center line with a 1000 sccm argon flow at 850°C reactor temperature. Both these experimental and computational modeling studies have identified key criteria for the prototype reactor being designed for bulk polysilicon growth.

  8. [Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity]. (United States)

    Starek-Świechowicz, Beata; Starek, Andrzej


    Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Higgs Pair Production as a Signal of Enhanced Yukawa Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg U.; Carena, Marcela [Chicago U., KICP; Carmona, Adrián [U. Mainz, PRISMA


    We present a non-trivial correlation between the enhancement of the Higgs-fermion couplings and the Higgs pair production cross section in two Higgs doublet models with a flavour symmetry. This symmetry suppresses flavour-changing neutral couplings of the Higgs boson and allows for a partial explanation of the hierarchy in the Yukawa sector. After taking into account the constraints from electroweak precision measurements, Higgs coupling strength measurements, and unitarity and perturbativity bounds, we identify an interesting region of parameter space leading to enhanced Yukawa couplings as well as enhanced di-Higgs gluon fusion production at the LHC reach. This effect is visible in both the resonant and non-resonant contributions to the Higgs pair production cross section. We encourage dedicated searches based on differential distributions as a novel way to indirectly probe enhanced Higgs couplings to light fermions.

  10. Restoring and Enhancing Productivity of Degraded Tephra-Derived Soils (United States)

    Chuck Bulmer; Jim Archuleta; Mike Curran


    Soil restoration (sometimes termed enhancement) is an important strategy for sustaining the productivity of managed forest landscapes. Tephra-derived soils have unique physical and chemical characteristics that affect their response to disturbance and restoration. A variety of factors reduce forest productivity on degraded soils. Site-specific information on soil...

  11. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  12. Enhancement of alkaline protease production by Bacillus clausii ...

    African Journals Online (AJOL)

    Enhancement of alkaline protease production by Bacillus clausii using Taguchi experimental design. ... SFG Oskouie, F Tabandeh, B Yakhchali, F Eftekhar. Abstract. The effect of culture conditions on protease production and bacterial growth of Bacillus clausii was investigated using Taguchi design of experiment.

  13. Solution stability of Captisol-stabilized melphalan (Evomela) versus Propylene glycol-based melphalan hydrochloride injection. (United States)

    Singh, Ramsharan; Chen, Jin; Miller, Teresa; Bergren, Michael; Mallik, Rangan


    The objective of this study was to compare the stability of recently approved Captisol-stabilized propylene glycol-free melphalan injection (Evomela™) against currently marketed propylene glycol-based melphalan injection. The products were compared as reconstituted solutions in vials as well as admixture solutions prepared from normal saline in infusion bags. Evomela and propylene glycol-based melphalan injection were reconstituted in normal saline and organic custom diluent, respectively, according to their package insert instructions. The reconstituted solutions were diluted in normal saline to obtain drug admixture solutions at specific drug concentrations. Stability of the solutions was studied at room temperature by assay of melphalan and determination of melphalan-related impurities. Results show that based on the increase in total impurities in propylene glycol-based melphalan injection at 0.45 mg/mL, Evomela admixture solutions are about 5, 9, 15 and 29 times more stable at concentrations of 0.45, 1.0, 2.0 and 5.0 mg/mL, respectively. Results confirmed that reconstituted Evomela solution can be stored in the vial for up to 1 h at RT or for up to 24 h at refrigerated temperature (2-8 °C) with no significant degradation. After storage in the vial, it remains stable for an additional 3-29 h after preparation of admixture solution in infusion bags at concentrations of 0.25-5.0 mg/mL, respectively. In addition, Evomela solution in saline, at concentration of 5.0 mg/mL melphalan was bacteriostatic through 72 h storage at 2-8 °C. Formulation of melphalan with Captisol technology significantly improved stability compared to melphalan hydrochloride reconstituted with propylene-glycol based diluents.

  14. Hydrogenolysis of Glycerol to Propylene Glycol on Nanosized Cu-Zn-Al Catalysts Prepared Using Microwave Process. (United States)

    Kim, Dong Won; Ha, Sang Ho; Moon, Myung Jun; Lim, Kwon Taek; Ryu, Young Bok; Lee, Sun Do; Lee, Man Sig; Hong, Seong-Soo


    Cu-Zn-Al catalysts were prepared using microwave-assisted process and co-precipitation methods. The prepared catalysts were characterized by XRD, BET, XPS and TPD of ammonia and their catalytic activity for the hydrogenolysis of glycerol to propylene glycol was also examined. The XRD patterns of Cu/Zn/Al mixed catalysts show CuO and ZnO crystalline phase regardless of preparation method. The highest glycerol hydrogenolysis conversion is obtained with the catalyst having a Cu/Zn/Al ratio of 2:2:1. Hydrogen pre-reduction of catalysts significantly enhanced both glycerol conversions and selectivity to propylene glycol. The glycerol conversion increased with an increase of reaction temperature. However, the selectivity to propylene glycol increased with an increase of temperature, and then declined to 30.5% at 523 K.

  15. Technological and energetic improvement of a propylene distillation column

    Directory of Open Access Journals (Sweden)

    Ostrovski Nikolaj


    Full Text Available A multicomponent distillation column for propylene purification was optimized in order to increase its energetic effectively. The ©-method coupled with the Soave-Redlich-Kwong equation of state for generating K-values and enthalpies was used. The optimal combination of pressure, temperature and reflux flow provided the decrease of steam consumption and loss of propylene with bottom flow.

  16. Mechanical Properties of Healthy and ex vivo Onychomycosis Nails and the Influence of a Porphyrin-propylene Glycol Antifungal Formulation

    NARCIS (Netherlands)

    A. Hosseinzoi (Amu); F. Galli (Federica); L. Incrocci (Luca); T. Smijs (Threes)


    textabstractAims: To investigate nail penetration enhancing effectiveness of a novel drug formulation and ingredients, 40% propylene glycol (PG) and 40 μM multifunctional photosensitizer (MFPS). Proposed formulation was proven effective in photodynamic treatment (PDT) of ex vivo fungal infections

  17. Anaerobic treatability of wastewater contaminated with propylene glycol. (United States)

    Sezgin, Naim; Tonuk, Gulseven Ubay


    The purpose of this study was to investigate the biodegradability of propylene glycol in anaerobic conditions by using methanogenic culture. A master reactor was set up to develop a culture that would be acclimated to propylene glycol. After reaching steady-state, culture was transferred to serum bottles. Three reactors with same initial conditions were run for consistency. Propylene glycol was completely biodegradable under anaerobic methanogenic conditions. Semi-continuous reactors operated at a temperature of 35°C had consistently achieved a propylene glycol removal of higher than 95 % based on chemical oxygen demand (COD). It was found that in semi-continuous reactors, anaerobic treatment of propylene glycol at concentrations higher than 1,500 mg COD m(-3) day(-1) was not convenient due to instable effluent COD.

  18. Harnessing plant-microbe interactions for enhancing farm productivity. (United States)

    Macdonald, Catriona; Singh, Brajesh


    Declining soil fertility and farm productivity is a major global concern in order to achieve food security for a burgeoning world population. It is reported that improving soil health alone can increase productivity by 10-15% and in combination with efficient plant traits, farm productivity can be increased up to 50-60%. In this article we explore the emerging microbial and bioengineering technologies, which can be employed to achieve the transformational increase in farm productivity and can simultaneously enhance environmental outcomes i.e., low green house gas (GHG) emissions. We argue that metagenomics, meta-transcriptomics and metabolomics have potential to provide fundamental knowledge on plant-microbes interactions necessary for new innovations to increase farm productivity. Further, these approaches provide tools to identify and select novel microbial/gene resources which can be harnessed in transgenic and designer plant technologies for enhanced resource use efficiencies.

  19. A novel derivatization-free method of formaldehyde and propylene glycol determination in hydrogels by liquid chromatography with refractometric detection. (United States)

    Isakau, Henadz; Robert, Marielle; Shingel, Kirill I


    The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.

  20. Enhancing product label effectiveness by increasing attention and choice

    DEFF Research Database (Denmark)

    Peschel, Anne; Orquin, Jacob Lund; Mueller Loose, Simone

    and to increase purchase likelihood of labeled products, attention must be guided to the label. We conducted a combined eye tracking and choice experiment manipulating the surface size and visual saliency of product labels. Results show a strong and significant increase in attention towards product labels which...... are larger and more visually salient. The effect on attention also carries over into increased purchase likelihood. Both marketers and policy makers can benefit from the methodology and findings which provide directions for designing product labels that enhance attention capture and purchase decisions....

  1. Hydrogenolysis of 5-carbon sugars, sugar alcohols, and methods of making propylene glycol (United States)

    Werpy, Todd A [West Richland, WA; Zacher, Alan H [Kennewick, WA; Miller, Dennis J [Okemos, MI


    Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 5-carbon sugar, sugar alcohol, or lactic acid are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol. A process for the synthesis of PG from lactate or lactic acid is also described.

  2. The Cumulative Daily Tolerance Levels of Potentially Toxic Excipients Ethanol and Propylene Glycol Are Commonly Exceeded in Neonates and Infants

    DEFF Research Database (Denmark)

    Valeur, Kristine Svinning; Hertel, Steen Axel; Lundstrøm, Kaare Engell


    Polymedicated neonates and young infants may be at risk of harmful cumulative exposure to toxic excipients like ethanol, propylene glycol and benzyl alcohol during routine clinical care. The aim of this study was to calculate the cumulative daily alcohol exposure (mg/kg/day) in polymedicated....... In total, 45% (n = 288) of patients were exposed to an alcohol of interest; 2% (n = 14) were exposed to benzyl alcohol (BA), 38% (n = 237) to ethanol and 23% (n = 146) to propylene glycol (PG). Of the total number of prescriptions involving ethanol-containing medicinal products (n = 334), 51% would alone...

  3. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen


    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  4. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang


    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  5. 21 CFR 500.50 - Propylene glycol in or on cat food. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in... determined that this use of propylene glycol is not prior sanctioned. [61 FR 19544, May 2, 1996] ...

  6. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate). (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Succistearin (stearoyl propylene glycol hydrogen... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol hydrogen... or C18 fatty acid chain length), and propylene glycol. (b) The additive meets the following...

  7. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: ... and antibacterial agent makes CA very important ... Treatment of. S. fradiae NRRL 2702 with n-nitroso-guanidine. (NTG), or exposure to UV formed from tylosin hyper-producing mutants. Mutagenesis by NTG.

  8. Enhanced production of glucose oxidase from UV- mutant of ...

    African Journals Online (AJOL)



    Jan 19, 2009 ... UV rays were used as mutagen in wild type strain of Aspergillus niger for enhanced production of glucose oxidase. After mutangenization and selection, mutant A. niger strains, resistant to 2-deoxy-D- glucose were obtained. The mutants showed 1.57 and 1.98 fold increase in activities of extra and intra.

  9. Mycorrhizal Enhancement of Biomass Productivity of Big Bluestem ...

    African Journals Online (AJOL)

    Methodology and results: Big bluestem (BB) and switchgrass (SG) were grown in a soilless substrate adjusted to pH=6.5 or 4.5 and inoculated separately with Rc and Ri. Plants were grown in the greenhouse for 12 weeks. Results show that AMF significantly enhanced biomass productivity of the grasses over corresponding ...

  10. Integrated agriculture enhances farm productivity and livelihoods in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    cassava monocropping. • Female and landless farmers have gained access to land for cultivation of short duration crops and benefited from improved practices, cultivation of best varieties and consumption of diverse species, including vegetables, through intercropping. Integrated agriculture enhances farm productivity.

  11. Hortipastoral based land use systems for enhancing productivity of ...

    African Journals Online (AJOL)


    Hortipastoral based land use systems for enhancing productivity of degraded lands under rain fed and partially irrigated conditions. S. K. Sharma. Indian Grassland and Fodder Research Institute, Jhansi (India). Present postal address: Indian Agricultural Research Institute, Regional Station, Agricultural College Estate, ...

  12. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)



    Mar 15, 2012 ... the stalk juice of sweet sorghum was used as main substrate for ethanol production by a Saccharomyces cerevisiae strain. The fermentation medium compositions were optimized by RSM, from which the yield of ethanol was enhanced. MATERIALS AND METHODS. Materials. Sweet sorghum was obtained ...

  13. The Enhancing of Ethanol Production from Molasses and Cost ...

    African Journals Online (AJOL)

    This paper discusses further possibilities of how production of ethanol can be enhanced from molasses. For an alcoholic fermentation to proceed, it is necessary to have a good growth of yeast, then to maintain the activity of this biomass till the end of the fermentation. Growth of yeast depends on some parameters, one of ...

  14. Humor in Advertisements Enhances Product Liking by Mere Association

    NARCIS (Netherlands)

    Strick, M.A.; Baaren, R.B. van; Holland, R.W.; Knippenberg, A.F.M. van


    This reprinted article originally appeared in the Journal of Experimental Psychology: Applied, 2009 (Mar), Vol 15(1), 35-45. (The following abstract of the original article appeared in record 2009-03685-005). Humor in advertising is known to enhance product liking, but this attitude change is often

  15. Enhancing crop productivity through community-based seed ...

    African Journals Online (AJOL)

    Enhancing crop productivity through community-based seed multiplication system. ... to purchase household items, and part invested in transport businesses and rearing of small ruminants as well as in human capital such as paying children's school fees and family hospital bills and meeting other social responsibilities.

  16. Enhancement of alkaline protease production by Bacillus clausii ...

    African Journals Online (AJOL)



    Nov 19, 2007 ... Full Length Research Paper. Enhancement of alkaline protease production by. Bacillus clausii using Taguchi ... inorganic nitrogen sources, agitation and metal ion, each at four levels were selected and an orthogonal array layout of L16 (45) were performed. The proposed medium for alkaline protease ...

  17. Allocation of financial resource to enhance educational productivity ...

    African Journals Online (AJOL)

    This study examines the allocation of financial resource to the education industry and how it enhances productivity and students' outcomes of the secondary schools' students in the Unity Colleges in Ogun state. It adopted ex-post factor research design and purposeful sample and sampling technique for the study. Scholars' ...

  18. Direct Conversion of Propylene Oxide to 3-Hydroxy Butyric Acid Using a Cobalt Carbonyl Ionic Liquid Catalyst

    Directory of Open Access Journals (Sweden)

    Senkuttuvan Rajendiran


    Full Text Available The reported catalytic system demonstrates the possibility of efficient mass production of 3-hydroxybutyric acid (3-HBA from inexpensive raw materials. The direct coupling of propylene oxide, water, and CO was catalyzed by 1-butyl-3-methylimidazolium cobalt tetracarbonyl ([Bmim][Co(CO4] ionic liquid to form 3-HBA with >99% conversion (49% selectivity under mild conditions.

  19. Influence of urea, isopropanol, and propylene glycol on rutin in vitro release from cosmetic semisolid systems estimated by factorial design. (United States)

    Baby, Andre Rolim; Haroutiounian-Filho, Carlos Alberto; Sarruf, Fernanda Daud; Pinto, Claudineia Aparecida Sales de Oliveira; Kaneko, Telma Mary; Velasco, Maria Valeria Robles


    Rutin, one of the major flavonoids found in an assortment of plants, was reported to act as a sun protection factor booster with high anti-UVA defense, antioxidant, antiaging, and anticellulite, by improvement of the cutaneous microcirculation. This research work aimed at evaluating the rutin in vitro release from semisolid systems, in vertical diffusion cells, containing urea, isopropanol and propylene glycol, associated or not, according to the factorial design with two levels with center point. Urea (alone and in association with isopropanol and propylene glycol) and isopropanol (alone and in association with propylene glycol) influenced significant and negatively rutin liberation in diverse parameters: flux (microg/cm(2).h); apparent permeability coefficient (cm/h); rutin amount released (microg/cm(2)); and liberation enhancement factor. In accordance with the results, the presence of propylene glycol 5.0% (wt/wt) presented statistically favorable to promote rutin release from this semisolid system with flux = 105.12 +/- 8.59 microg/cm(2).h; apparent permeability coefficient = 7.01 +/- 0.572 cm/h; rutin amount released = 648.80 +/- 53.01 microg/cm(2); and liberation enhancement factor = 1.21 +/- 0.07.

  20. Advancements in understanding and enhancing biogenic methane production from coals

    Energy Technology Data Exchange (ETDEWEB)

    Budwill, K.; Koziel, S.; Vidmar, J. [Alberta Innovates - Technology Futures (Canada)


    Biogenic methane is one of the numerous natural resources found in Western Canada for the production of energy. Research suggests that this natural gas is generated from methanogenic microbial cultures in deep coal beds under anaerobic conditions. However, methanogenesis is an extremely slow process and is not yet fully understood. For the process to be profitable, it needs to be significantly enhanced. The current study proposes the use of organic nitrogen-rich nutrients to enhance the production of methane from microbial cultures in deep coal-beds. First, samples of methanogenic cultures from coal seams were studied in order to identify and make a taxonomic analysis of the diverse species. The bionutrient was then applied to the cultures. Subsequent analysis showed that nutrient feed significantly increased methane production. The study allowed for a better understanding of the methanogenesis process, allowing it to be improved through use of the newly developed biotechnology.

  1. Enhanced Production of Ligninolytic Enzymes by a Mushroom Stereum ostrea

    Directory of Open Access Journals (Sweden)

    K. Y. Usha


    Full Text Available The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasing its activity by 2 times compared to control. Among the surfactants, Tween 20, Tween 80, and Triton X 100, tested in the studies, Tween 80 stimulated the production of ligninolytic enzymes. Biosorption of dyes was carried out by using two lignocellulosic wastes, rice bran and wheat bran, in 50 ppm of remazol brilliant blue and remazol brilliant violet 5R dyes. These dye adsorbed lignocelluloses were then utilized for the production of ligninolytic enzymes in solid state mode. The two dye adsorbed lignocelluloses enhanced the production of laccase and manganese peroxidase but not lignin peroxidase.

  2. Demand for functional and nutritional enhancements in specialty milk products. (United States)

    Gulseven, Osman; Wohlgenant, Michael


    This article investigates the socio-demographic determinants affecting the demand for functional and nutritional enhancements in milk products based on a two-stage model. In order to derive the implicit market values of these enhancements, first we estimated the relationship between the prices of differentiated dairy products and the amount or respectively the presence of specific characteristics in these products. Next, using these implicit prices along with the information on households' demographic background, we analyzed the socio-demographic factors that affect consumer demand for specific functional and nutritional enhancements. The model is estimated using a combined panel data set based on AC Nielsen Retail Homescan Panel and the USDA Nutrient Database. Our results indicate that being lactose/cholesterol free (LFCF) and organic implies substantially higher price premiums, whereas soy has a negative price. Socio-demographic factors such as income, racial profile, presence of children; education level and age have significant effects on the demand for functional enhancements. Specialty milk consumption increases with age, education, and presence of kids, whereas it declines with income. The ratio of specialty milk consumption to total milk consumption is substantially higher among Hispanic, Asian and African-American households. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Product design enhancement using apparent usability and affective quality. (United States)

    Seva, Rosemary R; Gosiaco, Katherine Grace T; Santos, Ma Crea Eurice D; Pangilinan, Denise Mae L


    In this study, apparent usability and affective quality were integrated in a design framework called the Usability Perception and Emotion Enhancement Model (UPEEM). The UPEEM was validated using structural equation modeling (SEM). The methodology consists of four phases namely product selection, attribute identification, design alternative generation, and design alternative evaluation. The first stage involved the selection of a product that highly involves the consumer. In the attribute identification stage, design elements of the product were identified. The possible values of these elements were also determined for use in the experimentation process. Design of experiments was used to identify how the attributes will be varied in the design alternative stage and which of the attributes significantly contribute to affective quality, apparent usability, and desirability in the design evaluation stage. Results suggest that product attributes related to form are relevant in eliciting intense affect and perception of usability in mobile phones especially those directly related to functionality and aesthetics. This study considered only four product attributes among so many due to the constraints of the research design employed. Attributes related to aesthetic perception of a product enhance apparent usability such as those related to dimensional ratios. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures


    Martínez, Fleming; Romdhani, Asma; Delgado, Daniel R.


    The solubility of sulfanilamide (SA) in propylene glycol + water cosolvent mixtures was determined at temperatures from 293.15 to 313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and mixing were obtained from these solubility data by using the van’t Hoff and Gibbs equations. The solubility was maximal in propylene glycol and very low in water at all the temperatures. A non linear enthalpy–entropy relationship was observed from a plot of enthal...

  5. Stabilization of distearoylphosphatidylcholine lamellar phases in propylene glycol using cholesterol. (United States)

    Harvey, Richard D; Ara, Nargis; Heenan, Richard K; Barlow, David J; Quinn, Peter J; Lawrence, M Jayne


    Phospholipid vesicles (liposomes) formed in pharmaceutically acceptable nonaqueous polar solvents such as propylene glycol are of interest in drug delivery because of their ability to improve the bioavailability of drugs with poor aqueous solubility. We have demonstrated a stabilizing effect of cholesterol on lamellar phases formed by dispersion of distearoylphosphatidylcholine (DSPC) in water/propylene glycol (PG) solutions with glycol concentrations ranging from 0 to 100%. The stability of the dispersions was assessed by determining the effect of propylene glycol concentration on structural parameters of the lamellar phases using a complementary combination of X-ray and neutron scattering techniques at 25 °C and in the case of X-ray scattering at 65 °C. Significantly, although stable lamellar phases (and liposomes) were formed in all PG solutions at 25 °C, the association of the glycol with the liposomes' lamellar structures led to the formation of interdigitated phases, which were not thermostable at 65 °C. With the addition of equimolar quantities of cholesterol to the dispersions of DSPC, stable lamellar dispersions (and indeed liposomes) were formed in all propylene glycol solutions at 25 °C, with the significant lateral phase separation of the bilayer components only detectable in propylene glycol concentrations above 60% (w/w). We propose that the stability of lamellar phases of the cholesterol-containing liposomes formed in propylene glycol concentrations of up to 60% (w/w) represent potentially very valuable drug delivery vehicles for a variety of routes of administration.

  6. Industry Diversification, Financial Development and Productivity-Enhancing Investments


    Schclarek Curutchet, Alfredo


    This paper theoretically studies the role of the financial system in promoting macroeconomic stability and growth. It also explains endogenously the development of the financial system as part of the growth process. The productive sector engages in R\\&D activities, and finances its activities through access to the financial system. While vertical innovation spurs economic growth, horizontal innovation creates new industry sectors, and thus enhances industry diversification. Higher industry di...

  7. Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. (United States)

    Liu, Shuli; Zhang, Guangming; Li, Xiangkun; Wu, Pan; Zhang, Jie


    Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimulation could significantly enhance the R. sphaeroides biomass production and carotenoid yield. The optimal biostimulant proportion was 40 μL (about 6.4×10(5) CFU). Through the use of biostimulation, chemical oxygen demand removal, R. sphaeroides biomass production, carotenoid concentration, and carotenoid yield were improved by 178%, 67%, 214%, and 70%, respectively. Theoretical analysis revealed that there were two possible reasons for such increases. One was that biostimulation enhanced the R. sphaeroides wastewater treatment efficiency. The other was that biostimulation significantly decreased the peroxidase activity in R. sphaeroides. The results showed that the highest peroxidase activity dropped by 87% and the induction ratio of the RSP_3419 gene was 3.1 with the addition of biostimulant. The enhanced carotenoid yield in R. sphaeroides could thus be explained by a decrease in peroxidase activity. Copyright © 2015. Published by Elsevier B.V.

  8. Effect of cigarette smoking on urinary 2-hydroxypropylmercapturic acid, a metabolite of propylene oxide. (United States)

    Zarth, Adam T; Carmella, Steven G; Le, Chap T; Hecht, Stephen S


    2-Hydroxypropylmercapturic acid (2-HPMA) is a urinary biomarker of exposure to propylene oxide, a mutagen and carcinogen to which humans are exposed through inhalation of cigarette smoke as well as in certain environmental and occupational settings. 2-HPMA is the final product of a detoxification pathway in which propylene oxide is conjugated with glutathione, and the resulting conjugate is further metabolized and excreted. We have developed and validated a liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric (LC-APCI-MS/MS) method for the rapid quantitation of 2-HPMA in human urine. The method was applied to an analysis of urine samples from 40 smokers and 40 nonsmokers as well as from a group of 15 subjects who quit smoking. The results demonstrate that smokers have significantly (P10 times higher than the median), apparently unrelated to tobacco smoke exposure or available demographic data. The method presented here can be used to rapidly quantify an individual's exposure to propylene oxide via tobacco smoke or other sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Broekhuis, R.R.; Lynn, S.; King, C.J. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)


    A means is proposed for separating propylene glycol and other compounds bearing multiple hydroxyl groups by reversible chemical reaction. Glycols react with aldehydes in cyclic acetalization reactions to form substituted dioxolanes. Propylene glycol reacts with formaldehyde and acetaldehyde to form 4-methyl-1,3-dioxolane and 2,4-dimethyl-1,3-dioxolane. The reaction is catalyzed homogeneously by strong mineral acids or heterogeneously by cation exchange resins in the acid form. Separation processes utilizing this reaction would include an acetalization step, several distillative separation steps and finally a hydrolysis step in which the reaction is reversed. Both reaction steps must be forced to completion by removing the reaction product simultaneously. The equilibrium and kinetics of the reaction with formaldehyde were studied experimentally in systems catalyzed by Amberlite IR-120 ion exchange resin. A number of solvents were screened for their ability to extract 2,4-dimethyl-1,3-dioxolane from aqueous solution. Aromatic hydrocarbons exhibited the highest distribution into the organic phase. To achieve an effective separation of propylene glycol from aqueous solution by combined reaction with formaldehyde and distillation, formaldehyde would have to be present in excess and would be difficult and costly to separate from the aqueous solution. In reactive distillation using acetaldehyde as a reactant this is not a problem. A large flow of acetaldehyde would be necessary to recover the propylene glycol sufficiently in a distillative process. In a process combining reaction and extraction into an organic solvent this problem is avoided. Process simulation indicates the energy input of such a process is less than half of the energy required in a triple-effect evaporation process. This benefit is offset by higher capital costs and increased complexity in the reaction/extraction process.

  10. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology. (United States)

    Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk


    In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.

  11. A toxicological review of the propylene glycols. (United States)

    Fowles, Jeff R; Banton, Marcy I; Pottenger, Lynn H


    The toxicological profiles of monopropylene glycol (MPG), dipropylene glycol (DPG), tripropylene glycol (TPG) and polypropylene glycols (PPG; including tetra-rich oligomers) are collectively reviewed, and assessed considering regulatory toxicology endpoints. The review confirms a rich data set for these compounds, covering all of the major toxicological endpoints of interest. The metabolism of these compounds share common pathways, and a consistent profile of toxicity is observed. The common metabolism provides scientific justification for adopting a read-across approach to describing expected hazard potential from data gaps that may exist for specific oligomers. None of the glycols reviewed presented evidence of carcinogenic, mutagenic or reproductive/developmental toxicity potential to humans. The pathologies reported in some animal studies either occurred at doses that exceeded experimental guidelines, or involved mechanisms that are likely irrelevant to human physiology and therefore are not pertinent to the exposures experienced by consumers or workers. At very high chronic doses, MPG causes a transient, slight decrease in hemoglobin in dogs and at somewhat lower doses causes Heinz bodies to form in cats in the absence of any clinical signs of anemia. Some evidence for rare, idiosyncratic skin reactions exists for MPG. However, the larger data set indicates that these compounds have low sensitization potential in animal studies, and therefore are unlikely to represent human allergens. The existing safety evaluations of the FDA, USEPA, NTP and ATSDR for these compounds are consistent and point to the conclusion that the propylene glycols present a very low risk to human health.

  12. Genotoxicity of poly(propylene imine) dendrimers. (United States)

    Ziemba, Barbara; Matuszko, Gabriela; Appelhans, Dietmar; Voit, Brigitte; Bryszewska, Maria; Klajnert, Barbara


    Dendrimers are highly branched macromolecules with the potential in biomedical applications. Due to positively charged surfaces, several dendrimers reveal toxicity. Coating peripheral cationic groups with carbohydrate residues can reduce it. In this study, the cytotoxicity and genotoxicity of three types of 4th generation poly(propylene imine) dendrimers were investigated. Peripheral blood mononuclear cells (PBMCs) were treated with uncoated (PPI-g4) dendrimers, and dendrimers in which approximately 40% or 90% of peripheral amino groups were coated with maltotriose (PPI-g4-OS or PPI-g4-DS) at concentration of 0.05, 0.5, 5 mg/ml. Abbreviations OS and DS stand for open shell and dense shell respectively, that describes the structure of carbohydrate modified dendrimers. After 1 h of cell incubation at 37°C, the MTT and comet assays were performed. PPI dendrimers demonstrated surface-modification-degree dependent toxicity, although genotoxicity of PPI-g4 and PPI-g4-OS measured by the comet assay was concentration dependent up to 0.5 mg/ml and at 5 mg/ml the amount of DNA that left comet's head decreased. Results may suggest a strong interaction between dendrimers and DNA, and furthermore, that coating PPI dendrimers by maltoriose is an efficient method to reduce their genotoxicity what opens the possibilities to use them as therapeutic agents or drug carriers. Copyright © 2012 Wiley Periodicals, Inc.

  13. Enhanced snow cover products from MODIS for the hydrologic sciences (United States)

    Painter, T. H.; Bales, R.


    Near mountain ranges of the globe, over a billion people use melt of the seasonal snow cover as the dominant source of their water resources. These regions are increasingly experiencing the pressing, coupled implications of climate change, drought, and population/demand increase. Enhanced snow cover products have been developed using a multiple endmember spectral mixture analysis model that inverts MODIS surface reflectance products (MOD09) for fractional snow cover, plus the grain size and albedo of the fractional snow cover. Referred to as the MODIS Snow Covered Area and Grain Size/Albedo (MODSCAG) model, this tool is specifically aimed at providing an accurate estimate of snowcover for regional studies in mountainous areas across the globe. The model uses spectral libraries generated with a radiative transfer model for varying grain size snow, adapting the spectral library according to the specific scene solar geometry. Both the albedo and snow-covered area products stimulate advances in hydrologic forecasting by providing more accurate, spatially distributed data than are currently available for assimilation and model evaluation. Data are being developed and provided through an end-to-end NASA REASoN project that includes: (i) standard and custom product development, (ii) distribution through multiple user interfaces and (iii) user support for product evaluation and applications. Currently, MODSCAG is producing snow cover products for hydrologic research clients working in the Colorado River Basin, the Sierra Nevada of California, the Columbia River Basin, and central Tibet. Within the framework of the REASoN project, MODSCAG is designed to address `client' research needs in snow-covered basins around the globe. In this work, we present the introduction of the MODSCAG fractional snow cover products into a model of basin hydrology in the Sierra Nevada. We analyze the differences between the MODSCAG fractional product and the standard MODIS binary snowcover

  14. Enhancing microbial production of biofuels by expanding microbial metabolic pathways. (United States)

    Yu, Ping; Chen, Xingge; Li, Peng


    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  15. Strong nuclear enhancement in intermediate mass Drell-Yan production

    CERN Document Server

    Jian Wei Qiu


    We calculate nuclear effect in Drell-Yan massive lepton-pair production in terms of parton multiple scattering in Quantum Chromodynamics (QCD). We present the nuclear modification to inclusive Drell-Yan cross sections d sigma /dQ/sup 2/ in terms of multiparton correlation functions. By extracting the size of the correlation functions from measured Drell-Yan transverse momentum broadening in nuclear media, we determine the nuclear modification at O( alpha /sub s//Q/sup 2/). We find that the nuclear modification strongly enhances the inclusive Drell-Yan cross section in the intermediate mass region (IMR): 1.5enhancement in the IMR in the Pb-Pb collisions at CERN SPS. (23 refs).

  16. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan


    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  17. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble


    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  18. Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions. (United States)

    Horinek, Erica L; Kiser, Tyree H; Fish, Douglas N; MacLaren, Robert


    Lorazepam is recommended by the Society of Critical Care Medicine as the preferred agent for sedation of critically ill patients. Intravenous lorazepam contains propylene glycol, which has been associated with toxicity when high doses of lorazepam are administered. To evaluate the accumulation of propylene glycol in critically ill patients receiving lorazepam by continuous infusion and determine factors associated with propylene glycol concentration. A 6-month, retrospective, safety assessment was conducted of adults admitted to the medical intensive care unit who were receiving lorazepam by continuous infusion for 12 hours or more. Propylene glycol serum concentrations were obtained 24-48 hours after continuous-infusion lorazepam was initiated and every 3-5 days thereafter. Propylene glycol accumulation was defined as concentrations of 25 mg/dL or more. Groups with and without propylene glycol accumulation were compared and factors associated with propylene glycol concentration were determined using multivariate correlation regression analyses. Forty-eight propylene glycol serum samples were obtained from 33 patients. Fourteen (42%) patients had propylene glycol accumulation, representing 23 (48%) serum samples. Univariate analyses showed the following factors were related to propylene glycol accumulation: baseline renal dysfunction, presence of alcohol withdrawal, sex, age, Acute Physiology and Chronic Health Evaluation (APACHE II) score, rate of lorazepam continuous infusion, and 24-hour lorazepam dose. Multivariate linear regression modeling demonstrated that propylene glycol concentration was strongly associated with the continuous infusion rate and 24-hour dose (adjusted r(2) > or = 0.77; p propylene glycol concentration (r(2) > or = 0.71; p propylene glycol concentration. Seven (21%) patients developed renal dysfunction after continuous-infusion lorazepam was initiated, but associated causes were indeterminable. Other possible propylene glycol

  19. Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. (United States)

    Reddy, Chilekampalli A; Saravanan, Ramu S


    There is an increasing global need for enhancing the food production to meet the needs of the fast-growing human population. Traditional approach to increasing agricultural productivity through high inputs of chemical nitrogen and phosphate fertilizers and pesticides is not sustainable because of high costs and concerns about global warming, environmental pollution, and safety concerns. Therefore, the use of naturally occurring soil microbes for increasing productivity of food crops is an attractive eco-friendly, cost-effective, and sustainable alternative to the use of chemical fertilizers and pesticides. There is a vast body of published literature on microbial symbiotic and nonsymbiotic nitrogen fixation, multiple beneficial mechanisms used by plant growth-promoting rhizobacteria (PGPR), the nature and significance of mycorrhiza-plant symbiosis, and the growing technology on production of efficacious microbial inoculants. These areas are briefly reviewed here. The construction of an inoculant with a consortium of microbes with multiple beneficial functions such as N(2) fixation, biocontrol, phosphate solubilization, and other plant growth-promoting properties is a positive new development in this area in that a single inoculant can be used effectively for increasing the productivity of a broad spectrum of crops including legumes, cereals, vegetables, and grasses. Such a polymicrobial inoculant containing several microorganisms for each major function involved in promoting the plant growth and productivity gives it greater stability and wider applications for a range of major crops. Intensifying research in this area leading to further advances in our understanding of biochemical/molecular mechanisms involved in plant-microbe-soil interactions coupled with rapid advances in the genomics-proteomics of beneficial microbes should lead to the design and development of inoculants with greater efficacy for increasing the productivity of a wide range of crops. Copyright

  20. Persistent Identifiers for Data Products: Adoption, Enhancement, and Use (United States)

    Downs, R. R.; Schumacher, J.; Scialdone, J.; Hansen, M.


