WorldWideScience

Sample records for enhanced pdt efficacy

  1. Improve efficacy of topical ALA-PDT by calcipotriol through up-regulation of coproporphyrinogen oxidase.

    Science.gov (United States)

    Yang, Deng-Fu; Chen, Jia-Haur; Chiang, Chun-Pin; Huang, Zheng; Lee, Jeng-Woei; Liu, Chung-Ji; Chang, Junn-Liang; Hsu, Yih-Chih

    2014-09-01

    Topical 5-aminolevulinic acid-mediated photodynamic therapy (topical ALA-PDT) is effective for treating oral precancerous lesions. The aim of this in vivo and in vitro study was to examine whether the efficacy of topical ALA-PDT could be further improved by calcipotriol (CAL). Precancerous lesions in the buccal pouch of hamsters were induced by dimethylbenz(a)anthracene (DMBA). Lesions were treated with multiple topical ALA-PDT with or without CAL pretreatment. ALA-induced protoporphyrine IX (PpIX) was monitored by in situ fluorescence measurement. The effect of CAL on heme-related enzymes (CPOX, PPOX, and FECH) were examined in an in vitro model using human squamous cell carcinoma (SCC) cells (SCC4, SAS) using Western blots. Fluorescence spectroscopy revealed that PpIX reached its peak level in precancerous epithelial cells of buccal pouch at 2.5 or 3.5h without or with CAL pretreatment, respectively. Both treatment regimens showed similar response rates, but the complete response was achieved after 5 times of ALA-PDT and 3 times of CAL-ALA-PDT (plevel. Topical CAL can improve the efficacy of ALA-PDT in treating precancerous lesions, likely through the increase in CPOX level and in PpIX production. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Light fractionation increases the efficacy of ALA-PDT but not of MAL-PDT: What is the role of (vascular) endothelial cells?

    Science.gov (United States)

    de Bruijn, H. S.; de Vijlder, H. C.; de Haas, E. R. M.; van der Ploeg-van den Heuvel, A.; Kruijt, B.; Poel-Dirks, D.; Sterenborg, H. J. C. M.; ten Hagen, T. L. M.; Robinson, D. J.

    2009-06-01

    Photodynamic therapy (PDT) using protoporpyrin IX (PpIX) precursors like 5-aminolevulinic acid (ALA) or methyl-aminolevulinate (MAL) has shown to be effective in the treatment of various skin diseases. Using ALA we have shown in numerous studies a significantly improved efficacy by applying light fractionation with a long dark interval. In contrast, in the hairless mouse model, the PDT efficacy using MAL is unaffected by adopting this approach. More acute edema is found after ALA-PDT suggesting a difference in response of endothelial cells to PDT. To investigate the role of endothelial cells, cryo-sections of hairless mouse skin after 4 hours of topical MAL or ALA application were stained with a fluorescent endothelial cell marker (CD31). Co-localization of this marker with the PpIX fluorescence was performed using the spectral imaging function of the confocal microscope. We have also used intra-vital confocal microscopy to image the PpIX fluorescence distribution in correlation with the vasculature of live mouse skin. Our results show PpIX fluorescence at depth in cryo-sections of mouse skin after 4 hours of topical application. Co-localization has shown to be difficult due to the changes in tissue organization caused by the staining procedure. As expected we found high PpIX fluorescence levels in the epidermis after both MAL and ALA application using intra-vital microscopy. After ALA application more PpIX fluorescence was found deep in the dermal layer of the skin than after MAL. Furthermore we detected localized fluorescence in unidentified structures that could not be correlated to blood vessels or nerves.

  3. The in Vitro Antimicrobial Efficacy of PDT against Periodontopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Philippe A. Haag

    2015-11-01

    Full Text Available Periodontitis, an inflammatory disease, is caused by biofilms with a mixed microbial etiology and involves the progressive destruction of the tooth-supporting tissues. A rising number of studies investigate the clinical potential of photodynamic therapy (PDT as an adjunct during active therapy. The aim of the present review was to evaluate the available literature for the in vitro antimicrobial efficacy of photodynamic therapy focusing on the periodontopathogenic bacteria Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. The focused question was: “Is it possible to decrease (at least 3 log steps or 99.9% or even eliminate bacterial growth by photodynamic therapy in vitro when compared to untreated control groups or control groups treated by placebo?” In general, PDT resulted in a substantial reduction of surviving bacteria. However, not all studies showed the desired reduction or elimination. The ranges of log10-reduction were 0.38 (58% to a complete eradication (100% for P. gingivalis, 0.21 (39% to 100% for A. actinomycetemcomitans and 0.3 (50% to 100% for F. nucleatum. In conclusion, further and particularly more comparable studies are needed to evaluate if PDT can be clinically successful as an adjuvant in periodontal therapy.

  4. Hypericin-photodynamic therapy (PDT) using an alternative treatment regime suitable for multi-fraction PDT.

    Science.gov (United States)

    Thong, Patricia Soo-Ping; Watt, Frank; Ren, Min Qin; Tan, Puay Hoon; Soo, Khee Chee; Olivo, Malini

    2006-01-02

    Photodynamic therapy (PDT) outcome depends on the conditions under which it is carried out. Maintaining the tumour tissue oxygen level is important for PDT efficacy and using a low fluence rate can improve outcome. In this work we studied the response of human nasopharyngeal carcinoma tumours in murine models to hypericin-PDT carried out under low fluence and fluence rate. A drug-light interval (DLI) of 1h or 6h was used for 1h-PDT and 6h-PDT, respectively. Evan's blue test was used to assess necrosis and TUNEL staining for apoptosis. Nuclear microscopy was used to quantify elemental concentrations in tumours. Serum vascular endothelial growth factor (VEGF) levels were also determined. TUNEL results showed that 6h-PDT induced significantly more apoptosis compared to 1h-PDT (ptreatment regime is suitable for the alternative approach of multi-fraction PDT in which the tumour can be exposed to multiple PDT fractions for complete tumour response. This alternative approach might yield improved outcome.

  5. Hyperglycemia enhances the effectiveness of PDT

    Science.gov (United States)

    Fan, Keichun; Huang, Yingcai; Li, Junheng

    1995-05-01

    The effect of injection of 10 mg/g 50% glucose on photodynamic therapy of mouse transplantable S-180 sarcoma was studied. The concentration of hematoporphyrin monomethylether in plasma, skin, and tumor was measured by recording spectrofluorophotometer. tumor pathological section was made and necrosis area of tumor longitudinal section was measured by image processing after photoradiation of gold vapor laser. The results of this study suggested that the uptake of photosensitizer in tumor significantly increased while the uptake of photosensitizer in skin remained unchanged after glucose administration. Furthermore, glucose administration combined with PDT produced a greater tumor necrosis area than using PDT alone. The mechanisms and clinical significance were also discussed.

  6. Pretreatment with 5-Fluorouracil Cream Enhances the Efficacy of Daylight-mediated Photodynamic Therapy for Actinic Keratosis

    DEFF Research Database (Denmark)

    Nissen, Christoffer V; Heerfordt, Ida Marie; Wiegell, Stine R

    2017-01-01

    The efficacy of photodynamic therapy (PDT) with methyl aminolevulinate is reduced when treating actinic keratosis (AK) on the extremities in comparison with the face and scalp. Studies indicate that PDT efficacy can be improved by combining PDT with other treatment modalities. This randomized intra...

  7. Transferrin-Modified Nanoparticles for Photodynamic Therapy Enhance the Antitumor Efficacy of Hypocrellin A

    Directory of Open Access Journals (Sweden)

    Xi Lin

    2017-11-01

    Full Text Available Photodynamic therapy (PDT has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA and carboxymethyl chitosan (CMC nanoparticle loaded with a photosensitizer hypocrellin A (HA, named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy.

  8. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

    Science.gov (United States)

    Popovic, A; Wiggins, T; Davids, L M

    2015-08-01

    Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (phuman skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and

  9. Activity of glycated chitosan and other adjuvants to PDT vaccines

    Science.gov (United States)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  10. ALA-PDT mediated DC vaccine for skin squamous cell carcinoma

    Science.gov (United States)

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.

    2015-03-01

    Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.

  11. Taking PDT into mainstream clinical practice

    Science.gov (United States)

    Bown, Stephen G.

    2009-06-01

    Many individuals in the field are frustrated by the slow progress getting PDT established in mainstream clinical practice. The five key reasons are: 1. Lack of adequate evidence of safety and efficacy and optimization of dosimetry. These are fundamental. The number of randomized controlled studies is still small. For some cancer applications, it is difficult to get patients to agree to be randomised, so different approaches must be taken. Anecdotal results are not acceptable to sceptics and regulators. 2. The regulatory processes. The rules get more complex every day, but there is no choice, they must be met. The full bureaucratic strength of the pharmaceutical industry is needed to address these issues. 3. Conservatism of the medical profession. Established physicians are reluctant to change practice, especially if it means referring patients to different specialists. 4. Lack of education. It is amazing how few physicians have even heard of PDT and many that have, are sceptical. The profile of PDT to both the medical profession and the general public needs to be raised dramatically. Patient demand works wonders! 5. Money. Major investment is required to run clinical trials. Pharmaceutical companies may see PDT as a threat (eg reduced market for chemotherapy agents). Licensed photosensitisers are expensive. Why not reduce the price initially, to get the technique established and stimulate demand? PDT has the potential for enormous cost savings for health service providers. With appropriate motivation and resources these problems can be addressed. Possible routes forward will be suggested.

  12. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    Science.gov (United States)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  13. Tumor PDT-associated immune response: relevance of sphingolipids

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  14. Potentiation of ALA-PDT antitumor activity in mice using topical DMXAA

    Science.gov (United States)

    Marrero, Allison; Sunar, Ulas; Sands, Theresa; Oseroff, Allan; Bellnier, David

    2009-06-01

    Photodynamic treatment of subcutaneously implanted Colon 26 tumors in BALB/c mice using the aminolevulinic acid (ALA)-induced photosensitizer protoporphyrin IX (PpIX) was shown to be enhanced by the addition of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA; Novartis ASA404). DMXAA increases vascular permeability and decreases blood flow in both murine and human tumors. Sufficiently high parenteral DMXAA doses can lead to tumor collapse and necrosis. We have previously reported marked enhancement of antitumor activity when PDT, using either Photofrin or HPPH, is combined with low-dose intraperitoneal DMXAA. We now describe the first attempt to combine topically-applied DMXAA with PDT. For this, DMXAA was applied two hours before PpIX-activating light delivery. PDT with ALA-PDT alone (ALA 20%; 80 J/cm2 delivered at 75 mW/cm2) caused a 39% decrease in tumor volume compared to unirradiated controls. Addition of topical DMXAA to ALA-PDT resulted in a 74% reduction in tumor volume. Diffuse correlation spectroscopy (DCS), a non-invasive blood flow imaging method, is being used to understand the mechanism of this effect and to aid in the proper design of the therapy. For instance, our most recent DCS data suggests that the 2-hour interval between the DMXAA and light applications may not be optimum. This preliminary study suggests a potential role for topical DMXAA in combination with PDT for dermatologic tumors.

  15. Photodynamic Therapy (PDT)

    Indian Academy of Sciences (India)

    transfer to oxygen, the cytotoxic singlet oxygen (102) resulting ... reactions. Thus, the available wavelengths for photodynamic sensitizers are 600-850 nm (red light). .... a: squamous cell carcinoma of a 78-year-old man. b: 1 week after PDT, .... relying on the heme's PDT action and (ii) noncancerous objects (i.e., healthy ...

  16. The efficacy and tolerability of 5-aminolevulinic acid 5% thermosetting gel photodynamic therapy (PDT) in the treatment of mild-to-moderate acne vulgaris. A two-center, prospective assessor-blinded, proof-of-concept study.

    Science.gov (United States)

    Serini, Stefano Maria; Cannizzaro, Maria Vittoria; Dattola, Annunziata; Garofalo, Virginia; Del Duca, Esther; Ventura, Alessandra; Milani, Massimo; Campione, Elena; Bianchi, Luca

    2018-05-22

    Acne vulgaris is a chronic inflammatory skin disease, commonly treated with topical or systemic drugs, according to the severity of the condition. Retinoids and antibiotic compounds are considered cornerstone approaches in this condition. However, low adherence to the therapy and the issue of bacterial resistance undermine the efficacy in the long term. Photodynamic therapy (PDT) with 20% aminolevulinic acid (ALA) has shown to be effective in the treatment of inflammatory acne. Skin tolerability, however, could be a limiting factor for a widespread use of this approach. A new formulation of 5% ALA in thermosetting gel has been recently available. This formulation allows a more convenient application procedure without occlusion and better and more efficient release of the active compound in comparison with traditional ALA formulations like creams or ointments. To evaluate in a two-center, assessor-blinded, prospective, proof-of-concept study, the efficacy, and tolerability of red-light (630 nm) PDT with a new 5-ALA "low-dose" topical gel formulation (5%) in the treatment of inflammatory mild-to-moderate acne vulgaris (AV). A total of 35 subjects with moderate AV of the face (mean age: 24 ± 8 years, 13 men and 22 women) were enrolled, after their written informed consent. The primary outcome was the evolution of GAG (Global Acne Grade System) score at baseline and after an average of three, 630-nm, 15-minute, PDT sessions, performed every 2 weeks. GAG score was also calculated in a follow-up visit 6 months after the last PDT session. Skin tolerability was assessed during PDT sessions with a patient-reported discomfort level evaluation score from 0 (no discomfort at all) to 3 (severe discomfort). At baseline, the GAG score was 21 ± 6. After the last PDT session, the GAG score evaluated in a blinded fashion (digital photographs) was significantly reduced to 6.5 ± 5.7, representing a 70% reduction (P = .0001, Wilcoxon test; mean difference 14.9; 95% CI of

  17. Pulse photodynamic therapy reduces inflammation without compromising efficacy in the treatment of multiple mild actinic keratoses of the face and scalp

    DEFF Research Database (Denmark)

    Wiegell, S R; Petersen, Bibi Øager; Wulf, H C

    2016-01-01

    BACKGROUND: The main side-effects of photodynamic therapy (PDT) for actinic keratoses (AKs) are post-treatment erythema and oedema, and pain during illumination. Severe erythema after PDT enhances the down time associated with the treatment. OBJECTIVES: To evaluate in a randomized intraindividual...... on the face and scalp. The use of a short MAL application time and topical corticosteroid did not affect the efficacy of PDT and may be an easy way to make PDT treatment of large visible areas more acceptable.......BACKGROUND: The main side-effects of photodynamic therapy (PDT) for actinic keratoses (AKs) are post-treatment erythema and oedema, and pain during illumination. Severe erythema after PDT enhances the down time associated with the treatment. OBJECTIVES: To evaluate in a randomized intraindividual...... study whether pulse-PDT and corticosteroid pulse-PDT would reduce treatment-induced erythema compared with conventional PDT. METHODS: Twenty-two patients with multiple mild AKs on the face and scalp were treated with methyl aminolaevulinate (MAL)-PDT in three similar areas. Two areas were incubated...

  18. Enhancing Photodynamyc Therapy Efficacy by Combination Therapy: Dated, Current and Oncoming Strategies

    International Nuclear Information System (INIS)

    Postiglione, Ilaria; Chiaviello, Angela; Palumbo, Giuseppe

    2011-01-01

    Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors

  19. Mechanism of enhanced responses after combination photodynamic therapy (cPDT) in carcinoma cells involves C/EBP-mediated transcriptional upregulation of the coproporphyrinogen oxidase (CPO) gene

    Science.gov (United States)

    Anand, Sanjay; Hasan, Tayyaba; Maytin, Edward V.

    2013-03-01

    Photodynamic therapy (PDT) with aminolevulinate (ALA) is widely accepted as an effective treatment for superficial carcinomas and pre-cancers. However, PDT is still suboptimal for deeper tumors, mainly due to inadequate ALA penetration and subsequent conversion to PpIX. We are interested in improving the effectiveness of photodynamic therapy (PDT) for deep tumors, using a combination approach (cPDT) in which target protoporphyrin (PpIX) levels are significantly enhanced by differentiation caused by giving Vitamin D or methotrexate (MTX) for 3 days prior to ALAPDT. In LNCaP and MEL cells, a strong correlation between inducible differentiation and expression of C/EBP transcription factors, as well as between differentiation and mRNA levels of CPO (a key heme-synthetic enzyme), indicates the possibility of CPO transcriptional regulation by the C/EBPs. Sequence analysis of the first 1300 base pairs of the murine CPO upstream region revealed 15 consensus C/EBP binding sites. Electrophoretic Mobility Shift Assays (EMSA) proved that these sites form specific complexes that have strong, moderate or weak affinities for C/EBPs. However, in the context of the full-length CPO promoter, inactivation of any type of site (strong or weak) reduced CPO promoter activity (luciferase assay) to nearly the same extent, suggesting cooperative interactions. A comparative analysis of murine and human CPO promoters revealed possible protein-protein interactions between C/EBPs and several neighboring transcription factors such as NFkB, Sp1, AP-1, CBP/p300 and CREB (an enhanceosome complex). Overall, these results confirm that C/EBP's are important for CPO expression via complex mechanisms which upregulate PpIX and enhance the outcome of cPDT.

  20. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy

    International Nuclear Information System (INIS)

    Chen Bin; Pogue, Brian W.; Hoopes, P. Jack; Hasan, Tayyaba

    2005-01-01

    . Histologic studies confirmed that this combined treatment led to damage to both tumor vasculature and tumor cells. Importantly, the combined PDT treatment did not increase normal tissue damage and tissue recovered well at 60 days after treatment. Conclusions: Our results suggest that targeting both tumor vascular and cellular compartments by combining a long-interval PDT with a short-interval PDT can be an effective and safe way to enhance PDT damage to tumor tissue

  1. PDT: special cases in front of legal regulations

    Science.gov (United States)

    Fischer, E.; Wegner, A.; Pfeiler, T.; Mertz, M.

    2002-10-01

    Introduction: The classic indication for photodynamic therapy (PDT) in ophthalmology is currently represented by classic subfoveal choroidal neovascularisation (CNV) due to age-related macular degeneration (AMD). PDT is a method, which almost selectively causes endothelial damage in neovascular lesions, followed by vascular occlusion and involution of the CNV. The mechanistic aspect suggests that non AMD-related choroidal neovascularisations might also benefit from PDT. PDT in AMD: Within the German health system, PDT indications follow the criteria based on the inclusion criteria of the TAP studies. For instance the CNV should be predominantly classic and located under the center of the foveal avascular zone. In the diagnosis and follow-up of exudative AMD, visual acuity measurements and fluorescein angiography are the established parameters. Retinal thickness analyzer (RTA) measurements might give further information. Before PDT, they show a significant retinal thickening due to intra- and subretinal exudation. Following PDT, early RTA follow-ups show a clear decrease in retinal thickening accompanies by increasing or stable acuity. PDT in CNV of other origins than AMD: New studies support a new spectrum of indications for PDT, hopefully leading to general cost reimbursement for patients. PDT should be viewed as a general method for vascular occlusion and does not represent a causal therapy for progressive exudative AMD. We present patients with CNV due to pathologic myopia, angioid streaks and POHS. Conclusion: The selective vascular occlusion caused by PDT, besides CNV associated with AMD and pathologic myopia, may also allow the treatment of choroidal neovascularisations based on other entities. Careful individual evaluation of those cases is recommended. Despite this wide array of possible indications, cost reimbursement has been limited to classic subfoveal CNV in AMD, although single case reimbursements in choroidal neovascular lesions due to pathologic

  2. Vitamin D enhances the efficacy of photodynamic therapy in a murine model of breast cancer

    International Nuclear Information System (INIS)

    Rollakanti, Kishore R; Anand, Sanjay; Maytin, Edward V

    2015-01-01

    Cutaneous metastasis occurs more frequently in breast cancer than in any other malignancy in women, causing significant morbidity. Photodynamic therapy (PDT), which combines a porphyrin-based photosensitizer and activation by light, can be employed for breast cancer (especially cutaneous metastases) but tumor control after PDT has not surpassed traditional treatments methods such as surgery, radiation, and chemotherapy up to now. Here, we report that breast cancer nodules in mice can be effectively treated by preconditioning the tumors with 1α, 25-dihydroxyvitamin D 3 (calcitriol; Vit D) prior to administering 5-aminolevulinate (ALA)-based PDT. Breast carcinoma tumors (MDA-MB-231 cells implanted subcutaneously in nude mice) received systemic Vit D (1 μg/kg) for 3 days prior to receiving ALA. The addition of Vit D increased intratumoral accumulation of protoporphyrin IX (PpIX) by 3.3 ± 0.5-fold, relative to mice receiving ALA alone. Bioluminescence imaging in vivo and immunohistochemical staining confirmed that tumor-specific cell death after ALA-PDT was markedly enhanced (36.8 ± 7.4-fold increase in TUNEL-positive nuclei; radiance decreased to 14% of control) in Vit D pretreated tumors as compared to vehicle-pretreated tumors. Vit D stimulated proliferation (10.7 ± 2.8-fold) and differentiation (9.62 ± 1.7-fold) in tumor cells, underlying an augmented cellular sensitivity to ALA-PDT. The observed enhancement of tumor responses to ALA-PDT after low, nontoxic doses of Vit D supports a new combination approach that deserves consideration in the clinical setting, and offers potential for improved remission of cutaneous breast cancer metastases

  3. Evaluation of polymeric PLGA nanoparticles conjugated to curcumin for use in aPDT

    Directory of Open Access Journals (Sweden)

    Renata Celi Carvalho de Souza Pietra

    2017-07-01

    Full Text Available ABSTRACT Antimicrobial photodynamic therapy (aPDT involves the association of a photosensitizing agent with a light source with the goal of causing apoptosis or microbial lysing. The use of compounds with natural active principles is gaining prominence throughout the world. Several studies from groups that are linked to the development of innovations in the pharmaceutical market have used natural dyes, such as curcumin, the efficacy of which has been demonstrated in aPDT trials. Difficulties related to physicochemical stability, solubility and cell penetration are some of the challenges associated with this field. The present work aimed to prepare, investigate the characteristics and improve the photodynamic activity of PLGA-based nanoparticles loaded with curcumin for use in aPDT therapy. Using the simple technique of emulsion during the evaporation of a solvent, the particles were built, characterized and tested against microorganisms with importance for medicine and dentistry. The results revealed that the particles were able to protect the curcumin against degradation and eliminate some microorganism species at nanomolar concentrations.

  4. Photodynamic Therapy (PDT)

    Indian Academy of Sciences (India)

    Photodynamic Therapy (PDT) is a newly emerging modal- ... Porphyrins are a ubiquitous class of naturally occurring heterocyclic ..... mechanism leading to tumor necrosis. ... The vascular endothelium may be the main target of tumor.

  5. Photodynamic therapy induced vascular damage: an overview of experimental PDT

    International Nuclear Information System (INIS)

    Wang, W; Moriyama, L T; Bagnato, V S

    2013-01-01

    Photodynamic therapy (PDT) has been developed as one of the most important therapeutic options in the treatment of cancer and other diseases. By resorting to the photosensitizer and light, which convert oxygen into cytotoxic reactive oxygen species (ROS), PDT will induce vascular damage and direct tumor cell killing. Another consequence of PDT is the microvascular stasis, which results in hypoxia and further produces tumor regression. To improve the treatment with PDT, three promising strategies are currently attracting much interest: (1) the combination of PDT and anti-angiogenesis agents, which more effectively prevent the proliferation of endothelial cells and the formation of new blood vessels; (2) the nanoparticle-assisted delivery of photosensitizer, which makes the photosensitizer more localized in tumor sites and thus renders minimal damage to the normal tissues; (3) the application of intravascular PDT, which can avoid the loss of energy during the transmission and expose the target area directly. Here we aim to review the important findings on vascular damage by PDT on mice. The combination of PDT with other approaches as well as its effect on cancer photomedicine are also reviewed. (review)

  6. Biomedical, translational and clinical research on PDT of TMJ

    Science.gov (United States)

    Kamenoff, J.

    2017-02-01

    Electromagnetic energy of laser light has some typical properties which are found to be a premise for discussions on laser irradiation abilities to control the severe and chronic disorders in TMJ. In world literature PDT application is recommended when soft tissues in TMJ are damaged, in cases of degenerative diseases of discus articularis, medial and lateral distensions of joint ligaments, chronic inflammatory processes in TMJ, occlusion trauma, etc. The aim of our clinical study was to analyze the theoretical achievements up to now in depth and basing on our clinic al observations suggest new methods guaranteeing high therapeutic efficacy of Photodynamic therapy.

  7. Design, fabrication, and analysis of miniature reflective oxygen monitoring system for use in PDT of esophageal carcinoma

    Science.gov (United States)

    Premasiri, Amaranath; Happawana, Gemunu

    2008-02-01

    Photodynamic therapy (PDT) is an effective and minimally invasive treatment modality with relatively less side effects, which is approved by FDA for the treatment of esophageal cancer. Maximum therapeutic outcome of the PDT protocol for each individual patient requires optimization of the components of PDT operating at their highest efficacy. Tumor necrosis, the method of malignant tissue destruction by PDT, is carried out by the toxic singlet oxygen molecules that are being formed from the molecular oxygen in the tumor. The availability of molecular oxygen, hence being the rate limiting step for PDT plays a key role in the treatment protocol. Currently the PDT of esophageal carcinoma is rather a blind process since there is no method to monitor the tumor oxygen level during the treatment. In this paper we present an optical technique to monitor molecular oxygen level in the PDT milieu. The technique described herein is a reflection oximetry technique designed with small semiconductor lasers and a silicon photodiode. The light used for monitoring system comes from two semiconductor diode lasers of 650 nm and 940 nm wavelengths. The two lasers and the photodiode are mounted onto a small package which is to be imprinted onto a balloon catheter containing the PDT light delivery system. Lasers and the photodiode are powered and controlled by a control box that is connected via a cable. Light sources and the respective photodiode output are controlled by the LabVIEW virtual instrumentation. The sequential on and off light source and the respective reflective signal are processed with MATLAB. The latter code integrates with LabVIEW to make an automatic calculation of the corresponding light absorption by each chromophore and to calculate the change in oxygen level as well as the amount of blood and oxygen present in the treatment area. The designed system is capable of monitoring the change in oxygen level and the blood flow in any part of the human body where the

  8. The effect of PDT on H. influenzae biofilm in vivo

    Science.gov (United States)

    Rhee, Chung-Ku; Chang, So-Young; Hwang, Dong-Jo; Kim, Young Hoon; Ahn, Jin-Chul

    2010-02-01

    Biofilm formation has been demonstrated for many mucosal pathogens such as Haemophilus influenzae. The presence of mucosal biofilms with chronic otitis media with effusion (COME) suggests that bacteria do not clear by antibiotics. Aim: To test the effect of photodynamic therapy (PDT) on H. influenzae induced biofilm in vivo. Methods: Gerbils were divided into control (C), HI group, Laser (L), PS, PDT A, and PDT B groups. The C group received no treatment. HI group was injected with 20μl (108CFU/ml) of H. influenzae into the bullae and formation of biofilms in the bullae was obtained by 5 days. For L group, 120 J/cm2 (100 mw × 20 min) of 632 nm LD laser was irradiated by a fiber inserted into the bullae 5 days after the H. influenzaeinjection. For PS group, photofrin 40μl (1mg/ml) were injected into the bullae 5 days after the H. influenzae injection. PDT A group received photofrin 1 mg/ml and LD laser 120 J/cm2 that were administered into the bullae 5 days after the H. influenzae injection. PDT B group received photofrin 2 mg/ml and laser 150 J/cm2 5 days after the H. influenzae injection. The mucosal tissues in bullae were examined by H/E staining, and SEM. Results: The C group showed normal mucosa of bullae. The HI, L, and PS groups have shown well formed biofilm. Twenty five percent of the PDT A group and 50 % of the PDT B group have shown completely or partially resolved biofilm. Conclusion: The results of this study demonstrated that PDT appears to be effective to treat experimental H. influenzae induced biofilms in vivo. Clinical implication: PDT may be an alternative to antibiotic treatment on otitis media with biofilm formation.

  9. Effect of SPG (Sonifilan) immunotherapy and PDT on murine tumor

    International Nuclear Information System (INIS)

    Korbelik, M.; Krosl, G.; Dougherty, G.J.; Chaplin, D.J.

    1992-01-01

    PhotoDynamic Therapy of solid tumors is unique in eliciting a strong host immune response unparalleled in other cancer therapies. This immune response is manifested as an acute inflammatory reaction, and can be readily seen as redness and edema around the treated area. Destruction of typical solid tumor cannot be accomplished solely by direct phototoxic action. This was shown to be the case even with drugs more potent in this direct killing effect than Photofrin, the photosensitizer presently used in clinical PDT. Limiting factors seem to be regional insufficiencies in supply of molecular oxygen, needed for generation of phototoxic species. They can be ascribed to the existence of chronically and acute hypoxic tumor regions, oxygen consumption by the photodynamic process, and vascular shutdown induced during PDT. The remaining tumor mass is eradicated by an indirect effect, necrosis induced by destruction of tumor vasculature. Since most events in PDT treated tumor that lead to vascular collapse are, in fact, typical inflammatory manifestations, it was suggested that PDT-induced acute inflammatory reaction actually leads to vascular damage. In a related report characteristics are shown of cellular inflammatory infiltrate in PDT-treated murine tumor. This work examines the effect of combining PDT with immunotherapy, in an attempt to investigate a possibility of amplification of immune reaction to PDT and its direction towards more pervasive destruction of treated tumors. (authors). 6 refs

  10. PDT in periodontal disease of HAART resistance patients

    Science.gov (United States)

    Giovani, Elcio M.; Noro-Filho, Gilberto A.; Caputo, Bruno V.; Casarin, Renato; Costa, Claudio; Salgado, Daniela; Santos, Camila C.

    2016-03-01

    HIV/Aids patients present a change of microbiota associated with host immunodeficiency. Photodynamic therapy (PDT) showed as a promising and viable alternative in reducing microbiota. Present study evaluate effectiveness of photodynamic therapy in periodontal disease of AIDS patients with highly activity antiretroviral therapy (HAART) failure, measuring the clinical periodontal parameters and periodontal microbiota. Twelve patients with HARRT resistance (R group) divided into two groups (control and PDT) and 12 patients with no HAART resistance (NR group) divided into two groups (control and PDT). The results show the difference in baseline of CD4 cells count, NR group 640.0 +/- 176.2 cells/mm3 R group and 333.3 +/- 205.8 cells / mm3 (pperiodontal parameters (PD and CAL), PDT was more effective than the control group only in the NR group (p periodontal parameters between the both R groups (p>0.05%). Microbiological evaluation in R group presents a general reduction in the Aa at 3 and 6 months. Furthermore, demonstrated a reduction of Pg in all groups at 6 months and in R group at 3 months. The impact assessment of photodynamic therapy in patients with different levels of immunosuppression determined that the combination of mechanical periodontal treatment with photodynamic therapy in patients with HAART failure did not cause additional benefits. Therefore, PDT in this study could not been indicated in HAART resistance patients.

  11. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    Science.gov (United States)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  12. Induction of immunological changes induced by photodynamic therapy (PDT) for cancer

    International Nuclear Information System (INIS)

    Reginato, E.

    2014-01-01

    Photodynamic therapy (PDT) is a clinically approved procedure for treatment of cancer and certain non-malignant diseases. PDT consists of systemic or topical administration of a photosensitizer (PS) or a PS precursor (prodrug) such as aminolevulinic acid, followed by irradiation of the diseased area with light of wavelengths corresponding to the absorbance band of the PS. When the PS is activated to its excited state by the light, it can react with the surrounding environment and transfer energy to the molecular tissue oxygen, triggering a photochemical reaction and causing cell death. Besides causing direct cytotoxic effects on illuminated cancer cells, PDT is known to cause damage to the tumor vasculature and to induce the release of pro-inflammatory mediators. Previous studies in mouse models and patients have demonstrated that PDT is capable of affecting both innate and adaptive arms of the immune system. It has been shown that besides stimulating tumor-specific cytotoxic T-cells capable to destroy distant untreated tumor cells, PDT can lead to development of anti-tumor memory immunity that potentially prevents the recurrence of cancer. Moreover, several lines of evidence suggest that PDT may also interfere with the immune-suppressive regulatory T cells (Treg). In the present work we thoroughly investigated the intricate immune profile of PDT in both preclinical and clinical studies, involving (1) a colon adenocarcinoma CT26 wild-type tumor mouse model, (2) patients suffering from esophageal squamous cell carcinoma (ESCC) treated with porfimer sodium (Photofrin) and Laser and (3) patients with actinic keratoses (AK), treated with the porphyrin precursor methyl aminolevulinate and red LED light. Our results from the animal model suggested that PDT did not cause any long-term effect on the levels of Treg in the spleen or lymph nodes. However, Treg cells depletion via administration of cyclophosphamide (CY) prior PDT potentiated anti-tumor immunity, leading to

  13. Combination photodynamic therapy using 5-fluorouracil and aminolevulinate enhances tumor-selective production of protoporphyrin IX and improves treatment efficacy of squamous skin cancers and precancers

    Science.gov (United States)

    Maytin, Edward V.; Anand, Sanjay

    2016-03-01

    In combination photodynamic therapy (cPDT), a small-molecule drug is used to modulate the physiological state of tumor cells prior to giving aminolevulinate (ALA; a precursor for protoporphyrin IX, PpIX). In our laboratory we have identified three agents (methotrexate, 5-fluorouracil, and vitamin D) that can enhance therapeutic effectiveness of ALAbased photodynamic therapy for cutaneous squamous cell carcinoma (SCC). However, only one (5-fluorouracil; 5-FU) is FDA-approved for skin cancer management. Here, we describe animal and human studies on 5-FU mechanisms of action, in terms of how 5-FU pretreatment leads to enhanced PpIX accumulation and improves selectivity of ALA-PDT treatment. In A431 subcutaneous tumors in mice, 5-FU changed expression of heme enzyme (upregulating coproporphyrinogen oxidase, and down-regulating ferrochelatase), inhibited tumor cell proliferation (Ki-67), enhanced differentiation (E-cadherin), and led to strong, tumor-selective increases in apoptosis. Interestingly, enhancement of apoptosis by 5-FU correlated strongly with an increased accumulation of p53 in tumor cells that persisted for 24 h post- PDT. In a clinical trial using a split-body, bilaterally controlled study design, human subjects with actinic keratoses (AK; preneoplastic precursors of SCC) were pretreated on one side of the face, scalp, or forearms with 5-FU cream for 6 days, while the control side received no 5-FU. On the seventh day, the levels of PpIX in 4 test lesions were measured by noninvasive fluorescence dosimetry, and then all lesions were treated with PDT using methyl-aminolevulinate (MAL) and red light (635 nm). Relative amounts of PpIX were found to be increased ~2-fold in 5-FU pretreated lesions relative to controls. At 3 months after PDT, the overall clinical response to PDT (reduction in lesion counts) was 2- to 3-fold better for the 5-FU pretreated lesions, a clinically important result. In summary, 5-FU is a useful adjuvant to aminolevulinate-based PDT

  14. Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses.

    Science.gov (United States)

    Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David

    2011-01-01

    The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  15. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    Science.gov (United States)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  16. Photodynamic therapy (PDT) with endoscopic ultrasound for the treatment of esophageal cancer

    Science.gov (United States)

    Woodward, Timothy A.; Wolfsen, Herbert C.

    2000-05-01

    In 1995, PDT was approved for palliative use in patients with esophageal cancer. We report our experience using PDT to treat esophageal cancer patients previously treated with combination chemotherapy and radiation therapy. In our series, nine patients referred for PDT with persistent esophageal cancer after chemo-radiation therapy. We found: (1) All patients were men with a mean age of 63 years and eight out of nine had adenocarcinoma with Barrett's esophagus; (2) All patients required endoscopic dilation after PDT; (3) At a mean follow up of 4 months, two T2N0 patients had no demonstrable tumor and all three T3N0 patients had greater than 50% tumor reduction (the partially responsive T3N0 patients will be offered repeat PDT); (4) Patients with metastatic disease (T3N1 or M1) had effective dysphagia palliation. Thus, PDT is safe and effective in ablating all or most tumor in patients with persistent esophageal cancer after chemotherapy and radiation therapy.

  17. Non-toxic approach for treatment of breast cancer and its cutaneous metastasis: Capecitabine (Xeloda) enhanced photodynamic therapy in a murine tumor model

    Science.gov (United States)

    Anand, Sanjay; Denisyuk, Anton; Bullock, Taylor; Govande, Mukul; Maytin, Edward V.

    2018-02-01

    Breast cancer (BCA) is the most frequently diagnosed cancer in women, with distant metastases to lung, liver, bone and skin occurring in approximately 40% of cases. Radiation therapy (RT) has been successfully employed for the treatment of BCA; however, multiple rounds of RT are associated with undesirable cutaneous side effects. This study explores PDT as a therapeutic alternative, to be given alone or in combination with RT and chemotherapy. Earlier, we had developed differentiation-enhanced combination photodynamic therapy (cPDT) using a neoadjuvant (5-fluorouracil; 5FU) prior to PDT. The neoadjuvant increases the levels of PpIX, leading to better efficacy following aminolevulinate (ALA)- based PDT. Here, to avoid the toxicity of systemic 5FU, we used a nontoxic 5FU precursor (Capecitabine; CPBN) in a new cPDT regimen. CBPN, a standard chemotherapeutic for BCA, is metabolized to 5FU specifically within tumor tissue. Murine (4T1) BCA cells were injected into breast fat pads of nude mice. CPBN was administered by oral gavage followed by intraperitoneal ALA and red light for PDT. CPBN pretreatment of 4T1 tumors led to increased tumor cell differentiation (3.5 fold), homogenous elevation of intratumoral PpIX levels (4.5 fold), and enhanced tumor cell death post-PDT (5 fold), relative to vehicle control. Using an in vivo imaging system (IVIS), a decline in tumor growth following CPBN-PDT was observed. Results showing the effect of CPBN-PDT on distant metastases of BCA to lung, lymph nodes and skin will be presented. In summary, CPBN-PDT, a novel combination approach, has a significant potential for translation into the clinic.

  18. PDT (Product Data Technology), Production and Society

    DEFF Research Database (Denmark)

    Vesterager, Johan

    1997-01-01

    Information and communication technology (ICT) constitute a genuine technical revolution by enabling a dynamic and flexible support or automation of knowledge and information work. Bearing in mind that products are frozen knowledge, ICT as known will change the way we produce products dramatically....... The use of ICT in engineering of products constitutes product data technology (PDT).This paper presents a a basic platform for an understanding the ongoing revolution with focus on the PDT-area taking outset in the fundamental elements of knowledge and information work: creation, transformation...

  19. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications

    Directory of Open Access Journals (Sweden)

    Miri Kim

    2015-09-01

    Full Text Available Photodynamic therapy (PDT uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects.

  20. In a recent article, photodynamic therapy (PDT) has been suggested ...

    African Journals Online (AJOL)

    songca.acd

    2013-04-30

    Apr 30, 2013 ... compounds, and light absorption in the red or far red part of the visible spectrum. .... room, students learn the principles of PDT, the drugs used, their mode of ... power of video-based demonstrations of PDT derives from the ...

  1. Enhancing Teacher Efficacy in Special Education.

    Science.gov (United States)

    McDaniel, Elizabeth A.; McCarthy, Holly DiBella

    1989-01-01

    A special education teacher's sense of teaching efficacy and personal teaching efficacy influences teacher motivation and effort, teacher-student interactions, and student achievement. Methods for enhancing teachers' sense of efficacy are suggested. (JDD)

  2. Photodynamic Therapy (PDT) - Basic Principles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Photodynamic Therapy (PDT) - Basic Principles. Bhaskar G Maiya. Series Article Volume 5 Issue 4 April 2000 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/04/0006-0018 ...

  3. In-vivo singlet oxygen threshold doses for PDT.

    Science.gov (United States)

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  4. Relevance of PDT-induced inflammatory response for the outcome of photodynamic therapy

    Science.gov (United States)

    Korbelik, Mladen; Cecic, Ivana; Sun, Jinghai

    2001-07-01

    The treatment of solid cancerous lesions by photodynamic therapy (PDT) elicits an acute host reaction primarily manifested as a strong, rapidly developing inflammatory response. It is becoming increasingly clear that the destructive impact of the inflammatory process is directly responsible for the so-called indirect damage in PDT-treated tumors. The loss of vascular homeostasis followed by massive damage to vascular and perivascular regions in PDT- treated tumors and the ensuing tumor antigen-specific immunity, are direct consequences of critical initiating events including the action of complement, activation of poly(ADP-ribose)polymerase (PARP) and ischemia/reperfusion insult, and the associated cascades of tissue-destructive responses. Hence, the effectiveness of PDT as an anti- cancer modality is largely owed to the fact that it instigates a comprehensive engagement of powerful innate host defense mechanisms.

  5. Chorioretinal anastomosis after photodynamic therapy for polypoidal choroidal vasculopathy: CRA after PDT for PCV.

    Science.gov (United States)

    Yodoi, Yuko; Tsujikawa, Akitaka; Otani, Atsushi; Aikawa, Hiroko; Yoshimura, Nagahisa

    2008-08-01

    An 80-year-old woman was treated with photodynamic therapy (PDT) to the left eye for polypoidal choroidal vasculopathy (PCV). About 3 months after PDT, her left eye developed a chorioretinal anastomosis with severe atrophy of the retinal pigment epithelium in the macula; visual acuity in this eye was 20/1000. She received a second session of PDT, plus an intravitreal injection of triamcinolone acetonide. About 3 months after the second treatment, the chorioretinal anastomosis was enlarged and the retinal vessels involved in the anastomosis were more dilated. About 1 year after the first PDT, visual acuity in the left eye had stabilized at 20/400. Development of a chorioretinal anastomosis is a distinct possibility following PDT in eyes with PCV, and can lead to poor visual recovery.

  6. Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy.

    Science.gov (United States)

    Zhao, Yang; Zhang, Chenran; Gao, Liquan; Yu, Xinhe; Lai, Jianhao; Lu, Dehua; Bao, Rui; Wang, Yanpu; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2017-11-01

    Increased recruitment of tumor-associated macrophages (TAM) to tumors following chemotherapy promotes tumor resistance and recurrence and correlates with poor prognosis. TAM depletion suppresses tumor growth, but is not highly effective due to the effects of tumorigenic mediators from other stromal sources. Here, we report that adoptive macrophage transfer led to a dramatically enhanced photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG] by increasing its tumor accumulation. Moreover, tumor treatment with commonly used chemotherapeutic drugs induced an increase in macrophage infiltration into tumors, which also enhanced tumor uptake and the PDT effects of GO(HPPH)-PEG, resulting in tumor eradication. Macrophage recruitment to tumors after chemotherapy was visualized noninvasively by near-infrared fluorescence and single-photon emission CT imaging using F4/80-specific imaging probes. Our results demonstrate that chemotherapy combined with GO(HPPH)-PEG PDT is a promising strategy for the treatment of tumors, especially those resistant to chemotherapy. Furthermore, TAM-targeted molecular imaging could potentially be used to predict the efficacy of combination therapy and select patients who would most benefit from this treatment approach. Cancer Res; 77(21); 6021-32. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Systematic immunosuppression induced by photodynamic therapy (PDT) is adoptively transferred by macrophages

    International Nuclear Information System (INIS)

    Lynch, D.H.; Haddad, S; King, V.J.; Ott, M.J.; Jolles, C.J.; Straight, R. C.

    1989-01-01

    The purpose of this study was to determine whether photodynamic therapy induced suppression of contact hypersensitivity (CHS) responses was an active phenomenon that could be adoptively transferred by viable splenocytes from PDT-treated mice. Although induction of adoptively transferable suppressor cells in PDT-treated mice required exposure to antigen, the suppressor cells were found to be antigen nonspecific in their function. Furthermore, splenocytes from PDT-treated mice were capable of generating levels of allospecific cytotoxic T lymphocyte (CTL) activity which were comparable to those generated by normal control mice, but the ability of irradiated spleen cells from PDT-treated mice to stimulate a mixed lymphocyte response (MLR) was dramatically impaired. Finally, chromatographic separation of T cells, B cells and macrophages showed that the cell type which mediates adoptively transferable suppression of CHS responsiveness is in the macrophage lineage. (author)

  8. Studies of a novel photosensitizer Pd-bacteriopheophorbide (Tookad) for the prostate cancer PDT in canine model

    Science.gov (United States)

    Huang, Zheng; Chen, Qun; Brun, Pierre-Herve; Wilson, Brian C.; Scherz, Avigdor; Salomon, Yoram; Luck, David L.; Beckers, Jill; Hetzel, Fred W.

    2003-12-01

    Photodynamic therapy (PDT) mediated with vascular acting photosensitizer pd-bacteriopheophorbide (Tookad), is investigated as an alternative modality for the total ablation of prostate cancer. In vivo normal canine prostate is used as the animal model. Interstitial PDT was performed by irradiating the surgically exposed prostates with a diode laser (763 nm, 150 mW/cm) to activate the i.v. infused photosensitizer drug. The effects of two-session PDT were evaluated. The prostate and its adjacent tissues were harvested and subjected to histopathological examination. At one-week, post second-session PDT, the animals recovered well with little or no urethral complications. Prostatic urethra and prostate adjacent tissues (bladder and underlying colon) were well preserved. Two-session PDT or one single session PDT induced a similar extent of damage. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis. Maximum lesion size of over 3 cm in dimension could be achieved with a single 1-cm interstitial treatment, suggesting the therapy is very effective in ablating prostatic tissue. Pharmacokinetic studies show that the photosensitizer is cleared rapidly from the circulation. In conclusion, the novel photosensitizer Tookad mediated PDT may provide an effective alternative to treat prostate cancer.

  9. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation

    Science.gov (United States)

    SEPAROVIC, DUSKA; BREEN, PAUL; BOPPANA, NITHIN B.; VAN BUREN, ERIC; JOSEPH, NICHOLAS; KRAVEKA, JACQUELINE M.; RAHMANIYAN, MEHRDAD; LI, LI; GUDZ, TATYANA I.; BIELAWSKA, ALICJA; BAI, AIPING; BIELAWSKI, JACEK; PIERCE, JASON S.; KORBELIK, MLADEN

    2013-01-01

    Photodynamic therapy (PDT) is not always effective as an anticancer treatment, therefore, PDT is combined with other anticancer agents for improved efficacy. The combination of dasatinib and PDT with the silicone phthalocyanine photosensitizer Pc 4 was assessed for increased killing of SCCVII mouse squamous cell carcinoma cells, a preclinical model of head and neck squamous cell carcinoma, using apoptotic markers and colony formation as experimental end-points. Because each of these treatments regulates the metabolism of the sphingolipid ceramide, their effects on mRNA levels of ceramide synthase, a ceramide-producing enzyme, and the sphingolipid profile were determined. PDT + dasatinib induced an additive loss of clonogenicity. Unlike PDT alone or PDT + dasatinib, dasatinib induced zVAD-fmk-dependent cell killing. PDT or dasatinib-induced caspase-3 activation was potentiated after the combination. PDT alone induced mitochondrial depolarization, and the effect was inhibited after the combination. Annexin V+ and propidium iodide+ cells remained at control levels after treatments. In contrast to PDT alone, dasatinib induced upregulation of ceramide synthase 1 mRNA, and the effect was enhanced after the combination. Dasatinib induced a modest increase in C20:1-and C22-ceramide but had no effect on total ceramide levels. PDT increased the levels of 12 individual ceramides and total ceramides, and the addition of dasatinib did not affect these increases. PDT alone decreased substantially sphingosine levels and inhibited the activity of acid ceramidase, an enzyme that converts ceramide to sphingosine. The data suggest that PDT-induced increases in ceramide levels do not correlate with ceramide synthase mRNA levels but rather with inhibition of ceramidase. Cell killing was zVAD-fmk-sensitive after dasatinib but not after either PDT or the combination and enhanced cell killing after the combination correlated with potentiated caspase-3 activation and upregulation of

  10. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review

    Science.gov (United States)

    Carrera, E. T.; Dias, H. B.; Corbi, S. C. T.; Marcantonio, R. A. C.; Bernardi, A. C. A.; Bagnato, V. S.; Hamblin, M. R.; Rastelli, A. N. S.

    2016-12-01

    In recent years there have been an increasing number of in vitro and in vivo studies that show positive results regarding antimicrobial photodynamic therapy (aPDT) used in dentistry. These include applications in periodontics, endodontics, and mucosal infections caused by bacteria present as biofilms. Antimicrobial photodynamic therapy is a therapy based on the combination of a non-toxic photosensitizer (PS) and appropriate wavelength visible light, which in the presence of oxygen is activated to produce reactive oxygen species (ROS). ROS induce a series of photochemical and biological events that cause irreversible damage leading to the death of microorganisms. Many light-absorbing dyes have been mentioned as potential PS for aPDT and different wavelengths have been tested. However, there is no consensus on a standard protocol yet. Thus, the goal of this review was to summarize the results of research on aPDT in dentistry using the PubMed database focusing on recent studies of the effectiveness aPDT in decreasing microorganisms and microbial biofilms, and also to describe aPDT effects, mechanisms of action and applications.

  11. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.

  12. Targeted two-photon PDT photo-sensitizers for the treatment of subcutaneous tumors

    Science.gov (United States)

    Spangler, C. W.; Rebane, A.; Starkey, J.; Drobizhev, M.

    2009-06-01

    New porphyrin-based photo-sensitizers have been designed, synthesized and characterized that exhibit greatly enhanced intrinsic two-photon absorption. These new photo-sensitizers have been incorporated into triad formulations that also incorporate Near-infrared (NIR) imaging agents, and small-molecule targeting agents that direct the triads to cancerous tumors' over-expressed receptor sites. PDT can be initiated deep into the tissue transparency window at 780-800 nm utilizing a regeneratively amplified Ti:sapphire laser using 100-150 fs pulses of 600-800 mW. Human tumor xenografts of human breast cancer (MDA-MB-231) and both small SCLC (NCI-H69) and NSCLC (A-459) have been successfully treated using octreotate targeting of over-expressed SST2 receptors. In particular, the lung cancer xenografts can be successfully treated by irradiating from the side of the mouse opposite the implanted tumor, thereby passing through ca. 2 cm of mouse skin, tissue and organs with no discernible damage to healthy tissue while causing regression in the tumors. These results suggest a new PDT paradigm for the noninvasive treatment of subcutaneous tumors, including the possibility that the targeting moiety could be matched to individual patient genetic profiles (patient-specific therapeutics).

  13. Potentiation of the photodynamic action of hypericin.

    Science.gov (United States)

    Saw, Constance Lay Lay; Heng, Paul Wan Sia; Olivo, Malini

    2008-01-01

    Hypericin (HY) is an interesting photosensitizer with dark activity and photodynamic therapy (PDT) effects via p53-independent pathway. In photodynamic diagnosis (PDD) of bladder cancer using HY, very high sensitivity and specificity were reported, in comparison with its counterpart, 5-aminolevulinic acid (5-ALA). HY was tested for the detection of human gastric cancer. It was also studied for treating some cancers and age-related macular degeneration and showed some promising findings. Several strategies to enhance the efficacy of HY-PDD and HY-PDT are reviewed. Using fractionated light dosing, fractionated drug dosing, hyperthermia, adjuvants such as oxygen carrier/antiangiogenesis, chemical modifications, and formulation approaches to enhance the PDT effects of HY are topics of this review. Despite cutting-edge technology approach such as preparing transferring-mediated targeting HY liposomes and nanoparticles of HY, such preparations did not always offer the desired enhanced treatment effects. It turns out that simple solutions of HY, especially those prepared without using plasma protein, were more successful in enhancing the delivery of HY for in vitro and in vivo systems. Thus, the HY-PDT with these formulations performed better. It is anticipated that HY-PDD and HY-PDT can be enhanced and optimized with the right combination of light dosimetry and drug dose in an effective formulation containing a suitable adjuvant. Hyperoxygenation and hyperthermia can also be used to further enhance the efficacy of HY-PDT.

  14. Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections.

    Science.gov (United States)

    Tennert, Christian; Feldmann, Katharina; Haamann, Edwina; Al-Ahmad, Ali; Follo, Marie; Wrbas, Karl-Thomas; Hellwig, Elmar; Altenburger, Markus J

    2014-11-04

    To determine the antibacterial effect of photodynamic Therapy on Enterococcus faecalis (E. faecalis) biofilms in experimentally infected human root canals in primary infections and endodontic retreatments. One hundred and sixty single-rooted extracted teeth with one root canal were prepared using ProTaper instruments. Seventy specimens were left without root canal filling and autoclaved. The root canals of another 70 specimens were filled with Thermafil and AH Plus and the root canal fillings were removed after 24 hours using ProTaper D files and plasma sterilized. The specimens were infected with a clinical isolate of E. faecalis for 72 hours. Samples were taken using sterile paper points to determine the presence of E. faecalis in the root canals. The specimens were randomly divided into groups according to their treatment with 20 teeth each and a control. In the PDT group the teeth were treated using PDT, consisting of the photosensitizer toluidine blue and the PDT light source at 635 nm. In the NaOCl (sodium hypochlorite) group the root canals were rinsed with 10 mL of 3% NaOCl. In the NaOCl-PDT group the root canals were rinsed with 10 mL of 3% of sodium hypochlorite and then treated with PDT. Samples were taken after treatments using sterile paper points. Additionally, remaining root canal filling material was recovered from the root canal walls. Survival fractions of the samples were calculated by counting colony-forming units. A one-way analysis of variance (ANOVA) was applied to the data to assess the effect of different treatment techniques. Antimicrobial treatment of root canals caused a significant reduction of bacterial load in all groups. NaOCl irrigation eliminated E. faecalis most effectively. PDT alone was less effective compared to NaOCl irrigation and the combination of NaOCl irrigation and PDT. CFU levels recovered from the filling material after NaOCl irrigation of the root canals were 10fold higher compared to PDT and the combination of Na

  15. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    Science.gov (United States)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  16. Photodynamic Therapy Combined with Terbinafine Against Chromoblastomycosis and the Effect of PDT on Fonsecaea monophora In Vitro

    Science.gov (United States)

    Hu, Yongxuan; Huang, Xiaowen; Lu, Sha; Hamblin, Michael R.; Mylonakis, Eleftherios; Zhang, Junmin

    2014-01-01

    Chromoblastomycosis, a chronic fungal infection of skin and subcutaneous tissue caused by dematiaceous fungi, is associated with low cure and high relapse rates. Among all factors affecting clinical outcome, etiological agents have an important position. In southern China, Fonsecaea pedrosoi and Fonsecaea monophora are main causative agents causing Chromoblastomycosis. We treated one case of chromoblastomycosis by photodynamic therapy (PDT) of 5-aminolevulinic acid (ALA) irradiation combined with terbinafine 250 mg a day. The lesions were improved after two sessions of ALA-PDT treatment, each including nine times, at an interval of 1 week, combined with terbinafine 250 mg/day oral, and clinical improvement could be observed. In the following study, based on the clinical treatment, the effect of PDT and antifungal drugs on this isolate was detected in vitro. It showed sensitivity to terbinafine, itraconazole or voriconazole, and PDT inhibited the growth. Both the clinic and experiments in vitro confirm the good outcome of ALA-PDT applied in the inhibition of F. monophora. It demonstrated that combination of antifungal drugs with ALA-PDT arises as a promising alternative method for the treatment of these refractory cases of chromoblastomycosis. PMID:25366276

  17. Biochemical changes in cutaneous squamous cell carcinoma submitted to PDT using ATR-FTIR spectroscopy

    Science.gov (United States)

    Lima, Cassio A.; Goulart, Viviane P.; de Castro, Pedro A. A.; Correa, Luciana; Benetti, Carolina; Zezell, Denise M.