    Persistent identifiers offer value for science and for various science community stakeholders, such as data producers, data distributers, science article authors, scientific journal publishers, research sponsors, libraries, and affiliated institutions. However, to attain the benefits of persistent identifiers, they should be assigned to disseminated data products and included within the references reported in publications that describe the studies in which the data were used. Scientific data centers, archives, digital repositories, and other data publishers also need to determine the level of aggregation, or granularity, of data products to be assigned persistent identifiers as well as the elements to be included in the landing pages to which persistent identifiers will resolve. Similarly, policies and procedures should be clear on decisions about maintenance issues, including versioning of data products and how persistent identifiers to previous versions and new locations will be maintained. With some persistent identifiers, such as Digital Object Identifiers (DOIs), which provide capabilities to link to related identifiers of other works, decisions on the establishment of links also must be clear, including links between early versions of data products and subsequent versions, links between data products and associated documentation, and links between data products and other publications that describe the data. We describe decisions for enabling the adoption and assignment of DOIs as persistent identifiers for data products disseminated by the NASA Socioeconomic Data and Applications Center (SEDAC) along with considerations for policy decisions, testing, implementation, and enhancement. The prevalence of the adoption of DOIs for citing the use of Earth science data disseminated by SEDAC also is described to provide insight into how interdisciplinary data users have engaged in the use of DOIs within their publications along with the implications of such use.

  1. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  2. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens


    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...... truncated, cytosolic targeted, fumarases (Fum1s and FumRs) from S. cerevisiae and Rhizopus oryzae, respectively, and the cytosolic soluble fumarate reductase (Frds1) from S. cerevisiae. Overexpression of these genes in their native strain backgrounds has been reported to lead to alterations...... in the intracellular cytosolic dicarboxylate concentrations. It was found that all the transformant strains had enhanced yield and productivities of citrate compared with the wild-type strain. The transformants also had the ability to produce citrate in trace-manganese-contaminated medium, where the wild type...

  3. The MOPITT Version 6 product: algorithm enhancements and validation

    Directory of Open Access Journals (Sweden)

    M. N. Deeter


    Full Text Available The Measurements of Pollution in the Troposphere (MOPITT Version 6 (V6 product for carbon monoxide (CO incorporates several enhancements which will benefit many users of MOPITT data. V6 algorithm improvements are described in detail, and V6 validation results are presented. First, a geolocation bias related to the orientation of the MOPITT instrument relative to the TERRA platform was characterized and eliminated. Second, the variable a priori for CO concentrations for V6 is based on simulations performed with the chemical transport model Community Atmosphere Model with Chemistry (CAM-chem for the years 2000–2009 instead of the model-derived climatology for 1997–2004 used for V5. Third, meteorological fields required for V6 retrieval processing are extracted from the MERRA (Modern-Era Retrospective Analysis For Research And Applications reanalysis. Finally, a significant latitude-dependent retrieval bias in the upper troposphere in Version 5 products has been substantially reduced.

  4. Enhanced Simulated Annealing for Solving Aggregate Production Planning

    Directory of Open Access Journals (Sweden)

    Mohd Rizam Abu Bakar


    Full Text Available Simulated annealing (SA has been an effective means that can address difficulties related to optimisation problems. SA is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP is one of the most considerable problems in production planning, in this paper, we present multiobjective linear programming model for APP and optimised by SA. During the course of optimising for the APP problem, it uncovered that the capability of SA was inadequate and its performance was substandard, particularly for a sizable controlled APP problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state will generate only one in next state that will make the search slower and the drawback is that the search may fall in local minimum which represents the best solution in only part of the solution space. In order to enhance its performance and alleviate the deficiencies in the problem solving, a modified SA (MSA is proposed. We attempt to augment the search space by starting with N+1 solutions, instead of one solution. To analyse and investigate the operations of the MSA with the standard SA and harmony search (HS, the real performance of an industrial company and simulation are made for evaluation. The results show that, compared to SA and HS, MSA offers better quality solutions with regard to convergence and accuracy.

  5. A solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.


    Abstract: Increasing the productivity of solar stills has been the focus of intensive research. Many introduced developments, however, require complex components and entail notable increases in cost and land requirements. Developing a compact, productive, and easy-to-operate system is a main challenge. This paper describes a sustainable modification of the solar still that significantly enhances its productivity without forsaking its basic features. A simple amendment in the form of a slowly rotating drum is introduced allowing the formation of thin water films that evaporate rapidly and are continually renewed. The performance of this system was compared against a control without the introduced drum. Throughout the experiment, the new system gave considerably higher yield than the control with an average increase in daily productivity of 200%. Moreover, during sunshine hours, the increase in yield could surpass 6–8 times that of the control. Important parameters such as ease of handling, material availability, efficacy, low cost, safe water quality, and space conservation are maintained. One side-benefit of this design is solving stagnation problems that usually develop in conventional stills. The new simple modification in this study presents a cost-effective and efficient design to solar stills especially in areas with abundant sunshine.

  6. The productivity measurement and enhancement system: a meta-analysis. (United States)

    Pritchard, Robert D; Harrell, Melissa M; DiazGranados, Deborah; Guzman, Melissa J


    Meta-analytic procedures were used to examine data from 83 field studies of the Productivity Measurement and Enhancement System (ProMES). The article expands the evidence on effectiveness of the intervention, examines where it has been successful, and explores moderators related to its success. Four research questions were explored and results indicate that (a) ProMES results in large improvements in productivity; (b) these effects last over time, in some cases years; (c) the intervention results in productivity improvements in many different types of settings (i.e., type of organization, type of work, type of worker, country); and (d) moderator variables are related to the degree of productivity improvement. These moderator variables include how closely the study followed the original ProMES methodology, the quality of feedback given, whether changes were made in the feedback system, the degree of interdependence of the work group, and centralization of the organization. Implications based on these findings are discussed for future use of this intervention, and the system is discussed as an example for evidence-based management. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  7. Epigenetic engineering of ribosomal RNA genes enhances protein production.

    Directory of Open Access Journals (Sweden)

    Raffaella Santoro

    Full Text Available Selection of mammalian high-producer cell lines remains a major challenge for the biopharmaceutical manufacturing industry. Ribosomal RNA (rRNA genes encode the major component of the ribosome but many rRNA gene copies are not transcribed due to epigenetic silencing by the nucleolar remodelling complex (NoRC [6], which may limit the cell's full production capacity. Here we show that the knockdown of TIP5, a subunit of NoRC, decreases the number of silent rRNA genes, upregulates rRNA transcription, enhances ribosome synthesis and increases production of recombinant proteins. However, general enhancement of rRNA transcription rate did not stimulate protein synthesis. Our data demonstrates that the number of transcriptionally competent rRNA genes limits efficient ribosome synthesis. Epigenetic engineering of ribosomal RNA genes offers new possibilities for improving biopharmaceutical manufacturing and provides novel insights into the complex regulatory network which governs the translation machinery in normal cellular processes as well as in pathological conditions like cancer.

  8. Seabird guano enhances phytoplankton production in the Southern Ocean. (United States)

    Shatova, Olga; Wing, Stephen; Hoffmann, Linn; Jack, Lucy; Gault-Ringold, Melanie


    Great congregations of seabirds in sub-Antarctic and Antarctic coastal areas result in delivery of nutrient-rich guano to marine ecosystems that potentially enhances productivity and supports biodiversity in the region. Guano-derived bio-available micronutrients and macronutrients might be utilized by marine phytoplankton for photosynthetic production, however, mechanisms and significance of guano fertilization in the Southern Ocean are largely understudied. Over austral summers of 2012 and 2013 we performed a series of guano-enrichment phytoplankton incubation experiments with water samples collected from three different water masses in the Southern Ocean: Antarctic waters of the Ross sea and sub-Antarctic waters offshore the Otago Peninsula, both showing iron limitation of phytoplankton productivity in summer, and in the subtropical frontal zone offshore from the Snares Islands, which is generally micronutrient-repleted. Samples were enriched with known concentrations of guano-derived nutrients. Phytoplankton biomass increased significantly in guano-treated samples during all three incubation experiments (7-10 fold increase), while remained low in control samples. This response indicates that seabird guano provides nutrients that limit primary production in the Southern Ocean and that these nutrients are readily taken up by phytoplankton. Guano additions were compared to Fe and Macronutrient treatments (both added in quantities similar to those in the guano treatment). Phytoplankton biomass increased significantly in response to the Macronutrient treatment in the subtropical frontal zone, however, the response had a smaller magnitude compared to the guano treatment (2.8 µgL-1 vs 5.2 µgL-1) ; there was no significant effect of Fe on phytoplankton growth. This suggests the potential importance of synergistic effects of nutrients in guano. Incubation with sub-Antarctic waters showed that Fe and Macronutrients might be equally important for enhancement of

  9. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. (United States)

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J


    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Use of bio-enzymatic preparations for enhancement biogas production

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz


    Full Text Available Biogas is a renewable energy resource with high increasing developed in last few decades. It’s big opportunity for stabilization rural areas, concretely agriculture sector. This technology can decentralize supply of energy. The number of operated biogas plants is rapidly increasing. Biogas plants require a high level of intensity and stableness of the process of anaerobic fermentation with biogas production for efficiency treatment, also for good quality of development biogas and fertilization effect of the rest of fermentation. If this is not completed the operator has problem to keep the process in optimal condition for anaerobic fermentation. Researchers have tried different techniques to enhance biogas production. In order to achieve the aforementioned state, it is essential to ensure increased activity of microorganisms that contribute to the anaerobic fermentation. The metabolic activity of microorganisms is preconditioned by availability of easily decomposable solids. Adding of bacterial and enzymatic cultures into a fermented substrate represents one of the possibilities. The enzymes contained in this preparation are responsible for better exposing methanogenic bacteria to the material. The tested bio-enzymatic preparation, APD BIO GAS, is a mixture that contains bacteria and enzymes which are essential for the efficient progress of anaerobic fermentation. The reference biogas laboratory of the Mendel University in Brno was used for the purpose of testing of APD BIOGAS in mesophilic conditions of anaerobic fermentation on a substrate consisting of a mixture of maize silage and liquid manure. The producer of this preparation declare enhancement of quality and quantity of developed biogas, elimination of smell level of the rest of fermentation its higher homogenity. For the test were used lab scale fermenters of batch type with work volume 0.12 m3. An increase of biogas production by 15% was determined in connection with addition of the

  11. Ruminal and blood responses to propylene glycol during frequent feeding. (United States)

    Chung, Y-H; Martinez, C M; Brown, N E; Cassidy, T W; Varga, G A


    The objective of the current experiment was to study the responses of ruminal and blood metabolites of Holstein dairy cows to propylene glycol (PG) under different methods of delivery during frequent feeding. By providing the same amount (200 mL or 200 g) of PG, delivery methods for PG were assessed: 1) control treatment: no PG; 2) dietary treatment: 200 g of PG as a dry product (65% purity; corresponded to 308 g of the dry product) mixed into the TMR; 3) oral-drench treatment: 200 mL of liquid PG (100% purity) orally drenched; and 4) rumen-drench treatment: 200 g of PG as a dry product drenched via the rumen cannula to mimic top dressing. Eight multiparous (lactation = 3 +/- 1.1 SD) ruminally cannulated Holstein dairy cows (DIM = 204 +/- 104.5 SD) were fed PG for 4 d (d 11 to 14) in a replicated 4 x 4 Latin square design with an experimental length of 14 d for each period. On the last day of each period, serial blood samples were removed from an indwelling catheter placed in the right jugular vein immediately before and for 4 h after PG administration. Cows were fed at 12x feeding/d for 2 d before entering the serial sampling period to minimize postprandial influences on blood metabolites. Ruminal content was also sampled hourly for 4 h on d 14. Milk was sampled from 2 consecutive milkings on d 13 during each period. Dry matter intake and milk yield were not affected by PG. Percentages of milk lactose were increased by PG delivered by all methods tested in the current experiment. Ruminal concentrations (as percentages of total volatile fatty acids) of acetate were decreased and concentrations of propionate and isovalerate were increased by PG, regardless of the delivery method; however, total volatile fatty acid concentration was not affected by PG. Ruminal concentrations of butyrate were decreased and concentrations of valerate were increased by PG drench, via either an oral or ruminal drench. The degree of reduction in butyrate concentration or increase in

  12. 78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption (United States)


    ... AGENCY 40 CFR Part 180 Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of styrene-ethylene-propylene block copolymer (CAS Reg... permissible level for residues of styrene-ethylene-propylene block copolymer on food or feed commodities...

  13. 21 CFR 589.1001 - Propylene glycol in or on cat food. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 589.1001... Listing of Specific Substances Prohibited From Use in Animal Food or Feed § 589.1001 Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat...

  14. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol mono- and diesters of fats and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.856 Propylene glycol mono- and diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely...

  15. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol. (United States)


    ... propylene glycol. 172.850 Section 172.850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and propylene glycol may be safely used in food in accordance with the following prescribed conditions: (a) The...

  16. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copolymer condensates of ethylene oxide and propylene oxide. 172.808 Section 172.808 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be...

  17. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. (United States)

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E


    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enhanced production of docosahexaenoic acid in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Guiming Zhu

    Full Text Available Docosahexaenoic acid (DHA, one of the important polyunsaturated fatty acids (PUFA with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA. However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA.

  19. Enhancement of the MODIS Daily Snow Albedo Product (United States)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.


    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  20. La consommation de propylène en Europe occidentale Propylene Consumption in Western Europe

    Directory of Open Access Journals (Sweden)

    Barraqué M.


    'éthylène; - le craquage du méthanol. The needs of Western Europe for propylene used in petrochemistry are currently 7. 4 x 10 to the power of 6 metric tons per year. In the coming years, the average rate of increase should be about 1. 8 % per year. Hence in 1995 European petrochemicals should use about 8. 7 x 10 to the power of 6 tons of propylene,Most of this increase in consumption will be due to the sharp rise in polypropylene production and to a lesser extent in propylene oxide, isopropanol and 2-ethyl hexanol production. However, uses for acrylonitrile and cumene will remain fairly stable. Propylene consumption for butanol production should decrease. The share of propylene needs met by European steam crackers, which was 82% in 1986, should be less than 75% in 1995. It will be more and more necessary to turn to other sources of supply. In 1986 European refineries produced 1. 05 x 10 to the power of 6 tons of propylene used for petrochemicals, and imports amounted to 0. 3 x 10 to the power of 6 tons. In 1995 the difference between consumption and production by steam crackers could be beyond 2. 0 x 10 to the power of 6 tons. It seems improbable that catalytic cracking plants can make up for the deficit except if propylene yields were to increase a great deal. The construction of propylene/propane splitters can be expected along with an increase in imports. Likewise, due to the tension that risks could appear in propylene prices, the advantage of some synthesis routes now considered not to be profitable might increase. These new routes are :(a dehydrogenation of propane as is already being considered in other regions (Mexico, Indonesia, Malaysia;(b metathesis between ethylene and butenes-2, which themselves can be produced from ethylene;(c methanol cracking.

  1. Membrane Modeling, Simulation and Optimization for Propylene/Propane Separation

    KAUST Repository

    Alshehri, Ali


    , product purity and the recovery ratio. These findings were utilized to develop simple and accurate empirical correlations to predict the attainability behavior in real membranes, which showed good agreement with experimental and simulation results for various applications. Furthermore, the attainability of the most promising two and three-stage membrane systems are discussed by considering the complete well mixed assumption. The same behaviors that describe single-stage attainability are also recognized for multiple-stages. This discussion leads to a major discovery regarding the nature of the relationship between the attainability parameters in a multiple-stage membrane system with that of a single-stage system. Study of the economics of the multiple-stage membrane process for propylene/propane separation identifies the technology as a potential alternative to the conventional distillation process, even at the existing membrane performance, but conditionally at low to moderate membrane cost and sufficient durability. To study the energy efficiency of membrane retrofitting to an existing distillation process, a shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane and distillation processes. It was discovered that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage, when selectivity is low, the membrane process is not competitive to the distillation process. At the second medium selectivity stage, the membrane/distillation hybrid system can help to reduce the energy consumption; the higher the membrane selectivity the lower the energy requirement. The energy conservation is further improved as the pressure ratio increases. At the third stage, when both the selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit, resulting in a significant reduction in energy consumption

  2. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. (United States)

    Wang, Shenghai; Duan, Mengjie; Liu, Yalan; Fan, Sen; Lin, Xiaoshan; Zhang, Yi


    To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling. A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g-1, approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g-1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201. Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.

  3. Sorption enhanced reaction process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, S.; Anand, M.; Carvill, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others


    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  4. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. (United States)

    Berezina, Nathalie


    In the global context of increased concerns for our environment, the use of bioplastics as a replacement for existing petroleum-based polymers is an important challenge. Indeed, bioplastics hardly meet economical and technical constraints. One, of the most promising among currently studied bioplastics, is the polyhydroxyalkanoate (PHA). To circumvent the economical issue for this particular biopolymer one solution can be the enhancement of the overall productivity by the improvement of the nutritional medium of the microorganism producing the biopolymer. Thus, several nutrition media, supplemented or not with sodium glutamate, were tested for the growth and the PHA production by Cupriavidus necator DSM 545 strain. The most efficient for the biomass and the PHA production improvement were found to be the Luria broth (LB) and the Bonnarme's media, both supplemented with 10 g/L sodium glutamate. Hence the overall productivity was 33 times enhanced comparing to traditional cultivation methods. These results open a new route for the PHA production by C. necator which appears to be more suitable on a rich, or enriched, medium with no limiting factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Quantifying Residues from Postharvest Propylene Oxide Fumigation of Almonds and Walnuts. (United States)

    Jimenez, Leonel R; Hall, Wiley A; Rodriquez, Matthew S; Cooper, William J; Muhareb, Jeanette; Jones, Tom; Walse, Spencer S


    A novel analytical approach involving solvent extraction with methyl tert-butyl ether (MTBE) followed by GC was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO, propylene chlorohydrin (PCH) [1-chloropropan-2-ol (PCH-1) and 2-chloropropan-1-ol (PCH-2)], and propylene bromohydrin (PBH) [1-bromopropan-2-ol (PBH-1) and 2-bromopropan-1-ol (PBH-2)] was accomplished with a combination of electron impact ionization MS (EIMS), negative ion chemical ionization MS (NCIMS), and electron capture detection (ECD). Respective GC/EIMS LOQs for PPO, PCH-1, PCH-2, PBH-1, and PBH-2 in MTBE extracts were [ppm (μg/g nut)] 0.9, 2.1, 2.5, 30.3, and 50.0 for almonds and 0.8, 2.2, 2.02, 41.6, and 45.7 for walnuts. Relative to GC/EIMS, GC-ECD analyses resulted in no detection of PPO, similar detector responses for PCH isomers, and >100-fold more sensitive detection of PBH isomers. NCIMS did not enhance detection of PBH isomers relative to EIMS and was, respectively, approximately 20-, 5-, and 10-fold less sensitive to PPO, PCH-1, and PCH-2. MTBE extraction efficiencies were >90% for all analytes. The 10-fold concentration of MTBE extracts yielded recoveries of 85-105% for the PBH isomers and a concomitant decrease in LODs and LOQs across detector types. The recoveries of PCH isomers and PPO in the MTBE concentrate were relatively low (approximately 50 to 75%), which confound improvements in LODs and LOQs regardless of detector type.

  6. Significant enhancement by biochar of caproate production via chain elongation. (United States)

    Liu, Yuhao; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan


    In this study, biochar was introduced into a chain elongation system to enhance the bioproduction of caproate and caprylate. The concentration of caproate increased to 21.1 g/L upon the addition of biochar, which is the highest level of caproate reported for such a system to date when ethanol was used as electron donor. The addition of biochar created a tougher system with more stable microorganism community structure for chain elongation, in which no obvious inhibition by products or substrates was observed, moreover, the lag phase was reduced 2.3-fold compared to the system without biochar. These reinforcement effect of biochar are attributed to the enhanced conductivity due to the significant enrichment of functional microorganisms via the microbial network surrounding smaller biochar particles, and via the adsorption on the rough surfaces or pores of larger particles, which facilitated electron transfer. Higher amounts of extracellular polymer substances and higher conductivity induced by biochar could contribute to the reinforcement effect in chain elongation. Copyright © 2017 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    C. GAVAN


    Full Text Available This study was designed to determine the effects of the oral administration of propylene glycol and calcium propionate on performance of dairy cows. Treatments were 10 l water (control, 10 l water+300 ml propylene glycol (GP and 10 l water+500 g calcium propionate (CP. Animals were mainly of Holstein breeds and were fed and managed in a commercial setting. The cows were divided randomly into an experimental group, n=24 (n=12 with PG and n=12 with CP and a control group, n=11. Cows received the assigned treatment within 10 hours of calving and 24 hours after calving. Health events were recorded during calving and for the first 21 days in milk (DIM. Health examinations were performed on cows that appeared not well. The cows were milked three times daily and milk production was recorded electronically. Milk solid content and somatic cell score were determinate from three consecutive milking weekly till 20 DIM and than monthly till 110 DIM. Retained placenta, hypocalcaemia, displaced abomasums, ketosis and metritis were low in treatment groups (with PG and CP. The cows receiving PG had 2.8 Kg/day grater milk production than control group. The cows receiving CP had 1.7 kg/day grater milk production than control group. Prophylactic administration of PG and CP drenches to Holstein cows may be justified by potentially higher milk yields and reduced health complications.

  8. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene

    KAUST Repository

    Mazoyer, Etienne


    Tungsten hydride supported on alumina prepared by the surface organometallic chemistry method is an active precursor for the direct conversion of ethylene to propylene at low temperature and pressure. An extensive contact time study revealed that the dimerization of ethylene to 1-butene is the primary and also the rate limiting step. The catalytic cycle further involves isomerization of 1-butene to 2-butene, followed by cross-metathesis of ethylene and 2-butene to yield propylene with high selectivity. The deactivation mechanism of this reaction has been investigated. The used catalyst was extensively examined by DRIFTS, solid-state NMR, EPR, UV-Vis, TGA and DSC techniques. It was found that a large amount of carbonaceous species, which were due to side reaction like olefin polymerization took place with time on stream, significantly hindering the dimerization of ethylene to 1-butene and therefore the production of propylene. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

  9. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Gasch, Audrey P.


    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  10. Genes related to xylose fermentation and methods of using same for enhanced biofuel production (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.


    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  11. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Gasch, Audrey P.


    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  12. Enhanced production of low energy electrons by alpha particle impact (United States)

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard


    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184

  13. Accuracy of the Soil Sealing Enhancement Product for Poland

    Directory of Open Access Journals (Sweden)

    Krówczyńska Małgorzata


    Full Text Available Increasing urbanization results in constant enlarging of the artificial area closed to water infiltration. In 2006–2008, the Soil Sealing Enhancement (SSE database was the part of the GMES Fast Track Service on Land Monitoring. The accuracy of the final product set by the authors should reach at least 85%. Orthorectified high resolution aerial photos of Poland were used to develop reference data constituting 20,000 random samples around the country. In each sample, the points were classified into three possible surface classes: natural, artificial and semi-sealed. Comparison of reference data to original project statistics revealed the values of accuracy, commission and omission errors in the SSE dataset. Although, SSE accuracy in Poland fulfils the criteria set by SSE authors with overall accuracy of 99.5%, the individual analysis for each category reveals many weaknesses. Preliminary interpretation of mistakes leads to the conclusion that the spatial resolution of pictures used in the SSE project is insufficient. In several cases, validation proved that omission errors were made in relation to construction sites or recently constructed buildings. It should be stated that the accuracy of SSE product for Poland should be treated as the maximum value of impervious surfaces.

  14. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production. (United States)

    Liu, Ying; Lv, Chunwei; Xu, Qing; Li, Shuang; Huang, He; Ouyang, Pingkai


    Ensuring a suitable pH in the culture broth is a major problem in microorganism-assisted industrial fermentation of organic acids. To address this issue, we investigated the physiological changes in Rhizopus oryzae at different extracellular pH levels and attempted to solve the issue of cell shortage under low pH conditions. We compared various parameters, such as membrane fatty acids' composition, intracellular pH, and adenosine triphosphate (ATP) concentration. It was found that the shortage of intracellular ATP might be the main reason for the low rate of fumaric acid production by R. oryzae under low pH conditions. When 1 g/l citrate was added to the culture medium at pH 3.0, the intracellular ATP concentration increased from 0.4 to 0.7 µmol/mg, and the fumaric acid titer was enhanced by 63% compared with the control (pH 3.0 without citrate addition). The final fumaric acid concentration at pH 3.0 reached 21.9 g/l after 96 h of fermentation. This strategy is simple and feasible for industrial fumaric acid production under low pH conditions.

  15. Propylene Glycol Poisoning From Excess Whiskey Ingestion: A Case of High Osmolal Gap Metabolic Acidosis. (United States)

    Cunningham, Courtney A; Ku, Kevin; Sue, Gloria R


    In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol.

  16. The Human Exposure Potential from Propylene Releases to the Environment. (United States)

    Morgott, David A


    A detailed literature search was performed to assess the sources, magnitudes and extent of human inhalation exposure to propylene. Exposure evaluations were performed at both the community and occupational levels for those living or working in different environments. The results revealed a multitude of pyrogenic, biogenic and anthropogenic emission sources. Pyrogenic sources, including biomass burning and fossil fuel combustion, appear to be the primary contributors to atmospheric propylene. Despite a very short atmospheric lifetime, measurable levels could be detected in highly remote locations as a result of biogenic release. The indoor/outdoor ratio for propylene has been shown to range from about 2 to 3 in non-smoking homes, which indicates that residential sources may be the largest contributor to the overall exposure for those not occupationally exposed. In homes where smoking takes place, the levels may be up to thirty times higher than non-smoking residences. Atmospheric levels in most rural regions are typically below 2 ppbv, whereas the values in urban levels are much more variable ranging as high as 10 ppbv. Somewhat elevated propylene exposures may also occur in the workplace; especially for firefighters or refinery plant operators who may encounter levels up to about 10 ppmv.

  17. Propylene Glycol-Related Delirium After Esmolol Infusion. (United States)

    Kapitein, Berber S; Biesmans, Renee S C G; van der Sijs, Heleen S I; de Wildt, Saskia S N


    Excipients used in oral or intravenous preparations may cause serious adverse events. We present the case of a 15-year-old boy with hypertrophic cardiomyopathy. In the pediatric intensive care unit, he received high doses of continuous intravenous esmolol (range = 20-400 µg/kg/min) for cardiac rhythm control. After a few days he developed a delirium not responding to high doses of antipsychotics or discontinuation of benzodiazepines. We eventually realized that the IV esmolol formulation contained high doses of propylene glycol and ethanol, which may accumulate after prolonged infusion and cause intoxication. Intoxication with propylene glycolcan cause neuropsychiatric symptoms. The boy's propylene glycol plasma concentration was approximately 4 g/L, whereas clinical symptoms arise at concentrations above 1 to 1.44 g/L. Application of the Naranjo adverse drug reaction probability scale suggested a probable relationship (score 6) between the propylene glycol infusion and the delirium. After discontinuation of esmolol, the delirium disappeared spontaneously. This is the first case describing excipient toxicity of esmolol, with an objective causality assessment revealing a probable relationship for the adverse event-namely, delirium-and esmolol. Although excipient toxicity is a well-known adverse drug reaction, this case stresses the importance for easily available information for and education of physicians. © The Author(s) 2014.

  18. Investigation of surface modifications in ethylene propylene diene ...

    Indian Academy of Sciences (India)


    improve reliability and performance of insulation material, the tracking phenomena is being investigated worldwide. Some polymeric materials including silicon rubber and ethylene propylene diene monomer (EPDM) maintain their hydrophobic surface properties in the presence of pollutants over the surface of the insulators ...

  19. Investigation of surface modifications in ethylene propylene diene ...

    Indian Academy of Sciences (India)

    Abstract. In the present work, tracking phenomena has been studied with the ethylene propylene diene monomer (EPDM) material under the a.c. and d.c. voltages, with ammonium chloride/acid rain solution as the contaminant. It is noticed that the tracking time depends on the conductivity and flow rate of the contaminant.

  20. Hydrogen Response in Liquid Propylene Polymerization : Towards a Generalized Model

    NARCIS (Netherlands)

    Al-haj Ali, M.; Betlem, B.; Roffel, B.; Weickert, G.


    Liquid propylene batch experiments in the absence of a gas phase have been carried out using a highly-active MgCl2/TiCl4/phthalate/silane/AlR3 catalyst at varying temperatures (60-80°C) and molar hydrogen-monomer ratios of 0-10 mmol/mol. With increasing hydrogen concentration the polymerization rate

  1. Propylene/propane mixture adsorption on faujasite sorbents

    NARCIS (Netherlands)

    Van Miltenburg, A.; Gascon, J.; Zhu, W.; Kapteijn, F.; Moulijn, J.A.


    The adsorption of propylene and propane on zeolite NaX with and without a saturated (36 wt%) amount of CuCl have been investigated. The single component adsorption isotherms could be well described with a Dual-Site Langmuir model. The dispersion of CuCl results in a decrease of the maximum

  2. Enhancing Environmental Communication and Products Through Qualitative Research (United States)

    DeLorme, D.; Hagen, S. C.


    This presentation discusses two ongoing interdisciplinary case studies that are using qualitative research to design and enhance environmental communication and science products for outreach and decision making purposes. Both cases demonstrate the viability and practical value of qualitative social science methodology, specifically focus group interviews, to better understand the viewpoints of target audiences, improve deliverables, and support project goals. The first case is a NOAA-funded project to conduct process-based modeling to project impact from climate change in general and sea level rise in particular to the natural and built environment. The project spans the Mississippi, Alabama, and Florida Panhandle coasts with concentration on the three National Estuarine Research Reserves. As part of the broader project, four annual focus groups were conducted with a purposive sample of coastal resource managers to capture their perspectives and suggestions to better meet their informational and operational needs. The second case is a Florida Sea Grant-funded project that is developing, implementing, and testing a cohesive outreach campaign to promote voluntary careful and responsible recreational boating to help protect sensitive marine life and habitats (especially seagrasses and oyster reefs) in the Mosquito Lagoon. Six focus groups were conducted with a purposive sample of the target audience of boaters to gain insights, feedback, and ideas on the direction of the campaign and design of the messages and products. The campaign materials created include a branded website, Facebook page, mobile app, information packets, brochures, pledge forms, and promotional items. A comparison of these two case studies will be provided and will explain how the qualitative findings were/are being implemented to tailor and refine the respective communication strategies and techniques including the emerging outreach products. The resulting outcomes are messages and tools that are

  3. Severe lactic acidosis after an iatrogenic propylene glycol overdose. (United States)

    Zosel, Amy; Egelhoff, Elizabeth; Heard, Kennon


    Propylene glycol is a diluent found in many intravenous and oral drugs, including phenytoin, diazepam, and lorazepam. Propylene glycol is eliminated from the body by oxidation through alcohol dehydrogenase to form lactic acid. Under normal conditions, the body converts lactate to pyruvate and metabolizes pyruvate through the Krebs cycle. Lactic acidosis has occurred in patients, often those with renal dysfunction, who were receiving prolonged infusions of drugs that contain propylene glycol as a diluent. We describe a 50-year-old man who experienced severe lactic acidosis after receiving an accidental overdose of lorazepam, which contains propylene glycol. The patient was acutely intoxicated, with a serum ethanol concentration of 406 mg/dl. He had choked on a large piece of meat and subsequently experienced pulseless electrical activity with ventricular fibrillation cardiac arrest. He was brought to the emergency department; within 2 hours, he was admitted to the intensive care unit for initiation of the hypothermia protocol. The patient began to experience generalized tonic-clonic seizures 12 hours later, which resolved after several boluses of lorazepam. A lorazepam infusion was started; however, it was inadvertently administered at a rate of 2 mg/minute instead of the standard rate of 2 mg/hour. Ten hours later, the administration error was recognized and the infusion stopped. The patient's peak propylene glycol level was 659 mg/dl, pH 6.9, serum bicarbonate level 5 mEq/L, and lactate level 18.6 mmol/L. Fomepizole was started the next day and was continued until hospital day 3. Continuous renal replacement therapy was started and then replaced with continuous venovenous hemofiltration (CVVH) for the remainder of the hospital stay. The patient's acidosis resolved by day 3, when his propylene glycol level had decreased to 45 mg/dl. Fomepizole was discontinued, but the patient's prognosis was poor (anoxic brain injury); thus care was withdrawn and the patient died

  4. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami


    Propylene, a by-product of biomass burning, thermal cracking of hydrocarbons and incomplete combustion of fossil fuels, is a ubiquitous molecule found in the environment and atmosphere. Accurate infrared (IR) cross-sections and integrated band intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas temperatures between 296 and 460K. We recorded these spectra at spectral resolutions ranging from 0.08 to 0.5cm-1 and measured the integrated band intensities for a number of vibrational bands in certain spectral regions. We then compared the integrated band intensities measured at room temperature with values derived from the National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) databases. Our results agreed well with the results reported in the two databases with a maximum deviation of about 4%. The peak cross-sections for the primary bands decreased by about 20-54% when the temperature increased from 296 to 460K. Moreover, we determined the integrated band intensities as a function of temperature for certain features in various spectral regions; we found no significant temperature dependence over the range of temperatures considered here. We also studied the effect of temperature on absorption cross-section using a Difference Frequency Generation (DFG) laser system. We compared the DFG results with those obtained from the FTIR study at certain wavenumbers over the 2850-2975cm-1 range and found a reasonable agreement with less than 10% discrepancy. © 2013 Elsevier Ltd.

  5. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    Directory of Open Access Journals (Sweden)

    M. L. Kirwan


    Full Text Available Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find in a series of preliminary experiments that organic decomposition rates increase by about 20% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, three times as high as the response of salt marsh productivity to temperature warming, and greater than the productivity response associated with elevated CO2 in C3 marsh plants. Although the experiments were simple and of short duration, they suggest that enhanced CO2 and warmer temperatures could actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments.

  6. Enhancement of Plant Productivity in the Post-Genomics Era. (United States)

    Thao, Nguyen Phuong; Tran, Lam-Son Phan


    and larger scale. In their article, Onda and Mochida detailed how to use these technologies in fully characterizing the genetic diversity or multigenecity within a particular plant species. The authors discussed the constant innovation of sequencing platforms which has made sequencing technologies become more superior and more powerful than ever before. Additionally, the efforts result in not only further cut down of the sequencing cost and increase in the sequencing speed, but also improvement in sequencing accuracy and extended sequencing application to studies at both DNA and RNA levels. Such knowledge will help the scientists interpret, at least partially, how plants can adapt to various environmental conditions, or how different cultivars can respond differently to the same stress. Another article by Ong et al. also laid emphasis on the importance of various high-throughput sequencing platforms, thanks to which a large number of genomic databases supplied with detailed annotation and useful bioinformatics tools have been established to assist geneticists. Readers can find in this review the summary of available plant-specific genomic databases up-to-date and popular web-based resources that are relevant for comparative genomics, plant evolution and phylogenomics studies. These, along with other approaches, such as quantitative trait locus and genome-wide association study, will lay foundation for prediction and identification of genes or alleles responsible for valuable agronomic traits, contributing to the enhancement of plant productivity by genetic engineering approach. In this thematic issue, specific examples for crop improvement are also demonstrated. The first showcase is given by Nongpiur et al. who provided evidence that synergistic employment of genomics approaches and high-throughput gene expression methods have aided in dissecting the salinity-responsive signaling pathway, identifying genes involved in the stress response and selecting candidate genes

  7. Sorption enhanced reaction process (SERP) for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)


    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  8. Enhancing Alkane Production in Cyanobacterial Lipid Droplets: A Model Platform for Industrially Relevant Compound Production

    Directory of Open Access Journals (Sweden)

    Anantha Peramuna


    Full Text Available Cyanobacterial lipid droplets (LDs are packed with hydrophobic energy-dense compounds and have great potential for biotechnological expression and the compartmentalization of high value compounds. Nostoc punctiforme normally accumulates LDs containing neutral lipids, and small amounts of heptadecane, during the stationary phase of growth. In this study, we further enhanced heptadecane production in N. punctiforme by introducing extrachromosomal copies of aar/adc genes, and report the discovery of a putative novel lipase encoded by Npun_F5141, which further enhanced alkane production. Extra copies of all three genes in high light conditions resulted in a 16-fold higher accumulation of heptadecane compared to the wild type strain in the exponential phase. LD accumulation during exponential phase also increased massively to accommodate the heptadecane production. A large number of small, less fluorescent LDs were observed at the cell periphery in exponential growth phase, whereas fewer number of highly fluorescent, much larger LDs were localized towards the center of the cell in the stationary phase. These advances demonstrate that cyanobacterial LDs are an ideal model platform to make industrially relevant compounds, such as alkanes, during exponential growth, and provide insight into LD formation in cyanobacteria.

  9. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation

    Directory of Open Access Journals (Sweden)

    Nora M. Elkenawy


    Full Text Available Prodigiosin is a red pigment produced by Serratia marcescens. Prodigiosin is regarded as a promising drug owing to its reported characteristics of possessing anti-microbial, anti-cancer, and immunosuppressive activity. A factorial design was applied to generate a set of 32 experimental combinations to study the optimal conditions for pigment production using crude glycerol obtained from local biodiesel facility as carbon source for the growth of Serratia marcescens. The maximum production (870 unit/cell was achieved at 22 °C, at pH 9 with the addition of 1% (w/v peptone and 109 cell/ml inoculum size after 6 days of incubation. Gamma radiation at dose 200 Gy was capable of doubling the production of the pigment using the optimized conditions and manipulating production temperature. Our results indicate that we have designed an economic medium supporting enhanced Serratia marcescens MN5 prodigiosin production giving an added value for crude glycerol obtained from biodiesel industry.

  10. Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode (United States)

    Bachchhav, Manisha Bhanudas; Kulkarni, Mohan Vinayak; Ingale, Arun G.


    This work investigates the performance of different cultivation conditions using Light Emitting Diode (LED) as a light source for the production of phycocyanin from Spirulina platensis. With LEDs under autotrophic conditions, red LED produced maximum amount of biomass (8.95 g/l). As compared to autotrophic cultivation with fluorescent lamp (control), cultivations using LEDs under autotrophic and mixotrophic mode significantly enhanced the phycocyanin content. For autotrophic conditions (with LED) phycocyanin content was in the range of 103-242 mg/g of dry biomass, whereas for mixotrophic conditions (0.1% glucose and LED) it was in the range of 254-380 mg/g of dry biomass. Spirulina cultivated with yellow LED under mixotrophic conditions had 5.4-fold more phycocyanin (380 mg/g of dry biomass) than control (70 mg/g of dry biomass). The present study demonstrates that the LEDs under mixotrophic conditions gave sixfold (2497 mg/l) higher yields of phycocyanin as compared to autotrophic condition under white light (415 mg/l).

  11. Enhanced methanol production in plants provides broad spectrum insect resistance. (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar


    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  12. Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar


    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989

  13. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    Full Text Available Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR and spectra showed up to 16 fold higher methanol as compared to control wild type (WT plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid and Bemisia tabaci (whitefly, respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  14. Combining forecasts to enhance fish production prediction: the Case of Coastal Fish Production in Morocco

    Directory of Open Access Journals (Sweden)

    David Bouras


    Full Text Available This paper seeks to enhance forecast accuracy by combining three individual forecasting models. These models include: the Autoregressive Integrated Moving Average model (ARIMA, the Generalized Autoregressive Conditional Heteroscedastic model (GARCH, and the Census X11 model. Applied to the Moroccan coastal fish production, the empirical results show that in terms of predictive ability the composite model outperforms the individual forecasting models. In addition, the results reveal that the forecast accuracy gains arising from combining the individual forecasts range from nearly 8% to over 95%.

  15. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst. (United States)

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki


    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis. (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd


    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    National Research Council Canada - National Science Library

    Casal, C; Cuaresma, M; Vega, J.M; Vilchez, C

    .... In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching...

  18. Fermentation-Guided Natural Products Isolation of a Grape Berry Triacylglyceride that Enhances Ethyl Ester Production

    Directory of Open Access Journals (Sweden)

    Christopher L. Blackford


    Full Text Available A full understanding of the origin, formation and degradation of volatile compounds that contribute to wine aroma is required before wine style can be effectively managed. Fractionation of grapes represents a convenient and robust method to simplify the grape matrix to enhance our understanding of the grape contribution to volatile compound production during yeast fermentation. In this study, acetone extracts of both Riesling and Cabernet Sauvignon grape berries were fractionated and model wines produced by spiking aliquots of these grape fractions into model grape juice must and fermented. Non-targeted SPME-GCMS analyses of the wines showed that several medium chain fatty acid ethyl esters were more abundant in wines made by fermenting model musts spiked with certain fractions. Further fractionation of the non-polar fractions and fermentation of model must after addition of these fractions led to the identification of a mixture of polyunsaturated triacylglycerides that, when added to fermenting model must, increase the concentration of medium chain fatty acid ethyl esters in wines. Dosage-response fermentation studies with commercially-available trilinolein revealed that the concentration of medium chain fatty acid ethyl esters can be increased by the addition of this triacylglyceride to model musts. This work suggests that grape triacylglycerides can enhance the production of fermentation-derived ethyl esters and show that this fractionation method is effective in segregating precursors or factors involved in altering the concentration of fermentation volatiles.

  19. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others


    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  20. Nanocomposite sensors of propylene glycol, dimethylformamide and formaldehyde vapors

    Directory of Open Access Journals (Sweden)

    Z. Adamyan


    Full Text Available The results of research works related to the study of thick-film multiwall carbon nanotube–tin oxide nanocomposite sensors of propylene glycol (PG, dimethylformamide (DMF and formaldehyde (FA vapors are presented in this paper. These sensors were derived using hydrothermal synthesis and sol–gel methods. Investigations of response–recovery characteristics in the 50–300 °C operating temperature range reveal that the optimal operating temperature for PG, DMF and FA vapor sensors, taking into account both high response and acceptable response and recovery times are about 200 and 220 °C, respectively. The dependence of the sensor response on gas concentration is linear in all cases. Minimal propylene glycol, dimethylformamide and formaldehyde gas concentrations, where the perceptible signal was noticed, were 13, 5 and 115 ppm, respectively.

  1. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo


    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  2. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. (United States)

    Joo, H-S; Chang, C-S


    An investigation was carried out on the enhancement of protease production and simple purification of an oxidant and SDS-stable alkaline protease produced by Bacillus clausii I-52 of industrial significance. The supplementation with 0.4% (w/v) NaCl and 0.05% (w/v) FeSO4.7H2O in a culture medium caused an increase in the protease production. The enzyme was purified to homogeneity with overall recovery of 79% and 10-fold purification from culture supernatant using Diaion HPA75, phenyl-Sepharose and DEAE-Sepharose column chromatographies. The protease was a halo-tolerant enzyme with apparent molecular mass of 28 kDa, and the Km and kcat values for N-Succinyl-Ala-Ala-Pro-Phe-pNA at 45 degrees C and pH 11.0 were determined to be 83.9 micromol l(-1) and 238.6 s(-1) respectively. Bacillus clausii I-52 was identified as a halo-tolerant bacterium, and the extracellular alkaline protease produced by B. clausii I-52 also showed extreme halo-tolerance. The enzyme stability towards SDS and H2O2 could be increased by adding NaCl or propylene glycol to the enzyme solution. The alkaline protease secreted by B. clausii I-52 is significant from an industrial perspective because of its stability against surfactants and oxidants as well as its tolerance towards high salinity. These enzymatic properties suggest its suitable application for industrial purposes.

  3. Effect of propylene glycol on adipose tissue mobilization in postpartum over-conditioned Holstein cows. (United States)

    Bjerre-Harpøth, V; Storm, A C; Eslamizad, M; Kuhla, B; Larsen, M


    Our objective was to investigate the quantitative and qualitative effects of propylene glycol (PG) allocation on postpartum adipose tissue mobilization in over-conditioned Holstein cows. Nine ruminally cannulated and arterially catheterized cows were, at parturition, randomly assigned to a ruminal pulse dose of either 500g of tap water (n=4) or 500g of PG (n=5) once a day. The PG was given with the morning feeding for 4 wk postpartum (treatment period), followed by a 4-wk follow-up period. All cows were fed the same prepartum and postpartum diets. At -16 (±3), 4 (±0), 15 (±1) and 29 (±2) days in milk (DIM), body composition was determined using the deuterium oxide dilution technique, liver and subcutaneous adipose tissue biopsies were collected, and mammary gland nutrient uptake was measured. Weekly blood samples were obtained during the experiment and daily blood samples were taken from -7 to 7 DIM. Postpartum feed intake and milk yield was not affected by PG allocation. The body content of lipid was not affected by treatment, but tended to decrease from 4 to 29 DIM with both treatments. Except for the first week postpartum, no difference in plasma nonesterified fatty acids concentration was noted between treatments in the treatment period. Yet, PG allocation resulted in decreased plasma concentrations of β-hydroxybutyrate (BHB) and increased plasma concentrations of glucose. In the follow-up period, plasma concentrations of nonesterified fatty acids, glucose, and BHB did not differ between treatments. Additionally, the change in abundance of proteins in adipose tissue biopsies from prepartum to 4 DIM was not affected by treatment. In conclusion, the different variables to assess body fat mobilization were concurrent and showed that a 4-wk postpartum PG allocation had limited effect on adipose tissue mobilization. The main effect was an enhanced glucogenic status with PG. No carry-over effect of PG allocation was recorded for production or plasma metabolites

  4. Broadband terahertz dynamics of propylene glycol monomer and oligomers (United States)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji


    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.


    Directory of Open Access Journals (Sweden)

    A. I. Hinojosa

    Full Text Available Abstract In the process industry, advanced controllers usually aim at an economic objective, which usually requires closed-loop stability and constraints satisfaction. In this paper, the application of a MPC in the optimization structure of an industrial Propylene/Propane (PP splitter is tested with a controller based on a state space model, which is suitable for heavily disturbed environments. The simulation platform is based on the integration of the commercial dynamic simulator Dynsim® and the rigorous steady-state optimizer ROMeo® with the real-time facilities of Matlab. The predictive controller is the Infinite Horizon Model Predictive Control (IHMPC, based on a state-space model that that does not require the use of a state observer because the non-minimum state is built with the past inputs and outputs. The controller considers the existence of zone control of the outputs and optimizing targets for the inputs. We verify that the controller is efficient to control the propylene distillation system in a disturbed scenario when compared with a conventional controller based on a state observer. The simulation results show a good performance in terms of stability of the controller and rejection of large disturbances in the composition of the feed of the propylene distillation column.

  6. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Chang, Ing-Feng; Chiu, Hui-Fen; Ungerer, Justin; Hank Juo, Suh-Hang; Maness, Pin-Ching; Yu, Jianping


    Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introducing xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Moreover, isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation.

  7. Enhancement of 20-hydroxyecdysone production in cell suspension ...

    African Journals Online (AJOL)



    hydroxyecdysone production of. Vitex glabrata suspension .... hydroxyecdysone production in V. glabrata cell suspension cultures. Determination of dry cell ... residue was dissolved in 3 ml methanol and vortexed with 2 ml hexane twice.

  8. Ultrasound-Enhanced Biogas Production from Different Substrates

    DEFF Research Database (Denmark)

    González-Fernández, Cristina; Timmers, Rudolphus Antonius; Ruiz, Begona


    Among the biofuel production processes using different substrates, the biogas generation process is one of the simplest. Compared with bioethanol or biodiesel production processes, anaerobic digestion is a process where all the organic matter (carbohydrates, lipids and proteins) can be biologically...... production. The present chapter is dedicated to providing a review of ultrasound pretreatment applied to different substrates (lignocelullosic materials, manures, sludge and microalgae). The advantages and constraints, that ultrasound pretreatment exhibit towards biogas production, are discussed and compared...

  9. Structure and polarization near the Li+ ion in ethylene and propylene carbonates (United States)

    Pollard, Travis P.; Beck, Thomas L.


    Research on fundamental interactions in Li-ion batteries is accelerating due to the importance of developing batteries with enhanced energy and power densities while maintaining safety. Improving electrode materials and controlling the formation of the solid electrolyte interphase during the first battery charge have been the main focus areas for research. Ion-solvent interactions in the electrolyte are also of great importance in tuning solvation and transport properties, however. Here we present ab initio density functional theory simulations of a Li+ ion in ethylene and propylene carbonates. The aim is to obtain a detailed analysis of local solvation structure and solvent polarization near the ion and in the bulk. The results indicate the significance of molecular polarization for developing accurate solvation models. The simulations illustrate the substantial differences between ion solvation in water and in organic materials.

  10. Poly(Propylene Imine Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Natalia Wrońska


    Full Text Available Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine (PPI dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3. The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.

  11. Poly(Propylene Imine) Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents. (United States)

    Wrońska, Natalia; Felczak, Aleksandra; Zawadzka, Katarzyna; Poszepczyńska, Martyna; Różalska, Sylwia; Bryszewska, Maria; Appelhans, Dietmar; Lisowska, Katarzyna


    Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.

  12. Photocatalytic oxidation of propylene on La and N codoped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye, E-mail:; Wang, Xiaodong; Zhang, Min; Yang, Jianjun, E-mail: [Henan University, Key Laboratory for Special Functional Materials (China)


    Lanthanum- and nitrogen-codoped TiO{sub 2} photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO{sub 2} were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectra. The La-/N-codoped TiO{sub 2} showed excellent photoactivity of propylene oxidation compared with the single-doped TiO{sub 2} and La-/N-codoped P25 TiO{sub 2} nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  13. Mycorrhizal Enhancement of Biomass Productivity of Big Bluestem ...

    African Journals Online (AJOL)



    May 30, 2015 ... 94% of ethanol production (USDA ERS, 2012); however, this is untenable as a long-term proposition. Expansion of corn production to levels needed to meet even a small fraction of the nation's ... as perennial growth, abundant biomass production, excellent nutrient use efficiency, wide geographic.

  14. Hydrocarbons from Calotropis procera - product enhancement and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, R.; Singh, Ritu (Indian Inst. of Tech., New Delhi (India). Centre of Energy Studies)


    The paper presents an investigation of the enhancement of hydrocarbon extraction from calotropis procera. An extraction yield of 8% has been obtained, with toluene as the solvent. An increase in the yield to 11.5% has been achieved by modification of the design of the conventional 'Soxhlet' extractor. A further enhancement has been achieved by pretreatment of the biomass with alkali or acid. This results in an extractive or hydrolytic breakdown of the plant structure and hence exposes the hydrocarbons to solvent attack. As alkali pretreatment of ground biomass resulted in a much higher extraction, it was studied in further detail with more alkalis of varying strength. AN enhancement from 8 to 18% has been achieved by pretreatment with 1 N sodium hydroxide. Analytical studies by the use of IR and NMR have been conducted to prove that the enhancement in extraction is due to efficient extraction of hydrocarbons. (author)

  15. Integrated agriculture enhances farm productivity and livelihoods in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    biodiversity while enhancing yields and income. In Kolli Hills, Tamil Nadu, monocropping of a single, non-edible variety of cassava for the starch industry has resulted in increased disease prevalence, soil erosion, and a loss in local ...

  16. Propylene glycol energy supplementation during peripartal period in dairy cows and reproduction efficiency parameters

    Directory of Open Access Journals (Sweden)

    Vakanjac Slobodanka


    Full Text Available The aim of this work was to investigate the impact of two energy supplements based on propylene glycol in dairy cows diet on ovarian and follicular morphology, conception, insemination index and length of service period. A total number of 60 Holstein Friesian dairy cows, parity between 2-8, with an average milk production of 7000 kg/305 days of lactation were divided into three experimental groups (20 dairy cows per group. The first group of dairy cows was supplemented daily with "Energy-plus" (O1 group; 200 mL propylene-glycol supplement and the second group was supplemented with "Ketal" (O2 group; 160 mL propylene-glycol supplement, two weeks before partus until 30 days post partum. The third experimental group were non supplemented dairy cows (O3, control group. Ultrasound examination of the reproductive system using real time echo camera Falco VET 100 (ESAOTE PieMedical, Holland, B-shaped scan with linear-array endorectal 5-8 MHz probe was conducted on every animal starting from day 40 postpartum. The diameters of the ovaries (left and right and of the dominant follicle(s were recorded. Ultrasound testing was repeated on day 50 and 60 postpartum only in cows which in the meantime were not inseminated. Reproduction efficiency parameters (conception rate, number of inseminations and length of service period were recorded individually. The statistical significance of the differences between groups was tested using ANOVA with LSD test at the level of significance p<0.05, chi-square test and Kaplan-Meier survival analysis (the length of service period. There was no significant impact of the propylene glycol supplementation on the ovarian and follicular morphology at the first ultrasound examination. At the second ultrasound examination there was a significant difference between left ovarian dominant follicle diameter in the control and supplemented dairy cows (1.67±0.53 vs 1.12±0.29 and 1.11±0.35 cm, p<0.05, O3 vs O1 and O2, respectively. The

  17. Enhancement of biodiesel production from different species of algae

    Directory of Open Access Journals (Sweden)

    El-Moneim M. R. Afify, Abd


    Full Text Available Eight algal species (4 Rhodo, 1 chloro and 1 phaeophycean macroalgae, 1 cyanobacterium and 1 green microalga were used for the production of biodiesel using two extraction solvent systems (Hexane/ether (1:1, v/v and (Chloroform/ methanol (2:1, v/v. Biochemical evaluations of algal species were carried out by estimating biomass, lipid, biodiesel and sediment (glycerin and pigments percentages. Hexane/ ether (1:1, v/v extraction solvent system resulted in low lipid recoveries (2.3-3.5% dry weight while; chloroform/methanol (2: 1, v/v extraction solvent system was proved to be more efficient for lipid and biodiesel extraction (2.5 – 12.5% dry weight depending on algal species. The green microalga Dictyochloropsis splendida extract produced the highest lipid and biodiesel yield (12.5 and 8.75% respectively followed by the cyanobacterium Spirulina platensis (9.2 and 7.5 % respectively. On the other hand, the macroalgae (red, brown and green produced the lowest biodiesel yield. The fatty acids of Dictyochloropsis splendida Geitler biodiesel were determined using gas liquid chromatography. Lipids, biodiesel and glycerol production of Dictyochloropsis splendida Geitler (the promising alga were markedly enhanced by either increasing salt concentration or by nitrogen deficiency with maximum production of (26.8, 18.9 and 7.9 % respectively at nitrogen starvation condition.

    Ocho especies de algas (4 Rhodo, 1 cloro y 1 macroalgas phaeophycean, 1 cianobacteria y 1 microalga verde fueron utilizados para la producción de biodiesel utilizando dos sistemas de extracción con disolventes (hexano/éter (1:1, v/v y (Cloroformo / metanol (2:1, v/v. La evaluación bioquímica de las especies de algas se llevó a cabo mediante la estimación de los porcentajes de biomasa, de lípidos, de biodiesel y de sedimento (glicerina y pigmentos. El sistema extracción con el disolvente hexano/éter (1:1, v

  18. Lean manufacturing: A better way for enhancement in productivity (United States)

    Kumar Ahir, Pankaj; Kumar Yadav, Lalit; Singh Chandrawat, Saurabh


    Productivity is the impact of peoples working together. Machines are merely an extended way of collective imagination and energy. Lean Manufacturing is the most used method for continues improvement of business. Organization management philosophy focusing on the reduction of wastage to improve overall customer value. "Lean" operating principles began in manufacturing environments and are known by a variety of synonyms; Lean Manufacturing, Lean Production, Toyota Production System, etc. It is commonly believed that Lean started in Japan "The notable activities in keeping the price of Ford products low is the steady restriction of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost." "A systematic approach to identifying and eliminating waste through continuous improvement, flowing the product at the pull of the customer in pursuit of perfection."

  19. New separation process of the propane/propylene stream using facilitated transport membranes; Novo processo de separacao da corrente propano/propeno usando membranas de transporte facilitado

    Energy Technology Data Exchange (ETDEWEB)

    Pollo, Liliane Damaris; Habert, Alberto Claudio; Borges, Cristiano Piacsek [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Quimica. Centro de Tecnologia], e-mails:,,


    Propylene separation from the propane/propylene mixture is of great interest to the petrochemical industry. This arises from the high value of this product, which is used to manufacture several polymers and composites, especially polypropylene. Currently, the most frequently used separation process is distillation, which consumes large amounts of energy, mainly due to the similar properties of these gases. Therefore, the separation processes by facilitated transport membranes (FTM) seems to be an efficient alternative, as the gas separation occurs without a phase change, significantly reducing energy consumption. The FTM contain carriers that promote the specific transport of olefins through the membrane. Since this is a new technology, the use of suitable carrier agents presents a wide research field. The aim of this study is to synthesize and characterize polymeric membranes containing different carrier agents to separate the propane/propylene mixture. Polymeric membranes based on polyurethane containing silver salts (AgCF{sub 3}SO{sub 3} and AgSbF{sub 6}) and copper salts (CuCF{sub 3}SO{sub 3}) as carriers were synthesized. The membranes were characterized by different techniques and the results showed that the membranes containing silver salts exhibited the best efficiency to separate the propane/propylene mixture. The ideal selectivity of the membrane containing 20% w/w AgCF{sub 3}SO{sub 3}, was five times higher than the selectivity of the membrane without the carrier agent, confirming the facilitated transport behavior. (author)

  20. Carbon nanotubes (CNT) for enhanced oil production from shales


    Hussain, Aqeel


    The shale gas production has brought a revolution in US energy market and the global prospect of shale gas production is on continuous increase. The advancements in hydraulic fracturing made it possible to extract very low permeability shale gas through fracturing the shale rock. The once fractured shale rock is kept open with the induction of spherical particles known as proppants. The performance of proppants is crucial for oil & gas production. Therefore, the prospect of applic...

  1. Enhancing methane production in a farm-scale biogas production system

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, P.


    Biogas technology with utilisation of biogas is increasingly applied in the agricultural sector to produce renewable energy and to minimise environmental emissions both resulting in reduction in greenhouse gas (GHG) emissions. The main objective of this thesis was to evaluate methods to enhance the methane production in a farm-scale biogas production system. Semi-continuous digestion of pig and dairy cow manures produced methane yields (m{sup 3} kg{sup -1} volatile solids (VS)) of about 0.31 and 0.14 respectively at 2 kgVS m{sup -3} d{sup -1} loading rate, 30 d hydraulic retention time (HRT) and 6.0% feed VS while in batches yields were 0.14, and 0.36 m3 kg{sup -1} VS for dairy cow and pig and manures respectively. These yields were lower than the theoretical yield of 0.4 m3 kg{sup -1} VS reported for cow manure. Possible co-substrates to enhance the methane production were investigated. Methane yields (m{sup 3} kg{sup -1} VS) in batch assays were 0.14 to 0.35 for three different energy crops and 0.32-0.39 for confectionery by-products. On full-scale application, cow manure alone and co-digestion with energy crops produced 0.22 m{sup 3} CH{sub 4} kg{sup -1} VS and co-digestion with confectionery by-products (20% of feed biomass) about 0.28 m{sup 3} kg{sup -1} VS. Laboratory co-digestion of pig manure with potato tuber or its industrial by- products (potato peel or potato stillage) at loading rate of 2 kg VS m-3 d-1 produced methane yields (m{sup 3} kg{sup -1} VS) of about 0.22 at 85:15 and 0.31 at 80:20 feed VS ratio (VS% pig manure to potato co-substrate) compared to 0.14 for pig manure alone. The batch incubation of digested materials from a farm biogas digester (35 deg C) and its associated post-storage tank indicated that both materials could still produce up to 0.20 m{sup 3} kg{sup -1} VS. The amount and rate was highly dependent on temperature. These results suggest that the untapped methane potential in the digested manure cannot effectively be recovered at

  2. Enhancing the Production of a Novel Exopolysaccharide by Bacillus ...

    African Journals Online (AJOL)

    Purpose: To improve the production of a novel exopolysaccharide (EPS) by Bacillus mucilaginosus CGMCC5766. Methods: The culture medium for production of EPS was optimized using statistical experiment design. Sucrose, CaCO3 and K2HPO4 were found to be the key factors based on the results obtained from ...

  3. Enhancement of Short Chain Fatty Acid Production from Millet Fibres ...

    African Journals Online (AJOL)

    Four probiotic bacteria (Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium longum and Bifidobacterium bifidus) were grown on specific medium containing IDF, SDF and TDF. SCFA production by the probiotics was measured at 0, 6, 24, and 48 h using gas liquid chromatography. Results: SCFA production ...

  4. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    Purpose: To improve the production of L-serine from sucrose directly by wild type Corynebacterium glutamicum SYPS-062. Methods: The culture medium for the production of L-serine was optimized using a statistical experimental design. Sucrose, ammonium sulfate ((NH4)2SO4) and biotin were the key factors, based on ...

  5. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)

    Stalk juice of sweet sorghum was used as the main substrate for ethanol production by a Saccharomyces cerevisiae strain because of the high content of sugar. Effects of different medium compositions, including urea, KH2PO4 and MgSO4, on ethanol production were studied by response surface methodology in this paper.

  6. Study of CO/sub 2/ recovery and tertiary oil production enhancement in the Los Angeles Basin. Final report, September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Shah, R.P.; Wittmeyer, E.E.; Sharp, S.D.; Griep, R.W.


    Results are presented of stuides conducted to evaluate carbon dioxide sources in the Los Angeles Basin, determine the requirements for upgrading and transmitting the gas, write the necessary material specifications, and determine where carbon dioxde may be effectively utilized as an enhanced recovery agent in oil fields, estimate recovery performance, and evaluate potential economic benefits. Study results show that there are two major sources of CO/sub 2/ in the Los Angeles Basin. Six oil refineries and one ammonia plant (all near Los Angeles Basin oil fields), have hydrogen plants with by-product streams of concentrated CO/sub 2/. The total available (uncommitted) CO/sub 2/ from these streams is about 3,000 tons per day. Six major electric power plants, all near L.A. Basin oil fields, discharge a combined total of 70,000 tons per day of CO/sub 2/ from 27 large boilers. Average CO/sub 2/ concentration in the flue gas is about 14 percent on a dry basis. CO/sub 2/ processing recommendations include modification of the existing hydrogen-CO/sub 2/ separation system, so that nitrogen is not used for stripping and therefore does not need to be removed, use propylene carbonate absorption, and use low-temperature separation. For CO/sub 2/ extraction from flue gas, monoethanolamine (MEA) absorption is recommended. Several reservoirs have been identified and are listed as prime candidates for CO/sub 2/ injection, using the major criteria of high oil saturation in the reservoir, suitable depth of the reservoir, and a good potential for zone control. (JRD)

  7. Software Product Line Engineering Approach for Enhancing Agile Methodologies (United States)

    Martinez, Jabier; Diaz, Jessica; Perez, Jennifer; Garbajosa, Juan

    One of the main principles of Agile methodologies consists in the early and continuous delivery of valuable software by short time-framed iterations. After each iteration, a working product is delivered according to the requirements defined at the beginning of the iteration. Testing tools facilitate the task of checking if the system provides the expected behavior according to the specified requirements. However, since testing tools need to be adapted in order to test new working products in each iteration, a significant effort has to be invested. This work presents a Software Product Line Engineering (SPLE) approach that allows flexibility in the adaption of testing tools with the working products in an iterative way. A case study is also presented using PLUM (Product Line Unified Modeller) as the tool suite for SPL implementation and management.

  8. Enhancing the Production of a Novel Exopolysaccharide by Bacillus ...

    African Journals Online (AJOL)


    concrete additives, enhanced oil recovery and wastewater treatment as a suspending, stabilizing, emulsifying, thickening agent and flocculants [1]. There has been ... GC, FTIR, NMR methods during our previous study [19]. The results indicated that EPS was a hetero-polysaccharide constituted by mannose, glucose and ...

  9. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    ... biomass yield was estimated to be 10.051*109 CFU/ml. By employing this statistical design, enhanced yield of probiotic biomass B. subtilis SK09 was achieved using cost-effective medium. Key words: Probiotics, response surface methodology, central composite design, Bacillus subtilis SK09, lactose intolerance disorder.

  10. Domestic Wood Products Manufacturing Trends and Factors to Enhance Competitiveness (United States)

    Urs Buehlmann; Matthew Bumgardner; Albert Schuler; Rich Christianson; Rich Christianson


    There is little question that imports have captured a substantial portion of the domestic furniture market. However, there is much speculation and concern as to the future of this and related industries. This study sought to obtain industry perspectives of trends in domestic manufacturing and importing, and to identify factors that can enhance domestic competitiveness...

  11. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz


    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  12. Co-solvents with high coulombic efficiency in propylene carbonate based electrolytes (United States)

    Liu, Gao; Zhao, Hui; Park, Sang-Jae


    A homologous series of cyclic carbonate or propylene carbonate (PC) analogue solvents with increasing length of linear alkyl substitutes were synthesized and used as co-solvents with PC for graphite based lithium ion half cells. A graphite anode reaches a capacity around 310 mAh/g in PC and its analogue co-solvents with 99.95% Coulombic efficiency. Cyclic carbonate co-solvents with longer alkyl chains are able to prevent exfoliation of graphite when used as co-solvents with PC. The cyclic carbonate co-solvents of PC compete for solvation of Li ion with PC solvent, delaying PC co-intercalation. Reduction products of PC on graphite surfaces via single-electron path form a stable Solid Electrolyte Interphase (SEI), which allows the reversible cycling of graphite.

  13. Optimal Maintenance Crew Composition and Enhancement of Crew Productivity (United States)


    The South Carolina Department of Transportation dedicates a large portion of both : its budget and other resources to the maintenance of the States transportation : infrastructure. In order to maximize the efficiency and productivity of the State...

  14. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry


    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  15. Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

    National Research Council Canada - National Science Library

    Yicun Wen; Rui Zhang; Yu Cang; Jianchao Zhang; Lixiao Liu; Xuhong Guo; Bin Fan


    The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper...

  16. Modeling microbial degradation of propylene glycol: electron acceptors and their related redox conditions (United States)

    Dathe, Annette; Fernandez, Perrine M.; Bloem, Esther; Meeussen, Johannes C. L.; French, Helen K.


    De-icing chemicals are applied in large amounts at airports during winter conditions to keep the runways and aircrafts ice-free. The commonly used propylene glycol (PG) is easily degradable by local microbial communities, but anoxic zones develop and soluble Fe+2 and Mn+2 ions can reach the groundwater. To enhance microbial induced remediation and reduce the release of iron and manganese, it was proposed to add NO3- together with PG. However, experiments conducted in the unsaturated zone at Gardermoen airport, Norway, revealed that manganese and iron were preferred over NO3- as electron acceptor [1]. The objectives of this study are to quantify mechanisms which control the order of reduction processes in an unsaturated sandy soil, and to test whether measured redox potentials can help to determine underlying biogeochemical reactions. We are modelling the microbial degradation of PG using Monod kinetics described for the chemical equilibrium tool ORCHESTRA [2], following an approach of [1]. The model is calibrated against gas measurements of CO2, NO2 and N2 released from batch experiments performed under controlled conditions. Fe+2 and Mn+2 were measured for the start and end of the experiment, as well as bulk resistivity, pH and electrical conductivity. With the calibrated model we are working towards a tool to quantify microbial induced redox reactions under different soil water saturations to account for seasonal water fluxes especially during snowmelt. [1] Schotanus, D., Meeussen, J.C.L., Lissner, H., van der Ploeg, M.J., Wehrer, M., Totsche, K.U., van der Zee, S.E.A.T.M., 2013. Transport and degradation of propylene glycol in the vadose zone: model development and sensitivity analysis. Environ Sci Pollut Res Int. [2] Meeussen, J.C.L., 2003. ORCHESTRA: An Object-Oriented Framework for Implementing Chemical Equilibrium Models. Environ. Sci. Technol. 37, 1175-1182.