    2015-06-01

    Nonmelanoma skin cancers are the most common form of malignancy in humans. Between the traditional treatment ways, the photodynamic therapy (PDT) is a promising alternative which is minimally invasive and do not requires surgical intervention or exposure to ionizing radiation. The understanding of the cascade of effects playing role in PDT is not fully understood, so that define and understand the biochemical events caused by photodynamic effect will hopefully result in designing better PDT protocols. In this study we investigated the potential of the FTIR spectroscopy to assess the biochemical changes caused by photodynamic therapy after 10 and 20 days of treatment using 5-aminolevulinic acid (ALA) as precursor of the photosensitizer photoporphyrin IX (PpIX). The amplitude values of second derivative from vibrational modes obtained with FTIR spectroscopy showed similar behavior with the morphological features observed in histopathological analysis, which showed active lesions even 20 days after PDT. Thus, the technique has the potential to be used to complement the investigation of the main biochemical changes that photodynamic therapy promotes in tissue.

  18. Photodynamic therapy (PDT) to treat a chronic skin wound in a dog

    Science.gov (United States)

    Hage, Raduan; Plapler, Hélio; Bitar, Renata A.

    2008-02-01

    Photodynamic Therapy (PDT) is an emerging and promising therapeutic modality for treatment of a wide variety of malignant and nononcologic tumors, as well as in the treatment of infected skin ulcers. This study evaluated the effectiveness of the PDT to treat a chronic skin wound that had been already subjected to several clinical and surgical type treatments in a dog. The animal with an infected chronic skin wound with 8 cm diameter in the left leg received an injection of an aqueous solution of 1% methylene blue (MB) with 2% lidocaine into the lesion. After MB injection the wound was irradiated using a LED (LED-VET MMOptics(r)) with a wavelength between 600 and 700 nm, 2 cm diameter circular light beam, of 150 mW of power, light dose of 50 J/cm2. After 3 and 6 weeks PDT was repeated and the wound was re-evaluated. Complete healing was achieved 10 weeks after the first procedure.

  19. Adapting biomodulatory strategies for treatment in new contexts: pancreatic and oral cancers (Conference Presentation)

    Science.gov (United States)

    Anbil, Sriram R.; Rizvi, Imran; Khan, Amjad P.; Celli, Jonathan P.; Maytin, Edward V.; Hasan, Tayyaba

    2016-03-01

    Biomodulation of cancer cell metabolism represents a promising approach to overcome tumor heterogeneity and poor selectivity, which contribute significantly to treatment resistance. To date, several studies have demonstrated that modulation of cell metabolism including the heme synthesis pathway serves as an elegant approach to improve the efficacy of aminolevulinic acid (ALA) based photodynamic therapy (PDT). However, the ability of biomodulation-enhanced PDT to improve outcomes in low resource settings and to address challenges in treating lethal tumors with exogenous photosensitizers remains underexplored. The ability of vitamin D or methotrexate to enhance PDT efficacy in a carcinogen-induced hamster cheek pouch model of oral squamous cell carcinoma and in 3D cell-based models for pancreatic ductal adenocarcinoma is evaluated. Challenges associated with adapting PDT regimens to low resource settings, understanding the effects of biomodulatory agents on the metabolism of cancer cells, and the differential effects of biomodulatory agents on tumor and stromal cells will be discussed.

  20. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    April M Sapp

    Full Text Available Nitric oxide (NO is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and

  1. Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy

    Science.gov (United States)

    Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2011-02-01

    Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated

  2. Comparison of photocytotoxicyty of PDT with hypericin by model of healthy versus malignant colon epithelium cells

    International Nuclear Information System (INIS)

    Mikes, J.; Kleban, J.; Jendzelovsky, R.; Solar, P.; Fedorocko, P.; Hyzdalova, M.

    2006-01-01

    Photodynamic therapy (PDT) is becoming a rapidly developing method in cancer therapy, recently. PDT is based on administration of nontoxic/weakly toxic photosensitive compound and its activation with light. The phototoxicity of PDT depends on generation of superoxide radicals (Type-I reaction), which in turn might form peroxide and hydroxyl radicals, and production of singlet oxygen ( 1 O 2 ) (Type-II reaction) after irradiation with light of appropriate wavelength which properly overlaps the photosensitizer's absorbing spectra. Oxidative damage in the cell induced by reactive oxygen species depends on the intracellular localisation and affects different cell organelles. Although PDT is of use in clinical practise, new promising photosensitive compounds with advantageous attributes are discovered continuously. Hypericin, one of these compounds, is known to affect cell cycle and proliferation, to alter gene expression and to induce cell death. Due to its spectral characteristics, hypericin is applicable for treatment of superficial malignancies and therefore also for treatment of colon adenocarcinomas. We compared two cell lines of identical histological origin, one as a model of colon adenocarcinoma (HT29) and second as a model of healthy colon epithelium, to evaluate photo-cytotoxicity of PDT with hypericin to healthy tissue and determine applicability of this therapy in treatment of colon malignancies. (authors)

  3. Enhancement techniques for improving 5-aminolevulinic acid delivery through the skin

    Directory of Open Access Journals (Sweden)

    Li-Wen Zhang

    2011-03-01

    Full Text Available Photodynamic therapy (PDT is a popular technique for skin cancer treatment. Protoporphyrin IX, which is a photosensitizing agent, converted enzymatically from the prodrug 5-aminolevulinic acid (ALA, is used as a photosensitizer in PDT for cancer. However, ALA penetrates with difficulty through intact skin; therefore, improving delivery systems for ALA in the skin will play an important role in ALA-PDT. Enhancement of ALA skin penetration can be achieved by physical methods, such as iontophoresis, laser, microneedles, ultrasound, and by adding chemical penetration enhancers, such as, dimethyl sulfoxide, oleic acid, and others, whereas some researches used lipophilic ALA derivatives and different vehicles to improve the transdermal delivery of ALA. This review introduces several enhancement techniques for increasing ALA permeation through the skin.

  4. Topical application of ALA PDT for the treatment of moderate to severe acne vulgaris

    Science.gov (United States)

    Wang, Xiu-Li; Wang, Hong-Wei; Zhang, Ling-Lin; Su, Lina; Guo, Ming-Xia; Huang, Zheng

    2009-06-01

    Objectives: To evaluate the effectiveness of topical 5-aminolevulinic acid (ALA)- medicated photodynamic therapy (ALA PDT) for the treatment of moderate to severe acne vulgaris. Methods: Sixteen Chinese patients with moderate to severe facial acne were treated with 1-3 courses of ALA PDT. ALA cream (3%) was freshly prepared and applied to acne lesions for 3-4 h. The lesions were irradiated by a 635 nm diode laser at dose levels of 60 - 80 J/cm2 at 100 mW/cm2. Clinical assessments were conducted before and after treatment up to 3 months. Results: All patents showed response to ALA PDT. Complete clearance was seen in 10 patients (62.5%) and partial clearance in 6 patients (37.5%). One case showed recurrence after complete clearance at 2 months and another two showed recurrence after complete clearance at 3 months. However, the number of new lesions were significantly reduced. Adverse effects were minimal. Conclusions: The results of this preliminary clinical study is encouraging. ALA PDT is a simple, safe and useful therapeutic option for the treatment of moderate to severe acne. Further studies to evaluate the treatment with a larger number of patients and for a longer period of follow-up are needed.

  5. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    Science.gov (United States)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  6. The importance of protoporphyrin IX efflux for ALA-PDT dosimetry

    International Nuclear Information System (INIS)

    Milanetto, M C; Imasato, H; Perussi, J R

    2009-01-01

    One of the major advances in PDT is the use of 5-aminolevulinic acid (ALA) to induce the production of an endogenous photosensitizer inside the cells using intracellular enzymatic pathways. ALA is the first intermediate in heme biosynthesis and a precursor of the protoporphyrin IX (PpIX). When activated by light, this efficient photosensitizer accumulated in the target cells can produce cytotoxicity. The aim of this study was to find the best conditions for cell killing using ALA to temporarily increase the concentration of PpIX in two cell lines. It was shown that a considerable efflux of synthesized PpIX occurs. Since this efflux is time-dependent, it is essential to know the optimum time for irradiation after ALA administration. So, the efflux of PpIX from the cells is an important parameter to be considered for ALA-PDT dosimetry

  7. PDT for malignant tumors: a clinical analysis of 152 cases

    Science.gov (United States)

    Zhuang, Shi-Zhang; Wang, Yun-Zhen; Li, Xin; Zhang, Changjun; Wang, Jian-Zhao; Zhang, Da-Ren

    1993-03-01

    Hematoporphyrin derivative (HPD) laser photodynamic therapy (PDT) was applied for the patients of 152 cases of malignant tumors, including tumors of the lip, tongue, esophagus, urinary bladder, skin, larynx, vagina, etc. Since early 1981 good results have been obtained.

  8. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers.

    Science.gov (United States)

    Xin, Jing; Wang, Sijia; Wang, Bing; Wang, Jiazhuang; Wang, Jing; Zhang, Luwei; Xin, Bo; Shen, Lijian; Zhang, Zhenxi; Yao, Cuiping

    2018-01-01

    As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS 4 ) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS 4 /PDT effect, the AlPcS 4 delivery sys tems with different drug carriers were synthesized and investigated. Gold nanorods, cationic liposomes, and Pluronic ® F127 nanomicellars were used to formulate the AlPcS 4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS 4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca 2+ ] i ) concentration were further measured to evaluate the mechanism of cell death. The series of synthesized AlPcS 4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS 4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS 4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS 4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS 4 delivery efficiency and ability to block serum albumin. In addition, AlPcS 4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127-AlPcS 4 is used for prolonged gastric cancer therapy. The described AlPcS 4 drug delivery systems provide promising agents for gastric cancer therapy.

  9. PDT in non-surgical treatment of periodontitis in kidney transplanted patients: a split-mouth, randomized clinical trial

    Science.gov (United States)

    Marinho, Kelly C. T.; Giovani, Elcio M.

    2016-03-01

    This study was to evaluate clinical and microbiological effectiveness of photodynamic therapy (PDT) in the treatment of periodontal disease in kidney-transplanted patients. Eight kidney transplanted patients treated at Paulista University were arranged in two groups: SRP performed scaling and root planning by ultrasound; SRP+PDT- in the same patient, which was held to PDT in the opposite quadrant, with 0.01% methylene blue and red laser gallium aluminum arsenide, wavelength 660 nm, power 100 mW. There was reduction in probing pocket depth after 45 days and 3 months regardless the group examined; plaque and bleeding index showed improvement over time, regardless the technique used, and bleeding index in the SRP+PDT group was lower when compared with the baseline the other times. There was no difference in the frequency of pathogens. Photodynamic therapy may be an option for treatment of periodontal disease in renal-transplanted patients and its effectiveness is similar to conventional therapy.

  10. Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation.

    Science.gov (United States)

    Zhang, Ning; Zhao, Fenfang; Zou, Qianli; Li, Yongxin; Ma, Guanghui; Yan, Xuehai

    2016-11-01

    Tumor-responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein-based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross-linking and surface polyethylene glycol coupling, can be used as versatile tumor-responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6-encapsulated nanospheres (Ce6-Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6-Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6-Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6-Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6-Ns and the biocompatibility of Ce6-Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Intracellular re-localisation by photochemical internalisation enhances the cytotoxic effect of gelonin--quantitative studies in normal rat liver.

    Science.gov (United States)

    Woodhams, Josephine; Lou, Pei-Jen; Selbo, Pål K; Mosse, Alexander; Oukrif, Dahmane; MacRobert, Alexander; Novelli, Marco; Peng, Qian; Berg, Kristian; Bown, Stephen G

    2010-03-19

    Photochemical internalisation (PCI) is a delivery technology that employs a sub-lethal form of photodynamic therapy (PDT) in which a photosensitiser is activated by light to break down intracellular membranes and release macromolecules into the cytosol where they can be biologically active. Although PCI does enhance the PDT killing of transplanted tumours in mice after local injection of the cytotoxic agent, gelonin, the redistribution of gelonin from intracellular organelles into the cytosol has only previously been demonstrated in vitro. This study is designed to understand the factors controlling the efficacy of PCI in vivo and to document the mechanism of action. Using the photosensitiser AlS(2)Pc in studies on normal rat liver, we have demonstrated in vivo that gelonin is initially taken up into lysosomes, but can be released into the cytosol using PCI. Furthermore, PCI enhances the PDT effect after systemic administration of gelonin (volume of necrosis increased x2.5 when gelonin is given one hour before light), with the remarkably low dose of 5 microg/kg (10,000 times lower than the LD50); in the absence of light, there is no effect with 500 microg/kg. These results suggest that PCI may have a useful role to play in the site specific activation of cytotoxic agents like gelonin, given at a dose level that has no effect in the absence of light. (c) 2009 Elsevier B.V. All rights reserved.

  12. Multi-course PDT of malignant tumors: the influence on primary tumor, metastatic spreading and homeostasis of cancer patients

    Science.gov (United States)

    Sokolov, Victor V.; Chissov, Valery I.; Yakubovskaya, Raisa I.; Filonenko, E. V.; Sukhin, Garry M.; Nemtsova, E. R.; Belous, T. A.; Zharkova, Natalia N.

    1996-12-01

    The first clinical trials of photodynamic therapy (PDT) of cancer with two photosensitizers, PHOTOHEME and PHOTOSENS, were started in P.A. Hertzen Research Oncological Institute (Moscow, Russia) in 1992 and 1994. Up to now, 208 patients with primary, recurrent and metastatic malignant tumors (469) of skin (34 patients/185 tumors), breast cancer (24/101), head and neck (30/31), trachea and bronchus (31/42), esophagus (35/35), stomach (31/32), rectum (4/4), vagina and uterine cervix (7/8) and bladder (12/31) have been treated by PDT. One-hundred-thirty patients were injected with PHOTOHEME, 64 patients were injected with PHOTOSENS, 14 patients were injected with PHOTOHEME and PHOTOSENS. Totally, 302 courses of treatment were performed: 155 patients had one course and 53 patients were subjected to two to nine PDT sources with intervals from 1 to 18 months. A therapeutic effect of a one-course and multi- course PDT of malignant tumors (respiratory, digestive and urogenital systems) was evaluated clinically, histologically, roentgenologically, sonographically and endoscopically. The biochemical, hematological and immunological investigations were performed for all the patients in dynamics. Results of our study showed that a multi-course PDT method seems to be perspective in treatment of malignant tumors of basic localizations.

  13. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-11-01

    Full Text Available Abstract Background Photodynamic therapy (PDT is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR, on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors.

  14. Efficacy of photodynamic therapy combined with minocycline for treatment of moderate to severe facial acne vulgaris and influence on quality of life.

    Science.gov (United States)

    Xu, Xinghua; Zheng, Yi; Zhao, Zigang; Zhang, Xin; Liu, Pengxiang; Li, Chengxin

    2017-12-01

    Acne vulgaris is a prevalent skin disorder impairing both physical and psychosocial health. This study was designed to investigate the effectiveness of photodynamic therapy (PDT) combined with minocycline in moderate to severe facial acne and influence on quality of life (QOL). Ninety-five patients with moderate to severe facial acne (Investigator Global Assessment [IGA] score 3-4) were randomly treated with PDT and minocycline (n = 48) or minocycline alone (n = 47). All patients took minocycline hydrochloride 100 mg/d for 4 weeks, whereas patients in the minocycline plus PDT group also received 4 times PDT treatment 1 week apart. IGA score, lesion counts, Dermatology Life Quality Index (DLQI), and safety evaluation were performed before treatment and at 2, 4, 6, and 8 weeks after enrolment. There were no statistically significant differences in characteristics between 2 treatment groups at baseline. Minocycline plus PDT treatment led to a greater mean percentage reduction from baseline in lesion counts versus minocycline alone at 8 weeks for both inflammatory (-74.4% vs -53.3%; P minocycline plus PDT achieved IGA score minocycline plus PDT got significant lower DLQI at 8 weeks (4.4 vs 6.3; P minocycline alone, the combination of PDT with minocycline significantly improved clinical efficacy and QOL in moderate to severe facial acne patients. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  15. Correction of fluorescence for depth-specific optical and vascular properties using reflectance and differential path-length spectroscopy during PDT

    Science.gov (United States)

    van Zaane, F.; Middelburg, T. A.; de Bruijn, H. S.; van der Ploeg-van den Heuvel, A.; de Haas, E. R. M.; Sterenborg, H. J. C. M.; Neumann, H. A. M.; Robinson, D. J.

    2009-06-01

    Introduction: The rate of PpIX fluorescence photobleaching is routinely used as a dose metric for ALA-PDT. Diffuse reflection spectroscopy is often used to account for variations in tissue optical properties at the photosensitizer excitation and emission bands. It can be used to quantify changes in vascular parameters, such as blood volume fraction and saturation, and can aid understanding of tissue response to PDT. The volume and(/or) depth over which these signals are acquired are critical. The aim of this study is to use quantitative reflectance spectroscopy (DPS) to correct fluorescence for changes in tissue optical properties and monitor PDT. Materials & Methods: ALA was topically applied to hairless mice skin and the incubated spot was treated with PDT according to fractionated illumination schemes. DPS measurements of vascular parameters and optical properties were performed directly before and after illumination. Both the differential signal, delivery-and-collection-fiber signal and the collection fiber signal, which all probe different measurement volumes, are analyzed. Results & Conclusions: Analysis of DPS measurements shows that at the depth where most fluorescence originates, there is almost no blood present. During PDT vascular parameters at this depth stay constant. In more oxygenated layers of the tissue, the optical properties do change during PDT, suggesting that only a small part of PpIX fluorescence originates from the interesting depths where vascular response occurs. Correcting fluorescence emission spectra for optical changes at specific depths and not for the total of changes in a larger volume, as is usually done now, can improve PpIX photobleaching based treatment monitoring.

  16. Topical methotrexate pretreatment enhances the therapeutic effect of topical 5-aminolevulinic acid-mediated photodynamic therapy on hamster buccal pouch precancers

    OpenAIRE

    Deng-Fu Yang; Jeng-Woei Lee; Hsin-Ming Chen; Yih-Chih Hsu

    2014-01-01

    Topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is effective for treatment of human oral precancerous lesions. This animal study aimed to assess whether topical methotrexate (MTX) pretreatment could enhance the therapeutic effect of topical ALA-PDT on hamster buccal pouch precancerous lesions. Methods: Twenty hamster buccal pouch precancerous lesions were treated with either topical ALA-PDT with topical MTX pretreatment (topical MTX-ALA-PDT group, n = 10) or topical A...

  17. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    Directory of Open Access Journals (Sweden)

    Li D

    2015-04-01

    Full Text Available Donghong Li,1 Lei Li,2 Pengxi Li,1 Yi Li,3 Xiangyun Chen1 1State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, 2The First Department of Research Institute of Surgery, 3Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Photodynamic therapy (PDT is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I, reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP and glucose-regulated protein (GRP78, in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which

  18. The Comparative PDT Experiment of the Inactivation of HL60 on Modified TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaiqi Lu

    2015-01-01

    Full Text Available Four samples of modified titanium dioxide (TiO2, Fe/TiO2 (2 wt%, Fe/TiO2 (5 wt%, and 5-ALA/TiO2, were experimented in photodynamic therapy (PDT on leukemia cells HL60, performing promising photocatalytic inactivation effect. Fe/TiO2 and 5-ALA/TiO2 were synthesized in methods of precipitation and ultrasonic methods, respectively. X-ray diffraction spectra and UV-Vis spectra were studied for the samples’ crystalline phase and redshift of absorption peak. Further, FTIR spectra and Raman spectra were obtained to examine the combination of 5-aminolevulinic (5-ALA and TiO2 nanoparticles. The toxicity of these four kinds of nanoparticles was studied through darkroom experiments. And based on the concentration which caused the same toxic effect (90% on HL60, PDT experiments of TiO2, Fe/TiO2 (2%, Fe/TiO2 (5%, and ALA/TiO2 were done, resulting in the fact that the photokilling efficiency was 69.7%, 71.6%, 72%, and 80.6%, respectively. Scanning electron microscope (SEM images of the samples were also taken to study the morphology of HL60 cells before and after PDT, resulting in the fact the activation of the modified TiO2 from PDT was the main cause of cell apoptosis.

  19. Quantitative optical diagnostics in pathology recognition and monitoring of tissue reaction to PDT

    Science.gov (United States)

    Kirillin, Mikhail; Shakhova, Maria; Meller, Alina; Sapunov, Dmitry; Agrba, Pavel; Khilov, Alexander; Pasukhin, Mikhail; Kondratieva, Olga; Chikalova, Ksenia; Motovilova, Tatiana; Sergeeva, Ekaterina; Turchin, Ilya; Shakhova, Natalia

    2017-07-01

    Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod

  20. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  1. Multiorganelle Localization of Metallated Phthalocyanine Photosensitizer in Colorectal Cancer Cells (DLD-1 and CaCo-2 Enhances Efficacy of Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Palesa Rose Sekhejane

    2014-01-01

    Full Text Available Colorectal cancer is the third most commonly diagnosed cancer. Amongst treatments that have been explored, photodynamic therapy (PDT is a treatment that is of interest as it poses ideal advantages such as affinity for cancer cells. This study aimed to determine the correlation between the localization site of a sulfonated zinc phthalocyanine (ZnPcSmix photosensitizer (PS and its associated cell death pathway in vitro in colorectal cancer cell lines (DLD-1 and CaCo-2. Visible morphological changes were observed in PDT treated cells after 24 h. Reactive oxygen species (ROS were detected and visualized 1 h after PDT. ZnPcSmix was predominantly localized in lysosomes and partially in the mitochondria. FITC Annexin V staining showed a significant decrease in the percentage of viable DLD-1 and CaCo-2 cells 24 h after PDT, with an increase in apoptotic cell population. Moreover, there was a significant increase in both cathepsin D and cytochrome C at 1 and 24 h. In conclusion, ZnPcSmix showed the ability of inducing apoptotic cell death features in PDT treated cells.

  2. Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin

    Science.gov (United States)

    Dietze, A; Peng, Q; Selbo, P K; Kaalhus, O; Müller, C; Bown, S; Berg, K

    2005-01-01

    Photochemical internalisation (PCI) is a technique for releasing biologically active macromolecules from endocytic vesicles by light activation of a photosensitiser localised in the same vesicles of targeted cells. This study investigated the PCI of the toxin gelonin as a way of enhancing the effect of photodynamic therapy (PDT) on a human malignant fibrous histiocytoma transplanted into nude mice using the photosensitiser disulphonated aluminium phthalocyanine (AlPcS2a). Pharmacokinetic studies after intraperitoneal administration showed that the serum level of AlPcS2a fitted a biexponential model (half-lives of 1.8 and 26.7 h). The tumour concentration was roughly constant up to 48 h, although fluorescence microscopy showed that the drug location was initially mainly vascular, but became intracellular by 48 h. To compare PDT with PCI, 48 h after intraperitoneal injection of 10 mg kg−1 AlPcS2a, and 6 h after direct intratumour injection of 50 μg gelonin (PCI) or a similar volume of phosphate-buffered saline (PDT controls), tumour-bearing animals were exposed to red light (150 J cm−2). Complete response was observed for more than 100 days in 50% of the PCI tumours but only 10% of the PDT tumours (P<0.01). In tumours examined histologically 4 days after light delivery, the depth of necrosis was 3–4 mm after PDT, but 7 mm after PCI. The deeper effect after PCI demonstrates that the light fluence needed to kill tumour is less than with PDT. We conclude that PCI with gelonin can markedly enhance the effect of PDT on this type of tumour and may have a role clinically as an adjunct to surgery to control localised disease. PMID:15886704

  3. Temperature increase inside LED-based illuminators for in vitro aPDT photodamage studies

    Science.gov (United States)

    Battisti, A.; Morici, P.; Tortora, G.; Menciassi, A.; Checcucci, G.; Ghetti, F.; Sgarbossa, A.

    2018-06-01

    Antimicrobial PhotoDynamic Therapy (aPDT) is an emerging strategy aimed at the eradication of bacterial infections, with a special focus on antibiotic-resistant bacteria. This method is easy to apply, not expensive and particularly interesting in case of bacteria that spontaneously produce the required photosensitizers. In the framework of a project aimed at the development of an ingestible pill for the application of aPDT to gastric infections by Helicobacter pylori, a LED-based illuminating prototype (LED-BIP) was purposely designed in order to evaluate the photodamage induced by light of different wavelengths on porphyrin-producing bacteria. This short paper reports about temperature tests performed to assess the maximum exposure time and light dose that can be administered to bacterial cultures inside LED-BIP without reaching temperatures exceeding the physiological range.

  4. Photodynamic therapy (PDT) of malignant tumors by photosensitzer photosens: results of 45 clinical cases

    Science.gov (United States)

    Sokolov, Victor V.; Chissov, Valery I.; Yakubovskaya, Raisa I.; Aristarkhova, E. I.; Filonenko, E. V.; Belous, T. A.; Vorozhtsov, Georgy N.; Zharkova, Natalia N.; Smirnov, V. V.; Zhitkova, Margarita B.

    1996-01-01

    Photosensitizer Photosens is a mixture of sulphonated Al-phthalocyanines with a different number of substituents per phthalocyanine molecule. In the beginning of 1994, this photosensitizer was approved for clinical trials. Since that time till May 1995, 45 patients with 120 tumors were treated by PDT-Photosens. The main tumor localizations were lung (5/6), head and neck (4/4), esophagus (8/8), stomach (2/2), vulva (2/2), bladder (1/1), breast cancer (3/3), skin (basalioma, melanoma, sarcoma Kaposi, mts breast cancer) (20 patients/94 tumors). The lesions were photoirradiated 48-72 h after intravenous injection of Photosens in doses from 0.5 to 2.0 mg/kg b.w. (1.0 mg/kg b.w., on average). PDT was performed by laser power density from 20 to 1400 mW/sq cm (300 mW/sq.cm, on average), energy density varying from 15 to 200 J/sq cm (100 J/sq.cm, on average). The therapeutical effect of PDT was evaluated histologically, endoscopically, roentgenologically and sonographically 3 - 4 weeks after the treatment. Complete regression of tumors was reached in 56%, significant remission was reached in 34%, and partial remission was observed in 10% of cases. The follow-up of patients with complete tumor regression was to 15 months.

  5. Leadership and Leader Developmental Self-Efficacy: Their Role in Enhancing Leader Development Efforts.

    Science.gov (United States)

    Murphy, Susan Elaine; Johnson, Stefanie K

    2016-01-01

    This chapter describes the role of two types of self-efficacy-leader self-efficacy and leader developmental efficacy-for enhancing leadership development. Practical implications for designing and developing leadership programs that take into account these two types of self-efficacy are discussed. © 2016 Wiley Periodicals, Inc., A Wiley Company.

  6. Glycodendrimeric phenylporphyrins as new candidates for retinoblastoma PDT: blood carriers and photodynamic activity in cells.

    Science.gov (United States)

    Wang, Ze-Jian; Chauvin, Benoît; Maillard, Philippe; Hammerer, Fabien; Carez, Danièle; Croisy, Alain; Sandré, Catherine; Chollet-Martin, Sylvie; Prognon, Patrice; Paul, Jean-Louis; Blais, Jocelyne; Kasselouri, Athena

    2012-10-03

    Photodynamic therapy (PDT) has recently been proposed as a possible indication in the conservative treatment of hereditary retinoblastoma. In order to create photosensitizers with enhanced targeting ability toward retinoblastoma cells, meso-tetraphenylporphyrins bearing one glycodendrimeric moiety have been synthesized. The binding properties to plasma proteins and photodynamic activity of two monodendrimeric porphyrins bearing three mannose units via monoethylene glycol (1) or diethylene glycol (2) linkers have been compared to that of the non-dendrimeric tri-substituted derivative [TPP(p-Deg-O-α-ManOH)(3)]. The dendrimeric structure was found to highly increase the binding affinity to plasma proteins and to modify to some extent plasma distribution. HDL and to a lesser extent LDL have been shown to be the main carriers of dendrimeric and non-dendrimeric compounds. The phototoxicity observed for the two glycodendrimers (1) and (2) (LD(50)=0.5 μM) in Y79 cells is of the same order of magnitude that for TPP(p-Deg-O-α-ManOH)(3) (LD(50)=0.7 μM), with a similar cellular uptake level for (1) and a lower for (2). A serum content increase from 2% to 20% (v/v) in the incubation medium was found to inhibit both cellular uptake and photoactivity of dendrimeric derivatives, whereas those of TPP(p-Deg-O-α-ManOH)(3) remained little affected. Specificities of glycodendrimeric porphyrins, combining a lower cellular uptake together with a higher affinity toward plasma proteins, make these derivatives possible candidates for a vascular targeting PDT. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Evaluation of efficacy of photodynamic therapy as an adjunct to nonsurgical periodontal therapy in treatment of chronic periodontitis patients: A clinico-microbiological study.

    Science.gov (United States)

    Raj, K Ravi; Musalaiah, Svvs; Nagasri, M; Kumar, P Aravind; Reddy, P Indeevar; Greeshma, M

    2016-01-01

    Photodynamic therapy (PDT) is a local noninvasive treatment modality without side effects caused by antibiotics. The aim of this study was to evaluate the efficacy of adjunctive use of PDT with scaling and root planing as compared with SRP alone in the treatment of chronic periodontitis. Twenty participants with chronic periodontitis having probing pocket depths (PDs) of ≥5 mm were selected for the study. Patients were randomly divided into control group and test group with ten patients in each group. Full-mouth SRP was performed in both the groups, followed by PDT in test group. Assessment of plaque index (PI), gingival index (GI), PD, and clinical attachment level (CAL) was done at baseline and after 3 months. Microbiological assessment of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola was done by polymerase chain reaction (PCR) at baseline and 3 months after the therapy. There was a significant reduction in PI, GI, PD, CAL, and microbiologic parameters in test group, following SRP and PDT, when compared with SRP alone in control group. PDT in conjunction with SRP has shown additional improvement in periodontal parameters when compared to SRP alone and has a beneficial effect in chronic periodontitis patients.

  8. Biofilm disruption with rotating microrods enhances antimicrobial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Mair, Lamar O., E-mail: Lamar.Mair@gmail.com [Weinberg Medical Physics, Inc., North Bethesda, MD (United States); Nacev, Aleksandar; Hilaman, Ryan; Stepanov, Pavel Y.; Chowdhury, Sagar; Jafari, Sahar [Weinberg Medical Physics, Inc., North Bethesda, MD (United States); Hausfeld, Jeffrey [School of Medicine and Health Sciences, George Washington University, WA (United States); Karlsson, Amy J. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Shirtliff, Mark E. [School of Dentistry, University of Maryland, Baltimore, MD (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Weinberg, Irving N. [Weinberg Medical Physics, Inc., North Bethesda, MD (United States)

    2017-04-01

    Biofilms are a common and persistent cause of numerous illnesses. Compared to planktonic microbes, biofilm residing cells often demonstrate significant resistance to antimicrobial agents. Thus, methods for dislodging cells from the biofilm may increase the antimicrobial susceptibility of such cells, and serve as a mechanical means of increasing antimicrobial efficacy. Using Aspergillus fumigatus as a model microbe, we magnetically rotate microrods in and around biofilm. We show that such rods can improve the efficacy of antimicrobial Amphotericin B treatments in vitro. This work represents a first step in using kinetic magnetic particle therapy for disrupting fungal biofilms. - Highlights: • Fungal biofilms have been implicated in a variety of medical ailments. • Magnetic microrods, grown via electroplating, were rotated in and around fungal biofilms. • Rotating microrods potentiate the effectiveness of antimicrobial drug. • Antimicrobial efficacy may be enhanced due to increased mixing.

  9. Biofilm disruption with rotating microrods enhances antimicrobial efficacy

    International Nuclear Information System (INIS)

    Mair, Lamar O.; Nacev, Aleksandar; Hilaman, Ryan; Stepanov, Pavel Y.; Chowdhury, Sagar; Jafari, Sahar; Hausfeld, Jeffrey; Karlsson, Amy J.; Shirtliff, Mark E.; Shapiro, Benjamin; Weinberg, Irving N.

    2017-01-01

    Biofilms are a common and persistent cause of numerous illnesses. Compared to planktonic microbes, biofilm residing cells often demonstrate significant resistance to antimicrobial agents. Thus, methods for dislodging cells from the biofilm may increase the antimicrobial susceptibility of such cells, and serve as a mechanical means of increasing antimicrobial efficacy. Using Aspergillus fumigatus as a model microbe, we magnetically rotate microrods in and around biofilm. We show that such rods can improve the efficacy of antimicrobial Amphotericin B treatments in vitro. This work represents a first step in using kinetic magnetic particle therapy for disrupting fungal biofilms. - Highlights: • Fungal biofilms have been implicated in a variety of medical ailments. • Magnetic microrods, grown via electroplating, were rotated in and around fungal biofilms. • Rotating microrods potentiate the effectiveness of antimicrobial drug. • Antimicrobial efficacy may be enhanced due to increased mixing.

  10. 5-Aminolevulinic acid-mediated photodynamic therapy for oral cancers and precancers

    Directory of Open Access Journals (Sweden)

    Hsin-Ming Chen

    2012-12-01

    Full Text Available Previous studies have used both systemic and topical 5-aminolevulinic acid (ALA-mediated photodynamic therapy (PDT to treat oral precancers including oral leukoplakia (OL, oral erythroleukoplakia (OEL, and oral verrucous hyperplasia (OVH as well as oral cancers including oral verrucous carcinoma (OVC and oral squamous cell carcinoma (OSCC. Systemic ALA-PDT has been used to treat oral dysplastic lesions and oral cancers with promising clinical outcomes. The efficacy of a regular topical ALA-PDT (fluence rate, 100 mW/cm2; light dose, 100 J/cm2 was tested on an extensive buccal OVC and an enhanced topical ALA-PDT (fluence rate, 200 mW/cm2; light dose, 200 J/cm2 on an early-invasive OSCC; complete regression of the carcinomas was demonstrated after 28 and 18 PDT treatments, respectively. Several previous studies showed relatively good outcomes for OL lesions treated with topical ALA-PDT. However, it was found that the regular topical ALA-PDT is very effective for OVH and OEL lesions but less so for OL lesions. Better PDT outcomes are significantly associated with OVH and OEL lesions with smaller size, pink to red color, epithelial dysplasia, or thinner surface keratin layer. Moreover, the thicker surface keratin layer on the OL lesions is responsible for the relatively poorer PDT outcomes for OL lesions. In addition, both light emitting diode light- and laser light-mediated topical ALA-PDTs are comparative treatment modalities for OVH and OEL lesions. Methotrexate- or vitamin D3-preconditioned prostate or skin carcinoma cells can accumulate more intracellular protoporphyrin IX, resulting in an increased killing of these preconditioned cells by subsequent ALA-PDT. Because chemotherapy can help destroy carcinoma cells and tumor-associated vasculatures and cryotherapy pretreatment may help the diffusion of ALA into lesional epithelial cells, the chemotherapy or cryotherapy-combined topical ALA-PDT may be a new effective PDT alternative for

  11. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    Science.gov (United States)

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  12. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer

    Science.gov (United States)

    Weinberg, Benjamin D.; Allison, Ron R.; Sibata, Claudio; Parent, Teresa; Downie, Gordon

    2009-06-01

    We reviewed the outcome of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) for patients with symptomatic obstruction from endobronchial non-small cell lung cancer. Methods: Nine patients who received combined PDT and HDR for endobronchial cancers were identified and their charts reviewed. The patients were eight males and one female aged 52-73 at diagnosis, initially presenting with various stages of disease: stage IA (N=1), stage IIA (N=1), stage III (N=6), and stage IV (N=1). Intervention was with HDR (500 cGy to 5 mm once weekly for 3 weeks) and PDT (2 mg/kg Photofrin, followed by 200 J/cm2 illumination 48 hours post infusion). Treatment group 1 (TG-1, N=7) received HDR first; Treatment group 2 (TG-2, N=2) received PDT first. Patients were followed by regular bronchoscopies. Results: Treatments were well tolerated, all patients completed therapy, and none were lost to follow-up. In TG-1, local tumor control was achieved in six of seven patients for: 3 months (until death), 15 months, 2+ years (until death), 2+ years (ongoing), and 5+ years (ongoing, N=2). In TG-2, local control was achieved in only one patient, for 84 days. Morbidities included: stenosis and/or other reversible benign local tissue reactions (N=8); photosensitivity reaction (N=2), and self-limited pleural effusion (N=2). Conclusions: Combined HDR/PDT treatment for endobronchial tumors is well tolerated and can achieve prolonged local control with acceptable morbidity when PDT follows HDR and when the spacing between treatments is one month or less. This treatment regimen should be studied in a larger patient population.

  13. Au Nanoclusters Sensitized Black TiO2-x Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light.

    Science.gov (United States)

    Yang, Dan; Gulzar, Arif; Yang, Guixin; Gai, Shili; He, Fei; Dai, Yunlu; Zhong, Chongna; Yang, Piaoping

    2017-12-01

    The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO 2- x nanotubes (abbreviated as Au 25 /B-TiO 2- x NTs) are synthesized by gaseous reduction of anatase TiO 2 NTs and subsequent deposition of noble metal. The Au 25 /B-TiO 2- x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti 3+ on the surface of TiO 2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au 25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO 2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO 2 can expend the light response range (UV) of TiO 2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The enhancement of students' mathematical self-efficacy through teaching with metacognitive scaffolding approach

    Science.gov (United States)

    Prabawanto, S.

    2018-05-01

    This research aims to investigate the enhancement of students’ mathematical self- efficacy through teaching with metacognitive scaffolding approach. This research used a quasi- experimental design with pre-post respon control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 students who acquire teaching mathematics under metacognitive approach, while the control group consists of 58 students who acquire teaching mathematics under direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical self-efficacy instruments. By using mean difference test, two conclusions of the research: (1) there is a significant difference in the enhancement of mathematical self-efficacy between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and (2) there is no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students’ mathematical self-efficacy.

  15. Enhancing of Self-Efficacy in Teacher Education Students

    Science.gov (United States)

    Malinauskas, Romualdas K.

    2017-01-01

    In this study, the effectiveness of training module on enhancing self-efficacy in teacher education students was investigated. Sixty-eight (68) teacher education students (M age = 22.74; SD = 0.57) participated in this study, 36 of whom were assigned to an experimental group and the other 32 were assigned to a control group. The training module on…

  16. Differences of response of human bladder cancer cells to photodynamic therapy (PDT) with Hypericum perforantum L extract and Photofrin

    Science.gov (United States)

    Nseyo, Unyime; Kim, Albert; Stavropoulos, Nikos E.; Skalkos, Dimitris; Nseyo, Unwana U.; Chung, Theodore D.

    2005-04-01

    Refractory carcinoma in situ and resistant multifocal transitional cell carcinoma (TCC) of the human urinary bladder respond modestly to PHOTOFRIN (PII) PDT. Hypericum perforatum L., (St. John"s wort /Epirus" Vasalmo, Greece), a medicinal plant used for many human ailments, is under investigation as a new photosensitizer. We have reported on the antiproliferative activity of the lipophilic extract of the Hypericum perforatum L. (HP) against cultured T-24, and NBT-11 bladder cancer cells. We investigated response of the polar methanolic fraction (PMF) of the HP extract versus PHOTOFRIN in photodynamic therapy (PDT) of human bladder cancer cells, RT-4 and T-24.The PMF was extracted from the dry herb with methanol, followed by liquid extraction with petroleum ether. RT-4/T-24, were plated (105 cells/well) and placed in the incubator (370 C, 5%CO) for 24 hours prior to addition of drugs. PII 2ug/ml, or PMF 60ug /ml was added and incubation continued. After 24 hours, the cells were treated with laser light (630nm) with 0,1,2,4 and 8 Joules. The cells were then washed and reincubated for another 24 hours. After this incubation cell survival was assessed by the MTT assay. PMF-PDT induced percent cell kill of 0%, 0%, 0%, 29% and 75%, in RT-4 cells (primary noninvasive urinary bladder TCC) versus 5%, 9%, 13%, 69% and 86%, in T-24 cells(metastatic TTC) at 0,1,2,4 and 8 Joules respectively. PII-PDT induced cell kill of 0 %, 0% ,0%,0% and 9 %, in RT-4 cells versus 0%,10%,0%,21% and 77%, in T-24 cells at 0,1,2,4 and 8 Joules respectively.RT-24 cells were relatively more resistant than T-24 cells to PMF and PII-PDT. Understanding mechanisms of such differential responses might prove useful

  17. Comparison between one-session root canal treatment with aPDT and two-session treatment with calcium hydroxide-based antibacterial dressing, in dog's teeth with apical periodontitis.

    Science.gov (United States)

    Hidalgo, Lidia Regina da Costa; da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo; da Silva, Raquel Assed Bezerra; de Carvalho, Fabrício Kitazono; Lucisano, Marília Pacífico; Novaes, Arthur Belem

    2016-09-01

    To evaluate one-session endodontic treatment with aPDT and two-session treatment with calcium hydroxide (CH)-based dressing in dog's teeth with apical periodontitis. After experimental induction of apical periodontitis, 48 teeth were randomly assigned to the following groups: groups OS/aPDT120d and OS/aPDT180d (one-session treatment with aPDT) and groups TS/CH120d and TS/CH180d (two-session treatment with CH-based dressing-control groups). The animals were euthanized after 120 and 180 days. After histotechnical processing, microscopic and radiographic analyses were performed. Data were analyzed by Kruskal-Wallis and Fisher's exact tests (α = 0.05). Groups TS/CHs presented repaired resorbed cemental areas, with collagen bundles and few inflammatory cells. In groups OS/aPDTs, the areas of cemental resorption were not repaired with reduced presence of cells and fibers. In the analysis of the apical closure, fluorescence microscopy and percentage of radiographic reduction of lesions, there was significant difference between groups TS/CH120d and OS/aPDT120d and between TS/CH180d and OS/aPDT180d (p session endodontic treatment using a CH-based dressing in teeth with apical periodontitis.

  18. A study of MRI-guided diffuse fluorescence molecular tomography for monitoring PDT effects in pancreas cancer

    Science.gov (United States)

    Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Over the last several decades little progress has been made in the therapy and treatment monitoring of pancreas adenocarcinoma, a devastating and aggressive form of cancer that has a 5-year patient survival rate of 3%. Currently, investigations for the use of interstitial Verteporfin photodynamic therapy (PDT) are being undertaken in both orthotopic xenograft mouse models and in human clinical trials. In the mouse models, magnetic resonance (MR) imaging has been used as a measure of surrogate response to Verteporfin PDT; however, MR imaging alone lacks the molecular information required to assess the metabolic function and growth rates of the tumor immediately after treatment. We propose the implementation of MR-guided fluorescence tomography in conjunction with a fluorescently labeled (IR-Dye 800 CW, LI-COR) epidermal growth factor (EGF) as a molecular measure of surrogate response. To demonstrate the effectiveness of MR-guided diffuse fluorescence tomography for molecular imaging, we have used the AsPC-1 (+EGFR) human pancreatic adenocarcinoma in an orthotopic mouse model. EGF IRDye 800CW was injected 48 hours prior to imaging. MR image sequences were collected simultaneously with the fluorescence data using a MR-coupled diffuse optical tomography system. Image reconstruction was performed multiple times with varying abdominal organ segmentation in order to obtain a optimal tomographic image. It is shown that diffuse fluorescence tomography of the orthotopic pancreas model is feasible, with consideration of confounding fluorescence signals from the multiple organs and tissues surrounding the pancreas. MR-guided diffuse fluorescence tomography will be used to monitor EGF response after photodynamic therapy. Additionally, it provide the opportunity to individualize subsequent therapies based on response to PDT as well as to evaluate the success of combination therapies, such as PDT with chemotherapy, antibody therapy or even radiation.

  19. Good News in Bad News: How Negativity Enhances Economic Efficacy

    OpenAIRE

    Svensson, H.M.; Albæk, E.; van Dalen, A.; de Vreese, C.

    2017-01-01

    Negativity is a news ideology, and its negative effects on attitude formation are widely documented. Contrary to this view, the present study demonstrates that negative economic news can in fact be good news. Based on a two-wave national panel survey and a media content analysis, we show that individual exposure to negative economic news enhances internal economic efficacy, a sense of competence in and understanding of the economy. This is good news as internal economic efficacy may facilitat...

  20. Treating cutaneous squamous cell carcinoma using ALA PLGA nanoparticle-mediated photodynamic therapy in a mouse model

    Science.gov (United States)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen

    2015-03-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  1. Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment

    DEFF Research Database (Denmark)

    Rubel, D M; Spelman, L; Murrell, D F

    2014-01-01

    BACKGROUND: Daylight photodynamic therapy (DL-PDT) of actinic keratosis (AK) has shown preliminary efficacy and safety results comparable to conventional photodynamic therapy (c-PDT), using methyl aminolevulinate (MAL) cream. OBJECTIVES: To demonstrate the efficacy and safety of DL-PDT vs. c...

  2. Efficacy of antimicrobial photodynamic therapy as an adjuvant in periodontal treatment in Down syndrome patients.

    Science.gov (United States)

    Martins, Fabiana; Simões, Alyne; Oliveira, Marcio; Luiz, Ana Claudia; Gallottini, Marina; Pannuti, Claudio

    2016-12-01

    Down syndrome (DS) has characteristics that include mental retardation, a characteristic phenotype, congenital heart defects, immune disorders, and increased risk of periodontal disease (PD). Antimicrobial photodynamic therapy (aPDT) is the combined use of photosensitizers associated with low-level laser (LLL) and oxygen, leading to singlet oxygen formation, which contributes to the antibacterial activity of the phagocytes, killing bacteria. The objective of this study was to evaluate the efficacy of aPDT as an adjuvant to conventional periodontal treatment of PD in DS patients. A double-blinded, controlled, randomized, split-mouth study was conducted. A total of 13 DS subjects who were 18 years or older and who presented at least one tooth in each quadrant of the mouth with probing pocket depth (PPD) equal to or greater than 5 mm were included. The patients were evaluated at three different times: at the baseline, PPD were obtained. After 1 week, conventional scaling and root planing (SRP) was performed, and two randomly selected quadrants also received aPDT. One month after SRP, all the patients were reevaluated. Periodontal conditions were improved among all the participants. The PDT-with-SRP group presented a nonsignificant reduction in PPD (mean = 1.27 mm, median = 1.17 mm) relative to that of the SRP group (mean = 1.00 mm, median = 0.95 mm). Changes over time were compared using the Wilcoxon test. A significant reduction in median PPD was observed in both groups (p = 0.001). Both types of periodontal treatment, with and without PDT, were similarly effective and were associated with good clinical response.

  3. Topical methotrexate pretreatment enhances the therapeutic effect of topical 5-aminolevulinic acid-mediated photodynamic therapy on hamster buccal pouch precancers.

    Science.gov (United States)

    Yang, Deng-Fu; Lee, Jeng-Woei; Chen, Hsin-Ming; Hsu, Yih-Chih

    2014-09-01

    Topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is effective for treatment of human oral precancerous lesions. This animal study aimed to assess whether topical methotrexate (MTX) pretreatment could enhance the therapeutic effect of topical ALA-PDT on hamster buccal pouch precancerous lesions. Twenty hamster buccal pouch precancerous lesions were treated with either topical ALA-PDT with topical MTX pretreatment (topical MTX-ALA-PDT group, n = 10) or topical ALA-PDT alone (topical ALA-PDT group, n = 10). The intracellular protoporphyrin IX (PpIX) level in another 12 precancerous lesions (n = 6 for either the topical MTX-ALA or topical ALA group) was monitored by fluorescence spectroscopy. The intracellular PpIX reached its peak level in precancerous lesions 6.5 hours and 2.5 hours after topical ALA application for the topical MTX-ALA group (5.63-fold higher in the lesion than in the normal mucosa) and topical ALA group (2.42-fold higher in the lesion than in the normal mucosa), respectively. The complete response rate of precancerous lesions was 80% for the topical MTX-ALA-PDT group and 70% for the topical ALA-PDT group. In addition, the topical MTX-ALA-PDT group required a significantly lower mean treatment number (2.1 ± 0.6) to achieve complete response than the topical ALA-PDT group (4.4 ± 1.3, p topical MTX-ALA-PDT group had a lower recurrence rate (12.5%) than the topical ALA-PDT group (28.6%). We conclude that topical MTX-pretreatment can increase intracellular PpIX production in hamster buccal pouch precancerous lesions and significantly improves the outcomes of the precancerous lesions treated with topical ALA-PDT. Copyright © 2014. Published by Elsevier B.V.

  4. Enhancement of Radiotherapeutic Efficacy by Paclitaxel-Loaded ph-Sensitive Block Copolymer Micelles

    International Nuclear Information System (INIS)

    Jinhyang, C.; Jaesook, P.; Dong-Hoon, J.

    2012-01-01

    Radiotherapy (RT) is a major modality for cancer treatment, but its efficacy is often compromised by the resistance caused by tumor-specific microenvironment including acidosis and hypoxia. For an effective RT, concurrent administration of radiosensitizer with RT has been emphasized. However, most anticancer agents enhancing radiotherapeutic efficacy have obstacles such as poor solubility and severe toxicity. Paclitaxel (PTX), a well-known radiosensitizer, is insoluble in water and needs toxic solvent like Cremophor EL. Nano materials in drug delivery systems have been utilized for improving the drawbacks of anti-cancer drugs. Solubilization, tumor accumulation, and toxicity attenuation of drug by nano materials are suitable for enhancement of radiotherapeutic efficacy. In this study, PTX was incorporated into ph-sensitive block copolymer micelle (psm-PTX), polyethylene glycol-graft-poly(β-amino ester), and pre clinically evaluated for its effect on RT. The size of psm-PTX was 125. 4.4±nm at ph 7.4. psm-PTX released PTX rapidly in the acidic condition (ph 6.5), while it was reasonably stable in the physiologic condition (ph 7.4). The clonogenic assay showed that psm-PTX greatly sensitized human non-small-cell lung cancer A549 cells to radiation. In the xenograft tumor model, the combination of psm-PTX and radiation significantly delayed the tumor growth. These results demonstrated the feasibility of psm-PTX to enhance the chemo radiotherapeutic efficacy.

  5. Protoporphyrin IX fluorescence kinetics and localization after topical application of ALA pentyl ester and ALA on hairless mouse skin with UVB-induced early skin cancer

    NARCIS (Netherlands)

    van den Akker, J. T.; de Bruijn, H. S.; Beijersbergen van Henegouwen, G. M.; Star, W. M.; Sterenborg, H. J.

    2000-01-01

    In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced

  6. Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer.

    Science.gov (United States)

    Peng, Cheng-Liang; Lin, Hua-Ching; Chiang, Wei-Lun; Shih, Ying-Hsia; Chiang, Ping-Fang; Luo, Tsai-Yueh; Cheng, Chun-Chia; Shieh, Ming-Jium

    2018-06-09

    Photodynamic therapy (PDT) is a new treatment utilizing the combined action of photosensitizers and light for the treatment of various cancers. The mechanisms for tumor destruction after PDT include direct tumor cell kill by singlet oxygen species (OS), indirect cell kill via vascular damage, and an elicited immune response. However, it has been reported that many cellular activators, including vascular endothelial growth factor (VEGF), are produced by tumor cells after PDT. In this study, we demonstrate that meta-tetra(hydroxyphenyl) chlorin (mTHPC)-based photodynamic therapy combined with bevacizumab (Avastin™), an anti-VEGF neutralizing monoclonal antibody that blocks the binding of VEGF to its receptor, can enhance the effectiveness of each treatment modality. We evaluated the efficacy of bevacizumab-based anti-angiogenesis in combination with PDT as well as the resulting VEGF levels in a mouse model of human colon cancer. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to assess VEGF concentrations in the various treatment groups, and confocal imaging and high performance liquid chromatography (HPLC) analyses were used to measure the distribution and concentration of mTHPC in tumors. Our results demonstrate that combination of PDT followed by bevacizumab significantly elicits a greater tumor response whereas bevacizumab treatment prior to PDT led to a reduced tumor response. Immunostaining and ELISA analyses revealed a lower expression of VEGF in tumors treated with combination therapy of PDT followed by bevacizumab. However, bevacizumab treatment decreased the accumulation of mTHPC in tumors 24 h after administration, which complemented the results of decreased anti-tumor efficacy of bevacizumab followed by PDT. Copyright © 2018. Published by Elsevier B.V.

  7. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy.

    Science.gov (United States)

    Du, Enming; Hu, Xunwu; Roy, Sona; Wang, Peng; Deasy, Kieran; Mochizuki, Toshiaki; Zhang, Ye

    2017-05-30

    The precision and efficacy of photodynamic therapy (PDT) is essential for the treatment of brain tumors because the cancer cells are within or adjacent to the delicate nervous system. Taurine is an abundant amino acid in the brain that serves the central nervous system (CNS). A taurine-modified polypyridyl Ru-complex was shown to have optimized intracellular affinity in cancer cells through accumulation in lysosomes. Symmetrical modification of this Ru-complex by multiple taurine molecules enhanced the efficiency of molecular emission with boosted generation of reactive oxygen species. These characteristic features make the taurine-modified Ru-complex a potentially effective photosensitizer for PDT of target cancer cells, with outstanding efficacy in cancerous brain cells.

  8. Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy

    Science.gov (United States)

    Broekgaarden, Mans; Kos, Milan; Jurg, Freek A.; van Beek, Adriaan A.; van Gulik, Thomas M.; Heger, Michal

    2015-01-01

    Although photodynamic therapy (PDT) yields very good outcomes in numerous types of superficial solid cancers, some tumors respond suboptimally to PDT. Novel treatment strategies are therefore needed to enhance the efficacy in these therapy-resistant tumors. One of these strategies is to combine PDT with inhibitors of PDT-induced survival pathways. In this respect, the transcription factor nuclear factor κB (NF-κB) has been identified as a potential pharmacological target, albeit inhibition of NF-κB may concurrently dampen the subsequent anti-tumor immune response required for complete tumor eradication and abscopal effects. In contrast to these postulations, this study demonstrated that siRNA knockdown of NF-κB in murine breast carcinoma (EMT-6) cells increased survival signaling in these cells and exacerbated the inflammatory response in murine RAW 264.7 macrophages. These results suggest a pro-death and immunosuppressive role of NF-κB in PDT-treated cells that concurs with a hyperstimulated immune response in innate immune cells. PMID:26307977

  9. Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine.

    Science.gov (United States)

    Li, Linsen; Luo, Zhipu; Chen, Zhuo; Chen, Jincan; Zhou, Shanyong; Xu, Peng; Hu, Ping; Wang, Jundong; Chen, Naisheng; Huang, Jinling; Huang, Mingdong

    2012-11-21

    Zinc phthalocyanine (ZnPc) is a promising photosensitizer for photodynamic therapy, but faces some challenges: ZnPc is insoluble in water and thus requires either special formulation of ZnPc by, e.g., liposome or Cremophor EL, or chemical modification of Pc ring to enhance its bioavailability and photodynamic efficacy. Here, we conjugated monosubstituted ZnPc-COOH with a series of oligolysine moieties with different numbers of lysine residues (ZnPc-(Lys)(n) (n = 1, 3, 5, 7, 9) to improve the water solubility of the ZnPc conjugates. We measured the photosensitizing efficacies and the cellular uptakes of this series of conjugates on a normal and a cancerous cell line. In addition, we developed a sensitive in situ method to distinguish the difference in photodynamic efficacy among conjugates. Our results showed that ZnPc-(Lys)(7) has the highest photodynamic efficacy compared to the other conjugates investigated.

  10. PDT-induced apoptosis in bladder carcinoma cells

    Science.gov (United States)

    Bachor, Ruediger; Reich, Ella D.; Kleinschmidt, Klaus; Repassy, Denes; Hautmann, Richard E.

    1999-02-01

    Photodynamic therapy (PDT) is a highly efficient inducer of apoptosis in EY-28 bladder carcinoma cells, resulting in extensive DNA fragmentation. Bladder carcinoma cells EY-28 (Tumorbank Heidelberg, Germany) were incubated for 1 h with 1 (mu) g AamTPPn/ml or 2 (mu) g AamTPPn/ml. After incubation cells were refed with complete medium and irradiated with 0.75 J/cm2. To identify apoptotic cells, a in situ cell death detection kit POD (Boehringer Mannheim, Germany) was used. The chromatin condensation characteristic to apoptotic cells was detected by transmission electron microscopy. Using 1 (mu) g AamTPPn/ml and 2 (mu) g AamTPPn/ml (9-Acetamido-2,7,12,17- tetra-n-Porpylporphycene), respectively, and irradiation at 0.75 J/cm2, a percentage of 36.9% and 54.7%, respectively, of apoptotic cells was detected.