  17. Genetic engineering of algae for enhanced biofuel production. (United States)

    Radakovits, Randor; Jinkerson, Robert E; Darzins, Al; Posewitz, Matthew C


    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H(2) yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H(2) production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

  18. Genetic Engineering of Algae for Enhanced Biofuel Production (United States)

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.


    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  19. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej


    Full Text Available Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225–250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose. Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  20. Status Epilepticus due to Intraperitoneal Injection of Vehicle Containing Propylene Glycol in Sprague Dawley Rats. (United States)

    Ereifej, Evon S; Meade, Seth M; Smith, Cara S; Chen, Keying; Kleinman, Nanette; Capadona, Jeffrey R


    Published reports of status epilepticus due to intraperitoneal injection containing propylene glycol in rats are sparse. In fact, there are no reports specifying a maximum safe dose of propylene glycol through intraperitoneal administration. We report here a case of unexpected seizures in Sprague Dawley rats after receiving an intraperitoneal injection containing propylene glycol. Nine-week-old, 225-250 gram male rats were reported to experience tremor progressing to seizures within minutes after given injections of resveratrol (30 mg/kg) dissolved in a 40 : 60 propylene glycol/corn oil vehicle solution by direct intraperitoneal (IP) slow bolus injection or via a preplaced intraperitoneal catheter. The World Health Organization suggests a maximum dose of 25 mg/kg/day of propylene glycol taken orally and no more than 25 mg/dL in blood serum, whereas the animals used in our study got a calculated maximum 0.52 g/kg (25 times lower dose). Blood tests from the seizing rat support a diagnosis of hemolysis and lactic acidosis which may have led to the seizures, all of which appeared to be a consequence of the propylene glycol administration. These findings are consistent with oral and intravenous administration of propylene glycol toxicity as previously reported in other species, including humans. To our knowledge, this report represents the first published case of status epilepticus due to an IP injection containing propylene glycol.

  1. Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites ...

    Indian Academy of Sciences (India)

    Here we report the quasielastic neutron scattering and FTIR studies on the dynamics of propylene adsorbed in Na-Y and Na-ZSM5 zeolites. QENS data show that although the mechanism of translational motion of propylene is jump diffusion in both the cases of Na-Y and Na-ZSM5 zeolites, the diffusivity is affected by the ...

  2. Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites ...

    Indian Academy of Sciences (India)

    Abstract. Here we report the quasielastic neutron scattering and FTIR studies on the dynamics of propylene adsorbed in Na-Y and Na-ZSM5 zeolites. QENS data show that although the mechanism of translational motion of propylene is jump diffusion in both the cases of Na-Y and Na-ZSM5 zeolites, the diffusivity is affected ...

  3. Enhancement of vitamin E production in sunflower cell cultures. (United States)

    Caretto, Sofia; Bray Speth, Elena; Fachechi, Christian; Gala, Rosa; Zacheo, Giuseppe; Giovinazzo, Giovanna


    The most biologically active component of vitamin E, alpha-tocopherol, is synthesized in its most effective stereoisomeric form only by photosynthetic organisms. Using sunflower cell cultures, a suitable in vitro production system of natural alpha-tocopherol was established. The most efficient medium was found to be MS basal medium with naphthaleneacetic acid and 6-benzylaminopurine with the addition of casaminoacids and myo-inositol. Culture feeding experiments using biosynthetic precursors showed that alpha-tocopherol production improved by 30% when homogentisic acid was used. Interestingly, time-course experiments with sunflower suspension cultures showed a possible increase of 78% in alpha-tocopherol production when using cultures of longer subculture intervals. Compared to the starting plant tissue, an overall 100% increase of alpha-tocopherol was reached by these sunflower cell cultures.

  4. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard


    Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.......8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion...... achievable by intermittent product removal during cellulose hydrolysis....

  5. Enhanced Polyhydroxybutyrate Production for Long-Term Spaceflight Applications (United States)

    Putman, Ryan J.; Rahman, Asif; Miller, Charles D.; Hadi, Masood Z.


    Synthetic biology holds the promise of advancing long term space fight by the production of medicine, food, materials, and energy. One such application of synthetic biology is the production of biomaterials, specifically polyhydroxyalkanoates (PHAs), using purposed organisms such as Escherichia coli. PHAs are a group of biodegradable bioplastics that are produced by a wide variety of naturally occurring microorganisms, mainly as an energy storage intermediate. PHAs have similar melting point to polypropylene and a Youngs modulus close to polystyrene. Due to limited resources and cost of transportation, large-scale extraction of biologically produced products in situ is extremely cumbersome during space flight. To that end, we are developing a secretion systems for exporting PHA from the cell in order to reduce unit operations. PHAs granules deposited inside bacteria are typically associated with proteins bound to the granule surface. Phasin, a granule bound protein, was targeted for type I secretion by fusion with HlyA signal peptide for indirect secretion of PHAs. In order to validate our secretion strategy, a green fluorescent protein (GFP) was tagged to the PHA polymerase enzyme (phaC), this three part gene cassette consists of phaA and phaB and are required for PHA production. Producing PHAs in situ during space flight or planet colonization will enable mission success by providing a valuable source of biomaterials that can have many potential applications thereby reducing resupply requirements. Biologically produced PHAs can be used in additive manufacturing such as three dimensional (3D) printing to create products that can be made on demand during space flight. After exceeding their lifetime, the PHAs could be melted and recycled back to 3D print other products. We will discuss some of our long term goals of this approach.

  6. Enhancement of organic acids production from model kitchen waste ...

    African Journals Online (AJOL)

    The aim of this study was to obtain the optimal conditions for organic acids production from anaerobic digestion of kitchen waste using response surface methodology (RSM). Fermentation was carried out using 250 ml shake flask which was incubated using an orbital shaker set at 200 rpm. Fermented kitchen wastes were ...

  7. Enhancement of Sexual Libido and Sperm Production in rabbits ...

    African Journals Online (AJOL)

    Blood testosterone was sampled three times during the study - at the beginning, midway and during the last week of the study. ... These results indicate that the administration of 6.25mg of clomiphene citrate would improve sperm production more in the Chinchilla breed of rabbits than in their Dutch-belted counterparts ...

  8. A new strategy to enhance polysialic acid production by controlling ...

    African Journals Online (AJOL)



    Apr 19, 2010 ... The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University,. Wuxi ... Polysialic acid (PSA) is a new pharmaceutical material used in control release of protein drugs and ..... physical and chemical conditions on the production of colominic acid.

  9. Corn stover-enhanced cellulase production by Aspergillus niger ...

    African Journals Online (AJOL)

    The production of extracellular cellulases by Aspergilus niger NRRL 567 on corn stover was studied in liquid state fermentation. In this study, three cellulases, exoglucanase (EXG), endoglucanase (EG) and β-glucosidase (BGL) were produced by A. niger NRRL 567. The optimal pH, temperature and incubation time for ...

  10. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    central intermediate for a number of cellular reactions, which makes its ... This strain was further improved by reducing folate supply. [12], which might be the first report on direct fermentative production of L-serine from sugar. Recently, recombinant ... initial pH 6.8, aeration rate 0.8 vvm, and agitation speed 180 rpm.

  11. Enhancement of 2,3-butanediol production by Klebsiella ...

    African Journals Online (AJOL)

    2,3-Butanediol production parameter optimization using Klebsiella pneumoniae PTCC 1290 was performed using the design of experiments available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels of physical ...

  12. Enhancement of Diosgenin Production in Plantlet and Cell Cultures ...

    African Journals Online (AJOL)

    Purpose: To study the effect of palmarumycin C13, an elicitor from the endophytic fungus Berkleasmium sp. Dzf12, on growth and diosgenin production in plantlet or cell cultures of its host plant, Dioscorea zingiberensis. Methods: Palmarumycin C13 was isolated from the ethyl acetate extract of the endophytic fungus.

  13. Improvement and enhancement of clavulanic acid production in ...

    African Journals Online (AJOL)

    We concluded that using olive oil as a sole source of carbon and energy for cultivation of S. clavuligerus is a promising strategy for CA production. It has several scientific advantages and economic benefits that lead to increased antibiotic titre and can be considered as a cheaper alternative compared to carbohydrates.

  14. Optimization of fermentation medium for enhanced production of ...

    African Journals Online (AJOL)

    The Plackett-Burman design indicated that yeast extract, soybean flour, KH2PO4, FeSO4 and CaCO3 had significant effects on milbemycin production. The concentrations of these five components were investigated using Box-Behnken design and a polynomial model related to medium components concentration effect on ...

  15. Enhancement of 20-hydroxyecdysone production in cell suspension ...

    African Journals Online (AJOL)

    ... most effective. The maximum 20-hydroxyecdysone productivity of about 1.31 mg/L/day was observed in culture with 10 mg/L 7-dehydrocholesterol. This data is the first indication that 7-dehydrocholesterol and ergosterol feeding are effective precursors for 20-hydroxyecdysone formation in plant cell suspension culture.

  16. Biogas production enhancement by cellulolytic strains of actinomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Attar, Y.; Mhetre, S.T.; Dhawale, M.D. [Shivsadan Renewable Energy Research Inst., Sangli (India)


    Biogas yield from cow dung can be increased when the cellulose content of straw is degraded. Of the 32 species of actinomycete bacteria identified in laboratory work, two (CD-4 and Shiv-15) proved particularly useful. Gas production from cattle dung increased by 46% and 39% respectively. (orig.)

  17. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production. (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young


    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Simple Method for Enhanced Production of Secondary Metabolites ...

    African Journals Online (AJOL)



    Apr 10, 2013 ... Callus cultures of Charybdis congesta were initiated in vitro and the effect of growth regulators was tested on callus growth and secondary metabolite production. Among several standard media formulated for use in the present study, MS and B5 were found to be potentially active and facilitated.

  19. Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate

    Directory of Open Access Journals (Sweden)

    Edward V. LaBelle


    Full Text Available It was hypothesized that a lack of acetogenic biomass (biocatalyst at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H2. Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/Lcatholyte/h was achieved with 8 A/Lcatholyte (83.3 A/m2projected surface area of cathode supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H2 and acetate ranged from approximately 80–100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35–42% with a maximum to acetate of 12%.

  20. Mentoring in Higher Education: Does It Enhance Mentees' Research Productivity? (United States)

    Muschallik, Julia; Pull, Kerstin


    Mentoring programs are increasingly widespread in academia. Still, comparatively little is known about their effects. With the help of a self-collected dataset of 368 researchers in two different fields and accounting for self-selection via matching techniques, we find mentees in formal mentoring programs to be more productive than comparable…

  1. Enhancement of 2,3-butanediol production by Klebsiella ...

    African Journals Online (AJOL)



    Nov 16, 2009 ... 2,3-Butanediol production parameter optimization using Klebsiella pneumoniae PTCC 1290 was performed using the design of experiments available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels.

  2. Streamlining policies for enhancing rice production in Africa: Past ...

    African Journals Online (AJOL)

    This paper examines these issues by drawing experiences from several countries across West Africa. The overall objective is to provide appropriate policy framework for the expansion and sustainable production of rice to new areas in Africa. Specifically, the paper examines some of the policies pursued in the past in a ...

  3. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus (United States)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  4. Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production (United States)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  5. Enhancement of organic acids production from model kitchen waste ...

    African Journals Online (AJOL)



    Oct 24, 2011 ... The aim of this study was to obtain the optimal conditions for organic acids production from anaerobic digestion of kitchen waste using ... for its treatment in comparison with alternative treatments such as incineration, landfill and ... degradable plastic (Horiuchi et al., 2002). Organic acids such as lactic acid ...

  6. Irrigation to enhance native seed production for Great Basin restoration (United States)

    Clinton C. Shock; Erik B. G. Feibert; Nancy L. Shaw; Myrtle P. Shock; Lamont D. Saunders


    Native shrublands and their associated grasses and forbs have been disappearing from the Great Basin as a result of grazing practices, exotic weed invasions, altered fire regimes, climate change and other human impacts. Native forb seed is needed to restore these areas. The irrigation requirements for maximum seed production of four key native forb species (Eriogonum...

  7. Enhanced xanthan production process in shake flasks and pilot ...

    African Journals Online (AJOL)

    Xanthan gum, a heteropolysaccharide produced by Xanthomonas campasteris, is a widely used biopolymer in food industries. The production process is highly influenced by the type and concentration of the different carbon and nitrogen source as well as other medium components. The aim of this work was to develop an ...

  8. Development and Validation of The SMAP Enhanced Passive Soil Moisture Product (United States)

    Chan, S.; Bindlish, R.; O'Neill, P.; Jackson, T.; Chaubell, J.; Piepmeier, J.; Dunbar, S.; Colliander, A.; Chen, F.; Entekhabi, D.; hide


    Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.

  9. Estimation of Solvent Effects for the Complexing Reaction of Propylene and Nickel Dithiolene

    Directory of Open Access Journals (Sweden)

    Qing-Zhen Han


    Full Text Available The formation of olefin complexes is of potential importance in the separation of olefins. The solvents affect the activation energies, and hence the rates and equilibrium constants of the complexing reactions, which performance should be well estimated for the purpose of industrial practice. The solvent effects on the complexing reaction of propylene and nickel dithiolene Ni(S2C2H22 + C2H4=CH2 -> Ni(S2C2H22.C2H4=CH2 are studied in this work, using density functional theory with B3LYP and an Onsager model. Complete optimizations of all the stagnation points are performed in benzene, toluene, tetrahydrofuran, dichloromethane, 1,2-dichloroethane, acetone, ethanol, methanol, 1,2,3-propanetriol, dimethylsulfoxide and water, respectively. The reaction of complexing nickel dithiolene with propylene is a two-step process: the first step coordinates the propylene to S atoms in dithiolene, forming a trans-structural intermediate. The second step then yields the cis-structural product. The activation energy of the first step is higher than that of the second, indicating that the first step is the rate-determining step. The solvents make slight changes in the geometries of the reactants, transition states, intermediates and products. However, the corresponding molecular dipole moment becomes large with increase of the solvent polarity, which is beneficial to accelerate the reaction. Furthermore, the activation energies of the first (or second step will exponentially decrease from 125.0 to 113.0 kJ mol-1 (or from 101.8 to 83.43 kJ mol-1 when the dielectric constants of solvents increase from 1.00 to 78.39, while the reaction rates of the first (or second step exponentially increase from 0.7673x10-9 to 96.20x10-9 s-1 (or from 0.5503 to 1.038 s-1, and the equilibrium constants rapidly increase from 0.5066 to 343.4 lmol-1. The sharp variations of activation energies, rate constants, and equilibrium constants appear when the value of the dielectric

  10. Environmental Assessment : Funk Waterfowl Production Area, Phelps County, Ne. : Moist soil management/wetland enhancement proposal (United States)

    US Fish and Wildlife Service, Department of the Interior — Environmental Assessment for the proposed moist soil managment and wetland enhancement on the Funk Waterfowl Production Area (WPA) in the Rainwater Basin Wetland...

  11. A conceptual approach to design livestock production systems for robustness to enhance sustainability

    NARCIS (Netherlands)

    Napel, ten J.; Veen, van der A.A.; Oosting, S.J.; Groot Koerkamp, P.W.G.


    Existing approaches to enhance sustainability of livestock production systems focus on the level of sustainability indicators. Maintaining the level of sustainability in the face of perturbations, which is robustness of sustainability, is relatively unexplored. Perturbations can be classed as noise


    This study assessed the enhanced energy production which is possible when variable-speed wind turbines are electronically controlled by an intelligent controller for efficiency optimization and performance improvement. The control system consists of three fuzzy- logic controllers...

  13. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li


    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  14. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor. (United States)

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun


    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

  15. Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene. (United States)

    Press, Konstantin; Venditto, Vincenzo; Goldberg, Israel; Kol, Moshe


    The activity of dibenzylzirconium and dibenzylhafnium Salalen complexes in polymerisation of propylene with MAO as a cocatalyst is described. Three Salalen ligand precursors combining a bulky alkyl group (1-adamantyl) on the imine-side phenol and electron withdrawing halo groups of different sizes on the amine-side phenol were explored. All metal complexes were obtained as single diastereomers. An X-ray crystallographic structure of a hafnium complex of an additional ligand carrying the combination of tert-butyl and chloro substituted phenolates, 4-Hf, revealed a fac-mer wrapping of the Salalen ligand around the metal centre. All complexes led to active catalysts in propylene polymerisation and to isotactic polypropylene of high regioregularity. The zirconium complexes led to polypropylene having molecular weights of Mw = 132,000-200,000 and isotacticities of [mmmm] = 65.7-75.0%. The hafnium complexes led to polypropylene of higher molecular weights of Mw = 375,000-520,000 and higher stereoregularities of [mmmm] = 80.6-89.3%, the highest isotacticity obtained with 3-Hf.

  16. Suggested Tips and Tricks to Enhance Surgical Video Production. (United States)

    Fisher, Nina; Kaplan, Daniel; Egol, Kenneth A


    Surgical video production is an important skill that can be of valuable use as an educational tool. However, it is important that surgical videos be filmed and edited in a methodological way to maximize its potential. In this video, we describe our preference for producing quality surgical videos. There are many important factors to consider during the filming process, including vantage point of the videographer, lighting, and visualization of instruments. During the editing process, certain techniques can be used to make the video more stimulating and thus more engaging to the viewer. This video presents the filming and editing of a single case. In addition, we provide examples of acceptable and poor footage and editing techniques. Surgical videos can be a valuable educational tool when properly executed. In this video, we describe techniques to ensure quality production.

  17. Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii. (United States)

    Sadana, J C; Shewale, J G; Deshpande, M V


    A mutant of Sclerotium rolfsii CPC 142 that secretes about two times more filter paper-degrading activity in NM-2 growth medium in submerged cultures than the parent strain was obtained by ultraviolet mutagenesis of crushed sclerotia. The production of endo-beta-glucanase in the mutant was affected to a lesser extent. With the parent strain, the addition of 3% rice bran to NM-2 medium was essential for optimal formation of cellulase, including filter paper-degrading activity. However, with the mutant the addition of rice bran to NM-2 medium increased the formation of endo-beta-glucanase but not filter paper-degrading or cellobiase activity. An altered control mechanism for the production of filter paper-degrading enzymes is suggested. The genome(s) controlling the cellulase complex of enzymes in the UV-8 mutant is not under coordinate control.

  18. Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii† (United States)

    Sadana, J. C.; Shewale, J. G.; Deshpande, M. V.


    A mutant of Sclerotium rolfsii CPC 142 that secretes about two times more filter paper-degrading activity in NM-2 growth medium in submerged cultures than the parent strain was obtained by ultraviolet mutagenesis of crushed sclerotia. The production of endo-β-glucanase in the mutant was affected to a lesser extent. With the parent strain, the addition of 3% rice bran to NM-2 medium was essential for optimal formation of cellulase, including filter paper-degrading activity. However, with the mutant the addition of rice bran to NM-2 medium increased the formation of endo-β-glucanase but not filter paper-degrading or cellobiase activity. An altered control mechanism for the production of filter paper-degrading enzymes is suggested. The genome(s) controlling the cellulase complex of enzymes in the UV-8 mutant is not under coordinate control. Images PMID:16345449

  19. Productivity Enhancement, Measurement, and Evaluation - Operating Guidelines and Reporting Instructions (United States)


    Analysis and ProgramEvaluation for Resource Manangement ," October 18, 1972 (e) DoD Manual 5010.15.1-M, "Standardization of Work Measure- "ment," September...proposals to higher headquarters for review, approval, and funding. D. Long-range capital investment planning to provide for changing technology and to ensure...identify, the results of all actions affecting labor productivity, such as: 1. Investments in labor-saving equipment; 2. Changes in organizations

  20. Use of bio-enzymatic preparations for enhancement biogas production


    Tomáš Vítěz; M. Haitl; Z. Karafiát; P. Mach; J. Fryč; T. Lošák; M. Szostková


    Biogas is a renewable energy resource with high increasing developed in last few decades. It’s big opportunity for stabilization rural areas, concretely agriculture sector. This technology can decentralize supply of energy. The number of operated biogas plants is rapidly increasing. Biogas plants require a high level of intensity and stableness of the process of anaerobic fermentation with biogas production for efficiency treatment, also for good quality of development biogas and fertilizatio...

  1. Exposure of German residents to ethylene and propylene glycol ethers in general and after cleaning scenarios. (United States)

    Fromme, H; Nitschke, L; Boehmer, S; Kiranoglu, M; Göen, T


    Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates. We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study). In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mgL(-1) (0.30 mgL(-1)) and 0.80 mgL(-1) (23.6 mgL(-1)), respectively. The other metabolites were found in a limited number of samples or in none. In the exposure study, 5-8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mgm(-3) (EGBE), 3.0 mgm(-3) (PGBE), and 3.3 mgm(-3) (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mgL(-1) for butoxyacetic acid, 0.06 mgL(-1) for 2-butoxypropionic acid, and 2.3 mgL(-1) for n-propoxyacetic acid. Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Theoretical study on the reaction of ground state cyano radical with propylene in Titan's atmosphere. (United States)

    Huang, C H; Kaiser, R I; Chang, A H H


    The bimolecular reaction of ground state cyano radical with propylene under the condition of single collision is investigated by combining ab initio electronic structure calculations for predicting reaction paths and RRKM theory to yield rate constant for each path. The isomerization and dissociation channels for each of the seven collision complexes are characterized by utilizing the unrestricted B3LYP/cc-pVTZ level of theory and the CCSD(T)/cc-pVTZ calculations. Sifting with the facilitation of RRKM rate constants through web of ab initio paths composed of 8 collision complexes, 37 intermediates, and 12 H-, 23 H(2)-, 3 HCN-, and 4 CH(3)-dissociated products, we identify the most probable paths down to 7-9 species at collisions energies of 0 and 5 kcal/mol as the reaction mechanisms. The rate equations of the reaction mechanisms are solved numerically such that the concentration evolutions for all species involved are obtained. This study predicts that CN + C(2)H(3)CH(3) reaction via any of the seven collision complex, c1-c5, c7, and c8, would produce p1(CH(3)CHCHCN) + H, p2(CH(2)CHCH(2)CN) + H, and mostly p43(vinyl cyanide) + CH(3) for collision energy within 0-5 kcal/mol. In addition to the insertion mechanism through collision complex, the direct H-abstraction of propylene by CN radical might occur. Our investigation indicates that the barrierless and exoergic CN(X(2)Sigma(+)) + C(2)H(3)CH(3)(X(1)A') reaction would be an efficient route for the p1, p2, and p43, and likely HCN formation in cold molecular clouds and in the atmosphere of Saturn's satellite Titan.

  3. Enhanced production of nattokinase from UV mutated Bacillus sp.

    Directory of Open Access Journals (Sweden)

    V Mohanasrinivasan


    Full Text Available In the recent years, nattokinase is one of the most-often employed among the several thrombolytic agents used clinically, particularly because of its lower cost comparing to other thrombolytic agents. In the present research work, Bacillus sp. was isolated from the heterogeneous microbial population present in the soil sample and screened for the production of nattokinase. The production of the enzyme was carried out using two different media (with and without shrimp shell substrate. Nattokinase activity (clot buster was determined by using a modified Holmstorm method. The production strain SFN01 was improved by random mutagenesis (UV radiation and the enzyme activity was checked with the enzyme produced by wild strain. The mutated strains had exhibited a higher clot lysis activity in which 1 unit of the enzyme completely lyses 1 mL of human blood when compared to the wild strain. Nattokinase produced by SFN showed a retention time of 10.6 min in RP-HPLC chromatogram.

  4. The Role of Positive Psychology in Enhancing Satisfaction, Motivation, and Productivity in the Workplace (United States)

    Martin, Andrew J.


    Positive psychology offers scope for enhancing satisfaction, motivation, and productivity in the workplace. Wiegand and Geller (2004, this issue) point to a number of strategies to enhance individuals' success orientation and conclude their discussion with the actively caring model which appears to be a useful means of representing pivotal facets…

  5. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla


    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  6. Field-enhanced REB deposition and Bremsstrahlung production

    Energy Technology Data Exchange (ETDEWEB)

    Halbleib, J.A. Sr.; Widner, M.M.


    Recently developed models are employed to describe the interaction of a high-current REB (relativistic electron beam) with planar gold foils in the presence of macroscopic electromagnetic fields. It is shown that, under certain conditions, azimuthal magnetic fields which either penetrate into the foil and/or exist on the transmission side of the foil can significantly enhance the specific power deposited in the foil over that which would be deposited for diode fields alone. Similar field effects suggest methods for improving the external conversion efficiencies, softening the spectra and focussing the source intensities of flash x-ray facilities. Finally, preliminary results are shown from a new trajectory-field model for self-consistent REB transport.

  7. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM


    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  8. Effect of the structure of ethylene-propylene-diene-graft-polystyrene graft copolymers on morphology and mechanical properties of SAN/EPDM blends

    Directory of Open Access Journals (Sweden)


    Full Text Available Ethylene-propylene-diene-graft-polystyrene (EPDM-g-PS copolymers were synthesized to obtain different structures of graft copolymers with different graft lengths and graft densities. The structure of synthesized EPDM-g-PS copolymers was characterized by gel permeation chromatography (GPC and by Fourier transforms infrared spectroscopy (FTIR. These presynthesized graft copolymers were added (5 phr to styrene-acrylonitrile (SAN and ethylene-propylene-diene (EPDM blends, prepared to maintain the following SAN/EPDM ratios a 95/5 and b 90/10. SAN/EPDM blends were characterized by the determination of mechanical properties (tensile strength, elongation at break while their morphology was inspected by scanning electronic microscopy, SEM. The obtained results show that various structures of EPDM-g-PS copolymers influence the miscibility in SAN/EPDM blends. Optimal concentration of side branches of graft copolymers provide the finest morphology and enhance mechanical properties.

  9. Examinations to investigate the effects of feeding propylene glycol, glycerin and L-carnitin on metabolism and parameters of efficiency of dairy cows concerning ketosis prevention


    Malchau, Inke


    The prevalence of subclinical ketosis and metabolic disorders caused by negative energy balance in many modern dairy farms often are a reason for insufficient milk yield, high rate of disease and impaired reproduction performance. The aim of this study was to investigate the effects of feeding propylene glycol, glycerin, and L-carnitin on metabolism and milk production. 97 Holstein Friesian cows were divided into four groups, at least five days before calving. All four groups were fed w...


    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L


    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  11. Influence of roundabout capacity enhancement on emission production (United States)

    Kocianova, Andrea; Drliciak, Marek; Pitlova, Eva


    Secondary effects of intersections insufficient capacity in urban areas are negative impacts on environment out of acceleration and deceleration of vehicles moving in long queues. The positive influence of increased intersection performance to reduce delays and queues, as well as negative impacts on the atmosphere is presented in this paper. The case study includes two single-lane roundabouts located close to each other in Žilina. Both roundabouts do not comply with the current traffic loads. This results in long queues and delays lasting not just during the peak hours. The solution to this problem is a new type of roundabout - turbo-roundabout. Capacity characteristics of both the current and new state are determined by microsimulation using PTV Vissim software. Obtained main characteristics of traffic flows are used as inputs to establish emission productions of NOx, CO and HC at the roundabout entries. The paper shows that proposed basic turbo-roundabout provides significant higher capacity performance compared with current state. Waiting times and queue lengths decrease about ten times. Due to this reduction, emission productions decrease about 50-60%.

  12. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora


    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  13. Natural products as potential cancer therapy enhancers: A preclinical update

    Directory of Open Access Journals (Sweden)

    Abed Agbarya


    Full Text Available Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.

  14. The potential of the mevalonate pathway for enhanced isoprenoid production. (United States)

    Liao, Pan; Hemmerlin, Andréa; Bach, Thomas J; Chye, Mee-Len


    The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Low-molecular-weight model study of peroxide cross-linking of ethylene-propylene (-diene) rubber using gas chromatography and mass spectrometry I. Combination reactions of alkanes. (United States)

    Peters, R; Tonoli, D; van Duin, M; Mommers, J; Mengerink, Y; Wilbers, A T M; van Benthem, R; de Koster, Ch; Schoenmakers, P J; van der Wal, Sj


    The combination reaction of linear and branched alkanes, initiated by dicumylperoxide, has been studied as a model for the combination cross-linking reaction of peroxide-cured terpolymerised ethylene, propylene and diene monomer. Both gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional GC-MS (GCxGC-MS) analyses have been employed to analyse the isomeric reaction products. The identification of these products based on their MS fragmentation patterns is quite complex, due to the high tendency of random rearrangements. Careful elucidation of the high-mass ions at optimised ionisation energy (55eV) has resulted in proposed structures for the different isomeric reaction products. The structure assignment by MS is in agreement with the GCxGC elution pattern and with the result of a theoretical model to predict the boiling points and, thus, the GC retention times. In addition, a model that provided a direct correlation between chemical structure and retention times was developed and this was found to provide a useful fit. Quantification of the identified reaction products by GC separation and flame ionization detection allows classification according to the hydrogen abstraction sites for the alkanes by dicumylperoxide. The selectivity for hydrogen abstraction generally follows the expected order, but a higher reactivity was observed for the methylene group next to a primary methyl group, while a reduced reactivity of the methylene group next to ethyl and to methyl groups was observed. The used approach proved to be a very powerful tool to enhance our understanding of the mechanism of peroxide cross-linking of (branched) alkanes.

  16. The Evonik-Uhde HPPO process for proplene oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B.; Baerz, M. [Evonik Industries, Hanau (Germany); Schemel, J.; Kolbe, B. [Uhde GmbH, Dortmund/Bad Soden (Germany)


    In 2008 the HPPO technology has shown up as an economically and environmentally friendly alternative for manufacturing of propylene oxide. The HPPO technology offers the advantage of an on purpose process for manufacturing of propylene oxide without dependency on disposal or marketing of coupling products. (orig.)

  17. Transdisciplinary approaches enhance the production of translational knowledge. (United States)

    Ciesielski, Timothy H; Aldrich, Melinda C; Marsit, Carmen J; Hiatt, Robert A; Williams, Scott M


    The primary goal of translational research is to generate and apply knowledge that can improve human health. Although research conducted within the confines of a single discipline has helped us to achieve this goal in many settings, this unidisciplinary approach may not be optimal when disease causation is complex and health decisions are pressing. To address these issues, we suggest that transdisciplinary approaches can facilitate the progress of translational research, and we review publications that demonstrate what these approaches can look like. These examples serve to (1) demonstrate why transdisciplinary research is useful, and (2) stimulate a conversation about how it can be further promoted. While we note that open-minded communication is a prerequisite for germinating any transdisciplinary work and that epidemiologists can play a key role in promoting it, we do not propose a rigid protocol for conducting transdisciplinary research, as one really does not exist. These achievements were developed in settings where typical disciplinary and institutional barriers were surmountable, but they were not accomplished with a single predetermined plan. The benefits of cross-disciplinary communication are hard to predict a priori and a detailed research protocol or process may impede the realization of novel and important insights. Overall, these examples demonstrate that enhanced cross-disciplinary information exchange can serve as a starting point that helps researchers frame better questions, integrate more relevant evidence, and advance translational knowledge more effectively. Specifically, we discuss examples where transdisciplinary approaches are helping us to better explore, assess, and intervene to improve human health. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The Role of Education and Training in Enhancing Labour Productivity in Arab Countries in Africa (United States)

    ElObeidy, Ahmed A.


    Labour productivity in Arab countries is low by international standards and this problem occurs in Arab countries both inside and outside Africa. There are 10 Arab countries in Africa: Egypt, Libya, Tunisia, Algeria, Morocco, Mauritania, Sudan, Somalia, Djibouti and Comoros. Enhancing labour productivity is a major challenge for Arab countries.…

  19. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.


    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  20. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the... (United States)


    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  1. Enhancement of carbon dioxide reduction and methane production by an obligate anaerobe and gas dissolution device. (United States)

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook


    The use of gas dissolution devices to improve the efficiency of H2 dissolution has enhanced CO2 reduction and CH4 production. In addition, the nutrients that initially existed in anaerobic sludge were exhausted over time, and the activities of anaerobic microorganisms declined. When nutrients were artificially injected, CO2 reduction and CH4 production rates climbed. Thus, assuming that the activity of the obligatory anaerobic microorganisms is maintained, a gas dissolution device will further enhance the efficiency of CO2 reduction and CH4 production. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Understanding and engineering enzymes for enhanced biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.