  11. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP.

    Science.gov (United States)

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R

    2015-03-01

    Low-level light therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-l-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5J/cm(2) of 810nm near infrared radiation (NIR) followed by addition of 10μM NPe6 and after 2h incubation by 1.5J/cm(2) of 652nm red light for PDT. PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. PDT and emerging therapies for Actinic Keratosis-A resource letter.

    Science.gov (United States)

    Filho, José D Vollet; Andrade, Cintia T; Buzza, Hilde H; Blanco, Kate; Carbinatto, Fernanda; Bagnato, Vanderlei S; Allison, Ron R

    2017-03-01

    Aktinic Keratosis is common and if left untreated may develop into life threatening squamous cell carcinoma. Therefore early intervention is the standard of care. While many treatments are available PDT continues to move to the for - front for this indication (Brito et al., 2016 [31]). Topical PS is commercially available that are able to reliably ablate these lesions. Innovative protocols including sunlight, large volume LED arrays and maneuvers to improve treatment parameters and cosmesis continue to make this a worldwide treatment of choice for AK. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Research of ALA combined with HpD-PDT which induced s180 ascitic tumor cells, death or apoptosis on cytology

    Science.gov (United States)

    Zhu, Jing; Yan, Min; Zhang, Hui-Guo; Li, Enling; Luo, Hongyu

    2005-07-01

    To ascertain the adequate dosage of ALA combined with HpD-PDT which induced tumor cell death or apoptosis on cytology. And to study the different effect of ALA-PDT and HPD-PDT used only. Rat ascitic tumor cells(S180) were randomly divided into several groups and incubated with ALA(20μg/ml 、40μg/ml、80μg/ml 、160μg/ml)、HPD(2.5μg/ml、5μg/ml、10μg/ml)and their combination dosages. 630nm light (total output 2W) was delivered to tumor cells at a constant fluence rate: 200mw/cm2 and a constant irradiated time period: 20 minutes. We set 3 groups (no photosensitizers or no irradiation or neither) to be the control groups. We used inversion microscopy to observe the morphological change of tumor cells and flow cytometry technology to detect the death or apoptosis of tumor cells during the experiment. ..

  14. Combination of PDT and topical angiogenic inhibitor for treatment of port wine stain (PWS) birthmarks: a novel approach

    Science.gov (United States)

    Yuan, Kaihua; Huang, Qiaobing; Huang, Zheng

    2009-06-01

    Port wine stain (PWS) birthmarks are a congenital cutaneous vascular malformation involving ecstatic post-capillary venules. Current standard treatment for PWS is the pulsed dye laser (PDL). Vascular-targeted photodynamic therapy (PDT) has been used for the treatment of PWS in China since the early 1990's. Both can achieve a certain degree of color blanching in various types of PWS lesions. However, the majority of PWS lesions require multiple treatments. Some PWS lesions can recur or become darker after successful treatment. Recently, it has been proposed that this phenomenon might be initiated by neoangiogenesis that can be caused by treatment via wound healing response. The combined use of photothermolysis and a topical application of an angiogenic inhibitor such as Imiquimod and Rapamycin, were evaluated in several pilot studies. It is well-known that PDT can induce various host immune responses VEGF overexpression. Recent clinical data also show that improved clinical outcomes are obtained through the combination of ocular PDT and anti-VEGF therapy. This article will discuss rationales and implications of using such a combination modality and highlight recent progress based on our clinical experience and published data.

  15. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model.

    Directory of Open Access Journals (Sweden)

    Marina Shirmanova

    Full Text Available The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm and pulsed laser (584 nm, 10 Hz, 18 ns modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.

  16. Validation of an instrument for mathematics enhancement teaching efficacy of Pacific Northwest agricultural educators

    Science.gov (United States)

    Jansen, Daniel J.

    Teacher efficacy continues to be an important area of study in educational research. This study tested an instrument designed to assess the perceived efficacy of agricultural education teachers when engaged in lessons involving mathematics instruction. The study population of Oregon and Washington agricultural educators utilized in the validation of the instrument revealed important demographic findings and specific results related to teacher efficacy for the study population. An instrument was developed from the assimilation of three scales previously used and validated in efficacy research. Participants' mathematics teaching efficacy was assessed using a portion of the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and personal mathematics efficacy was evaluated by the mathematics self-belief instrument which was derived from the Betz and Hackett's Mathematics Self-Efficacy Scale. The final scale, the Teachers' Sense of Efficacy Scale (TSES) created by Tschannen-Moran and Woolfolk Hoy, examined perceived personal teaching efficacy. Structural equation modeling was used as the statistical analyses tool to validate the instrument and examine correlations between efficacy constructs used to determine potential professional development needs of the survey population. As part of the data required for validation of the Mathematics Enhancement Teaching Efficacy instrument, demographic information defining the population of Oregon and Washington agricultural educators was obtained and reported. A hypothetical model derived from teacher efficacy literature was found to be an acceptable model to verify construct validity and determine strength of correlations between the scales that defined the instrument. The instrument produced an alpha coefficient of .905 for reliability. Both exploratory and confirmatory factor analyses were used to verify construct and discriminate validity. Specifics results related to the survey population of agricultural educators

  17. Persamaan Unsur Pokok Pada Suatu Merek Terkenal (Analisis Putusan MA Nomor 162 K/Pdt.Sus-HKI/2014

    Directory of Open Access Journals (Sweden)

    Dandi Pahusa

    2016-04-01

    Full Text Available Abstract: Equation Basic Element In A Famous Brand (Analysis of the Decision of the Supreme Court Number 162 K / Pdt.Sus-IPR / 2014. Criteria for determining the equation of the constituents in a well-known brand that is the similarity of images, sounds, names, words, letters, numbers, color composition or a combination of these elements, either for goods or services that are similar or dissimilar based on general knowledge of the public, the brand earned a reputation as a massive campaign, and with evidence of the trademark registration in several countries. The impact of the decision of the Supreme Court Number 162 K / Pdt.Sus-IPR / 2014 for brand owners who have registered and well-known to always protect its brand, namely by taking into account the bad faith of the owner of the other brands. If there are other brands that have been registered in the Directorate General of Intellectual Property and published in General News Brands, the owner of the mark that has been registered in advance immediately appealed and the cancellation of the trademark. Abstrak: Persamaan Unsur Pokok Pada Suatu Merek Terkenal (Analisis atas Putusan MA Nomor 162 K/Pdt.Sus-HKI/2014. Kriteria penentuan persamaan unsur pokok pada suatu merek terkenal yaitu adanya kemiripan gambar, bunyi, nama, kata, huruf-huruf, angka-angka, susunan warna atau kombinasi dari unsur-unsur tersebut, baik terhadap barang atau jasa yang sejenis maupun tidak sejenis yang didasarkan pada pengetahuan umum masyarakat, reputasi merek yang diperoleh karena promosi besar-besaran, dan disertai bukti pendaftaran merek tersebut di beberapa negara. Dampak dari putusan Mahkamah Agung Nomor 162 K/Pdt.Sus-HKI/2014 bagi pemilik merek yang telah terdaftar dan terkenal agar selalu melindungi mereknya yaitu dengan memperhatikan adanya itikad tidak baik dari pemilik merek lain. Apabila terdapat merek lain yang telah terdaftar di Dirjen HKI dan diumumkan dalam Berita Umum Merek, maka pemilik merek yang telah

  18. Recombinant, catalytically inactive juvenile hormone esterase enhances efficacy of baculovirus insecticides

    NARCIS (Netherlands)

    Meer, van M.M.M.; Bonning, B.C.; Ward, V.K.; Vlak, J.M.; Hammock, B.D.

    2000-01-01

    The insecticidal efficacy of baculoviruses can be enhanced by engineering the viral genome to express proteins that disrupt the physiology of the host insect. Here we describe the development of a genetically engineered Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) which expresses

  19. Enhancing photodynamic therapy of a metastatic mouse breast cancer by immune stimulation

    Science.gov (United States)

    Castano, Ana P.; Hamblin, Michael R.

    2006-02-01

    , chemokines and immunoglobulins. Both these novel combinations gave significantly enhanced therapeutic benefit not seen with single treatments alone. Tumors grew more slowly and mice lived significantly longer, although cures were rare. We propose that a rational choice of immune stimulant is an ideal addition to PDT regimens.

  20. Clinical efficacy of photodynamic therapy adjunctive to scaling and root planing in the treatment of chronic periodontitis: A systematic review and meta-analysis.

    Science.gov (United States)

    Xue, Dong; Tang, Lu; Bai, Yuhao; Ding, Qian; Wang, Pengcheng; Zhao, Ying

    2017-06-01

    To evaluate the clinical efficacy of photodynamic therapy (PDT) adjunctive to scaling and root planing (SRP) in patients with untreated chronic periodontitis based on up-to-date evidence. MEDLINE and the Cochrane Library were systematically searched to identify eligible randomized controlled trials (RCTs), supplemented by a manual literature search. Mean differences (MD) and the corresponding 95% confidence intervals (CI) of probing depth (PD) reduction and clinical attachment level (CAL) gain were synthesized. The I 2 test and Q statistics were used to determine the inter-study heterogeneity. Subgroup analysis based on smoking status was performed. Eleven RCTs with a total of 243 subjects were included. Significant improvement in PD reduction (MD=0.13, CI:0.02-0.24, p=0.02) and marginal significant improvement in CAL gain (MD=0.18, CI:-0.005-0.363, p=0.056) were observed in favor of SRP+PDT at 3months. When evaluated at 6months after baseline, the association of PDT with SRP resulted in a significant benefit in PD reduction (MD=0.40, CI:0.05-0.74, p=0.03), but not in CAL gain (MD=0.37, CI:-0.18-0.93, p=0.18). Subgroup analysis revealed that the combined therapy produced no significant improvements in PD and CAL at neither 3months nor 6months for studies with smokers. No treatment-related adverse events or side effects had been reported by the included studies. Pooled analysis suggests a short-term benefit of PDT as an adjunct to SRP in clinical outcome variables. However, evidence regarding its long-term efficacy is still insufficient and no significant effect has been confirmed in terms of CAL gain at 6months. Future clinical trials of high methodological quality are needed to establish the optimal combination of photosensitizer and laser configuration. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  2. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  3. Evaluation of photodynamic therapy (PDT) procedures using microfluidic system

    Energy Technology Data Exchange (ETDEWEB)

    Jedrych, Elzbieta, E-mail: ejedrych@ch.pw.edu.pl [Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 300-664 Warsaw (Poland); Pawlicka, Zuzanna; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew [Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 300-664 Warsaw (Poland)

    2011-01-10

    A hybrid PDMS/glass microfluidic system for evaluation of the efficiency of photodynamic therapy is presented. 5-aminolevulinic acid (ALA) was used as a precursor of photosensitizer. The geometry of the microdevice presented in this paper enables to test different concentrations of the photosensitizer in a single assay. The viability of the A549 cells was determined 24 h after PDT procedure (irradiation with light which induced a photosensitizer accumulated in carcinoma cells, {lambda} = 625 nm). The presented results confirmed the possibility to perform the photodynamic therapy process in vitro in microscale and the possibility to assess its effectiveness. Moreover, because two identical microstructures on a single chip were performed, the microchip can be used for examination simultaneously various cell lines (carcinoma and normal) or various photosensitizers.

  4. Photodynamic effect produced by HeNe radiation in Harderian glands of Wistar rats: an experimental model for PDT studies

    Science.gov (United States)

    dos Reis, Edmyr R.; Nicola, Ester M. D.; Metze, Konradin; Nicola, Jorge H.

    2000-06-01

    In rats, the Harderian Gland secret Protoporphirin IX which is retained at acinar lumina. Since this photosensitizer is important for PDT of malignant tumors, we propose to study this gland as a model to help understanding PDT with endogenous photosensitizers. Twenty Wistar SPF adult rats were submitted to surgical exposure of both Harderian glands, revealing red fluorescence upon UV, characterizing the protoporphirin IX presence. After that, one gland of each pair (one kept as control) was irradiated with an 8 mW HeNe (6328 angstrom) for 45 minutes, delivering about 2.7 joules/mm2. After 24 hours a group of 10 animals were scarified and the glands removed for histological analysis. The remaining animals were subjected to the same procedure but the glands were removed immediately after laser treatment. Histological and fluorescence analysis immediately after laser irradiation showed cell fragmentation with loss of acinar architecture with diffusion of protoporphirin in the cytoplasm of damaged cells, as well as interstitial edema. After 24 hours these alterations were more pronounced with accentuated loss of intraluminal protoporphirin and beginning of leukocytic demarcation of necrotic areas. The innate Harderian glands of rats, exposed to HeNe laser, showed a similar behavior as tumor tissue under PDT.

  5. Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer.

    Science.gov (United States)

    Salaam, Amanee D; Hwang, Patrick T J; Poonawalla, Aliza; Green, Hadiyah N; Jun, Ho-wook; Dean, Derrick

    2014-10-24

    Enhancing therapeutic efficacy is essential for successful treatment of chemoresistant cancers such as metastatic hormone-refractory prostate cancer (HRPC). To improve the efficacy of doxorubicin (DOX) for treating chemoresistant disease, the feasibility of using nanodiamond (ND) particles was investigated. Utilizing the pH responsive properties of ND, a novel protocol for complexing NDs and DOX was developed using a pH 8.5 coupling buffer. The DOX loading efficiency, loading on the NDs, and pH responsive release characteristics were determined utilizing UV-Visible spectroscopy. The effects of the ND-DOX on HRPC cell line PC3 were evaluated with MTS and live/dead cell viability assays. ND-DOX displayed exceptional loading efficiency (95.7%) and drug loading on NDs (23.9 wt%) with optimal release at pH 4 (80%). In comparison to treatment with DOX alone, cell death significantly increased when cells were treated with ND-DOX complexes demonstrating a 50% improvement in DOX efficacy. Of the tested treatments, ND-DOX with 2.4 μg mL(-1) DOX exhibited superior efficacy (60% cell death). ND-DOX with 1.2 μg mL(-1) DOX achieved 42% cell death, which was comparable to cell death in response to 2.4 μg mL(-1) of free DOX, suggesting that NDs aid in decreasing the DOX dose necessary to achieve a chemotherapeutic efficacy. Due to its enhanced efficacy, ND-DOX can be used to successfully treat HRPC and potentially decrease the clinical side effects of DOX.

  6. Photodynamic efficacy of liposome-delivered hypocrellin B in microvascular endothelial cells in vitro and chicken combs in vivo: a potential photosensitizer for port wine stain

    International Nuclear Information System (INIS)

    Chen, H X; Zou, X B; Yang, Z F; Zhu, J G; Gu, Y; Deng, H; Zhao, J Q

    2013-01-01

    Photodynamic therapy (PDT) has been proved a successful method for port wine stain (PWS), but the prolonged skin photosensitivity induced by the photosensitizers used currently seriously limits the clinical application of PDT. In this study, we investigate the feasibility of hypocrellin B (HB), a promising second-generation photosensitizer for the treatment of PWS. The photodynamic effect of liposome-delivered HB was evaluated in vitro with microvascular endothelial cells (MEC) and in vivo with chicken combs. The dark cytotoxicity and photocytotoxicity of liposomal HB in MEC were evaluated using the MTT assay. Gross and histological examinations were performed to investigate the selective occlusion of the superficial dermal microvasculature in the chicken comb. The result showed that photocytotoxicity of liposomal HB was dependent on both light dose and drug concentration. PDT with HB (0.5–1 mg kg −1 ) and a light dose of 120 J cm −2 showed selective destruction of the superficial dermal microvasculature of the chicken comb, leaving the overlying epidermis intact. This is the first study to investigate the potential efficacy of HB-PDT as a novel modality for the treatment of PWS. These findings suggest that liposomal HB is a safe and effective photosensitizer for PWS. (paper)

  7. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro

    DEFF Research Database (Denmark)

    Labanauskiene, J; Gehl, J; Didziapetriene, J

    2007-01-01

    14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest...... tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT....... Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4...

  8. Does Maternal HIV Disclosure Self-Efficacy Enhance Parent-Child Relationships and Child Adjustment?

    Science.gov (United States)

    Armistead, Lisa; Goodrum, Nada; Schulte, Marya; Marelich, William; LeCroix, Rebecca; Murphy, Debra A

    2018-02-09

    Nondisclosure of maternal HIV status to young children can negatively impact child functioning; however, many mothers do not disclose due to lack of self-efficacy for the disclosure process. This study examines demographic variations in disclosure self-efficacy, regardless of intention to disclose, and assesses the relationship between self-efficacy and child adjustment via the parent-child relationship among a sample of HIV+ mothers and their healthy children (N = 181 pairs). Mothers completed demographic and self-efficacy measures; children completed measures assessing the parent-child relationship and child adjustment (i.e., worry, self-concept, depression). Across demographics, few mothers reported confidence in disclosure. Results from covariance structural modeling showed mothers endorsing higher self-efficacy had children who reported better relationship quality, and, in turn, reported fewer adjustment difficulties; higher levels of disclosure self-efficacy also directly predicted fewer adjustment problems. Findings offer support for interventions aimed at providing mothers with skills to enhance confidence for disclosing their HIV status.

  9. Enhancing Self-Efficacy and Performance: An Experimental Comparison of Psychological Techniques

    Science.gov (United States)

    Wright, Bradley James; O'Halloran, Paul Daniel; Stukas, Arthur Anthony

    2016-01-01

    Purpose: We assessed how 6 psychological performance enhancement techniques (PETs) differentially improved self-efficacy (SE) and skill performance. We also assessed whether vicarious experiences and verbal persuasion as posited sources of SE (Bandura, 1982) were supported and, further, if the effects of the 6 PETs remained after controlling for…

  10. Photodynamic therapy (PDT and waterfiltered infrared A (wIRA in patients with recalcitrant common hand and foot warts

    Directory of Open Access Journals (Sweden)

    Hoffmann, Gerd

    2004-10-01

    Full Text Available Background: Common warts (verrucae vulgares are human papilloma virus (HPV infections with a high incidence and prevalence, most often affecting hands and feet, being able to impair quality of life. About 30 different therapeutic regimens described in literature reveal a lack of a single striking strategy. Recent publications showed positive results of photodynamic therapy (PDT with 5-aminolevulinic acid (5-ALA in the treatment of HPV-induced skin diseases, especially warts, using visible light (VIS to stimulate an absorption band of endogenously formed protoporphyrin IX. Additional experiences adding waterfiltered infrared A (wIRA during 5-ALA-PDT revealed positive effects. Aim of the study: First prospective randomised controlled blind study including PDT and wIRA in the treatment of recalcitrant common hand and foot warts. Comparison of "5-ALA cream (ALA vs. placebo cream (PLC" and "irradiation with visible light and wIRA (VIS+wIRA vs. irradiation with visible light alone (VIS". Methods: Pre-treatment with keratolysis (salicylic acid and curettage. PDT treatment: topical application of 5-ALA (Medac in "unguentum emulsificans aquosum" vs. placebo; irradiation: combination of VIS and a large amount of wIRA (Hydrosun® radiator type 501, 4 mm water cuvette, waterfiltered spectrum 590-1400 nm, contact-free, typically painless vs. VIS alone. Post-treatment with retinoic acid ointment. One to three therapy cycles every 3 weeks. Main variable of interest: "Percent change of total wart area of each patient over the time" (18 weeks. Global judgement by patient and by physician and subjective rating of feeling/pain (visual analogue scales. 80 patients with therapy-resistant common hand and foot warts were assigned randomly into one of the four therapy groups with comparable numbers of warts at comparable sites in all groups. Results: The individual total wart area decreased during 18 weeks in group 1 (ALA+VIS+wIRA and in group 2 (PLC

  11. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy

    Science.gov (United States)

    Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing

    2015-10-01

    Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX

  12. A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition.

    Science.gov (United States)

    Bagheri, Neda; Shiina, Marisa; Lauffenburger, Douglas A; Korn, W Michael

    2011-02-01

    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced

  13. Characterization of the cell death modes and the associated changes in cellular energy supply in response to AIPcS4-PDT

    International Nuclear Information System (INIS)

    Kiesslich, T.; Plaetzer, K.; Oberdanner, C.; Krammer, B.

    2003-01-01

    Full text: Photodynamic therapy (PDT) can result in apoptosis and/or necrosis. Several steps in the apoptotic program depend on ATP and the intracellular ATP level is one determinant in the decision between apoptosis and necrosis. Therefore, photochemical damage of cellular targets involved in energy supply might play a crucial role for the mode of cell death being executed. The present study aimed at the characterization of changes in cellular energy supply and the associated cell death modes in response to PDT. Using the human epidermoid carcinoma cell line A431 and aluminum (III) phthalocyanine tetrasulfonate (2.5 μM) as a photosensitizer, we studied the changes in mitochondrial function and intracellular ATP-level after irradiation with different light doses. Employing assays for caspase-3 activation and nuclear fragmentation, 50 % of the cells were found to undergo apoptosis after irradiation with light doses between 2.5 to 3.5 J.cm -2 . At light doses above 6 J.cm -2 cells died exclusively by necrosis, indicated by rapid and complete loss of ATP and mitochondrial function and an absence of caspase activation and nuclear fragmentation. With apoptotic cell populations the ATP-level was maintained at near control levels for up to eight hours which was far beyond the onset of morphological changes. These data suggest that necrosis as well as apoptosis can be induced with AIPcS4 mediated PDT and that photo damage in energy supplying cellular targets may influence the mode of cell death. Further, it is speculated that cells undergoing apoptosis after PDT maintain high ATP levels long enough to complete the apoptotic program. (author)

  14. Characterization of liver metastases: the efficacy of biphasic magnetic resonance imaging with ferucarbotran-enhancement

    International Nuclear Information System (INIS)

    Hong, H.S.; Byun, J.H.; Won, H.J.; Kim, K.W.; Lee, S.S.; Lee, M.G.; Yun, S.C.

    2010-01-01

    Aim: To retrospectively evaluate the efficacy of biphasic magnetic resonance imaging (MRI) of the liver with ferucarbotran-enhancement for the characterization of hepatic metastases. Materials and methods: Thirty-six patients underwent MRI of the liver with separate acquisition of double-contrast enhancement consisting of gadolinium and ferucarbotran. A total of 106 focal hepatic lesions (51 metastases, 31 cysts, 23 haemangiomas, and one eosinophilic abscess) were included. Two sets of MRI were analysed: (1) ferucarbotran set: ferucarbotran-enhanced T1-weighted (T1W) dynamic imaging combined with ferucarbotran-enhanced T2*-weighted (T2*W) delayed imaging and (2) double set: gadolinium-enhanced T1W dynamic imaging combined with ferucarbotran-enhanced T2*W delayed imaging. The diagnostic accuracy of the two sets was evaluated using alternative free-response receiver operating characteristic curve analysis. Sensitivity and specificity were compared using the McNemar test. The enhancement pattern of focal hepatic lesions was analysed on gadolinium and ferucarbotran-enhanced T1W dynamic imaging. Results: There was no significant difference in the accuracy of characterizing hepatic metastases between the two sets. Sensitivity and specificity were not significantly different between the sets (p > 0.05). Peripheral rim enhancement was exhibited in 57% of metastatic lesions on ferucarbotran-enhanced T1W dynamic imaging. The majority (96%) of hepatic haemangiomas demonstrated typical peripheral nodular enhancement with progression on ferucarbotran-enhanced T1W dynamic imaging and were easily differentiated from metastases. Conclusion: Biphasic MRI of the liver with ferucarbotran-enhancement alone provided comparable diagnostic efficacy to double-contrast MRI for the characterization of hepatic metastases.

  15. Switching From Conventional Photodynamic Therapy to Daylight Photodynamic Therapy For Actinic Keratoses: Systematic Review and Meta-analysis.

    Science.gov (United States)

    Tomás-Velázquez, A; Redondo, P

    2017-05-01

    Actinic keratosis is a precursor lesion to the most common nonmelanoma skin cancer. Conventional photodynamic therapy (PDT) has been shown to be effective, but the procedure is time-consuming, can be very painful, and requires infrastructure. These shortcomings led to the emergence of daylight PDT. To obtain a global estimate of efficacy, we undertook a systematic literature review and performed a meta-analysis of the available evidence on the efficacy and safety of daylight PDT as compared to conventional PDT in the treatment of actinic keratosis and/or field cancerization. The conclusion is that the difference in efficacy is clinically negligible (global estimate of the mean response rate difference, -3.69%; 95% CI, -6.54% to -0.84%). The adverse effects of daylight PDT are mild and localized (79% of patients report no discomfort), and patients report less pain (P<.001). Daylight PDT gives good to excellent cosmetic results in more than 90% of patients, and patient satisfaction is greater (P<.001). Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Targeted two-photon photodynamic therapy for the treatment of subcutaneous tumors

    Science.gov (United States)

    Spangler, Charles W.; Starkey, Jean R.; Meng, Fanqing; Gong, Aijun; Drobizhev, Mikhail; Rebane, Aleksander; Moss, B.

    2005-04-01

    Photodynamic therapy (PDT) has developed into a mature technology over the past several years, and is currently being exploited for the treatment of a variety of cancerous tumors, and more recently for age-related wet macular degeneration of the eye. However, there are still some unresolved problems with PDT that are retarding a more general acceptance in clinical settings, and thus, for the most part, the treatment of most cancerous rumors still involves some combination of invasive surgery, chemotherapy and radiation treatment, particularly subcutaneous tumors. Currently approved PDT agents are activated in the Visible portion of the spectrum below 700 nm, Laser light in this spectral region cannot penetrate the skin more than a few millimeters, and it would be more desirable if PDT could be initiated deep in the Near-infrared (NIR) in the tissue transparency window (700-1000 nm). MPA Technologies, Inc. and Rasiris, Inc. have been co-developing new porphyrin PDT designed to have greatly enhanced intrinsic two-photon cross-sections (>800 GM units) whose two-photon absorption maxima lie deep in the tissue transparency window (ca. 780-850 nm), and have solubility characteristics that would allow for direct IV injection into animal models. Classical PDT also suffers from the lengthy time necessary for accumulation at the tumor site, a relative lack of discrimination between healthy and diseased tissue, particularly at the tumor margins, and difficulty in clearing from the system in a reasonable amount of time post-PDT. We have recently discovered a new design paradigm for the delivery of our two-photon activated PDT agents by incorporating the porphyrins into a triad ensemble that includes a small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR one-photon imaging agent that allows the tracking of the triad in terms of accumulation and clearance rates. We are currently using these new two-photon PDT triads in efficacy

  17. Manipulation of factors affecting phytate hydrolysis in enhancing phytase efficacy in poultry: A review

    Directory of Open Access Journals (Sweden)

    Noraini*, S.

    2017-06-01

    Full Text Available Phosphorus in phytate is largely unavailable to chickens unless they are provided with dietary phytase. Phytase was shown to increase phytate degradation in the crop and proventriculus-gizzard and very little phytate degradation occurred in the duodenum-jejunum or ileum. These previous investigations were conducted on chickens fed corn based diet but not with wheat based diet. Increase in digesta passage or mean retention time (MRT along the gastrointestinal tract could enhance phytase efficacy as the prolonged reaction time between substrates and phytase may further facilitate phytate dephosphorylation. Dietary fat and fibre supplementation have been shown to influence intestinal MRT in chickens therefore it is expected that inclusion of both dietary fat and fibre could be manipulated to further improve phytase efficacy in broiler chickens. This paper provides a brief review of in vitro phytate hydrolysis, phytate hydrolysis in the gastrointestinal tract of broilers and factors that affect phytate hydrolysis that can be manipulated to enhance the efficacy of phytase in poultry diets.

  18. Polymeric Nanoparticles Containing Taxanes Enhance Chemoradiotherapeutic Efficacy in Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Jung, Joohee; Park, Sung-Jin; Chung, Hye Kyung; Kang, Hye-Won; Lee, Sa-Won; Seo, Min Hyo; Park, Heon Joo; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2012-01-01

    Purpose: To reduce the side effects and improve the efficacy of chemoradiation therapy, taxanes were incorporated into polymeric nanoparticles (PNP), and their synergic effect on radiation therapy in non-small cell lung cancer was evaluated. Methods and Materials: The properties of PNP-taxanes were characterized by transmission electron microscopy and dynamic light scattering. The chemoradiotherapeutic efficacy of PNP-taxanes was determined by clonogenic assay, cellular morphology, and flow cytometry in A549 cells. In mice bearing A549-derived tumors, the tumor growth delay was examined after the treatment of PNP-taxanes and/or ionizing radiation (IR). Results: The PNP-taxanes were found to be approximately 45 nm in average diameter and to have high solubility in water. They showed the properties of active internalization into cells and preserved the anticancer effect of free taxanes. The survival fraction of A549 cells by clonogenic assay was significantly reduced in the group receiving combined treatment of PNP-taxanes and IR. In addition, in vivo radiotherapeutic efficacy was markedly enhanced by the intravenous injection of PNP-taxanes into the xenograft mice. Conclusions: We have demonstrated the feasibility of PNP-taxanes to enhance the efficacy of chemoradiation therapy. These results suggest PNP-taxanes can hold an invaluable and promising position in treating human cancers as a novel and effective chemoradiation therapy agent.

  19. A Network Meta-Analysis of the Relative Efficacy of Treatments for Actinic Keratosis of the Face or Scalp in Europe

    Science.gov (United States)

    Vegter, Stefan; Tolley, Keith

    2014-01-01

    Background Several treatments are available for actinic keratosis (AK) on the face and scalp. Most treatment modalities were compared to placebo and therefore little is known on their relative efficacy. Objectives To compare the different treatments for mild to moderate AK on the face and scalp available in clinical practice in Europe. Methods A network meta-analysis (NMA) was performed on the outcome “complete patient clearance”. Ten treatment modalities were included: two 5-aminolaevulinic acid photodynamic therapies (ALA-PDT), applied as gel (BF-200 ALA) or patch; methyl-aminolevulinate photodynamic therapy (MAL-PDT); three modalities with imiquimod (IMI), applied as a 4-week or 16-week course with 5% imiquimod, or a 2–3 week course with 3.75% imiquimod; cryotherapy; diclofenac 3% in 2.5% hyaluronic acid; 0.5% 5-fluorouracil (5-FU); and ingenol mebutate (IMB). The only data available for 5% 5-FU was from one small study and was determined to be too limited to be reliably included in the analysis. For BF-200 ALA and MAL-PDT, data from illumination with narrow-band lights were selected as these are typically used in clinical practice. The NMA was performed with a random-effects Bayesian model. Results 25 trials on 5,562 patients were included in the NMA. All active treatments were significantly better than placebo. BF-200 ALA showed the highest efficacy compared to placebo to achieve total patient clearance. BF-200 ALA had the highest probability to be the best treatment and the highest SUCRA score (64.8% and 92.1%), followed by IMI 5% 4 weeks (10.1% and 74.2%) and 5-FU 0.5% (7.2% and 66.8%). Conclusions This NMA showed that BF-200 ALA, using narrow-band lights, was the most efficacious treatment for mild to moderate AK on the face and scalp. This analysis is relevant for clinical decision making and health technology assessment, assisting the improved management of AK. PMID:24892649

  20. Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients – a randomized controlled trial

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Lei, Ulrikke; Erlendsson, A M

    2015-01-01

    BACKGROUND: Topical photodynamic therapy (PDT) for actinic keratoses (AK) is hampered by pain during illumination and inferior efficacy in organ-transplant recipients (OTR). OBJECTIVES: We assessed ablative fractional laser (AFL)-assisted daylight photodynamic therapy (PDT) (AFL-dPDT) compared...

  1. The Development of a Cultural-Based Educational Program to Enhance Breast Self-Examination (BSE Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Juanita Juanita

    2012-08-01

    Full Text Available Purpose: To develop the educational program which is appropriate with Islamic culture in order to enhance BSE self-efficacy of nursing students and thus promote BSE practice. Method: This study is a development research study which is consisting of three phases including: 1 reviewing several existing BSE educational programs; 2 program design based on SCT and Islamic culture; and 3 program validation by three experts. Result: Based on previous studies, the most appropriate theory to enhance self-efficacy was Social Cognitive Theory (SCT because this theory provides several strategies to increase the self-efficacy. Further, the program that used Islamic culture was more appropriate to increase BSE practice among Muslim women. As a result, the newly developed program was developed used SCT and Islamic culture. This program was comprised of four sessions including: 1 exploring Islamic mandate on prevention and individual responsibility in health promotion, and culture-related beliefs toward BSE, 2 health education by conducting lecturing session and watching a video about BSE procedures, 3 BSE training activities including BSE demonstration and return demonstration, 4 follow-up by conducting a meeting. Conclusion: The cultural-based educational program for enhancing BSE self-efficacy and promoting BSE is a program using multifaceted methods. It designed based on a review of the literature from previous studies and were supported by research findings on experimental studies in other population. Keywords: Cultural, Educational program development, Breast self-examination, Self-efficacy.

  2. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy.

    Science.gov (United States)

    Duanmu, J; Cheng, J; Xu, J; Booth, C J; Hu, Z

    2011-04-26

    The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.

  3. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  4. Enhancing Teacher Efficacy and Pedagogical Practices amongst General and Special Education Teachers

    Science.gov (United States)

    Coleman, Michael

    2017-01-01

    The purpose of this action research project was to collect both qualitative and quantitative data to acquire information in teacher efficacy from the viewpoint of teachers themselves so that pedagogical practices could be enhanced to better serve the special needs student population. In this study, the relationship between teachers' perception of…

  5. EKSEPSI PLURIUM LITIS CONSORTIUM (Studi Terhadap Putusan Pengadilan Tinggi Semarang No. 401/Pdt/2002/PT. Smg jo. Putusan Pengadilan Negeri Purwokerto No.41/Pdt.G/2000/PN.Pwt

    Directory of Open Access Journals (Sweden)

    Siti Muflichah

    2008-05-01

    Full Text Available In the civil jurisdiction, truth searched is the formal truth. This matter of course different from the criminal justice, where truth searched is material truth. Searching the formal truth, meaning that judge may not be abysmal of boundary that raised by the parties. This matter contain the congeniality, that verification process is not see at wight or content, but to wide of case scope or dispute that raised by the parties. In this case judge have the passive character. in civil jurisdiction, truth searched is a truth that relying on formal verification. The Judge decision shall contain the rule of law element, justice and benefit. For the reason judge have to careful, goodness in making draft of decision and also decision intake later. In Case No. 401/ Pdt / 2002 / PT. Smg, The Judge of High Court of middle of Java made the decision by strengthening decision of District Court of Purwokerto in case No. 41/Pdt.G/2000/PN Pwt. This Judge Decision represent an example of careless of the judge in make decision. exception of the lack of party had refused. Therefore, judge have to consider this matter in its decision. Therefore, judge have to consider this matter in its decision. This matter of course relative harm the plaintiff, because if suing is not accepted, plaintiff can improve/ repair its suing or make a lawsuit to the court newly again. But refusedly of suing make the plaintiff cannot improve/ repair its suing or make the new suing again. finally, the decision which is not careful will not fulfill the rule of law elements, justice and benefit.

  6. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    Science.gov (United States)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of

  7. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy.

  8. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  9. Efficacy of krypton laser photodynamic therapy for oral mucosa dysplasia in 9,10-dimethyl-1,2-benzanthracene-treated hamsters.

    Science.gov (United States)

    Shen, Lingyue; Xu, Qing; Li, Pingping; Zhou, Guoyu

    2013-11-01

    The present study aimed to evaluate the efficacy of krypton laser photodynamic therapy (PDT) with PsD-007 for the treatment of oral mucosa dysplasia in 9,10-dimethyl-1,2-benzanthracene (DMBA)-treated hamsters. A DMBA-induced hamster cheek pouch model of precancerous lesions was created and the resultant 25 hamsters were divided into five groups. The right side was treated with PDT and the left side was used as the positive control. Following systemic anesthesia, an incision was made in the groin area to expose the femoral vein. PsD-007 was administered intravenously through the femoral vein. Various doses of photosensitizer were used to treat groups A-E. Subsequent to closing the incision, the right side of the buccal mucosa was irradiated with light using the krypton laser at a wavelength of 413 nm, a power density of 150 mW/cm 2 and an irradiation time of 20 min. At six weeks post-surgery, the response was analyzed using histological examinations of the buccal pouch mucosa. A total of 24 hamsters completed the six-week observation period, as one hamster from group C died in the second week following the PDT. Of all 24 irradiated sides, 15 formed normal mucosal tissues and nine demonstrated mild dysplasia. Of the total control sides, six developed moderate dysplasia, five developed severe dysplasia and 13 progressed to carcinoma in situ or squamous cell carcinoma (SCC). The results revealed a significant difference between the two sides (P10 mg/kg, there was no statistical difference (P>0.05). PsD-007-mediated krypton laser PDT is effective for the treatment of oral mucosa dysplasia in hamsters.

  10. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin.

    Science.gov (United States)

    Hattori, Yoshiyuki; Shibuya, Kazuhiko; Kojima, Kaori; Miatmoko, Andang; Kawano, Kumi; Ozaki, Kei-Ichi; Yonemochi, Etsuo

    2015-07-01

    Previously, we found that the injection of zoledronic acid (ZOL) into mice bearing tumor induced changes of the vascular structure in the tumor. In this study, we examined whether ZOL treatment could decrease interstitial fluid pressure (IFP) via change of tumor vasculature, and enhance the antitumor efficacy of liposomal doxorubicin (Doxil®). When ZOL solution was injected at 40 µg/mouse per day for three consecutive days into mice bearing murine Lewis lung carcinoma LLC tumor, depletion of macrophages in tumor tissue and decreased density of tumor vasculature were observed. Furthermore, ZOL treatments induced inflammatory cytokines such as interleukin (IL)-10 and -12, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α in serum of LLC tumor-bearing mice, but not in normal mice, indicating that ZOL treatments might induce an inflammatory response in tumor tissue. Furthermore, ZOL treatments increased antitumor activity by Doxil in mice bearing a subcutaneous LLC tumor, although they did not significantly increase the tumor accumulation of doxorubicin (DXR). These results suggest that ZOL treatments might increase the therapeutic efficacy of Doxil via improvement of DXR distribution in a tumor by changing the tumor vasculature. ZOL treatment can be an alternative approach to increase the antitumor effect of liposomal drugs.

  11. Photophysical and photochemical properties of Bauhinia megalandra (Caesalpinaceae) extracts as new PDT photosensitizer

    Science.gov (United States)

    Vargas Tovar, Franklin R.; Rivas, C.; Estrada, O.; Marcano O., Aristides A.; Echevarria, Lorenzo; Diaz, Yrene; Alexander, I.; Rodriguez, L.; Padron, L.; Rivera, I. R.

    2004-10-01

    Recently new photosensitizers, chlorophyll "a and b" derivatives, for photodynamic therapy (PDT) have been presented. It already passed complete pre-clinical investigations. This prompted us to carry out an extensive study of photophysical properties of chlorine derivatives, important both for optimization of their clinic applications and for study of mechanisms of chlorine PDT&. The fresh leaves of Bauhinia megalandra (Caesalpinaceae) were extracted with methanol by percolation, and re-extract with a mixture of methanol-water (1:1), the insoluble fraction was then separated by column chromatography [RP18/hexane-ethylacetate (9:1)] to obtain four fractions named 1 to 4. These compounds were identified by NMR data. We found that 3 and 4 efficiently generates singlet oxygen when irradiated with visible light. Detection of the singlet oxygen was fulfilled by its reaction with histidine and detected by bleaching p-nitrosodimethylaniline under 440 nm irradiation. The quantum yields of singlet oxygen determined by us were 0.088 (1), 0.151 (2), 0.219 (3) and 0.301 (4). We measured absorption and fluorescence spectra of compounds 1 to 4 (Mg-chlorophyll-a, Pheophytin, Mg-chlorophyll-b and chlorophyll-b respectively) in different media and in aqueous solutions of human serum albumin. The association constant of the compounds 1, 2, 3 and 4 in the presence of HSA were estimated. The binding and quenching studies suggest that only 1 and 3 may serve as a useful fluorescence probe for structure/function studies of different chlorophyll binding proteins. No photoinduced binding was observed after irradiation by all the studied compounds in presence of human serum albumin.

  12. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy.

    Science.gov (United States)

    Wan, Guoyun; Chen, Bowei; Li, Ling; Wang, Dan; Shi, Shurui; Zhang, Tao; Wang, Yue; Zhang, Lianyun; Wang, Yinsong

    2018-02-01

    Red blood cells (RBCs)-based vesicles have been widely used for drug delivery due to their unique advantages. Intact RBCs contain a large amount of oxyhemoglobin (oxyHb), which can assist with photodynamic therapy (PDT). Indocyanine green (ICG), a photosensitizer both for photothermal therapy (PTT) and PDT, shows potent anticancer efficacy when combined with chemotherapeutic drug doxorubicin (DOX). In this study, we prepared nanoscaled RBCs (RAs) containing oxyHb and gas-generating agent ammonium bicarbonate (ABC) for co-loading and controlled release of ICG and DOX, thus hoping to achieve synergistic effects of PTT/PDT and chemotherapy against breast cancer. Compared to free ICG, ICG and DOX co-loaded RAs (DIRAs) exhibited nearly identical PTT efficiency both in vitro and in vivo, but meanwhile their PDT efficiency was enhanced significantly. In mouse breast cancer cells, DIRAs significantly inhibited cell growth and induced cell apoptosis after laser irradiation. In breast tumor-bearing mice, intratumoral injection of DIRAs and followed by local laser irradiation almost completely ablated breast tumor and further suppressed tumor recurrence and metastasis. In conclusion, this biomimetic multifunctional nanosystem can facilitate breast cancer treatment by combining PTT/PDT and chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  14. Inspiring Instructional Change in Elementary School Science: The Relationship Between Enhanced Self-efficacy and Teacher Practices

    Science.gov (United States)

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2014-10-01

    This longitudinal study examined the extent to which teachers' participation in a 3-year professional development program enhanced their self-efficacy and prompted changes in science instruction in the early elementary grades. The study used a mixed-methods design, and included 39 teachers who taught in kindergarten, first grade, or second grade classrooms in rural school districts. Data sources, administered pre-program and at the end of each year, included a self-efficacy assessment and teacher survey. Interviews and classroom observations provided corroborating data about teachers' beliefs and science instruction. Results showed significant increases in teachers' overall self-efficacy in teaching science, personal efficacy, and outcome expectancy efficacy during the 3 years. Gains in self-efficacy were correlated with changes in reported instructional practices, particularly student participation activities. However, changes in self-efficacy tended not to be correlated with changes in instructional time. Contextual factors beyond teachers' direct control, such as curricular and testing requirements in mathematics and language arts influenced time allotted to science instruction.

  15. Fractional laser-mediated photodynamic therapy of high-risk basal cell carcinomas

    DEFF Research Database (Denmark)

    Haak, C S; Togsverd-Bo, K; Thaysen-Petersen, D

    2015-01-01

    efficacy and safety of AFXL-mediated PDT (AFXL-PDT) compared with conventional PDT of high-risk nBCC. METHODS: Patients with histologically verified facial nBCC (n = 32) defined as high-risk tumours were included; diameter > 15 mm, tumours located in high-risk zones, or on severely sun-damaged skin...

  16. Verteporfin plus ranibizumab for choroidal neovascularization in age-related macular degeneration

    DEFF Research Database (Denmark)

    Larsen, Michael; Schmidt-Erfurth, Ursula; Lanzetta, Paolo

    2012-01-01

    To compare the efficacy and safety of same-day verteporfin photodynamic therapy (PDT) and intravitreal ranibizumab combination treatment versus ranibizumab monotherapy in neovascular age-related macular degeneration.......To compare the efficacy and safety of same-day verteporfin photodynamic therapy (PDT) and intravitreal ranibizumab combination treatment versus ranibizumab monotherapy in neovascular age-related macular degeneration....

  17. Self-efficacy enhancing intervention increases light physical activity in people with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Larson, Janet L; Covey, Margaret K; Kapella, Mary C; Alex, Charles G; McAuley, Edward

    2014-01-01

    People with chronic obstructive pulmonary disease lead sedentary lives and could benefit from increasing their physical activity. The purpose of this study was to determine if an exercise-specific self-efficacy enhancing intervention could increase physical activity and functional performance when delivered in the context of 4 months of upper body resistance training with a 12-month follow-up. IN THIS RANDOMIZED CONTROLLED TRIAL, SUBJECTS WERE ASSIGNED TO: exercise-specific self-efficacy enhancing intervention with upper body resistance training (SE-UBR), health education with upper body resistance training (ED-UBR), or health education with gentle chair exercises (ED-Chair). Physical activity was measured with an accelerometer and functional performance was measured with the Functional Performance Inventory. Forty-nine people with moderate to severe chronic obstructive pulmonary disease completed 4 months of training and provided valid accelerometry data, and 34 also provided accelerometry data at 12 months of follow-up. The self-efficacy enhancing intervention emphasized meeting physical activity guidelines and increasing moderate-to-vigorous physical activity. Differences were observed in light physical activity (LPA) after 4 months of training, time by group interaction effect (P=0.045). The SE-UBR group increased time spent in LPA by +20.68±29.30 minutes/day and the other groups decreased time spent in LPA by -22.43±47.88 minutes/day and -25.73±51.76 minutes/day. Changes in LPA were not sustained at 12-month follow-up. There were no significant changes in moderate-to-vigorous physical activity, sedentary time, or functional performance. Subjects spent most of their waking hours sedentary: 72%±9% for SE-UBR, 68%±10% for ED-UBR, and 74%±9% for ED-Chair. The self-efficacy enhancing intervention produced a modest short-term increase in LPA. Further work is needed to increase the magnitude and duration of effect, possibly by targeting LPA.

  18. Glucose is required to maintain high ATP-levels for the energy utilizing steps during PDT-induced apoptosis

    International Nuclear Information System (INIS)

    Oberdanner, C.; Plaetzer, K.; Kiesslich, T.; Krammer, B.

    2003-01-01

    Full text: Photodynamic therapy (PDT) may trigger apoptosis or necrosis in cancer cells. Several steps in the induction and execution of apoptosis require high amounts of adenosine-5'-triphosphate (ATP). Since the mitochondrial membrane potential (ΔΨ) decreases early in apoptosis, we raised the question about the mechanisms of maintaining a sufficiently high ATP-level. We therefore monitored ΔΨ and the intracellular ATP-level of apoptotic human epidermoid carcinoma cells (A431) after photodynamic treatment with aluminium (III) phthalocyanine tetrasulfonate chloride. A maximum of caspase-3 activation and nuclear fragmentation was found at fluences of about 4 J.cm -2 . Under these conditions apoptotic cells reduced ΔΨ rapidly, while the ATP-level remained high for 4 to 6 hours after treatment for cells supplied with glucose. To analyze the contribution of glycolysis to the energy supply during apoptosis experiments were carried out with cells deprivated of glucose. These cells showed a rapid drop of ATP-content and neither caspase-activation nor nuclear fragmentation could be detected. We conclude that the use of glucose as a source of ATP is obligatory for the execution of PDT-induced apoptosis. (author)

  19. Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm

    Directory of Open Access Journals (Sweden)

    Xie S

    2011-10-01

    Full Text Available Shuyu Xie1,*, Baoliang Pan1,*, Baoxin Shi2, Zhuangzhi Zhang2, Xu Zhang2, Ming Wang1, Wenzhong Zhou11Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China; 2Veterinary Research Institute, Xinjiang Academy of Animal Science, Xinjiang, People’s Republic of China *These authors contributed equally to this study Abstract: Hydatid disease caused by tapeworm is an increasing public health and socioeconomic concern. In order to enhance the therapeutic efficacy of praziquantel (PZQ against tapeworm, PZQ-loaded hydrogenated castor oil solid lipid nanoparticle (PZQ-HCO-SLN suspension was prepared by a hot homogenization and ultrasonication method. The stability of the suspension at 4°C and room temperature was evaluated by the physicochemical characteristics of the nanoparticles and in-vitro release pattern of the suspension. Pharmacokinetics was studied after subcutaneous administration of the suspension in dogs. The therapeutic effect of the novel formulation was evaluated in dogs naturally infected with Echinococcus granulosus. The results showed that the drug recovery of the suspension was 97.59% ± 7.56%. Nanoparticle diameter, polydispersivity index, and zeta potential were 263.00 ± 11.15 nm, 0.34 ± 0.06, and -11.57 ± 1.12 mV, respectively and showed no significant changes after 4 months of storage at both 4°C and room temperature. The stored suspensions displayed similar in-vitro release patterns as that of the newly prepared one. SLNs increased the bioavailability of PZQ 5.67-fold and extended the mean residence time of the drug from 56.71 to 280.38 hours. Single subcutaneous administration of PZQ-HCO-SLN suspension obtained enhanced therapeutic efficacy against tapeworm in infected dogs. At the dose of 5 mg/kg, the stool-ova reduction and negative conversion rates and tapeworm removal rate of the suspension were 100%, while the native PZQ were 91

  20. Psychodynamic psychotherapy versus cognitive behavior therapy for social anxiety disorder: An efficacy and partial effectiveness trial

    NARCIS (Netherlands)

    Bögels, S.M.; Wijts, P.; Oort, F.J.; Sallaerts, S.J.M.

    2014-01-01

    Objectives: Comparing the overall and differential effects of psychodynamic psychotherapy (PDT) versus cognitive behavior therapy (CBT) for social anxiety disorder (SAD). Design: Patients with a primary SAD (N = 47) were randomly assigned to PDT (N = 22) or CBT (N = 27). Both PDT and CBT consisted

  1. A glycoporphyrin story: from chemistry to PDT treatment of cancer mouse models.

    Science.gov (United States)

    Lupu, M; Maillard, Ph; Mispelter, J; Poyer, F; Thomas, C D

    2018-06-01

    Photodynamic therapy (PDT) represents a non-toxic and non-mutagenic antitumor therapy. The photosensitizer's (PS) chemo-physical properties are essential for the therapy, being responsible for the biological effects induced in the targeted tissues. In this study, we present the synthesis and development of some glycoconjugated porphyrins based on lectin-type receptor interaction. They were tested in vitro for finally choosing the most effective chemical structure for an optimum antitumor outcome. The most effective photosensitizer is substituted by three diethylene glycol α-d-mannosyl groups. In vivo studies allow firstly the determination of some characteristics of the biological processes triggered by the initial photochemical activation. Secondly, they make it possible to improve the therapeutic protocol in the function of the structural architecture of the targeted tumor tissue.

  2. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    Science.gov (United States)

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  3. Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser

    DEFF Research Database (Denmark)

    Togsverd-Bo, K; Haak, C S; Thaysen-Petersen, D

    2012-01-01

    Photodynamic therapy (PDT) with methyl aminolaevulinate (MAL) is effective for thin actinic keratoses (AKs) in field-cancerized skin. Ablative fractional laser resurfacing (AFXL) creates vertical channels that facilitate MAL uptake and may improve PDT efficacy....

  4. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    Science.gov (United States)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  5. Efficacy of gadolinium enhanced MR imaging for the diagnosis of Legg-Calve-Perthes disease

    International Nuclear Information System (INIS)

    Kim, Jee Eun; Kim, Hyung Sik; Kim, Ji Hye

    2008-01-01

    The purpose of this study was to evaluate the efficacy of gadolinium enhanced MR imaging for making the diagnosis of Legg-Calve-Perthes (LCP) disease. We studied the gadolinium enhanced MR images of 14 hips in 12 children who had the diagnosis of LCP disease. We retrospectively analyzed the extent of necrosis, the epiphyseal revascularization pathways and the metaphyseal changes. The absence of enhancement on gadolinium enhanced MRI was noted in all cases of LCP disease. Diffuse absence of enhancement was observed in 9 femoral epiphyses. Two of them showed normal bone marrow signal intensity on the T1 and T1-weighted images. Focal absence of enhancement was observed in 5 femoral epiphyses. Enhanced MRI showed better epiphyseal revascularization in the lateral column (five cases), in the lateral and medial columns (four cases) and in the transphyseal pathway (three cases). Metaphyseal change was observed in two cases. Gadolinium enhanced MRI allows detection of LCP disease and an accurate analysis of the different revascularization patterns, and this helpful for predicting the prognosis

  6. Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids

    Directory of Open Access Journals (Sweden)

    Sayeda Yasmin-Karim

    2018-04-01

    Full Text Available Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs, with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation. This study explores the potential of combination approaches employing CBDs with radiotherapy (RT or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.

  7. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Kim Sung-Ho

    2009-03-01

    Full Text Available Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W. reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  8. Using Acetaminophen's Toxicity Mechanism to Enhance Cisplatin Efficacy in Hepatocarcinoma and Hepatoblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Alexander J. Neuwelt

    2009-10-01

    Conclusions: Our results suggest that a chemotherapeutic regimen containing both AAP and CDDP with delayed NAC rescue has the potential to enhance chemotherapeutic efficacy while decreasing adverse effects. This would be a promising approach particularly for hepatoblastomas regardless of cellular CYP2E1 protein level but could also be beneficial in other malignancies.

  9. Daylight photodynamic therapy for actinic keratosis

    DEFF Research Database (Denmark)

    Wiegell, Stine; Wulf, H C; Szeimies, R-M

    2011-01-01

    clinic visits and discomfort during therapy. In this article, we critically review daylight-mediated PDT, which is a simpler and more tolerable treatment procedure for PDT. We review the effective light dose, efficacy and safety, the need for prior application of sunscreen, and potential clinical scope...... of daylight-PDT. Three randomized controlled studies have shown that daylight-mediated PDT is an effective treatment of thin AKs. Daylight-mediated PDT is nearly pain-free and more convenient for both the clinics and patients. Daylight-mediated PDT is especially suited for patients with large field......-cancerized areas, which can easily be exposed to daylight. Further investigations are necessary to determine at which time of the year and in which weather conditions daylight-mediated PDT will be possible in different geographical locations....

  10. The Effectiveness of Group Motivational Interviewing Sessions on Enhancing of Addicted Women’s Self-Esteem and Self Efficacy

    Directory of Open Access Journals (Sweden)

    Samireh Dehghani F

    2013-07-01

    Full Text Available Objective: The aim of present research was to study of the effectiveness of motivational interviewing on enhancing of self-esteem and self-efficacy in addicted women who were under therapy. Method: The research method was semi experimental research design namely: pretest-posttest with witness group. The population consisted of all addicted women who were referred to Ayandeh Roshan recovery addiction camp of Isfahan city during summer in 1391. By available sampling, 30 women selected and divided randomly to two experimental and witness groups (N= 15, per group. Experimental group received eight sessions of 90 minutes based on group counseling sessions following motivational interviewing style. For gathering data, Cooper Smith’s self-esteem and general self-efficacy questionnaires administered among two groups. Results: The results indicated the effectiveness of motivational interviewing. Conclusion: It can be concluded that motivational interviewing has had enhancing effect on self-esteem and self-efficacy among experimental group.

  11. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment

    DEFF Research Database (Denmark)

    Haedersdal, M; Katsnelson, J; Sakamoto, F H

    2011-01-01

    Photodynamic therapy (PDT) of thick skin lesions is limited by topical drug uptake. Ablative fractional resurfacing (AFR) creates vertical channels that may facilitate topical PDT drug penetration and improve PDT-response in deep skin layers. The purpose of this study was to evaluate whether pre......-treating the skin with AFR before topically applied methyl aminolevulinate (MAL) could enable a deep PDT-response....

  12. Enhancing the hermeneutic single-case efficacy design: Bridging the research-practice gap.

    Science.gov (United States)

    Wall, Jessie M; Kwee, Janelle L; Hu, Monica; McDonald, Marvin J

    2017-09-01

    Systematic case study designs are emerging as alternative paradigm strategies for psychotherapy and social science research. Through enhanced sensitivity to context, these designs examine idiographic profiles of causal processes. We specifically advocate the use of the hermeneutic single-case efficacy design (HSCED). HSCED has recently been used to investigate the efficacy of an existing therapy with a new population (Observed and Experiential Integration for athlete performance barriers) and an emerging therapy (Lifespan Integration Therapy). We describe innovations in HSCED that were implemented for these studies. These developments include (a) integrating psychotherapists as case developers, (b) incorporating multiple cases in one investigation, and (c) tailoring the repertoire of assessment tools. These extensions strategically incorporated principles of contextual paradigms in HSCED, thus complementing single-case designs that neglect idiographic contexts. We discuss recommendations for using HSCED in practice-based research, highlighting its potential as a bridge to address the research-practice gap.