    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  3. Hydrogen production by absorption enhanced water gas shift (AEWGS)

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo Bretado, Miguel A. [Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120 (Mexico); Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico); Delgado Vigil, Manuel D.; Gutierrez, Jesus Salinas; Lopez Ortiz, Alejandro; Collins-Martinez, Virginia [Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico)


    AEWGS is a reaction that combines the WGS reaction and CO{sub 2} capture by a solid absorbent to produce high purity H{sub 2} from synthesis gas in one single step at 600-800 C. This reactor system, if homogeneous, would not require a catalyst. However, previous research on this concept was not conclusive, since a steel reactor was used and reactor walls were suspected to act as catalyst. Therefore, there is a need to address this issue and to select and evaluate suitable CO{sub 2} absorbents for this concept. AEWGS was studied using a quartz-made fixed-bed reactor at; SV = 3000 h{sup -1}, feed; 5% CO, 15% H{sub 2}O, balance He-N{sub 2} at 600 C, 1 atm. CO{sub 2} absorbents tested were CaO*MgO, and Na{sub 2}ZrO{sub 3}. Empty quartz-reactor tests leaded to conclude that a catalyst is needed for the WGS at temperatures of interest. A 97% H{sub 2} product was obtained with calcined dolomite suggesting this last to act as a WGS catalyst. (author)

  4. Nutrient Management practices for enhancing Soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)



    Full Text Available percent protein and 19 percent oil in the seeds. The magnitude of soybean yield losses due to nutrient deficiency also varies among the nutrients. Deficiencies of N, P, Fe, B and S nutrients may cause yield losses up to 10 %, 29-45 %, 22-90 %, 100 % and 16-30 %, respectively, in soybean depending on soil fertility, climate and plant factors. Soil salinity is one of the major limiting factors of soybean production in semiarid regions, and chloride salinity has a more depressive effect on yield than sulphate salinity. The goal of nutrient management is to maximize soybean productivity while minimizing environmental consequences. Balanced and timely nutrient management practices applied for soybean contributes to sustainable growth of yield and quality, influences plant health and reduces environmental risks. Balanced nutrition with mineral fertilizers can assist in integrated pest management to reduce damage from infestations of pests and diseases and save inputs required to control them. Balanced fertilization generates higher profits for the farmers, not necessarily through reduced inputs. The role of education and extension in delivering the upto-date knowledge on nutrient management is crucial, challenging, and continuous. La soya (Glycine max L., es el cultivo de legumbres más importante en el mundo. La magnitud de las pérdidas en el rendimientode la soya debido a deficiencias varía dependiendo de los nutrientes. Las deficiencias de N, P, Fe, B y S pueden causar pérdidas en rendimiento de hasta 10 %, 29-45 %, 22-90 %, 100 % y 16-30 %, respectivamente, en la soya dependiendo de la fertilidad del suelo, clima y factores intrínsecos a las plantas. La textura de los suelos utilizados en el cultivo de soya varía entre arenosa y arcillosa. La salinidad del suelo es uno de los mayores factores limitantes en la producción del cultivo en regiones semiáridas, y la salinidad por cloro tiene un mayor efecto en la disminución del

  5. Productivity enhancement and reliability through AutoAnalysis (United States)

    Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian


    The decreasing size and increasing complexity of photomask features, driven by the push to ever smaller technology nodes, places more and more challenges on the mask house, particularly in terms of yield management and cost reduction. Particularly challenging for mask shops is the inspection, repair and review cycle which requires more time and skill from operators due to the higher number of masks required per technology node and larger nuisance defect counts. While the measurement throughput of the AIMS™ platform has been improved in order to keep pace with these trends, the analysis of aerial images has seen little advancement and remains largely a manual process. This manual analysis of aerial images is time consuming, dependent on the skill level of the operator and significantly contributes to the overall mask manufacturing process flow. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated analysis of AIMS™ aerial images. Direct communication with the AIMS™ system allows automated data transfer and analysis parallel to the measurements. User defined report templates allow the relevant data to be output in a manner that can be tailored to various internal needs and support the requests of your customers. Productivity is significantly improved due to the fast analysis, operator time is saved and made available for other tasks and reliability is no longer a concern as the most defective region is always and consistently captured. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. The benefits arising from the use of AutoAnalysis will be discussed in more detail and a study will be performed in order to demonstrate.

  6. Enhanced productivity in reactor decommissioning and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [Areva GmbH, Offenbach (Germany)


    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on

  7. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy


    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  8. Digital Enhancement of Television Signals for People with Visual Impairments: Evaluation of a Consumer Product. (United States)

    Fullerton, Matthew; Peli, Eli


    Technology to improve the clarity of video for home theater viewers is available utilizing a low cost enhancement chip (DigiVision DV1000). The impact of such a device on the preference for enhanced video was tested for people with impaired vision and normally sighted viewers. Viewers with impaired vision preferred the enhancement effects more than normally sighted viewers. Preference for enhancement was correlated with loss in contrast sensitivity and visual acuity. Preference increased with increased enhancement settings (designed for those with normal vision) in the group with vision impairments. This suggests that higher enhancement levels may be of even greater benefit, and a similar product could be designed to meet the needs of the large, growing population of elderly television viewers with impaired vision.

  9. Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. (United States)

    Abanoz, K; Stark, B C; Akbas, M Y


    Ethanologenic Escherichia coli strain FBR5 was transformed with the Vitreoscilla haemoglobin (VHb) gene (vgb) in two constructs (resulting in strains TS3 and TS4). Strains FBR5, TS3 and TS4 were grown at two scales in LB medium supplemented with potato-processing wastewater hydrolysate. Aeration was varied by changes in the medium volume to flask volume ratio. Parameters measured included culture pH, cell growth, VHb levels and ethanol production. VHb expression in strains TS3 and TS4 was consistently correlated with increases in ethanol production (5-18%) under conditions of low aeration, but rarely did this occur with normal aeration. The increase in ethanol yields under low aeration conditions was the result of enhancement of ethanol produced per unit of biomass rather than enhancement of growth. 'VHb technology' may be a useful adjunct in the production of biofuels from food-processing wastewater. Genetic engineering using Vitreoscilla haemoglobin (VHb) has been shown previously to increase ethanol production by Escherichia coli from fermentation of the sugars in corn fibre hydrolysate. The study reported here demonstrates a similar VHb enhancement of ethanol production by fermentation of the glucose from potato waste water hydrolysate and thus extends the list of sugar containing waste products from which ethanol production may be enhanced by this strategy. © 2012 The Society for Applied Microbiology.

  10. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bujans, F. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)], E-mail:; Verdejo, R.; Lozano, A. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Lopez-Manchado, M.A. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)


    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy.

  11. Adsorption and separation of propane and propylene by porous hexacyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Autie-Castro, G. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Autie, M. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Centro de Ingenieria y Proyectos (CIPRO), ISPJAE, La Habana (Cuba); Reguera, E., E-mail: [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Mexico DF (Mexico); Moreno-Tost, R.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Santamaria-Gonzalez, J. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Facultad de Ciencias, Universidad de Malaga (Spain)


    The separation capability for mixtures of propane and propylene by porous frameworks representatives of transition metal hexacyanometallates was studied from adsorption data under equilibrium conditions at 273.15 K and from inverse gas chromatography profiles at different column temperatures. Samples of two porous solids were considered; Cd{sub 3}[Co(CN){sub 6}]{sub 2}, which is representative of Prussian blue analogues (cubic structure) with a porous framework related to vacancies for building block, and Zn{sub 3}[Co(CN){sub 6}]{sub 2} (rhombohedral phase) where the porous framework results from the tetrahedral coordination for the Zn atoms. The two materials were found to be able for the mixtures separation, with the highest separation ability for the rhombohedral phase under equilibrium conditions but, in dynamic conditions the cubic one shown a better separation, which was ascribed to a kinetic contribution related to a smaller windows size.

  12. Bubble-free electrokinetic flow with propylene carbonate. (United States)

    Sritharan, Deepa; Chen, Abraham Simpson; Aluthgama, Prabhath; Naved, Bilal; Smela, Elisabeth


    For electroosmotic pumping, a large direct-current (DC) electric field (10+ V/cm) is applied across a liquid, typically an aqueous electrolyte. At these high voltages, water undergoes electrolysis to form hydrogen and oxygen, generating bubbles that can block the electrodes, cause pressure fluctuations, and lead to pump failure. The requirement to manage these gases constrains system designs. This article presents an alternative polar liquid for DC electrokinetic pumping, propylene carbonate (PC), which remains free of bubbles up to at least 10 kV/cm. This offers the opportunity to create electrokinetic devices in closed configurations, which we demonstrate with a fully sealed microfluidic hydraulic actuator. Furthermore, the electroosmotic velocity of PC is similar to that of water in PDMS microchannels. Thus, water could be substituted by PC in existing electroosmotic pumps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan


    Full Text Available A statistical model combined with CFD (computational fluid dynamic method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM, with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D response surface and a related two-dimensional (2D contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT 75 °C, system pressure (SP 25 bar, and 75% monomer concentration (MC. The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable

  14. Developmental pharmacokinetics of propylene glycol in preterm and term neonates. (United States)

    De Cock, Roosmarijn F W; Knibbe, Catherijne A J; Kulo, Aida; de Hoon, Jan; Verbesselt, Rene; Danhof, Meindert; Allegaert, Karel


    Propylene glycol (PG) is often applied as an excipient in drug formulations. As these formulations may also be used in neonates, the aim of this study was to characterize the pharmacokinetics of propylene glycol, co-administered intravenously with paracetamol (800 mg PG/1000 mg paracetamol) or phenobarbital (700 mg PG/200 mg phenobarbital) in preterm and term neonates. A population pharmacokinetic analysis was performed based on 372 PG plasma concentrations from 62 (pre)term neonates (birth weight (bBW) 630-3980 g, postnatal age (PNA) 1-30 days) using NONMEM 6.2. The model was subsequently used to simulate PG exposure upon administration of paracetamol or phenobarbital in neonates (gestational age 24-40 weeks). In a one compartment model, birth weight and PNA were both identified as covariates for PG clearance using an allometric function (CL(i) = 0.0849 × {(bBW/2720)(1.69) × (PNA/3)(0.201)}). Volume of distribution scaled allometrically with current bodyweight (V(i) = 0.967 × {(BW/2720)(1.45)}) and was estimated 1.77 times higher when co-administered with phenobarbital compared with paracetamol. By introducing these covariates a large part of the interindividual variability on clearance (65%) as well as on volume of distribution (53%) was explained. The final model shows that for commonly used dosing regimens, the population mean PG peak and trough concentrations range between 33-144 and 28-218 mg l(-1) (peak) and 19-109 and 6-112 mg l(-1) (trough) for paracetamol and phenobarbital formulations, respectively, depending on birth weight and age of the neonates. A pharmacokinetic model was developed for PG co-administered with paracetamol or phenobarbital in neonates. As such, large variability in PG exposure may be expected in neonates which is dependent on birth weight and PNA. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  15. Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide Membranes

    Directory of Open Access Journals (Sweden)

    Surya Murali R.


    Full Text Available The separation of propylene and propane is a challenging task in petroleum refineries due to the similar molecular sizes and physical properties of two gases. Composite Poly(ether-block-amide (Pebax-1657 membranes incorporated with silver tetra fluoroborate (AgBF4 in concentrations of 0-50% of the polymer weight were prepared by solution casting and solvent evaporation technique. The membranes were characterized by Scanning Electron Microscopy (SEM, Fourier Transform InfraRed (FTIR and wide-angle X-ray Diffraction (XRD to study surface and cross-sectional morphologies, effect of incorporation on intermolecular interactions and degree of crystallinity, respectively. Experimental data was measured with an indigenously built high-pressure gas separation manifold having an effective membrane area of 42 cm2. Permeability and selectivity of membranes were determined for three different binary mixtures of propylene-propane at pressures varying in the range 2-6 bar. Selectivity of C3H6/C3H8 enhanced from 2.92 to 17.22 and 2.11 to 20.38 for 50/50 and 66/34 C3H6+C3H8 feed mixtures, respectively, with increasing loading of AgBF4. Pebax membranes incorporated with AgBF4 exhibit strong potential for the separation of C3H6/C3H8 mixtures in petroleum refineries.

  16. Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review

    Directory of Open Access Journals (Sweden)

    Yitayal Addis Alemayehu


    Full Text Available Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.

  17. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway. (United States)

    Sakuragi, Hiroshi; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi


    Compared with ethanol, butanol has more advantageous physical properties as a fuel, and biobutanol is thus considered a promising biofuel material. Biobutanol has often been produced by Clostridium species; however, because they are strictly anaerobic microorganisms, these species are challenging to work with. We attempted to introduce the butanol production pathway into yeast Saccharomyces cerevisiae, which is a well-known microorganism that is tolerant to organic solvents. 1-Butanol was found to be produced at very low levels when the butanol production pathway of Clostridium acetobutylicum was simply introduced into S. cerevisiae. The elimination of glycerol production pathway in the yeast contributed to the enhancement of 1-butanol production. In addition, by the use of trans-enoyl-CoA reductase in the engineered pathway, 1-butanol production was markedly enhanced to yield 14.1 mg/L after 48 h of cultivation.

  18. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3. (United States)

    Tian, Qing-Qing; Liang, Lei; Zhu, Ming-Jun


    Clostridium thermocellum ATCC 27405 was used to degrade sugarcane bagasse (SCB) directly for hydrogen production, which was significantly enhanced by supplementing medium with CaCO3. The effect of CaCO3 concentration on the hydrogen production was investigated. The hydrogen production was significantly enhanced with the CaCO3 concentration increased from 10mM to 20mM. However, with the CaCO3 concentration further increased from 20mM to 100mM, the hydrogen production didn't increase further. Under the optimal CaCO3 concentration of 20mM, the hydrogen production reached 97.83±5.19mmol/L from 2% sodium hydroxide-pretreated SCB, a 116.72% increase over the control (45.14±1.03mmol/L), and the yield of hydrogen production reached 4.89mmol H2/g SCBadded. Additionally, CaCO3 promoted the biodegradation of SCB and the growth of C. thermocellum. The stimulatory effects of CaCO3 on biohydrogen production are mainly attributed to the buffering capacity of carbonate. The study provides a novel strategy to enhance biohydrogen production from lignocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Enhanced dark fermentative biohydrogen production from marine macroalgae Padina tetrastromatica by different pretreatment processes

    Directory of Open Access Journals (Sweden)

    M. Radha


    Full Text Available Marine macroalgae are promising substrates for biofuel production. Pretreating macroalgae with chemicals could remove microbial inhibitors and enhance the accessibility of the microorganisms involved in the process to the substrates leading to increased product yield. In the present study, Padina tetrastromatica a seaweed species was subjected to different chemical pretreatment in order to remove phenolic content and to enhance biohydrogen production. Different mineral acids (i.e., HCl, H2SO4, and HNO3 and bases (NaOH and KOH were applied for effective pretreatment of the seaweed. Dilute sulphuric acid treatment of seaweed resulted in the highest cumulative biohydrogen production of 78 ± 2.9 mL/0.05 g VS and reduced phenolic content to 1.6 ±0.072 mg gallic acid equivalent (GAE/g. Optimization of three variables for pretreatment (i.e., substrate concentration, acid concentration, and reaction time was examined by Response Surface Methodology. After the optimization of the pretreatment conditions, phenolic content was decreased to 0.06 mg GAE/g. and enhanced biohydrogen production was observed. Structural changes due to pretreatment was studied by FTIR and XRD analyses. The results clearly indicated that the dilute sulphuric acid pretreatment was effective in removing phenolic content and enhancing biohydrogen production.

  20. Lactobacillus kunkeei YB38 from honeybee products enhances IgA production in healthy adults. (United States)

    Asama, T; Arima, T-H; Gomi, T; Keishi, T; Tani, H; Kimura, Y; Tatefuji, T; Hashimoto, K


    To identify lactic acid bacterial isolates, which promote immunoglobulin A (IgA) production in honeybee products and honeybees (Apis mellifera). Pyrosequencing analysis of the microbiota of honeybee products and honeybees revealed the predominance of Lactobacillus kunkeei in honey, bee pollen, bee bread and royal jelly. Lactobacillus kunkeei was isolated from bee pollen, bee bread and honey stomach, and its effect on IgA production was evaluated in vitro. Heat-killed YB38 and YB83 isolates from bee pollen promoted IgA production in mouse Peyer's Patch cells and had little mitogenic activity or effect on IL-2 production in mouse spleen cells in comparison with Listeria monocytogenes, which does exhibit mitogen activity. A pilot study in 11 healthy adults showed that 4-week intake of 1000 mg day(-1) heat-killed YB38 increased secretory IgA (SIgA) concentrations and secretion in saliva with no adverse effects. Heat-killed Lact. kunkeei YB38 from bee pollen increases IgA production and may safely improve immune responsiveness. This is the first report of microbiota analysis of royal jelly and the immune efficacy of Lact. kunkeei from honeybee products in humans. © 2015 The Society for Applied Microbiology.

  1. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. (United States)

    Gomaa, M A; Al-Haj, L; Abed, R M M


    A lot of research has been performed on Cyanobacteria and microalgae with the aim to produce numerous biotechnological products. However, native strains have a few shortcomings, like limitations in cultivation, harvesting and product extraction, which prevents reaching optimal production value at lowest costs. Such limitations require the intervention of genetic engineering to produce strains with superior properties. Promising advancements in the cultivation of Cyanobacteria and microalgae have been achieved by improving photosynthetic efficiency through increasing RuBisCO activity and truncation of light-harvesting antennae. Genetic engineering has also contributed to final product extraction by inducing autolysis and product secretory systems, to enable direct product recovery without going through costly extraction steps. In this review, we summarize the different enzymes and pathways that have been targeted thus far for improving cultivation aspects, harvesting and product extraction in Cyanobacteria and microalgae. With synthetic biology advancements, genetically engineered strains can be generated to resolve demanding process issues and achieve economic practicality. This comprehensive overview of gene modifications will be useful to researchers in the field to employ on their strains to increase their yields and improve the economic feasibility of the production process. © 2016 The Society for Applied Microbiology.

  2. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym


    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark–gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton–proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton–proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The me...

  3. Quinone-enhanced sonochemical production of nitric oxide from s-nitrosoglutathione (United States)

    Alegría, Antonio E.; Dejesús-Andino, Francisco J.; Sanchez-Cruz, Pedro


    Sonolysis at 75 kHz of argon- and air-saturated aqueous solutions at pH 7.4 containing s-nitrosogluthathione (GSNO) enhances the production rate of nitric oxide (NO). The quinones, anthraquinone-2-sulfonate (AQ2S) and anthraquinone-2,7-disulfonate (AQ27S) further enhance the NO production over that produced in quinone-depleted sonicated solutions. In contrast, the hydrophobic quinones juglone (JQ) and 1,4-naphthoquinone (NQ) inhibit ultrasound-induced NO detection as compared to quinone-depleted solutions. Larger sonolytical decomposition of the hydrophobic quinones NQ and JQ, as compared to AQ2S and AQ27S, is detected which correlates with a larger production of pyrolysis-derived carbon-centered radicals. Reaction of those radicals with NO could explain NQ and JQ inhibition. This work suggests that sulfonated quinones could be used to enhance NO release from GSNO in tissues undergoing ultrasound irradiation. PMID:18595761

  4. Model estimates of enhanced photochemical production of ozone resulting from convective transport of precursors (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Dickerson, Russell R.


    Vertical profiles of net photochemical ozone production rates and total tropospheric column production rates were estimated using two models, a simple photochemical box model and a time-dependent one-dimensional transport/kinetics model. Photochemical production of ozone is found to dominate over destruction throughout the vertical extent of the troposphere over the central United States during typical summertime convective conditions. The column net production can be enhanced by the transport of the ozone precursors NO and NMHC from the boundary layer to the free troposphere by convective activity.

  5. The Nature of Acid-Catalyzed Acetalization Reaction of 1,2-Propylene Glycol and Acetaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chen; Chen, Hui; Li, Xia; Hu, Jianli; Liang, Baochen [Tianjin University of Technology, Tianjin (China)


    We investigated catalytic activity of ion-exchange resins in acetalization of 1,2-propylene glycol with acetaldehyde. The impacts of reaction variables, such as temperature, reaction time, catalyst loading and feedstock composition, on the conversion of 1,2-propylene glycol were measured. The life of the catalyst was also studied. Furthermore, the reaction kinetics of 1,2-propylene glycol acetalization was studied. It was found that reaction rate followed the first order kinetics to acetaldehyde and 1,2-propylene glycol, respectively. Therefore, overall acetalization reaction should follow the second-order reaction kinetics, expressed as r - kC{sup nA}{sub A}C{sup nB}{sub B} = 19.74e{sup -650/T}C{sup 1}{sub A}C{sup 1}{sub B}.


    A laboratory study was carried out to investigate the formation of polyketones in secondary organic aerosol from photooxidation of the aromatic hydrocarbon toluene, a major constituent of automobile exhaust. The laboratory experiments consisted of irradiating toluene/propylene...

  7. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange. (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon


    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang


    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed excellent separation performances for a wide range of propylene/propane mixtures. The membrane showed a permeability of propylene up to 200. barrers and a propylene to propane separation factor up to 50 at optimal separation conditions, well surpassing the "upper-bound trade-off" lines of existing polymer and carbon membranes. The experimental data also showed that the membranes had excellent reproducibility, long-term stability and thermal stability. © 2011 Elsevier B.V.

  9. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid. (United States)

    Delorit, Justin D; Racz, LeeAnn


    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  10. Inert Reassessment Document for Propylene glycol alginate - CAS No. 9005-37-2 (United States)

    As an inert pesticide ingredient, propylene glycol alginate is exempt from the requirement for a tolerance when used as a deforming agent in pesticide formulations applies to growing crops, or to raw agricultural commodities after harvest.

  11. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography

    National Research Council Canada - National Science Library

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D


    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard...

  12. Magnesium Catalyzed Polymerization of End Functionalized Poly(propylene maleate) and Poly(propylene fumarate) for 3D Printing of Bioactive Scaffolds. (United States)

    Wilson, James A; Luong, Derek; Kleinfehn, Alex P; Sallam, Sahar; Wesdemiotis, Chrys; Becker, Matthew L


    The ring-opening copolymerization of maleic anhydride and propylene oxide, using a functionalized primary alcohol initiator and magnesium 2,6-di-tert-butyl phenoxide as a catalyst, was investigated in order to produce high end-group fidelity poly(propylene maleate). Subsequent isomerization of the material into 3D printable poly(propylene fumarate) was utilized to produce thin films and scaffolds possessing groups that can be modified with bioactive groups postpolymerization and postprinting. The surface concentration of these modifiable groups was determined to be 30.0 ± 3.3 pmol·cm -2 , and copper-mediated azide-alkyne cycloaddition was used to attach a small molecule dye and cell adhesive GRGDS peptides to the surface as a model system. The films were then studied for cytotoxicity and found to have high cell viability before and after surface modification.

  13. HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells. (United States)

    Veenhuis, Rebecca T; Freeman, Zachary T; Korleski, Jack; Cohen, Laura K; Massaccesi, Guido; Tomasi, Alessandra; Boesch, Austin W; Ackerman, Margaret E; Margolick, Joseph B; Blankson, Joel N; Chattergoon, Michael A; Cox, Andrea L


    Type I IFN production is essential for innate control of acute viral infection; however, prolonged high-level IFN production is associated with chronic immune activation in HIV-infected individuals. Although plasmacytoid DCs (pDCs) are a primary source of IFN, the mechanisms that regulate IFN levels following the acute phase are unknown. We hypothesized that HIV-specific Ab responses regulate late IFN production. We evaluated the mechanism through which HIV-activated pDCs produce IFN as well as how both monoclonal HIV-specific Abs and Abs produced in natural HIV infection modulated normal pDC sensing of HIV. We found that HIV-induced IFN production required TLR7 signaling, receptor-mediated entry, fusion, and viral uncoating, but not endocytosis or HIV life cycle stages after uncoating. Abs directed against the HIV envelope that do not interfere with CD4 binding markedly enhanced the IFN response, irrespective of their ability to neutralize CD4+ T cell infection. Ab-mediated enhancement of IFN production required Fc γ receptor engagement, bypassed fusion, and initiated signaling through both TLR7 and TLR9, which was not utilized in the absence of Ab. Polyclonal Abs isolated from HIV-infected subjects also enhanced pDC production of IFN in response to HIV. Our data provide an explanation for high levels of IFN production and immune activation in chronic HIV infection.

  14. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin


    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  15. The Cumulative Daily Tolerance Levels of Potentially Toxic Excipients Ethanol and Propylene Glycol Are Commonly Exceeded in Neonates and Infants. (United States)

    Valeur, Kristine Svinning; Hertel, Steen Axel; Lundstrøm, Kaare Engell; Holst, Helle


    Polymedicated neonates and young infants may be at risk of harmful cumulative exposure to toxic excipients like ethanol, propylene glycol and benzyl alcohol during routine clinical care. The aim of this study was to calculate the cumulative daily alcohol exposure (mg/kg/day) in polymedicated neonates and infants and compare these levels to the tolerance limits found in guidelines published by European Medicines Agency (EMA). As part of the SEEN study, all medicinal products administered to neonates and infants were recorded. All included neonates received ≥2 medicinal products/day and infants ≥3 medicinal products/day. Daily excipient levels were calculated based on quantities obtained from manufacturers or databases. Excipient levels were compared to tolerance limits proposed by the EMA. Altogether, 470 neonates and 160 infants were included, recording 4207 prescriptions and 316 products. In total, 45% (n = 288) of patients were exposed to an alcohol of interest; 2% (n = 14) were exposed to benzyl alcohol (BA), 38% (n = 237) to ethanol and 23% (n = 146) to propylene glycol (PG). Of the total number of prescriptions involving ethanol-containing medicinal products (n = 334), 51% would alone exceed tolerance limit of 6 mg/kg/day. Of the total number of prescriptions involving PG-containing medicinal products (n = 174), 70% would alone exceed a maximum tolerance limit of 50 mg/kg/day. Maximal daily exposure to ethanol (1563 mg/kg/day) or PG (954 mg/kg/day) exceeded the tolerance limits recommended by EMA 260.5 and 19.1 times, respectively. Tolerance limits for ethanol and PG as proposed by the EMA are frequently exceeded in polymedicated neonates and infants due to the cumulative effect of these alcohols. Alternative formulations may minimize excipient exposure. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. Direct epoxidation of propylene over stabilized Cu(+) surface sites on titanium-modified Cu2O. (United States)

    Yang, Xiaofang; Kattel, Shyam; Xiong, Ke; Mudiyanselage, Kumudu; Rykov, Sergei; Senanayake, Sanjaya D; Rodriguez, José A; Liu, Ping; Stacchiola, Dario J; Chen, Jingguang G


    Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate that by generating highly dispersed and stabilized Cu(+) active sites in a TiCuOx mixed oxide the epoxidation selectivity can be tuned. The TiCuOx surface anchors the key surface intermediate, an oxametallacycle, leading to higher selectivity for epoxidation of propylene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Single dose intratympanic mesna application inhibits propylene glycol induced cholesteatoma formation. (United States)

    Ismi, O; Karabulut, Y Y; Bal, K K; Vayisoglu, Y; Unal, M


    Mesna (i.e. sodium 2-mercaptoethanesulfonate; C2H5NaO3S2) has been used in otological surgery such as cholesteatoma dissection and tympanic membrane lateralisation in atelectatic ears. However, this study aimed to investigate its effect on cholesteatoma formation. A total of 20 Wistar rats were divided into two groups of 10 animals. The right and left ears of control animals were treated with saline (saline control group; n = 10 ears) and propylene glycol plus saline (propylene glycol control group; n = 10 ears), respectively. In the mesna group, both ears were treated with propylene glycol plus mesna (n = 20 ears). On days 1, 8 and 15, the saline control group had intratympanic injections of 0.2 ml saline and the propylene glycol control and mesna groups had intratympanic injections of 0.2 ml 100 per cent propylene glycol. On day 22, the propylene glycol control group had a single intratympanic injection of 0.2 ml saline and the mesna group had a single intratympanic injection of 10 per cent mesna. Animals were killed 12 weeks after the last injection and the temporal bones were sent for histopathological evaluation. The cholesteatoma formation rate was 88 per cent in the propylene glycol control group, but was significantly lower in the mesna group (p = 0.01). There were no significant differences in granulation tissue formation (p = 0.498), cyst formation in the bulla (p = 0.381), fibrosis (p = 0.072) and epithelial hyperplasia (p = 0.081) among experimental groups. Intratympanic propylene glycol administration is an effective method of promoting experimental cholesteatoma formation. Administration of a single dose of intratympanic mesna inhibited cholesteatoma formation in an animal model.

  18. Runinal and Intermediary Metabolism of Propylene Glycol in Lactating Holstein Cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl


    Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG).......Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG)....

  19. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography. (United States)

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D


    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods.

  20. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio


    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  1. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus. (United States)

    Pandey, Usha; Pandey, J


    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  2. Preparation and characterization of starch grafted with toluene poly (propylene oxide diisocyanate

    Directory of Open Access Journals (Sweden)

    D.C. Dragunski


    Full Text Available Amylopectin-rich starch samples (Amidex 4001 Corn Products Brasil Ingredientes Industriais Ltda. were grafted with polyethers with the purpose of obtaining new materials for application as solid polymeric electrolytes. Grafting reaction was performed by the addition of starch dissolved in DMSO to toluene poly(propylene oxide diisocyanate (Resibras dissolved in the same solvent. This reaction produced a film with good mechanical properties. The film samples were characterized by 13C-NMR, FTIR, DSC, X-Ray and SEM. The FTIR spectrum shows a sharp NH band and a very small urethane band. The 13C-NMR spectrum revealed a peak at 20 ppm, that can be attributed to the CH3 of the polyether chain, and two small peaks at 117 and 140 ppm, attributed to the aromatic ring. The X-ray diffractograms also indicated that after the grafting reaction, the samples of amylopectin-rich starch are more amorphous. Moreover, the glass transition temperature (Tg dropped from 50 °C to -11 °C. These results indicate formation of grafted products and the low Tg of the samples suggests that polyether-grafted starch is a good candidate to obtain solid polymeric electrolytes.

  3. Economic value of ionophores and propylene glycol to prevent disease and treat ketosis in Canada. (United States)

    Gohary, Khaled; Overton, Michael W; Von Massow, Michael; LeBlanc, Stephen J; Lissemore, Kerry D; Duffield, Todd F


    A partial budget model was developed to evaluate the economic value of Rumensin Controlled Release Capsule (CRC) boluses when administered before calving to reduce disease and increase milk production. After accounting for disease incidences in a herd and the percentage by which Rumensin CRC can reduce them, and the increase in milk production attributable to administration of Rumensin CRC, the return on investment (ROI) per lactation was 4:1. Another partial budget model was developed to estimate the economic value of propylene glycol (PG) to treat ketosis when diagnosed by 3 different cow-side tests or when administered to all cows without using any cow-side testing. After accounting for the sensitivity and specificity of each test, ROI per lactation ranged from 2:1 to 4:1. The ROI was 2:1 when no cow-side testing was used. In conclusion, prevention of diseases that occur in the postpartum period and treatment of ketosis after calving yielded a positive ROI that varies based on disease incidence and method of diagnosis.

  4. Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate. (United States)

    North, Michael; Omedes-Pujol, Marta


    Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from ⁵¹V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane.



    Evrim Taşkın; Rengin Eltem; Esra Soyak


    In this study, two local strains of Penicillium chrysogenum named EGEK458 and EGEK469 were selected for enhancement of Penicillin G (PenG) production under solid state fermentation (SSF) conditions. These two strains were selected among seven strains according to their fermentation yields for PenG production during previous tests under submerged fermentation conditions. Sugar beet pulp, an agro-industrial residue of the sugar industry, was used as an inert support for the first time in PenG ...

  6. Selective neuronal cell attachment to a covalently patterned monoamine on fluorinated ethylene propylene films. (United States)

    Ranieri, J P; Bellamkonda, R; Jacob, J; Vargo, T G; Gardella, J A; Aebischer, P


    The patterned covalent surface addition of a monoamine to fluorinated ethylene propylene films (FEP) controls both cellular attachment and differentiation in defined media conditions. A radio frequency glow discharge (RFGD) process was used to replace FEP surface fluorine atoms with hydroxyl groups. The primary amine was then covalently attached by polymerizing aminopropyl-triethoxysilane (APTES) via the hydroxyl functionalities. The selective attachment of cells to the APTES regions was determined to be dependent upon the initial adsorption of albumin to the patterned FEP membrane. Albumin was determined to enhance cellular attachment to the APTES regions and prevent attachment to the unmodified FEP areas for both an NB2a neuroblastoma cell line and primary rat endothelial cells. If albumin were not preadsorbed onto the membrane, selective attachment to the modified regions would not occur. Radiolabeling albumin with 125I demonstrated the preference of albumin for adsorption onto the monoamine surface where the cells preferentially attached. Both hydrophobic and ionic forces contributed to the adsorption process. Although selective cellular attachment to the patterned APTES regions could be achieved by albumin preadsorption to the surface, the neuroblastoma cells did not significantly differentiate unless additional serum components were supplemented to the media.

  7. Fracture studies of poly(propylene)/elastomer blend with {beta}-form nucleating agent

    Energy Technology Data Exchange (ETDEWEB)

    Bai Hongwei [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang Yong, E-mail: [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang Danli; Xiao Chengquan; Song Bo; Li Yanli; Han Liang [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)


    Poly(propylene)/elastomer blends with {beta}-form nucleating agent ({beta}-NA) aryl amides compound (TMB-5) were prepared. The effects of {beta}-NA on crystallization, melting behaviors and elastomer morphologies of PP/elastomer blends were studied through polarization optical microscope (POM), differential scanning calorimetry (DSC) and scanning electronic microscope (SEM). The fracture behaviors, including notched Izod impact fracture and single-edge notched tensile (SENT) fracture, were comparatively studied to establish the role of NA in improving the fracture toughness of PP/elastomer blends. Our results showed that the presence of {beta}-NA leads to determinable {beta}-PP formation in the blends, and as a consequence the fracture toughness of the blend is improved dramatically. Compared with notched Izod impact testing, which can efficiently characterize the fracture toughness of the blends only at lower elastomer content, SENT testing provides more detail of fracture behavior in all the compositions. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/elastomer/{beta}-NA is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage.

  8. Potential harmful health effects of inhaling nicotine-free shisha-pen vapor: a chemical risk assessment of the main components propylene glycol and glycerol. (United States)

    Kienhuis, Anne S; Soeteman-Hernandez, Lya G; Bos, Peter Mj; Cremers, Hans Wjm; Klerx, Walther N; Talhout, Reinskje


    A shisha-pen is an electronic cigarette variant that is advertised to mimic the taste of a water pipe, or shisha. The aim of this study was to assess the potential harmful health effects caused by inhaling the vapor of a nicotine-free shisha-pen. Gas chromatography analysis was performed to determine the major components in shisha-pen vapor. Risk assessment was performed using puff volumes of e-cigarettes and "normal" cigarettes and a 1-puff scenario (one-time exposure). The concentrations that reached the airways and lungs after using a shisha-pen were calculated and compared to data from published toxicity studies. The main components in shisha-pen vapor are propylene glycol and glycerol (54%/46%). One puff (50 to 70 mL) results in exposure of propylene glycol and glycerol of 430 to 603 mg/m(3) and 348 to 495 mg/m(3), respectively. These exposure concentrations were higher than the points of departure for airway irritation based on a human study (propylene glycol, mean concentration of 309 mg/m(3)) and a rat study (glycerol, no-observed adverse effect level of 165 mg/m(3)). Already after one puff of the shisha-pen, the concentrations of propylene glycol and glycerol are sufficiently high to potentially cause irritation of the airways. New products such as the shisha-pen should be detected and risks should be assessed to inform regulatory actions aimed at limiting potential harm that may be caused to consumers and protecting young people to take up smoking.

  9. Enhanced production of green tide algal biomass through additional carbon supply. (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo


    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  10. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  11. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)


    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  12. Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Abdulkadir E. Elshafie


    Full Text Available Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery was studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v and, corn oil (10%v/v added separately or concurrently. The samples were collected at 24h interval up to 120h and checked for growth (OD660, and biosurfactant production (Surface tension and Interfacial tension. The medium with both glucose and corn oil gave better biosurfactant production and reduced both surface tension and interfacial tension to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24 with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil. The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids. The potential of sophorolipids in enhancing oil recovery was tested using core-flooding experiments, under reservoir conditions, where additional 27.27% of residual oil (Sor was recovered. This confirmed the potential of sophorolipids for applications in microbial enhanced oil recovery.