  13. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine

    Science.gov (United States)

    Schmauss, C.

    2015-01-01

    Depression is a prevalent and debilitating psychiatric illnesses. However, currently prescribed antidepressant drugs are only efficacious in a limited group of patients. Studies on Balb/c mice suggested that histone deacetylase (HDAC) inhibition may enhance the efficacy of the widely-prescribed antidepressant drug fluoxetine. This study shows that reducing HDAC activity in fluoxetine-treated Balb/c mice leads to robust antidepressant and anxiolytic effects. While reducing the activity of class I HDACs 1 and 3 led to antidepressant effects, additional class II HDAC inhibition was necessary to exert anxiolytic effects. In fluoxetine-treated mice, HDAC inhibitors increased enrichment of acetylated histone H4 protein and RNA polymerase II at promotor 3 of the brain-derived neurotrophic factor (Bdnf) gene and increased Bdnf transcription from this promotor. Reducing Bdnf-stimulated tropomyosin kinase B receptor activation in fluoxetine-treated mice with low HDAC activity abolished the behavioral effects of fluoxetine, suggesting that the HDAC-triggered epigenetic stimulation of Bdnf expression is critical for therapeutic efficacy. PMID:25639887

  14. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy

    Directory of Open Access Journals (Sweden)

    Siegal Gene P

    2007-10-01

    Full Text Available Abstract Background Human adenovirus serotype 5 (Ad5 has been widely explored as a gene delivery vector for a variety of diseases. Many target cells, however, express low levels of Ad5 native receptor, the Coxsackie-Adenovirus Receptor (CAR, and thus are resistant to Ad5 infection. The Protein Transduction Domain of the HIV Tat protein, namely PTDtat, has been shown to mediate protein transduction in a wide range of cells. We hypothesize that re-targeting Ad5 vector via the PTDtat motif would improve the efficacy of Ad5-mediated gene delivery. Results In this study, we genetically incorporated the PTDtat motif into the knob domain of Ad5 fiber, and rescued the resultant viral vector, Ad5.PTDtat. Our data showed the modification did not interfere with Ad5 binding to its native receptor CAR, suggesting Ad5 infection via the CAR pathway is retained. In addition, we found that Ad5.PTDtat exhibited enhanced gene transfer efficacy in all of the cell lines that we have tested, which included both low-CAR and high-CAR decorated cells. Competitive inhibition assays suggested the enhanced infectivity of Ad5.PTDtat was mediated by binding of the positively charged PTDtat peptide to the negatively charged epitopes on the cells' surface. Furthermore, we investigated in vivo gene delivery efficacy of Ad5.PTDtat using subcutaneous tumor models established with U118MG glioma cells, and found that Ad5.PTDtat exhibited enhanced gene transfer efficacy compared to unmodified Ad5 vector as analyzed by a non-invasive fluorescence imaging technique. Conclusion Genetic incorporation of the PTDtat motif into Ad5 fiber allowed Ad5 vectors to infect cells via an alternative PTDtat targeting motif while retaining the native CAR-mediated infection pathway. The enhanced infectivity was demonstrated in both cultured cells and in in vivo tumor models. Taken together, our study identifies a novel tropism expanded Ad5 vector that may be useful for clinical gene therapy

  15. The efficacy of a brief motivational enhancement education program on CPAP adherence in OSA: a randomized controlled trial.

    Science.gov (United States)

    Lai, Agnes Y K; Fong, Daniel Y T; Lam, Jamie C M; Weaver, Terri E; Ip, Mary S M

    2014-09-01

    Poor adherence to CPAP treatment in OSA adversely affects the effectiveness of this therapy. This randomized controlled trial (RCT) examined the efficacy of a brief motivational enhancement education program in improving adherence to CPAP treatment in subjects with OSA. Subjects with newly diagnosed OSA were recruited into this RCT. The control group received usual advice on the importance of CPAP therapy and its care. The intervention group received usual care plus a brief motivational enhancement education program directed at enhancing the subjects' knowledge, motivation, and self-efficacy to use CPAP through the use of a 25-min video, a 20-min patient-centered interview, and a 10-min telephone follow-up. Self-reported daytime sleepiness adherence-related cognitions and quality of life were assessed at 1 month and 3 months. CPAP usage data were downloaded at the completion of this 3-month study. One hundred subjects with OSA (mean ± SD, age 52 ± 10 years; Epworth Sleepiness Scales [ESS], 9 ± 5; median [interquartile range] apnea-hypopnea index, 29 [20, 53] events/h) prescribed CPAP treatment were recruited. The intervention group had better CPAP use (higher daily CPAP usage by 2 h/d [Cohen d = 1.33, P motivational enhancement education in addition to usual care were more likely to show better adherence to CPAP treatment, with greater improvements in treatment self-efficacy and daytime sleepiness. ClinicalTrials.gov; No.: NCT01173406; URL: www.clinicaltrials.gov.

  16. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-03-17

    Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-gamma secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  17. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies.

    Directory of Open Access Journals (Sweden)

    Barbara Pucelik

    Full Text Available The impact of substituents on the photochemical and biological properties of tetraphenylporphyrin-based photosensitizers for photodynamic therapy of cancer (PDT as well as photodynamic inactivation of microorganisms (PDI was examined. Spectroscopic and physicochemical properties were related with therapeutic efficacy in PDT of cancer and PDI of microbial cells in vitro. Less polar halogenated, sulfonamide porphyrins were most readily taken up by cells compared to hydrophilic and anionic porphyrins. The uptake and PDT of a hydrophilic porphyrin was significantly enhanced with incorporation in polymeric micelles (Pluronic L121. Photodynamic inactivation studies were performed against Gram-positive (S. aureus, E. faecalis, Gram-negative bacteria (E. coli, P. aeruginosa, S. marcescens and fungal yeast (C. albicans. We observed a 6 logs reduction of S. aureus after irradiation (10 J/cm2 in the presence of 20 μM of hydrophilic porphyrin, but this was not improved with incorporation in Pluronic L121. A 2-3 logs reduction was obtained for E. coli using similar doses, and a decrease of 3-4 logs was achieved for C. albicans. Rational substitution of tetraphenylporphyrins improves their photodynamic properties and informs on strategies to obtain photosensitizers for efficient PDT and PDI. However, the design of the photosensitizers must be accompanied by the development of tailored drug formulations.

  18. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  19. Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization

    International Nuclear Information System (INIS)

    Narband, N; Parkin, I P; Mubarak, M; Nair, S P; Wilson, M; Ready, D; Green, M A; Beeby, A

    2008-01-01

    Because of the increasing resistance of bacteria to antibiotics there is considerable interest in light-activated antimicrobial agents (LAAAs) as alternatives to antibiotics for treating localized infections. The purpose of this study was to determine whether CdSe/ZnS quantum dots (QD) could enhance the antibacterial activity of the LAAA, toluidine blue O (TBO). Suspensions of Staphylococcus aureus and Streptococcus pyogenes were exposed to white light (3600 lux) and TBO (absorbance maximum = 630 nm) in the presence and absence of 25 nm diameter QD (emission maximum = 627 nm). When the TBO:QD ratio was 2667:1, killing of Staph. aureus was enhanced by 1.72log 10 units. In the case of Strep. pyogenes, an enhanced kill of 1.55log 10 units was achieved using TBO and QD in the ratio 267:1. Singlet oxygen and fluorescence measurements showed that QD suppress the formation of singlet oxygen from TBO and that QD fluorescence is significantly quenched in the presence of TBO (70-90%). Enhanced killing appears to be attributable to a non-Foerster resonance energy transfer mechanism, whereby the QD converts part of the incident light to the absorption maximum for TBO; hence more light energy is harvested, resulting in increased concentrations of bactericidal radicals. QD may, therefore, be useful in improving the efficacy of antimicrobial photodynamic therapy.

  20. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers.

    Science.gov (United States)

    Pavani, Christiane; Uchoa, Adjaci F; Oliveira, Carla S; Iamamoto, Yassuko; Baptista, Maurício S

    2009-02-01

    A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phif, and singlet oxygen quantum yield PhiDelta), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phif

  1. Efficacy of enhanced external counterpulsation: our experience

    Directory of Open Access Journals (Sweden)

    Chandra Mani Adhikari

    2014-11-01

    Full Text Available Aims Enhanced external counterpulsation therapy is a non-invasive, non-pharmacological outpatient treatment option for refractory angina pectoris. Our aim is to evaluate its efficacy in Nepalese refractory angina pectoris patients. Materials and methods It was single centre prospective study conducted from 2010 August to 2013 December. All thirty one (n=31 consecutive patients, referred for and received 35 hours of treatment were included in this study. The distance covered in six minute walk test before and after the treatment was recorded and compared. Patients were followed each with the questionnaires about their anginal symptoms before and after the treatment. Results In our study 19(61.3% were male and 12(38.7% female. The mean age was 65.7±9.3 years. Most patients had multi vessel disease. Twelve patients had previous history of revascularization. In 6 minute walk test there was significant difference in mean distance covered before and after the treatment. Most patients experienced decrease in the angina symptom. They had decreased in severity and frequency of angina, resulting in decreased use of sublingual nitrates. Conclusion EECP can be safe and effective treatment option for patients with RAP.

  2. Long-term exposure to estrogen enhances chemotherapeutic efficacy potentially through epigenetic mechanism in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available Chemotherapy is the most common clinical option for treatment of breast cancer. However, the efficacy of chemotherapy depends on the age of breast cancer patients. Breast tissues are estrogen responsive and the levels of ovarian estrogen vary among the breast cancer patients primarily between pre- and post-menopausal age. Whether this age-dependent variation in estrogen levels influences the chemotherapeutic efficacy in breast cancer patients is not known. Therefore, the objective of this study was to evaluate the effects of natural estrogen 17 beta-estradiol (E2 on the efficacy of chemotherapeutic drugs in breast cancer cells. Estrogen responsive MCF-7 and T47D breast cancer cells were long-term exposed to 100 pg/ml estrogen, and using these cells the efficacy of chemotherapeutic drugs doxorubicin and cisplatin were determined. The result of cell viability and cell cycle analysis revealed increased sensitivities of doxorubicin and cisplatin in estrogen-exposed MCF-7 and T47D cells as compared to their respective control cells. Gene expression analysis of cell cycle, anti-apoptosis, DNA repair, and drug transporter genes further confirmed the increased efficacy of chemotherapeutic drugs in estrogen-exposed cells at molecular level. To further understand the role of epigenetic mechanism in enhanced chemotherapeutic efficacy by estrogen, cells were pre-treated with epigenetic drugs, 5-aza-2-deoxycytidine and Trichostatin A prior to doxorubicin and cisplatin treatments. The 5-aza-2 deoxycytidine pre-treatment significantly decreased the estrogen-induced efficacy of doxorubicin and cisplatin, suggesting the role of estrogen-induced hypermethylation in enhanced sensitivity of these drugs in estrogen-exposed cells. In summary, the results of this study revealed that sensitivity to chemotherapy depends on the levels of estrogen in breast cancer cells. Findings of this study will have clinical implications in selecting the chemotherapy strategies for

  3. Hemoporfin Photodynamic Therapy for Port-Wine Stain: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    Full Text Available Photodynamic therapy (PDT has shown potentially beneficial results in treating port-wine stain, but its benefit-risk profile remains undefined. This study aimed to evaluate the efficacy and safety of PDT conducted with hemoporfin and a 532 nm continuous wave laser to treat port-wine stain clinically.This randomized clinical trial was conducted in eight hospitals in China. Participants were adolescent and adult patients (age range: 14-65 years old with port-wine stain. During stage 1 (day 1 to week 8 all patients were randomized at a 3:1 ratio to treatment (532 nm laser irradiation (96-120 J/cm2 with hemoporfin (5mg/kg; PDT-hemoporfin, n = 330 or placebo groups (irradiation with placebo (PDT-placebo, n = 110; during stage 2 (week 8 to 16 patients in both groups were offered treatment. Clinician-evaluators, who were blind to the study, classified each case on the following four-level scale according to assessment of before and after standardized pictures of the lesion area: no improvement: <20%; some improvement: 20-59%; great improvement: 60-89%; or nearly completely resolved: ≥90%. The primary efficacy endpoint was proportion of patients achieving at least some improvement at week 8. The secondary efficacy endpoints were proportion of patients achieving nearly completely resolved or at least great improvement at week 8, proportion of patients achieving early completely resolved, at least great improvement, or at least some improvement at week 16, and the corresponding satisfaction of the investigators and the patients (designated as 'excellent', 'good', 'moderate', or 'ineffective' at weeks 8 and 16.Compared to the PDT-placebo group, the PDT-hemoporfin group showed a significantly higher proportion of patients that achieved at least some improvement (89.7% [n = 295; 95% CI, 85.9%-92.5%] vs. 24.5% [n = 27; 95% CI, 17.4%-33.3%] at week 8 (P < 0.0001 and higher improvements for all secondary efficacy endpoints. Treatment reactions occurred in 99

  4. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines

    NARCIS (Netherlands)

    Hartmans, Elmire; Linssen, Matthijs D.; Sikkens, Claire; Levens, Afra; Witjes, Max J. H.; van Dam, Gooitzen M.; Nagengast, Wouter B.

    2017-01-01

    Esophageal carcinoma (EC) is a global health problem, with disappointing 5-year survival rates of only 15-25%. Near-infrared targeted photodynamic therapy (NIR-tPDT) is a novel strategy in which cancer-targeted phototoxicity is able to selectively treat malignant cells. In this in vitro report we

  5. Studies of photodynamic therapy: Investigation of physiological mechanisms and dosimetry

    Science.gov (United States)

    Woodhams, Josephine Helen

    Photodynamic therapy (PDT) is a treatment for a range of malignant and benign lesions using light activated photosensitising drugs in the presence of molecular oxygen. PDT causes tissue damage by a combination of processes involving the production of reactive oxygen species (in particular singlet oxygen). Since the PDT cytotoxic effect depends on oxygen, monitoring of tissue oxygenation during PDT is important for understanding the basic physiological mechanisms and dosimetry of PDT. This thesis describes the use of non-invasive, optical techniques based on visible light reflectance spectroscopy for the measurement of oxy- to deoxyhaemoglobin ratio or haemoglobin oxygen saturation (HbSat). HbSat was monitored at tissue sites receiving different light dose during aluminium disulphonated phthalocyanine (AIS2PC) PDT. Results are presented on real time PDT-induced changes in HbSat in normal tissue (rat liver) and experimental tumours, and its correlation with the final biological effect under different light regimes, including fractionated light delivery. It was found to some extent that changes in HbSat could indicate whether the tissue would be necrotic after PDT and it was concluded that online physiological dosimetry is feasible for PDT. The evaluation of a new photosensitiser for PDT called palladium-bacteriopheophorbide (WST09) has been carried out in normal and tumour tissue in vivo. WST09 was found to exert a strong PDT effect but was active only shortly after administration. WST09 produced substantial necrosis in colonic tumours whilst only causing a small amount of damage to the normal colon under certain conditions indicating a degree of selectivity. Combination therapy with PDT for enhancing the extent of PDT-induced damage has been investigated in vivo by using the photochemical internalisation (PCI) technique and Type 1 mechanism enhanced phototoxicity with indole acetic acid (IAA). PCI of gelonin using AIS2PC PDT in vivo after systemic administration of

  6. Continuous ultra-low-intensity artificial daylight is not as effective as red LED light in photodynamic therapy of multiple actinic keratoses

    DEFF Research Database (Denmark)

    Wiegell, Stine Regin; Heydenreich, Jakob; Fabricius, Susanne

    2011-01-01

    Daylight-mediated photodynamic therapy (PDT) is a simple and tolerable treatment of nonmelanoma skin cancer. It is of interest which light intensity is sufficient to prevent accumulation of protoporphyrin IX (PpIX) and effectively treat actinic keratoses (AKs). We compared the efficacy of PDT...

  7. Inhibition of COX-2 does not affect therapeutical result of photodynamic therapy with hypericin despite of its increased activity and expression

    International Nuclear Information System (INIS)

    Mikes, J.; Kleban, J.; Kulikova, L.; Sackova, V.; Fedorocko, P.

    2006-01-01

    A photodynamic therapy (PDT) is a very promising, flexible and multifarious therapeutical approach for the treatment of malignant as well as non-malignant disorders. It is beholden on a nature of a photosensitive compound, its concentration and an incubation time, on a wavelength of light radiation, a fluence rate and a light dose as well as on a histological origin of the tissue and an oxygen pressure in it. Although PDT is of use in clinical practice, new promising photosensitive compounds with advantageous attributes are discovered continuously. PDT with hypericin, one of promising photosensitizers, activates p38 MAPK signalling pathway which induces expression of COX-2 and thereby increases concentration of its main product PGE2. Elevated activity of COX-2 as such is considered as contradictory to photo-cytotoxic effect of PDT with hypericin which should negatively influence an efficacy of PDT. In our experiment, effect of rofecoxib, a specific COX-2 inhibitor, as a post-treatment after PDT with hypericin in HeLa and HT29 cells have been evaluated. 24 as well as 48 hour treatment with 1 μM rofecoxib applied immediately after PDT did not induce significant decrease in cell proliferation, surprisingly. Purpose of failure to increase efficacy of PDT might be an activation of anti-apoptotic signalling pathways. Levels of Bcl-2 family proteins, especially Mcl-1 (HT29 and HeLa) and Bcl-2 (not expressed in HT29) have been evaluated. Considering our results, we can predict, that activity of COX-2 and its inhibition does not play crucial task in PDT experiments in vitro however its importance manifests in vivo as it affects angiogenesis of tumor. (authors)

  8. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Uesato, Shin-ichi [Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka 564-8680 (Japan); Watanabe, Kazushi [Proubase Technology Inc., Kanagawa 211-0063 (Japan); Tanimura, Susumu [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Koji, Takehiko [Department of Histology and Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kohno, Michiaki, E-mail: kohnom@nagasaki-u.ac.jp [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Proubase Technology Inc., Kanagawa 211-0063 (Japan); Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501 (Japan)

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  9. Enhanced uptake and photoactivation of topical methyl aminolevulinate after fractional CO2 laser pretreatment

    DEFF Research Database (Denmark)

    Haedersdal, M; Katsnelson, J; Sakamoto, F H

    2011-01-01

    Photodynamic therapy (PDT) of thick skin lesions is limited by topical drug uptake. Ablative fractional resurfacing (AFR) creates vertical channels that may facilitate topical PDT drug penetration and improve PDT-response in deep skin layers. The purpose of this study was to evaluate whether pre-...

  10. Self-efficacy enhancing intervention increases light physical activity in people with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Larson JL

    2014-10-01

    Full Text Available Janet L Larson,1,2 Margaret K Covey,2 Mary C Kapella,2 Charles G Alex,3,4 Edward McAuley,5 1Division of Acute, Critical and Long-Term Care Programs, School of Nursing, University of Michigan, Ann Arbor, MI, 2Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL, 3Division of Pulmonary and Critical Care Medicine, Edward Hines Jr VA Hospital, Hines, IL, 4Advocate Christ Medical Center, Oaklawn, IL, 5Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champagne, Urbana, IL, USA Background: People with chronic obstructive pulmonary disease lead sedentary lives and could benefit from increasing their physical activity. The purpose of this study was to determine if an exercise-specific self-efficacy enhancing intervention could increase physical activity and functional performance when delivered in the context of 4 months of upper body resistance training with a 12-month follow-up. Methods: In this randomized controlled trial, subjects were assigned to: exercise-specific self-efficacy enhancing intervention with upper body resistance training (SE-UBR, health education with upper body resistance training (ED-UBR, or health education with gentle chair exercises (ED-Chair. Physical activity was measured with an accelerometer and functional performance was measured with the Functional Performance Inventory. Forty-nine people with moderate to severe chronic obstructive pulmonary disease completed 4 months of training and provided valid accelerometry data, and 34 also provided accelerometry data at 12 months of follow-up. The self-efficacy enhancing intervention emphasized meeting physical activity guidelines and increasing moderate-to-vigorous physical activity. Results: Differences were observed in light physical activity (LPA after 4 months of training, time by group interaction effect (P=0.045. The SE-UBR group increased time spent in

  11. The impact of enhancing perceived self-efficacy in torture survivors.

    Science.gov (United States)

    Morina, Naser; Bryant, Richard A; Doolan, Emma L; Martin-Sölch, Chantal; Plichta, Michael M; Pfaltz, Monique C; Schnyder, Ulrich; Schick, Matthis; Nickerson, Angela

    2018-01-01

    Perceived self-efficacy (SE) is an important factor underlying psychological well-being. Refugees suffer many experiences that can compromise SE. This study tested the impact of enhancing perceived SE on coping with trauma reminders and distress tolerance in tortured refugees. Torture survivors (N = 40) were administered a positive SE induction in which they retrieved mastery-related autobiographical memories, or a non-SE (NSE) induction, and then viewed trauma-related images. Participants rated their distress following presentation of each image. Participants then completed a frustration-inducing mirror-tracing task to index distress tolerance. Participants in the SE condition reported less distress and negative affect, and improved coping in relation to viewing the trauma-related images than those in the NSE condition. The SE induction also led to greater persistence with the mirror-tracing task than the NSE induction. These findings provide initial evidence that promoting SE in tortured refugees can assist with managing distress from trauma reminders, and promoting greater distress tolerance. Enhancing perceived SE in tortured refugees may increase their capacity to tolerate distress during therapy, and may be a useful means to improve treatment response. © 2017 Wiley Periodicals, Inc.

  12. Enhancing self-efficacy improves episodic future thinking and social-decision making in combat veterans with posttraumatic stress disorder.

    Science.gov (United States)

    Brown, Adam D; Kouri, Nicole A; Rahman, Nadia; Joscelyne, Amy; Bryant, Richard A; Marmar, Charles R

    2016-08-30

    Posttraumatic Stress Disorder (PTSD) is associated with maladaptive changes in self-identity, including impoverished perceived self-efficacy. This study examined if enhancing perceptions of self-efficacy in combat veterans with and without symptoms of PTSD promotes cognitive strategies associated with positive mental health outcomes. Prior to completing a future thinking and social problem-solving task, sixty-two OEF/OIF veterans with and without symptoms of PTSD were randomized to either a high self-efficacy (HSE) induction in which they were asked to recall three autobiographical memories demonstrating self-efficacy or a control condition in which they recalled any three autobiographical events. An interaction between HSE and PTSD revealed that individuals with symptoms of PTSD in the HSE condition generated future events with more self-efficacious statements than those with PTSD in the control condition, whereas those without PTSD did not differ in self-efficacy content across the conditions. In addition, individuals in the HSE condition exhibited better social problem solving than those in the control condition. Increasing perceptions of self-efficacy may promote future thinking and problem solving in ways that are relevant to overcoming trauma and adversity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Enhancing Cross-Cultural Training Efficacy on Expatriate Adjustment through Emotional Intelligence and Social Capital

    OpenAIRE

    Susanto, Ely; Rostiani, Rokhima

    2012-01-01

    Cross cultural training is widely believed to make a positive contribution to expatriate adjustment. In practice, however, it is very costly and sometimes ineffective for expatriates. Therefore, there is a growing importance placed on increasing the cost effectiveness or enhancing the efficacy of crosscultural training by functioning individual expatriate’s social capital and emotional intelligence as moderating variables towards expatriate’s adjustment and performance. To do so we blend idea...

  14. Does computerized working memory training with game elements enhance motivation and training efficacy in children with ADHD?

    NARCIS (Netherlands)

    Prins, P.J.M.; Dovis, S.; Ponsioen, A.; ten Brink, E.; van der Oord, S.

    2011-01-01

    This study examined the benefits of adding game elements to standard computerized working memory (WM) training. Specifically, it examined whether game elements would enhance motivation and training performance of children with ADHD, and whether it would improve training efficacy. A total of 51

  15. Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides

    Science.gov (United States)

    Chang, Kwang Poo; Kolli, Bala K.; Fan, Chia-Kwung; Ng, Dennis K. P.; Wong, Clarence T. T.; Manna, Laura; Corso, Raffaele; Shih, Neng-Yao; Elliott, Robert; Jiang, X. P.; Shiao, Shin-Hong; Fu, Guo-Liang

    2018-02-01

    Photodynamic therapy (PDT) uses photosensitizers (PS) that are excited with light to generate ROS in the presence of oxygen for treating various diseases. PS also has the potential use as photodynamic insecticides (PDI) and for light-inactivation of Leishmania for photodynamic vaccination (PDV). PDT-inactivated Leishmania are non-viable, but remain immunologically competent as whole-cell vaccines against leishmaniasis, and as a universal carrier for delivery of add-on vaccines against other infectious and malignant diseases. We have screened novel PS, including Zn- and Si-phthalocyanines (PC) for differential PDT activities against Leishmania, insect and mammalian cells in vitro to assess their PDI and PDV potential. Here, Zn-PC were conjugated with various functional groups. The conjugates were examined for uptake by cells as a prerequisite for their susceptibility to light-inactivation. PDT sensitivity was found to vary with cell types and PS used. PDI potential of several PS was demonstrated by their mosquito larvicidal PDT activities in vitro. PDT-inactivated Leishmania were stored frozen for PDV in several ongoing studies: [1] Open label trial with 20 sick dogs for immunotherapy of canine leishmaniasis after chemotherapy in Naples, Italy. Clinical follow-up for >3 years indicate that the PDV prolongs their survival; [2] PDV of murine models with a human lung cancer vaccine showed dramatic tumor suppression; [3] Open label trial of multiple PDV via compassionate access to 4 advanced cancer patients showed no clinically adverse effects. Two subjects remain alive. Genetic modifications of Leishmania are underway to further enhance their safety and efficacy for PDV by installation of activable mechanisms for self-destruction and spontaneous light-emission.

  16. A randomized, multicentre study of directed daylight exposure times of 11/2 vs. 21/2 h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp

    DEFF Research Database (Denmark)

    Wiegell, S.R.; Fabricius, S.; Philipsen, P.A.

    2011-01-01

    , time of day or time of year during which the treatment was performed. Treatment was well tolerated, with a mean ± SD maximal pain score of 1·3 ± 1·5. Conclusions: Daylight-mediated MAL-PDT is an effective, convenient and nearly pain-free treatment for patients with multiple thin AKs. Daylight-mediated......, the inconvenience of clinic attendance and discomfort during therapy are significant drawbacks. Daylight-mediated PDT could potentially reduce these and may serve as an alternative to conventional PDT. Objectives: To compare the efficacy of methyl aminolaevulinate (MAL)-PDT with 11/2 vs. 21/2 h of daylight exposure...

  17. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    International Nuclear Information System (INIS)

    Kim, M; Penjweini, R; Zhu, T

    2016-01-01

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Software upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.

  18. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Penjweini, R; Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Software upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.

  19. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    International Nuclear Information System (INIS)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-01-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment. (paper)

  20. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    Science.gov (United States)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-05-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment.

  1. Communicative social capital and collective efficacy as determinants of access to health-enhancing resources in residential communities.

    Science.gov (United States)

    Matsaganis, Matthew D; Wilkin, Holley A

    2015-04-01

    This article contributes to the burgeoning literature on the social determinants of health disparities. The authors investigate how communication resources and collective efficacy, independently and in combination, shape residents' access to health enhancing resources (including healthcare services, sources of healthier food options, and public recreation spaces) in their communities. Using random digit dial telephone survey data from 833 residents of South Los Angeles communities the authors show that communicative social capital-that is, an information and problem-solving resource that accrues to residents as they become more integrated into their local communication network of neighbors, community organizations, and local media-plays a significant role in access to health resources. This relationship is complicated by individuals' health insurance and health status, as communicative social capital magnifies the sense of absence of resources for those who are in worse health and lack insurance. Communicative social capital builds collective efficacy, which is positively related to access to health-enhancing resources, but it also mediates the negative relationship between communicative social capital and access to health resources. Residents with richer stores of communicative social capital and collective efficacy report better access to health resources. The authors conclude with a discussion of implications of these findings and suggestions for future research.

  2. Randomized Vehicle-Controlled Study of Short Drug Incubation Aminolevulinic Acid Photodynamic Therapy for Actinic Keratoses of the Face or Scalp.

    Science.gov (United States)

    Pariser, David M; Houlihan, Anna; Ferdon, Mary Beth; Berg, James E

    2016-03-01

    Aminolevulinic acid photodynamic therapy (ALA-PDT) can be effective and well tolerated when applied over a broad area and for short drug incubation times. To evaluate the effect of short-incubation time and application method on the safety and efficacy of ALA-PDT versus vehicle (VEH-PDT) in the treatment of actinic keratoses (AKs) of the face or scalp. Aminolevulinic acid or VEH was applied to face or scalp as a broad area application for 1, 2, or 3 hours or as a spot application for 2 hours before blue light activation. An identical treatment was repeated at Week 8 if any AK lesions remained. Median AK clearance rate for ALA-treated subjects ranged from 68% to 79% at Week 12, compared with 7% of the VEH-treated group (p 47) at Week 12, compared with 2% (1/46) of the VEH-treated group (p = .0041). The safety profile seen in this study is consistent with previously reported side effects of the therapy. Short-incubation ALA-PDT was found to be superior to VEH-PDT for AK lesion clearance. A second treatment improves efficacy.

  3. Photodynamic therapy in dermatology: past, present, and future

    Science.gov (United States)

    Darlenski, Razvigor; Fluhr, Joachim W.

    2013-06-01

    Photodynamic therapy (PDT) is a noninvasive therapeutic method first introduced in the field of dermatology. It is mainly used for the treatment of precancerous and superficial malignant skin tumors. Today PDT finds new applications not only for nononcologic dermatoses but also in the field of other medical specialties such as otorhinolaryngology, ophthalmology, neurology, gastroenterology, and urology. We are witnessing a broadening of the spectrum of skin diseases that are treated by PDT. Since its introduction, PDT protocol has evolved significantly in terms of increasing method efficacy and patient safety. In this era of evidence-based medicine, it is expected that much effort will be put into creating a worldwide accepted consensus on PDT. A review on the current knowledge of PDT is given, and the historical basis of the method's evolution since its introduction in the 1900s is presented. At the end, future challenges of PDT are focused on discussing gaps that exist for research in the field.

  4. One-session root canal treatment with antimicrobial photodynamic therapy (aPDT): an in vivo study.

    Science.gov (United States)

    Borsatto, M C; Correa-Afonso, A M; Lucisano, M P; Bezerra da Silva, R A; Paula-Silva, F W G; Nelson-Filho, P; Bezerra da Silva, L A

    2016-06-01

    To evaluate the response of the apical and periapical tissues of dog teeth with apical periodontitis after one-session root canal treatment with and without antimicrobial photodynamic therapy (aPDT) compared with the use of an intracanal dressing. Sixty root canals with an induced periapical lesion were instrumented and assigned to three groups: I, two-session root canal treatment using antibacterial dressing with calcium hydroxide-based paste; II, one-session root canal treatment using aPDT; and III, one-session root canal treatment in which the root canals were filled immediately after biomechanical preparation. The animals were euthanized after a 90-day experimental period. The maxillas and mandibles with teeth were submitted to histotechnical processing and haematoxylin-eosin staining. Descriptive microscopic analysis of the apical and periapical region characteristics was performed, as well as morphometric assessment of the periapical lesion areas in fluorescence microscopy. Quantitative data were analysed statistically by the nonparametric Kruskal-Wallis test and Dunn's post-test (α = 0.05). Group I was characterized by progressive repair, with the presence of fibres, cells and blood vessels. Group II had periodontal ligaments with the presence of collagen fibres and residual inflammatory cells. Group III had a dense inflammatory infiltrate with extensive oedematous areas and fibrillar dissociation, suggesting a persistent inflammatory and resorptive condition. Regarding periapical lesion size, group I had significantly smaller lesions (P session root canal treatment using a calcium hydroxide-based dressing was associated with significantly smaller periapical lesions at 90 days and characterized by progressive repair. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens

    OpenAIRE

    Smith, TK; Choi, B; Ramirez-San-Juan, JC; Nelson, JS; Osann, K; Kelly, KM

    2006-01-01

    Background and Objectives: Previous in vitro studies demonstrated the potential utility of benzoporphyrin derivative monoacid ring A (BPD) photodynamic therapy (PDT) for vascular destruction. Moreover, the effects of PDT were enhanced when this intervention was followed immediately by pulsed dye laser (PDL) irradiation (PDT/ PDL). We further evaluate vascular effects of PDT alone, PDL alone and PDT/PDL in an in vivo rodent dorsal skinfold model. Study Design/Materials and Methods: A dorsal sk...

  6. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    Science.gov (United States)

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  7. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    Science.gov (United States)

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  8. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    Directory of Open Access Journals (Sweden)

    Xu H

    2012-09-01

    Full Text Available Hao Xu, Chen Liu, Jiansheng Mei, Cuiping Yao, Sijia Wang, Jing Wang, Zheng Li, Zhenxi ZhangKey Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shannxi, People’s Republic of ChinaPurpose: As a precursor of the potent photosensitizer protoporphyrin IX (PpIX, 5-aminolevulinic acid (5-ALA, was conjugated onto cationic gold nanoparticles (GNPs to improve the efficacy of photodynamic therapy (PDT.Methods: Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively. The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation.Results: The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs.Conclusion: Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT.Keywords: nonradiative energy transfer, photodamage, protoporphyrin IX, selective destruction, singlet oxygen sensor green reagent, surface plasmon resonance

  9. Efficacy of Information and Communication Technology in Enhancing Learning Outcomes of Students with Hearing Impairment in Ibadan

    Science.gov (United States)

    Egaga, Patrick I.; Aderibigbe, S. Akinwumi

    2015-01-01

    The study aimed at examining the efficacy of Information and Communication Technology (ICT) in enhancing learning outcomes of students with hearing impairment in Ibadan. The study adopted a pretest, post-test, control group quasi-experimental research design. Purposive sampling techniques was used for the selection of thirty participants…

  10. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates.

    Science.gov (United States)

    Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A

    2015-06-01

    The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    Directory of Open Access Journals (Sweden)

    Wang X

    2015-01-01

    Full Text Available Xiaojie Wang,1,2,* Lei Shi,2,* Qingfeng Tu,2 Hongwei Wang,3 Haiyan Zhang,2 Peiru Wang,2 Linglin Zhang,2 Zheng Huang,4 Feng Zhao,5 Hansen Luan,5 Xiuli Wang2 1Shanghai Skin Diseases Clinical College of Anhui Medical University, 2Shanghai Skin Disease Hospital, 3Huadong Hospital, Fudan University, Shanghai, 4MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University, Fuzhou, 5National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, People’s Republic of China *These authors contributed equally to this study Background: Squamous cell carcinoma (SCC is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP-assisted 5-aminolevulinic acid (ALA delivery for topical photodynamic therapy (PDT of cutaneous SCC.Materials and methods: Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined.Results: PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC.Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. Keywords: 5-aminolevulinic acid (ALA, polylactic-co-glycolic acid (PLGA, nanoparticles (NPs, cutaneous squamous cell carcinoma (SCC, photodynamic therapy (PDT, microneedling

  12. Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.

    2018-02-01

    PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.

  13. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Directory of Open Access Journals (Sweden)

    Mao Ouyang

    Full Text Available Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261 tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  14. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    Science.gov (United States)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  15. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev; Ahmad, Shamim; Berrong, Zuzana; Okoev, Grigori; Matevosyan, Adelaida; Razavi, Ghazaleh Shoja E; Petit, Robert; Gupta, Seema; Mkrtichyan, Mikayel; Khleif, Samir N

    2017-08-15

    We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4 + and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment. Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations. We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4 + and CD8 + T cells along with a decrease of inhibitory cells. To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall

  16. CpG Oligodeoxynucleotides Enhance the Efficacy of Adoptive Cell Transfer Using Tumor Infiltrating Lymphocytes by Modifying the Th1 Polarization and Local Infiltration of Th17 Cells

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2010-01-01

    Full Text Available Adoptive cell transfer immunotherapy using tumor infiltrating lymphocytes (TILs was an important therapeutic strategy against tumors. But the efficacy remains limited and development of new strategies is urgent. Recent evidence suggested that CpG-ODNs might be a potent candidate for tumor immunotherapy. Here we firstly reported that CpG-ODNs could significantly enhance the antitumor efficacy of adoptively transferred TILs in vivo accompanied by enhanced activity capacity and proliferation of CD8+ T cells and CD8+ T cells, as well as a Th1 polarization immune response. Most importantly, we found that CpG-ODNs could significantly elevate the infiltration of Th17 cells in tumor mass, which contributed to anti-tumor efficacy of TILs in vivo. Our findings suggested that CpG ODNs could enhance the anti-tumor efficacy of adoptively transferred TILs through modifying Th1 polarization and local infiltration of Th17 cells, which might provide a clue for developing a new strategy for ACT based on TILs.

  17. Advanced smart-photosensitizers for more effective cancer treatment.

    Science.gov (United States)

    Park, Wooram; Cho, Soojeong; Han, Jieun; Shin, Heejun; Na, Kun; Lee, Byeongdu; Kim, Dong-Hyun

    2017-12-19

    Photodynamic therapy (PDT) based upon the use of light and photosensitizers (PSs) has been used as a novel treatment approach for a variety of tumors. It, however, has several major limitations in the clinic: poor water solubility, long-term phototoxicity, low tumor targeting efficacy, and limited light penetration. With advances in nanotechnology, materials science, and clinical interventional imaging procedures, various smart-PSs have been developed for improving their cancer-therapeutic efficacy while reducing the adverse effects. Here, we briefly review state-of-the-art smart-PSs and discuss the future directions of PDT technology.

  18. Self-Efficacy for Coping with Cancer Enhances the Effect of Reiki Treatments During the Pre-Surgery Phase of Breast Cancer Patients.

    Science.gov (United States)

    Chirico, Andrea; D'Aiuto, Giuseppe; Penon, Antonella; Mallia, Luca; DE Laurentiis, Michelino; Lucidi, Fabio; Botti, Gerardo; Giordano, Antonio

    2017-07-01

    Self-efficacy for coping with cancer plays a critical role in influencing psychological cancer-related outcomes, some studies suggested its role in enhancing or reducing the effects of psychological interventions in cancer patients. Reiki has recently been included among the efficacious complementary therapeutic intervention for cancer patients. The present study evaluated the role of self-efficacy for coping with cancer as buffer of the Reiki treatment effects on cancer-related symptoms in a randomized controlled trial (intervention versus control group) of breast cancer patients (N=110) during the pre-surgery phase. Results showed that self-efficacy for coping with cancer can influence the effect of a Reiki treatment. Higher efficacious patients showed a more powerful effect of the Reiki intervention on both anxiety and mood than the low efficacious patients. From a practical perspective, the study provides insightful results for healthcare professionals. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Motivation Enhancement Therapy with pregnant substance-abusing women: does baseline motivation moderate efficacy?

    Science.gov (United States)

    Ondersma, Steven J; Winhusen, Theresa; Erickson, Sarah J; Stine, Susan M; Wang, Yun

    2009-04-01

    Some evidence suggests that motivational approaches are less efficacious--or even counter-productive--with persons who are relatively motivated at baseline. The present study was conducted to examine whether disordinal moderation by baseline motivation could partially explain negative findings in a previous study [Winhusen, T., Kropp, F., Babcock, D., Hague, D., Erickson, S.J., Renz, C., Rau, L., Lewis, D., Leimberger, J., Somoza, E., 2008. Motivational enhancement therapy to improve treatment utilization and outcome in pregnant substance users. J. Subst. Abuse Treat. 35, 161-173]. Analyses also focused on the relative utility of the University of Rhode Island Change Assessment (URICA) scale, vs. a single goal question as potential moderators of Motivation Enhancement Therapy (MET). Participants were 200 pregnant women presenting for substance abuse treatment at one of four sites. Women were randomly assigned to either a three-session MET condition or treatment as usual (TAU). Generalized Estimating Equations (GEE) revealed no significant moderation effects on drug use at post-treatment. At follow-up, contrary to expectations, participants who had not set a clear quit goal at baseline were less likely to be drug-free if randomized to MET (OR=0.48); participants who did set a clear quit goal were more likely to be drug-free if randomized to MET (OR=2.53). No moderating effects were identified via the URICA. Disordinal moderation of MET efficacy by baseline motivation may have contributed somewhat to the negative results of the [Winhusen, T., Kropp, F., Babcock, D., Hague, D., Erickson, S.J., Renz, C., Rau, L., Lewis, D., Leimberger, J., Somoza, E., 2008. Motivational enhancement therapy to improve treatment utilization and outcome in pregnant substance users. J. Subst. Abuse Treat. 35, 161-173] study, but in the opposite direction expected. A simple question regarding intent to quit may be useful in identifying persons who may differentially respond to motivational

  20. Combined laser and photodynamic treatment in extensive purulent wounds

    Science.gov (United States)

    Solovieva, A. B.; Tolstih, P. I.; Melik-Nubarov, N. S.; Zhientaev, T. M.; Kuleshov, I. G.; Glagolev, N. N.; Ivanov, A. V.; Karahanov, G. I.; Tolstih, M. P.; Timashev, P. S.

    2010-05-01

    Recently, photodynamic therapy (PDT) has been used for the treatment of festering wounds and trophic ulcers. An important advantage of PDT is its ability to affect bacterial cultures that are resistant to antibiotics. However the use of PDT alone does not usually guarantee a stable antiseptic effect and cannot prevent an external infection of wounds and burns. In this work attention is focused on the healing of the extensive soft tissues wounds with combined laser therapy (LT) and PDT treatment. At the first stage of this process festering tissues (for example spacious purulent wounds with area more than 100 cm2) were illuminated with high-energy laser beam (with power 20 W) in continues routine. The second stage involves “softer” PDT affect, which along with the completion stages of destruction pathological cells, stimulating the process of wound granulation and epithelization. Also, according to our previous results, photosensitizer (photoditazin) is introduced inside the wound with different amphiphilic polymers for increasing the PDT efficacy.

  1. Is Photodynamic Therapy with Adjunctive Non-Surgical Periodontal Therapy Effective in the Treatment of Periodontal Disease under Immunocompromised Conditions

    International Nuclear Information System (INIS)

    Javed, F.; Hezaimi, K.A.; Qadri, T.; Ahmed, H.B.; Corbet, F.E.; Romanos, G.E.

    2013-01-01

    The aim was to assess whether or not photodynamic therapy (PDT) with adjunctive scaling-and-root-planing (SRP) is effective in the treatment of periodontitis under immunocompromised conditions. PubMed/Medline and Google-Scholar databases were searched from 1967 to May 2013 using various key words. Six studies (five experimental and one clinical) were included. In the clinical study, SRP with PDT was reported to be ineffective in treating chronic periodontitis in T2DM patients. All experimental studies reported significantly less bone loss in periodontal defects treated with SRP+PDT than those treated with SRP alone. Efficacy of PDT+SRP in the treatment of periodontal disease under immunocompromised conditions remains unclear. (author)

  2. Is Photodynamic Therapy with Adjunctive Non-Surgical Periodontal Therapy Effective in the Treatment of Periodontal Disease under Immunocompromised Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Javed, F.; Hezaimi, K. A. [King Saud Univ., Riyadh (Saudi Arabia). College of Applied Medical Sciences; Qadri, T. [Karolinska Inst., Huddinge (Sweden). Dept. of Dental Medicine; Ahmed, H. B. [Al-Farabi Dental College, Riyadh (Saudi Arabia). Dept. of Dentistry; Corbet, F. E. [University of Hong Kong, Hong Kong (Hong Kong). Dept. of Periodontology; Romanos, G. E. [Stony Brook University, New York (United States). School of Dental Medicine

    2013-10-15

    The aim was to assess whether or not photodynamic therapy (PDT) with adjunctive scaling-and-root-planing (SRP) is effective in the treatment of periodontitis under immunocompromised conditions. PubMed/Medline and Google-Scholar databases were searched from 1967 to May 2013 using various key words. Six studies (five experimental and one clinical) were included. In the clinical study, SRP with PDT was reported to be ineffective in treating chronic periodontitis in T2DM patients. All experimental studies reported significantly less bone loss in periodontal defects treated with SRP+PDT than those treated with SRP alone. Efficacy of PDT+SRP in the treatment of periodontal disease under immunocompromised conditions remains unclear. (author)

  3. Protoporphyrin IX formation after topical application of methyl aminolaevulinate and BF-200 aminolaevulinic acid declines with age

    DEFF Research Database (Denmark)

    Nissen, C V; Philipsen, P A; Wulf, H C

    2015-01-01

    BACKGROUND: Topical photodynamic therapy (PDT) is a popular treatment modality in dermatology. The effect of PDT in epidermal cells depends on formation of protoporphyrin IX (PpIX) from 5-aminolevulinic acid (ALA). A variety of physiological changes in epidermal function occur with increasing age...... assessed. Treatment efficacy in relation to age was evaluated in 100 basal cell carcinomas (BCCs) treated with MAL-PDT. RESULTS: Both photosensitizers induced significantly more PpIX formation in the younger group. Linear regression revealed a significant age-related decline in PpIX formation after...

  4. Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment

    Directory of Open Access Journals (Sweden)

    Qin L

    2016-03-01

    Full Text Available Liang Qin,1,* Tianyuan Xu,1,* Leilei Xia,1 Xianjin Wang,1 Xiang Zhang,1 Xiaohua Zhang,1 Zhaowei Zhu,1 Shan Zhong,1 Chuandong Wang,2 Zhoujun Shen1 1Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 2Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: It has been demonstrated that chloroquine (CQ enhances the efficacy of chemotherapy. However, little is known about whether CQ could enhance the efficacy of cisplatin (DDP in the treatment of adrenocortical carcinoma (ACC. In this study, we explore the efficacy and mechanism by which CQ affects DDP sensitivity in human ACC in vitro and in vivo.Methods: The autophagic gene Beclin-1 expression was detected by immunohistochemistry, and the protein levels were analyzed using immunoblotting assays of ACC tissues and normal adrenal cortex tissues. The ACC SW13 cells were treated with DDP and/or CQ. The cell viability assay was performed using the MTT method. Qualitative autophagy detection was performed by monodansylcadaverine staining of autophagic vacuoles. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to count cell apoptosis by flow cytometry. The autophagy-related protein (Beclin-1, LC3, and p62 and apoptosis relative protein (Bax and Bcl-2 levels were evaluated with Western blot analysis. Furthermore, a murine model of nude BALB/c mice bearing SW13 cell xenografts was established to evaluate the efficacy of concomitant therapy.Results: The expression of the autophagic gene Beclin-1 was significantly downregulated in ACC tissues compared to normal adrenal cortex tissues. The Beclin-1 protein level in ACC tissues was lower than that in normal adrenal cortex tissues (P<0.05. In vitro concomitant therapy (DDP and CQ was more

  5. Targeting Polo-Like Kinase 1 Enhances Radiation Efficacy for Head-and-Neck Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Gerster, Kate; Shi Wei; Ng, Benjamin; Yue Shijun; Ito, Emma; Waldron, John; Gilbert, Ralph; Liu Feifei

    2010-01-01

    Purpose: To investigate the efficacy of targeting polo-like kinase 1 (Plk1) combined with ionizing radiotherapy (RT) for head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: Polo-like kinase 1 messenger ribonucleic acid (mRNA) was targeted by small interfering RNA (siRNA) transfection into the FaDu HNSCC cell line; reduction was confirmed using quantitative real-time polymerase chain reaction. The cellular effects were assessed using [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) -2-(4-sulfophenyl)-2H-tetrazolium], clonogenic, flow cytometric, and caspase assays. In vivo efficacy of siPlk1 was evaluated using mouse xenograft models. Results: Small interfering Plk1 significantly decreased Plk1 mRNA expression, while also increasing cyclin B1 and p21(Waf1/CIP1) mRNA levels after 24 h. This depletion resulted in a time-dependent increase in FaDu cytotoxicity, which was enhanced by the addition of RT. Flow cytometric and caspase assays demonstrated progressive apoptosis, DNA double-strand breaks (γ-H2AX), G2/M arrest, and activation of caspases 3 and 7. Implantation of siPlk1-treated FaDu cells in severe combined immunodeficient mice delayed tumor formation, and systemic administration of siPlk1 inhibited tumor growth enhanced by RT. Conclusions: These data demonstrate the suitability of Plk1 as a potential therapeutic target for HNSCC, because Plk1 depletion resulted in significant cytotoxicity in vitro and abrogated tumor-forming potential in vivo. The effects of Plk1 depletion were enhanced with the addition of RT, indicating that Plk1 represents an important potential radiation sensitizer for HNSCC.

  6. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, Darryll A. [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Faber, Milosz [Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Microbiology and Immunology 1020 Locust St., Jefferson Alumni Hall, Room 465, Philadelphia, PA 19107 (United States); Hooper, D. Craig, E-mail: douglas.hooper@jefferson.edu [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Neurological Surgery, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States)

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression.

  7. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    International Nuclear Information System (INIS)

    Barkhouse, Darryll A.; Faber, Milosz; Hooper, D. Craig

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression

  8. Changes in self-efficacy, collective efficacy and patient outcome following interprofessional simulation training on postpartum haemorrhage.

    Science.gov (United States)

    Egenberg, Signe; Øian, Pål; Eggebø, Torbjørn Moe; Arsenovic, Mirjana Grujic; Bru, Lars Edvin

    2017-10-01

    To examine whether interprofessional simulation training on management of postpartum haemorrhage enhances self-efficacy and collective efficacy and reduces the blood transfusion rate after birth. Postpartum haemorrhage is a leading cause of maternal morbidity and mortality worldwide, although it is preventable in most cases. Interprofessional simulation training might help improve the competence of health professionals dealing with postpartum haemorrhage, and more information is needed to determine its potential. Multimethod, quasi-experimental, pre-post intervention design. Interprofessional simulation training on postpartum haemorrhage was implemented for midwives, obstetricians and auxiliary nurses in a university hospital. Training included realistic scenarios and debriefing, and a measurement scale for perceived postpartum haemorrhage-specific self-efficacy, and collective efficacy was developed and implemented. Red blood cell transfusion was used as the dependent variable for improved patient outcome pre-post intervention. Self-efficacy and collective efficacy levels were significantly increased after training. The overall red blood cell transfusion rate did not change, but there was a significant reduction in the use of ≥5 units of blood products related to severe bleeding after birth. The study contributes to new knowledge on how simulation training through mastery and vicarious experiences, verbal persuasion and psychophysiological state might enhance postpartum haemorrhage-specific self-efficacy and collective efficacy levels and thereby predict team performance. The significant reduction in severe postpartum haemorrhage after training, indicated by reduction in ≥5 units of blood transfusions, corresponds well with the improvement in collective efficacy, and might reflect the emphasis on collective efforts to counteract severe cases of postpartum haemorrhage. Interprofessional simulation training in teams may contribute to enhanced prevention and

  9. Enhancing Self-Efficacy and Performance: An Experimental Comparison of Psychological Techniques.

    Science.gov (United States)

    Wright, Bradley James; O'Halloran, Paul Daniel; Stukas, Arthur Anthony

    2016-01-01

    We assessed how 6 psychological performance enhancement techniques (PETs) differentially improved self-efficacy (SE) and skill performance. We also assessed whether vicarious experiences and verbal persuasion as posited sources of SE (Bandura, 1982 ) were supported and, further, if the effects of the 6 PETs remained after controlling for achievement motivation traits and self-esteem. A within-subject design assessed each individual across 2 trials for 3 disparate PETs. A between-groups design assessed differences between PETs paired against each other for 3 similar novel tasks. Participants (N = 96) performed 2 trials of 10 attempts at each of the tasks (kick, throw, golf putt) in a counterbalanced sequence using their nondominant limb. Participants completed the Sport Orientation Questionnaire, Rosenberg Self-Esteem Scale, and General Self-Efficacy Scale and were randomly allocated to either the modeling or imagery, goal-setting or instructional self-statement, or knowledge-of-results or motivational feedback conditions aligned with each task. An instructional self-statement improved performance better than imagery, modeling, goal setting, and motivational and knowledge-of-results augmented feedback. Motivational auditory feedback most improved SE. Increased SE change scores were related to increased performance difference scores on all tasks after controlling for age, sex, achievement motivation, and self-esteem. Some sources of SE may be more influential than others on both SE and performance improvements. We provide partial support for the sources of SE proposed by Bandura's social-cognitive theory with verbal persuasion but not vicarious experiences improving SE.

  10. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  11. Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment.

    LENUS (Irish Health Repository)

    Byrne, A T

    2009-11-03

    Photodynamic therapy (PDT) is a treatment modality for a range of diseases including cancer. The BF(2)-chelated tetraaryl-azadipyrromethenes (ADPMs) are an emerging class of non-porphyrin PDT agent, which have previously shown excellent photochemical and photophysical properties for therapeutic application. Herein, in vivo efficacy and mechanism of action studies have been completed for the lead agent, ADMP06.

  12. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models.

    Science.gov (United States)

    Xu, Chunxiao; Zhang, Yanping; Rolfe, P Alexander; Hernández, Vivian M; Guzman, Wilson; Kradjian, Giorgio; Marelli, Bo; Qin, Guozhong; Qi, Jin; Wang, Hong; Yu, Huakui; Tighe, Robert; Lo, Kin-Ming; English, Jessie M; Radvanyi, Laszlo; Lan, Yan

    2017-10-01

    Purpose: To determine whether combination therapy with NHS-muIL12 and the anti-programmed death ligand 1 (PD-L1) antibody avelumab can enhance antitumor efficacy in preclinical models relative to monotherapies. Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and μMt - mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and IHC. Immune gene expression in tumor tissue was profiled by NanoString® assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFNγ-producing CD8 + T cells was evaluated by ELISpot assay. Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8 + T-cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8 + T-cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy. Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors. Clin Cancer Res; 23(19); 5869-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    Science.gov (United States)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  14. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

    Science.gov (United States)

    Hempstead, Joshua; Jones, Dustin P.; Ziouche, Abdelali; Cramer, Gwendolyn M.; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P.

    2015-05-01

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications.

  15. Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Tomohide; Fukukura, Yoshihiko; Kamimura, Kiyohisa; Takumi, Koji; Umanodan, Aya; Nakajo, Masayuki [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima City (Japan); Ueno, Shinichi [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Surgical Oncology and Digestive Surgery, Kagoshima City (Japan)

    2014-04-15

    We aimed to develop and assess the efficacy of a liver function index that combines liver enhancement and liver volume to standard liver volume (LV/SLV) ratio on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. In all, 111 patients underwent a Gd-EOB-DTPA-enhanced MRI, including T1 mapping, before and 20 min after Gd-EOB-DTPA administration. We calculated the following Gd-EOB-DTPA-enhanced MRI-based liver function indices: relative enhancement of the liver, corrected enhancement of the liver-to-spleen ratio, LSC{sub N}20, increase rate of the liver-to-muscle ratio, reduction rate of T1 relaxation time of the liver, ΔR1 of the liver and K{sub Hep}; the indices were multiplied by the LV/SLV ratio. We calculated the correlations between an indocyanine green (ICG) clearance and the Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio, by using Pearson correlation analysis. There were significant correlations between all Gd-EOB-DTPA-enhanced MRI-based liver function indices and ICG clearance (r = -0.354 to -0.574, P < 0.001). All Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio (r = -0.394 to -0.700, P < 0.001) were more strongly correlated with the ICG clearance than those without multiplication by the LV/SLV ratio. Gd-EOB-DTPA-enhanced MRI-based liver function indices that combine liver enhancement and the LV/SLV ratio may more reliably estimate liver function. (orig.)

  16. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  17. Effective photodynamic therapy in drug-resistant prostate cancer cells utilizing a non-viral antitumor vector (a secondary publication).