  13. Enhanced primary production on the Mascarene Plateau caused by a mini-monsoon: a satellite perspective (United States)

    Rezah Badal, Mohammed


    The Mascarene Plateau of the southwest Indian Ocean is studied for its primary production. The study is also aimed at demonstrating the feasibility of using remotely sensed satellite observation to characterize the chlorophyll 'a' distribution around the plateau and to depict any seasonal variation. The influence of other oceanographic parameters on primary production, like sea surface temperature and sea surface height anomaly are discussed. The sensors used are respectively, SeaWiFS, ATSR 2, and Topex/Poseidon during the period 1998 - 2000. The results show a seasonal variation with enhanced primary production occurring between the months of May and September. Although the Southern Indian Ocean is mainly oligotrophic, enhanced chlorophyll biomass around the Mascarene plateau was found with a maximum 0.3 mg/m3 during June 2000. The minimum production of around 0.1 mg/m3 was registered during March 1998. A general increase in primary production is observed from south to north and east to west of the Plateau with peaks corresponding to the shallow banks. The postulated explanation about a divergence zone on the western part of the Mascarene Plateau is substantiated by the detection of fronts, eddies and a 'relatively cooler sea surface temperature. Nutrients are thus upwelled closer to the euphotic zone enhancing primary production. The presence of a seasonal high-pressure center corresponding to the Southwest monsoon is shown and an analogy is drawn to a mini-monsoon where both the South Equatorial Current and the Southest Trade wind strengthened.

  14. Physiochemical parameters optimization for enhanced nisin production by Lactococcus lactis (MTCC 440

    Directory of Open Access Journals (Sweden)

    Puspadhwaja Mall


    Full Text Available The influence of various physiochemical parameters on the growth of Lactococcus lactis sub sp. lactis MTCC 440 was studied at shake flask level for 20 h. Media optimization (MRS broth was studied to achieve enhanced growth of the organism and also nisin production. Bioassay of nisin was done with agar diffusion method using Streptococcus agalactae NCIM 2401 as indicator strain. MRS broth (6%, w/v with 0.15μg/ml of nisin supplemented with 0.5% (v/v skimmed milk was found to be the best for nisin production as well as for growth of L lactis. The production of nisin was strongly influenced by the presence of skimmed milk and nisin in MRS broth. The production of nisin was affected by the physical parameters and maximum nisin production was at 30(0C while the optimal temperature for biomass production was 37(0C.

  15. Anti-parallel dimer and tetramer formation of propylene carbonate (United States)

    Tagawa, Ayana; Numata, Tomoko; Shikata, Toshiyuki


    Raman scattering and infrared (IR) absorption spectra of enantiopure (R)-propylene carbonate ((R)PC) and racemic propylene carbonate (PC) were recorded at room temperature, 25 °C, in benzene (Bz) solution and in the pure liquid state to investigate the presence of dimers and other higher order intermolecular associations. (R)PC and PC both demonstrated a strong C=O stretching vibrational band. The band exhibited changes in its shape and resonance wavenumber highly dependent on the concentrations of PCs, whereas a difference between the chirality of (R)PC and PC had little influence. In an extremely dilute condition, doubly split bands were observed at 1807 and 1820 cm-1 in both Raman and IR spectra, which are assigned to the characteristic bands of isolated monomeric PCs. An additional band appeared at 1795 cm-1 in a dilute to concentrated regime, and its magnitude strengthened with increasing concentrations accompanied with slight increasing in the magnitude of 1807 cm-1 band in Raman spectra, while an increase in the magnitude of 1807 cm-1 band was clearly greater than that of 1795 cm-1 band in IR spectra. The spectrum changes at 1795 and 1807 cm-1 were attributed to characteristics of anti-parallel dimer formation of PCs caused by strong dipole-dipole interactions between C=O groups. Moreover, another additional signal was clearly observed at 1780-1790 cm-1 in a concentrated regime, and became the primary signal in the pure liquid state with slight increasing in the intensity of 1795 cm-1 band in Raman spectra. On the other hand, in IR spectra the observed increasing of 1780-1790 cm-1 band was much less than that of 1795 cm-1 band. These newly found spectrum changes in the concentrated regime are attributed to the formation of anti-parallel tetramers of PCs based on the characteristics of band selection rule found in Raman and IR spectra. Equilibrium constants for the anti-parallel dimer (KD) and tetramer formation (KT) of PCs in Bz solution and in the pure

  16. Anti-parallel dimer and tetramer formation of propylene carbonate

    Directory of Open Access Journals (Sweden)

    Ayana Tagawa


    Full Text Available Raman scattering and infrared (IR absorption spectra of enantiopure (R-propylene carbonate ((RPC and racemic propylene carbonate (PC were recorded at room temperature, 25 °C, in benzene (Bz solution and in the pure liquid state to investigate the presence of dimers and other higher order intermolecular associations. (RPC and PC both demonstrated a strong C=O stretching vibrational band. The band exhibited changes in its shape and resonance wavenumber highly dependent on the concentrations of PCs, whereas a difference between the chirality of (RPC and PC had little influence. In an extremely dilute condition, doubly split bands were observed at 1807 and 1820 cm-1 in both Raman and IR spectra, which are assigned to the characteristic bands of isolated monomeric PCs. An additional band appeared at 1795 cm-1 in a dilute to concentrated regime, and its magnitude strengthened with increasing concentrations accompanied with slight increasing in the magnitude of 1807 cm-1 band in Raman spectra, while an increase in the magnitude of 1807 cm-1 band was clearly greater than that of 1795 cm-1 band in IR spectra. The spectrum changes at 1795 and 1807 cm-1 were attributed to characteristics of anti-parallel dimer formation of PCs caused by strong dipole-dipole interactions between C=O groups. Moreover, another additional signal was clearly observed at 1780-1790 cm-1 in a concentrated regime, and became the primary signal in the pure liquid state with slight increasing in the intensity of 1795 cm-1 band in Raman spectra. On the other hand, in IR spectra the observed increasing of 1780-1790 cm-1 band was much less than that of 1795 cm-1 band. These newly found spectrum changes in the concentrated regime are attributed to the formation of anti-parallel tetramers of PCs based on the characteristics of band selection rule found in Raman and IR spectra. Equilibrium constants for the anti-parallel dimer (KD and tetramer formation (KT of PCs in Bz solution and in

  17. Enhanced curdlan production with nitrogen feeding during polysaccharide synthesis by Rhizobium radiobacter. (United States)

    Wang, Xiao-Yu-Zhu; Dong, Jin-Jun; Xu, Guo-Chao; Han, Rui-Zhi; Ni, Ye


    Curdlan is a secondary metabolite synthesized by Agrobacterium sp. and some other bacteria. A newly isolated exopolysaccharide-producing strain was identified to be Rhizobium radiobacter CGMCC 12099. The polysaccharide product was confirmed to be curdlan with a molecule weight of 1.4×10(5)Da, and its molecular structure was determined by HPLC and infrared spectrum. Although nitrogen source is necessary for cell reproduction, curdlan production is largely dependent on nitrogen limitation, as well as cell vitality. Here, a nitrogen feeding strategy was investigated to elevate the curdlan production by R. radiobacter. The optimal concentration and addition time of (NH4)2HPO4 were investigated. The results showed that the enhanced cell density was correlated to the amount of (NH4)2HPO4 added. Also, nitrogen addition in earlier fermentation stage was beneficial to the cell growth and curdlan production. Furthermore, continuously feeding strategy was employed by feeding (NH4)2HPO4 at a constant rate of 1.24g/h at 35(th)h of fermentation for 9h, achieving a final curdlan production of 65.27g/L, productivity of 0.544g/L/h and glucose conversion rate of 38.89%. The curdlan production was improved by 2.1 times compared with that without nitrogen addition. This study provides a feasible and cheap nitrogen feeding strategy to enhance curdlan production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Novel technologies for enhanced production of ethanol: impact of high productivity on process economics (United States)

    In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...

  19. Single crystalline tantalum oxychloride microcubes: controllable synthesis, formation mechanism and enhanced photocatalytic hydrogen production activity. (United States)

    Tu, Hao; Xu, Leilei; Mou, Fangzhi; Guan, Jianguo


    Single crystalline microcubes of a new tantalum compound, tantalum oxychloride (TaO2.18Cl0.64), have been fabricated hydrothermally in a concentrated aqueous solution of hydrochloric acid and acetic acid. They contain a superstructure and exhibit remarkably enhanced photocatalytic activities for hydrogen production due to the improved light harvest and facilitated charge transport.

  20. Rhythmic priming enhances speech production abilities: evidence from prelingually deaf children. (United States)

    Cason, Nia; Hidalgo, Céline; Isoard, Florence; Roman, Stéphane; Schön, Daniele


    Following recent findings that rhythmic priming can enhance speech perception, the aim of this experiment was to investigate whether this extends to speech production. The authors measured the influence of rhythmic priming on phonological production abilities in 14 hearing impaired children with hearing devices. Children had to repeat sentences that were or were not preceded by a rhythmical prime. In addition, this rhythmic prime either matched or mismatched the meter (i.e., stress contrasts) of the sentence. Matching conditions resulted in a greater phonological accuracy of spoken sentences compared to baseline and mismatching conditions. Cochlear implant users were also more sensitive to rhythmic priming than hearing aid users. These results suggest that musical rhythmic priming can enhance phonological production in HI children via an enhanced perception of the target sentence. Overall, these findings suggest that musical rhythm engages domain-general expectations which can enhance both in perception and production of speech. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  1. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy

    DEFF Research Database (Denmark)

    Cong, Wen-Feng; Jing, Jingying; Rasmussen, Jim


    achieved the 60% reduction in GHG emissions compared to fossil fuel, whereas all fertilised mixtures did not meet the 60% reduction target. These findings suggest that including competitive forbs such as plantain in grass-clover mixtures enhances productivity, supporting low-carbon footprint bioenergy...

  2. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. (United States)

    Kim, Young-Kee; Lee, Haryeong


    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Exploring opportunities for enhancing innovation in agriculture: The case of oil palm production in Ghana

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Sakyi-Dawson, O.; Kuyper, T.W.


    We carried out a study using key informant interviews, focus group discussions and individual interviews to explore opportunities to enhance innovation in the oil palm sector in Ghana. Current technical innovations at the farm level are insufficient to promote sustainable oil palm production and to

  4. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C

    NARCIS (Netherlands)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Heijne, ter Annemiek


    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from

  5. Enhanced Production of Palmarumycins C12 and C13 in Mycelial ...

    African Journals Online (AJOL)

    Purpose: To evaluate in situ macroporous resin adsorption for enhancement of palmarumycins C12 and C13 production in mycelial liquid culture of the endophytic fungus Berkleasmium sp. Dzf12. Methods: Ten macroporous adsorption resins (D-101, D1300, HPD-100, X-5, AB-8, DM130, ADS-17, DA-201, NKA-9 and S-8) ...

  6. Enhancing the Production of Cassava in the Rural Sector of the ...

    African Journals Online (AJOL)

    The main rhythm of this paper is on enhancing the production of cassava in the rural sector of the Nigerian economy through integrated rural development. A macroscopic new of the rural nook and crannies in the southwest, southeast and south-south etc of Nigeria will reveal that the rural inhabitants are peasants engaged ...

  7. 76 FR 58462 - Information Collection; Qualified Products List for Water Enhancers (Gels) for Wildland Firefighting (United States)


    ... and levels of ingredients found in typical applications relative to human and environmental impact... Forest Service Information Collection; Qualified Products List for Water Enhancers (Gels) for Wildland Firefighting AGENCY: Forest Service, USDA. ACTION: Notice; request for comment. SUMMARY: In accordance with the...

  8. Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s. (United States)

    Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Zembrzuska, Joanna; Łukaszewski, Zenon


    The biodegradation of poly(ethylene glycol)s (PEGs) and poly(propylene glycol)s (PPGs), both being major by-products of non-ionic surfactants biodegradation, was studied under the conditions of the River Water Die-Away Test. PEGs were isolated from a water matrix using solid-phase extraction with graphitized carbon black sorbent, then derivatized with phenyl isocyanate and determined by HPLC with UV detection. PPGs were isolated from a water matrix by liquid-liquid extraction with chloroform, then derivatized with naphthyl isocyanate and determined by HPLC with fluorescence detection. The primary biodegradation of both PEGs and PPGs reached approximately 99% during the test. The tests show different biodegradation pathways of PEG and PPG. During PEG biodegradation, their chains are shortened leading to the formation of ethylene glycol and diethylene glycol. During PPG biodegradation, no short-chained biodegradation products were found.

  9. Successful Development of Satiety Enhancing Food Products: Towards a Multidisciplinary Agenda of Research Challenges (United States)

    Van Kleef, E.; Van Trijp, J.C.M.; Van Den Borne, J.J.G.C.; Zondervan, C.


    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined. PMID:22530713

  10. Successful development of satiety enhancing food products: towards a multidisciplinary agenda of research challenges. (United States)

    Van Kleef, E; Van Trijp, J C M; Van Den Borne, J J G C; Zondervan, C


    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined.

  11. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li


    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.


    Energy Technology Data Exchange (ETDEWEB)

    Donald V. Watkins


    The focus of this project was an overall process improvement through the enhancement of the co-product streams. The enhancement of the process operations and co-products will increase both ethanol production and the value of other process outputs and reduces the amount of waste byproducts. This leads to a more economical and environmentally sound alternative to landfill disposal of municipal solid waste (MSW). These enhancements can greatly increase the commercial potential for the production of ethanol from MSW by the Masada CES OxyNol process. Both technological and economical issues were considered for steps throughout the conversion process. The research efforts of this project are varied but synergistic. The project investigated many of the operations involved in the Masada process with the overall goal of process improvements. The general goal of the testing was to improve co-product quality, improve conversions efficiencies, minimize process losses, increase energy efficiency, and mitigate process and commercialization risks. The project was divided into 16 subtasks as described in general terms below. All these tasks are interrelated but not necessarily interdependent.

  13. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment. (United States)

    Han, Songfang; Jin, Wenbiao; Chen, Yangguang; Tu, Renjie; Abomohra, Abd El-Fatah


    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the feasibility of using magnetic treatment for enhancement of algal lipid production and wastewater treatment in outdoor-cultivated Chlorella pyrenoidosa. Results confirmed that magnetic treatment significantly enhances biomass and lipid productivity of C. pyrenoidosa by 12 and 10 %, respectively. Application of magnetic field in a semi-continuous culture resulted in highly treated wastewater with total nitrogen maintained under 15 mg L(-1), ammonia nitrogen below 5 mg L(-1), total phosphorus less than 0.5 mg L(-1), and CODCr less than 50 mg L(-1). In addition, magnetic treatment resulted in a decrease of wastewater turbidity, an increase of bacterial numbers, and an increase of active oxygen in wastewater which might be attributed to the enhancement of growth and lipid production of C. pyrenoidosa.

  14. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.


    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  15. Induced biofilm cultivation enhances riboflavin production by an intertidally derived Candida famata. (United States)

    Mitra, Sayani; Thawrani, Dheeraj; Banerjee, Priyam; Gachhui, Ratan; Mukherjee, Joydeep


    The aim of the investigation was to ascertain if surface attachment of Candida famata and aeration enhanced riboflavin production. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disk allowed comparison of riboflavin production between CCFs with hydrophobic surface (PMMA-CCF), hydrophilic glass surface (GS-CCF), and 500-ml Erlenmeyer flask (EF). Riboflavin production (mg/l) increased from 12.79 to 289.96, from 54.44 to 238.14, and from 36.98 to 158.71 in the GS-CCF, EF, and PMMA-CCF, respectively, when C. famata was grown as biofilm-induced cultures in contrast to traditional planktonic culture. Production was correlated with biofilm formation and planktonic growth was suppressed in cultivations that allowed higher biofilm formation. Enhanced aeration increased riboflavin production in hydrophilic vessels. Temporal pattern of biofilm progression based on two-channel fluorescence detection of extracellular polymeric substances and whole cells in a confocal laser scanning microscope followed by application of PHLIP and ImageJ volume viewer software demonstrated early maturity of a well-developed, stable biofilm on glass in contrast to PMMA surface. A strong correlation between hydrophilic reactor surface, aeration, biofilm formation, and riboflavin production was established in C. famata. Biofilm culture is a new-found means to improve riboflavin production by C. famata.

  16. Enhancement of Surfactin and Fengycin Production by Bacillus mojavensis A21: Application for Diesel Biodegradation

    Directory of Open Access Journals (Sweden)

    Noomen Hmidet


    Full Text Available This work concerns the study of the enhancement of surfactin and fengycin production by B. mojavensis A21 and application of the produced product in diesel biodegradation. The influences of the culture medium and cells immobilization were studied. The highest lipopeptides production was achieved after 72 hours of incubation in a culture medium containing 30 g/L glucose as carbon source and a combination of yeast extract (1 g/L and glutamic acid (5 g/L as nitrogen sources with initial pH 7.0 at 30°C and 90% volumetric aeration. The study of primary metabolites production showed mainly the production of acetoin, with a maximum production after 24 h of strain growth. The use of immobilized cells seemed to be a promising method for improving lipopeptides productivity. In fact, the synthesis of both lipopeptides, mainly fengycin, was greatly enhanced by the immobilization of A21 cells. An increase of diesel degradation capacity of approximately 20, 27, and 40% in the presence of 0.5, 1, and 2 g/L of produced lipopeptides, respectively, was observed. Considering these properties, B. mojavensis A21 strain producing a lipopeptide mixture, containing both surfactin and fengycin, may be considered as a potential candidate for future use in bioremediation and crop protection.

  17. Analysis of the factors which enhance yeast growth and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C.S.


    In this study, ethanol fermentation was carried out with a yeast, Saccharomyces cerevisiae. A method for determining the optimum dilution rate in a one-stage continuous stirred tank fermentor (CSTF) was developed to minimize the non-product associated substrate spending. In general, the non-product associated substrate spending could be reduced as dilution rate was increased. Phosphatidylcholine and egg albumin were added as supplements in batch cultures for the purpose of improving ethanol production. The growth rate in batch culture was enhanced by increasing bulk lipid concentration, and depressed by increasing bulk protein concentration. The cell growth in the presence of the lipid-protein complex (supplement) was enhanced by a relatively low level of aeration. Model equations were proposed for cell growth rates and ethanol production rates from which the inhibition constants of glucose and ethanol were estimated for the control and the supplement. The alleviation of the inhibitory effects of glucose and ethanol on cell growth in the supplemented culture as compared to those of the control led to the high cell concentrations which resulted in high fermentor productivities. The increases of specific ethanol productivity in the supplemented culture were also responsible partially for the increases of fermentor productivity.

  18. Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. (United States)

    Lutzu, Giovanni Antonio; Turgut Dunford, Nurhan


    The cultivation of microalgae for the production of biomass and associated valuable compounds has gained increasing interest not only within the scientific community but also at the industrial level. Microalgae cells are capable of producing high-value compounds that are widely used in food, feed, pharmaceutical, medical, nutraceutical, cosmeceutical, and aquaculture industries. For example, lipids produced by algae can be converted to biodiesel, other fuels and bio-products. Hence, high oil content algal biomass has been regarded as a potential alternative feedstock to replace terrestrial crops for sustainable production of bio-products. It has been reported that the interaction of microalgae and other microorganisms greatly enhances the efficiency of microalgal biomass production and its chemical composition. Microalgae-bacteria interaction with an emphasis on the nature of symbiotic relationship in mutualisitc and parasitic consortia has been extensively studied. For instance, it is well documented that production of vitamins or growth promoting factors by bacteria enhances the growth of microalgae. Little attention has been paid to the consortia formed by microalgae and other microorganisms such as other microalgae strains, cyanobacteria, fungi, and yeasts. Hence, the aim of this review is to investigate the impact of the microalgae-other microorganism interactions on the production of high value compounds.

  19. Compressive Strength of Mineral Trioxide Aggregate with Propylene Glycol. (United States)

    Ghasemi, Negin; Rahimi, Saeed; Shahi, Shahriar; Salem Milani, Amin; Rezaei, Yashar; Nobakht, Mahnaz


    The aim of this study was to evaluate the effect of adding propylene glycol (PG) to mineral trioxide aggregate (MTA) liquid with volume ratio of 20% on the compressive strength (CS) of MTA in two time periods (4 and 21 days) after mixing. Four groups of steel cylinders (n=15) with an internal diameter of 3 and a height of 6 mm were prepared and MTA (groups 1 and 2) and MTA+PG (80% MTA liquid+20% PG) (groups 3 and 4) were placed in to the cylinders. In groups 1 and 3 the CS was evaluated after 4 days and in groups 2 and 4 after 21 days. Data were calculated using the two-ways ANOVA. The level of significance was set at 0.05. The highest (52.22±18.92 MPa) and lowest (4.5±0.67 MPa) of CS was obtained in 21-day MTA samples and 4-day MTA+PG specimen, respectively. The effect of time and PG were significant on the CS (PMTA with PG significantly reduced the CS; but passing the time from 4 to 21 days significantly increased the CS. Considering the limitations of this study, PG had a negative effect on CS of MTA.

  20. Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Qian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Childers, Matthew I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Correa, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zwoster, Andy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed for single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.

  1. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate

    Directory of Open Access Journals (Sweden)

    Ana M. Diez-Pascual


    Full Text Available Poly(propylene fumarate (PPF is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT, multi-walled carbon nanotubes (MWCNT, graphene oxide nanoribbons (GONR, graphite oxide nanoplatelets (GONP, polyethylene glycol-functionalized graphene oxide (PEG-GO, polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs and hydroxyapatite (HA nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.

  2. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou


    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  3. Detoxification of ammonium to Nannochloropsis oculata and enhancement of lipid production by mixotrophic growth with acetate. (United States)

    Lin, Weitie; Li, Pengfei; Liao, Zipeng; Luo, Jianfei


    In this study, the toxicity of ammonium was removed in the microalga Nannochloropsis oculata by using acetate as a carbon source. Algal biomass and lipid production were significantly enhanced when N. oculata was grew on 0.5-50mM of ammonium and 16-64mM of acetate in mixotrophic conditions. When grown mixotrophically on 1mM of ammonium and 32mM of acetate, the biomass and lipid production reached 543mg/L and 279mg/L respectively, which were 1.5 and 9.4times higher than the levels generated when grown autotrophically on nitrate. This suggests that mixotrophic growth with acetate can be a useful method to enhance microalgal lipid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement. (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok


    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  5. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng


    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  6. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production

    DEFF Research Database (Denmark)

    Søndergaard, Marie M.; Fotidis, Ioannis; Kovalovszki, Adam


    all mono-substrates tested. On the basis of BMP, the substrates ranked as follows: meadow grass > spring barley, winter wheat, winter barley, ryegrass > rapeseed > manure. Co-digestion of manure with byproducts resulted in only an additive and not synergistic methane production. Continuous co-digestion...... potential (BMP) of six agricultural organic byproducts were tested. Consecutively, the byproduct with the highest BMP was used as a co-digestion substrate with manure, in a continuous stirred tank reactor (CSTR). Meadow grass had the highest BMP value [388 ± 30 NmL of CH4 g–1 of volatile solids (VS)] among...

  7. Assessment of the dietary intake of propylene glycol in the Korean population. (United States)

    Lim, Ho Soo; Hwang, Ju Young; Choi, EunA; Lee, Gun Young; Yun, Sang Soon; Kang, TaeSeok


    An improved method for the analysis of propylene glycol (PG) in foods using a gas chromatography-flame ionisation detector (GC-FID), with confirmation by GC-MS, was validated by measuring several analytical parameters. The PG concentrations in 1073 products available in Korean markets were determined. PG was detected in 74.1% of the samples, in a concentration range from the limit of detection (n.d., 0.39 μg ml(-1)) to 12,819.9 mg kg(-1). The Korea National Health and Nutrition Examination Survey (KNHANES) 2011-2013 reported the mean intake levels of PG from all sources by the general population and consumers were 26.3 mg day(-1) (0.52 mg kg(-1) day(-1)) and 34.3 mg day(-1) (0.67 mg kg(-1) day(-1)), respectively. The 95th percentile intake levels of the general population and consumers were 123.6 mg day(-1) (2.39 mg kg(-1) day(-1)) and 146.3 mg day(-1) (2.86 mg kg(-1) day(-1)), respectively. In all groups of the general population, breads were the main contributors to the total PG intake. These reports provide a current perspective on the daily intake of PG in the Korean population.

  8. [Determination of ethylene glycol in biological fluids--propylene glycol interferences]. (United States)

    Gomółka, Ewa; Cudzich-Czop, Sylwia; Sulka, Adrianna


    Many laboratories in Poland do not use gas chromatography (GC) method for determination of ethylene glycol (EG) and methanol in blood of poisoned patients, they use non specific spectrophotometry methods. One of the interfering substances is propylene glycol (PG)--compound present in many medical and cosmetic products: drops, air freshens, disinfectants, electronic cigarettes and others. In Laboratory of Analytical Toxicology and Drug Monitoring in Krakow determination of EG is made by GC method. The method enables to distinguish and make resolution of (EG) and (PG) in biological samples. In the years 2011-2012 in several serum samples from diagnosed patients PG was present in concentration from several to higher than 100 mg/dL. The aim of the study was to estimate PG interferences of serum EG determination by spectrophotometry method. Serum samples containing PG and EG were used in the study. The samples were analyzed by two methods: GC and spectrophotometry. Results of serum samples spiked with PG with no EG analysed by spectrophotometry method were improper ("false positive"). The results were correlated to PG concentration in samples. Calculated cross-reactivity of PG in the method was 42%. Positive results of EG measured by spectrophotometry method must be confirmed by reference GC method. Spectrophotometry method shouldn't be used for diagnostics and monitoring of patients poisoned by EG.

  9. Removal of propylene and butylene as individual compounds with compost and wood chip biofilters. (United States)

    Rani, Madhu; Sattler, Melanie L


    Propylene and butylene are highly reactive volatile organic compounds (HRVOCs) in terms of ground-level ozone formation. This study examined the effectiveness of biofiltration in removing propylene and butylene as separate compounds. Specific objectives were (1) to measure maximum removal efficiencies for propylene and butylene and the corresponding microbial acclimation times, which will be useful in the design of future biofilters for removal of these compounds; (2) to compare removal efficiencies of propylene and butylene for different ratios of compost/hard wood-chip media; and (3) to identify the microorganisms responsible for propylene and butylene degradation. Two laboratory-scale polyvinyl chloride biofilter columns were filled with 28 in. of biofilter media (compost/wood-chip mixtures of 80:20 and 50:50 ratios). Close to 100% removal efficiency was obtained for propylene for inlet concentrations ranging from 2.9 x 10(4) to 6.3 x 10(4) parts per million (ppm) (232-602 g/m3-hr) and for butylene for inlet concentrations ranging from 91 to 643 ppm (1.7-13.6 g/m3-hr). The microbial acclimation period to attain 100% removal efficiency was 12-13 weeks for both compounds. The lack of similar microbial species in the fresh and used media likely accounts for the long acclimation time required. Both ratios of compost/wood chips (80:20 and 50:50) gave similar results. During the testing, media pH increased slightly from 7.1 to 7.5-7.7. None of the species in the used media that treated butylene were the same as those in the used media that treated propylene, indicating that different microbes are adept at degrading the two compounds.


    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih


    Full Text Available This study is aimed to empower traditional herbs producer and help legal protection of Indonesian traditional medicines, implementing Participatory Research and juridical-sociological approaches. Data were collected through literary, questionnaire, interview and Focus Group Discussion. The first year study revealed that Herbal Producer Association worked with all members, persuading government offices to get product certification and effective trademark licenses. In the second year study the researchers and Producers Association trained and facilitated vendors to endorse trademark, label registry, and markets shares. Producers maintain traditional medicine management, because product certification is hard to achieve. Penelitian ini bertujuan untuk memberdayakan produsen jamu/OT dan membantu perlindungan hukumnya, dengan memanfaatkan pendekatan penelitian partisipatoris dan sosiologis yuridis. Data dikumpulkan dengan literatur, kuesioner, wawancara dan Focus Group Discussion (FGD. Pada tahun pertama organisasi gabungan pengusaha jamu (GP Jamu bersama-sama dengan seluruh anggotanya mendorong pemerintah untuk perolehan sertifikasi produk izin edar dan merek secara efektif. Pada tahun kedua, peneliti dan gabungan pengusaha jamu melakukan pelatihan guna perolehan izin edar, pendaftaran merek, dan peningkatan pemasaran. Para pengusaha jamu tradisional perlu terus menerus didampingi karena perolehan izin edar terkesan sulit.

  11. Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions (United States)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R. Alfaro; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Martinez, H. Bello; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Diaz, L. Calero; Caliva, A.; Villar, E. Calvo; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; Del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Maldonado, I. Cortés; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Coral, D. M. Goméz; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; de Guevara, P. Ladron; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzón, I. León; Vargas, H. León; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; García, G. Martínez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Pérez, J. Mercado; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Zetina, L. Montaño; Montes, E.; de Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; da Luz, H. Natal; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; de Oliveira, R. A. Negrao; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; da Silva, A. C. Oliveira; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; da Costa, H. Pereira; Peresunko, D.; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Cahuantzi, M. Rodríguez; Manso, A. Rodriguez; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Palomo, L. Valencia; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Doce, O. Vázquez; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Tello, A. Villatoro; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.


    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.

  12. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Pribyl, Pavel; Cepak, Vladislav [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Algological Centre and Centre for Bioindication and Revitalization; Zachleder, Vilem [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Lab. of the Cell Cycles of Algae


    We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l{sup -1} day{sup -1}. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l{sup -1} day{sup -1}, biomass density was 5.7 g l{sup -1} dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils. (orig.)

  13. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. (United States)

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V


    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

  14. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells. (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi


    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  15. Production, Characterization and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    Directory of Open Access Journals (Sweden)

    Sanket J. Joshi


    Full Text Available The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses or date molasses, as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33+0.57mN m-1 and 2.47+0.32mN m-1 respectively within 72h, at 40 C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67°+1.6° to 19.54°+0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor. The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial enhanced oil recovery processes.

  16. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter? (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia


    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pturbulence may have elevated the production of autochthonous CDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (pturbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Bioactivity, physical and chemical properties of MTA mixed with propylene glycol. (United States)

    Natu, Vaishali Prakash; Dubey, Nileshkumar; Loke, Gerald Choon Leong; Tan, Teng Seng; Ng, Wee Hsuan; Yong, Chee Weng; Cao, Tong; Rosa, Vinicius


    To investigate the physical (setting time, hardness, flowability, microstructure) and chemical (pH change, calcium release, crystallinity) properties and the biological outcomes (cell survival and differentiation) of mineral trioxide aggregate (MTA) mixed using different proportions of propylene glycol (PG) and water. White MTA was mixed with different water/PG ratios (100/0, 80/20 and 50/50). Composition (XRD), microstructure (SEM), setting time (ASTM C266-13), flowability (ANSI/ADA 57-2000), Knoop hardness (100 g/10 s) and chemical characteristics (pH change and Ca2+ release for 7 days) were evaluated. Cell proliferation, osteo/odontoblastic gene expression and mineralization induced by MTA mixed with PG were evaluated. MTA discs (5 mm in diameter, 2 mm thick) were prepared and soaked in culture medium for 7 days. Next, the discs were removed and the medium used to culture dental pulp stem cells (DPSC) for 28 days. Cells survival was evaluated using MTS assay (24, 72 and 120 h) and differentiation with RT-PCR (ALP, OCN, Runx2, DSPP and MEPE) and alizarin red staining (7 and 14 days). Data were analysed using one-way ANOVA and Tukey's post-hoc analysis (a=0.05). The addition of PG significantly increased setting time, flowability and Ca2+ release, but it compromised the hardness of the material. SEM showed that 50/50 group resulted porous material after setting due to the incomplete setting reaction, as shown by XRD analysis. The addition of PG (80/20 and 50/50) was not capable to improve cell proliferation or to enhance gene expression, and mineralized deposition of DPSC after 7 and 14 days as compared to the 100/0. Except for flowability, the addition of PG did not promote further improvements on the chemical and physical properties evaluated, and it was not capable of enhancing the bioactivity of the MTA.

  18. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity. (United States)

    Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny


    Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved

  19. Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus. (United States)

    Kato, Akihiro; Takatani, Nobuyuki; Ikeda, Kazutaka; Maeda, Shin-Ichi; Omata, Tatsuo


    Cyanobacterial mutants engineered for production of free fatty acids (FFAs) secrete the products to the medium and hence are thought to be useful for biofuel production. The dAS1T mutant constructed from Synechococcus elongatus PCC 7942 has indeed a large capacity of FFA production, which is comparable to that of triacylglycerol production in green algae, but the yield of secreted FFAs is low because the cells accumulate most of the FFAs intracellularly and eventually die of their toxicity. To increase the FFA productivity, enhancement of FFA secretion is required. Growth of dAS1T cells but not WT cells was inhibited in a liquid medium supplemented with 0.13 g L-1 of palmitic acid. This suggested that when FFA accumulates in the medium, it would inhibit the release of FFA from the cell, leading to FFA accumulation in the cell to a toxic level. To remove FFAs from the medium during cultivation, an aqueous-organic two-phase culture system was developed. When the dAS1T culture was overlaid with isopropyl myristate (IM), the final cell density, cellular chlorophyll content, and the photosynthetic yield of PSII were greatly improved. The total amount of extracellular FFA was more than three times larger than that in the control culture grown without IM, with most of the secreted FFAs being recovered in the IM layer. The cellular FFA content was decreased by more than 85% by the presence of the IM layer. Thus, the two-phase culture system effectively facilitated FFA secretion out of the cell. An average FFA excretion rate of 1.5 mg L-1 h-1 was attained in the 432 h of cultivation, with a total amount of excreted FFA being 0.64 g L-1 of culture. These figures were more than three times higher than those reported previously for the cyanobacteria-based FFA production systems. Removal of FFA from the culture medium is important for improving the productivity of the FFA production system using cyanobacteria. Further increase in productivity would require an increase

  20. Enhancing Products by Embedding Agents: Adding an Agent to a Robot for Monitoring, Maintenance and Disaster Prevention

    NARCIS (Netherlands)

    van Moergestel, L.; Puik, E.; Telgen, D.H.; Folmer, H.; Grünbauer, M.; Proost, R.; Veringa, H.; Meyer, John-Jules Charles


    Monitoring of computer networks, complex technical systems like aeroplanes is common practice. In this article the use of a monitoring agent in an arbitrary product is discussed. The product itself could be any product with sufficient hardware capabilities. The focus is on the product enhancement by

  1. A density functional theory study of partial oxidation of propylene on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Düzenli, Derya [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey); Mineral Analysis and Technology, General Directorate of Mineral Research and Exploration, 06800 Ankara (Turkey); Atmaca, Deniz Onay; Gezer, Miray Gülbiter [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey); Onal, Isik, E-mail: [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey)


    Graphical abstract: - Highlights: • Propylene epoxidation mechanism on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces is investigated using DFT method. • Acrolein is found to be a thermodynamically more favorable product for both surfaces especially over CuO surface. • The more basic property of the surface oxygen increases the probability of acrolein formation over CuO(0 0 1) surface. - Abstract: This work theoretically investigates propylene epoxidation reaction on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu{sub 2}O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu{sub 2}O surface indicating the higher activity of Cu{sup +} species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  2. New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics. (United States)

    Ferreira, Elisabete S C; Voroshylova, Iuliia V; Koverga, Volodymyr A; Pereira, Carlos M; Cordeiro, M Natália D S


    In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.

  3. Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene. (United States)

    Broberg, Christopher A; Clark, Daniel D


    Coenzyme M (CoM, 2-mercaptoethanesulfonate), once thought to be exclusively produced by methanogens, is now known to be the central cofactor in the metabolism of short-chain alkenes by a variety of aerobic bacteria. There is little evidence to suggest how, and under what conditions, CoM is biosynthesized by these organisms. A shotgun proteomics approach was used to investigate CoM-dependent propylene metabolism in the Gram-negative bacterium Xanthobacter autotrophicus Py2. Cells were grown on either glucose or propylene, and the soluble proteomes were analyzed. An average of 395 proteins was identified from glucose-grown replicates, with an average of 419 identified from propylene-grown replicates. A number of linear megaplasmid (pXAUT01)-encoded proteins were found to be specifically produced by growth on propylene. These included all known to be crucial to propylene metabolism, in addition to an aldehyde dehydrogenase, a DNA-binding protein, and five putative CoM biosynthetic enzymes. This work has provided fresh insight into bacterial alkene metabolism and has generated new targets for future studies in X. autotrophicus Py2 and related CoM-dependent alkene-oxidizing bacteria.

  4. Aphids preserved in propylene glycol can be used for reverse transcription-polymerase chain reaction detection of Potato virus Y. (United States)

    Nie, Xianzhou; Pelletier, Yvan; Mason, Nicola; Dilworth, Andrea; Giguère, Marie-Andrée


    The effectiveness of propylene glycol on the retention of RNA target of Potato virus Y (PVY), an aphid stylet-borne virus, in Myzus persicae was investigated in comparison to ethanol and liquid nitrogen/-80°C. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the PVY targets from the propylene glycol/ethanol/liquid nitrogen preserved single aphids after a 5min acquisition period from infected potato plants. In the liquid nitrogen/-80°C and 70% ethanol treatments, 55.6% and 38.8% aphids tested PVY-positive, respectively. In the 0-75% propylene glycol treatments, 12.2-44.7% aphids tested PVY-positive. The lowest detection rate was in the 0% (positive rate, 15.2%) and the 10% propylene glycol (positive rate, 12.2%). As the propylene glycol concentration increased to 25%, 29.8% aphids tested positive. A high PVY-positive rate was also found in 35-75% propylene glycol treatments at 44.7% (35% propylene glycol), 36.7% (50% propylene glycol) and 34.8% (75% propylene glycol), which is comparable to the rate shown in 70% ethanol. No significant difference in the positive detection rate was observed in aphids preserved in 50% propylene glycol at room temperature for 2, 4 and 10 days. These results demonstrate that propylene glycol at 25-75% can retain PVY targets effectively in aphids for an extended time period, and thus can be used in aphid traps to preserve viruliferous aphids for later RT-PCR detection of PVY. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Enhanced Yields in Organic Arable Crop Production by Eco-Functional Intensification using Intercropping

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Bedoussac, Laurent; Carlsson, Georg


    Organic agriculture (OA) faces challenges to enhance food production per unit area and simultaneously reduce the environmental and climate impacts, e.g. nitrate leaching per unit land and green-houses gases (GHG) emissions per kg product. Eco-functional intensification (EFI) is suggested as a means...... in space by intercropping, fitted into the organic crop rotation, has a strong potential to increase yield and hereby reduce the global environmental effects performance such as GHG per kg organic grain. Finally, we discuss likely barriers for increased use of intercropping in organic farming and suggest...... for enhancing yields in OA. EFI involves activating more knowledge and intensifying the beneficial effects of ecosystem functions, including agrobiodiversity (planned and associated) and soil fertility, and refocusing the importance of ecosystems services in agriculture. Organic farmers manage agrobiodiversity...

  6. Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. (United States)

    Driouch, Habib; Roth, Andreas; Dersch, Petra; Wittmann, Christoph


    Filamentous fungi such as Aspergillus niger are important biocatalysts for industrial production of various enzymes as well as organic acids or antibiotics. In suspended culture these microorganisms exhibit a complex morphology which typically has a strong influence on their production properties. In this regard, we have recently shown that the addition of inorganic micro particles to the culture medium is a straightforward and elegant approach to precisely tame fungal morphology. For A. niger a full range of morphological forms from pellets with different diameters to free mycelium could be adjusted by supplementation with talc powder. Aluminium oxide particles similarly affected morphology, showing that this effect is largely independent of the chemical particle composition. Exemplified for different recombinant A. niger strains enzyme production could be strongly enhanced by the addition of microparticles. This was demonstrated for the production of fructofuranosidase, an important high-value biocatalyst for pre-biotic fructo-oligosaccharides, by recombinant A. niger. In a microparticle enhanced fed-batch process, a highly productive mycelium could be achieved. The enzyme titre of 2800 U/mL finally reached was more then tenfold higher then that of any other process reported so far. Here we provide additional insights into the novel production process. This includes the confirmation of the highly selective production of the target enzyme fructofuranosidase using MALDI-TOF MS analysis. Moreover, we show that the obtained enzyme suspension can be efficiently used with minimal pre-treatment for the biosynthesis of short chain fructooligosaccharides of the inulin type, such as 1-kestose and 1-nystose, prebiotics with substantial commercial interest. In particular, these compounds are highly attractive for human consumption, since they have been shown to reduce the risk of colon cancer. In summary, the use of microparticles opens a new avenue of engineering

  7. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)


    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  8. Enhancing the 3-hydroxyvalerate component in bioplastic PHBV production by Cupriavidus necator. (United States)

    Berezina, Nathalie


    In the current context of global warming, the substitution of conventional plastics with bioplastics is a challenge. To take up this challenge, we must meet different technical and economic constraints. In the case of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the technical properties can be modulated by varying the 3-hydroxyvalerate content. 3-Hydroxyvalerate (3-HV) enhancement is an issue; therefore, simultaneous evaluation of several 3-hydroxyvalerate-enhancing substrates through fractional factorial design of experiments is described. Eight substrates citric, valeric, propionic, and levulinic acids; propanol; pentanol; and sodium propionate were studied for 3-HV enhancement, and sodium glutamate was studied for biomass and polyhydroxyalkanoate (PHA) enhancement. The most efficient 3-hydroxyvalerate-enhancing factors were levulinic acid, sodium propionate, and pentanol; however, pentanol, at a concentration of 1 g/L, had an extremely negative influence on biomass production and the PHA content of cells. The effect of the inoculum nutrient composition on the final 3-HVcontent was also evaluated. These results showed that the most efficient combination for the production of high 3-HVcontent in PHBV was primary inoculum growth on mineral medium followed by fermentation for 48 h with levulinic acid and sodium propionate (at 1 g/L) as the only carbon sources. This allowed us to produce PHBV with a 3-HVcontent of 80 mol % and overall volumetric and specific productivities of 2 mg/L/h and 3.9 mg/g(CDW) /h, respectively, with the addition of only 2 g/L of inducing substances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. (United States)

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi


    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation. (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S


    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  11. Multi response optimization for enhanced xylitol production by Debaryomyces nepalensis in bioreactor. (United States)

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N


    In this study, the optimization of different process variables-pH (4-6), aeration rate (200-550 rpm) and agitation rate (0.6-1.8 vvm) were investigated using rotating simplex method and uniform design method to enhance xylitol production from xylose by D. nepalensis in a batch stirred tank bioreactor. Maximum xylitol productivity (0.576 g L-1 h-1) was obtained at pH 4.0, agitation 300 rpm and aeration 1.5 vvm by rotating simplex method. Individual optimum values of pH, agitation and aeration are 4.2, 370 rpm and 1.2 vvm, respectively, for productivity, 4.3, 350 rpm and 1.0 vvm, respectively for xylitol concentration and 4.4, 360 rpm and 0.8 vvm, respectively for yield. Using generalized distance approach, the simultaneous optimal values were found to be-pH 4.3, 370 rpm and 0.9 vvm. After multi-response analysis, batch fermentation at optimal operating conditions resulted in enhanced productivity (0.76 g L-1 h-1), xylitol concentration (59.4 g L-1) and yield (0.58 g g-1) with an increase of 76.74 % of xylitol productivity.

  12. Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. (United States)

    He, Ai-Yong; Yin, Chun-Yan; Xu, Hao; Kong, Xiang-Ping; Xue, Jia-Wei; Zhu, Jing; Jiang, Min; Wu, Hao


    Reducing power such as NADH is an essential factor for acetone/butanol/ethanol (ABE) fermentation using Clostridium spp. The objective of this study was to increase available NADH in Clostridium beijerinckii IB4 by a microbial electrolysis cell (MEC) with an electron carrier to enhance butanol production. First of all, a MEC was performed without electron carrier to study the function of cathodic potential applying. Then, various electron carriers were tested, and neutral red (NR)-amended cultures showed an increase of butanol concentration. Optimal NR concentration (0.1 mM) was used to add in a MEC. Electricity stimulated the cell growth obviously and dramatically diminished the fermentation time from 40 to 28 h. NR and electrically reduced NR improved the final butanol concentration and inhibited the acetone generation. In the MEC with NR, the butanol concentration, yield, proportion and productivity were increased by 12.2, 17.4, 7.2 and 60.3 %, respectively. To further understand the mechanisms of NR, cathodic potential applying and electrically reduced NR, NADH and NAD(+) levels, ATP levels and hydrogen production were determined. NR and electrically reduced NR also improved ATP levels and the ratio of NADH/NAD(+), whereas they decreased hydrogen production. Thus, the MEC is an efficient method for enhancing the butanol production.

  13. Clenbuterol enhances the production of kynurenic acid in brain cortical slices and glial cultures. (United States)

    Luchowska, Elzbieta; Kloc, Renata; Wnuk, Sebastian; Olajossy, Bartosz; Wielosz, Marian; Urbańska, Ewa M


    The effect of a beta(2)-adrenergic agonist, clenbuterol on the production of a glutamate receptor antagonist, kynurenic acid was studied in vitro. Clenbuterol enhanced the production of kynurenic acid in brain cortical slices (0.1-1.0 mM) and in glial cultures (1-50 muM). Timolol, a non-selective beta-adrenergic antagonist prevented this effect. The presented data indicate a novel mechanism of action of beta(2)-adrenoceptor agonists and suggest that an increased formation of the endogenous glutamate receptor antagonist, kynurenic acid could partially contribute to their neuroprotective activity.

  14. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans


    Ke Xu; Ping Xu


    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose con...

  15. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions. (United States)

    Tewari, S; Arora, K


    Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.

  16. Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Liu


    Full Text Available To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis.

  17. Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. (United States)

    Venugopalan, Aarthi; Srivastava, Smita


    Ethanolic extract of a non-camptothecin producing plant, Catharanthus roseus when added in the suspension culture of the endophyte Fusarium solani known to produce camptothecin, resulted in enhanced production of camptothecin by 10.6-fold in comparison to that in control (2.8 μg/L). Interestingly, addition of pure ethanol (up to 5% v/v) in the suspension culture of F. solani resulted in maximum enhancement in camptothecin production (up to 15.5-fold) from that obtained in control. In the presence of ethanol, a reduced glucose uptake (by ∼ 40%) and simultaneous ethanol consumption (up to 9.43 g/L) was observed during the cultivation period (14 days). Also, the total NAD level and the protein content in the biomass increased by 3.7- and 1.9-fold, respectively, in comparison to that in control. The study indicates a dual role of ethanol, presumably as an elicitor and also as a carbon/energy source, leading to enhanced biomass and camptothecin production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment. (United States)

    Jafari, Omid; Zilouei, Hamid


    Nano-titanium dioxide (nanoTiO2) under ultraviolet irradiation (UV) followed by dilute sulfuric acid hydrolysis of sugarcane bagasse was used to enhance the production of biohydrogen and biomethane in a consecutive dark fermentation and anaerobic digestion. Different concentrations of 0.001, 0.01, 0.1 and 1g nanoTiO2/L under different UV times of 30, 60, 90 and 120min were used. Sulfuric acid (2%v/v) at 121°C was used for 15, 30 and 60min to hydrolyze the pretreated bagasse. For acidic hydrolysis times of 15, 30 and 60min, the highest total free sugar values were enhanced by 260%, 107%, and 189%, respectively, compared to samples without nanoTiO2 pretreatment. The highest hydrogen production samples for the same acidic hydrolysis times showed 88%, 127%, and 25% enhancement. The maximum hydrogen production of 101.5ml/g VS (volatile solids) was obtained at 1g nanoTiO2/L and 120min UV irradiation followed by 30min acid hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure. (United States)

    Ozbayram, E G; Akyol, Ç; Ince, B; Karakoç, C; Ince, O


    To investigate the effects of different bioaugmentation strategies for enhancing the biogas production from cow manure and evaluate microbial community patterns. Co-inoculation with cow rumen fluid and cow rumen-derived enriched microbial consortia was evaluated in anaerobic batch tests at 36°C and 41°C. Singular addition of both rumen fluid and enriched bioaugmentation culture had a promising enhancement on methane yields; however, the highest methane yield (311 ml CH4 per gram VS at 41°C) was achieved when the anaerobic seed sludge was co-inoculated together with rumen fluid and enriched bioaugmentation culture. Bacterial community profiles were investigated by Ion PGM Platform, and specific lignocellulolytic bacteria dynamics in batch tests were assessed by qPCR. The temperature had minor effects on the abundance of bacterial community; in which Bacteroidetes and Firmicutes were the most abundant phyla in all digesters. Furthermore, Rikenellaceae, Clostridiaceae, Porphyromonadaceae, Bacteroidaceae and Ruminococcaceae played a crucial role during the anaerobic degradation of cow manure. There was an important impact of Firmicutes flavefaciens and Ruminococcus albus at 41°C, which in turn positively affected the methane production. The degree of enhancement in biogas production can be upgraded by the co-inoculation of rumen-derived bioaugmentation culture with anaerobic seed sludge with high methanogenic activity. A close look at the biotic interactions and their associations with abiotic factors might be valuable for evaluating rumen-related bioaugmentation applications. © 2017 The Society for Applied Microbiology.

  20. Enhanced aflatoxin production by aspergillus parasiticus and aspergillus flavus after low dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)


    Spores of Aspergillus parasiticus IFO 30179 and A. flavus var. columnaris S46 were irradiated at 0.05, 0.2 and 0.4 kGy in the synthetic low salts (SL) broth, and the effect on aflatoxin production was examined after 10 days incubation at 30 or 25degC. In these two strains, irradiation of spores at 0.05 kGy resulted in higher B1 or G1 production than the non-irradiated controles. However, spores of the both strains irradiated at 0.2 or 0.4 kGy produced less aflatoxins than non-irradiated controles. In the SL broth, apparent stimulation by low dose irradiation was slight, and these enhanced effects were not observed after reinfection to fresh SL broth. In the case of food samples, the levels of aflatoxin B[sub 1] and G[sub 1] with A. parasiticus were increased from 15 to 90% by incubation of irradiated spores at 1 kGy in autoclaved polished rice, black pepper, white pepper and red pepper. These enhancement would be induced by change of composition in each substrates. Mutations of fungi induced by irradiation is not effective for enhancement of aflatoxin production. (author).

  1. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)


    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  2. Enhanced ergonomics approaches for product design: a user experience ecosystem perspective and case studies. (United States)

    Xu, Wei


    This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.

  3. A project management framework for enhanced productivity performance using building information modelling

    Directory of Open Access Journals (Sweden)

    Longhui Liao


    Full Text Available Although the Singapore government has mandated submissions of building plans in building information modelling (BIM format since July 2013, this does not yet seem to lead to enhanced productivity performance. BIM collaboration between designers and downstream contractors appears to remain inadequate. While many studies have been conducted on using BIM for better project outcomes, studies that relate BIM with the identification of non-value adding activities in the project lifecycle and the reduction of the resulting wastes are at infancy stage. This paper aims to propose a project management framework for enhancing the productivity of building projects in Singapore, which forms Phase I of an ongoing research project. A two-pronged approach is presented. Firstly, non-value adding activities in the current project delivery process that uses BIM partially in Singapore are identified by comparing the typical current process with full BIM-based processes; such activities are cut down after process transformation in terms of people, process, and technology. Secondly, time savings derived from reducing the wastes caused by these activities are quantified. The proposed framework was validated by a case study of a local residential project. It was concluded that this framework provides a valuable tool for project teams to enhance productivity performance.

  4. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. (United States)

    Shen, Chih-Che; Sung, Li-Yu; Lin, Shih-Yeh; Lin, Mei-Wei; Hu, Yu-Chen


    Chinese hamster ovary (CHO) cells are an important host for biopharmaceutical production. Generation of stable CHO cells typically requires cointegration of dhfr and a foreign gene into chromosomes and subsequent methotrexate (MTX) selection for coamplification of dhfr and foreign gene. CRISPR interference (CRISPRi) is an emerging system that effectively suppresses gene transcription through the coordination of dCas9 protein and guide RNA (gRNA). However, CRISPRi has yet to be exploited in CHO cells. Here we constructed vectors expressing the functional CRISPRi system and proved effective CRISPRi-mediated suppression of dhfr transcription in CHO cells. We next generated stable CHO cell clones coexpressing DHFR, the model protein (EGFP), dCas9 and gRNA targeting dhfr. Combined with MTX selection, CRISPRi-mediated repression of dhfr imparted extra selective pressure to force CHO cells to coamplify more copies of dhfr and egfp genes. Compared with the traditional method relying on MTX selection (up to 250 nM), the CRISPRi approach increased the dhfr copy number ∼3-fold, egfp copy number ∼3.6-fold and enhanced the EGFP expression ∼3.8-fold, without impeding the cell growth. Furthermore, we exploited the CRISPRi approach to enhance the productivity of granulocyte colony stimulating factor (G-CSF) ∼2.3-fold. Our data demonstrate, for the first time, the application of CRISPRi in CHO cells to enhance recombinant protein production and may pave a new avenue to CHO cell engineering.

  5. Two-stage fermentation process for enhanced mannitol production using Candida magnoliae mutant R9. (United States)

    Savergave, Laxman S; Gadre, Ramchandra V; Vaidya, Bhalchandra K; Jogdand, Vitthal V


    Mutants of Candida magnoliae NCIM 3470 were generated by treatment of ultra-violet radiations, ethyl methyl sulphonate and N-methyl-N'-nitro-N-nitrosoguanidine. Mutants with higher reductase activity were screened by means of 2,3,5-triphenyl tetrazolium chloride agar plate assay. Among the screened mutants, the mutant R9 produced maximum mannitol (i.e. 46 g l(-1)) in liquid fermentation medium containing 250 g l(-1) glucose and hence was selected for further experiments. Preliminary optimization studies were carried out on shake-flask level which increased the mannitol production to 60 g l(-1) in liquid fermentation medium containing 300 g l(-1) glucose. A two-stage fermentation process comprising of growth phase and production phase was employed. During the growth phase, glucose was supplemented and aerobic conditions were maintained. Thereafter, the production phase was initiated by supplementing fructose and switching to anaerobic conditions by discontinuing aeration and decreasing the speed of agitation. The strategy of two-stage fermentation significantly enhanced the production of mannitol up to 240 g l(-1), which is the highest among all fermentative production processes and corresponds to 81 % yield and 4 g l(-1 )h(-1) productivity without formation of any by-product.

  6. Potato flour mediated solid-state fermentation for the enhanced production of Bacillus thuringiensis-toxin. (United States)

    Smitha, Robinson Babysarojam; Jisha, Veloorvalappil Narayanan; Pradeep, Selvanesan; Josh, Moolakkariyil Sarath; Benjamin, Sailas


    In this study, we explored the efficacy of raw potato flour (PF) as supplement to the conventional LB medium (LB control, designated as M1) for enhancing the concomitant production of endospores and δ-endotoxin from Bacillus thuringiensis subsp. kurstaki by solid-state fermentation (SSF). Of different concentrations and combinations of media tested, 10% (w/v) PF supplemented LB medium (M2) was found as the best source for the maximum yield of toxin. After 12 h submerged fermentation (SmF) at 37°C and 125 rpm, M2 was made into a wet-solid matter for SSF by removing the supernatant (1000 ×g, 10 min); the resultant pellet subsequently incubated statically (37°C) for the production of B. thuringiensis subsp. kurstaki toxin (Btk-toxin). In comparison to M1, yield of δ-endotoxin purified by sucrose density gradient centrifugation method from M2 was about 6-fold higher (53% recovery). This maximum yield from M2 was obtained at 48 h (as against 72 h from M1), thus the gestation period of M2 was reduced by 24 h with higher yield. In addition to the quantitative data, qualitative photomicrographs taken by image analyzer, scanning electron and fluorescent microscopes and digital camera showed physical evidences for the upper hand of SSF over conventional SmF for the enhanced production of Btk-toxin. SDS-PAGE image of the purified δ-endotoxin showed three major fractions with apparent MWs 66, 45 and 30 kDa. Briefly, if low-cost agricultural products like PF is used as supplement to LB, by SSF strategy, production of Btk-toxin could be enhanced to 6-fold in short gestation time without losing its entomotoxicity efficiency. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Muhammet Samet [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey); Korkut, Seyda, E-mail: [Department of Environmental Engineering, Bulent Ecevit University, 67100 Zonguldak (Turkey); Hazer, Baki [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey)


    This study describes the construction of an enzymatic fuel cell comprised of novel gold nanoparticles embedded poly(propylene-co-imidazole) coated anode and cathode. Working electrode fabrication steps and operational conditions for the fuel cell have been optimized to get enhanced power output. Electrical generation capacity of the optimized cell was tested by using the municipal wastewater sample. The enzymatic fuel cell system reached to maximum power density with 1 μg and 8 μg of polymer quantity and bilirubin oxidase on electrode surface, respectively. The maximum power output was calculated to be 5 μW cm{sup −2} at + 0.56 V (vs. Ag/AgCl) in phosphate buffer (pH 7.4, 100 mM, 20 °C) by the addition of 15 mM of glucose as a fuel source. The optimized enzymatic fuel cell generated a power density of 0.46 μW cm{sup −2} for the municipal wastewater sample. Poly(propylene-co-imidazole) was easily used for a fuel cell system owing to its metallic nanoparticle content. The developed fuel cell will play a significant role for energy conversion by using glucose readily found in wastewater and in vivo mediums. - Highlights: • Gold nanoparticles provided faster electron transfer in the circuit. • The maximum power density of 5 μW cm{sup −2} was generated at + 0.56 V cell potential. • The cell can be easily operated for in vivo mediums.

  8. Process optimization for enhancing production of cis-4-hydroxy-L-proline by engineered Escherichia coli. (United States)

    Chen, Kequan; Pang, Yang; Zhang, Bowen; Feng, Jiao; Xu, Sheng; Wang, Xin; Ouyang, Pingkai


    Understanding the bioprocess limitations is critical for the efficient design of biocatalysts to facilitate process feasibility and improve process economics. In this study, a proline hydroxylation process with recombinant Escherichia coli expressing L-proline cis-4-hydroxylase (SmP4H) was investigated. The factors that influencing the metabolism of microbial hosts and process economics were focused on for the optimization of cis-4-hydroxy-L-proline (CHOP) production. In recombinant E. coli, SmP4H synthesis limitation was observed. After the optimization of expression system, CHOP production was improved in accordance with the enhanced SmP4H synthesis. Furthermore, the effects of the regulation of proline uptake and metabolism on whole-cell catalytic activity were investigated. The improved CHOP production by repressing putA gene responsible for L-proline degradation or overexpressing L-proline transporter putP on CHOP production suggested the important role of substrate uptake and metabolism on the whole-cell biocatalyst efficiency. Through genetically modifying these factors, the biocatalyst activity was significantly improved, and CHOP production was increased by twofold. Meanwhile, to further improve process economics, a two-strain coupling whole-cell system was established to supply co-substrate (α-ketoglutarate, α-KG) with a cheaper chemical L-glutamate as a starting material, and 13.5 g/L of CHOP was successfully produced. In this study, SmP4H expression, and L-proline uptake and degradation, were uncovered as the hurdles for microbial production of CHOP. Accordingly, the whole-cell biocatalysts were metabolically engineered for enhancing CHOP production. Meanwhile, a two-strain biotransformation system for CHOP biosynthesis was developed aiming at supplying α-KG more economically. Our work provided valuable insights into the design of recombinant microorganism to improve the biotransformation efficiency that catalyzed by Fe

  9. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics. (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan


    Propylene glycol is an aliphatic alcohol that functions as a skin conditioning agent, viscosity decreasing agent, solvent, and fragrance ingredient in cosmetics. Tripropylene glycol functions as a humectant, antioxidant, and emulsion stabilizer. Polypropylene glycols (PPGs), including PPG-3, PPG-7, PPG-9, PPG-12, PPG-13, PPG-15, PPG-16, PPG-17, PPG-20, PPG-26, PPG-30, PPG-33, PPG-34, PPG-51, PPG-52, and PPG-69, function primarily as skin conditioning agents, with some solvent use. The majority of the safety and toxicity information presented is for propylene glycol (PG). Propylene glycol is generally nontoxic and is noncarcinogenic. Clinical studies demonstrated an absence of dermal sensitization at use concentrations, although concerns about irritation remained. The CIR Expert Panel determined that the available information support the safety of tripropylene glycol as well as all the PPGs. The Expert Panel concluded that PG, tripropylene glycol, and PPGs ≥3 are safe as used in cosmetic formulations when formulated to be nonirritating.

  10. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, R. L.; Loeffler, M. J. [Astrochemistry Laboratory (Code 691), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Yocum, K. M., E-mail: [Department of Chemistry, Kutztown University, Kutztown, PA 19530 (United States)


    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  11. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures. (United States)

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru


    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  12. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule (United States)

    Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.


    Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.

  13. Analysis of the ITQ-12 zeolite performance in propane-propylene separations using a combination of experiments and molecular simulations

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Dubbeldam, D.; Rey, F.; Valencia, S.; Palomino, M.; Martín-Calvo, A.; Calero, S.


    We present a combined computational and experimental approach to evaluate the suitability of the ITQ-12 nanoporous material (ITW) as a propane−propylene separation device. For this, we have computed adsorption and diffusion of propane and propylene in the ITQ-12 zeolite. The propane isotherm is

  14. Randomized double-blind trial to evaluate the effectiveness of topical administration of propylene glycol in arsenical palmer keratosis

    Directory of Open Access Journals (Sweden)

    Ashrafun Naher Dina


    Full Text Available Keratosis, one of the earliest skin manifestations of arsenicosis, can be treated by either oral or topical formulation of drug. In this study we examined the effectiveness and tolerance of propylene glycol for the treatment of arsenical palmer keratosis. Sixty patients of arsenicosis with palmer keratoses were randomly divided into three groups and different concentrations (15, 30 and 45% of propylene glycol were applied topically into their palms once at bedtime for eight weeks. The perception of the patient about the progress of treatment was scored with “Likert scale”. The mean (±SD score of patient’s perception following completion of treatment were 1.27 ± 1.26 (using 15% propylene glycol, 2.88 ± 1.26 (30% propylene glycol, and 3.75 ± 1.06 (45% propylene glycol respectively. The scores increased with higher concentra-tions. Thirty percent or more concentration of propylene glycol was effective for mild to severe form of keratosis. Propylene glycol was well tolerable. In conclusion, both roughness and thickness of arsenical palmer keratosis can be reduced using propylene glycol and as the concentration of the drug increases it increases its effectiveness without any significant adverse effect.

  15. Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis. (United States)

    Balakumaran, Palanisamy Athiyaman; Meenakshisundaram, Sankaranarayanan


    Coenzyme Q10 (CoQ10) plays an indispensable role in ATP generation through oxidative phosphorylation and helps in scavenging superoxides generated during electron transfer reactions. It finds extensive applications specifically related to oxidative damage and metabolic dysfunctions. This article reports the use of a statistical approach to optimize the concentration of key variables for the enhanced production of CoQ10 by Rhodotorula glutinis in a lab-scale fermenter. The culture conditions that promote optimum growth and CoQ10 production were optimized and the interaction of significant variables para-hydroxybenzoic acid (PHB, 819.34 mg/L) and soybean oil (7.78% [v/v]) was studied using response surface methodology (RSM). CoQ10 production increased considerably from 10 mg/L (in control) to 39.2 mg/L in batch mode with RSM-optimized precursor concentration. In the fed-batch mode, PHB and soybean oil feeding strategy enhanced CoQ10 production to 78.2 mg/L.

  16. The advent of genomics in mulberry and perspectives for productivity enhancement. (United States)

    Khurana, Paramjit; Checker, Vibha G


    Sericulture in India is a highly remunerative industry, especially for the rural population. Mulberry is an extremely versatile plant, having multifaceted applications, the most important being the sole feed for the monophagus silkworm, Bombyx mori. Profitability of the sericulture industry is directly correlated with production of high-quality mulberry leaves. However, mulberry productivity is severely impacted by abiotic as well as biotic stresses. Therefore, to develop stress-tolerant mulberry with desired characteristics, a comprehensive understanding and utility of biotechnological resources is essential. Research efforts on mulberry encompass broad range of fields in plant biology from breeding, molecular markers, transcriptomics, proteomics, and metabolomics. Additionally, a large number of mulberry germplasm accessions have been maintained and evaluated in several countries. Identification of superior cultivars under stressed regimes is extremely important, and therefore, physiological traits have often been used as proxy genetic markers for assessing stress tolerance index. Mulberry genomic resources have provided a limited but an important list of novel candidate genes, thus enhancing the scope for future investigations for improvement of its productivity. The present review article gives a bird's eye view of current initiatives of genomics advancements in mulberry research and enumerates the prospects for enhancing its productivity.


    Energy Technology Data Exchange (ETDEWEB)

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan


    Hydrogen production by the water gas shift reaction (WGSR) is equilibrium limited due to thermodynamic constrains. However, this can be overcome by continuously removing the product CO{sub 2}, thereby driving the WGSR in the forward direction to enhance hydrogen production. This project aims at using a high reactivity, mesoporous calcium based sorbent (PCC-CaO) for removing CO{sub 2} using reactive separation scheme. Preliminary results have shown that PCC-CaO dominates in its performance over naturally occurring limestone towards enhanced hydrogen production. However, maintenance of high reactivity of the sorbent over several reaction-regeneration cycles warrants effective regeneration methods. We have identified sub-atmospheric calcination (vacuum) as vital regeneration technique that helps preserve the sorbent morphology. Sub-atmospheric calcination studies reveal the significance of vacuum level, diluent gas flow rate, thermal properties of diluent gas, and sorbent loading on the kinetics of calcination and the morphology of the resultant CaO sorbent. Steam, which can be easily separated from CO{sub 2}, has been envisioned as a potential diluent gas due to its better thermal properties resulting in effective heat transfer. A novel multi-fixed bed reactor was designed which isolates the catalyst bed from the sorbent bed during the calcination step. This should prevent any potential catalyst deactivation due to oxidation by CO{sub 2} during the regeneration phase.

  18. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan


    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  19. Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A₁. (United States)

    Maharjan, Sushila; Koju, Dinesh; Lee, Hei Chan; Yoo, Jin Cheol; Sohng, Jae Kyung


    A number of secondary metabolites having therapeutic importance have been reported from the genus Nocardia. One of the polyketide antibiotic compounds isolated from Nocardia is nargenicin A(1). Recently, nargenicin A(1) has been isolated from Nocardia sp. CS682, a new Nocardia strain isolated from soil in Jeonnam, South Korea. It possesses strong antibacterial activity against methicillin-resistant Staphylococcus aureus. In this study, we applied a metabolic engineering approach based on recombinant DNA technology in order to boost the production of nargenicin A(1) from Nocardia sp. CS682. Initially, we optimized the transformation of this new strain by electroporation method. Heterologous expression of S-adenosylmethionine synthetase (MetK1-sp) in Nocardia sp. CS682 enhanced the production of nargenicin A(1) by about 2.8 times due to transcriptional activation of biosynthetic genes as revealed by reverse transcription polymerase chain reaction analysis. Similarly, expression of acetyl-CoA carboxylase genes improved nargenicin A(1) production by about 3.8 times in Nocardia sp. ACC18 compared to that in Nocardia sp. CS682 and Nocardia sp. NV18 by increasing precursor pool. Thus, enhanced production of nargenicin A(1) from Nocardia sp. CS682 can be achieved by expression of transcriptional activator genes and precursor genes from Streptomyces strains.