    Science.gov (United States)

    Yamauchi, Masaya; Honda, Norihiro; Hazama, Hisanao; Tachikawa, Shoji; Nakamura, Hiroyuki; Kaneda, Yasufumi; Awazu, Kunio

    2016-03-31

    There is an urgent need to develop an efficient strategy for the treatment of drug-resistant prostate cancer. Photodynamic therapy (PDT), in which low incident levels of laser energy are used to activate a photosensitizer taken up by tumor cells, is expected as a novel therapy for the treatment of prostate cancer because of the minimal invasive nature of PDT. The present study was designed to assess the efficacy of a novel vector approach combined with a conventional porphyrin-based photosensitizer. Our group focused on a non-viral vector (hemagglutinating virus of Japan envelope; HVJ-E) combined with protoporphyrin IX (PpIX) lipid, termed the porphyrus envelope (PE). It has been previously confirmed that HVJ-E has drug-delivering properties and can induce cancer-specific cell death. The PE (HVJ-E contained in PpIX lipid) was developed as a novel photosensitizer. In this study, the antitumor and PDT efficacy of the PE against hormone-antagonistic human prostate cancer cells (PC-3) were evaluated. Our results demonstrated that, under specific circumstances, PDT using the PE was very effective against PC-3 cells. A novel therapy for drug-resistant prostate cancer based on this vector approach is eagerly anticipated.

  18. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro

    Science.gov (United States)

    Helander, Linda; Krokan, Hans E.; Johnsson, Anders; Gederaas, Odrun A.; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT624 induced more apoptosis than HAL-PDT410 and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  19. Biofilm disruption with rotating microrods enhances antimicrobial efficacy

    Science.gov (United States)

    Mair, Lamar O.; Nacev, Aleksandar; Hilaman, Ryan; Stepanov, Pavel Y.; Chowdhury, Sagar; Jafari, Sahar; Hausfeld, Jeffrey; Karlsson, Amy J.; Shirtliff, Mark E.; Shapiro, Benjamin; Weinberg, Irving N.

    2017-04-01

    Biofilms are a common and persistent cause of numerous illnesses. Compared to planktonic microbes, biofilm residing cells often demonstrate significant resistance to antimicrobial agents. Thus, methods for dislodging cells from the biofilm may increase the antimicrobial susceptibility of such cells, and serve as a mechanical means of increasing antimicrobial efficacy. Using Aspergillus fumigatus as a model microbe, we magnetically rotate microrods in and around biofilm. We show that such rods can improve the efficacy of antimicrobial Amphotericin B treatments in vitro. This work represents a first step in using kinetic magnetic particle therapy for disrupting fungal biofilms.

  20. Photodynamic therapy for melanoma: efficacy and immunologic effects

    Science.gov (United States)

    Avci, Pinar; Gupta, Gaurav K.; Kawakubo, Masayoshi; Hamblin, Michael R.

    2014-02-01

    Malignant melanoma is one of the fastest growing cancers and if it cannot be completely surgically removed the prognosis is bleak. Melanomas are known to be particularly resistant to both chemotherapy and radiotherapy. Various types of immunotherapy have however been investigated with mixed reports of success. Photodynamic therapy (PDT) has also been tested against melanoma, again with mixed effects as the melanin pigment is thought to act as both an optical shield and as an antioxidant. We have been investigating PDT against malignant melanoma in mouse models. We have compared B16F10 melanoma syngenic to C57BL/6 mice and S91 Cloudman melanoma syngenic to DBA2 mice. We have tested the hypothesis that S91 will respond better than B16 because of higher expression of immunocritical molecules such as MHC-1, tyrosinase, tyrosinase related protein-2 gp100, and intercellular adhesion molecule-1. Some of these molecules can act as tumor rejection antigens that can be recognized by antigen-specific cytotoxic CD8 T cells that have been stimulated by PDT. Moreover it is possible that DBA2 mice are intrinsically better able to mount an anti-tumor immune response than C57BL/6 mice. We are also studying intratumoral injection of photosensitzers such as benzoporphyrin monoacid ring A and comparing this route with the more usual route of intravenous administration.

  1. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  2. Drug Repositioning of Proton Pump Inhibitors for Enhanced Efficacy and Safety of Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Kenji Ikemura

    2017-12-01

    Full Text Available Proton pump inhibitors (PPIs, H+/K+-ATPase inhibitors, are the most commonly prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases; they are highly safe and tolerable. Since PPIs are frequently used in cancer patients, studies investigating interactions between PPIs and anticancer agents are of particular importance to achieving effective and safe cancer chemotherapy. Several studies have revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but also the vacuolar H+-ATPase (V-ATPase overexpressed in tumor cells, as well as the renal basolateral organic cation transporter 2 (OCT2 associated with pharmacokinetics and/or renal accumulation of various drugs, including anticancer agents. In this mini-review, we summarize the current knowledge regarding the impact of PPIs on the efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of OCT2 and V-ATPase, rather than on-target inhibition of the H+/K+-ATPase. The present findings should provide important information to establish novel supportive therapy with PPIs during cancer chemotherapy.

  3. Lactobionic acid-conjugated TPGS nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma

    Science.gov (United States)

    Tsend-Ayush, Altansukh; Zhu, Xiumei; Ding, Yu; Yao, Jianxu; Yin, Lifang; Zhou, Jianping; Yao, Jing

    2017-05-01

    Many effective anti-cancer drugs have limited use in hepatocellular carcinoma (HCC) therapy due to the drug resistance mechanisms in liver cells. In recent years, tumor-targeted drug delivery and the inhibition of drug-resistance-related mechanisms has become an integrated strategy for effectively combating chemo-resistant cancer. Herein, lactobionic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-LA conjugate) has been developed as a potential asialoglycoprotein receptor (ASGPR)-targeted nanocarrier and an efficient inhibitor of P-glycoprotein (P-gp) to enhance etoposide (ETO) efficacy against HCC. The main properties of ETO-loaded TPGS-LA nanoparticles (NPs) were tested through in vitro and in vivo studies after being prepared using the nanoprecipitation method and characterized by dynamic light scattering (DLS). According to the results, smaller (˜141.43 nm), positively charged ETO-loaded TPGS-LA NPs were more suitable for providing efficient delivery to hepatoma cells by avoiding the clearance mechanisms. It was found that ETO-loaded TPGS-LA NPs were noticeably able to enhance the cytotoxicity of ETO in HepG2 cells. Besides this, markedly higher internalization by the ASGPR-overexpressed HepG2 cells and efficient accumulation at the tumor site in vivo were revealed in the TPGS-LA NP group. More importantly, animal studies confirmed that ETO-loaded TPGS-LA NPs achieved the highest therapeutic efficacy against HCC. Interestingly, ETO-loaded TPGS-LA NPs also exhibited a great inhibitory effect on P-gp compared to the ETO-loaded TPGS NPs. These results suggest that TPGS-LA NPs could be used as a potential ETO delivery system against HCC.

  4. Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students

    Science.gov (United States)

    Palmer, David; Dixon, Jeanette; Archer, Jennifer

    2015-01-01

    Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…

  5. [Current status and prospect of photodynamic therapy in laryngeal diseases].

    Science.gov (United States)

    Zhang, C; Jiang, J Q

    2018-04-07

    Laryngeal diseases are closely related to the swallowing and speech function of the patients.Protecting and restoring laryngeal function, while curing lesions, is vital to patients' quality of life.Photodynamic therapy (PDT) is a minimally invasive method which is widely used in the treatment of tumor, precancerous lesions, and inflammatory diseases.In recent years, it has been shown to have a protective effect on normal structures. This article reviews the clinical outcomes of laryngeal diseases treated with PDT since 1990 in order to evaluate its efficacy and significance. The complete remission rate of early-stage laryngeal tumors and precancerous lesions after PDT is 77.6%(249/321), and a promising effect on recurrent laryngeal papillomatosis has been observed thus far. The prolonged adverse effects of the first-generation photosensitizers have limited the application of PDT. With the improvement of photosensitizers and treatment strategies, PDT promises to be a safe, effective, and minimally invasive treatment method for laryngeal diseases.

  6. Enhancing Cross-Cultural Training Efficacy on Expatriate Adjustment through Emotional Intelligence and Social Capital

    Directory of Open Access Journals (Sweden)

    Ely Susanto

    2012-05-01

    Full Text Available Cross cultural training is widely believed to make a positive contribution to expatriate adjustment. In practice, however, it is very costly and sometimes ineffective for expatriates. Therefore, there is a growing importance placed on increasing the cost effectiveness or enhancing the efficacy of crosscultural training by functioning individual expatriate’s social capital and emotional intelligence as moderating variables towards expatriate’s adjustment and performance. To do so we blend ideas drawn from social capital theory and emotional intelligence to develop the structure that underlies the logic of this paper. Thus, this paper uses social capital and emotional intelligence theories to enrich extant literature on expatriate adjustment

  7. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  8. Evaluation of the efficacy of photodynamic antimicrobial therapy using a phenothiazine compound and Laser (λ=660ηm) on the interface: macrophage vs S. aureus

    Science.gov (United States)

    de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Pires-Santos, Gustavo M.; Sampaio, Fernando José P.; Zanin, Fátima Antônia A.; Pinheiro, Antônio L. B.

    2015-03-01

    Nowadays photodynamic inactivation has been proposed as an alternative treatment for localized bacterial infections as a response to the problem of antibiotic resistance. Much is already known about the photodynamic inactivation of microorganisms: both antibiotic-sensitive and -resistant strains can be successfully photoinactivated and there is the additional advantage that repeated photosensitization of bacterial cells does not induce a selection of resistant strains. Staphylococcus spp. are opportunistic microorganisms known for their capacity to develop resistance against antimicrobial agents. The emergence of resistant strains of bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) poses a major challenge to healthcare. MRSA is a major cause of hospital-acquired infection throughout the world and is now also prevalent in the community as well as nursing and residential homes. The aim of this study was to evaluate the phagocytic function of macrophages J774 against S. aureus in the presence and absence of AmPDT with phenothiazine compound (12.5 μg/mL) and low level laser (λ=660nm, 12 J/cm²). Experimental groups: Control group (L-P-), Phenothiazine group (L-P+) Laser group (L+P-), AmPDT group (L+P+).The tests presented in this study were performed in triplicate. This study showed that AmPDT induced bacterial death in about 80% as well as increasing phagocytic capacity of macrophages by approximately 20% and enhanced the antimicrobial activity by approximately 50% compared to the control group and enabling more intense oxidative burst.

  9. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors

    International Nuclear Information System (INIS)

    Buckway, Brandon; Frazier, Nick; Gormley, Adam J.; Ray, Abhijit; Ghandehari, Hamidreza

    2014-01-01

    Introduction: The treatment of prostate cancer using a radiotherapeutic 90 Y labeled N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer can be enhanced with localized tumor hyperthermia. An 111 In labeled HPMA copolymer system for single photon emission computerized tomography (SPECT) was developed to observe the biodistribution changes associated with hyperthermia. Efficacy studies were conducted in prostate tumor bearing mice using the 90 Y HPMA copolymer with hyperthermia. Methods: HPMA copolymers containing 1, 4, 7, 10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were synthesized by reversible addition-fragmentation transfer (RAFT) copolymerization and subsequently labeled with either 111 In for imaging or 90 Y for efficacy studies. Radiolabel stability was characterized in vitro with mouse serum. Imaging and efficacy studies were conducted in DU145 prostate tumor bearing mice. Imaging was performed using single photon emission computerized tomography (SPECT). Localized mild tumor hyperthermia was achieved by plasmonic photothermal therapy using gold nanorods. Results: HPMA copolymer-DOTA conjugates demonstrated efficient labeling and stability for both radionuclides. Imaging analysis showed a marked increase of radiolabeled copolymer within the hyperthermia treated prostate tumors, with no significant accumulation in non-targeted tissues. The greatest reduction in tumor growth was observed in the hyperthermia treated tumors with 90 Y HPMA copolymer conjugates. Histological analysis confirmed treatment efficacy and safety. Conclusion: HPMA copolymer-DOTA conjugates radiolabeled with both the imaging and treatment radioisotopes, when combined with hyperthermia can serve as an image guided approach for efficacious treatment of prostate tumors

  10. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans.

    Science.gov (United States)

    Gholibegloo, Elham; Karbasi, Ashkan; Pourhajibagher, Maryam; Chiniforush, Nasim; Ramazani, Ali; Akbari, Tayebeh; Bahador, Abbas; Khoobi, Mehdi

    2018-04-01

    Antimicrobial photodynamic therapy (aPDT) has been emerged as a noninvasive strategy to remove bacterial contaminants such as S. mutans from the tooth surface. Photosensitizer (PS), like indocyanine green (ICG), plays a key role in this technique which mainly suffers from the poor stability and concentration-dependent aggregation. An appropriate nanocarrier (NC) with enhanced antibacterial effects could overcome these limitations and improve the efficiency of ICG as a PS. In this study, various ICG-loaded NCs including graphene oxide (GO), GO-carnosine (Car) and GO-Car/Hydroxyapatite (HAp) were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Filed Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential and Ultraviolet-Visible spectrometry (UV-Vis). The colony forming unit and crystal violet assays were performed to evaluate the antimicrobial and anti-biofilm properties of PSs against S. mutans. The quantitative real-time PCR approach was also applied to determine the expression ratio of the gtfB gene in S. mutans. The zeta potential analysis and UV-Vis spectrometry indicated successful loading of ICG onto/into NCs. GO-Car/HAp showed highest amount of ICG loading (57.52%) and also highest aqueous stability after one week (94%). UV-Vis spectrometry analyses disclosed a red shift from 780 to 800 nm for the characteristic peak of ICG-loaded NCs. In the lack of aPDT, GO-Car@ICG showed the highest decrease in bacterial survival (86.4%) which indicated that Car could significantly promote the antibacterial effect of GO. GO@ICG, GO-Car@ICG and GO-Car/HAp@ICG mediated aPDT, dramatically declined the count of S. mutans strains to 91.2%, 95.5% and 93.2%, respectively (P < 0.05). The GO@ICG, GO-Car@ICG, GO-Car/HAp@ICG significantly suppressed the S. mutans biofilm formation by 51.4%, 63.8%, and 56.8%, respectively (P < 0.05). The expression of gtfB gene was

  11. Dynamics of HPV viral loads reflect the treatment effect of photodynamic therapy in genital warts.

    Science.gov (United States)

    Hu, Zhili; Liu, Lishi; Zhang, Wenjing; Liu, Hui; Li, Junpeng; Jiang, Lifen; Zeng, Kang

    2018-03-01

    Photodynamic therapy (PDT) has demonstrated good clinical cure rates and low recurrence rates in the treatment of genital warts. Human papillomavirus (HPV) genotypes and viral load assays can reflect the status of persistent or latent infection and serve as a predictor of infection clearance. Specimens from 41 patients with HPV infection were obtained, and the HPV genotypes and viral load were analyzed using real-time polymerase chain reaction (PCR) assays. Traditional treatment, such as radiofrequency, microwave, or surgical therapy, was used to remove the visible lesions, and then PDT treatment was performed every week. HPV DNA testing was performed at every patient visit and the frequency of PDT treatment was determined by changes in HPV viral loads. HPV viral loads decreased significantly after PDT treatment. There were significant differences in HPV viral loads between pretherapy and three or six rounds of PDT treatment. Significant differences were also observed between single and multiple type HPV infection after six rounds of PDT treatment. Patients with single type HPV infection had significantly higher rates of negative HPV DNA test results, as compared with patients with multiple infections after six rounds of PDT treatment; however, there was no difference in recurrence rates between the two groups. Dynamic monitoring of HPV genotypes and viral loads can be used to guide PDT treatment and indicate PDT treatment efficacy in eliminating HPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mechanism of photodynamic inactivation of hepatocarcinoma cells with sulfonated aluminum phthalocyanine

    Science.gov (United States)

    Yu, Hong-Yu; Dong, Rong-Chun; Chen, Ji-Yao; Cai, Huai-Xin

    1993-03-01

    The mechanism of photodynamic therapy (PDT) with sulfonated aluminum phthalocyanine (AlSPC) studied with the human hepatocellular carcinoma cell line in culture is reported herein. Photofrin II (PII) was chosen as the control photosensitizer of AlSPC. Deuterium oxide (D2O), an enhancer of singlet oxygen (1O2); 1,3-diphenylisobenzofuran (DPBF), a quencher of 1O2: glycerol, a quencher of OH radical (OH(DOT)); superoxide dismutase (SOD), a quencher of O2- radical (O2-(DOT)); diethyldithiocarbamate (DDC), an inhibitor of SOD and glutathione peroxidase; were introduced into both the processes of photodynamic inactivation of human liver cancer cells in culture with AlSPC (AlSPC-PDT) and with PII (PII-PDT). The results suggest that: 1O2 is dominantly involved in both PII-PDT and AlSPC-PDT; O2-(DOT) is involved in AlSPC-PDT in a lower degree than 1O2, while almost not involved in PII-PDT; OH(DOT) is involved in PII-PDT in a lower degree than 1O2, while almost not involved in AlSPC-PDT.

  13. Perceived collective teacher efficacy in low performing schools

    African Journals Online (AJOL)

    Education Management and Leadership, School for Professional Studies in ... enhance collective teacher efficacy, the challenge of low-performing schools ... Collective teacher efficacy, therefore, involves the combined perceptions of ... because greater efficacy leads to greater effort and ... One of the strategies for sharing.

  14. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration.

    Science.gov (United States)

    Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing

    2015-06-01

    Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

  15. Meta-analysis of five photodisinfection clinical trials for periodontitis

    Science.gov (United States)

    Andersen, Roger C.; Loebel, Nicolas G.; Andersen, Dane M.

    2009-06-01

    Photodynamic therapy(PDT) has been demonstrated to effectively kill human periopathogens in vitro. To evaluate the efficacy of PDT in vivo a series of clinical trials was carried out in multiple centers and populations. Clinical parameters including clinical attachment level, pocket probing depth and bleeding on probing were all evaluated. All groups received the standard of care, scaling and root planing, and the treatment group additionally received a single treatment of PDT. Of the total 309 patients and over 40,000 pockets treated in these 5 trials it was determined that photodynamic therapy provided a statistically significant improvement in clinical parameters over scaling and root planing alone.

  16. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    International Nuclear Information System (INIS)

    Hu, Zhiwei; Rao, Benqiang; Chen, Shimin; Duanmu, Jinzhong

    2010-01-01

    The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers

  17. In vivo evaluation of battery-operated light-emitting diode-based photodynamic therapy efficacy using tumor volume and biomarker expression as endpoints

    Science.gov (United States)

    Mallidi, Srivalleesha; Mai, Zhiming; Rizvi, Imran; Hempstead, Joshua; Arnason, Stephen; Celli, Jonathan; Hasan, Tayyaba

    2015-04-01

    In view of the increase in cancer-related mortality rates in low- to middle-income countries (LMIC), there is an urgent need to develop economical therapies that can be utilized at minimal infrastructure institutions. Photodynamic therapy (PDT), a photochemistry-based treatment modality, offers such a possibility provided that low-cost light sources and photosensitizers are available. In this proof-of-principle study, we focus on adapting the PDT light source to a low-resource setting and compare an inexpensive, portable, battery-powered light-emitting diode (LED) light source with a standard, high-cost laser source. The comparison studies were performed in vivo in a xenograft murine model of human squamous cell carcinoma subjected to 5-aminolevulinic acid-induced protoporphyrin IX PDT. We observed virtually identical control of the tumor burden by both the LED source and the standard laser source. Further insights into the biological response were evaluated by biomarker analysis of necrosis, microvessel density, and hypoxia [carbonic anhydrase IX (CAIX) expression] among groups of control, LED-PDT, and laser-PDT treated mice. There is no significant difference in the percent necrotic volume and CAIX expression in tumors that were treated with the two different light sources. These encouraging preliminary results merit further investigations in orthotopic animal models of cancers prevalent in LMICs.

  18. Enhancement of the efficiency of photodynamic therapy by combination with the microtubule inhibitor vincristine

    Science.gov (United States)

    Ma, Li Wei; Berg, Kristian; Danielsen, Havard E.; Iani, Vladimir; Moan, Johan

    1996-01-01

    Combination effects of photodynamic therapy (PDT) with meso-tetra (di-adjacent- sulfonatophenyl) porphine (TPPS2a) and the microtubule (MT) inhibitor, vincristine (VCR), were studied in the CaD2 mouse tumor model in mice. A synergistic effect was found when VCR, at an almost nontoxic dose (1 mg/kg), was injected i.p. into the mice 6 hr before PDT. The data on mitotic index show a 4 - 5 fold accumulation of the cells in mitosis 6 hr after injection of VCR into the mice. Cell cycle and ploidy distributions in tumor tissues were determined by means of image analysis with measurement of integrated optical density after Feulgen reaction on monolayers. Ploidy distribution of the tumors was not significantly changed 6 and 12 hr after administration of VCR only, while an increasing aneuploidy was observed 24 and 48 hr after VCR treatment. No prominent changes of the cell cycle and ploidy distributions were found in the tumor tissues after PDT or PDT combined with VCR.

  19. The Synthesis and Photophysical Characterization of Porphyrin Photoactive Materials for Use as Sensitizers in Organic Photovoltaics and Photodynamic Therapy

    Science.gov (United States)

    Marin, Dawn Marie

    Solar energy conversion and photodynamic therapy (PDT) are very different applications. However, both utilize very similar photoactive molecules called porphyrins. Porphyrins are structural analogs of chlorophyll and also function as prosthetic groups in some biological enzymes. Understanding the structure/function relationship of these molecules is crucial for enhancing the energy generation efficiency of molecular solar cells and improving chemotherapeutic activity in PDT. In this dissertation, two approaches were applied with the goal of increasing the efficiency of molecular semiconductors for these applications: the heavy atom effect and donor-acceptor molecules. We enhanced the efficiency of triplet excited state formation and singlet oxygen generation for porphyrin sensitizers using the heavy atom effect. The heavy atom effect induces spin-orbit coupling to promote intersystem crossing into the triplet state. In this study, a carbomethoxyphenyl substituent was replaced with either a bromophenyl or an iodophenyl substituent on 5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrin. The longer lifetimes obtained from the increase in the triplet excited state allow for longer exciton diffusion lengths and lower recombination rates in photovoltaics. Also, the enhanced intersystem crossing is beneficial for photodynamic therapy because it increases singlet oxygen generation, which destroys tumor cells. Optimizing photovoltaic performance and PDT efficacy can also be accomplished with donor-acceptor molecules because they have extended electronic pi bond delocalization across the molecule, which causes the molecule to absorb longer wavelengths of light. Donor-acceptor molecules should produce photovoltaic devices that absorb more of the solar spectrum and produce sensitizers that absorb wavelengths of light that can penetrate through tissues. Donor-acceptor molecules were synthesized using 5,15-bis(4-carbomethoxyphenyl)porphyrin as the acceptor and thiazolo[5,4-d

  20. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    International Nuclear Information System (INIS)

    Gu, Zhipeng; Huang, Bingxue; Li, Yiwen; Tian, Meng; Li, Li; Yu, Xixun

    2016-01-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  1. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhipeng [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Huang, Bingxue; Li, Yiwen [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Tian, Meng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Li, Li [Department of Oncology, the 452 Hospital of Chinese PLA, Chengdu 610021 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  2. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  3. Protection Motivation and Self-Efficacy: A Model of Health Enhancement.

    Science.gov (United States)

    Stanley, Melinda A.

    Protection motivation theory proposes that a perceived threat to health activates cognitive appraisals of the severity of the threatened event, the probability of its occurrence, and the efficacy of a coping response; a recent reformulation of the theory incorporates self-efficacy expectancy as a fourth mediating cognitive process. To test the…

  4. Cystic echinococcosis therapy: Albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice.

    Science.gov (United States)

    Pensel, Patricia E; Ullio Gamboa, Gabriela; Fabbri, Julia; Ceballos, Laura; Sanchez Bruni, Sergio; Alvarez, Luis I; Allemandi, Daniel; Benoit, Jean Pierre; Palma, Santiago D; Elissondo, María C

    2015-12-01

    Therapeutic failures attributed to medical management of cystic echinococcosis (CE) with albendazole (ABZ) have been primarily linked to the poor drug absorption rate resulting in low drug level in plasma and hydatid cysts. Lipid nanocapsules (LNCs) represent nanocarriers designed to encapsulate lipophilic drugs, such as ABZ. The goals of the current work were: (i) to characterize the plasma and cyst drug exposure after the administration of ABZ as ABZ-LNCs or ABZ suspension (ABZ-SUSP) in mice infected with Echinococcus granulosus, and ii) to compare the clinical efficacies of both ABZ formulations. Enhanced ABZ sulphoxide (ABZ-SO) concentration profiles were obtained in plasma and cysts from ABZ-LNC treated animals. ABZSO exposure (AUC0-LOQ) was significantly higher in plasma and cyst after the ABZ-LNC treatments, both orally and subcutaneously, compared to that observed after oral administration of ABZ-SUSP. Additionally, ABZSO concentrations measured in cysts from ABZ-LNC treated mice were 1.7-fold higher than those detected in plasma. This enhanced drug availability correlated with an increased efficacy against secondary CE in mice observed for the ABZ-LNCs, while ABZ-SUSP did not reach differences with the untreated control group. This new pharmacotechnically-based strategy could be a potential alternative to improve the treatment of human CE. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Laser-mediated Photodynamic Therapy: An Alternative Treatment for Actinic Keratosis?

    Science.gov (United States)

    Kessels, Janneke P H M; Nelemans, Patty J; Mosterd, Klara; Kelleners-Smeets, Nicole W J; Krekels, Gertruud A M; Ostertag, Judith U

    2016-03-01

    Photodynamic therapy (PDT) with light emitting diode (LED) illumination is a frequently used treatment modality for actinic keratosis (AK) with excellent cosmetic outcome. A major disadvantage, however, is the high pain score. Pulsed dye laser (PDL) illumination has been suggested, but the long-term efficacy of this treatment is unknown. In this split-face study we prospectively treated 61 patients with AK, with both LED-PDT and PDL-PDT. The mean change in the number of lesions between the end of follow-up and start of therapy was -4.25 (95% confidence interval (95% CI) -5.07; -3.43) for LED-PDT and -3.88 (95% CI -4,76; -2.99) for PDL-PDT, with a non-significant difference (p = 0.258) of -0.46 (95% CI -1.28; 0.35). The percentage decrease from baseline in the total number of AK was 55.8% and 47.8%, respectively, at 12-month follow-up. Visual analogue scale pain score was lower after PDL (mean 2.64) compared with LED illumination (mean 6.47). These findings indicate that PDL-PDT is an effective alternative illumination source fo.

  6. Photodynamic monotherapy or combination treatment with intravitreal triamcinolone acetonide, bevacizumab or ranibizumab for choroidal neovascularization associated with pathological myopia

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2011-01-01

    Full Text Available This retrospective, interventional case series analyses treatment outcomes in eyes with choroidal neovascularization (CNV secondary to pathological myopia, managed with photodynamic therapy, (PDT, (Group 1, N = 11, PDT and intravitreal triamcinolone acetonide (4 mg/0.1ml (Group 2, N = 3, PDT and intravitreal anti-vascular endothelial growth factor (anti-VEGF bevacizumab 1.25 mg/0.05 ml, ranibizumab 0.5 mg/0.05 ml and reduced-fluence PDT and intravitreal ranibizumab 0.5 mg/0.05 ml (Group 3, N=12. All the patients underwent PDT. Intravitreal injections were repeated as required. SPSS 14 software was used to evaluate the data. Wilcoxon signed ranks test was used to evaluate pre- and post-treatment vision. The Kruskal-Wallis test was used for comparison between the groups. All the groups were statistically comparable. All the eyes showed complete regression of CNV, with a minimum follow-up of six months. All groups had visual improvement; significantly in Group 3 ( p = 0.003. Combination PDT with anti-VEGF agents appeared to be efficacious in eyes with myopic CNV. However, a larger study with a longer follow-up is required to validate these results.

  7. Development of low-cost devices for image-guided photodynamic therapy treatment of oral cancer in global health settings

    Science.gov (United States)

    Liu, Hui; Rudd, Grant; Daly, Liam; Hempstead, Joshua; Liu, Yiran; Khan, Amjad P.; Mallidi, Srivalleesha; Thomas, Richard; Rizvi, Imran; Arnason, Stephen; Cuckov, Filip; Hasan, Tayyaba; Celli, Jonathan P.

    2016-03-01

    Photodynamic therapy (PDT) is a light-based modality that shows promise for adaptation and implementation as a cancer treatment technology in resource-limited settings. In this context PDT is particularly well suited for treatment of pre-cancer and early stage malignancy of the oral cavity, that present a major global health challenge, but for which light delivery can be achieved without major infrastructure requirements. In recent reports we demonstrated that a prototype low-cost batterypowered 635nm LED light source for ALA-PpIX PDT achieves tumoricidal efficacy in vitro and vivo, comparable to a commercial turn-key laser source. Here, building on these reports, we describe the further development of a prototype PDT device to enable intraoral light delivery, designed for ALA- PDT treatment of precancerous and cancerous lesions of the oral cavity. We evaluate light delivery via fiber bundles and customized 3D printed light applicators for flexible delivery to lesions of varying size and position within the oral cavity. We also briefly address performance requirements (output power, stability, and light delivery) and present validation of the device for ALA-PDT treatment in monolayer squamous carcinoma cell cultures.

  8. Daylight-mediated photodynamic therapy of basal cell carcinomas - an explorative study

    DEFF Research Database (Denmark)

    Wiegell, S R; Skødt, V; Wulf, H C

    2014-01-01

    BACKGROUND: Studies have shown that daylight-photodynamic therapy (PDT) is an effective treatment of actinic keratoses, nearly pain free and more convenient for both the clinics and patients. Treatment of basal cell carcinomas (BCCs) is another main indication for PDT. OBJECTIVES: The aim...... of this open, uncontrolled, prospective explorative study was to evaluate the efficacy of daylight-PDT for BCCs. METHODS: Twenty-one patients with a total of 32 BCCs located in the face, scalp, chest, back and lower leg received one cycle of daylight-methyl aminolevulinate (MAL)-PDT, consisting of two...... treatments 1 week apart. After sunscreen application and lesion preparation, MAL was applied and patients exposed themselves to daylight for 2½ h. Daylight exposure was monitored with a wrist-borne dosimeter. RESULTS: At 3-month follow-up, complete response was seen in 30 lesions (94%) and in 19 patients (90...

  9. Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: A randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Pariser, David; Loss, Robert; Jarratt, Michael; Abramovits, William; Spencer, James; Geronemus, Roy; Bailin, Philip; Bruce, Suzanne

    2008-10-01

    The use of light-emitting diode light offers practical advantages in photodynamic therapy (PDT) with topical methyl-aminolevulinate (MAL) for management of actinic keratoses (AK). We sought to evaluate the efficacy of MAL PDT using red light-emitting diode light. We conducted a multicenter, double-blind, randomized study. A total of 49 patients with 363 AK lesions had 16.8% MAL cream applied under occlusion for 3 hours, and 47 patients with 360 AK lesions had vehicle cream similarly applied. The lesions were then illuminated (630 nm, light dose 37 J/cm2) with repeated treatment 1 week later. Complete lesion and patient (all lesions showing complete response) response rates were evaluated 3 months after last treatment. MAL PDT was superior (PAK. MAL PDT using red light-emitting diode light is an appropriate treatment alternative for multiple AK lesions.

  10. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion.

    Science.gov (United States)

    Garcez, Aguinaldo Silva; Nuñez, Silvia Cristina; Hamblin, Michael R; Ribeiro, Martha Simões

    2008-02-01

    This study analyzed the antimicrobial effect of photodynamic therapy (PDT) in association with endodontic treatment. Twenty patients were selected. Microbiological samples were taken after accessing the canal, endodontic therapy, and PDT. At the end of the first session, the root canal was filled with Ca(OH)(2), and after 1 week, a second session of the therapies was performed. Endodontic therapy gave a mean reduction of 1.08 log. The combination with PDT significantly enhanced the reduction (1.83 log, p = 0.00002). The second endodontic session gave a similar diminution to the first (1.14 log), and the second PDT was significantly more effective than the first (p = 0.002). The second total reduction was significantly higher than the second endodontic therapy (p = 0.0000005). The total first + second reduction (3.19 log) was significantly different from the first combination (p = 0.00006). Results suggest that the use of PDT added to endodontic treatment leads to an enhanced decrease of bacterial load and may be an appropriate approach for the treatment of oral infections.

  11. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection.

    Science.gov (United States)

    Abriata, Juliana Palma; Eloy, Josimar O; Riul, Thalita Bachelli; Campos, Patricia Mazureki; Baruffi, Marcelo Dias; Marchetti, Juliana Maldonado

    2017-08-01

    Despite affecting millions of people worldwide, Chagas disease is still neglected by the academia and industry and the therapeutic option available, benznidazole, presents limited efficacy and side effects. Within this context, ursolic acid may serve as an option for treatment, however has low bioavailability, which can be enhanced through the encapsulation in polymeric nanoparticles. Therefore, herein we developed ursolic acid-loaded nanoparticles with poly-ε-caprolactone by the nanoprecipitation method and characterized them for particle size, zeta potential, polydispersity, encapsulation efficiency, morphology by scanning electron microscopy and thermal behavior by differential scanning calorimetry. Results indicated that an appropriate ratio of organic phase/aqueous phase and polymer/drug is necessary to produce smaller particles, with low polydispersity, negative zeta potential and high drug encapsulation efficiency. In vitro studies indicated the safety of the formulation against fibroblast culture and its efficacy in killing T. cruzi. Very importantly, the in vivo study revealed that the ursolic acid-loaded nanoparticle is as potent as the benznidazole group to control parasitemia, which could be attributed to improved bioavailability of the encapsulated drug. Finally, the toxicity evaluation showed that while benznidazole group caused liver toxicity, the nanoparticles were safe, indicating that this formulation is promising for future evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effective photodynamic therapy of actinic keratoses on the head and face with a novel, self-adhesive 5-aminolaevulinic acid patch.

    Science.gov (United States)

    Hauschild, Axel; Popp, Georg; Stockfleth, Eggert; Meyer, Karl-Gustav; Imberger, Dirk; Mohr, Peter; Itschert, Götz; Kaufmann, Roland; Neuber, Karsten; Frambach, Yvonne; Gollnick, Harald; Brunnert, Marcus; Stocker, Marcus; Ortland, Christoph; Karrer, Sigrid

    2009-02-01

    Photodynamic therapy (PDT) is increasingly used for the treatment of actinic keratosis (AK). To investigate both the efficacy of different application times and the safety of a novel patch (PD P 506 A) containing aminolaevulinic acid in the PDT of mild to moderate AK. Applications of PD P 506 A for 0.5, 1, 2 and 4 h were compared in a multicentre, randomized, blinded-observer, parallel-group study. After patch removal, study lesions were illuminated with red light (lambda(em) approximately 630 nm; 37 J/cm(2)). Study lesions were not pretreated (e.g. by curettage) prior to PDT. Efficacy was evaluated 4 and 8 weeks after treatment. Safety and tolerability were determined through laboratory analyses and documentation of both local reactions and adverse events. A total of 149 patients were initially enrolled. Of these, 140 patients (520 lesions) completed the study according to protocol. Eight weeks after treatment, 86% of the AK lesions (74% of the patients) treated with 4-h patch application showed complete clearance. The complete clearance rates of lesions (patients) for the 2-, 1- and 0.5-h treatment arms were 73% (47%), 72% (50%) and 51% (24%), respectively. Statistically, the 4-h application was identified as the 'best treatment'. Patients with clearance seemed to experience local reactions to a greater extent than patients without clearance. Local reactions to study treatments did not exceed the expected range. The results of this first clinical efficacy study suggest excellent therapeutic outcomes with a single PD P 506 A PDT with a 4-h application.

  13. Anti-vascular endothelial growth factor therapy for the treatment of myopic choroidal neovascularization

    Directory of Open Access Journals (Sweden)

    Tan CS

    2017-09-01

    Full Text Available Colin S Tan,1,2 SriniVas R Sadda3 1National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; 2Fundus Image Reading Center, National Healthcare Group Eye Institute, Singapore; 3Doheny Eye Institute, University of California Los Angeles, CA, USA Abstract: Myopic choroidal neovascularization (CNV is a sight-threatening condition which occurs in eyes with myopia, particularly in those with pathologic myopia. It is the most common cause of CNV among patients younger than 50 years. Hemorrhage and exudation from the CNV lesion may eventually result in scarring or chorioretinal atrophy. While myopic CNV was previously treated with focal laser photocoagulation or photodynamic therapy (PDT, the current treatment of choice is anti-vascular endothelial growth factor (VEGF agents. Many studies have demonstrated the efficacy of intravitreal anti-VEGF agents in the treatment of myopic CNV. The RADIANCE study reported that intravitreal ranibizumab was superior to PDT in eyes with myopic CNV (at 3 months, both groups receiving intravitreal ranibizumab gained 10.5 and 10.6 letters vs 2.2 letters among patients receiving PDT. In addition, the study demonstrated similar visual outcomes in eyes treated on the basis of visual acuity stabilization or disease activity criteria. Other clinical studies have provided evidence for the efficacy of ranibizumab and aflibercept in the treatment of myopic CNV. This review addresses the epidemiology, pathophysiology, and imaging characteristics of myopic CNV, and discusses the evidence for the efficacy of anti-VEGF agents as compared to laser photocoagulation and PDT. Keywords: myopic choroidal neovascularization, ranibizumab, anti-vascular endothelial growth factor

  14. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Takumi Tsuda

    Full Text Available Anticancer agents and operating procedures have been developed for hepatocellular carcinoma (HCC patients, but their prognosis remains poor. It is necessary to develop novel diagnostic and therapeutic strategies for HCC to improve its prognosis. Lactosome is a core-shell-type polymeric micelle, and enclosing labeling or anticancer agents into this micelle enables drug delivery. In this study, we investigated the diagnostic and therapeutic efficacies of indocyanine green (ICG-loaded lactosome for near-infrared fluorescence (NIF imaging and photodynamic therapy (PDT for HCC.The human HCC cell line HuH-7 was treated with ICG or ICG-lactosome, followed by PDT, and the cell viabilities were measured (in vitro PDT efficiency. For NIF imaging, HuH-7 cells were subcutaneously transplanted into BALB/c nude mice, followed by intravenous administration of ICG or ICG-lactosome. The transplanted animals were treated with PDT, and the antineoplastic effects were analyzed (in vivo PDT efficiency.PDT had toxic effects on HuH-7 cells treated with ICG-lactosome, but not ICG alone. NIF imaging revealed that the fluorescence of tumor areas in ICG-lactosome-treated animals was higher than that of contralateral regions at 24 h after injection and thereafter. PDT exerted immediate and continuous phototoxic effects in the transplanted mice treated with ICG-lactosome.Our results demonstrate that ICG-lactosome accumulated in xenograft tumors, and that PDT had antineoplastic effects on these malignant implants. NIF imaging and PDT with ICG-lactosome could be useful diagnostic and/or therapeutic strategies for HCC.

  15. Photodynamic therapy of bladder cancer - a phase I study using hexaminolevulinate (HAL).

    Science.gov (United States)

    Bader, M J; Stepp, Herbert; Beyer, Wolfgang; Pongratz, Thomas; Sroka, Ronald; Kriegmair, Martin; Zaak, Dirk; Welschof, Mona; Tilki, Derya; Stief, Christian G; Waidelich, Raphaela

    2013-10-01

    To assess the safety and feasibility of hexaminolevulinate (HAL) based photodynamic therapy (PDT) as adjuvant treatment after transurethral resection of the bladder (TURB) in patients with intermediate or high-risk urothelial cell carcinoma (UCC) of the bladder. Seventeen patients received 50 ml of either a 16 mM (4 patients) or 8 mM HAL (13 patients) solution instilled intravesically. Bladder wall irradiation was performed using an incoherent white light source coupled via a quartz fiber assembled into a flexible transurethral irrigation catheter. Each patient received 3 treatments with HAL-PDT 6 weeks apart. After PDT, patients were followed by regular cystoscopy for up to 21 months to assess time to recurrence. Reported adverse events (AEs) were coded according the World Health Organization Adverse Reaction Terminology (WHO-ART). Efficacy was assessed by cystoscopy, cytology, and histology, and was defined as the number of patients who were tumor-free at 6 or 21 months after initial PDT treatment. Transient bladder irritability was reported by 15 of the 17 patients and resolved completely in all patients. No evidence of a cumulative effect of treatment on the incidence of AEs could be detected. PDT treatment was performed without any technical complications. Furthermore preliminary assessment of efficacy showed that of the 17 patients included, 9 (52.9%; 95% CI: 27.8-77.0) were tumor-free at 6 months, 4 (23.5%; 95% CI: 6.8-49.9) were tumor-free at 9 months, and 2 (11.8%, 95% CI: 1.5-36.4) were tumor-free after 21 months. PDT using hexaminolevulinate and an incoherent white light system with the special flexible irradiation catheter system is technically feasible and safe and may offer an alternative in the treatment of non-muscle-invasive intermediate and high-risk bladder cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Superselective Particle Embolization Enhances Efficacy of Radiofrequency Ablation: Effects of Particle Size and Sequence of Action

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Isfort, Peter; Braunschweig, Till; Westphal, Saskia; Woitok, Anna; Penzkofer, Tobias; Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2013-01-01

    Purpose. To evaluate the effects of particle size and course of action of superselective bland transcatheter arterial embolization (TAE) on the efficacy of radiofrequency ablation (RFA). Methods. Twenty pigs were divided into five groups: group 1a, 40-μm bland TAE before RFA; group 1b, 40-μm bland TAE after RFA; group 2a, 250-μm bland TAE before RFA; group 2b, 250-μm bland TAE after RFA and group 3, RFA alone. A total of 40 treatments were performed with a combined CT and angiography system. The sizes of the treated zones were measured from contrast-enhanced CTs on days 1 and 28. Animals were humanely killed, and the treated zones were examined pathologically. Results. There were no complications during procedures and follow-up. The short-axis diameter of the ablation zone in group 1a (mean ± standard deviation, 3.19 ± 0.39 cm) was significantly larger than in group 1b (2.44 ± 0.52 cm; P = 0.021), group 2a (2.51 ± 0.32 cm; P = 0.048), group 2b (2.19 ± 0.44 cm; P = 0.02), and group 3 (1.91 ± 0.55 cm; P 3 ). At histology, 40-μm microspheres were observed to occlude smaller and more distal arteries than 250-μm microspheres. Conclusion. Bland TAE is more effective before RFA than postablation embolization. The use of very small 40-μm microspheres enhances the efficacy of RFA more than the use of larger particles.

  17. Liposomes as a drug delivery system in photodynamic therapy for colon cancer treatment

    CSIR Research Space (South Africa)

    Maduray, K

    2010-01-01

    Full Text Available Photodynamic therapy (PDT) uses a drug termed a photosensitizer (PS), light (laser) of an appropriate wavelength and molecular oxygen (tissue) to elicit cell death of cancer cells. The objective of this study was to evaluate the enhancement of PDT...

  18. Photodynamic therapy of cervical intraepithelial neoplasia

    Science.gov (United States)

    Inada, Natalia M.; Lombardi, Welington; Leite, Marieli F. M.; Trujillo, Jose R.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors, especially in Gynecology. The photodynamic reaction is based on the production of reactive oxygen species after the activation of a photosensitizer. Advantages of the PDT in comparison to the surgical resection are: ambulatory treatment and tissue recovery highly satisfactory, through a non-invasive procedure. The cervical intraepithelial neoplasia (CIN) grades I and II presents potential indications for PDT. The aim of the proposed study is to evaluate the safety and efficacy of the PDT for the diagnostics and treatment of CIN I and II. The equipment and the photosensitizer are produced in Brazil with a representative low cost. It is possible to visualize the fluorescence of the cervix and to treat the lesions, without side effects. The proposed clinical protocol shows great potential to become a public health technique.

  19. Cordycepin enhances Epstein-Barr virus lytic infection and Epstein-Barr virus-positive tumor treatment efficacy by doxorubicin.

    Science.gov (United States)

    Du, Yinping; Yu, Jieshi; Du, Li; Tang, Jun; Feng, Wen-Hai

    2016-07-01

    The consistent latent presence of Epstein-Barr virus (EBV) in tumor cells offers potential for virus-targeted therapies. The switch from the latent form of EBV to the lytic form in tumor cells can lead to tumor cell lysis. In this study, we report that a natural small molecule compound, cordycepin, can induce lytic EBV infection in tumor cells. Subsequently, we demonstrate that cordycepin can enhance EBV reactivating capacity and EBV-positive tumor cell killing ability of low dose doxorubicin. The combination of cordycepin and doxorubicin phosphorylates CCAAT/enhancer binding protein β (C/EBPβ) through protein kinase C (PKC)-p38 mitogen activated protein kinases (p38 MAPK) signaling pathway, and C/EBPβ is required for the activation of lytic EBV infection. Most importantly, an in vivo experiment demonstrates that the combination of cordycepin and doxorubicin is more effective in inhibiting tumor growth in SCID mice than is doxorubicin alone. Our findings establish that cordycepin can enhance the efficacy of conventional chemotherapy for treatment of EBV-positive tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. [Light, laser and PDT therapy for acne].

    Science.gov (United States)

    Borelli, C; Merk, K; Plewig, G; Degitz, K

    2005-11-01

    In recent years, a number of studies have evaluated the treatment of acne using electromagnetic waves, such as lasers, photodynamic therapy, visible light or radio waves. While the efficacy of laser treatment is still uncertain, photodynamic therapy shows promising results, but with marked side-effects, as destruction of sebaceous glands. Treatment with blue light (405-420 nm wavelength) also appears effective and can be regarded as an treatment option for inflammatory acne.

  1. Effects of Self-Regulated Vocabulary Learning Process on Self-Efficacy

    Science.gov (United States)

    Mizumoto, Atsushi

    2013-01-01

    Researchers, especially in the field of educational psychology, have argued that self-efficacy plays an important role in self-regulated learning. As such, teaching of self-regulated learning often focuses on enhancing self-efficacy. However, few studies have examined how the process of self-regulated learning might lead to the enhancement of…

  2. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    Li K

    2017-12-01

    Full Text Available Kai Li,1,* Yongxing Zhang,2,* Mengting Chen,1 Yangyang Hu,1 Weiliang Jiang,1 Li Zhou,1 Sisi Li,1 Min Xu,1 Qinghua Zhao,2 Rong Wan1 1Department of Gastroenterology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Department of Orthopaedics, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: To improve the antitumor efficacy of doxorubicin (DOX and provide novel clinical treatment of gastric cancer, halloysite nanotubes (HNTs loaded with DOX were encapsulated by soybean phospholipid (LIP and the formed HNTs/DOX/LIP was systematically characterized via different techniques. The in vitro anticancer activity of HNTs/DOX/LIP was examined using an MTT assay. The antitumor efficacy and biocompatibility were monitored by measuring the tumor volume and assessing the blood routine and serum biochemistry using an ectopic implantation cancer model. The results show that when the concentration of HNTs was 3 mg/mL and the concentration of DOX was 1 mg/mL the optimal DOX loading efficiency was as high as 22.01%±0.43%. In vitro drug release behavior study demonstrated that HNTs/DOX/LIP shows a pH-responsive release property with fast drug release under acidic conditions (pH =5.4. MTT assays and in vivo experimental results revealed that HNTs/DOX/LIP exhibits a significantly higher inhibitory efficacy on the growth of mouse gastric cancer cells than free DOX at the same drug concentration. In addition, the life span of tumor-bearing mice in the HNTs/DOX/LIP-treated group was obviously prolonged compared with the control groups. Moreover, HNTs/DOX/LIP possessed excellent hemocompatibility as shown in the blood and histology studies. These findings indicated that the formed HNTs/DOX/LIP possesses higher antitumor efficacy and may be used as a targeted

  3. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  4. The potential of photodynamic therapy to treat esophageal candidiasis coexisting with esophageal cancer.

    Science.gov (United States)

    Qiu, Haixia; Mao, Yongping; Gu, Ying; Zhu, Jianguo; Wang, Ying; Zeng, Jing; Huang, Naiyan; Liu, Qingsen; Yang, Yunsheng

    2014-01-05

    Photodynamic therapy (PDT) has been used in recent years to deal with fungal infections because of the prevalence of fungi resistance to drugs. However, PDT for gastrointestinal fungal infection has not been reported. This study was conducted to assess the potential of PDT to deal with esophageal candidiasis. Two male patients with histological evidence of esophageal candidiasis coexisting with esophageal cancer were included in this retrospective study. Both patients were treated with PDT. This treatment was repeated at least 1month after the initial PDT if the patient still had residual cancer or esophageal candidiasis. Short-term efficacy was evaluated on the basis of endoscopy and histology findings. Further follow-up data were obtained from endoscopy results or telephone conversation. The esophageal candidiasis located 21-24cm and 25-28cm from the incisors of case 1 reached complete remission after one and two PDT sessions, respectively. The esophageal cancer coexisting with esophageal candidiasis located 21-24cm from the incisors reached complete remission after two PDT sessions. No recurrence was found at a 14-month follow-up. The esophageal cancer located 30-35cm from the incisors reached partial response after three PDT sessions. Both of the esophageal candidiasis and the coexisting esophageal cancer at 23-26cm from the incisors of case 2 reached complete remission and the esophageal cancer at 34-37cm from the incisors reached complete remission after one PDT session. No recurrence was found at a 24-month follow-up. There were no serious adverse events found in either of the two cases. Results of this preliminary study indicate that PDT may be a potential method to deal with esophageal candidiasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Suppression of Remodeling Behaviors with Arachidonic Acid Modification for Enhanced in vivo Antiatherogenic Efficacies of Lovastatin-loaded Discoidal Recombinant High Density Lipoprotein.

    Science.gov (United States)

    He, Hongliang; Zhang, Mengyuan; Liu, Lisha; Zhang, Shuangshuang; Liu, Jianping; Zhang, Wenli

    2015-10-01

    A series of in vitro evaluation in our previous studies had proved that arachidonic acid (AA) modification could suppress the remodeling behaviors of lovastatin-loaded discoidal reconstituted high density lipoprotein (LT-d-rHDL) by restraining the reactivity with lecithin cholesterol acyltransferase (LCAT) for reducing undesired drug leakage. This study focuses on the investigation of AA-modified LT-d-rHDL (AA-LT-d-rHDL) in atherosclerotic New Zealand White (NZW) rabbit models to explore whether AA modification could enhance drug targeting delivery and improve antiatherogenic efficacies in vivo. After pharmacokinetics of AA-LT-d-rHDL modified with different AA amount were investigated in atherosclerotic NZW rabbits, atherosclerotic lesions targeting property was assessed by ex vivo imaging of aortic tree and drug distribution. Furthermore, their antiatherogenic efficacies were elaborately evaluated and compared by typical biochemical indices. With AA modification amount augmenting, circulation time of AA-LT-d-rHDL was prolonged, and drug accumulation in the target locus was increased, eventually the significant appreciation in antiatherogenic efficacies were further supported by lower level of bad cholesterol, decreased atherosclerotic lesions areas and mean intima-media thickness (MIT), markedly attenuated matrix metalloproteinase-9 (MMP-9) protein expression and macrophage infiltration. This proof-of-concept study demonstrated that AA-LT-d-rHDL could enhance drug accumulation in atherosclerotic lesion and impede atherosclerosis progression more effectively.

  6. The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Theodossis A. Theodossiou

    2017-08-01

    Full Text Available The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT. MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4 than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1, mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH by buthionine sulfoximine (BSO, largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies. Keywords

  7. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity

    International Nuclear Information System (INIS)

    Mullins, Dana; Proulx, Denise; Saoudi, A.; Ng, Cheng E.

    2005-01-01

    Purpose: Topotecan (TPT), a camptothecin analog, is currently used to treat human ovarian and small-cell lung cancer and is in clinical trials for other tumor sites. However, it is unknown whether chronomodulation of TPT treatment is beneficial. We examined the effects of administering TPT or X-radiation (XR) alone at different times of the day or night. Methods: We treated mice bearing human colorectal tumor xenografts at four different times representing the early rest period (9 AM or 3 HALO [hours after light onset]), late rest period (3 PM or 9 HALO), early active period (9 PM or 15 HALO), and late active period (3 AM or 21 HALO) of the mice. We gave either TPT (12 mg/kg, injected i.p.) or XR (4 Gy, directed to the tumor) twice weekly on Days 0, 4, 7, 10 within 2 weeks. Results: Treatment with either TPT or XR at 3 AM demonstrated the greatest efficacy (measured by a tumor regrowth assay) without significantly increasing acute toxicity (assessed by a decrease in leukocyte counts or body weight). Conversely, treatment at 3 PM, in particular, showed increased toxicity without any enhanced efficacy. Conclusions: Our study provided the first evidence that chronomodulation of TPT treatments, consistent with the findings of other camptothecin analogs, is potentially clinically beneficial. Additionally, our findings suggest that chronomodulation of fractionated XR treatments is also potentially clinically beneficial

  8. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity.

    Science.gov (United States)

    Mullins, Dana; Proulx, Denise; Saoudi, A; Ng, Cheng E

    2005-05-01

    Topotecan (TPT), a camptothecin analog, is currently used to treat human ovarian and small-cell lung cancer and is in clinical trials for other tumor sites. However, it is unknown whether chronomodulation of TPT treatment is beneficial. We examined the effects of administering TPT or X-radiation (XR) alone at different times of the day or night. We treated mice bearing human colorectal tumor xenografts at four different times representing the early rest period (9 am or 3 HALO [hours after light onset]), late rest period (3 pm or 9 HALO), early active period (9 pm or 15 HALO), and late active period (3 am or 21 HALO) of the mice. We gave either TPT (12 mg/kg, injected i.p.) or XR (4 Gy, directed to the tumor) twice weekly on Days 0, 4, 7, 10 within 2 weeks. Treatment with either TPT or XR at 3 am demonstrated the greatest efficacy (measured by a tumor regrowth assay) without significantly increasing acute toxicity (assessed by a decrease in leukocyte counts or body weight). Conversely, treatment at 3 pm, in particular, showed increased toxicity without any enhanced efficacy. Our study provided the first evidence that chronomodulation of TPT treatments, consistent with the findings of other camptothecin analogs, is potentially clinically beneficial. Additionally, our findings suggest that chronomodulation of fractionated XR treatments is also potentially clinically beneficial.

  9. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis

    International Nuclear Information System (INIS)

    Frame, Fiona M.; Savoie, Huguette; Bryden, Francesca; Giuntini, Francesca; Mann, Vincent M.; Simms, Matthew S.; Boyle, Ross W.; Maitland, Norman J.

    2015-01-01

    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

  10. Photodynamic therapy is more effective than imiquimod for actinic keratosis in organ transplant recipients: a randomized intraindividual controlled trial.

    Science.gov (United States)

    Togsverd-Bo, K; Halldin, C; Sandberg, C; Gonzalez, H; Wennberg, A M; Sørensen, S S; Wulf, H C; Haedersdal, M

    2018-04-01

    Actinic keratoses (AKs) in solid organ transplant recipients (OTRs) are difficult-to-treat premalignancies and comparison of topical therapies is therefore warranted. In an intraindividual study to compare the efficacy and safety of field treatment with methyl aminolaevulinate photodynamic therapy (MAL-PDT) and imiquimod (IMIQ) for AKs in OTRs. OTRs (n = 35) with 572 AKs (grade I-III) in two similar areas on the face, scalp, dorsal hands or forearms were included. All patients received one MAL-PDT and one IMIQ session (three applications per week for 4 weeks) in each study area according to randomization. Treatments were repeated after 2 months (IMIQ) and 3 months (PDT) in skin with incomplete AK response. Outcome measures were complete lesion response (CR), skin reactions, laboratory results and treatment preference. The majority of study areas received two treatment sessions (PDT n = 25 patients; IMIQ n = 29 patients). At 3 months after two treatments, skin treated with PDT achieved a higher rate of CR (AK I-III median 78%; range 50-100) compared with IMIQ-treated skin areas (median 61%, range 33-100; P AKs were seen in PDT-treated skin vs. IMIQ-treated skin (0·7 vs. 1·5 AKs, P = 0·04). Patients developed more intense inflammatory skin reactions following PDT, which resolved more rapidly compared with IMIQ (median 10 days vs. 18 days, P 47) and cosmesis (P > 0·30) were similar for PDT and IMIQ. Compared with IMIQ, PDT treatment obtained a higher rate of AK clearance at 3-month follow-up and achieved shorter-lasting, but more intense, short-term skin reactions. © 2017 British Association of Dermatologists.

  11. Effect of laser-assisted scaling and root planing on the expression of pro-inflammatory cytokines in the gingival crevicular fluid of patients with chronic periodontitis: A systematic review.

    Science.gov (United States)

    Kellesarian, Sergio Varela; Malignaggi, Vanessa Ros; Majoka, Hasham Abdullah; Al-Kheraif, Abdulaziz A; Kellesarian, Tammy Varela; Romanos, Georgios E; Javed, Fawad

    2017-06-01

    The aim of the present systematic review was to assess the efficacy of laser-assisted (low level laser therapy [LLLT], high intensity laser therapy [HILT], or antimicrobial photodynamic therapy [aPDT]) scaling and root planing (SRP) compared with SRP alone on the expression of inflammatory cytokines in the gingival crevicular (GCF) of patients with chronic periodontitis (CP). In order to address the focused question: "What is the efficacy of SRP with and without laser and/or aPDT on the expression of pro-inflammatory cytokines in the GCF of patients with CP?" an electronic search without time or language restrictions was conducted up to and including February 2017 in indexed databases using various key words. Twenty-two randomized control trials were included in the present systematic review. Nine studies and six studies assessed the efficacy of LLLT and HILT, as adjunct to SRP, respectively. Seven studies assessed the efficacy of aPDT as adjunct to SRP on down-regulating the expression of pro-inflammatory cytokines in the GCF among patients with CP. The outcomes of the studies included based upon the reduction in the levels of pro-inflammatory cytokines were inconsistent. The role of laser-assisted SRP on the expression of pro-inflammatory cytokines in the GCF of patients with CP remains unclear. Further long term and well-designed randomized clinical trials are needed in this regard. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 5-氨基酮戊酸光动力疗法联合二氧化碳激光治疗尖锐湿疣疗效观察%Clinical efficacy of 5-aminolevulinic acid photodynamic therapy combined with CO2 laser in the treat-ment of genital condylomata acumunata

    Institute of Scientific and Technical Information of China (English)

    朱建平; 刘传真; 刘永生

    2015-01-01

    目的:观察5-氨基酮戊酸光动力疗法(ALA-PDT)联合二氧化碳(CO2)激光治疗尖锐湿疣的临床疗效。方法117例尖锐湿疣患者随机分为2组,A 组(58例)采用 CO2激光治疗, B 组(59例)采用 ALA-PDT 联合 CO2激光治疗。每次治疗后进行疗效评价和观察不良反应。2组均在末次治疗后1、4、8、12、24周进行随访,观察复发率。结果完成治疗及随访的106例患者中, A 组51例,治愈率为72.55%(37/51)、复发率为37.84%(14/37);B 组55例,治愈率为94.55%(52/55)、复发率为5.77%(3/52);B 组治愈率明显优于 A 组(χ2=9.508,P =0.002);B 组复发率也明显低于 A 组(χ2=14.387,P <0.001)。2组患者 CO2激光治疗后均出现局部溃疡,并伴有糜烂、渗出、疼痛,1~2周均自行好转。B 组 ALA-PDT 不良反应有局部红肿、疼痛、糜烂,1~5 d 内自行缓解。结论ALA-PDT 联合 CO2激光治疗尖锐湿疣患者的临床疗效明显优于单用 CO2激光。%Objective To observe the clinical efficacy of combined therapy of topical 5-aminolaevu-linic acid (ALA)photodynamic therapy (PDT)and carbon dioxide laser (CO2 laser)in the treatment of con-dylomata acuminate (CA).Methods In total,1 1 7 cases diagnosed with CA were randomly divided into groups A and B.In group A,the patients were treated with CO2 laser.Those in group B underwent ALA-PDT in combination with CO2 laser.Clinical efficacy and adverse reaction were observed in both groups.All patients were followed up at 1 ,4,8,1 2 and 24 weeks after the final treatment to evaluate the recurrence rate.Results Among 1 1 7 patients,1 06 completed the treatment and subsequent follow-up.The recovery rate in group A was 72.55% (37 /51 )and 94.55% (52 /55)in group B with statistical significance (χ2 =9.508,P =0.002).The recurrence rate in group A was 37.84% (1 4 /37)and 5.77% (3 /52)in group B with statistical signifi-cance (χ2

  13. The Combined Effects of Classroom Teaching and Learning Strategy Use on Students' Chemistry Self-Efficacy

    Science.gov (United States)

    Cheung, Derek

    2015-02-01

    For students to be successful in school chemistry, a strong sense of self-efficacy is essential. Chemistry self-efficacy can be defined as students' beliefs about the extent to which they are capable of performing specific chemistry tasks. According to Bandura (Psychol. Rev. 84:191-215, 1977), students acquire information about their level of self-efficacy from four sources: performance accomplishments, vicarious experiences, verbal persuasion, and physiological states. No published studies have investigated how instructional strategies in chemistry lessons can provide students with positive experiences with these four sources of self-efficacy information and how the instructional strategies promote students' chemistry self-efficacy. In this study, questionnaire items were constructed to measure student perceptions about instructional strategies, termed efficacy-enhancing teaching, which can provide positive experiences with the four sources of self-efficacy information. Structural equation modeling was then applied to test a hypothesized mediation model, positing that efficacy-enhancing teaching positively affects students' chemistry self-efficacy through their use of deep learning strategies such as metacognitive control strategies. A total of 590 chemistry students at nine secondary schools in Hong Kong participated in the survey. The mediation model provided a good fit to the student data. Efficacy-enhancing teaching had a direct effect on students' chemistry self-efficacy. Efficacy-enhancing teaching also directly affected students' use of deep learning strategies, which in turn affected students' chemistry self-efficacy. The implications of these findings for developing secondary school students' chemistry self-efficacy are discussed.

  14. Enhancing Self-Efficacy in Elementary Science Teaching With Professional Learning Communities

    Science.gov (United States)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-11-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in personal self-efficacy and outcome expectancy among teachers engaged in PLCs that featured Demonstration Laboratories, Lesson Study, and annual Summer Institutes. Significant changes favoring the experimental group were found on all quantitative measures of self-efficacy. Structured clinical interviews revealed that observed changes were largely attributable to a wide range of direct (mastery) and vicarious experiences, as well as emotional reinforcement and social persuasion.

  15. The Relationship between Sources of Self-Efficacy in Classroom Environments and the Strength of Computer Self-Efficacy Beliefs

    Science.gov (United States)

    Srisupawong, Yuwarat; Koul, Ravinder; Neanchaleay, Jariya; Murphy, Elizabeth; Francois, Emmanuel Jean

    2018-01-01

    Motivation and success in computer-science courses are influenced by the strength of students' self-efficacy (SE) beliefs in their learning abilities. Students with weak SE may struggle to be successful in a computer-science course. This study investigated the factors that enhance or impede the computer self-efficacy (CSE) of computer-science…

  16. Percutaneous dilational tracheostomy (PDT) and prevention of blood aspiration with superimposed high-frequency jet ventilation (SHFJV) using the tracheotomy-endoscope (TED): results of numerical and experimental simulations.

    Science.gov (United States)

    Nowak, Andreas; Langebach, Robin; Klemm, Eckart; Heller, Winfried

    2012-04-01

    We describe an innovative computer-based method for the analysis of gas flow using a modified airway management technique to perform percutaneous dilatational tracheotomy (PDT) with a rigid tracheotomy endoscope (TED). A test lung was connected via an artificial trachea with the tracheotomy endoscope and ventilated using superimposed high-frequency jet ventilation. Red packed cells were instilled during the puncture phase of a simulated percutaneous tracheotomy in a trachea model and migration of the red packed cells during breathing was continuously measured. Simultaneously, the calculation of the gas-flow within the endoscope was numerically simulated. In the experimental study, no backflow of blood occurred during the use of superimposed high-frequency jet ventilation (SHFJV) from the trachea into the endoscope nor did any transportation of blood into the lower respiratory tract occur. In parallel, the numerical simulations of the openings of TED show almost positive volume flows. Under the conditions investigated there is no risk of blood aspiration during PDT using the TED and simultaneous ventilation with SHFJV. In addition, no risk of impairment of endoscopic visibility exists through a backflow of blood into the TED. The method of numerical simulation offers excellent insight into the fluid flow even under highly transient conditions like jet ventilation.

  17. Daylight-mediated photodynamic therapy in Spain: advantages and disadvantages.

    Science.gov (United States)

    Pérez-Pérez, L; García-Gavín, J; Gilaberte, Y

    2014-09-01

    Photodynamic therapy (PDT) is an option for the treatment of actinic keratosis, Bowen disease, and certain types of basal cell carcinoma. It is also used to treat various other types of skin condition, including inflammatory and infectious disorders. The main disadvantages of PDT are the time it takes to administer (both for the patient and for health professionals) and the pain associated with treatment. Daylight-mediated PDT has recently been reported to be an alternative to the conventional approach. Several studies have shown it to be similar in efficacy to and better tolerated than classic PDT for the treatment of mild to moderate actinic keratosis. Nevertheless, most of these studies are from northern Europe, and no data have been reported from southern Europe. The present article reviews the main studies published to date, presents the treatment protocol, and summarizes our experience with a group of treated patients. Copyright © 2013 Elsevier España, S.L.U. y AEDV. All rights reserved.

  18. How Setting Goals Enhances Learners’ Self-Efficacy Beliefs in Listening Comprehension

    Directory of Open Access Journals (Sweden)

    Liliana Ballesteros Muñoz

    2014-04-01

    Full Text Available This article outlines a study that explores the relationship between SMART goal setting (Specific, Measurable, Attainable, Relevant, and Time-based and learning English in Colombia concerning a foreign language learners’ self-efficacy beliefs in listening. The participants were seventh and ninth grade students of two schools in Bogotá, Colombia. The results revealed that self-efficacy was highly positive when related to goal setting as students were able to set SMART goals to improve their listening comprehension and learners showed improvement in self-efficacy beliefs and felt more motivated while completing listening tasks related to songs. Furthermore this study shows that goal setting training can be incorporated successfully into the English as a foreign language classroom.

  19. Short Communication: Improved Stability and Efficacy of Diclofenac ...

    African Journals Online (AJOL)

    An oleogel-based formulation of diclofenac diethylamine (DFDA) was prepared and evaluated for enhanced stability and efficacy. Efficacy was evaluated by carrageenan-induced paw oedema method on albino rats and compared with marketed emulgels. The present findings revealed that the developed oleogel ...

  20. Primary evaluation of a nickel-chlorophyll derivative as a multimodality agent for tumor imaging and photodynamic therapy

    International Nuclear Information System (INIS)

    Ozge Er; Fatma Yurt Lambrecht; Kasim Ocakoglu; Cagla Kayabasi; Cumhur Gunduz

    2015-01-01

    In this study, the biological potential of a nickel chlorophyll derivative (Ni-PH-A) as a multimodal agent for tumor imaging and photodynamic therapy (PDT) was investigated. Optimum conditions of labeling with 131 I were investigated and determined as pH 10 and 1 mg amount of iodogen. Biodistribution results of 131 I labeled Ni-PH-A in female rats indicated that radiolabeled Ni-PH-A maximum uptake in the liver, spleen and ovary was observed at 30 min. Intercellular uptake and PDT efficacy of Ni-PH-A were better in MDAH-2774 (human ovarian endometrioid adenocarcinoma) than in MCF-7 (human breast adenocarcinoma) cells. Ni-PH-A might be a promising multimodal agent for lung, ovary and liver tumor imaging and PDT. (author)

  1. Teachers’ work ability: a study of relationships between collective efficacy and self-efficacy beliefs

    Directory of Open Access Journals (Sweden)

    Guidetti G

    2018-05-01

    Full Text Available Gloria Guidetti,1 Sara Viotti,1 Andreina Bruno,2 Daniela Converso1 1Department of Psychology, University of Turin, Turin, Italy; 2Department of Education Science, University of Genoa, Genoa, Italy Introduction: Work ability constitutes one of the most studied well-being indicators related to work. Past research highlighted the relationship with work-related resources and demands, and personal resources. However, no studies highlight the role of collective and self-efficacy beliefs in sustaining work ability. Purpose: The purpose of this study was to examine whether and by which mechanism work ability is linked with individual and collective efficacies in a sample of primary and middle school teachers. Materials and methods: Using a dataset consisting of 415 primary and middle school Italian teachers, the analysis tested for the mediating role of self-efficacy between collective efficacy and work ability. Results: Mediational analysis highlights that teachers’ self-efficacy totally mediates the relationship between collective efficacy and perceived work ability. Conclusion: Results of this study enhance the theoretical knowledge and empirical evidence regarding the link between teachers’ collective efficacy and self-efficacy, giving further emphasis to the concept of collective efficacy in school contexts. Moreover, the results contribute to the study of well-being in the teaching profession, highlighting a process that sustains and promotes levels of work ability through both collective and personal resources. Keywords: collective efficacy, mediation, self-efficacy, teachers, work ability

  2. In vitro evaluation of ruthenium complexes for photodynamic therapy.

    Science.gov (United States)

    Li, Wenna; Xie, Qiang; Lai, Linglin; Mo, Zhentao; Peng, Xiaofang; Leng, Ennian; Zhang, Dandan; Sun, Hongxia; Li, Yiqi; Mei, Wenjie; Gao, Shuying

    2017-06-01

    Photodynamic therapy (PDT) is a promising anti-tumor treatment strategy. Photosensitizer is one of the most important components of PDT. In this work, the anticancer activities of PDT mediated by six new ruthenium porphyrin complexes were screened. The mechanisms of the most efficacious candidate were investigated. Photocytotoxicity of the six porphyrins was tested. The most promising complex, Rup-03, was further investigated using Geimsa staining, which indirectly detects reactive oxygen species (ROS) and subcellular localization. Mitochondrial membrane potential (MMP), cell apoptosis, DNA fragmentation, c-Myc gene expression, and telomerase activities were also assayed. Rup-03 and Rup-04 had the lowest IC 50 values. Rup-03 had an IC 50 value of 29.5±2.3μM in HepG2 cells and 59.0±6.1μM in RAW264.7 cells, while Rup-04 had an IC 50 value of 40.0±3.8μM in SGC-7901 cells. The complexes also induced cellular morphological changes and impaired cellular ability to scavenge ROS, and accumulated preferentially in mitochondria and endoplasmic reticulum. Rup-03 reduced MMP levels, induced apoptosis, and repressed both c-Myc mRNA expression and telomerase activity in HepG2 cells. Among six candidates, Rup-03-mediated PDT is most effective against HepG2 and RAW264.7, with a similar efficacy as that of Rup-04-mediated PDT against SGC-7901 cells. Repression of ROS scavenging activities and c-Myc expression, which mediated DNA damage-induced cell apoptosis and repression of telomerase activity, respectively, were found to be involved in the anticancer mechanisms of Rup-03. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Some Contributions of Self-Efficacy Research to Self-Concept Theory.

    Science.gov (United States)

    Gorrell, Jeffrey

    1990-01-01

    Self-efficacy theory and research contribute to self-concept theory primarily by supporting the enhancement model of belief change. This article describes current problems with self-concept theory, describes self-efficacy research, and suggests that self-efficacy theory and methodology present findings that strengthen the association between…

  4. The Anticancer Effects of Radachlorin-mediated Photodynamic Therapy in the Human Endometrial Adenocarcinoma Cell Line HEC-1-A.

    Science.gov (United States)

    Kim, Su-Mi; Rhee, Yun-Hee; Kim, Jong-Soo

    2017-11-01

    We investigated the effect of photodynamic therapy (PDT) using radachlorin on invasion, vascular formation and apoptosis by targeting epidermal growth factor receptor (EGFR)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathways in the HEC-1-A endometrial adenocarcinoma cell line. To investigate the apoptotic pathway, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and western blot analysis. We also evaluated the effects of PDT on tubular capillary formation in and invasion by HEC-1-A cells with a tube formation assay, invasion assay, prostaglandin E2 (PGE2) assay, and western blot analysis. PDT had anticancer effects on HEC-1-A through activation of the intrinsic pathway of apoptosis via caspase-9 and poly-(ADP-ribose) polymerase (PARP). PDT also inhibited tubular capillary formation in and invasion by HEC-1-A under VEGF pretreatment, that resulted from down-regulation of VEGFR2, EGFR, Ras homolog gene family/ member A (RhoA) and PGE2. These results are indicative of the specificity of radachlorin-mediated PDT to VEGF. The major advantage of radachlorin-mediated PDT is its selectivity for cancer tissue while maintaining adjacent normal endometrial tissue. Therefore, radachlorin-mediated PDT might offer high anticancer efficacy for endometrial adenocarcinoma and an especially useful modality for preserving fertility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Studies of vascular acting photosensitizer Tookad for the photodynamic therapy of prostate cancer

    Science.gov (United States)

    Huang, Zheng; Chen, Qun; Blanc, Dominique; Hetzel, Fred W.

    2005-01-01

    In this pre-clinical study, photodynamic therapy (PDT) mediated with a vascular acting photosensitizer Tookad (palladium-bacteriopheophorbide) is investigated as an alternative treatment modality for the ablation of prostate cancer. Canine prostate was used as the animal model. PDT was performed by interstitially irradiating the surgically exposed prostates with a diode laser (763 nm) to activate the IV infused photosensitizer. The effects of drug dose, drug-light interval, and light fluence rate on PDT efficacy were evaluated. The prostates and adjacent tissues were harvested at one-week post PDT and subjected to histopathological examination. The dogs recovered well with little or no urethral complications. Urinalysis showed trace blood. Histological examination showed minimal damage to the prostatic urethra. These indicated that the urethra was well preserved. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis with a clear demarcation. Maximum lesion volume of ~3 cm3 could be achieved with a single 1-cm diffuser fiber at a dose level of 1 mg/kg and 200 J/cm, suggesting the therapy is very effective in ablating prostatic tissue. PDT induced lesion could reach the capsule layers but adjacent tissues were well preserved. The novel photosensitizer is a vascular drug and cleared rapidly from the circulation. Light irradiation can be performed during drug infusion thereby eliminating waiting time. The novel vascular acting photosensitizer Tookad-mediated PDT could provide an effective alternative to treat prostate cancer.

  6. Nicotinamide augments the survival and incidence of apoptosis in glioma cells following photodynamic therapy in vitro

    Science.gov (United States)

    Bisland, Stuart K.; Modi, Nayan; Wilson, Brian C.

    2004-10-01

    The ability to customize photodynamic therapy (PDT) parameters with regards to timing and dosing of administered drug and light can be beneficial in determining target specificity and mode of cell death. Sustained, low level PDT or metronomic PDT (mPDT) may afford enhanced apoptotic cell death. This is of particular importance when considering PDT for the treatment of brain tumors as unlike apoptosis, necrotic cell death often leads to inflammation with increased intracranial pressure. The ability, therefore, to 'fine tune' PDT in favour of apoptosis is paramount. We have studied both acute (one time treatment) PDT (aPDT) and mPDT delivery strategies in combination with nicotinamide (NA) in an attempt to maximize the number of tumor cells dieing by apoptosis. Using several different glioma cell lines (9L, U87-MG and CNS-1) we now confirm that NA provides a dose-dependent (0.1-0.5 mM) increase in apoptotic cells following d-aminolevulinic acid-mediated aPDT or mPDT. Furthermore, using the 9L cell line stably transfected with the luciferase gene, NA was shown to delay the depletion of bioluminscence signal in aPDT and mPDT treated cells, inferring that adenosine triphosphate levels are maintained for longer following NA treatment. NA has previously been reported as promoting neuronal and vascular cell survival in normal brain following a number of neurological insults in which reactive oxygen species are implicated including, stroke, Alzheimer's disease and toxin-induced lesions. It is likely that the effects of NA reflect its capacity as an antioxidant as well as its ability to inhibit poly (adenosine diphosphate-ribose) polymerase-mediated depletion of ATP. Our results indicate that NA may prove therapeutically advantageous when used in combination with PDT treatment of brain tumors.

  7. A Randomized Trial of Comparing the Efficacy of Two Neurofeedback Protocols for Treatment of Clinical and Cognitive Symptoms of ADHD: Theta Suppression/Beta Enhancement and Theta Suppression/Alpha Enhancement

    Directory of Open Access Journals (Sweden)

    Arash Mohagheghi

    2017-01-01

    Full Text Available Introduction. Neurofeedback (NF is an adjuvant or alternative therapy for children with Attention Deficit Hyperactivity Disorder (ADHD. This study intended to compare the efficacy of two different NF protocols on clinical and cognitive symptoms of ADHD. Materials and Methods. In this clinical trial, sixty children with ADHD aged 7 to 10 years old were randomly grouped to receive two different NF treatments (theta suppression/beta enhancement protocol and theta suppression/alpha enhancement protocol. Clinical and cognitive assessments were conducted prior to and following the treatment and also after an eight-week follow-up. Results. Both protocols alleviated the symptoms of ADHD in general (p<0.001, hyperactivity (p<0.001, inattention (p<0.001, and omission errors (p<0.001; however, they did not affect the oppositional and impulsive scales nor commission errors. These effects were maintained after an eight-week intervention-free period. The only significant difference between the two NF protocols was that high-frequency alpha enhancement protocol performed better in suppressing omission errors (p<0.001. Conclusion. The two NF protocols with theta suppression/beta enhancement and theta suppression/alpha enhancement have considerable and comparable effect on clinical symptoms of ADHD. Alpha enhancement protocol was more effective in suppressing omission errors.

  8. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  9. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis.

    Science.gov (United States)

    Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija

    2014-09-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (Parthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.

  10. Photo-dynamic therapy (pdt) for skin cancer using a xenon arc lamp with interference filters

    International Nuclear Information System (INIS)

    Hagekyriakou, J.

    2004-01-01

    Full text: Phototherapy involves the production of photochemical reactions in cells by the direct action of light, including Ultra Violet, leading to biological effects, including cell death. Photo Dynamic Therapy involves the application of light, at wavelengths and intensity which has no biological effects, in combination with a photosensitizing compound, which is biologically inert in the absence of light, which once located in cells, can produce cellular damage when activated by light of certain wavelengths. The active compound produced during PDT is singlet Oxygen which has a half life of 3 microseconds. This necessitates the use of very powerful light sources, such as lasers, in order to achieve treatment delivery within a reasonable time, say minutes. Even though PDT is very effective in the treatment of skin cancer using topically applied photosensitizing drugs, the cost of powerful lasers, required to produce light in the red part of the spectrum, has been prohibitively expensive for widespread application of the above technique. A 300 Watt Xenon arc light source, with tuneable wavelength and bandwidth, used predominantly for Forensic Science applications, manufactured by Rofin Australia Pty, Ltd, has been modified by the manufacturer, boosting the power to 500 Watts. A group of Interference filters have been specifically made to facilitate irradiation at 670nm, 620nm and 600 nm, at relatively narrow bandwidth, typically 50 nm. This would provide adequate penetration of the light, for a variety of skin cancers, depending on the thickness of the lesion and the skin type involved. A relatively broad band Ultra Violet interference filter has also been inserted in the instrument for observation of Fluorescence of the lesion prior to treatment, as an indicator of photosensitizing drug uptake by the lesion involved. Patients with skin cancers such as Basal Cell Carcinoma (BCC) and Paget's Extramammary disease were treated at the Peter MacCallum Cancer Centre

  11. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  12. Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT

    International Nuclear Information System (INIS)

    Lilge, Lothar; Pomerleau-Dalcourt, Natalie; Douplik, Alexander; Selman, Steven H; Keck, Rick W; Szkudlarek, Maria; Pestka, Maciej; Jankun, Jerzy

    2004-01-01

    Advances in photodynamic therapy (PDT) treatment for prostate cancer can be achieved either by improving selectivity of the photosensitizer towards prostate gland tissue or improving the dosimetry by means of individualized treatment planning using currently available photosensitizers. The latter approach requires the ability to measure, among other parameters, the fluence rate at different positions within the prostate and the ability to derive the tissue optical properties. Here fibre optic probes are presented capable of measuring the fluence rate throughout large tissue volumes and a method to derive the tissue optical properties for different volumes of the prostate. The responsivity of the sensors is sufficient to detect a fluence rate of 0.1 mW cm -2 . The effective attenuation coefficient in the canine prostate at 660 nm is higher at the capsule (2.15 ± 0.19 cm -1 ) than in proximity of the urethra (1.84 ± 0.36 cm -1 ). Significant spatial and temporal intra- and inter-canine variability in the tissue optical properties was noted, highlighting the need for individualized monitoring of the fluence rate for improved dosimetry

  13. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    Science.gov (United States)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  14. Influence of protoporphyrin IX loaded phloroglucinol succinic acid dendrimer in photodynamic therapy

    Science.gov (United States)

    Kumar, M. Suresh; Aruna, P.; Ganesan, S.

    2018-03-01

    One of the major problems reported clinically for photosensitizers (PS) in Photodynamic therapy (PDT) is, the cause of side-effects to normal tissue due to dark toxicity. The usefulness of photosensitizers can be made possible by reducing its dark toxicity nature. In such scenario, biocompatible carriers can be used as a drug delivery system to evade the problems that arises while using free (dark toxic) drugs. So in this study, we have developed a nano drug delivery system called Phloroglucinol Succinic acid (PGSA) dendrimer, entrapped a photosensitizer, protoporphyrin IX (PpIX) inside the system and investigated whether the photodynamic efficacy of the anionic surface charged dendrimer-PpIX nano formulation is enhanced than achieved by the free PpIX in HeLa cancer cell lines. Moreover, the Reactive oxygen species (ROS) production was monitored using 2‧,7‧-dichlorodihydrofluorescein diacetate (H2DCF-DA)- ROS Marker with phase contrast microscopy for the IC50 values of free and dendrimer-PpIX nano formulation. Similarly, the mode of cell death has been confirmed by cell cycle analysis for the same. For the in vitro PDT application, we have used a simple light source (Light Emitting Diode) with a power of 30-50 mW for 20 min irradiation. Hence, in this study we have taken steps to report this anionic drug delivery system is good to consider for the photodynamic therapy applications with the photosensitizer, PpIX which satisfied the prime requirement of PDT.

  15. Regulation of porphyrin synthesis and photodynamic therapy in heavy metal intoxication.

    Science.gov (United States)

    Grinblat, Borislava; Pour, Nir; Malik, Zvi

    2006-01-01

    Protoporphyrin IX (PpIX) synthesis by malignant cells is successfully exploited for photodynamic therapy (PDT) following administration of 5-aminolevulinic acid (ALA) and light irradiation. The influence of two environmental heavy metal poisons, lead and gallium, on PpIX-synthesis and ALA-PDT was studied in two neu-ronal cell lines, SH-SY5Y neuroblastoma and PC12 pheochromocytoma. The heavy metal intoxication affected two of the heme-synthesis enzymes, ALA-dehydratase (ALAD) and porphobilinogen deaminase (PBGD). The present results show that lead poisoning significantly decreased the PBGD cellular level and inhibited its enzymatic activity, whereas the effects of gallium were less prominent. Although, the protein levels were reduced, the mRNA levels of PBGD remained unchanged during metal intoxication. These findings show additional inhibitory activity of lead on top of its classical effect on ALAD. Proteasome activity was enhanced during lead treatment, as measured by the AMC fluorigenic proteasome assay. The reduction in PBGD levels was not a consequence of PBGD mRNA reduced synthesis, which remained unchanged as shown by RT-PCR analysis. As a result of the lead poisoning, marked alterations in the cell cycle were observed, including a decreased G1 phase and an increased number of S phase cells. The efficacy of ALA-PDT was reduced in correlation with decreased activities of the enzymes during lead intoxication. We may conclude that lead poisoning adversely affects the outcome of ALA photodynamic therapy of cancer.

  16. COMPARATIVE ASSESSMENT OF THE EFFICACY OF PHOTODYNAMIC THERAPY OF BASAL CELL SKIN CANCER WITH THE INTRALESIONAL ADMINISTRATION OF RADACHLORIN AND FOTODITAZIN

    Directory of Open Access Journals (Sweden)

    T. E. Sukhova

    2016-01-01

    Full Text Available Background: Photodynamic therapy (PDT is increasingly used for non-invasive destruction of basal cell skin cancer mediated by a photochemical reaction. There is no evidence-based data on its efficacy. Aim: To compare the objective response of basal cell skin cancer of various clinical types, stages, histological types, course and localization to PDT with the intralesional administration of photosensitizers Radachlorin and Fotoditazin. Materials and methods: From March 2007 to March 2010, the study recruited 74  patients with primary and relapsing solid basal skin cancer (ulcerated, 40.5%  of patients, superficial, 24%, nodular, 21.5%, scleroderma-like, 14%, stage  Ι–ΙI (mostly Т₂N₀M₀; with localization that was unfavorable in terms of relapses and inconvenient for treatment application. The tumors were of a uniform complex histological type and of a morphea type. The patients were administered one course of PDT with an intralesional administration of chlorine photosensitizers. The group I (n=45 was administered Radachlorin (0.5–1 mL per 1 cm² of the tumor surface, group II (n=34 was administered Fotoditazin (0.3–0.5  mL per 1  cm² of the tumor surface. For all patients the light dose was chosen at 300 J/cm², the light source being the medical laser device LAMI with a wave length of 662±3 nm, class II А. Clinical and cytological regression of the lesions at 3 months after treatment was chosen as a  primary study endpoint. The secondary endpoints were a  stable clinical and cytological response at 12 months after treatment. Thereafter, a relapse-free period was assessed annually up to 5 years after treatment. In addition, adverse reactions to treatment were registered up to 2 months and cosmetic results were assessed at 12 months after PDT. The treatment results were assessed in all patients. Results: Complete regression of basal cell skin cancer was found in 43 (95.5% of patients from the group I  and

  17. Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-β type I receptor inhibitor

    International Nuclear Information System (INIS)

    Taniguchi, Yukimi; Kawano, Kumi; Minowa, Takuya; Shimojo, Yuki; Maitani, Yoshie; Sugino, Takashi

    2010-01-01

    Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-β type I receptor (TβR-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of TβR-I inhibitor will open a new strategy for the use of folate receptor (FR)-targeting nanocarriers for cancer treatment. (author)

  18. The effect of the triblock properties on the morphologies and photophysical properties of nanoparticle loaded with carboxylic dendrimer phthalocyanine

    Science.gov (United States)

    Lv, Huafei; Chen, Zhe; Yu, Xinxin; Pan, Sujuan; Zhang, Tiantian; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-09-01

    Photodynamic therapy (PDT) is an emerging alternative treatment for various cancers and age-related macular degeneration. Phthalocyanines (Pcs) and their substituted derivatives are under intensive investigation as the second generation photosensitizers. A big challenge for the application of Pcs is poor solubility and limited accumulation in the tumor tissues, which severely reduced its PDT efficacy. Nano-delivery systems such as polymeric micelles are promising tools for increasing the solubility and improving delivery efficiency of Pcs for PDT application. In this paper, nanoparticles of amphiphilic triblock copolymer poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) were developed to encapsulate 1-2 generation carboxylic poly (benzyl aryl ether) dendrimer. The morphologies and photophysical properties of polymeric nanoparticles loaded with 1-2 generation dendritic phthalocyanines (G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m) were studied by AFM, UV/Vis and fluorescent spectroscopic method. The morphologies of self-assembled PLL-PEG-PLL aggregates exhibited concentration dependence. Its morphologies changed from cocoon-like to spheral. The diameters of G1-ZnPc(COOH)8/m and G2-ZnPc(COOH)16/m were in the range of 33-147 nm, increasing with the increase of the concentration of PLL-PEG-PLL. The morphologies of G2-ZnPc(COOH)16/m also changed from cocoon-like to sphere with the increase of the concentration of PLL-PEG-PLL. It was found that, the no obviously Q change was observed between the free phthalocyanines and nanoparticles. The fluorescence intensity of polymer nanoparticles were higher enhanced compared with free dendritic phthalocyanines. The dendrimer phthalocyanine loaded with poly(L-lysine)-b-poly (ethylene glycol)-b-poly(L-lysine) presented suitable physical stability, improved photophysical properties suggesting it may be considered as a promising formulation for PDT.

  19. Combination therapies in adjuvant with topical ALA-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premalignant lesions

    Science.gov (United States)

    Yang, Deng-Fu; Hsu, Yih-Chih

    2012-03-01

    In Taiwan, oral cancer has becomes the fastest growth male cancer disease due to the betel nut chewing habit combing with smoking and alcohol-drinking lifestyle of people. In order to eliminate the systemic phototoxic effect of 5-aminolevulinic acid (ALA), this study was designed to use a topical ALA-mediated PDT for treatment of DMBA-induced hamster buccal pouch precancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 10 to 12 weeks. Cancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical ALA-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when ALA reached its peak level in the lesional epithelial cells after topical application of ALA gel. We found that ALA reached its peak level in precancerous lesions about 2.5 hrs after topical application of ALA gel. The cancerous lesions in hamsters were then treated with topical ALA -mediated PDT with light exposure dose of 150 J/cm2 using LED 635 nm fiber-guided light device. Visual examination demonstrated that adjuvant topical ALA -mediated PDT group has shown better therapeutic results in compared to those of non-adjuvant topical ALA-mediated PDT group for DMBA-induced hamster buccal pouch precancerous lesions.

  20. Dihydroartemisinin Accentuates the Anti-Tumor Effects of Photodynamic Therapy via Inactivation of NF-κB in Eca109 and Ec9706 Esophageal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yan Jing Li

    2014-05-01

    Full Text Available Background: Photodynamic therapy (PDT is a new treatment for esophageal cancer which has been shown to be effective in the elimination of tumor. However, PDT could induce the activation of nuclear factor-kappa B (NF-κB in many photosensitizers based PDT, which plays a negative role in PDT. In addition, our previous results have shown that dihydroartemisinin (DHA, which was the most potent one of artemisinin derivatives, has anticancer activity in esophageal cancer cells. Methods: Cell viability was determined by MTT analysis, and apoptosis was evaluated by flow cytometry. Nuclear extract was obtained for determining NF-κB DNA-binding activity, while total protein extract obtained for downstream gene expression by western blot. Results: We demonstrated DHA enhanced PDT-induced growth inhibition and apoptosis in both human esophageal cancer cell lines Eca109 and Ec9706 in vitro. The mechanism was at least partially due to DHA deactivated PDT-induced NF-κB activation, so as to decrease tremendously the expression of its target gene Bcl-2. Conclusion: Our results demonstrate that DHA augments PDT-induced growth inhibition and apoptosis in esophageal cancer cells, and that inactivation of NF-κB activity is a potential mechanism by which DHA sensitizes esophageal cancer cells to PDT-induced growth inhibition and apoptosis.

  1. Development of Smart Phthalocyanine-based Photosensitizers for Photodynamic Therapy

    Science.gov (United States)

    Chow, Yun Sang

    Phthalocyanines are versatile functional dyes that have shown great potential in cancer theranostics, especially in photodynamic therapy (PDT). This research work aims to develop "smart" phthalocyanine-based photosensitizers for targeted PDT. This thesis describes the synthesis, spectroscopic characterization, photophysical properties, and in vitro photodynamic activities of several series of carefully designed phthalocyanine-based photosensitizers. Chapter 1 presents an overview of PDT, including its historical development, photophysical mechanisms, and biological mechanisms. Various classes of photosensitizers are introduced with emphasis putting on phthalocyanines, which exhibit ideal characteristics of photosensitizers for PDT. In recent years, several approaches have been used to develop photosensitizers with higher tumor selectivity and minimal skin photosensitivity after PDT. Activatable photosensitizers can provide a "turn on" mechanism to offer an additional control of the specificity of treatment. Photosensitizers can also work cooperatively with the tumor-targeting groups or anticancer drugs so as to achieve targeted or dual therapy, which can enhance the efficacy of PDT. The novel approaches mentioned above have been widely used and combined to form multi-functional photosensitizing agents. These novel concepts and development of PDT are discussed and illustrated with relevant examples at the end of this chapter. To minimize the prolonged skin photosensitivity, photosensitizers that can only be activated by tumor-associated stimuli have been developed. Due to the abnormal metabolism in tumor tissues, their surface usually exhibits a lower pH compared to that of the normal tissues. Also, the pH difference between the intracellular and the physiological environment provides a pH-activation mechanism. Chapter 2 presents the synthesis and spectroscopic characterization of a pH-responsive zinc(II) phthalocyanine tetramer, in which the phthalocyanine units

  2. Surgery combined with local 5-aminolevulinic acid-photodynamic therapy on skin cancer and its effect on the expression of cyclophilin A, cyclophilin B and CD147.

    Science.gov (United States)

    Guo, Ling; Han, Yingsheng

    2017-08-01

    The study evaluated an approach to treat skin cancer using surgery combined with local 5-aminolevulinic acid-photodynamic therapy (ALA-PDT). Seventy-six patients with skin cancer who were admitted to the Liaocheng People's Hospital from May 2014 to April 2015 were randomly divided into a control and an observation group (38 cases in each). The patients in the control group were treated with ALA-PDT alone. Those in the observation group were first subjected to surgical treatment, and then treated with ALA-PDT. The treatment efficacies of the two groups were compared. The expression of cancer markers CyPA, CyPB and CD147 were detected by immunohistochemical methods before and after the treatment. Our results showed the average healing time of the wounds of patients in the observation group was shorter, the number of treatments needed was less, the efficacy rate and the lesion appearance satisfaction were significantly higher, and the recurrence rate at 12 months after treatment and the incidence of adverse reactions were both significantly lower. Additionally, the levels of CyPA, CyPB and CD147 were reduced to a significantly higher degree after treatment in the observation group. No difference was found in the recurrence rate between the two groups at 6 months after treatment. We conclude that surgery combined with ALA-PDT is a safe and reliable treatment method, which can increase the survival rate while improving the recovery rate and appearance satisfaction in patients with skin cancer.

  3. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action

    Science.gov (United States)

    Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei

    2011-02-01

    Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.

  4. Physical activity enhances long-term quality of life in older adults: efficacy, esteem, and affective influences.

    Science.gov (United States)

    Elavsky, Steriani; McAuley, Edward; Motl, Robert W; Konopack, James F; Marquez, David X; Hu, Liang; Jerome, Gerald J; Diener, Ed

    2005-10-01

    Physical activity has been effective in enhancing quality of life (QOL) of older adults over relatively short periods of time. However, little is known about the long-term effects of physical activity and even less about the possible mediators of this relationship. We examined the mediating effects of psychological variables on the relationship between physical activity and global QOL (satisfaction with life) in older adults over a 4-year period. Participants (N = 174, M age = 66.7 years) completed a battery of psychosocial measures at 1 and 5 years following enrollment in a 6-month randomized controlled exercise trial. Panel analysis conducted within a covariance modeling framework indicated that physical activity was related to self-efficacy, physical self-esteem, and positive affect at 1 year, and in turn, greater levels of self-efficacy and positive affect were associated with higher levels of QOL. Analyses indicated that changes in physical activity over the 4-year period were related to increases in physical self-esteem and positive affect, but only positive affect directly influenced improvements in QOL. The findings lend support to the position that physical activity effects on QOL are in part mediated by intermediate psychological outcomes and that physical activity can have long-term effects on well-being.

  5. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    Science.gov (United States)

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  6. Ranibizumab alone or in combination with photodynamic therapy vs photodynamic therapy for polypoidal choroidal vasculopathy: a systematic review and Meta-analysis.

    Science.gov (United States)

    Tang, Kai; Si, Jun-Kang; Guo, Da-Dong; Cui, Yan; Du, Yu-Xiang; Pan, Xue-Mei; Bi, Hong-Sheng

    2015-01-01

    To compare the efficacy of intravitreal ranibizumab (IVR) alone or in combination with photodynamic therapy (PDT) vs PDT in patients with symptomatic polypoidal choroidal vasculopathy (PCV). A systematic search of a wide range of databases (including PubMed, EMBASE, Cochrane Library and Web of Science) was searched to identify relevant studies. Both randomized controlled trials (RCTs) and non-RCT studies were included. Methodological quality of included literatures was evaluated according to the Newcastle-Ottawa Scale. RevMan 5.2.7 software was used to do the Meta-analysis. Three RCTs and 6 retrospective studies were included. The results showed that PDT monotherapy had a significantly higher proportion in patients who achieved complete regression of polyps than IVR monotherapy at months 3, 6, and 12 (All P≤0.01), respectively. However, IVR had a tendency to be more effective in improving vision on the basis of RCTs. The proportion of patients who gained complete regression of polyps revealed that there was no significant difference between the combination treatment and PDT monotherapy. The mean change of best-corrected visual acuity (BCVA) from baseline showed that the combination treatment had significant superiority in improving vision vs PDT monotherapy at months 3, 6 and 24 (All Pcompare with PDT either in stabilizing or in improving vision, although it can hardly promote the regression of polyps. The combination treatment of PDT and IVR can exert a synergistic effect on regressing polyps and on maintaining or improving visual acuity. Thus, it can be the first-line therapy for PCV.

  7. The Effect of Childbirth Self-Efficacy on Perinatal Outcomes

    Science.gov (United States)

    Tilden, Ellen L.; Caughey, Aaron B.; Lee, Christopher S.; Emeis, Cathy

    2016-01-01

    Objective To synthesize and critique the quantitative literature on measuring childbirth self-efficacy and the effect of childbirth self-efficacy on perinatal outcomes. Data Sources Eligible studies were identified through searching MEDLINE, CINAHL, Scopus, and Google Scholar databases. Study Selection Published research using a tool explicitly intended to measure childbirth self-efficacy and also examining outcomes within the perinatal period were included. All manuscripts were in English and published in peer-reviewed journals. Data Extraction First author, country, year of publication, reference and definition of childbirth self-efficacy, measurement of childbirth self-efficacy, sample recruitment and retention, sample characteristics, study design, interventions (with experimental and quasi-experimental studies), and perinatal outcomes were extracted and summarized. Data Synthesis Of 619 publications, 23 studies published between 1983 and 2015 met inclusion criteria and were critiqued and synthesized in this review. Conclusions There is overall consistency in how childbirth self-efficacy is defined and measured among studies, facilitating comparison and synthesis. Our findings suggest that increased childbirth self-efficacy is associated with a wide variety of improved perinatal outcomes. Moreover, there is evidence that childbirth self-efficacy is a psychosocial factor that can be modified through various efficacy-enhancing interventions. Future researchers will be able to build knowledge in this area through: (a) utilization of experimental and quasi-experimental design; (b) recruitment and retention of more diverse samples; (c) explicit reporting of definitions of terms (e.g. ‘high risk’); (d) investigation of interventions that increase childbirth self-efficacy during pregnancy; and, (e) investigation regarding how childbirth self-efficacy enhancing interventions might lead to decreased active labor pain and suffering. Exploratory research should

  8. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.

    Science.gov (United States)

    Liu, Zijian; Fu, Xiang; Huang, Wei; Li, Chunxia; Wang, Xinyan; Huang, Bei

    2018-03-01

    Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Internships enhancing entrepreneurial intent and self-efficacy: Investigating tertiary-level entrepreneurship education programmes

    Directory of Open Access Journals (Sweden)

    Melodi Botha

    2016-09-01

    Full Text Available Background: Entrepreneurship education interventions are deemed effective when they enhance interns’ entrepreneurial intent (EI and entrepreneurial self-efficacy (ESE. Notwithstanding the emergence of internship as an experiential learning approach in entrepreneurship education, evidence about their potential to foster EI and ESE lacks systemisation. Aim: The aim of this study was to determine whether internships enhance EI and ESE. Furthermore, to what extent South African tertiary institutions include internships in their entrepreneurship and management curricula and the obstacles to such inclusion. Setting: South Africa has made a concerted effort to insert an entrepreneurship component across tertiary curricula. The evolution of this entrepreneurship component to experiential learning approaches is, however, unclear. Methods: A qualitative research approach was followed. Firstly, it reviewed empirical evidence for the positive relationship between internships and EI and ESE. Secondly, it conducted a survey of entrepreneurship and business management programmes at all 23 South African tertiary institutions and content analysed the retrieved information to determine whether such programmes include internships. Finally, 10 experts were interviewed to unveil the constraints inhibiting the inclusion of internships in tertiary curricula. Results: The results revealed empirical support for the positive influence of internships on both EI and ESE. Significant lack of inclusion of internships in tertiary curricula in South Africa emerged, owing mainly to administrative issues, curriculum re-design challenges, and lack of mentoring capacity. Conclusion: Tertiary-level entrepreneurship education programmes should include an internship component. The paper suggested that tertiary institutions pilot-test the inclusion of internships with a small number of students and a selected cohort of small business owners.

  10. Nkx2.5 enhances the efficacy of mesenchymal stem cells transplantation in treatment heart failure in rats.

    Science.gov (United States)

    Deng, Bo; Wang, Jin Xin; Hu, Xing Xing; Duan, Peng; Wang, Lin; Li, Yang; Zhu, Qing Lei

    2017-08-01

    The aim of this study is to determine whether Nkx2.5 transfection of transplanted bone marrow mesenchymal stem cells (MSCs) improves the efficacy of treatment of adriamycin-induced heart failure in a rat model. Nkx2.5 was transfected in MSCs by lentiviral vector transduction. The expressions of Nkx2.5 and cardiac specific genes in MSCs and Nkx2.5 transfected mesenchymal stem cells (MSCs-Nkx2.5) were analyzed with quantitative real-time PCR and Western blot in vitro. Heart failure models of rats were induced by adriamycin and were then randomly divided into 3 groups: injected saline, MSCs or MSCs-Nkx2.5 via the femoral vein respectively. Four weeks after injection, the cardiac function, expressions of cardiac specific gene, fibrosis formation and collagen volume fraction in the myocardium as well as the expressions of GATA4 and MEF2 in rats were analyzed with echocardiography, immunohistochemistry, Masson staining, quantitative real-time PCR and Western blot, respectively. Nkx2.5 enhanced cardiac specific gene expressions including α-MHC, TNI, CKMB, connexin-43 in MSCs-Nkx2.5 in vitro. Both MSCs and MSCs-Nkx2.5 improved cardiac function, promoted the differentiation of transplanted MSCs into cardiomyocyte-like cells, decreased fibrosis formation and collagen volume fraction in the myocardium, as well as increased the expressions of GATA4 and MEF2 in adriamycin-induced rat heart failure models. Moreover, the effect was much more remarkable in MSCs-Nkx2.5 than in MSCs group. This study has found that Nkx2.5 enhances the efficacy of MSCs transplantation in treatment adriamycin-induced heart failure in rats. Nkx2.5 transfected to transplanted MSCs provides a potential effective approach to heart failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Comparsion of light dose on topical ALA-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premalignant lesions

    Science.gov (United States)

    Yang, Deng-Fu; Tseng, Meng-Ke; Liu, Chung-Ji; Hsu, Yih-Chih

    2012-03-01

    Oral cancer has becomes the most prominent male cancer disease due to the local betel nut chewing habit combing with smoking and alcohol-drinking lifestyle. In order to minimize the systemic phototoxic effect of 5-aminolevulinic acid (ALA), this study was designed to use a topical ALA-mediated PDT for treatment of DMBA-induced hamster buccal pouch cancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 8 to 10 weeks. Precancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical ALA -mediated PDT. We found that ALA reached its peak level in cancerous lesions about 2.5 hrs after topical application of ALA gel. The precancerous lesions in hamsters were then treated with topical ALA -mediated PDT with light exposure dose of 75 and 100 J/cm2 using LED 635 nm Wonderlight device. It is suggesting that optimization of the given light dose is critical to the success of PDT results.

  12. Fluorescence Imaging Assisted Photodynamic Therapy Using Photosensitizer-Linked Gold Quantum Clusters.

    Science.gov (United States)

    Nair, Lakshmi V; Nazeer, Shaiju S; Jayasree, Ramapurath S; Ajayaghosh, Ayyappanpillai

    2015-06-23

    Fluorescence imaging assisted photodynamic therapy (PDT) is a viable two-in-one clinical tool for cancer treatment and follow-up. While the surface plasmon effect of gold nanorods and nanoparticles has been effective for cancer therapy, their emission properties when compared to gold nanoclusters are weak for fluorescence imaging guided PDT. In order to address the above issues, we have synthesized a near-infrared-emitting gold quantum cluster capped with lipoic acid (L-AuC with (Au)18(L)14) based nanoplatform with excellent tumor reduction property by incorporating a tumor-targeting agent (folic acid) and a photosensitizer (protoporphyrin IX), for selective PDT. The synthesized quantum cluster based photosensitizer PFL-AuC showed 80% triplet quantum yield when compared to that of the photosensitizer alone (63%). PFL-AuC having 60 μg (0.136 mM) of protoporphyrin IX was sufficient to kill 50% of the tumor cell population. Effective destruction of tumor cells was evident from the histopathology and fluorescence imaging, which confirm the in vivo PDT efficacy of PFL-AuC.

  13. Development and optimization of a diode laser for photodynamic therapy.

    Science.gov (United States)

    Lim, Hyun Soo

    2011-01-01

    This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power. We developed a digital laser beam controller using the constant current method to protect the laser diode resonator from the current spikes and other fluctuations, and electrical faults. To improve the PDT effects, the laser system should deliver stable laser energy in continuous wave (CW), burst mode and super burst mode, with variable irradiation times depending on the tumor type and condition. The experimental results showed the diode laser system described herein was eminently suitable for PDT. The laser beam was homogeneous without diverging and the output power increased stably and in a linear manner from 10 mW to 1500 mW according to the increasing input current. Variation between the set and delivered output was less than 7%. The diode laser system developed by the author for use in PDT was compact, user-friendly, and delivered a stable and easily adjustable output power at a specific wavelength and user-set emission modes.

  14. Antimicrobial photodynamic therapy (aPDT) and photobiomodulation (PBM - 660nm) in a dog with chronic gingivostomatitis.

    Science.gov (United States)

    Abreu Villela, Paula; Souza, Naiá de Carvalho de; Baia, Juliana Durigan; Gioso, Marco Antonio; Aranha, Ana Cecília Corrêa; de Freitas, Patrícia Moreira

    2017-12-01

    Chronic gingivostomatitis in dogs is an inflammatory syndrome of the oral cavity, which treatment and control of concomitant periodontitis allow healing in most of the cases. In the presence of recurrent lesions, invasive methods are necessary to treat lesions and pain. As a conservative adjuvant method, photobiomodulation (PBM) with low power laser is able to promote reduction of tissue pain and tissue inflammation besides increasing vascularization and healing, restoring the normal function of the irradiated organ in a shorter time. In veterinary medicine, there is no standardization of technique for its use in oral tissue for treating gingivostomatitis in dogs. In the present case, a dog was submitted to aPDT (7.2J/point, 3min/point, 180J/cm 2 ) and PBM (1.6J/point, 40s/point, 25J/cm 2 ), using a semiconductor diode laser, with wavelength of 660nm, spot size of ​​0.04cm 2 and output power of 40mW. The established protocol proved to be effective as coadjutant treatment for chronic gingivostomatitis, restoring the integrity of dog's affected mucosa and gingiva. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhancing Students' Self-Efficacy in Making Positive Career Decisions

    Science.gov (United States)

    Reddan, Gregory

    2015-01-01

    Field Project A is an elective course in the Bachelor of Exercise Science program at Griffith University and includes elements of both career development learning and work-integrated learning. This paper aims to determine the effects of the learning activities and assessment items developed for the course on students' self-efficacy in making…

  16. Opportunities for laser-assisted drug delivery in the treatment of cutaneous disorders

    DEFF Research Database (Denmark)

    Wenande, Emily; Erlendsson, Andrés Már; Haedersdal, Merete

    2017-01-01

    lesions, scars, cutaneous infections, and vitiligo as well as for topical anesthetic and aesthetic procedures. Substantiated by randomized controlled clinical trials, strong evidence is available for LADD's usefulness for photodynamic therapy (PDT), for which improved efficacy using laser...

  17. Topical photosan-mediated photodynamic therapy for DMBA-induced hamster buccal pouch early cancer lesions: an in vivo study

    Science.gov (United States)

    Hsu, Yih-Chih; Chang, Walter Hong-Shong; Chang, Junn-Liang; Liu, Kuang-Ting; Chiang, Chun-Pin; Liu, Chung-Ji; Chen, Chih-Ping

    2011-03-01

    Oral cancer has becomes the most prominent cancer disease in recent years in Taiwan. The reason is the betel nut chewing habit combing with smoking and alcohol-drinking lifestyle of people results in oral cancer becomes the fastest growth incident cancer amongst other major cancer diseases. In previous studies showed that photosan, haematoporphyrin derivative (HPD), has demonstrated effective PDT results on human head and neck disease studies. To avoid the systemic phototoxic effect of photosan, this study was designed to use a topical photosan-mediated PDT for treatment of DMBA-induced hamster buccal pouch cancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 10 to 12 weeks. Cancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical photosan-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when photosan reached its peak level in the lesional epithelial cells after topical application of photosan gel. We found that photosan reached its peak level in cancerous lesions about 13.5 min after topical application of photosan gel. The cancerous lesions in hamsters were then treated with topical photosan-mediated PDT (fluence rate: 600 mW/cm2; light exposure dose 200 J/cm2) using the portable Lumacare 635 nm fiber-guided light device. Visual examination demonstrated that topical photosan-mediated PDT was an applicable treatment modality for DMBA-induced hamster buccal pouch cancerous lesions.

  18. The Role of Self-Efficacy in the Treatment of Substance Use Disorders

    Science.gov (United States)

    Kadden, Ronald M.; Litt, Mark D.

    2011-01-01

    Self-efficacy is the belief that one has the ability to implement the behaviors needed to produce a desired effect. There has been growing interest in the role of self-efficacy as a predictor and/or mediator of treatment outcome in a number of domains. The present paper reviews the recent literature on self-efficacy in the substance abuse field. In numerous studies of substance abuse treatment, self-efficacy has emerged as an important predictor of outcome, or as a mediator of treatment effects. Despite these repeated positive findings, the self-efficacy concept has had little impact on the design of treatments. Since the concept was first introduced, there have been numerous suggestions regarding the means by which self-efficacy may be enhanced in clinical settings, but very little by way of empirical tests of those suggestions. This review concludes with a number of recommendations for further research to improve understanding of this potentially valuable concept and its interactions with other variables, and to develop effective strategies for enhancing self-efficacy. PMID:21849232

  19. Providing Sources of Self-Efficacy Through Technology Enhanced Post-Stroke Rehabilitation in the Home.

    Science.gov (United States)

    Parker, Jack; Mawson, Susan

    2017-01-01

    This research explores the impact of receiving feedback through a Personalised Self-Managed Rehabilitation System (PSMrS) for home-based post-stroke rehabilitation on the users' self-efficacy; more specifically, mastery experiences and the interpretation of biomechanical data. Embedded within a realistic evaluation methodological approach, exploring the promotion of self-efficacy from the utilisation of computer-based technology to facilitate post-stroke upper-limb rehabilitation in the home included; semi-structured interviews, quantitative user data (activity and usage), observations and field notes. Data revealed that self-efficacy was linked with obtaining positive knowledge of results feedback. Encouragingly, this also transferred to functional activities such as, confidence to carry out kitchen tasks and bathroom personal activities. Findings suggest the PSMrS was able to provide key sources of self-efficacy by providing feedback which translated key biomechanical data to the users. Users could interpret and understand their performance, gain a sense of mastery and build their confidence which in some instances led to increased confidence to carry out functional activities. However, outcome expectations and socio-structural factors impacted on the self-efficacy associated with the use of the system. Increasing the understanding of how these factors promote or inhibit self-management and self-efficacy is therefore crucial to the successful adoption of technology solutions and promotion of self-efficacy.

  20. Successful treatment of a large oral verrucous hyperplasia with photodynamic therapy combined with cryotherapy

    Directory of Open Access Journals (Sweden)

    Yu-Chao Chang

    2013-03-01

    Full Text Available Studies have shown that topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT can be used successfully for the treatment of oral verrucous hyperplasia (OVH. Studies have also demonstrated that cryotherapy could be used as a treatment modality for OVH lesions. In this case report, we tested the efficacy of topical ALA-PDT, combined with cryogun cryotherapy, for an extensive OVH lesion on the right buccal mucosa of a 65-year-old male areca quid chewer. The tumor was cleared after six treatments of combined topical ALA-PDT and cryogun cryotherapy. No recurrence of the lesion was found after a follow-up period of 18 months. We suggest that our combined treatment protocol may be effective in treating OVH lesions. The treatment course may be slightly shortened with this combined protocol and was well tolerated by the patient.