  20. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chin-Lang; Wu, Jou-Hsien; Lin, Chiu-Yue [BioHydrogen Lab, Graduate Institute of Civil and Hydraulic Engineering, Feng Chia University, Taichung (China); Chang, Jui-Jen [Genomics Research Center, Academia Sinica, Taipei (China); Department of Life Sciences, National Chung Hsing University, Taichung (China); Chin, Wei-Chih; Wen, Fu-Shyan; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology, Changhwa (China)


    An anaerobic continuous-flow hydrogen fermentor was operated at a hydraulic retention time of 8 h using condensed molasses fermentation solubles (CMS) substrate of 40 g-COD/L. Serum bottles were used for seed micro-flora cultivation and batch hydrogen fermentation tests (CMS substrate concentrations of 10-160 g-COD/L). Three hydrogen-producing bacterial strains Clostridium sporosphaeroides F52, Clostridium tyrobutyricum F4 and Clostridium pasteurianum F40 were isolated from the seed fermentor and used as the seeding microbes in single and mixed-culture cultivations for determining their hydrogen productivity. These strains possessed specific hydrogenase genes that could be detected from CMS-fed hydrogen fermentors and were major hydrogen producers. C. pasteurianum F40 was the dominant strain with a high hydrogen production rate while C. sporosphaeroides F52 may play a main role in degrading carbohydrate and glutamate. These strains could be co-cultivated as a symbiotic mixed-culture process to enhance hydrogen productivity. C. pasteurianum F40 or C. tyrobutyricum F4 co-culture with the glutamate-utilizing strain C. sporosphaeroides F52 efficiently enhanced hydrogen production by 12-220% depending on the substrate CMS concentrations. (author)

  1. Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb). (United States)

    Wang, Shaohua; Liu, Fei; Hou, Zhongwen; Zong, Gongli; Zhu, Xiqiang; Ling, Peixue


    Oxygen deficiency is a critical factor during the fermentation production of natamycin. In order to alleviate oxygen limitation and enhance the yield of natamycin, the vgb gene, encoding Vitreoscilla hemoglobin (VHb) was inserted into pSET152 with its native promoter and integrated into the chromosome of Streptomyces gilvosporeus (S. gilvosporeus). The expression of VHb was determined by Western blotting. The activity of expressed VHb was confirmed by the observation of VHb-specific CO-difference spectrum with a maximal absorption at 419 nm for the recombinant. Integration of the empty plasmid pSET152 did not affect natamycin production of S. gilvosporeus. While the vgb-harboring strain exhibited high natamycin productivity, reaching 3.31 g/L in shake flasks and 8.24 g/L in 1-L fermenters. Compared to the wild strain, expression of VHb, increased the natamycin yield of the strain bearing vgb by 131.3 % (jar fermenter scale) and 175 % (shake flask scale), respectively, under certain oxygen-limiting condition. Addition of an extra copy of the vgb gene in S. gilvosporeus-vgb2 did not enhance the natamycin production obviously. These results provided a superior natamycin-producing strain which can be directly used in industry and a useful strategy for increasing yields of other metabolites in industrial strains.

  2. Capsicum annuum enhances L-lactate production by Lactobacillus acidophilus: implication in curd formation. (United States)

    Sharma, Smriti; Jain, Sriyans; Nair, Girija N; Ramachandran, Srinivasan


    Lactobacillus acidophilus is commonly used lactic acid bacteria for producing fermented milk products. In general household practice, curdling is known to occur faster in the presence of red chili. Herein we analyzed the enhanced effect of red chili (Capsicum annuum) and its major component, capsaicin, on Lactobacillus acidophilus (ATCC 4356) in the production of L-lactate in de Man, Rogosa, and Sharpe medium at various temperatures (15, 20, 25, 30, and 37°C). The addition of red chili showed significant increase in the amount of L-lactate produced by L. acidophilus compared with the control at all temperatures. Similar results were observed with addition of capsaicin alone. This was accompanied by an increase in the consumption of d-glucose. Capsazepine, a known antagonist of capsaicin, inhibited the production of L-lactate by L. acidophilus in the presence of both capsaicin and red chili. Because no increase occurred in the growth of L. acidophilus in the presence of red chili, the enhanced production of L-lactate in the presence of red chili or capsaicin is due to increased metabolic activity. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin. (United States)

    Sharma, Ashima; Chaudhuri, Tapan K


    Human serum albumin (HSA)-one of the most demanded therapeutic proteins with immense biotechnological applications-is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple subst-rates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~ 60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the

  4. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs. (United States)

    Yi, Qizhen; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Yang, Min


    The presence of high concentration antibiotics in wastewater can disturb the stability of biological wastewater treatment systems and promote generation of antibiotic resistance genes (ARGs) during the treatment. To solve this problem, a pilot system consisting of enhanced hydrolysis pretreatment and an up-flow anaerobic sludge bed (UASB) reactor in succession was constructed for treating oxytetracycline production wastewater, and the performance was evaluated in a pharmaceutical factory in comparison with a full-scale anaerobic system operated in parallel. After enhanced hydrolysis under conditions of pH 7 and 85 °C for 6 h, oxytetracycline production wastewater with an influent chemical oxygen demand (COD) of 11,086 ± 602 mg L -1 was directly introduced into the pilot UASB reactor. With the effective removal of oxytetracycline and its antibacterial potency (from 874 mg L -1 to less than 0.61 mg L -1 and from 900 mg L -1 to less than 0.84 mg L -1 , respectively) by the enhanced hydrolysis pretreatment, an average COD removal rate of 83.2%, 78.5% and 68.9% was achieved at an organic loading rate of 3.3, 4.8 and 5.9 kg COD m -3  d -1 , respectively. At the same time, the relative abundances of the total tetracycline (tet) genes and a mobile element (Class 1 integron (intI1)) in anaerobic sludge on day 96 were one order of magnitude lower than those in inoculated sludge on day 0 (P gene abundance in sludge was five times higher than the pilot-scale system (P < 0.01). The above result demonstrated that enhanced hydrolysis as a pretreatment method could enable efficient anaerobic treatment of oxytetracycline production wastewater containing high concentrations of oxytetracycline with significantly lower generation of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli.

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    Full Text Available The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the "upper pathway" which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.

  6. Compliance and productivity enhancement through the use of knowledge- engineering tools and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, K.A.


    A commercially available knowledge-engineering software development tool has been used to illustrate how regulatory compliance and productivity in the nuclear industry can be improved simultaneously. Given the complex nature of the industry regulatory requirements, organizations that rely heavily on written procedures and antiquated information systems face increasing difficulty in keeping pace with ever-changing regulations and information sources. Many existing knowledge-engineering tools provide an excellent means of making sense of the diverse information required for successful operation. Through the automation of complex decision-making processes and manual information gathering tasks, significant gains in productivity and compliance effectiveness can be realized. Productivity is improved though the lessening of impact on human resources, and compliance is enhanced though the assurance of a comprehensive and consistent decision-making process. 8 refs.

  7. Compliance and productivity enhancement through the use of knowledge- engineering tools and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, K.A.


    A commercially available knowledge-engineering software development tool has been used to illustrate how regulatory compliance and productivity in the nuclear industry can be improved simultaneously. Given the complex nature of the industry regulatory requirements, organizations that rely heavily on written procedures and antiquated information systems face increasing difficulty in keeping pace with ever-changing regulations and information sources. Many existing knowledge-engineering tools provide an excellent means of making sense of the diverse information required for successful operation. Through the automation of complex decision-making processes and manual information gathering tasks, significant gains in productivity and compliance effectiveness can be realized. Productivity is improved though the lessening of impact on human resources, and compliance is enhanced though the assurance of a comprehensive and consistent decision-making process. 8 refs.

  8. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. (United States)

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J


    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  9. Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures

    Directory of Open Access Journals (Sweden)

    Andres R. Holguín


    Full Text Available By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15 K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.

  10. Demethylation of methylmercury and the enhanced production of formaldehyde in mouse liver. (United States)

    Uchikawa, Takuya; Kanno, Toshihiro; Maruyama, Isao; Mori, Nobuko; Yasutake, Akira; Ishii, Yuji; Yamada, Hideyuki


    Methylmercury (MeHg) is gradually changed to inorganic Hg after demethylation in animal tissues, and a selective quantification of inorganic Hg in the tissues is necessary to detect the reaction. We detected inorganic Hg formation in liver and kidney of mouse as early as 24 hr after MeHg injection. As an example of biological demethylation, the cytochrome P450 (P450)-mediated N-demethylation of drugs has been well documented, and formaldehyde was detected as a reaction product. Here we incubated mouse liver homogenate with added MeHg and observed a dose-dependent production of formaldehyde, as well as inorganic Hg formation. Since the amount of formaldehyde was approx. 500 times higher than that of the inorganic Hg that formed, the formaldehyde production would be stimulated by inorganic Hg formed from MeHg. We observed that inorganic Hg caused formaldehyde production, and it was enhanced by L-methionine and sarcosine. Thus, some biomolecules with S-methyl and N-methyl groups may function as methyl donors in the reaction. Using subcellular fractions of mouse liver, we observed that microsomal P450 did not participate in the demethylation of MeHg, but the greatest activity was located in the mitochondria-rich fraction. The addition of superoxide anion in the reaction mixture significantly enhanced the formaldehyde production, whereas Mn-superoxide dismutase depressed the reaction. Our present findings demonstrated that inorganic Hg formed by MeHg demethylation in mouse liver stimulated the endogenous formaldehyde production, and we observed that MeHg demethylation could be estimated by a formaldehyde analysis. Our results also suggested that superoxide anion is involved in the reaction.

  11. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail:


    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  12. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. (United States)

    Mitrano, Denise M; Motellier, Sylvie; Clavaguera, Simon; Nowack, Bernd


    In the context of assessing potential risks of engineered nanoparticles (ENPs), life cycle thinking can represent a holistic view on the impacts of ENPs through the entire value chain of nano-enhanced products from production, through use, and finally to disposal. Exposure to ENPs in consumer or environmental settings may either be to the original, pristine ENPs, or more likely, to ENPs that have been incorporated into products, released, aged and transformed. Here, key product-use related aging and transformation processes affecting ENPs are reviewed. The focus is on processes resulting in ENP release and on the transformation(s) the released particles undergo in the use and disposal phases of its product life cycle for several nanomaterials (Ag, ZnO, TiO2, carbon nanotubes, CeO2, SiO2 etc.). These include photochemical transformations, oxidation and reduction, dissolution, precipitation, adsorption and desorption, combustion, abrasion and biotransformation, among other biogeochemical processes. To date, few studies have tried to establish what changes the ENPs undergo when they are incorporated into, and released from, products. As a result there is major uncertainty as to the state of many ENPs following their release because much of current testing on pristine ENPs may not be fully relevant for risk assessment purposes. The goal of this present review is therefore to use knowledge on the life cycle of nano-products to derive possible transformations common ENPs in nano-products may undergo based on how these products will be used by the consumer and eventually discarded. By determining specific gaps in knowledge of the ENP transformation process, this approach should prove useful in narrowing the number of physical experiments that need to be conducted and illuminate where more focused effort can be placed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The distribution, fate, and effects of propylene glycol substances in the environment. (United States)

    West, Robert; Banton, Marcy; Hu, Jing; Klapacz, Joanna


    The propylene glycol substances comprise a homologous family of synthetic organic molecules that have widespread use and very high production volumes across the globe. The information presented and summarized here is intended to provide an overview of the most current and reliable information available for assessing the potential environmental exposures and impacts of these substances across the manufacture, use, and disposal phases of their product life cycles.The PG substances are characterized as being miscible in water, having very low octanol-water partition coefficients (log Pow) and exhibiting low potential to volatilize from water or soil in both pure and dissolved forms. The combination of these properties dictates that, almost regardless of the mode of their initial emission, they will ultimately associate with surface water, soil, and the related groundwater compartments in the environment. These substances have low affinity for soil and sediment particles, and thus will remain mobile and bio-available within these media.In the atmosphere, the PG substances are demonstrated to have short lifetimes(I. 7-11 h), due to rapid reaction with photochemically-generated hydroxyl radicals.This reactivity, combined with efficient wet deposition of their vapor and aerosol forms, lends to their very low potential for long-range transport via the atmosphere.In the aquatic and terrestrial compartments of the environment, the PG substances are rapidly and ultimately biodegraded under both aerobic and anaerobic conditions by a wide variety of microorganisms, regardless of prior adaptation to the substances.Except for the TePG substance, the propylene glycol substances meet the OECD definition of "readily biodegradable", and according to this definition are not expected to persist in either aquatic or terrestrial environments. The TePG exhibits inherent biodegradability, is not regarded to be persistent, and is expected to ultimately biodegrade in the environment, albeit

  14. Maltose Utilization as a Novel Selection Strategy for Continuous Evolution of Microbes with Enhanced Metabolite Production. (United States)

    Liu, Shu-De; Wu, Yi-Nan; Wang, Tian-Min; Zhang, Chong; Xing, Xin-Hui


    We have developed a novel selection circuit based on carbon source utilization that establishes and sustains growth-production coupling over several generations in a medium with maltose as the sole carbon source. In contrast to traditional antibiotic resistance-based circuits, we first proved that coupling of cell fitness to metabolite production by our circuit was more robust with a much lower escape risk even after many rounds of selection. We then applied the selection circuit to the optimization of L-tryptophan (l-Trp) production. We demonstrated that it enriched for specific mutants with increased l-Trp productivity regardless of whether it was applied to a small and defined mutational library or a relatively large and undefined one. From the latter, we identified four novel mutations with enhanced l-Trp output. Finally, we used it to select for several high l-Trp producers with randomly generated genome-wide mutations and obtained strains with up to 65% increased l-Trp production. This selection circuit provides new perspectives for the optimization of microbial cell factories for diverse metabolite production and the discovery of novel genotype-phenotype associations at the single-gene and whole-genome levels.

  15. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. (United States)

    Ho, Shih-Hsin; Chan, Ming-Chang; Liu, Chen-Chun; Chen, Chun-Yen; Lee, Wen-Lung; Lee, Duu-Jong; Chang, Jo-Shu


    Lutein, one of the main photosynthetic pigments, is a promising natural product with both nutritional and pharmaceutical applications. In this study, light-related strategies were applied to enhance the cell growth and lutein production of a lutein-rich microalga Scenedesmus obliquus FSP-3. The results demonstrate that using white LED resulted in better lutein production efficiency when compared to the other three monochromatic LEDs (red, blue, and green). The lutein productivity of S. obliquus FSP-3 was further improved by adjusting the type of light source and light intensity. The optimal lutein productivity of 4.08 mg/L/d was obtained when using a TL5 fluorescent lamp at a light intensity of 300 μmol/m(2)/s, and this performance is better than that reported in most related studies. Moreover, the time-course profile of lutein accumulation in the microalga shows that the maximal lutein content and productivity were obtained at the onset of nitrogen depletion. Copyright © 2013 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    NELLY B.


    Full Text Available This research surveys, interviews and Questionnaire were conducted by relevant agencies. Data was analyzed by calculating the cumulative frequency distribution and the average value (Mean to 5 Likert scale, Validation, reliability, Pattern Model and Hypothesis were analyzed by SPSS 17 software for Windows. Validity model and the Measurement Model were examined by using Smart software PLS. The results show that the mean was 3.98 for Product Cost Appropriate and Stable Factor, 4.39 for High Productivity Factor, 4.36 for Enough Capital Factor, 3.73 for Character Farmers Factor, 4.28 for Information Access Factor, and 4.44 for High Production Factor. The data were valid and reliable. The relationship between the factors and indicators show strong correlation with an average of 0.96 with model pattern Quadratic and Cubic. Test Goodness of Fit model was fit. Hypothesis test results with five independent variables and one dependent variables were significant, excepted Character Farmers Factor and Information Access Factor were not significant to High Production Factor. Model was able to explain the phenomenon of high production by 91.7%, while the rest (8.3% was explained by other variables not included in the model under studied. Enhancement production of national soybean would be affected dominantly by sufficient capital (97%.

  17. Copolymerization of Ethylene and Propylene Using 4th Generation Ziegler- Natta Catalyst: Influence of Cocatalyst, External Electron Donor and Hydrogen

    Directory of Open Access Journals (Sweden)

    R. Mehtarani


    Full Text Available Copolymerization of ethylene and propylene was investigated using a 4th generation phthalate Ziegler-Natta catalyst in normal hexane in a Buchi reactor. The effects of different mole fractions of [Al]/[Ti], [Si]/[Al] and various amounts of hydrogen on productivity and weight percent of ethylene on the product, were studied. In the copolymerization reactions, tri-isobutyl aluminum (TiBAl was used as cocatalyst instead of triethyl aluminum (TEAl because TiBAl produced a more amorphous copolymer. In molar ratio [TiBAl]/[Ti] = 480 the catalyst activity was at maximum and ethylene content in this ratio was at minimum. Cyclohexyl-methyldimethoxy silane was used as external donor. In molar ratio [Si]/[TiBAl] = 0.05, the copolymer showed more amorphous behavior. In this molar ratio, the external donor decreased the productivity of the catalyst and a further increase of external donor concentration increased the productivity. Hydrogen increased the productivity of the catalyst and decreased the ethylene content of the copolymer in low concentration. In high concentration, however, hydrogen decreased the productivity and increased the ethylene content of the copolymer. Hydrogen as a chain transfer agent decreased the viscosity average molecular weight.

  18. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design* (United States)

    Ramírez-Cavazos, Leticia I.; Junghanns, Charles; Nair, Rakesh; Cárdenas-Chávez, Diana L.; Hernández-Luna, Carlos; Agathos, Spiros N.; Parra, Roberto


    The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143 000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20 000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers. PMID:24711355

  19. Inhibition with N-acetylcysteine of enhanced production of tumor necrosis factor in streptozotocin-induced diabetic rats. (United States)

    Sagara, M; Satoh, J; Zhu, X P; Takahashi, K; Fukuzawa, M; Muto, G; Muto, Y; Toyota, T


    We previously reported that the in vivo production of the tumor necrosis factor alpha (TNF) was significantly enhanced after the onset of diabetes in spontaneous type 1 and 2 diabetic animals. In this report we confirmed the enhanced production of TNF in streptozotocin (STZ)-induced diabetes and then attempted to suppress the enhanced TNF production with N-acetylcysteine (NAC), a precursor of glutathione synthesis. The lipopolysaccharide-induced serum TNF activities were significantly enhanced in STZ-induced diabetic rats (6-18 weeks of age) compared with those of nondiabetic rats throughout the 12-week experiment. A single, oral administration of NAC (200 or 1000 mg/kg body wt) significantly suppressed the enhanced TNF production in the diabetic rats compared with that in untreated rats in a dose-dependent manner. On the other hand, in the long-term (6 or 12 weeks) administrations, smaller doses of NAC (50 or 200 mg/kg/day) also significantly inhibited the enhanced production of TNF regardless of the dose of NAC. NAC administration, however, did not suppress the TNF production of nondiabetic rats. The long-term NAC administration affected neither body weight nor levels of serum glucose, fructosamine, albumin, and triglyceride. These results show that NAC administration significantly suppressed the enhanced TNF production in diabetic rats and indicate that NAC might be useful in preventing TNF-mediated pathological conditions in diabetes.

  20. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)


    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  1. Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid

    Directory of Open Access Journals (Sweden)

    Ali Abghari


    Full Text Available Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60. The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW. The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.

  2. Brief, pre-learning stress reduces false memory production and enhances true memory selectively in females. (United States)

    Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N


    Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. (United States)

    Satheesan, Jisha; Narayanan, Anith K; Sakunthala, Manjula


    Centella asiatica (Indian pennywort) has wide application in Indian and Chinese traditional medicines with documented evidence for wound healing and neuroprotective and anti-aging potential. Asiaticoside, a trisaccharide triterpene, is the most medicinally active compound in the plant. β-Amyrin synthase and squalene synthase have been identified as the two key genes in the triterpenoid pathway which regulate the production of asiaticoside in C. asiatica. The paper reports salient findings of our study utilizing the growth-promoting endophytic fungus Piriformospora indica to successfully colonize roots of C. asiatica in vitro cultures for investigating the effect of the mutualistic association on asiaticoside production. Co-cultivation of P. indica resulted in the rapid enhancement of root and shoot biomass of host plant, which was visible after 7 days of culture and continued up to 45 days. P. indica co-cultivation also favored the synthesis of asiaticosides, as evidenced by HPLC analysis which indicated about twofold increase (0.53% (w/w) in leaves and 0.23% (w/w) in whole plant) over control (0.33% (w/w) in leaves and 0.14% (w/w) in whole plant). Real-time PCR results confirmed the strong upregulation of squalene synthase and β-amyrin synthase transcripts in P. indica-challenged plants compared with the control. Our data demonstrate the potential use of P. indica as a means to enhance plant secondary metabolite production in planta with scope for further field evaluation. © Springer-Verlag 2011

  4. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. (United States)

    Todhanakasem, Tatsaporn; Sangsutthiseree, Atit; Areerat, Kamonchanok; Young, Glenn M; Thanonkeo, Pornthap


    Microorganisms play a significant role in bioethanol production from lignocellulosic material. A challenging problem in bioconversion of rice bran is the presence of toxic inhibitors in lignocellulosic acid hydrolysate. Various strains of Zymomonas mobilis (ZM4, TISTR 405, 548, 550 and 551) grown under biofilm or planktonic modes were used in this study to examine their potential for bioconversion of rice bran hydrolysate and ethanol production efficiencies. Z. mobilis readily formed bacterial attachment on plastic surfaces, but not on glass surfaces. Additionally, the biofilms formed on plastic surfaces steadily increased over time, while those formed on glass were speculated to cycle through accumulation and detachment phases. Microscopic analysis revealed that Z. mobilis ZM4 rapidly developed homogeneous biofilm structures within 24 hours, while other Z. mobilis strains developed heterogeneous biofilm structures. ZM4 biofilms were thicker and seemed to be more stable than other Z. mobilis strains. The percentage of live cells in biofilms was greater than that for planktonic cells (54.32 ± 7.10% vs. 28.69 ± 3.03%), suggesting that biofilms serve as a protective niche for growth of bacteria in the presence of toxic inhibitors in the rice bran hydrolysate. The metabolic activity of ZM4 grown as a biofilm was also higher than the same strain grown planktonically, as measured by ethanol production from rice bran hydrolysate (13.40 ± 2.43 g/L vs. 0.432 ± 0.29 g/L, with percent theoretical ethanol yields of 72.47 ± 6.13% and 3.71 ± 5.24% respectively). Strain TISTR 551 was also quite metabolically active, with ethanol production by biofilm and planktonically grown cells of 8.956 ± 4.06 g/L and 0.0846 ± 0.064 g/L (percent theoretical yields were 48.37 ± 16.64% and 2.046 ± 1.58%, respectively). This study illustrates the potential for enhancing ethanol production by utilizing bacterial biofilms in the bioconversion of a readily available and normally unusable

  5. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. (United States)

    Rossi, Elio; Longo, Francesca; Barbagallo, Marialuisa; Peano, Clelia; Consolandi, Clarissa; Pietrelli, Alessandro; Jaillon, Sebastian; Garlanda, Cecilia; Landini, Paolo


    Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.

  6. Attosecond pulse production using resonantly-enhanced high-order harmonics

    CERN Document Server

    Strelkov, V V


    We study theoretically the effect of the giant resonance in Xe on the phase difference between the consecutive high order resonantly-enhanced harmonics and calculate the duration of the attosecond pulses produced by these harmonics. For certain conditions resonantly-induced dephasing compensates the phase difference which is intrinsic for the off-resonance harmonics. We find these conditions analytically and compare them with the numerical results. This harmonic synchronization allows attosecond pulse shortening in conjunction with the resonance-induced intensity increase by more than an order of magnitude; the latter enhancement relaxes the requirements for the UV filtering needed for the attosecond pulse production. Using a two-color driving field allows further increase of the intensity. In particular, a caustic-like feature in the harmonic spectrum leads to the generation efficiency growth up to two orders of magnitude, however accompanied by an elongation of the XUV pulse.

  7. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Nguyen, Minh-Thu; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Kim, Donhue [Department of Biochemical Engineering, Dongyang Mirae College, Seoul 152-714 (Korea, Republic of)


    Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO{sub 2} and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H{sub 2}) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H{sub 2} from algal starch with H{sub 2} yield of 1.8-2.2 mol H{sub 2}/mol glucose and the total accumulated H{sub 2} level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H{sub 2} production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H{sub 2} fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 C for 20 min showed the total accumulative H{sub 2} yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable {alpha}-amylase (Termamyl) applied in the SHF process significantly enhanced the H{sub 2} productivity of the bacterium to 64% (v/v) of total accumulated H{sub 2} level and a H{sub 2} yield of 2.5 mol H{sub 2}/mol glucose. Our results demonstrated that direct H{sub 2} fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H{sub 2} production. (author)

  8. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach. (United States)

    Mullai, P; Yogeswari, M K; Sridevi, K


    The effect of initial glucose concentration, initial pH and nickel nanoparticles concentration on biohydrogen production was experimented at mesophilic temperature (30-35 °C) using anaerobic microflora in batch tests. It revealed that yield of biohydrogen using nickel nanoparticles with an average size of 13.64 nm was higher than the corresponding control tests. The optimisation of biohydrogen production was carried out by employing response surface methodology (RSM) with a central composite design (CCD). Results showed that the maximum cumulative biohydrogen production of 4400 mL and biohydrogen yield of 2.54 mol of hydrogen/mol of glucose was achieved at optimum conditions, initial glucose concentration of 14.01 g/L at initial pH of 5.61 and nickel nanoparticles concentration of 5.67 mg/L. The results demonstrated that linear and interactive effect of initial substrate concentration and nickel nanoparticles concentration was significant in optimisation of biohydrogen production. Nickel nanoparticles enhanced the biohydrogen production by 22.71%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia. (United States)

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng


    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enhancement in production of erythromycin by Saccharopolyspora erythraea by the use of suitable industrial seeding media

    Directory of Open Access Journals (Sweden)

    Rostamza M.


    Full Text Available Background and purpose of the study: There is no report on the effect of seeding-medium ingredients on Saccharopolyspora erythraea growth and erythromycin production. In this study, the enhancing effects of seeding-media which have been used routinely for screening, isolation or identification of actinomycetes, on Saccharopolyspora erythraea growth and erythromycin production were investigated.Methods: The control medium contained soybean meal, glucose, glycerol, (NH42SO4 and CaCO3 as the major constituents and several media (I, II, III, ISP2, ISP3 and ISP4 were used for production of the antibiotic. Concentrations of biomass and erythromycin were measured by spectrophotometry, HPLC and bioassay methods and the effects of the composition of seeding media on pH were also determined.Results: The concentration of erythromycin in medium II was 2.71g/l (1.33 times more than that of the control medium and trends in production were: medium II > ISP4 = ISP2 = Control > ISP2 = Control = ISP3 > ISP3 = medium III = medium I. In the media containing starch and casein, the hyphae of S. erythraea were star-shaped and much branched. Major conclusion: By virtue of other technical and economical characteristics of the seeding media used for erythromycin production, it is concluded that medium II is the best seeding medium formulation for erythromycin in comparison to others.

  11. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. (United States)

    Wang, Zhen; Wang, Yuanliang; Yang, Shang-Tian; Wang, Runguang; Ren, Huiqing


    A new support matrix inspired by honeycomb was developed for cell immobilization to control fungal morphology and enhance mass transfer in bioreactor for lactic acid production by Rhizopus oryzae. The immobilization matrix composed of asterisk-shaped fibrous matrices in a honeycomb configuration provided high surface areas for cell attachment and biofilm growth. More than 90% of inoculated spores were adsorbed onto the matrices within 6-8h and after 10h there was no suspended cell in the fermentation broth, indicating a 100% immobilization efficiency. Compared to free-cell fermentation, lactic acid production increased approximately 70% (49.5 g/L vs. 29.3g/L) and fermentation time reduced 33% (48 h vs. 72 h) in shake-flasks with 80 g/L initial glucose. The immobilized-cell fermentation was evaluated for its long-term performance in a bubble-column bioreactor operated in a repeated batch mode for nine cycles in 36 days. The highest lactic acid production was 68.8 g/L, corresponding to a volumetric productivity of 0.72 g/Lh and 93.4% (w/w) lactic acid yield from consumed glucose. The overall yield and productivity were 77.6% and 0.57 g/Lh, respectively. The fermentation can be improved by increasing aeration and mixing in the bubble-column bioreactor. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali


    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  13. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. (United States)

    Ju, Si Yeon; Kim, Jin Ho; Lee, Pyung Cheon


    Lactic acid has been approved by the United States Food and Drug Administration as Generally Regarded As Safe (GRAS) and is commonly used in the cosmetics, pharmaceutical, and food industries. Applications of lactic acid have also emerged in the plastics industry. Lactic acid bacteria (LAB), such as Leuconostoc and Lactobacillus, are widely used as lactic acid producers for food-related and biotechnological applications. Nonetheless, industrial mass production of lactic acid in LAB is a challenge mainly because of growth inhibition caused by the end product, lactic acid. Thus, it is important to improve acid tolerance of LAB to achieve balanced cell growth and a high titer of lactic acid. Recently, adaptive evolution has been employed as one of the strategies to improve the fitness and to induce adaptive changes in bacteria under specific growth conditions, such as acid stress. Wild-type Leuconostoc mesenteroides was challenged long term with exogenously supplied lactic acid, whose concentration was increased stepwise (for enhancement of lactic acid tolerance) during 1 year. In the course of the adaptive evolution at 70 g/L lactic acid, three mutants (LMS50, LMS60, and LMS70) showing high specific growth rates and lactic acid production were isolated and characterized. Mutant LMS70, isolated at 70 g/L lactic acid, increased d-lactic acid production up to 76.8 g/L, which was twice that in the wild type (37.8 g/L). Proteomic, genomic, and physiological analyses revealed that several possible factors affected acid tolerance, among which a mutation of ATPase ε subunit (involved in the regulation of intracellular pH) and upregulation of intracellular ammonia, as a buffering system, were confirmed to contribute to the observed enhancement of tolerance and production of d-lactic acid. During adaptive evolution under lethal stress conditions, the fitness of L. mesenteroides gradually increased to accumulate beneficial mutations according to the stress level. The

  14. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad


    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  15. Successful sperm cryopreservation of the brown-marbled grouper, Epinephelus fuscoguttatus using propylene glycol as cryoprotectant. (United States)

    Yusoff, Maisarah; Hassan, Badrul Nizam; Ikhwanuddin, Muhd; Sheriff, Shahreza Md; Hashim, Fatimah; Mustafa, Sufian; Koh, Ivan Chong Chu


    This study developed the cryopreservation of brown-marbled grouper spermatozoa for practical application. We examined 32 cryodiluents, developed from four types of cryoprotectants [propylene glycol (PG), dimethyl-sulphoxide (Me 2 SO), dimethyl-acetamide (DMA) and ethylene glycol (EG)] at four concentrations of 5, 10, 15 and 20% in combination with two extenders [Fetal bovine serum (FBS) and artificial seminal plasma (ASP). Cooling rates were examined by adjusting the height of straws (2.5-12.5 cm) from the liquid nitrogen (LN) vapor and cooled for 5 min before immersion into LN. DNA laddering was used to detect DNA damage in cryopreserved sperm. In fertilization trials, 0.5 g of eggs was mixed with cryopreserved sperm stored for 30 days in LN. The best motility of post-thaw sperm was achieved using 15% PG + 85% FBS (76.7 ± 8.8%); 10% PG + 90% FBS was also effective as cryodiluent. Generally, FBS gave better post-thaw motility compared to ASP. The optimum cooling rate was at 17.6 °C min -1 obtained by freezing at the height of 7.5 cm surface of LN. The results obtained showed that cryopreserved sperm of brown-marbled grouper suffered slight DNA fragmentation, which resulted in significantly lower motility. However, the fertilization (90.9 ± 0.5%), hatching (64.5 ± 4.1%) and deformity rates (3.8 ± 0.2%) obtained from cryopreserved sperm showed no significant difference with fresh sperm. These findings show that the developed protocol for cryopreservation of brown-marbled grouper sperm was viable and will be useful for successful breeding and seed production of brown-marbled grouper. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Genome-scale model guided design ofPropionibacteriumfor enhanced propionic acid production. (United States)

    Navone, Laura; McCubbin, Tim; Gonzalez-Garcia, Ricardo A; Nielsen, Lars K; Marcellin, Esteban


    Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp . shermanii and the pan- Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp . shermanii , two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  17. Interaction Design Beyond the Product : Creating Technology-Enhanced Activity Spaces

    DEFF Research Database (Denmark)

    Kaptelinin, Victor; Bannon, Liam J.


    between intrinsic and extrinsic technology-enabled practice transformation, and foreground the need for interaction design research and practice to more directly deal with analysis and construction of technology-enhanced activity spaces. The implications of these notions for the research agenda...... of the field should include not only helping designers create better products but also helping people themselves create better environments for their work, learning, and leisure activities. In this article we argue that expanding the scope of interaction design beyond products requires a revision of some...... of the most central concepts in interaction design, including the notion of “the object of design” and our understanding of the impact of technologies on human practices. The aim of the article is to explore some of these conceptual challenges and discuss possible ways of dealing with them. We differentiate...

  18. Enhancement of 2,3-Butanediol Production by Klebsiella oxytoca PTCC 1402

    Directory of Open Access Journals (Sweden)

    Maesomeh Anvari


    Full Text Available Optimal operating parameters of 2,3-Butanediol production using Klebsiella oxytoca under submerged culture conditions are determined by using Taguchi method. The effect of different factors including medium composition, pH, temperature, mixing intensity, and inoculum size on 2,3-butanediol production was analyzed using the Taguchi method in three levels. Based on these analyses the optimum concentrations of glucose, acetic acid, and succinic acid were found to be 6, 0.5, and 1.0 (% w/v, respectively. Furthermore, optimum values for temperature, inoculum size, pH, and the shaking speed were determined as 37°C, 8 (g/L, 6.1, and 150 rpm, respectively. The optimal combinations of factors obtained from the proposed DOE methodology was further validated by conducting fermentation experiments and the obtained results revealed an enhanced 2,3-Butanediol yield of 44%.

  19. Enhancement of the Higgs pair production at LHC the MSSM and extra-dimension effects

    CERN Document Server

    Kim, C S; Song, J; Lee, Kang Young; Song, Jeonghyeon


    The neutral Higgs pair production at LHC is studied in the MSSM, the large extra dimension model and the Randall-Sundrum model, where the total cross section can be enhanced by more than one order of magnitude, compared to that in the SM. We have obtained the $p_{_T}$, invariant mass and rapidity distributions. Both of the extra-dimensional cases show distinctive features: The distribution shapes are almost independent of the string scale $M_{\\rm S}$; the $p_{_T}$ and invariant mass distributions peak around $M_{\\rm S}\\sim$ TeV, while the SM and MSSM contributions drop rapidly at this high scale; the rapidity distributions show significantly narrow peaks. It is concluded that various distributions of the Higgs pair production at LHC with restrictive kinematic cuts would provide one of the most robust signals of the extra dimensional effects.

  20. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production. (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng


    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.