  1. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    Science.gov (United States)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  2. Biomcompatible gold nanorods conjugated with photosensitizers assisted for photostability and photodestructive ability

    Science.gov (United States)

    Kuo, Wen-Shuo; Chen, Shean-Jen

    2012-02-01

    Light-exposure-mediated higher temperatures that markedly accelerate the degradation of indocyanine green (ICG) in aqueous solutions by thermal decomposition have been a serious medical problem. In this work, we present the example of using gold nanorods (Au NRs) simultaneously serving as photodynamic and photothermal agents to destroy malignant cells. Au NRs were successfully conjugated with hydrophilic photosensitizer, indocyanine green (ICG), to achieve photodynamic therapy (PDT) and photothermal therapy (PTT). We also demonstrated that Au NRs conjugated with ICG displayed high chemical stability and acted as a promising diagnostic probe. Due to its stability even via higher temperatures mediated by laser irradiation, the combination of PDT and PTT proved to be efficiently killing cancer cells as compared to PDT or PTT treatment alone and enhanced the effectiveness of photodestruction and was demonstrated to enhance its photostability.

  3. Day treatment versus enhanced standard methadone services for opioid-dependent patients: a comparison of clinical efficacy and cost.

    Science.gov (United States)

    Avants, S K; Margolin, A; Sindelar, J L; Rounsaville, B J; Schottenfeld, R; Stine, S; Cooney, N L; Rosenheck, R A; Li, S H; Kosten, T R

    1999-01-01

    This study examined the differential efficacy and relative costs of two intensities of adjunctive psychosocial services--a day treatment program and enhanced standard care--for the treatment of opioid-dependent patients maintained on methadone hydrochloride. A 12-week randomized clinical trial with 6-month follow-up was conducted in a community-based methadone maintenance program. Of the 308 patients who met inclusion criteria, 291 began treatment (day treatment program: N=145; enhanced standard care: N=146), and 237 completed treatment (82% of those assigned to the day treatment program and 81% of those receiving enhanced standard care). Two hundred twenty of the patients participated in the 6-month follow-up (75% of those in the day treatment program and 73% of those in enhanced standard care provided a follow-up urine sample for screening). Both interventions were 12 weeks in duration, manual-guided, and provided by master's-level clinicians. The day treatment was an intensive, 25-hour-per-week program. The enhanced standard care was standard methadone maintenance plus a weekly skills training group and referral to on- and off-site services. Outcome measures included twice weekly urine toxicology screens, severity of addiction-related problems, prevalence of HIV risk behaviors, and program costs. Although the cost of the day treatment program was significantly higher, there was no significant difference in the two groups' use of either opiates or cocaine. Over the course of treatment, drug use, drug-related problems, and HIV risk behaviors decreased significantly for patients assigned to both treatment intensities. Improvements were maintained at follow-up. Providing an intensive day treatment program to unemployed, inner-city methadone patients was not cost-effective relative to a program of enhanced methadone maintenance services, which produced comparable outcomes at less than half the cost.

  4. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  5. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    Science.gov (United States)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  6. Revisiting photodynamic therapy dosimetry: reductionist and surrogate approaches to facilitate clinical success

    International Nuclear Information System (INIS)

    Pogue, Brian W; Elliott, Jonathan T; Kanick, Stephen C; Davis, Scott C; Samkoe, Kimberley S; Maytin, Edward V; Pereira, Stephen P; Hasan, Tayyaba

    2016-01-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  7. Comparison of topical methyl aminolevulinate photodynamic therapy with cryotherapy or Fluorouracil for treatment of squamous cell carcinoma in situ: Results of a multicenter randomized trial.

    NARCIS (Netherlands)

    Morton, C.; Horn, M.; Leman, J.; Tack, B.; Bedane, C.; Tjioe, M.; Ibbotson, S.; Khemis, A.; Wolf, P.

    2006-01-01

    OBJECTIVE: To compare the efficacy, tolerability, and cosmetic outcome of photodynamic therapy (PDT) using topical methyl aminolevulinate with cryotherapy or topical fluorouracil for treatment of squamous cell carcinoma in situ. DESIGN: Randomized, placebo-controlled study, with follow-up at 3 and

  8. Enhancing Study Motivation and Efficacy among First-year Students Using Minute Papers in the Interdisciplinary Subject of Yakugaku Nyumon.

    Science.gov (United States)

    Yamaki, Kouya; Ikeda, Koji; Ueda, Kumiko; Habu, Yasushi; Nakayama, Yoshiaki; Takeda, Norihiko; Moriwaki, Kensuke; Wada, Akimori; Koyama, Junko; Kodama, Noriko; Kitagawa, Shuji

    2017-01-01

    Active learning in higher education is important for learning efficacy and motivation. Accordingly, lectures that integrate strategies toward active learning, such as minute papers, debates, and collaborative learning, have become widely adopted. Minute papers facilitate communication among both teachers and students, and can be used as a tool for reviewing lectures. In the present study, we examined the effect of using minute papers on learning efficacy and motivation. To enhance the curriculum of the interdisciplinary course Yakugaku Nyumon, which consists of an omnibus lecture series and problem-based learning, minute papers with exercises were provided to applicants. In a follow-up questionnaire, students who used minute papers (S-USE) responded that they had a better understanding of the relationships, ranging from basic to clinical subject matter, than students who did not use such papers (S-NON). Using the Attention, Relevance, Confidence, and Satisfaction (ARCS) model questionnaire to measure study motivation, S-USE scored higher for some questionnaires than S-NON. This finding indicates that minute papers promoted learning motivation among students taking the Yakugaku Nyumon course. In regular examinations, the average score of S-USE was also statistically higher than that of S-NON. These results demonstrate that minute papers possibly encouraged students to actively review the lectures, thereby increasing both learning efficacy and motivation. This study shows that through promoting active, self-learning, minute papers are suitable for improving curricular strategies in subjects that rely on passive learning methods.

  9. Enhancing the efficacy of computerized feedback interventions for college alcohol misuse: An exploratory randomized trial.

    Science.gov (United States)

    Miller, Mary Beth; Leavens, Eleanor L; Meier, Ellen; Lombardi, Nathaniel; Leffingwell, Thad R

    2016-02-01

    Personalized feedback interventions (PFIs) have been associated with decreased alcohol consumption and related problems among college students; however, the necessary and sufficient components responsible for efficacy remain unclear. The present study investigated the relative efficacy of 3 computerized PFIs with differing content, the content-specific mechanisms of change within PFIs, and the moderating roles of comparison orientation and baseline risk in intervention outcomes. College students (N = 212) reporting alcohol use in a typical week completed an assessment prior to randomization (norms PFI, enhanced PFI, choice PFI, assessment only) and 1 month postintervention. Participants who received a PFI reported greater decreases in alcohol use, peak blood alcohol concentration (BAC), related problems, and perceptions of typical students' drinking than those in the control group. Neither tendency to compare oneself with others nor baseline risk moderated outcomes. PFIs influenced weekly alcohol use indirectly through changes in descriptive normative perceptions and alcohol-related consequences indirectly through changes in peak BAC. Computerized PFIs are more effective than assessment alone in decreasing alcohol use and related problems among college students. Normative comparisons may be sufficient to elicit behavior change, and inclusion of select additional components may not yield significant improvements in outcomes. However, the consistent benefit of including feedback on physical and monetary costs of drinking and moderation strategies, although nonsignificant, may warrant the negligible increase in time and money required to provide such information electronically. Computerized PFIs seem to be an ideal first step to the prevention and treatment of college alcohol misuse. (c) 2016 APA, all rights reserved).

  10. Exploring self-efficacy as a predictor of disease management.

    Science.gov (United States)

    Clark, N M; Dodge, J A

    1999-02-01

    Self-efficacy is posited in social cognitive theory as fundamental to behavior change. Few health behavior studies have examined self-efficacy prospectively, viewed it as part of a reciprocal behavioral process, or compared self-efficacy beliefs in the same population across different behaviors. This article first discusses self-efficacy in its theoretical context and reviews the available prospective studies. Second, it explores self-efficacy as a predictor of disease management behaviors in 570 older women with heart disease. Although the R2 statistics in each case were modest, the construct is shown to be a statistically significant (pmanagement behaviors: using medicine as prescribed, getting adequate exercise, managing stress, and following a recommended diet. Building self-efficacy is likely a reasonable starting point for interventions aiming to enhance heart disease management behaviors of mature female patients.

  11. Efficacy of Gd-DTPA-enhanced MRI in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Okamoto, Shinya; Aoki, Toshikazu; Konishi, Tokuji; Nakano, Takeshi; Yamakado, Kyoichiro; Sakuma, Hajime; Takeda, Kann; Nakagawa, Takashi

    1991-01-01

    The cabability of magnetic resonance (MR) imaging to detect tissue characterization or myocardial degeneration process of the hypertrophied myocardium was evaluated in 15 patients with hypertrophic cardiomyopathy. T1-weighted MR images were obtained with a 1.5 T MR unit by using ECG-gated spin-echo techniques. MR images were visually reviewed before and after enhancement of Gd-DTPA. Four patients had an increase in signal intensity mainly in the endocardium of the left ventricular septum on non-enhanced MR images, 3 of whom had widespread high intensity in addition to two-thirds of the wall. Gd-DTPA enhanced-MR images showed high intensity over the whole septum in 5 patients and also in the antero-lateral endocardium in 4 patients. Decreased intensity on non-enhanced MR images, as shown in 4 patients, became clear on enhanced-MR images. According to findings on enhanced-MR images, signal intensity was defined as normal (N), septum (S), and diffuse (D). Patients in Group D tended to be younger and have more frequently family history. Regarding both interventricular septum thickness and left ventricular posterior wall thickness, there was no significant difference among the three groups. Both left ventricular diastolic diameter and left ventricular systolic diameter were significantly larger in Group D than the other two groups. Left ventricular ejection fraction was significantly lower in both Group S and Group D. Widespread abnormal intensity on Gd-DTPA enhanced MR images was associated with findings similar to dilated cardiomyopathy, such as dilated left ventricular lumen and decreased ejection fraction. Gd-DTPA enhanced MR imaging seemed to be useful for visualizing myocardial degeneration in hypertrophic cardiomyopathy.(N.K.)

  12. Study on the relationship between project management and organizational efficacy in nonprofit organizations

    Directory of Open Access Journals (Sweden)

    Kao I-Chan

    2018-01-01

    Full Text Available This study treats the members in nonprofit organizations (NPOs as subjects, and explores the origination, planning, control, and completion of project management in NPOs, as well as the general performance of organizational efficacy, such as environmental satisfaction, organizational atmosphere, operational performance, job engagement, and work quality. It also probes into the relationship and effect. By various research methods, such as literature review and questionnaire survey, this study attempts to determine if project management in NPOs can significantly enhance organizational efficacy. This study finds that different NPOs have significant differences in the general performance of project management and organizational efficacy. When the performance of project management in NPOs is more significant, organizational efficacy is higher. Project management in NPOs has a significant path relationship to organizational efficacy; therefore, reinforcement of vocational training in the project management of NPOs could improve performance, which would have significant effect on enhancing organizational efficacy.

  13. In vivo study of necrosis on the liver tissue of Wistar rats: a combination of photodynamic therapy and carbon dioxide laser ablation

    International Nuclear Information System (INIS)

    Rego, R F; Nicolodelli, G; Bagnato, V S; Araujo, M T; Tirapelli, L F; Araujo-Moreira, F M

    2013-01-01

    Photodynamic therapy (PDT) is known to be limited to applications in large volume tumors due to its limited penetration. Therefore, a combination of PDT and carbon dioxide (CO 2 ) laser ablation may constitute a potential protocol to destroy bulk tumors because it involves an association of these two techniques allowing the removal of visible lesions with a high selectivity of destruction of remnant tumors. The main aim of this study is to investigate the most appropriate procedure to combine use of a CO 2 laser and PDT on livers of healthy rats, and to analyze different techniques of this treatment using three types of photosensitizers (PSs). Forty eight animals were separated to form six groups: (1) only CO 2 laser ablation, (2) drug and CO 2 laser ablation, (3) only PDT, (4) drug and light (PDT) followed by CO 2 laser ablation, (5) ablated with CO 2 laser followed by PDT, and (6) drug followed by CO 2 laser ablation and light. For each group, three types of photosensitization were used: topical 5-aminolevulinic acid (ALA), intravenous ALA and intravenous Photogem ® . Thirty hours after the treatments, the animals were sacrificed and the livers removed. The depth of necrosis was analyzed and measured, considering microscopic and macroscopic aspects. The results show that the effects of the PDT were considerably enhanced when combined with CO 2 laser ablation, especially when the PDT was performed before the CO 2 laser ablation. (paper)

  14. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin.

    Science.gov (United States)

    Shukla, Mahendra; Jaiswal, Swati; Sharma, Abhisheak; Srivastava, Pradeep Kumar; Arya, Abhishek; Dwivedi, Anil Kumar; Lal, Jawahar

    2017-05-01

    Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability. In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin. As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague-Dawley rats, the optimized SNEDDS of curcumin-phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS. The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.

  15. Self-efficacy as predictor of job performance of public secondary ...

    African Journals Online (AJOL)

    The study investigated the level of job performance and self-efficacy of public secondary school teachers in Osun State. It also examined self-efficacy as a predictor of teachers' job performance with a view to enhancing job productivity. The study adopted survey design. The population consisted of public secondary school ...

  16. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer.

    Science.gov (United States)

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-05-10

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence.

  17. Enhancing Entrepreneurship: The Role of Goal Orientation and Self-Efficacy

    Science.gov (United States)

    Culbertson, Satoris S.; Smith, Michael R.; Leiva, Pedro I.

    2011-01-01

    Entrepreneurship has become increasingly important in the workplace. Research suggests motivational traits are important in pursuing entrepreneurial activities. Yet, the extent to which factors influencing entrepreneurial versus managerial goals differ remains unclear. This study assessed the influence of goal orientation and self-efficacy in…

  18. Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2002-01-01

    Purpose: The present report reviews the preclinical data on combined chemotherapy/vascular targeting agent treatments. Basic principles are illustrated in studies evaluating the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) when combined with the anticancer drug cisplatin in experimental rodent (KHT sarcoma) and human renal (Caki-1) tumor models. Methods and Materials: C3H/HeJ and NCR/nu-nu mice bearing i.m. tumors were injected i.p. with ZD6126 (0-150 mg/kg) or cisplatin (0-20 mg/kg) either alone or in combination. Tumor response to treatment was assessed by clonogenic cell survival. Results: Treatment with ZD6126 was found to damage existing neovasculature, leading to a rapid vascular shutdown. Histologic evaluation showed dose-dependent morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. ZD6126 doses that led to pathophysiologic effects also enhanced the tumor cell killing of cisplatin when administered either 24 h before or 1-24 h after chemotherapy. In both tumor models, the administration of a 150 mg/kg dose of ZD6126 1 h after a range of doses of cisplatin resulted in an increase in tumor cell kill 10-500-fold greater than that seen with chemotherapy alone. In contrast, the inclusion of the antivascular agent did not increase bone marrow stem cell toxicity associated with this anticancer drug. Conclusion: The results obtained in the KHT and Caki-1 tumor models indicate that ZD6126 effectively enhanced the antitumor effects of cisplatin therapy. These findings are representative of the marked enhancements generally observed when vascular targeting agents are combined with chemotherapy in solid tumor therapy

  19. Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma.

    Science.gov (United States)

    Wu, Zhong-Ming; Wang, Li; Zhu, Wei; Gao, Ying-Hua; Wu, Hai-Ming; Wang, Mi; Hu, Tai-Shan; Yan, Yi-Jia; Chen, Zhi-Long

    2017-08-01

    Photodynamic therapy (PDT) is emerging as a promising method for the treatment of various cancer diseases. However, the clinical application of PDT is limited due to the lack of effective photosensitizers. In this study, a novel chlorophyll derivative, N,N-bis(2-carboxyethyl)pyropheophorbide a (BPPA), had been synthesized and characterized. BPPA had a characteristic long wavelength absorption peak at 669nm and a singlet oxygen quantum yield of 0.54. To investigate the photodynamic ability of BPPA against cholangiocarcinoma (CCA), cellular uptake, subcellular location and bio-distribution, in vitro and in vivo PDT efficacy of BPPA were studied. The results showed that BPPA could rapidly accumulate in QBC-939 cells and localize in the cytoplasm. BPPA- PDT was effective in reducing the cell viability in a drug dose- and light dose-dependent manner in vitro. In CCA xenograft nude mouse model, the concentration of BPPA in the plasma lowered rapidly, and the fluorescence signal peaked at 0.5h and 2h after injection in the skin and tumor, respectively. Significant quantities could be observed in the tumor. BPPA followed by irradiation could significantly inhibit growth of tumors, and histological examination revealed necrotic damage in PDT-treated tumors. These results suggested that BPPA could be a promising drug candidate for photodynamic therapy in cholangiocarcinoma. Published by Elsevier Masson SAS.

  20. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  1. INTERACTIVE EFFECTS OF TEAM COHESION ON PERCEIVED EFFICACY IN SEMI-PROFESSIONAL SPORT

    Directory of Open Access Journals (Sweden)

    Francisco Miguel Leo Marcos

    2010-06-01

    Full Text Available The present study examined the relationships among cohesion, self-efficacy, coaches' perceptions of their players' efficacy at the individual level and athletes' perceptions of their teammates' efficacy. Participants (n = 76 recruited from four semi- professional soccer and basketball teams completed cohesiveness and efficacy questionnaires who. Data were analyzed through a correlational methodology. Results indicated significant correlations between self-efficacy and task cohesion and social cohesion. Regression analysis results suggest task cohesion positively related to coaches and teammate´s perception of efficacy. These results have implications for practitioners in terms of the importance of team building to enhance team cohesion and feelings of efficacy

  2. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection.

    Science.gov (United States)

    Feng, Liangzhu; Tao, Danlei; Dong, Ziliang; Chen, Qian; Chao, Yu; Liu, Zhuang; Chen, Meiwan

    2017-05-01

    Current photodynamic therapy (PDT) is suffering from limited efficacy towards hypoxia tumors and severe post-treatment photo-toxicity such as light-induced skin damages. To make PDT more effective in cancer treatment while being patient-comfortable, herein, a hexylamine conjugated chlorin e6 (hCe6) as the photosensitizer together with a lipophilic near-infrared (NIR) dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) are co-encapsulated into polyethylene glycol (PEG) shelled liposomes. In the obtained DiR-hCe6-liposome, the photosensitizing effect of hCe6 is quenched by DiR via fluorescence resonance energy transfer (FRET). Interestingly, upon irradiation with a 785-nm NIR laser to photobleach DiR, both fluorescence and photodynamic effect of hCe6 in DiR-hCe6-liposome would be activated. Meanwhile, such NIR irradiation applied on tumors of mice with intravenous injection of DiR-hCe6-liposome could result in mild photothermal heating, which in turn would promote intra-tumor blood flow and relieve tumor hypoxia, contributing to the enhanced photodynamic tumor treatment. Importantly, compared to hCe6-loaded liposomes, DiR-hCe6-liposome without being activated by the 785-nm laser shows much lower skin photo-toxicity, demonstrating its great skin protection effect. This work demonstrates a promising yet simple strategy to prepare NIR-light-activatable photodynamic theranostics for synergistic cancer phototherapy, which is featured high specificity/efficacy in tumor treatment with minimal photo-toxicity towards the skin. Copyright © 2016. Published by Elsevier Ltd.

  3. Efficacy of photochemical internalisation using disulfonated chlorin and porphyrin photosensitisers: An in vitro study in 2D and 3D prostate cancer models.

    Science.gov (United States)

    Martinez de Pinillos Bayona, Alejandra; Woodhams, Josephine H; Pye, Hayley; Hamoudi, Rifat A; Moore, Caroline M; MacRobert, Alexander J

    2017-05-01

    This study shows the therapeutic outcome of Photochemical Internalisation (PCI) in prostate cancer in vitro surpasses that of Photodynamic Therapy (PDT) and could improve prostate PDT in the clinic, whilst avoiding chemotherapeutics side effects. In addition, the study assesses the potential of PCI with two different photosensitisers (TPCS 2a and TPPS 2a ) in prostate cancer cells (human PC3 and rat MatLyLu) using standard 2D monolayer culture and 3D biomimetic model. Photosensitisers were used alone for photodynamic therapy (PDT) or with the cytotoxin saporin (PCI). TPPS 2a and TPCS 2a were shown to be located in discrete cytoplasmic vesicles before light treatment and redistribute into the cytosol upon light excitation. PC3 cells exhibit a higher uptake than MatLyLu cells for both photosensitisers. In the 2D model, PCI resulted in greater cell death than PDT alone in both cell lines. In 3D model, morphological changes were also observed. Saporin-based toxicity was negligible in PC3 cells, but pronounced in MatLyLu cells (IC50 = 18 nM). In conclusion, the study showed that tumour features such as tumour cell growth rate or interaction with drugs determine therapeutic conditions for optimal photochemical treatment in metastatic prostate cancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma.

    Science.gov (United States)

    Monge-Fuentes, Victoria; Muehlmann, Luis Alexandre; de Azevedo, Ricardo Bentes

    2014-01-01

    Malignant melanoma is the most aggressive form of skin cancer and has been traditionally considered difficult to treat. The worldwide incidence of melanoma has been increasing faster than any other type of cancer. Early detection, surgery, and adjuvant therapy enable improved outcomes; nonetheless, the prognosis of metastatic melanoma remains poor. Several therapies have been investigated for the treatment of melanoma; however, current treatment options for patients with metastatic disease are limited and non-curative in the majority of cases. Photodynamic therapy (PDT) has been proposed as a promising minimally invasive therapeutic procedure that employs three essential elements to induce cell death: a photosensitizer, light of a specific wavelength, and molecular oxygen. However, classical PDT has shown some drawbacks that limit its clinical application. In view of this, the use of nanotechnology has been considered since it provides many tools that can be applied to PDT to circumvent these limitations and bring new perspectives for the application of this therapy for different types of diseases. On that ground, this review focuses on the potential use of developing nanotechnologies able to bring significant benefits for anticancer PDT, aiming to reach higher efficacy and safety for patients with malignant melanoma.

  5. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    Science.gov (United States)

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra

    2016-10-04

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  6. Is antimicrobial photodynamic therapy an effective treatment for chronic periodontitis in diabetes mellitus and cigarette smokers: a systematic review and meta-analysis.

    Science.gov (United States)

    Al-Hamoudi, Nawwaf

    2017-09-01

    To determine whether treatment with antimicrobial photodynamic therapy (aPDT) as an adjunct to scaling and root planing (SRP) improves clinical, microbiological and immunological outcomes in type 2 diabetes mellitus (T2DM) and cigarette smokers with chronic periodontitis (CP). Databases (MEDLINE, PubMed; Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register) were searched up to and including May 2017. The addressed PICO question was: "Does aPDT as an adjunct to SRP improves clinical, microbiological and immunological outcomes in T2DM and smokers with CP?" Six randomized clinical trials were included. All studies reporting clinical periodontal, microbiological, and immunological parameters showed that aPDT was effective in the treatment of CP in T2DM and smokers at follow up. When compared with SRP alone, none of the studies showed additional benefits of aPDT at follow up. Considering the effects of adjunctive aPDT as compared to SRP on clinical signs of CP in T2DM and smokers, no difference could be observed for all evaluated parameters (PD: Z=-0.81, P=0.41; CAL: Z=-0.19, P=0.84) except IL-1β (Z=4.57, P<0.001). Due to limited evidence, it remains debatable whether aPDT as an adjunct to SRP is effective in improving clinical, microbiological and immunological outcomes compared to SRP alone in T2DM and smokers with CP. Further well-designed, large-scale clinical trials with microbiological parameters and long follow up periods are needed in order to assess the efficacy of adjunctive aPDT in T2DM and cigarette smokers with CP. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer.

    Science.gov (United States)

    van Driel, Pieter B A A; Boonstra, Martin C; Slooter, Maxime D; Heukers, Raimond; Stammes, Marieke A; Snoeks, Thomas J A; de Bruijn, Henriette S; van Diest, Paul J; Vahrmeijer, Alexander L; van Bergen En Henegouwen, Paul M P; van de Velde, Cornelis J H; Löwik, Clemens W G M; Robinson, Dominic J; Oliveira, Sabrina

    2016-05-10

    Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    Energy Technology Data Exchange (ETDEWEB)

    Penjweini, R [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Kim, M [University of Pennsylvania, Philadelphia, PA (United States); Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative light fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.

  9. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection

    Science.gov (United States)

    de Melo, Wanessa CMA; Avci, Pinar; de Oliveira, Milene Nóbrega; Gupta, Asheesh; Vecchio, Daniela; Sadasivam, Magesh; Chandran, Rakkiyappan; Huang, Ying-Ying; Yin, Rui; Perussi, Livia R; Tegos, George P; Perussi, Janice R; Dai, Tianhong; Hamblin, Michael R

    2015-01-01

    Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. PMID:23879608

  10. Externalizing Behavior Trajectories: The Role of Parenting, Sibling Relationships and Child Personality

    Science.gov (United States)

    Meunier, Jean Christophe; Roskam, Isabelle; Stievenart, Marie; van de Moortele, Gaelle; Browne, Dillon T.; Kumar, Aarti

    2011-01-01

    Based on longitudinal multilevel modeling and using a multi-informant strategy, this study examines trajectories of externalizing problem behavior (EPB) in childhood as predicted by parental behavior (absolute level of parenting [ALP] and parental differential treatment [PDT]), parental self-efficacy (PSE), child personality and sibling…

  11. Self-regulation during job search: the opposing effects of employment self-efficacy and job search behavior self-efficacy.

    Science.gov (United States)

    Liu, Songqi; Wang, Mo; Liao, Hui; Shi, Junqi

    2014-11-01

    Adopting a self-regulatory perspective, the current study examined the within-person relationships among job search cognitions, job search behaviors, and job search success (i.e., number of job offers received). Specifically, conceptualizing job search behaviors as guided by a hierarchy of means-end (i.e., job search behavior-employment) goal structure, we differentiated employment self-efficacy from job search behavior self-efficacy. Our results showed that higher levels of perceived job search progress could lead to more frequent job search behaviors through enhancing job search behavior self-efficacy. However, higher levels of perceived job search progress could also lead to less frequent job search behaviors through elevating employment self-efficacy. In addition, the relationships between perceived job search progress and efficacy beliefs were moderated by job seekers' level of internal attribution of their progress. Finally, we found that at the within-person level, frequency of job search behaviors was positively related to number of job offers received. These findings were discussed in terms of their theoretical and practical implications. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  12. Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration.

    Science.gov (United States)

    Wong, Paul; Markey, M; Rapp, C M; Darrow, R M; Ziesel, A; Organisciak, D T

    2017-01-01

    week of supplemental AREDS plus carnosic acid resulted in higher levels of rod and cone cell proteins, and higher levels of retinal DNA than for AREDS alone. Rhodopsin regeneration was unaffected by the rosemary treatment. Retinal gene array analysis showed reduced expression of medium- wavelength opsin 1 and arrestin C in the high-light reared rats versus the low-light rats. The transition of rats from low cyclic light to a high cyclic light environment resulted in the differential expression of 280 gene markers, enriched for genes related to inflammation, apoptosis, cytokine, innate immune response, and receptors. Rosemary, zinc oxide plus rosemary, and AREDS plus rosemary suppressed 131, 241, and 266 of these genes (respectively) in high-light versus low-light animals and induced a small subset of changes in gene expression that were independent of light rearing conditions. Long-term environmental light intensity is a major determinant of retinal gene and protein expression, and of visual cell survival following acute photooxidative insult. Rats preconditioned by high-light rearing exhibit lower levels of cone opsin mRNA and protein, and lower mCAR protein, than low-light reared animals, but greater retention of retinal DNA and proteins following photooxidative damage. Rosemary enhanced the protective efficacy of AREDS and led to the greatest effect on the retinal genome in animals reared in high environmental light. Chronic administration of rosemary antioxidants may be a useful adjunct to the therapeutic benefit of AREDS in slowing disease progression in AMD.

  13. Efficacy of cognitive enhancers for Alzheimer’s disease: protocol for a systematic review and network meta-analysis

    Directory of Open Access Journals (Sweden)

    Tricco Andrea C

    2012-06-01

    Full Text Available Abstract Background Approximately 35 million people world-wide have Alzheimer’s disease and this is projected to nearly double by 2030. Cognitive enhancers, including cholinesterase inhibitors (for example, donepezil, galantamine and rivastigmine and memantine (N-methyl-D-aspartic acid (NMDA receptor antagonist have been approved for the treatment of Alzheimer’s disease in many countries. Our objective is to evaluate the comparative effectiveness, safety, and cost of cognitive enhancers for Alzheimer’s disease through a systematic review. Methods/design Studies examining the efficacy, safety, and cost of cognitive enhancers compared to placebo, supportive care, and other cognitive enhancers for Alzheimer’s patients will be included. The primary outcome is cognition and secondary outcomes include function, behavior, quality of life, safety, and cost. Experimental studies (randomized controlled trials, quasi-randomized controlled trials, controlled clinical trials, quasi-experimental studies (controlled before-after, interrupted time series, and observational studies (cohort, case–control studies will be eligible for inclusion. Inclusion will not be limited by publication status, time period or language of dissemination. We will search electronic databases (for example, MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, CINAHL, Ageline from inception onwards. The electronic database search will be supplemented by searching for grey literature (for example, conference proceedings, searches in Google and relevant organization websites. Two reviewers will independently screen the studies for inclusion using the eligibility criteria established a priori and independently extract data. Risk of bias will be assessed using the Cochrane Risk of Bias tool for experimental and quasi-experimental studies and the Newcastle Ottawa Scale for observational studies. If deemed appropriate, meta-analysis and network (that is, indirect

  14. A Chitosan—Based Liposome Formulation Enhances the In Vitro Wound Healing Efficacy of Substance P Neuropeptide

    Directory of Open Access Journals (Sweden)

    Tamara Mengoni

    2017-12-01

    Full Text Available Currently, there is considerable interest in developing innovative biodegradable nanoformulations for controlled administration of therapeutic proteins and peptides. Substance P (SP is a neuropeptide of 11 amino acids that belongs to the tachykinins family and it plays an important role in wound healing. However, SP is easily degradable in vivo and has a very short half-life, so the use of chitosan-based nanocarriers could enhance its pharmaceutical properties. In light of the above, the aim of this work was to produce and characterize chitosan-coated liposomes loaded with SP (SP-CH-LP as novel biomaterials with potential application in mucosal wound healing. The loaded system’s biophysical properties were characterized by dynamic light scattering with non-invasive back scattering (DLS-NIBS, mixed mode measurements and phase analysis light scattering (M3-PALS and high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS. Then, the efficacy of the obtained nanoformulations was examined via proof-of-principle experiments using in vitro cell assays. These assays showed an increment on cell motility and proliferation after treatment with free and encapsulated neuropeptides. Additionally, the effect of SP on wound healing was enhanced by the entrapment on CH-LP. Overall, the amenability of chitosan-based nanomaterials to encapsulate peptides and proteins constitutes a promising approach towards potential novel therapies to treat difficult wounds.

  15. A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug.

    Science.gov (United States)

    Li, Jingwen; Lyv, Zhonglin; Li, Yanli; Liu, Huan; Wang, Jinkui; Zhan, Wenjun; Chen, Hong; Chen, Huabing; Li, Xinming

    2015-05-01

    Due to their high NIR-optical absorption and high specific surface area, graphene oxide and graphene oxide-based nanocomposites have great potential in both drug delivery and photothermal therapy. In the work reported herein we successfully integrate a Pt(IV) complex (c,c,t-[Pt(NH3)2Cl2(OH)2]), PEGylated nano-graphene oxide (PEG-NGO), and a cell apoptosis sensor into a single platform to generate a multifunctional nanocomposite (PEG-NGO-Pt) which shows potential for targeted drug delivery and combined photothermal-chemotherapy under near infrared laser irradiation (NIR), and real-time monitoring of its therapeutic efficacy. Non-invasive imaging using a fluorescent probe immobilized on the GO shows an enhanced therapeutic effect of PEG-NGO-Pt in cancer treatment via apoptosis and cell death. Due to the enhanced cytotoxicity of cisplatin and the highly specific tumor targeting of PEG-NGO-Pt at elevated temperatures, this nanocomposite displays a synergistic effect in improving the therapeutic efficacy of the Pt drug with complete destruction of tumors, no tumor recurrence and minimal systemic toxicity in comparison with chemotherapy or photothermal treatment alone, highlighting the advantageous effects of integrating Pt(IV) with GO for anticancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Photodynamic destruction of Porphyromonas gingivalis induced by delta-aminolaevulinic acid

    Science.gov (United States)

    Sieron, Aleksander; Wiczkowski, Andrzej; Adamek, Mariusz; Dyla, Lucja; Mazur, Sebastian; Wierucka-Mlynarczyk, Beata

    2004-09-01

    Photodynamic therapy (PDT) is one of a novel modalities which has recently been exploited to eradicate various microorganisms. In our study we have evaluated bactericidal efficacy of PDT in the presence of 5-δ aminolaevulinic acid (ALA). Porphyromonas gingivalis were incubated with increasing concentration of ALA and subsequently irradiated by progressive light doses. Complete killing effect was obtained for bacteria irradiated with 25J/cm2 in ALA solution final concentration of 1mM, 5mM, 10mM. Statistical analysis has revealed ALA concentration to be a major factor responsible for eradication of bacteria. The latter may be attributable to the known ALA dark toxicity.

  17. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Kocdor H

    2015-07-01

    Full Text Available Hilal Kocdor,1,2 Halil Ates,1 Suleyman Aydin,3 Ruksan Cehreli,1 Firat Soyarat,2 Pinar Kemanli,2 Duygu Harmanci,2 Hakan Cengiz,2 Mehmet Ali Kocdor4 1Institute of Oncology, Dokuz Eylul University, 2Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey; 3Department of Biochemistry, Firat University School of Medicine, Elazig, 4Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey Background: Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells.Methods: Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549 and p53-null (H1299 cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels.Results: Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC50 values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 µM and 100 µM.Conclusion: Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells. Keywords: lung cancer, zinc, docetaxel, A549, H1299

  18. Microwave ablation of liver metastases guided by contrast-enhanced ultrasound

    DEFF Research Database (Denmark)

    Lorentzen, T; Skjoldbye, B O; Nolsoe, C P

    2011-01-01

    The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS).......The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS)....

  19. Idiopathic elastosis perforans serpiginosa with satisfactory response after 5-ALA photodynamic therapy.

    Science.gov (United States)

    Alique-García, S; Company-Quiroga, J; Horcajada-Reales, C; Echeverría-García, B; Tardío-Dovao, J C; Borbujo, J

    2018-03-01

    Photodynamic therapy (PDT) involves the use of photochemical reactions mediated through the interaction of photosensitizing agents, light, and oxygen for the treatment of malignant or benign diseases. Topical photosensitizers employed in dermatology are 5-aminolevulinic acid (5 ALA) and methyl aminolevulinate, classically used for the treatment of superficial non-melanoma skin cancer and their precursors. Recently the efficacy of PDT has been introduced in other benign diseases. Elastosis perforans serpiginosa (EPS) is a rare skin disorder characterized by transepidermal elimination of abnormal elastic fibers. Management of this condition is complicated, various methods have been used but with limited success. We report a case of EPS in a 30-yeard-old woman treated with 5 ALA-PDT. After 4 sessions the lesions have almost completely disappeared with no residual side effects. Therefore we present an effective and safe alternative for the treatment of EPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Poor results of 5-aminolevulinic acid-photodynamic therapy for residual high-grade dysplasia and early cancer in barrett esophagus after endoscopic resection

    NARCIS (Netherlands)

    Peters, F.; Kara, M.; Rosmolen, W.; Aalders, M.; ten Kate, F.; Krishnadath, K.; van Lanschot, J.; Fockens, P.; Bergman, J.

    2005-01-01

    BACKGROUND AND STUDY AIMS: The aim of the study was to evaluate the efficacy of photodynamic therapy (PDT) in the treatment of residual high-grade dysplasia or early cancer (HGD/EC) after endoscopic resection in Barrett esophagus. PATIENTS AND METHODS: Study patients were separated into group A,

  1. Evaluation of ZnSe(S) Quantum Dots on the Cell Viability of Prostate Cancer Cell (PC3)

    Science.gov (United States)

    Calderón-Ortiz, E. R.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J. F.; Perales-Pérez, O.

    2018-05-01

    Nanomedicine is described as the process of diagnosing, treating, and preventing disease using nanostructured materials to improve human health. Quantum dots (QDs) host suitable optical properties for light-driven therapies, e.g., photo-dynamic therapy (PDT), for cancer treatment. The efficacy of QDs-assisted PDT relies on the capability of QDs to generate reactive oxygen species, which can be enhanced by inducing structural defects at the atomic level. Furthermore, data concerning the applicability of QDs-PDT in medicine is scarce, particularly for prostate cancer cells (PC3). On this basis, and as a first step in this research, the present report focused on the direct aqueous-synthesis of water-stable ZnSe(S) QDs via a microwave-assisted synthesis approach in the presence of thioglycolic acid (TGA) and mercaptopropionic acid (MPA). XRD analysis confirmed the face centered cubic structure in host ZnS; the average crystallite size was estimated at 10 nm. The photoluminescence of MPA-capped ZnSe(S) showed a strong main emission peak around 363 nm and a trap emission, attributed to structural defects, centered on 450 nm. The photoluminescence spectrum for TGA-capped ZnSe(S) QDs exhibited only the band gap peak around 390 nm, suggesting the absence of major structural defects. In turn, cell viability assays TGA-capped ZnSe(S) were not toxic at concentrations up to 100 ppm, whereas MPA-capped ZnSe(S) evidenced cytotoxicity at a concentration of 10 ppm. The lethal dose (LD50) for the MPA-capped ZnSe(S) in the PC3 cell line was 36 ppm and 35 ppm for 24 h and 48 h, respectively.

  2. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    Science.gov (United States)

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells

  3. A structural Model of Self-efficacy in Handball Referees

    Science.gov (United States)

    Diotaiuti, Pierluigi; Falese, Lavinia; Mancone, Stefania; Purromuto, Francesco

    2017-01-01

    The study aimed to identify factors predicting self-efficacy in a sample of 248 Italian handball referees. The main hypothesis was that perception of teamwork efficacy would be a significant predictor of self-efficacy in handball referees. Participants completed an online questionnaire including Referee Self-Efficacy Scale (α = 0.85), Self-Determination Scale (α = 0.78), and an adaptation for Referees of the Sport Commitment Model (α = 0.80). Two hierarchical regression analyses have identified: (1) Enjoyment (β = 0.226), Couple Efficacy (β = 0.233), and Personal Awareness (β = 0.243), as predictors of Self-Efficacy; (2) Span of Co-Refereeing (β = 0.253), Perceived Quality of the Relationship (β = 0.239), and Mutual Agreement (β = 0.274), as predictors of Couple Self-Efficacy. A further SEM analysis confirmed the fit of a structural model of Self-efficacy considering the reciprocal influence of Couple Efficacy, Enjoyment and Awareness (χ2: 5.67; RMSEA: 0.000; SRMR: 0.019). The study underlines the importance of teamwork (or co-refereeing) as it relates to enjoyment and awareness in officiating and how it enhances the psychological well-being of handball referees. Future studies should investigate the relationship between factors influencing perceived teamwork efficacy and officiating performance outcome. PMID:28572783

  4. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2005-01-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was ∼20% in small ( 90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10 -1 to 1 x 10 -4 with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as

  5. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    Science.gov (United States)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  6. Topical chlorophyll-pheophytin derivative-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premaligant lesions: an in vivo study

    Science.gov (United States)

    Hsu, Yih-Chih; Chiang, Chung-Pin; Chen, Jian Wen; Lee, Jeng-Woei; How, Mon-Hsin

    2010-02-01

    In Taiwan, oral cancer has become a prominent cancer because of its highest annual increase rate among all cancer diseases. Betel quid chewing habit is a major risk factor for oral precancerous and cancerous lesions and there are more than two million people who have this habit in Taiwan. Our previous studies showed that chlorophyll-pheophytin derivative (CPD)-mediated PDT is very effective for killing of SCC-4 cell lines in vitro. In order to decrease the systemic phototoxic effect of CPD, this study was designed to use a topical CPD-mediated PDT for treatment of DMBA-induced hamster buccal pouch precancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 8 to 10 weeks. Precancerous lesions of moderate to severe dysplasia were induced and proven by histological examination. These induced precancerous lesions were used for testing the efficacy of topical CPD-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when CPD reached its peak level in the lesional epithelial cells after topical application of CPD gel. We found that CPD reached its peak level in precancerous lesions about 1 hour (range, 0 to 30 hours) after topical application of CPD gel. The precancerous lesions in hamsters were then treated with topical CPD-mediated PDT (fluence rate: 200 mW/cm2; light exposure dose 100 J/cm2) using the portable WonderLight LED 635 nm fiber-guided light device once or twice a week. Visual and histological examination demonstrated that topical CPD-mediated PDT was partially effective treatment modality for DMBA-induced hamster buccal pouch precancerous lesions.

  7. Repeated exposures to blue light-activated eosin Y enhance inactivation of E. faecalis biofilms, in vitro.

    Science.gov (United States)

    Marinic, Karlo; Manoil, Daniel; Filieri, Anna; Wataha, John C; Schrenzel, Jacques; Lange, Norbert; Bouillaguet, Serge

    2015-09-01

    In dentistry, antibacterial photodynamic therapy (a-PDT) has shown promising results for inactivating bacterial biofilms causing carious, endodontic and periodontal diseases. In the current study, we assessed the ability of eosin Y exposed to 3 irradiation protocols at inactivating Enterococcus faecalis biofilms, in vitro. E. faecalis biofilms formed on hydroxyapatite disks were incubated with eosin Y (10-80μM), then activated with blue light using different irradiation protocols. Biofilms exposed to continuous exposure were incubated for 40min before being light-activated for 960 s. For the intermittent exposure, biofilms were exposed 4 times to the light/photosensitizer combination (960 s total) without renewing the photosensitizer. For repeated a-PDT, the same light dose was delivered in a series of 4 irradiation periods separated by dark periods; fresh photosensitizer was added between each light irradiation. After treatment, bacteria were immediately labeled with LIVE/DEAD BacLight Bacterial Viability kit and viability was assessed by flow cytometry (FCM). Results were statistically analyzed using one-way ANOVA and Tukey multiple comparison intervals (α=0.05). The viability of E. faecalis biofilms exposed to 10μM eosin Y, was significantly reduced compared to controls (light only-eosin Y only). After a second exposure to blue light-activated eosin Y, viability significantly decreased from 58% to 12% whereas 6.5% of the bacterial biofilm remained live after a third exposure (p<0.05). Only 3.5% of the bacterial population survived after the fourth exposure. The results of this study indicate that blue light-activated eosin Y can photoinactivate E. faecalis biofilms grown on hydroxyapatite disks. Also, repeated exposures to blue light-activated eosin Y were shown to significantly improve efficacy. Further studies seem warranted to optimize the antibacterial activity of blue light-activated eosin Y on major oral pathogens. Copyright © 2015 Elsevier B.V. All

  8. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases.

    Science.gov (United States)

    Liang, Ruijing; Liu, Lanlan; He, Huamei; Chen, Zhikuan; Han, Zhiqun; Luo, Zhenyu; Wu, Zhihao; Zheng, Mingbin; Ma, Yifan; Cai, Lintao

    2018-09-01

    Metastatic triple-negative breast cancer (mTNBC) is an aggressive disease among women worldwide, characterized by high mortality and poor prognosis despite systemic therapy with radiation and chemotherapies. Photodynamic therapy (PDT) is an important strategy to eliminate the primary tumor, however its therapeutic efficacy against metastases and recurrence is still limited. Here, we employed a template method to develop the core-shell gold nanocage@manganese dioxide (AuNC@MnO 2 , AM) nanoparticles as tumor microenvironment responsive oxygen producers and near-infrared (NIR)-triggered reactive oxygen species (ROS) generators for oxygen-boosted immunogenic PDT against mTNBC. In this platform, MnO 2 shell degrades in acidic tumor microenvironment pH/H 2 O 2 conditions and generates massive oxygen to boost PDT effect of AM nanoparticles under laser irradiation. Fluorescence (FL)/photoacoustic (PA)/magnetic resonance (MR) multimodal imaging confirms the effective accumulation of AM nanoparticles with sufficient oxygenation in tumor site to ameliorate local hypoxia. Moreover, the oxygen-boosted PDT effect of AM not only destroys primary tumor effectively but also elicits immunogenic cell death (ICD) with damage-associated molecular patterns (DAMPs) release, which subsequently induces DC maturation and effector cells activation, thereby robustly evoking systematic antitumor immune responses against mTNBC. Hence, this oxygen-boosted immunogenic PDT nanosystem offers a promising approach to ablate primary tumor and simultaneously prevent tumor metastases via immunogenic abscopal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Photodynamic Therapy in Treatment of Oral Lichen Planus

    Science.gov (United States)

    Mostafa, Diana; Tarakji, Bassel

    2015-01-01

    Oral lichen planus (OLP) is a relatively common chronic immunologic mucocutaneous disorder. Although there are many presenting treatments, some of them proved its failure. Recently, the use of photodynamic therapy (PDT) has been expanding due to its numerous advantages, as it is safe, convenient, and non-invasive and has toxic effect towards selective tissues. This article provides comprehensive review on OLP, its etiology, clinical features and recent non-pharmacological treatments. We also describe the topical PDT and its mechanisms. Our purpose was to evaluate the efficacy of PDT in treatment of OLP through collecting the data of the related clinical studies. We searched in PubMed website for the clinical studies that were reported from 2000 to 2014 using specific keywords: “photodynamic therapy” and “treatment of oral lichen planus”. Inclusion criteria were English publications only were concerned. In the selected studies of photodynamic treatment, adult patients (more than 20 years) were conducted and the OLP lesions were clinically and histologically confirmed. Exclusion criteria were classical and pharmacological treatments of OLP were excluded and also the using of PDT on skin lesions of lichen planus. We established five clinical studies in this review where all of them reported improvement and effectiveness of PDT in treatment of OLP lesions. The main outcome of comparing the related clinical studies is that the photodynamic is considered as a safe, effective and promising treatment modality for OLP. PMID:25883701

  10. Frontline nurse managers' confidence and self-efficacy.

    Science.gov (United States)

    Van Dyk, Jennifer; Siedlecki, Sandra L; Fitzpatrick, Joyce J

    2016-05-01

    This study was focused on determining relationships between confidence levels and self-efficacy among nurse managers. Frontline nurse managers have a pivotal role in delivering high-quality patient care while managing the associated costs and resources. The competency and skill of nurse managers affect every aspect of patient care and staff well-being as nurse managers are largely responsible for creating work environments in which clinical nurses are able to provide high-quality, patient-centred, holistic care. A descriptive, correlational survey design was used; 85 nurse managers participated. Years in a formal leadership role and confidence scores were found to be significant predictors of self-efficacy scores. Experience as a nurse manager is an important component of confidence and self-efficacy. There is a need to develop educational programmes for nurse managers to enhance their self-confidence and self-efficacy, and to maintain experienced nurse managers in the role. © 2016 John Wiley & Sons Ltd.

  11. Teaching efficacy of nurses in clinical practice education: A cross-sectional study.

    Science.gov (United States)

    Kim, Eun-Kyeung; Shin, Sujin

    2017-07-01

    Clinical nurses play a vital role in clinical practice education; thus, it is necessary to help clinical nurses have teaching efficacy through the development and application of systematic education programs. To identify nurses' teaching efficacy for clinical education and analyze the influencing factors of teaching efficacy. The study used a cross-sectional design. We used a convenience sample of 263 nurses from two hospitals. Teaching efficacy, general characteristics, and perception of clinical practice education were collected via self-reported questionnaires. Teaching efficacy was measured using Hwang's (2006) questionnaire, while perception of clinical practice education was measured using the Clinical Nurse Teacher Survey developed by Nishioka et al. (2014). Participants completed the questionnaire directly. The collected data were then analyzed using descriptive statistics, t-tests, ANOVAs, and multiple regression analysis with PASW Statistics 18.0. The mean total score of teaching efficacy was 72.5 (range 21-105). The leadership for students subscale had the highest score (3.56±0.59). The factors influencing teaching efficacy were length of clinical career (β=0.26, pteaching efficacy in nurses. Based on these results, nursing educators might need to develop greater confidence in their knowledge and enhance control of their teaching strategies. Nursing schools and hospitals might need to provide greater support and educational opportunities to nurse clinical practice instructors. Furthermore, constructing a system of cooperation between these colleges and educational hospitals, developing programs to enhance teaching efficacy, and identifying the clinical instructor's role are all necessary to promote clinical practice education. Copyright © 2017. Published by Elsevier Ltd.

  12. Substance P enhances proliferation and paracrine potential of adipose-derived stem cells in vitro

    International Nuclear Information System (INIS)

    Kim, Suna; Piao, Jiyuan; Son, Youngsook; Hong, Hyun Sook

    2017-01-01

    Stem cells have tremendous promise to treat intractable diseases. Notably, adipose-derived stem cells (ADSCs) are actively being investigated because of ease of sampling and high repopulation capacity in vitro. ADSCs can exert a therapeutic effect through differentiation and paracrine potential, and these actions have been proven in many diseases, including cutaneous and inflammatory diseases. Transplantation of ADSCs necessitates therapeutic quantities and thus, long term ex vivo culture of ADSCs. However, this procedure can impair the activity of ADSCs and provoke cellular senescence, leading to low efficacy in vivo. Accordingly, strategies to restore cellular activity and inhibit senescence of stem cells during ex vivo culture are needed for stem cell-based therapies. This study evaluated a potential supplementary role of Substance P (SP) in ADSC ex vivo culture. After confirming that the ADSC cell cycle was damaged by passage 6 (p6), ADSCs at p6 were cultured with SP, and their proliferation rates, cumulative cell numbers, cytokine profiles, and impact on T/endothelial cells were assessed. Long-term culture weakened proliferation ability and secretion of the cytokines, transforming growth factor-beta 1 (TGF-beta1), vascular endothelial growth factor (VEGF), and stromal cell derived factor-1 alpha (SDF-1alpha) in ADSCs. However, SP treatment reduced the population doubling time (PDT), enabling gain of a sufficient number of ADSCs at early passages. In addition, SP restored cytokine secretion, enhancing the ADSC-mediated paracrine effect on T cell and human umbilical vein endothelial cells (HUVECs). Taken together, these results suggest that SP can retain the therapeutic effect of ADSCs by elevating their proliferative and paracrine potential in ex vivo culture. - Highlights: • Long-term culture of ADSCs leads to cell senescence. • Paracrine potential of ADSC decreases as passage number increases. • SP enhances the weakened proliferation capacity of

  13. Validation of the Sexual Communication Self-Efficacy Scale.

    Science.gov (United States)

    Quinn-Nilas, Christopher; Milhausen, Robin R; Breuer, Rebecca; Bailey, Julia; Pavlou, Menelaos; DiClemente, Ralph J; Wingood, Gina M

    2016-04-01

    This study assessed a newly developed Sexual Communication Self-Efficacy Scale designed to measure the sexual communication self-efficacy of adolescent men and women. Three-hundred and seventy-four U.K. adolescents completed this new scale, along with several other validity measures. Factor analysis revealed that the Sexual Communication Self-Efficacy Scale consisted of five underlying factors: contraception communication, positive sexual messages, negative sexual messages, sexual history, and condom negotiation. These factors demonstrated high internal consistency and presents evidence to support construct validity. This scale may have utility in assessing the effectiveness of interventions designed to enhance sexual communication and sexual health behaviors among young people. © 2015 Society for Public Health Education.

  14. Self-Efficacy Manipulation Influences Physical Activity Enjoyment in Chinese Adolescents.

    Science.gov (United States)

    Hu, Liang; Cheng, Shoubin; Lu, Jiaying; Zhu, Lele; Chen, Ling

    2016-02-01

    In this study, we examined the effect of the manipulation of exercise self-efficacy on the enjoyment of physical activity in a sample of 44 Chinese adolescents (age = 14.27 ± .87 y), including 22 boys and 22 girls. The participants were randomized into a low-efficacy or high-efficacy condition, and their self-efficacy beliefs for engaging in moderate-intensity physical activity were manipulated by providing false feedback after a submaximal exercise test. The participants' self-efficacy was measured and compared before and after the exercise test and the participants' enjoyment of physical activity was assessed after the exercise test. It was found that exercise self-efficacy was successfully manipulated in the expected direction in both conditions, which significantly influenced the participants' enjoyment of physical activity. After the exercise test, the participants in the low-efficacy condition reported lower enjoyment scores relative to the high-efficacy participants. These results suggest that self-efficacy may have an important influence on the enjoyment of physical activity among Chinese adolescents. We recommend that physical activity promotion programs should be tailored to enhance adolescents' self-efficacy beliefs and enjoyment of the experience of physical activity.

  15. Threat and efficacy in Malaysia’s cancer news coverage

    Directory of Open Access Journals (Sweden)

    Collin Jerome

    2017-12-01

    Full Text Available Background: The news media plays important roles not only in creating and disseminating health messages, but also in influencing people’s perceptions of health and their health behaviours. However, much more needs to be known about the creation process, particularly how health messages are created with the goal of raising awareness and knowledge, and changing people’s attitudes and behaviours. This paper presents a study aimed at examining cancer risk messages in Malaysia’s leading newspapers. Methods: Our search identified count the total 73 articles related to cancer which were published in three leading Malaysian English dailies in 2012 – September 2017. Of these, 10 were selected for a content analysis using the Extended Parallel Process (EPPM Model. The analysis focused on the presence and the levels of two important components required for designing effective health risk message: threat (severity and susceptibility and efficacy (responses efficacy and self-efficacy. The language used in the news articles was also analysed to see whether it helped enhance the threat-efficacy levels which are crucial for increasing message acceptance and yielding behaviour change. Results: Present study shows that the varying presence of threat and efficacy in the articles as evidenced by messages that focused on threat alone with no efficacy and messages that highlighted both threat and efficacy. Results also show contrasting levels of threat and efficacy as evidenced by messages that possessed high levels of threat and efficacy and messages that revealed a high level of threat and a low level of efficacy. Furthermore, the contents were composed differently in terms of language use: some articles used neutral language while others used vivid and descriptive language in addressing the topic and target audience. These have implication on message acceptance and behaviour change where high levels of threat and efficacy, and the ways in which vivid

  16. Predictors of weight loss success. Exercise vs. dietary self-efficacy and treatment attendance.

    Science.gov (United States)

    Byrne, Shannon; Barry, Danielle; Petry, Nancy M

    2012-04-01

    Pre-treatment diet and exercise self-efficacies can predict weight loss success. Changes in diet self-efficacy across treatment appear to be even stronger predictors than baseline levels, but research on changes in exercise self-efficacy is lacking. Using data from a pilot study evaluating tangible reinforcement for weight loss (N=30), we examined the impact of changes in diet and exercise self-efficacy on outcomes. Multiple regression analyses indicated that treatment attendance and changes in exercise self-efficacy during treatment were the strongest predictors of weight loss. Developing weight loss programs that foster the development of exercise self-efficacy may enhance participants' success. Published by Elsevier Ltd.

  17. Pharmacological enhancement of exposure-based treatment in PTSD: a qualitative review

    Directory of Open Access Journals (Sweden)

    Rianne A. de Kleine

    2013-10-01

    Full Text Available There is a good amount of evidence that exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD. Notwithstanding its efficacy, there is room for improvement, since a large proportion of patients does not benefit from treatment. Recently, an interesting new direction in the improvement of exposure therapy efficacy for PTSD emerged. Basic research found evidence of the pharmacological enhancement of the underlying learning and memory processes of exposure therapy. The current review aims to give an overview of clinical studies on pharmacological enhancement of exposure-based treatment for PTSD. The working mechanisms, efficacy studies in PTSD patients, and clinical utility of four different pharmacological enhancers will be discussed: D-cycloserine, MDMA, hydrocortisone, and propranolol.

  18. Pharmacological enhancement of exposure-based treatment in PTSD: a qualitative review.

    Science.gov (United States)

    de Kleine, Rianne A; Rothbaum, Barbara O; van Minnen, Agnes

    2013-10-17

    There is a good amount of evidence that exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD). Notwithstanding its efficacy, there is room for improvement, since a large proportion of patients does not benefit from treatment. Recently, an interesting new direction in the improvement of exposure therapy efficacy for PTSD emerged. Basic research found evidence of the pharmacological enhancement of the underlying learning and memory processes of exposure therapy. The current review aims to give an overview of clinical studies on pharmacological enhancement of exposure-based treatment for PTSD. The working mechanisms, efficacy studies in PTSD patients, and clinical utility of four different pharmacological enhancers will be discussed: d-cycloserine, MDMA, hydrocortisone, and propranolol.

  19. Interactive effects of team cohesion on perceived efficacy in semi-professional sport.

    Science.gov (United States)

    Marcos, Francisco Miguel Leo; Miguel, Pedro Antonio Sánchez; Oliva, David Sánchez; Calvo, Tomás García

    2010-01-01

    The present study examined the relationships among cohesion, self-efficacy, coaches' perceptions of their players' efficacy at the individual level and athletes' perceptions of their teammates' efficacy. Participants (n = 76) recruited from four semi- professional soccer and basketball teams completed cohesiveness and efficacy questionnaires who. Data were analyzed through a correlational methodology. Results indicated significant correlations between self-efficacy and task cohesion and social cohesion. Regression analysis results suggest task cohesion positively related to coaches and teammate's perception of efficacy. These results have implications for practitioners in terms of the importance of team building to enhance team cohesion and feelings of efficacy. Key pointsThis paper increases the knowledge about soccer and basketball match analysis.Give normative values to establish practice and match objectives.Give applications ideas to connect research with coaches' practice.

  20. Subcellular localization and photodynamic activity of Photodithazine (glucosamine salt of chlorin e6) in murine melanoma B16-F10: an in vitro and in vivo study

    Science.gov (United States)

    Ono, Bruno Andrade; Pires, Layla; Nogueira, Marcelo Saito; Kurachi, Cristina; Pratavieira, Sebastião.

    2018-02-01

    Photodynamic therapy (PDT) is already a good option for the clinical treatment of several lesions, including mainly nonmelanoma skin cancers. However, cutaneous melanoma treatment remains a challenge when using PDT. One of the reasons for its reduced efficacy is the high pigmentation of melanoma cells. The object of our study is to evaluate the feasibility of the Photodithazine as a photosensitizer for melanoma. Photodithazine is already used in some malignant tumors with satisfactory results and has significant absorption band around 660 nm where the absorption of melanin is low. In this study, we measured the subcellular localization and photodynamic activity of Photodithazine (PDZ) in murine melanoma B16-F10 cell culture. Additionally, a PDT procedure was applied in an animal melanoma model. This first result demonstrates that Photodithazine is more localized at mitochondria in B16F10 cell culture and the cell viability is reduced to less than 90% using 1 µg/mL (PDZ) and 2 J/cm2. We also noticed a rapid PDZ (less than one hour) accumulation in a murine melanoma model. The treatment of melanoma resulted in 20 % more animal survival after one session of PDT compared with the control group. More studies are required to evaluate the cytotoxic effects of Photodithazine at human melanoma.

  1. Comparison of three light doses in the photodynamic treatment of actinic keratosis using mathematical modeling

    Science.gov (United States)

    Vignion-Dewalle, Anne-Sophie; Betrouni, Nacim; Tylcz, Jean-Baptiste; Vermandel, Maximilien; Mortier, Laurent; Mordon, Serge

    2015-05-01

    Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J/cm2, 75 mW/cm2, 500 s blue light dose, 10 J/cm2, 10 mW/cm2, 1000 s and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.

  2. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    Science.gov (United States)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  3. Approaching Environmental Sustainability: Perceptions of Self-Efficacy and Changeability.

    Science.gov (United States)

    Schutte, Nicola S; Bhullar, Navjot

    2017-04-03

    This paper describes a model focused on the role of self-efficacy and belief in changeability of behavior in motivating environmentally sustainable behavior. The model was tested in two studies. The first study found that participants who had greater self-efficacy for sustainability behavior and a greater belief in their changeability of sustainability behavior had a higher level of approach motivation toward sustainability behavior and reported more such actual behavior. The second study investigated the effect of brief interventions intended to increase perception of self-efficacy for sustainability-related purchasing and changeability of sustainability-related purchasing. The intervention that focused on enhancing self-efficacy for making sustainability-related purchases had the strongest impact on intention to purchase. These findings have implications for interventions intended to change behavior related to environmental sustainability.

  4. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Science.gov (United States)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  5. Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities

    Science.gov (United States)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-01-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…

  6. Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis.

    Science.gov (United States)

    Pensel, Patricia E; Castro, Silvina; Allemandi, Daniel; Bruni, Sergio Sánchez; Palma, Santiago D; Elissondo, María Celina

    2014-06-16

    Cystic echinococcosis is a chronic, complex, and still neglected disease. Although albendazole has demonstrated efficacy, only about one-third of patients experience complete remission or cure and 30-50% of treated patients develop some evidence of a therapeutic response. Different strategies have been developed in order to improve the albendazole water solubility and dissolution rate. The aim of the current work was to investigate the chemoprophylactic and clinical efficacy of an albendazole:poloxamer 188 solid dispersion formulation on mice infected with Echinococcus granulosus metacestodes. Albendazole formulated as solid dispersion had greater chemoprophylactic and clinical efficacy than albendazole alone. The improved in therapeutic efficacy could be a consequence of the increase in the systemic availability of albendazole sulfoxide. The work reported here demonstrates that in vivo treatment with albendazole:poloxamer 188 impairs the development of the hydatid cysts. This new pharmacotechnically based strategy could be a suitable alternative for treating cystic echinococcosis in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Enhancing predicted efficacy of tumor treating fields therapy of glioblastoma using targeted surgical craniectomy: A computer modeling study

    DEFF Research Database (Denmark)

    Korshoej, Anders Rosendal; Saturnino, Guilherme Bicalho; Rasmussen, Line Kirkegaard

    2016-01-01

    the potential of the intervention to improve the clinical efficacy of TTFields therapy of brain cancer. Methods: We used finite element analysis to calculate the electrical field distribution in realistic head models based on MRI data from two patients: One with left cortical/subcortical glioblastoma and one......Objective: The present work proposes a new clinical approach to TTFields therapy of glioblastoma. The approach combines targeted surgical skull removal (craniectomy) with TTFields therapy to enhance the induced electrical field in the underlying tumor tissue. Using computer simulations, we explore...... with deeply seated right thalamic anaplastic astrocytoma. Field strength was assessed in the tumor regions before and after virtual removal of bone areas of varying shape and size (10 to 100 mm) immediately above the tumor. Field strength was evaluated before and after tumor resection to assess realistic...

  8. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  9. The mediating role of spirituality on professional values and self-efficacy: a study of senior nursing students.

    Science.gov (United States)

    Jun, Won Hee; Lee, Gyungjoo

    2016-12-01

    The aim of this study was to identify the significance of spirituality in enhancing self-efficacy related to professional values in senior nursing students. Self-efficacy can predict job satisfaction and performance as professional nurses in clinical settings. Senior nursing students should have the level of self-efficacy that enables them to perform professional roles based on professional values, because they will enter clinical settings immediately after graduation. Spirituality may help senior nursing students during the transition to professional life to reflect on their skills, knowledge and situations to enhance self-efficacy based on professional values. An exploratory, cross-sectional design was used in this study. A total of 194 senior nursing students in South Korea were recruited in 2014. They completed self-reported questionnaires consisting of demographic questions, Spiritual Assessment Scale, Self-Efficacy Scale and Nursing Professional Values inventory. A Sobel test was done to determine the mediating effect of spirituality on the relationship between nursing professional values and self-efficacy. The findings showed a positive correlation between professional values, spirituality and self-efficacy in nursing students. According to the Sobel test, spirituality had a mediating effect on the relationship between professional values and self-efficacy in senior nursing students. Spirituality can be a foundation that provides senior nursing students with higher self-efficacy so that they are able to perform their professional roles based on their professional values. The findings can guide nursing educators to include spiritual development of nursing students to enhance the self-efficacy of senior nursing students, the future of the nursing profession. © 2016 John Wiley & Sons Ltd.

  10. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes.

    Science.gov (United States)

    Bonal, Niteesh Singh; Paramkusam, Bala Ramudu; Basudhar, Prabir Kumar

    2018-06-05

    The study aims to enhance the efficacy of surfactants using salt and multi-walled carbon nanotubes (MWCNT) for washing used engine oil (UEO) contaminated soil and compare the geotechnical properties of contaminated soil before and after washing (batch washing and soil washing). From batch washing of the contaminated soil the efficacy of the cleaning process is established. Contamination of soil with hydrocarbons present in UEO significantly affects its' engineering properties manifesting in no plasticity and low specific gravity; the corresponding optimum moisture content value is 6.42% while maximum dry density is 1.770 g/cc, which are considerably lower than those of the uncontaminated soil. The result also showed decrease in the values of cohesion intercept and increase in the friction angle values. The adopted soil washing technique resulted increase in specific gravity from 1.85 to 2.13 and cohesion from 0.443 to 1.04 kg/cm 2 and substantial decrease in the friction angle from 31.16° to 17.14° when washed with most efficient combination of SDS surfactant along with sodium meta-silicate (salt) and MWCNT. Effectiveness of the washing of contaminated soil by batch processing and soil washing techniques has been established qualitatively. The efficiency of surfactant treatment has been observed to be increased significantly by the addition of salt and MWCNT. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparison between scaling-root-planing (SRP and SRP/photodynamic therapy: six-month study

    Directory of Open Access Journals (Sweden)

    Berakdar Mohammad

    2012-04-01

    Full Text Available Abstract Introduction The purpose of this long-term clinical study was to examine the additional efficacy of photodynamic therapy (PDT to scaling and root planing (SRP in patients with chronic periodontal disease. Methods A total of 22 patients (mean age: 59.3 ± 11.7 years with chronic periodontal disease and four teeth with probing depth ≥ 5 mm were enrolled in the study. Inclusion criteria were: no systemic disease, no smoking, no pregnancy and no long-term medication. Beside the anamnesis, the following clinical parameters were assessed at baseline (one week before therapy, and one, three and six months after the therapy: bleeding on probing (BOP, plaque index (PI probing depth (PD, and clinical attachment loss. All measurements were done by the same examiner with a fixed periodontal probe (PCP 12, Hu-Friedy at six measurements/tooth. In each patient, two teeth were treated with SRP alone and two teeth with SRP and PDT (Periowave, Ondine Biopharma, Vancouver, Canada. The nonparametric Wilcoxon test for paired samples was used for comparison of the effect of the two treatments (p ≤ 0.05. Results After both types of treatment, the number of teeth positive for BOP declined. At baseline, the CAL measured 7.2 ± 1.2 mm (SRP or 8.1 ± 1.3 mm (SRP/PDT; one, three and six months after both types of treatment an improvement was observed. At baseline, the probing depth was 5.9 ± 0.8 mm (SRP or 6.4 ± 0.8 mm (SRP/PDT; after six months, an improvement of 2.4 ± 0.6 mm (SRP or 2.9 ± 0.8 mm (SRP/PDT was found. The greater reduction of the PD, achieved by a combination of SRP/PDT, was statistically significant after six months (p = 0.007. Conclusion This clinical study demonstrates that SRP in combination with PDT seems to be effective and is therefore suitable as an adjuvant therapy to the mechanical conditioning of the periodontal pockets in patients with chronic periodontal diseases.

  12. Self-efficacy and its influence on recovery of patients with stroke : a systematic review

    NARCIS (Netherlands)

    Korpershoek, Corrie; van der Bijl, Jaap; Hafsteinsdottir, Thora B.

    Aims. To provide an overview of the literature focusing on the influence of self-efficacy and self-efficacy enhancing interventions on mobility, activities of daily living, depression and quality of life of patients with stroke. Background. There is growing evidence for the importance of

  13. A Longitudinal Study on Mathematics Teaching Efficacy: Which Factors (Un)Support the Development?

    Science.gov (United States)

    Isiksal-Bostan, Mine

    2016-01-01

    The aim of this longitudinal study was to examine prospective teachers' mathematics teaching efficacy belief during their enrollment in teacher education program and at the end of their first year of teaching. In addition, the factors that enhance or inhibit participants' efficacy belief and how these factors affect their mathematics teaching…

  14. Multifunctionalized polyethyleneimine-based nanocarriers for gene and chemotherapeutic drug combination therapy through one-step assembly strategy

    Directory of Open Access Journals (Sweden)

    Jiang D

    2017-12-01

    Full Text Available Dandan Jiang,1,* Mingfang Wang,1,* Tianqi Wang,1 Bo Zhang,1 Chunxi Liu,2 Na Zhang1 1Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China; 2Pharmaceutical Department, Qilu Hospital of Shandong University, Jinan, China *These authors contributed equally to this work Abstract: Gene therapy combined with chemotherapy to achieve synergistic therapeutic effects has been a hot topic in recent years. In this project, the human tumor necrosis factor-related apoptosis-inducing ligand-encoding plasmid gene (TRAIL and doxorubicin (Dox-coloaded multifunctional nanocarrier was constructed based on the theory of circulation, accumulation, internalization, and release. Briefly, polyethyleneimine (PEI was selected as skeleton material to synthesize PEI–polyethylene glycol (PEG–TAT (PPT. Dox was conjugated to PEI using C6-succinimidyl 6-hydrazinonicotinate acetone hydrazone (C6-SANH, and a pH-sensitive Dox-PEI (DP conjugate was obtained. Then, intracellular cationic pH-sensitive cellular assistant PPT and DP were mixed to condense TRAIL, and TRAIL–Dox coloaded PPT/DP/TRAIL (PDT nanocarriers were obtained by one-step assembly. TRAIL was completely condensed by DP or PPT when mass ratios (DP/PPT to TRAIL were up to 100:64, which indicated that DP and PPT could be mixed at any ratio for TRAIL condensation. The intracellular uptake rate of PDT was enhanced (P<0.05 when the contents of PPT in PPT+DP increased from 0 to 30%. Free Dox and TRAIL-loaded nanocarriers (PPT/C6-SANH-PEI/TRAIL [PCT] were selected as controls to verify the synergistic antitumor effects of PDT. Compared with free TRAIL, TRAIL-protein expression was upregulated by PDT and PCT on Western blotting assays. The in vitro cytotoxicity of PDT was significantly enhanced compared to free Dox and PCT (P<0.01. Furthermore, murine PDT nanocarriers showed higher in vivo antitumor ability than both the

  15. Vitamin D for combination photodynamic therapy of skin cancer in individuals with vitamin D deficiency: Insights from a preclinical study in a mouse model of squamous cell carcinoma

    Science.gov (United States)

    Anand, Sanjay; Thomas, Erik; Hasan, Tayyaba; Maytin, Edward V.

    2016-03-01

    Combination photodynamic therapy (cPDT) in which vitamin D (VD) is given prior to aminolevulinate, a precursor (pro-drug) for protoporphyrin IX (PpIX), is an approach developed in our laboratory. We previously showed that 1α,25- dihydroxyvitamin D3 (calcitriol), given prior to PDT, enhances accumulation of PpIX and improves cell death post-PDT in a mouse skin cancer model. However, since calcitriol poses a risk for hypercalcemia, we replaced systemic calcitriol with oral cholecalciferol (D3), administered as a high (tenfold, "10K") diet over a ten-day period. Here, we ask whether VD deficiency might alter the response to cPDT. Nude mice were fed a VD-deficient diet for at least 4 weeks ("deficient"); controls were fed a normal 1,000 IU/kg diet ("1K"). Human A431 cells were implanted subcutaneously and mice were switched to the 10K diet or continued on their baseline diets (controls). In other experiments, mice received a human equivalent dose of 50,000 IU D3 by oral gavage, to simulate administration of a single, high-dose VD pill. At various times, tumors were harvested and serum was collected to measure levels of VD metabolic intermediates. A significant increase in PpIX levels and in the expression of differentiation and proliferation markers in tumor tissue was observed after VD supplementation of both the deficient and 1K mice. Further results describing mechanistic details of PpIX enhancement through alteration of heme- and VD-metabolic enzyme levels will be presented. Based on these results, a clinical study using oral vitamin D prior to PDT for human skin cancer should be performed.

  16. The impact of virtual admission on self-efficacy in patients with chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Emme, Christina; Mortensen, Erik L; Rydahl-Hansen, Susan

    2014-01-01

    AIMS AND OBJECTIVES: To investigate how virtual admission during acute exacerbation influences self-efficacy in patients with chronic obstructive pulmonary disease, compared with conventional hospital admission. BACKGROUND: Telemedicine solutions have been highlighted as a possible way to increas......-efficacy. Clinicians should consider the timing, duration and the content in the design of telemedical interventions directed at improving chronic obstructive pulmonary disease patients' self-efficacy, as telemedicine solutions alone may not be sufficient to enhance self-efficacy....

  17. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative.

    Science.gov (United States)

    Brayden, David J; Walsh, Edwin

    2014-09-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to ten millimolars of the three agents reduced TEER and increased the Papp of [(14)C]-mannitol across Caco-2 monolayers and rat intestinal mucosae, a concentration that matched increases in plasma membrane permeability seen in HCS. Although C11 was the most efficacious enhancer in vitro, it damaged monolayers and tissue mucosae more than the other two agents at similar concentrations and exposure times and was therefore not pursued further. Rat jejunal and colonic in situ intestinal instillations of 100 mM C10 or uC11 with FITC-dextran 4000 (FD4) solutions yielded comparable regional enhancement ratios of ~10 and 30%, respectively, for each agent with acceptable tissue histology. Mini-tablets of uC11 and FD4 however delivered more FD4 compared to C10-FD-4 mini-tablets in both regions, as reflected by a statistically higher AUC, and with no evidence of membrane perturbation. The unsaturated bond in uC11 therefore confers a reduction in lipophilicity and cytotoxicity compared to C11, and the resulting permeation enhancement is on a par with or superior to that of C10, a key component of formulations in current phase II oral peptide clinical trials.

  18. Enhancement of Self Efficacy of Vocational School Students in Buffer Solution Topics through Guided Inquiry Learning

    Science.gov (United States)

    M, Ardiany; W, Wahyu; A, Supriatna

    2017-09-01

    The more students who feel less confident in learning, so doing things that are less responsible, such as brawl, drunkenness and others. So researchers need to do research related to student self efficacy in learning, in order to reduce unwanted things. This study aims to determine the effect of guided inquiry learning on improving self-efficacy of learners in the buffer solution topics. The method used is the mixed method which is the two group pretest postest design. The subjects of the study are 60 students of class XI AK in one of the SMKN in Bandung, consisting of 30 experimental class students and 30 control class students. The instruments used in this study mix method consist of self-efficacy questionnaire of pretest and posttest learners, interview guides, and observation sheet. Data analysis using t test with significant α = 0,05. Based on the result of inquiry of guided inquiry study, there is a significant improvement in self efficacy aspect of students in the topic of buffer solution. Data of pretest and posttest interview, observation, questionnaire showed significant result, that is improvement of experimental class with conventionally guided inquiry learning. The mean of self-efficacy of student learning there is significant difference of experiment class than control class equal to 0,047. There is a significant relationship between guided inquiry learning with self efficacy and guided inquiry learning. Each correlation value is 0.737. The learning process with guided inquiry is fun and challenging so that students can expose their ideas and opinions without being forced. From the results of questionnaires students showed an attitude of interest, sincerity and a good response of learning. While the results of questionnaires teachers showed that guided inquiry learning can make students learn actively, increased self-efficacy.

  19. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  20. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Giovana Maria Fioramonti Calixto

    2016-03-01

    Full Text Available Photodynamic therapy (PDT is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs, solid lipid nanoparticles (SLNs, nanostructured lipid carriers (NLCs, gold nanoparticles (AuNPs, hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  1. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  2. Enhancing the efficacy of cisplatin in ovarian cancer treatment – could arsenic have a role

    Directory of Open Access Journals (Sweden)

    Helm C William

    2009-01-01

    Full Text Available Abstract Ovarian cancer affects more than 200,000 women each year around the world. Most women are not diagnosed until the disease has already metastasized from the ovaries with a resultant poor prognosis. Ovarian cancer is associated with an overall 5 year survival of little more than 50%. The mainstay of front-line therapy is cytoreductive surgery followed by chemotherapy. Traditionally, this has been by the intravenous route only but there is more interest in the delivery of intraperitoneal chemotherapy utilizing the pharmaco-therapeutic advantage of the peritoneal barrier. Despite three large, randomized clinical trials comparing intravenous with intraperitoneal chemotherapy showing improved outcomes for those receiving at least part of their chemotherapy by the intraperitoneal route. Cisplatin has been the most active drug for the treatment of ovarian cancer for the last 4 decades and the prognosis for women with ovarian cancer can be defined by the tumor response to cisplatin. Those whose tumors are innately platinum-resistant at the time of initial treatment have a very poor prognosis. Although the majority of patients with ovarian cancer respond to front-line platinum combination chemotherapy the majority will develop disease that becomes resistant to cisplatin and will ultimately succumb to the disease. Improving the efficacy of cisplatin could have a major impact in the fight against this disease. Arsenite is an exciting agent that not only has inherent single-agent tumoricidal activity against ovarian cancer cell lines but also multiple biochemical interactions that may enhance the cytotoxicity of cisplatin including inhibition of deoxyribose nucleic acid (DNA repair. In vitro studies suggest that arsenite may enhance the activity of cisplatin in other cell types. Arsenic trioxide is already used clinically to treat acute promyelocytic leukemia demonstrating its safety profile. Further research in ovarian cancer is warranted to define

  3. Verteporfin heterogeneity in pancreatic adenocarcinoma and the relationship to tumor vasculature and collagen distribution

    Science.gov (United States)

    Vincent, Phuong; Xie, Rui; Nieskoski, Michael; Marra, Kayla; Gunn, Jason; Pogue, Brian W.

    2018-02-01

    Photodynamic therapy (PDT) has emerged as one promising treatment regimen for several cancer types, with a clinical trial ongoing in pancreatic adenocarcinoma (PDAC). PDT treatment efficacy mainly depends on the combination of light delivery, oxygen availability and photosensitizer uptake, each of which can be limited in pancreas cancer. Therefore, increasing drug uptake in the tumor would make an important impact on treatment outcome. This study was conducted to focus on the issue with drug resistance by examining the relationship between photosensitizer verteporfin and tissue parameters such as collagen and vascular patency. Verteporfin uptake in the tumors was assessed by fluorescence imaging while collagen content and patent vessel area fraction were quantified by evaluating Masson's Trichrome and Lectin pathology staining images. Two tumor cell lines - AsPC-1 and BxPC-3 - were modeled in nude mice to investigate the impact of different tumor microenvironments. Experimental results highlighted the correlation between vascular patency and verteporfin uptake. Collagen content was found to be an independent factor within each tumor line, but a comparison across two tumor types suggested that collagen area of greater than 10% of tumor cross section reflected a lower verteporfin uptake. It was observed that whole-slice tumor quantifications have showcased some interesting trends which could be greatly enhanced and further supported by regional analysis.

  4. Vasovist-enhanced MR angiography

    International Nuclear Information System (INIS)

    Goyen, M.; Shamsi, K.; Schoenberg, S.O.

    2006-01-01

    Vasovist (MS-325) is the first intravascular contrast agent approved for use with magnetic resonance angiography in the European Union. Vasovist reversibly binds to albumin, providing extended intravascular enhancement compared to existing extracellular magnetic resonance contrast agents. Prior to approval, Vasovist underwent extensive testing to evaluate the safety and efficacy of the drug; the clinical trials program included blinded, placebo-controlled dose ranging, efficacy in a variety of vascular beds (AIOD, renal, pedal), examination of potential drug interaction with warfarin and comparison with XRA. The clinical trials show that Vasovist-enhanced MR angiography is safe and well-tolerated in patients with vascular disease, effective for the detection of vascular stenosis and aneurysms, significantly more accurate (both more sensitive and specific) than non-contrast MR angiography for the diagnosis of vascular stenoses, and similar to conventional angiography for the overall characterization of vascular disease, without the need for catheterization. (orig.)

  5. Vasovist-enhanced MR angiography

    Energy Technology Data Exchange (ETDEWEB)

    Goyen, M. [Univ. Medical Center, Hamburg-Eppendorf, Hamburg (Germany); Shamsi, K. [Berlex Lab., Inc., Montville, NJ (United States); Schoenberg, S.O. [Dept. of Clinical Radiology, Univ. Hospitals Grosshadern, Munich (Germany)

    2006-02-15

    Vasovist (MS-325) is the first intravascular contrast agent approved for use with magnetic resonance angiography in the European Union. Vasovist reversibly binds to albumin, providing extended intravascular enhancement compared to existing extracellular magnetic resonance contrast agents. Prior to approval, Vasovist underwent extensive testing to evaluate the safety and efficacy of the drug; the clinical trials program included blinded, placebo-controlled dose ranging, efficacy in a variety of vascular beds (AIOD, renal, pedal), examination of potential drug interaction with warfarin and comparison with XRA. The clinical trials show that Vasovist-enhanced MR angiography is safe and well-tolerated in patients with vascular disease, effective for the detection of vascular stenosis and aneurysms, significantly more accurate (both more sensitive and specific) than non-contrast MR angiography for the diagnosis of vascular stenoses, and similar to conventional angiography for the overall characterization of vascular disease, without the need for catheterization. (orig.)

  6. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  7. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    International Nuclear Information System (INIS)

    Fan Jinshui; Robert, Carine; Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce; Rassool, Feyruz Virgilia

    2011-01-01

    Highlights: → iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. → iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. → iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. → iPSC however show a partial apoptotic response to DNA damage, compared to hESC. → DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels

  8. Self-efficacy strategies to improve exercise in patients with heart failure: A systematic review

    OpenAIRE

    Rajati, Fatemeh; Sadeghi, Masoumeh; Feizi, Awat; Sharifirad, Gholamreza; Hasandokht, Tolu; Mostafavi, Firoozeh

    2014-01-01

    BACKGROUND Despite exercise is recommended as an adjunct to medication therapy in patients with heart failure (HF), non-adherence to exercise is a major problem. While improving self-efficacy is an effective way to increase physical activity, the evidence concerning the relationship between strategies to enhance self-efficacy and exercise among HF has not been systematically reviewed. The objective of this systematic review is to assess the effect of interventions to change the self-efficacy ...

  9. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.

    Science.gov (United States)

    Park, Eunjeong; Chang, Hyuk-Jae; Nam, Hyo Suk

    2017-04-18

    The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal arm weakness using inertial sensors and signal processing. We extracted features of drift and pronation from accelerometer signals of wearable devices on the inner wrists of 16 stroke patients and 10 healthy controls. Signal processing and feature selection approach were applied to discriminate PDT features used to classify stroke patients. A series of machine learning techniques, namely support vector machine (SVM), radial basis function network (RBFN), and random forest (RF), were implemented to discriminate stroke patients from controls with leave-one-out cross-validation. Signal processing by the PDT tool extracted a total of 12 PDT features from sensors. Feature selection abstracted the major attributes from the 12 PDT features to elucidate the dominant characteristics of proximal weakness of stroke patients using machine learning classification. Our proposed PDT classifiers had an area under the receiver operating characteristic curve (AUC) of .806 (SVM), .769 (RBFN), and .900 (RF) without feature selection, and feature selection improves the AUCs to .913 (SVM), .956 (RBFN), and .975 (RF), representing an average performance enhancement of 15.3%. Sensors and machine learning methods can reliably detect stroke signs and quantify proximal arm weakness. Our proposed solution will facilitate pervasive monitoring of stroke patients. ©Eunjeong Park, Hyuk-Jae Chang, Hyo Suk Nam. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.04.2017.

  10. Self-Efficacy as a Positive Youth Development Construct: A Conceptual Review

    Directory of Open Access Journals (Sweden)

    Sandra K. M. Tsang

    2012-01-01

    Full Text Available Self-efficacy denotes people's beliefs about their ability to perform in different situations. It functions as a multilevel and multifaceted set of beliefs that influence how people feel, think, motivate themselves, and behave during various tasks. Self-efficacy beliefs are informed by enactive attainment, vicarious experience, imaginal experiences, and social persuasion as well as physical and emotional states. These beliefs are mediated by cognitive, motivational, affective, and selection processes to generate actual performance. Self-efficacy development is closely intertwined with a person's experiences, competencies, and developmental tasks in different domains at different stages in life. This paper reviews the literature to outline the definition and theoretical conceptualizations of the construct originally devised by Bandura that have flourished since the 1990s. Drawing from the studies of the construct to assess self-efficacy, and to inform positive youth development, the paper will present the determinants of the development of self-efficacy beliefs and identify the connection between self-efficacy and adolescent developmental outcomes. The paper will conclude with strategies to enhance youth self-efficacy and proposals for future research directions.

  11. Self-Efficacy as a Positive Youth Development Construct: A Conceptual Review

    Science.gov (United States)

    Tsang, Sandra K. M.; Hui, Eadaoin K. P.; Law, Bella C. M.

    2012-01-01

    Self-efficacy denotes people's beliefs about their ability to perform in different situations. It functions as a multilevel and multifaceted set of beliefs that influence how people feel, think, motivate themselves, and behave during various tasks. Self-efficacy beliefs are informed by enactive attainment, vicarious experience, imaginal experiences, and social persuasion as well as physical and emotional states. These beliefs are mediated by cognitive, motivational, affective, and selection processes to generate actual performance. Self-efficacy development is closely intertwined with a person's experiences, competencies, and developmental tasks in different domains at different stages in life. This paper reviews the literature to outline the definition and theoretical conceptualizations of the construct originally devised by Bandura that have flourished since the 1990s. Drawing from the studies of the construct to assess self-efficacy, and to inform positive youth development, the paper will present the determinants of the development of self-efficacy beliefs and identify the connection between self-efficacy and adolescent developmental outcomes. The paper will conclude with strategies to enhance youth self-efficacy and proposals for future research directions. PMID:22645423

  12. EFFECT OF MUSIC THERAPY ON INTRINSIC MOTIVATION, PHYSICAL SELF EFFICACY AND PERFORMANCE OF FEMALE FOOTBALL PLAYERS

    OpenAIRE

    Mamta Sharma; Gagandeep Kaur

    2015-01-01

    Music therapy is increasingly used in sports for enhancing sport performance. It provides a mean of improving mental strength among sportspersons. The purpose of this study is to enhance intrinsic motivation, physical self-efficacy and performance of female football players through music therapy. For this purpose, twenty two female football players, in the age group of 21-26 were screened on the basis of their scores on Sport Motivation Scale and Physical Self-Efficacy Scale. Then, they were ...

  13. Students’ Aesthetics Experience, Creative Self-Efficacy and Creativity: Is Creativity Instruction Effective?

    Directory of Open Access Journals (Sweden)

    Yuan-Cheng Chang

    2016-12-01

    Full Text Available Based on creativity component theory, creativity system theory and creative self-efficacy theory, this study aims to explore the influence of college students’ aesthetics experience and creative self-efficacy on their creativity and the role of creativity instruction as a mediator variable. The participants were 338 college design majors in 50 teams who were working on their graduation exhibitions, and 50 advising professors from departments related to design. Hierarchical Linear Models were applied for analysis. The result showed that instruction on enhancing students’ creative intention positively affect students’ aesthetics experience. Students’ aesthetics experience affects their creativity and creative self-efficacy. Creativity instruction with focus on creativity skills by means of promoting aesthetic attitude, aesthetic understanding, and offering complete experiences had a moderating effect on students’ perception toward creative product. However, there was a negative moderating effect of creative instruction on perceived aesthetic pleasure and students’ perception toward creative product. There was no moderating effect of creative instruction on the relationship between students’ creative self-efficacy and creativity. Accordingly, the study concluded that in order to enhance students’ creativity, universities should stress on the development of students’ aesthetics experiences and re-evaluation of approaches to creativity instruction.

  14. Development and Evaluation of Mouth Dissolving Films of Amlodipine Besylate for Enhanced Therapeutic Efficacy

    Directory of Open Access Journals (Sweden)

    K. M. Maheswari

    2014-01-01

    Full Text Available The present investigation was undertaken with an objective of formulating mouth dissolving films (MDFs of Amlodipine Besylate (AMLO to enhance convenience and compliance of the elderly and pediatric patients for better therapeutic efficacy. Film formers like hydroxy propyl methyl cellulose (HPMC and methyl cellulose (MC along with film modifiers like poly vinyl pyrrolidone K30 (PVP K30, and sodium lauryl sulphate (SLS as solubilizing agents were evaluated. The prepared MDFs were evaluated for in vitro dissolution characteristics, in vitro disintegration time, and their physicomechanical properties. All the prepared MDFs showed good mechanical properties like tensile strength, folding endurance, and % elongation. MDFs were evaluated by means of FTIR, SEM, and X-RD studies. MDFs with 7.5% (w/w of HPMC E3 gave better dissolution properties when compared to HPMC E5, HPMC E15, and MC. MDFs with PVP K30 and SLS gave superior dissolution properties when compared to MDFs without PVP K30 and SLS. The dissolution properties of MDFs with PVP K30 were superior when compared to MDFs with SLS. In the case of F3 containing 7.5% of HPMC E3 and 0.04% of PVP K30, complete and faster release was observed within 60 sec when compared to other formulations. Release kinetics data reveals diffusion is the release mechanism.

  15. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi.

    Science.gov (United States)

    Bah, Germanus S; Tanya, Vincent N; Makepeace, Benjamin L

    2015-08-15

    Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult

  16. Evaluation of a novel photosensitizing drug having antitumor effect for advanced prostate cancer

    Science.gov (United States)

    Saito, Sachiko; Inai, Mizuho; Honda, Norihiro; Hazama, Hisanao; Kaneda, Yasufumi; Awazu, Kunio

    2017-07-01

    Prostate cancer is the second most frequently diagnosed cancer among men worldwide and a novel treatment for the disease is required. Replication-deficient virus particles, hemagglutinating virus of Japan envelope (HVJ-E), has cytotoxicity to cancer cells. To enhance the therapeutic effect of HVJ-E by photodynamic therapy (PDT) as a trigger of HVJ-E's anti-tumor effect, talaporfin sodium (Laserphyrin) used for PDT was encapsulated into HVJ-E to produce a novel photosensitizing drug, named Laserphyrin ®-HVJ-E, and its therapeutic effect for prostate cancer cells (PC-3) was evaluated. As the results, direct cytotoxicities of HVJ-E and Laserphyrin ®-HVJ-E for PC-3 after an administration time of 48 h were almost the same. Cell survival rates of PC-3, which were irradiated 2 h after administration of Laserphyrin ®-HVJ-E, were about 7.8%. Although further study is needed to find an optimal PDT condition, these results suggest that Laserphyrin ®-HVJ-E is useful for treatment of prostate cancer due to the combination of cytotoxicities of HVJ-E and PDT.

  17. Cell Death Pathways in Photodynamic Therapy of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mroz, Pawel, E-mail: pmroz@partners.org [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Yaroslavsky, Anastasia [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Boston University College of Engineering, Boston, MA 02114 (United States); Kharkwal, Gitika B [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Hamblin, Michael R. [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 (United States)

    2011-06-03

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  18. Cell Death Pathways in Photodynamic Therapy of Cancer

    International Nuclear Information System (INIS)

    Mroz, Pawel; Yaroslavsky, Anastasia; Kharkwal, Gitika B; Hamblin, Michael R.

    2011-01-01

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT

  19. The role of self-regulatory efficacy, moral disengagement and guilt on doping likelihood: A social cognitive theory perspective.

    Science.gov (United States)

    Ring, Christopher; Kavussanu, Maria

    2018-03-01

    Given the concern over doping in sport, researchers have begun to explore the role played by self-regulatory processes in the decision whether to use banned performance-enhancing substances. Grounded on Bandura's (1991) theory of moral thought and action, this study examined the role of self-regulatory efficacy, moral disengagement and anticipated guilt on the likelihood to use a banned substance among college athletes. Doping self-regulatory efficacy was associated with doping likelihood both directly (b = -.16, P self-regulatory efficacy influences the likelihood to use banned performance-enhancing substances both directly and indirectly via moral disengagement.

  20. Enhancing poxvirus vectors vaccine immunogenicity.

    Science.gov (United States)

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.

  1. Enhancing Writing Self-Efficacy Beliefs of Students with Learning Disabilities Improves Their Writing Processes and Products

    Science.gov (United States)

    de Caso, Ana Maria; Garcia, Jesus Nicasio; Diez, Carmen; Robledo, Patricia; Alvarez, Maria Lourdes

    2010-01-01

    Introduction: The use of self efficacy has been suggested as an effective classroom intervention procedure. The present research examined the use of self-efficacy training on the writing of Spanish elementary student with learning disabilities. Objectives: We present a research study focused on the improvement of the writing product and the…

  2. The role of intrinsic motivation in a group of low vision patients participating in a self-management programme to enhance self-efficacy and quality of life.

    Science.gov (United States)

    Tay, Kay Chai Peter; Drury, Vicki Blair; Mackey, Sandra

    2014-02-01

    Self-management programmes have previously been found to decrease health problems, enhance quality of life and increase independence. However, there is no literature that examines the influence of the participants' intrinsic motivation on the outcomes of such programmes. This study examined the role of intrinsic motivation in a pilot low vision self-management programme to enhance self-efficacy and quality of life of the programme participants. A positive association was observed between the female participants' perceived choice and perceived competence, two underlying dimensions of the Intrinsic Motivation Inventory. In addition, a positive correlation was observed between the younger participants' perceived competence and the change in their quality of life. The findings provide some support for consideration of participants' intrinsic motivation in the development of effective self-management programmes. © 2013 Wiley Publishing Asia Pty Ltd.

  3. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia.

    Science.gov (United States)

    Fraietta, Joseph A; Beckwith, Kyle A; Patel, Prachi R; Ruella, Marco; Zheng, Zhaohui; Barrett, David M; Lacey, Simon F; Melenhorst, Jan Joseph; McGettigan, Shannon E; Cook, Danielle R; Zhang, Changfeng; Xu, Jun; Do, Priscilla; Hulitt, Jessica; Kudchodkar, Sagar B; Cogdill, Alexandria P; Gill, Saar; Porter, David L; Woyach, Jennifer A; Long, Meixiao; Johnson, Amy J; Maddocks, Kami; Muthusamy, Natarajan; Levine, Bruce L; June, Carl H; Byrd, John C; Maus, Marcela V

    2016-03-03

    Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is highly promising but requires robust T-cell expansion and engraftment. A T-cell defect in chronic lymphocytic leukemia (CLL) due to disease and/or therapy impairs ex vivo expansion and response to CAR T cells. To evaluate the effect of ibrutinib treatment on the T-cell compartment in CLL as it relates to CAR T-cell generation, we examined the phenotype and function of T cells in a cohort of CLL patients during their course of treatment with ibrutinib. We found that ≥5 cycles of ibrutinib therapy improved the expansion of CD19-directed CAR T cells (CTL019), in association with decreased expression of the immunosuppressive molecule programmed cell death 1 on T cells and of CD200 on B-CLL cells. In support of these findings, we observed that 3 CLL patients who had been treated with ibrutinib for ≥1 year at the time of T-cell collection had improved ex vivo and in vivo CTL019 expansion, which correlated positively together and with clinical response. Lastly, we show that ibrutinib exposure does not impair CAR T-cell function in vitro but does improve CAR T-cell engraftment, tumor clearance, and survival in human xenograft models of resistant acute lymphocytic leukemia and CLL when administered concurrently. Our collective findings indicate that ibrutinib enhances CAR T-cell function and suggest that clinical trials with combination therapy are warranted. Our studies demonstrate that improved T-cell function may also contribute to the efficacy of ibrutinib in CLL. These trials were registered at www.clinicaltrials.gov as #NCT01747486, #NCT01105247, and #NCT01217749. © 2016 by The American Society of Hematology.

  4. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  5. The effect of a self-efficacy-based educational programme on maternal breast feeding self-efficacy, breast feeding duration and exclusive breast feeding rates: A longitudinal study.

    Science.gov (United States)

    Chan, Man Yi; Ip, Wan Yim; Choi, Kai Chow

    2016-05-01

    breast feeding has a number of well-documented benefits. Numerous studies have been conducted to investigate an effective approach to increase the breast feeding rate, duration and exclusive breast feeding rate, in which maternal breast feeding self-efficacy was determined as one of the major contributors. Although numerous breast feeding educational programmes have been developed to enhance maternal breastfeeding self-efficacy, results on the effectiveness of these programmes remain inconclusive. this study aims to investigate the effectiveness of a self-efficacy-based breast feeding educational programme (SEBEP) in enhancing breast feeding self-efficacy, breast feeding duration and exclusive breast feeding rates among mothers in Hong Kong. eligible pregnant women were randomized to attend a 2.5-hour breast feeding workshop at 28-38 weeks of gestation and receive 30-60minutes of telephone counselling at two weeks post partum, whereas both intervention and control groups received usual care. At two weeks postpartum, the Breast feeding Self-Efficacy Scale-Short Form (BSES-SF) and a self-developed post partum questionnaire were completed via telephone interviews. The breast feeding duration, pattern of breast feeding and exclusive breast feeding rates were recorded at two weeks, four weeks, eight weeks and six months post partum. results of analyses based on an intention-to-treat (ITT) assumption showed a significant difference (p<0.01) in the change in BSES-SF mean scores between the mothers who received SEBEP and those who did not receive SEBEP at two weeks post partum. The exclusive breast feeding rate was 11.4% for the intervention group and 5.6% for the control group at six months post partum. the findings of this study highlight the feasibility of a major trial to implement breast feeding education targeted at increasing breast feeding self-efficacy and exclusive breast feeding rates in Hong Kong. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of Self-Directed Learning in Communication Competence and Self-Efficacy.

    Science.gov (United States)

    Song, Youngshin; Yun, Soon Young; Kim, Sun-Ae; Ahn, Eun-Kyong; Jung, Mi Sook

    2015-10-01

    Although effective self-directed learning (SDL) has been shown to improve clinical performance, little is known about its role between communication competence and communication self-efficacy in nursing students. This study aimed to identify whether SDL mediates the relationship between communication competence and communication self-efficacy. A cross-sectional survey was conducted with a sample of 213 nursing students taking a basic fundamentals of nursing course. A path diagram, using structural equation modeling, was used to estimate the direct and indirect effects of communication competence on communication self-efficacy, controlling for SDL as a mediator. A structural equation model confirmed direct and indirect effects of communication competence on communication self-efficacy when SDL was controlled as a mediator. An appropriate fit to the data was identified in this mediation model of SDL. For enhancing self-efficacy regarding communication skill, the specified SDL program based on the level of communication competence will yield more effective results. Copyright 2015, SLACK Incorporated.

  7. Fathers' encounter of support from paediatric diabetes teams; the tension between general recommendations and personal experience.

    Science.gov (United States)

    Boman, Ase; Povlsen, Lene; Dahlborg-Lyckhage, Elisabeth; Hanas, Ragnar; Borup, Ina

    2013-05-01

    The purpose of this grounded theory study was to explore and discuss how fathers involved in caring for a child with type 1 diabetes experienced support from Swedish paediatric diabetes teams (PDTs) in everyday life with their child. Eleven fathers of children with type 1 diabetes, living in Sweden and scoring high on involvement on the Parental Responsibility Questionnaire, participated. Data were collected from January 2011 to August 2011, initially through online focus group discussions in which 6 of 19 invited fathers participated. Due to high attrition, the data collection continued in eight individual interviews. A semi-structured interview guide was used, and the fathers were asked to share experiences of their PDT's support in everyday life with their child. A simultaneous and constant comparison approach to data collection and analysis allowed the core category to emerge: the tension between general recommendations and personal experience. This core category illuminates how the fathers experienced tension between managing their unique everyday life with their child and balancing this to meet their PDT's expectations with regard to blood glucose levels. The core category was supported by two categories: the tension between the fathers'and their PDT's knowledge, whereby fathers reported discrepancies between their PDT's medical knowledge and their own unique knowledge of their child; and the tension between the fathers'and their PDT's goals, whereby the fathers identified differences between the family's and their PDT's goals. As a dimension of the core category, fathers felt trust or distrust in their PDT. We conclude that to achieve high-quality support for children with diabetes and to enhance their health and well-being, involved fathers' knowledge of their unique family situation needs to be integrated into the diabetes treatment. © 2012 Blackwell Publishing Ltd.

  8. Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a.

    Science.gov (United States)

    Srivatsan, Avinash; Pera, Paula; Joshi, Penny; Wang, Yanfang; Missert, Joseph R; Tracy, Erin C; Tabaczynski, Walter A; Yao, Rutao; Sajjad, Munawwar; Baumann, Heinz; Pandey, Ravindra K

    2015-07-01

    We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Determination of efficacy of fingermark enhancement reagents; the use of propyl chloroformate for the derivatization of fingerprint amino acids extracted from paper.

    Science.gov (United States)

    Mink, Tineke; Voorhaar, Annelies; Stoel, Reinoud; de Puit, Marcel

    2013-09-01

    The analysis of the constituents of fingerprints has been described numerous times, mainly with the purpose of determining the aging effect on fingerprints or showing the differences between donors or groups of donors. In this paper we describe the use of derivatized amino acids to determine the efficacy of the visualization reagents 1,8-diazafluoren-9-one (DFO) and ninhydrin. At present certain conditions are used for the application of these reagents, as determined by trial-and-error investigations, to the effect on fingerprints. The recovery of amino acids from a porous surface can be used as a measure for the efficacy of a visualization agent. In this paper we describe a method for the determination of the amount of amino acid left after reaction with well known fingerprint visualization reagents. This will allow a more scientific approach to method development for fingermark enhancement techniques. Furthermore, investigations on the influence of the concentration of fingermark amino acids, the order of application of and exposure time to reagents and the influence of age of the amino acids were carried out. These studies have resulted in a broader understanding of the mechanism involved in visualization of fingermarks using DFO and ninhydrin. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning.

    Science.gov (United States)

    Ballen, Cissy J; Wieman, Carl; Salehi, Shima; Searle, Jeremy B; Zamudio, Kelly R

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. The Impact of Principal Leadership Behaviors on the Efficacy of New and Experienced Middle School Teachers

    Science.gov (United States)

    Walker, Jeffrey A.

    2009-01-01

    This study investigated characteristics and behaviors of middle school principals that enhance the efficacy of new and experienced middle school teachers. Existing research has established a positive relationship between high levels of teacher efficacy and increased student achievement. Prior research has also demonstrated a positive link between…

  12. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability.

    Science.gov (United States)

    Dhanikula, Renu Singh; Argaw, Anteneh; Bouchard, Jean-Francois; Hildgen, Patrice

    2008-01-01

    Therapeutic benefit in glial tumors is often limited due to low permeability of delivery systems across the blood-brain barrier (BBB), drug resistance, and poor penetration into the tumor tissue. In an attempt to overcome these hurdles, polyether-copolyester (PEPE) dendrimers were evaluated as drug carriers for the treatment of gliomas. Dendrimers were conjugated to d-glucosamine as the ligand for enhancing BBB permeability and tumor targeting. The efficacy of methotrexate (MTX)-loaded dendrimers was established against U87 MG and U 343 MGa cells. Permeability of rhodamine-labeled dendrimers and MTX-loaded dendrimers across the in vitro BBB model and their distribution into avascular human glioma tumor spheroids was also studied. Glucosylated dendrimers were found to be endocytosed in significantly higher amounts than nonglucosylated dendrimers by both the cell lines. IC 50 of MTX after loading in dendrimers was lower than that of the free MTX, suggesting that loading MTX in PEPE dendrimers increased its potency. Similar higher activity of MTX-loaded glucosylated and nonglucosylated dendrimers was found in the reduction of tumor spheroid size. These MTX-loaded dendrimers were able to kill even MTX-resistant cells highlighting their ability to overcome MTX resistance. In addition, the amount of MTX-transported across BBB was three to five times more after loading in the dendrimers. Glucosylation further increased the cumulative permeation of dendrimers across BBB and hence increased the amount of MTX available across it. Glucosylated dendrimers distributed through out the avascular tumor spheroids within 6 h, while nonglucosylated dendrimers could do so in 12 h. The results show that glucosamine can be used as an effective ligand not only for targeting glial tumors but also for enhanced permeability across BBB. Thus, glucosylated PEPE dendrimers can serve as potential delivery system for the treatment of gliomas.

  13. Self-efficacy and Perceived Organizational Support by Workers in a Youth Development Setting

    Directory of Open Access Journals (Sweden)

    Sara Rockow

    2016-12-01

    Full Text Available The efficacy levels of workers in the youth development field can significantly impact the work done with youth.  These levels may be impacted by workers’ perceptions of administrative occupational support at their organization.  To date, limited research exists that examines youth work efficacy levels, and no research studies exist analyzing the relationship between youth workers’ efficacy levels and perceived organizational support.  The current study examined the relationship between self-efficacy and the perceived organizational support felt by workers in a youth development setting.  A total of 198 surveys were completed; results indicated that youth work efficacy was significantly related to perceived organizational support.  This study is important to enhancing the body of knowledge regarding self-efficacy levels of workers in a youth development setting, as well as understanding motivation and self-confidence of youth development professionals.

  14. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction.

    Science.gov (United States)

    Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan

    2015-01-01

    Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.

  15. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  16. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Susane Moreira [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Pacheco-Soares, Cristina [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Laboratory of Dynamics of Cellular Compartments, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Marciano, Fernanda Roberta; Lobo, Anderson Oliveira [Laboratory of Biomedical Nanotechnology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Soares da Silva, Newton, E-mail: nsoares@univap.br [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Laboratory of Dynamics of Cellular Compartments, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil)

    2014-03-01

    Superhydrophilic vertically aligned carbon nanotubes (VACNT-O{sub 2}) were used for the first time as scaffolds for photodynamic therapy (PDT) to induce inhibition of cell division in eukaryotic cells. VACNT-O{sub 2} scaffolds were produced on Ti substrates using plasma enhanced chemical vapor deposition technique and functionalized by oxygen plasma. Scanning electron microscopy (SEM) analysis was performed to characterize the surface changes of the protozoan and interaction with VACNT-O{sub 2}. Characterization of lipid and total protein expression was performed with protozoa that were or not treated with PDT. Quantification of protein was conducted using Qubit fluorometer and separated on a polyacrylamide gel. SEM analysis showed the release of lipid vesicles by protozoa after the PDT. These vesicles were characterized by the PKH26 fluorescent probe. The results demonstrated a greater amount of protein released after PDT than in the control. When analyzing the protein material in polyacrylamide gel, a significant protein expression of approximately 65 kDa was found. A model identified the programmed death of Tritrichomonas foetus after the PDT was also proposed. - Highlights: • VAMWCNT-O{sub 2} used for the first time as scaffolds for study in parasitic protozoan. • VAMWCNT-O{sub 2} films applied to understand spreading mechanisms of parasitic protozoan. • A release of a protein of approximately 65kDa of protozoan was also observed.

  17. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube

    International Nuclear Information System (INIS)

    Machado, Susane Moreira; Pacheco-Soares, Cristina; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares da Silva, Newton

    2014-01-01

    Superhydrophilic vertically aligned carbon nanotubes (VACNT-O 2 ) were used for the first time as scaffolds for photodynamic therapy (PDT) to induce inhibition of cell division in eukaryotic cells. VACNT-O 2 scaffolds were produced on Ti substrates using plasma enhanced chemical vapor deposition technique and functionalized by oxygen plasma. Scanning electron microscopy (SEM) analysis was performed to characterize the surface changes of the protozoan and interaction with VACNT-O 2 . Characterization of lipid and total protein expression was performed with protozoa that were or not treated with PDT. Quantification of protein was conducted using Qubit fluorometer and separated on a polyacrylamide gel. SEM analysis showed the release of lipid vesicles by protozoa after the PDT. These vesicles were characterized by the PKH26 fluorescent probe. The results demonstrated a greater amount of protein released after PDT than in the control. When analyzing the protein material in polyacrylamide gel, a significant protein expression of approximately 65 kDa was found. A model identified the programmed death of Tritrichomonas foetus after the PDT was also proposed. - Highlights: • VAMWCNT-O 2 used for the first time as scaffolds for study in parasitic protozoan. • VAMWCNT-O 2 films applied to understand spreading mechanisms of parasitic protozoan. • A release of a protein of approximately 65kDa of protozoan was also observed

  18. 24-h Efficacy of Glaucoma Treatment Options.

    Science.gov (United States)

    Konstas, Anastasios G P; Quaranta, Luciano; Bozkurt, Banu; Katsanos, Andreas; Garcia-Feijoo, Julian; Rossetti, Luca; Shaarawy, Tarek; Pfeiffer, Norbert; Miglior, Stefano

    2016-04-01

    Current management of glaucoma entails the medical, laser, or surgical reduction of intraocular pressure (IOP) to a predetermined level of target IOP, which is commensurate with either stability or delayed progression of visual loss. In the published literature, the hypothesis is often made that IOP control implies a single IOP measurement over time. Although the follow-up of glaucoma patients with single IOP measurements is quick and convenient, such measurements often do not adequately reflect the untreated IOP characteristics, or indeed the quality of treated IOP control during the 24-h cycle. Since glaucoma is a 24-h disease and the damaging effect of elevated IOP is continuous, it is logical that we should aim to understand the efficacy of all treatment options throughout the 24-h period. This article first reviews the concept and value of diurnal and 24-h IOP monitoring. It then critically evaluates selected available evidence on the 24-h efficacy of medical, laser and surgical therapy options. During the past decade several controlled trials have significantly enhanced our understanding on the 24-h efficacy of all glaucoma therapy options. Nevertheless, more long-term evidence is needed to better evaluate the 24-h efficacy of glaucoma therapy and the precise impact of IOP characteristics on glaucomatous progression and visual prognosis.

  19. Teachers' self-efficacy, motivation adn teaching strategies - Auto-eficacia Docente, Motivación del Profesor y Estrategias de Enseñanza

    Directory of Open Access Journals (Sweden)

    Pedro Rosario

    2009-12-01

    Full Text Available According to previous research, teachers’ efficacy relating to teaching practices is highly dependent on the extent to which they are confident about their own capabilities to manage the new demands on their professional role. The present work aimed at: a gathering information about the way teachers manage different aspects of self-efficacy (i.e., enhancing their instructional process in order to optimize their lessons and engage the students in the learning process, in order to identify homogeneous self-efficacy profiles, b investigating the way these profiles relate to different levels and types of motivation, teaching strategies and teachers’ self-esteem. Ninety-five teachers from five Spanish public Universities participated in this study. Three different profiles of teachers’ efficacy have been identified: 1 high self-efficacy in the three dimensions; 2 medium self-efficacy in the enhancement of the teaching process and of lessons management, and medium-high efficacy in the engagement of students, and 3 low self-efficacy in the three dimensions. ANOVA results supported previous findings since teachers’ self-efficacy beliefs played a crucial role on teachers’ motivation and professional engagement.

  20. Depressive symptoms, perceived stress, self-efficacy, and outcome expectations: Predict fitness among adolescents with obesity.

    Science.gov (United States)

    Tulloch, Heather; Heenan, Adam; Sweet, Shane; Goldfield, Gary S; Kenny, Glen P; Alberga, Angela S; Sigal, Ronald J

    2017-10-01

    The objective of the present study was to test if outcome expectancy mediated the relationship between fitness and self-efficacy, perceived stress, and depressive symptoms.Adolescents with obesity ( n = 228) completed measures of perceived stress and depressive symptoms at baseline, self-efficacy and outcome expectancy at baseline and 3 months, and fitness at baseline and 6 months. Structural equation modeling was used to analyze the data. Results showed that self-efficacy was positively associated with fitness via outcome expectancies. For females, fewer depressive symptoms were linked to fitness via self-efficacy and outcome expectancies. Exercise interventions that enhance exercise self-efficacy, outcome expectancy, and reduce depressive symptoms may increase fitness.